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‘Abstract

Baseline Correction of Earthquake Records
in the Frequency Domain

by

E. Kausel
and

R. Ushijima

The report examines various integration schemes for discrete func-
tions in the frequency domain, and develops procedures to perform a
parabolic baseline correction to earthquake records in this domain. Only
for acceleration records having zero mean value over the interval of
definition does the simplest integration scheme analyzed (the "pseudo-
continuous method") coincide with the well known "integration" procedure
of dividing the Fourier Transform of the record by 2 ¥=T . Records with
no-zero mean, on the other hand, require additional terms to achieve con-
sistency with time domain procedures such as the trapezoidal rule. The
formulae developed are then applied 4in the last section of the report
to the Golden Gate Earthquake of March 22, 1957, and compared against
each other.
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Preface

The work described in this report represents part of a research
effort on Dynamic Soil-Structure Interaction carried out in the Civil
Engineering Department at M.I.T. under the sponsorship of the National
Science Foundation, Division of Advanced Environmental Research and Tech-
nology., through Grant ENV 77-18339.

This is the fourth of a series of research reports published under
this grant. The previous ones were:

R78-20, "Dynamic Stiffness of Rectangular Foundations," by Jose
Dominguez and J. M. Roesset, August 1978.

R78-24, "Response of Embedded Foundations to Travelling Waves,"
by Jose Dominqguez and J. M. Roesset, August 1978.

R79-6, "Vertical and Torsionai Stiffnesses of Cylindrical Foot-
ings," by E. Kausel and R. Ushijima, February 1979.
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Introduction

After the discovery of the Fast Fourier Transform (FFT) algorithm in
1965 by Cooley and Tuckey, it became computationally attractive to apply
frequency domain techniques to the solution of physical systems involving
linear differential equations, and in particular, to determine the response
of mechanical systems to transient loads. Such procedures are particularly
convenient, for instance, in seismic analyses incorporating soil-structure
interaction effects as well as Tinear hysteretic damping., As is well known,
the method is based on the convolution of the Fourier Transform of the input
record with the frequency response functions (transfer functions) of the
dynamic system under consideration. In a typical analysis, these transfer
functions are determined only for a selected number of frequencies, with
the spacing depending on the characteristics of the dynamic system. Addi-
tional values, if needed, are then found by interpolation.

Fourier Transform techniques are also very useful in the manipu1ation
of earthquake records, such as changing the time step without adding spuri-
ous high frequencies {trigonometric interpolation), altering the frequency
contents, or removing selected frequencies (filtering}. The latter can be -
done either deliberately, or unwittingly when the transfer functions are
terminated at a frequency lower than the cutoff (Nyquist or folding) fre-
quency of the record. By necessity, all these manipulations destroy to a
lesser or greater extent the baseline of the input motion, even before they
are convolved with the transfer functions. Thus, it is desirable in many
cases to develop procedures to restore a baseline without having to return
first to the time domain. Such a procedure would afford also the opportun-
ity to perform a baseline correction without addition of undesirable fre-
quencies. The method presented in this work is based on the formulation
of a second degree parabola in the frequency domain, with consideration of
the discrete and periodic nature of the FFT algorithm.

Continuous versus Discrete Fourier Series

Let f(t) be a real, single valued, piecewise continuous function of t
defined in the interval (0,T} which has only a finite number of discontinu-
ities, a finite number of maxima and minima, and satisfies the Dirichlet
condition



T
j [f(t)dt = finite
0

This function can then be expanded in the continuous Fourier Series (CFS)

p 1th 2n
f = .. .= 1
© =] me S a-3 ¥ ()

in which i = /=1 , and e = base of natural logarithms. Alternatively, if
the function is defined only at 2N equally spaced points, ‘

f(t) = fk = f(kAt), k=0,1, ... 2N-1, At =<g§

it may be expanded into the Discrete Fourier Series (DFS)

N i T ik
: N
fk =._§_-N‘ Hj 3] (2)

The symbol § indicates that the first and last elements in the series
must be multiplied by 0.5, When the coefficients Hj are obtained from a
real function fk via equation (4) below, these elements are real and equal,
and a conventional summation from -(N-1} to N (or from -N to N-1) could
be employed as well. However, When they are obtained by alteration of a
spectrum (such as multiplying a Fourier spectrum by a complex transfer
function), H_y» Hy are complex conjugates. Hence, the summation must be
performed as indicated in order to define a real function fk with equation
(2) above.

For the continuous and discrete cases, the (spectral) coefficients
hj’ Hj follow from

hj = T»Jof(t) e dt, ﬂj =3 (3)
and : zg_'[ - %Jk (4)

H. = f, e

JoW gy

It can also be shown that

<«

Hy =) Njeonm | (5)

m=-oc0
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provided that the function f(t) is not discontinuous at t=0, T, etc. Should
this be the case, then equations (4) and (5) will agree only if the first
value (fo) of the discrete summation 4) is taken equal to the average

value %(f(o") + f(0+)], at the discontinuity. Equation (5) is the mathe-
matical expression for the aliasing phenomenon.

Finally, if the function f(t) is defined zero outside the interval
(0,T), then it has a continuous Fourier transform F(Q) and discrete (fast)
Fourier transform FFT (Q) which are related to the CFS and DFS by

T h.

F(“j) i

and FFT(Qj) T Hj (6)

Evidently, F(R) is also defined for the continucus spectrum of frequencies
$ which contains the discrete spectrum Qj as a subset. Hence, adding zeroces
in the time domain may be used to interpolate in the frequency domain, and
vice versa.

Velocity vs. Acceleration in Frequency Domain, Continuous Case (CFS).

If c¢(t), a{t) denote corresponding velocity and acceleration time
histories for an event defined in the interval 0 < t < T, they satisfy the

relationship t
c(t) = ¢ + [ alude (7)
0

-if.t ,
where c_ is the initial velocity. Multiplication by e Y (Qj =~%£ i}

and integration over the interval T yields the CFS {periodic in T)

= | ¢{t) e =C J e + f e J alt) dt dt
T 0 oT 0 T 0 )
(8)
Integrating by parts, with Qj #0
: inlT )

T -iQ.t e T d =10t
}-J'c(t)e 3 dt = Co [] e. ] + 791T I a(t) e J dt

0 ij ] 0

T

J 0
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-iQ.T
Now, Qj T=2mj, so that e J

1. Also,

1 T - -iQLt
vy = T'I c(t) e J dt = CFS of velocity
° . (10)
1 T -iQ.t
94 = T‘J a(t) e J dt = CFS of acceleration
0
In particular,
T
= -1 - - i
9 = %= ° T [ a(t) dt = mean acceleration

0
Therefore, equation (9) reduces to
- . 0
9.~ g ﬂjf

. , (11)
o1 (j # 0)

which relates the CFS of the velocity and acceleration time histories for
an event with non-zero mean acceleration (g0 # 0). On the other hand,
from equation {(7), we obtain the final velocity st t = T as
T

€ =¢y * IO a(t) dt = ¢, * T 95 (12)
Unless 9 = 0, the velocity will display a discontinuity of t = 0, T, 27,
etc.  Since the CFS converges in the mean, the corresponding value at t = 0
and t = T will .be

¢ +c c +c +Tgyg
- _ o T_ "o 0 0 _ T
% © 2 - 2 % t7 9 (13)
Also, from equation (1) we obtain with t = 0

_ &0

c o= 3 v,

0 j:-oe J

=V, t 2 z‘ Re(vj) (14)

1=1

Combination of (14) and (13) yields finally



- T _ T
Vo =St 3 9, 2 ; Re (vj)
» Im (g,) (15)
- Ta - _7J
=% *t79% 2 ; 9

(since Re (v.) = re [(9; - 9,)/i0;1 = Im [g;/0,1).

J

Equations (11) and (15) relate then the CFS of the velocity to the
CFS of the acceleration. A similar relationship exists between spectral
displacements and velocities. Whenever these formulas are used to derive
spectral accelerations from spectral velocities rather than vice versa, it
may be necessary to compute the mean acceleration from the auxiliary equa-
tion 9g = (cT - co)/T. The spectral values are not sufficient, since the
information on. initial and final velocity has been Tost.

In most practical cases, the acceleration record has (or should have)
zero mean, since a particle starting from rest must return to rest at the
end of the event. This implies that 9, = 0, Co = 0.

Velocity vs. Acceleration in Frequency Domain, Discrete Case (DFS)

The procedures involved in the correction for baseline in the dis-
crete case are similar to the ones needed in the continuous case. However,
we must define first the relationship between velocity and accelerationwhen
they are not continuous functions, since we shall be imposing conditions
in terms of velocities.

From the definition of the DFS of the velocity.

N i 5 Jk
¢, = _%-Vj e N
it follows that the initial velocity Co is given by
N
¢, = _%—VJ

implying that the mean velocity V0 must be

N-1

Vy = ¢y - 2 % " Re (vj) - Re (vN) (16)



This expression is similar to the one given by Eq., (15), when vj
is replaced by Vj. The only discrepancy is in the term TGO/Z, which
accounts for the convergence of the CFS in the mean (i.e., for the average
value of initial and final velocity). The "final velocity" corresponding
to k = 2N is not, however, a datum in the discrete velocity record (which
consists of the 2N points k = 0, 1, ... 2N~1}. A definition of DFS spec-
tral amplitudes consistent with the continuous case would require an ex-
pression for Vj of the form

7 2N -1 %jk
Vj =By %-ck e s Con=Cot TG0= "final velocity"
instead of the customary
2N-1 -1 T3k : (17)
_ 1 N

This implies that DFS spectral amplitudes obtained by aliasing of a
CFS (using equation (5)) need to be corrected for proper initial condi-
tions, subtracting from each term V. the constant goT/4N. This correctjon
is not necessary, of course, if the amplitudes Vj are obtained directly
from equation {17) above.

To relate the spectral velocities and accelerations for the case
j # 0, several procedures may be used. We examine below four different
alternatives.

1) Discrete spectral velocity by aliasing

In this alternative, we attempt to match continuous and discrete veloc-
ity records at every time step, using the aliasing relationship (Eq. 5)),
and correcting for initial conditions as described above:

=T %7 % S~ % %!
J e J+2Nm N L 1Qj+2Nm aN (18)

Since the continuous spectral accelerations g, are not available in actual
situations, this definition is not convenient, uniess the record contains
no frequency higher than the Nyquist (folding) frequency (ijgg gj+2Nm‘gj)'



In this latter case, however, equation (18) transforms into

w® . - G
GJ Go JOT

-
]

I e Waonn M
G. o0 GT
"'-,-'.—’1—- G Z ] - 40
1ﬂj o & 193+2Nm N
G;-Jjacotjo G
_ J 0 T _ .
21 % e - _—
(The evaluation of the sum S~ - =gcot jo may be found
T E Qj+2Nm _; J+2Nm

in Appendix I).

Note that only in the case of zero mean acceleration (Go = Q) does
equation (19) agree with the naive derivation

a(t) = ~g Vs elﬂ it é—(1n V. )e 1yt

yielding Gj = injvj. The discrepancy follows from the fact that the
derivation of the series does not account for the discontinuities.

Equations (16) and (19) define then the discrete spectral velocities
in terms of the spectral accelerations.

2) ﬁseudo~cont1nuous method.

In this alternative, we postulate the relationship between discrete
spectral accelerations and velocities to be the same as in the continuous
case, except for the correction for initial conditions. Thus, we have
from equations (11) and (16) (changing 95 Gj and vy Vj’ and adding the
correction - GOT/4N)

G, - G GT
V. = 0o 0
j 160 4N _
J (20)
N-1
V0 =C4 - 2 ; Re(Vj) - Re(VN)

While equations (20) are simple and cbnvenient, their interpretation as



difference (or integration) operators in the time domain is not immediately
apparent. The formulation corresponds to some form of "trigonometric dif-
ferentiation,” the nature of which is explored below.

We begin with the already familiar expressions

] A1 -1 N’Ijsl (21)

o
=~
n
=
)
[}
e

N-1 ik
G.e N +

But from equation (20)

1 21 .
7 (6_y*+Gy) = 5 [igy(Vy+ G T/4N) + G + ia_\(V_\ + G T/4N) + 6]

%

n

since Q= and V-N = VN (by equation (21)). Hence

N-1 ( GOT) ] i %jk 1k
a, = Ga(v. + 5} +6 1e + G (-
k j=-—§N-1) RN 4N 0 0
N-1 6T N i Tk
- 0. (V. +-2) &6 N (23
_(NZU i, (V; + z9) + &, _?é € )
Substituting equation (21) into equation (23), we obtain
. N-T 2N-1 i T 6T) W4k
21ri o1 N 0 N+ 2NG_§
a, = =~ s )} ¢, e + o be 0" ok

(with 50k =0 for k # 0, 600= 1; see also Appendix T1). Then,



. [2N-1 N-1 i T i(k-2) G.T N-1 i Tk
a, “ T 1 ¢ % je N +2- 1 ge Nl eang s,
=0 7 j=-(N-1) j=-(N-1) oo
2N-1 6T
= ZO CQ, SkQ, + > SkO + 2ZNG 6k0 (24)
where S, , (S, = Sk,g=0) Ts the result of the sum
. N-1 i1 J(k-2)
5, = I1 je N (25)
L L Y
Evaluation of this sum yields (for derivation, see Appendix 1):
i
T ) cot(k-2)a .. o = /2N, keg £ 0
S0 =4 (26)
k&
0 k-2 = 0

In the previous derivation, it was implicitly assumed that equation (22)
was valid at all points, and particularly at t = 0 {k = 0). However, since
the velocity changes abruptly from o + GoT =< + 2N GOAt to <y in the
transition from t = - At to t = 0, we should have an additional "singular-
ity" in the acceleration record of magnitude -ZNGO at t = 0 (k = 0). Con-
sideration of this singularity would thus cancel the term 2N6060k in equa-
tion (24). Also, if we define

G T
= =7 = Y 4 B : : n
Co = Coy = S + > (" initial velocity in the mean")
EQ = c& (2 # 0}
€.y T Con-g,

implying a periodic velocity record, we can write equation (24) as

N

T — — g-1 =
3y = ?'221 (Chag = Cpg) (-7 cOt ke @ = /2N

or _ ¥ m-;z_( T cot (27)
ak _agzl X; - cot Lo

a = q/2N, At = T/2N
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which constitutes the time-domain equivalent (differentiation rule) of
equation (20); 1in particular, eq. (27) is the equivalent of the formula
Gj 1ijj in the case of zero mean acceleration. As a differentiation
formula, it is obviously not useful, but it serves to illustrate the nature
of the pseudo-continuous method. Because of the alternating signs in the
series, it converges slowly to the desired value. In the neighborhood of

k, this formula behaves (for reasonably Targe N) as

ak~

Crag ~ Ck-g, .y\2-1
) LAt ('U.

so that the first term in the series is approximately twice the value given
by the central difference formula.

3) Finite {central) differences scheme

In this procedure, acceleration and velocity records are related by
some numerical difference formula. For instance, using the central dif-
ference formula, we write (from eq, 2 )

s T =
i N‘J(k+])

=z ==

Cr+1

i T i(k-1)
c V, e N
k-1 J

so that - N j % jk
- _ _ 2N - LM

a = (Ck+1 ck_1)/2At T _é— (1Vj sin § jle

It follows that

I . - I
Gj = 5 1 sin 2ja Vj . o= F (28)

For Tow values of j (j << N), the expression above approximates

.x in. V. 29
GJ 1QJ VJ (29)

as in the continuous (pseudo-continuous) case with zero mean. 1t should
be noted that the derivation of Eq. (28) is not valid if the velocity
record is not continuous at k =0, k = 2N, i.e., if GO # 0. Also, the
central difference formula cannot resolve components of velocity with
constant amplitude and alternating signs. Therefore, the formula implies

GN = 0 as WE11f
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If equation (28) is used to define Vj starting from Gj’

G,

y (30)

J gg»i sin 2jo

and if GN = real number # 0, the velocity spectrum will show purely imagin-
ary singularities V~N’ VN' These singularities, however, are equal and
opposite in sign, and cancel out in the summation of the series. Thus VN

may be set equal to zero, even if GN is not.

4) Linear acceleration method

In this alternative, we define the velocity record by numerical inte-
gration of the acceleration record, assuming a linear variation of accel-
eration between time steps (trapezoidal rule). The velocity at t = kat is

then

a, +a

) k¥ %
¢ = C1 v T At
a + a
- k=1 k-2
Cpo1 = k-2t 5 at
. a] + ao
C1 = CO + — 5 At

Addition of all terms yields then

1 1
% = % "{‘E 3+ (2 tay + ey ) *‘iak} At

n

ﬁgk (31)
= ¢+ At a 31
0 o Eo 2
c = C, t At { Z a, - é(ao + ak)} (32)
2=0
s T s
. 1 -1y 3k .
Multiplying both sides by oy © and summing up over k, we obtain
] M1 i —TNljk 2=k 1
VoA L e {co *0e L]y - pla * ak)]} (33)
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N-1 -1 &gk _ .
But 21N T oe N = %j = { 1 if j=0
k=0 0 otherwise
2N-T -9 & jk N
: 1 N _ _ G
Alse,  oyla e = Gys a, = ﬁ m
k=0 -
N o N-T -1 T gk oeak
, ) 1 1 At < N
Hence Vj (co 5 At _%'Gm)soj 5 At Gj-fiﬁ kzo e onal (34)

1 N
S, =5 § e ] @ (35)
VA k=0 =0 %
-9 NTLJ R L
Let's define z = e , o that z© = e . Hence,
¢ -] mf] kli
.= o z Va (36)
U o X
1 1 2
=ﬁ{z°ao+z(ao+a]) tz(a  +aytay)t
2N-1 ,
+...2 (a0+~».aZN-])}
2| 2 2N-1 2 2N-1
Sj—ﬁﬁ{ao(1+z+z +.,..2 )+a1(z+z +...2 ) +
+...a 2N-122N°1} (37)
k 2N
Now, My T2 henz g1 (37 0)
Also, 22% = 1. It follows then (for j # o)
| ' 2 2N -1
- 1 1 -1 z -1 z-1., ... z =]
S {ao A R AR A T A 'z""‘}
2N-1 2N-1
(T
= g a, z - ) a
T-2 2 k 5, K
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5 = T

-G ) (38)

The spectral velocity is then

_ 1 At
Vj =-3 At G tioy (G o)
A1+ 2z - . i
-2 {1 -z Gj 1T-2 Go} 170 (39)
-1 % 3
Substituting z = e » we obtain after some straightforward transforma-
tions
v, = & cot ja (65 - 6,) - & a, (40)

with o= w/2N “and j#o.
Since At = é%, the expression above behaves for Targe N (and small j) like

G, - Go GOT

as in the pseudo-continuous case.

The term corresponding to j = 0 must be derived in a somewhat differ-
ent manner. In this case, z = 1, so that equation (37) reduces to

1

JE {zNa £A1) ay ¢ e (N - 2a, * aZN_]}
2§~1 ; 2N-1 )
= a, - H 2 41

o e 2N g ay

2N-1

But { a, = 2NG, (42)
. T
N Fme Nl J T

and

-1
=
"
]
241
o]
=3
o
=i
n
o
+
™o
o
oy
=
+
oy
=
e
Lo
]
St



Then
AN-1 -1 N-1 ifmg
i Z _ 1 { N 1 L
A La, =3 ) % ) G e + =6, + 6. )(-1) }
Nil 1 a\%-l i %mi 1 ‘ )ZN-l IV
= G # % e + oAG , + G 2 (-1 43)
(nhy AL TR )
‘ - 1+ cot —“—;n) m# 0
1 2N-1 i-g-mz 2 2N ua)
Defining 0 =55 % e = : 44
m 2N ; N - 1/2 m=0
(For the evaluation of the sum Qm, see Appendix 1).
, 2N-1 1y
Also, 1 &(-1)" =-N, so that
'] )
L Y i ) @s)
. ga, = 6 Q --(G, -G
N Lo_nEy mom 3 7-N T N
Therefore, \ (N-1} 4
S, = 2N6, + (6 + Gy '--(NZU Gy Qp @6)

and substituting into {34),

1 1

N-1
- 1 1 1
Vo=¢o -3 At {Go + 2Re % G+ Z(G—N + GN)} AL G+
1 T -L -
+ At {ZNGO + {6y +Gy) - G (N- -5) +Re % G (1+i cot m)}
v = +TG-QP—{G +2Ni]lm(G)cot“—'} (47)
o % T %7 o ] j 2N 3

Using equations (40) and (47), we can verify that they satisfy indeed the
relation

N
> V. =¢ . (48)
N
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Table 1
Case Frequency Domain Time Domain
DFS obtained ] ) Exact match at every time step
by aliasing - Gj"JO‘cotJOt Gy  GoAt Letween "continuous" and "dis-
Vi = 0 "2

of CFS (with J j crete" records.
G. = q.
i 93)

' N Tp,.-C
Pseudo- k+2 k-2 -1

. ) a,=0)] ———2(-1)
continuous V. = Gi. G, ) G At | k-;gu] At cot Lo
method J 1Qj Z '.{ R (2 #0 L
| - Co = C™0T/2 = Cons Cp oy
Central v, = 538t e e
difference J i sin 2ja a, = _Eﬁﬂ?af,ﬁ:l
formula (G0 = 0)
Linear
G.-G a + 3

acceleration V; = —Ag{—J—i—ﬂ cotja-Go} ¢ = Cpoy ¥ —k'—]?-——k- At
method

In all four cases, the formulas are for j # 0. The case j = 0 is given by

N-1

Vo= ¢, -2 ; Re(Vj) - Re Vy, ¢, = initial velocity

Also,
o = w/2N, At = T/2N
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This shows that the expression for V0 could have been derived in
a much simpler way, simply using egs. (40) and (43) to solve for Vo. The
alternate derivation, however, emphasizes the consistency of the formula-
tion.

5) Summary of formulas relating velocity to acceleration, discrete case.

~We explored in the previous pages some procedures to relate velocity
and acceleration spectra when the records are defined only at discrete
points in time. Some of these methods are more convenient than others, but
the basic differences should be kept in mind when attempting to reconcile
results obtained with frequency domain and time domain procedures.

The formulas derived previously are summarized in table 1.

Fourier Series of Baseline Parabola

If f(t) = a + bt + ct2, for 0 < t < T, the CFS is {substituting f{t)

into Eq. {3} and integrating):

2

T, . T L
a + ?b + =€ s j=20

Ll iTh 1, To¢ ,1 . wii ‘ (49)
1—-——.~+——C-~+u ]
k. (J_2 7). J#0

The DFS can be obtained from the CFS using the aliasing relation (5) plus
the correction for initial conditions. This involves determination of the
following infinite sums (see Appendix 1 for derivation):

(1) _ b 1 - ,
55 = b 3o = gy cot o
m= 2 _ T .
OC'Z_NQ J#O
s(2) . v | S =.(JL)2 1
j ) z "\ 7.
= (j + 2Nm) sin®jo
s{h - o
) .
2 . ,] i Y o
2) . | N e
5,7 = 2 7 (o)
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The correction for initial conditions, on the other hand, consists
of the term

eo 1 (1) - £(0) _a+bT +cT?-a_ b+ cr?

N Z N =W
It then follows
2 2
H =a+ I b + I_. c +1£ 5(2) - E
0 7 3 o 0
. 2 ,
Hj 2 Sj ET?- [Sj 1 Sj ] E
that is, 2
LT 1., T 3, 1
Ho=atgbll-lt 51 -w* 2z
(51)
= b+ COT 3 45 ot ja) + 1?1
] a a2 sinZja
with o = /2N

It can be shown that Egs. (51) agree with the direct evaluation of
the DFS for the "parabola" ‘

f, = @+ bat ke b(at)2k% , k=0, 1,... 2N-1

The terms in brackets in H0 are for most practical purposes equal to
one, and can be dropped without significant error:

2
- T T ¢
Hy = a+3b+ -3

(52)

P o
1

2
= o2 DT (14 4 cot ju) + Sy —F

J 8N“ sin“ja

Equations (52) can then be used to perform the correction for baseline in
the discrete case. '
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Baseline Correction

Many criteria can be used to perform the correction for baseline.

Hence, the conditions chosen below are only one of many alternatives.
These are:

1) zero mean acceleration

2) zero initial velocity

3) zero mean velocity

4) minimum mean squared veldcity

The first condition implies that the final velocity is equal to the
initial velocity, which by condition 2) will be zero. Therefore, the
particle wi]] start from rest and return to rest at the end of the time
history. This does not necessarily correspond to an actual situation be-
cause of the delay in tripping the trigger of the recording instrument.
However, it is a convenient assumption in many practical computations. The
third condition, on the other hand, implies that initial and final displace-
ments are equal. This is more mathematical convenience than physical
necessity, since the ground may experience permanent dislocations. The
fourth condition, finally, minimizes the energy contents of the ground
record. On the other hand, expansion of the ground acceleration time his-
tory in Fourier series implies that the motion is periodic, but the period
is generally greater than the duration of the motion as a result of the
"quiet" zone added at the end of the record. Hence, the correction per-
formed using the procedure described here will incorporate the effect of
the quiet zone on the baseline,

a} Continuous case

As before, we denote by gj, vj the spectral amplitudes of the accel-
eration and velocity records, respectively. The first condition is satis-
fied if

that is, if
bT + ¥ cT = - g, (53)
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The second condition requires

Y vy 0 (54)
g. + h.
But v, = —l?ﬁ——l for j # 0; then, considering symmetry conditions,
J

equation (54) transforms into

oo Im(g‘i + h)= 0

v+27y (55}
0 1 95
Introducing equations (46) as well as the third condition (v0 = 0)
we obtain
« Im (g.) 2 o
2 J__ _____.A_J.__.;._‘E_(ltl.;__—[.__c_)z.l. =0
2T J 27 27w 2r 2
1 13
which by expansion yields
o Im (g,)
T(b+ cT) = - & 7 ——i- (56)
]

The fourth condition may be enforced using Parseval's theorem which
states that
J (r)at = T [viey)]

(9] -00

where v(ﬁﬁ) is the CFS of c(t). In our case, {with Vo © 0),

*
1=2 J -
1 Qj

The superscript asterisk denotes the complex conjugate. The minimum
condition I = min. implies that

dal =2 5 ddn.(q. + h)" + (g, + h )dh*}/92 =0 58
- ngj R R R T A (58)
3h. ah. 3h.
Now = L —
dhy = b da + ol db + ol de (59)

Also, for j # O we have from Eq. (49):



20

On the other hand, from eq. (56) we derive
db + Tde = 0
Introducing (60) and (61) into (59) yields then

2 T

dhj J 2ﬂ2

i
1
-
3]
o
(]
+

1 i
(j§‘+ TT) dc
J

T° 1 *
—s —5 dc = dh,
2w2 57 J
Substituting (62) into (58) gives then the condition

*
212 2lgy+hy) + (g5 +hy)

dl = de ) 0
onl j29§
implying that « Re(g.t h;)
i i -0
i i
On the other hand
2 o
o) Te T1 2 o
4 2 1 J6 an 945

T 2n
Hence, from (63) and {64) we can solve for c:

cT2 = -

1800 < Re (95)
)

4 A

i J

(60)

(61)

(62)

(63)

(64)

(65)

Equations (53), (56) and (65) are then sufficient to determine the
three constants c¢, b, a {in that order). For convenience, we repeat
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below the first two equations:

bT

it

o Im (g.)
2 12

‘ 2
bT , cT
etz r)

-]
[}

b) Discrete case

_d

(66)

The coefficients a, b, ¢ for the discrete baseline parabola are
obtained in manners which parallel the procedure for the continuous case.

As before, the final condition requires

G +H =0
which by the first of the equations {52) implies
1 T 42

a+§b-T+§cT +-Go

The second condition requires
N
v, =
4%t

that 1s N-1
vo + 2 ; Re vj + Re Vy 0

The third condition specifies that VO 0.

(67)

(68)

(69)

Also, in all four cases

listed in table 1 (i.e., in all definitions of spectral velocities vs. accel-
eration), the last element VN is purely imaginary (because GN + HN is

purely real), and Go + HO 0. Therefore,

Re(VN) 0
Equation (69) transforms then into

N-1
] Re(V,) =0
1 J

(70)

(71)
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The fourth condition, on the other hand, is expressed by

N 2
¥ V.| = minimum
N J

: Vo+ 2 ¥ V.VL o+ VY = min, (72)
0 §oad NN
The asterisk denotes again the complex conjugate. The minimum condition

requires then

N'] ; * +* +* *
2 ]2 (cleVj + devj) + Ayt Vydiy = 0 (73)

‘ *
The form of the differentials de, dW& depends on the particular defini-
tion of spectral velocity used. However, in all cases they are functions
of the differential de:

9H; BH 3H
= J
de a da + Bb db + e dc (74)

For j # 0, the various terms are:

oH.
—J =9
oa
oH.
el = (e - -
5 - gy (- 1+ 1 cot ja) r (75)
aH, 2 2
7i§~= %}-( T+ i cot jo) + J;f 12
8N~ sin jo

Furthermore, expansion of equation (71) will result in an expression of the
form b + ¢T = constant, so that db + Tdc = 0. It follows that equation

(78) reduces to

2
de = 0+ [4N( -1 + i cot jo)J{-Tdc) + [ ( 1+ 1 cot ja) +
72 1
+ - -—7?—— de
8N2 sin ja
that is 2
’ _ T ] _ ¥ ,

s1n jo



1) Pseudocontinuous method

In table 1, we replace Goby'-G0 + H0 = 0, and Gj by Gj + Hj. It follows
that the first two methods in this table give identical results:

G. + H,
vy = —L—lm. (77)
J
The differentials are then
dH, x  dH, * dH,
W, =, AV, = (D) = - == - dv,
Jj i, J 82, 19, j
J J J
" *
so that . o UG FH)T (6, 4 1),
dv.v., + V.dY, =
N S AN Qe
J
2 Re (G, + H.
_2Re ( % J) "
o J
J
g(QIE_)
BNZ Re(G. + H.)
=— i de (78)
(§%)°  j%sincja .
Substitution of (78) into (73) results then in (with sinaN = 1)
N-1 Re (G, + H,) Re (G, + H,)
1 N N
) L4 2 =0 (79)
I j%sin® ja 2 N2
But 2
Re (H.) = . (b ZNCT)T + cT 1
J 8N° sin“ja
Hence N-1

(b ¥ cT)T {
4N
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For reasonably large values of N, the first two parentheses in (80)
approximate the asymptotic values (see table 2)

I 3%sintja 2 N &
- ‘ 4
NZ] 1,11 s 16N
1 3251n43a 2 NZ 845
Hence,
_ 2. 2 coul. 2 N-1 Re Q. Re (G,)
N7 cT™ 2N N 1 NT
-(b + cT)T - + + ) t oy —— =0 (81)
90 945 ] jzsinzga 2 N2

from which we write

N-1 Re G, Re G
2 _ 21 945 3 ] N
cT™ = = (b + cT)T - { ) + -———7?%} (82)
N 2 2N2 1 jzsinzja 2 N
(The term b + ¢T is left for convenience, as shall be seen).
Finally, equation (71) results in
Re(V.) = —Jd __J -9
T 3 &
= . T
But Im(Hj) = ¢ot ja (b + ¢T) i
Hence (6.)
N-1 Im (G, .
_____i_ + (b + cT) 4N z _92431 = 0 (83)

1

Again, for reasonably large N (see table 2), the asymptotic value for the
second sum is

N-1

- cot jo .~ Nm
T 3
Therefore N-T Im G. ‘
12y i (84)

(b+eNT=-3 ] =3
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Table 2
V= /2N 4 8 16 32 64
45 {NE] 141 1} 06718 1.01824 1.00473 1.00120  1.00030
Wer? LT 3Zsinie CNE
s (N1 11
i { 7 +§—2-} 11764 1.02790  1.00687 1.00171  1.00043
16N" (f Jsin jo N
3 N=1 cot Jjo
-ﬁ; ; .72868 0.86116  0.92969 0.96461  0.98225
3 N
= .93750  0.98438  0.99609  0.99902  0.99976
N § sintjo |
‘45 N7I 1
2y - .44196  1.08958 1.02099 1.00516 1.00128
16N 1 sin"2ja sin ' jo
g5 N 1
27— > ,58203 1.15356 1.03889 1.00976  1.00244 .
a1 sin%2je sinja
3 N"’] 2
~= ] cotja .65625 0.82031 0.90820 0.95361 0.97668
|
985 N1 cot2iq
2y ot .99495  0.99968  0.99998  1.00000  1.00000
64N T sin Ja
a5 N2V cot?y
- | = .92285  0.98053  0.99512  0.99878  0.99969
3 —7
8N 1 sin"ja
15_12=ﬁ Pl :51_6:L6
1 ° (I AL 1 % s
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Equations (68), (82), (84) can be then used to determine the three
constants a, b, c.

2) Central difference formula:

The procedure is completely analogous to the pseudocontinuous case,
merely requiring to change equation {77) by

G, *+ H,

v, = J Tpp o= gﬁ (85)
J i sin 2ja
VN = )

The second and third conditions result then in (compare with (83))

N-1 Im (G,)
o (bteT) Z oLt g“ =0 (86)
sin 2jo Ja
But
N-1 . - 2
t ja_ 1 1 ~ N™
oSl o Z (tabte 2)
¢ sin2ja " 2 | s1n23u 3
Hence 12 N-1 Im (6.)
(b+CT)T = - N '[X sin _"ZJOL (87)
Finally, the last two conditions demand that (compare with (80))
NI Re(6) g2 N : .
T sinfia sin“2ja  aN° 1 sin'jo sin‘2jo
N-1
_ {bteD)T 1 _
N 0 (88)

T sin‘ja sin“2ja

Again, we replace the last two sums by their asymptotic values (table 2):

N-1 1 . 16N°
sin4jd sinezju 945
N-1 4

1 ~ 2N
,F sinzju sin22ja 4
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It follows that
N-1 Re {6.)
oE R G D I e
2N sin"jo sin“2ja

2

cT (89)

(compare with eq. {82)).

In this case, equations (68), (87) and (89) are used to determine a, b, c.

3) Linear acceleration method

This time, the spectral velocity is given by

G. + H.
Vs o=t —1—§?~l~ cot ja (90)
The second and third conditions give then (compare with (83), (87)):
N'] T N"] 2 .
) Im (G,) cot jo + Eﬁ~(b+cT) ; cot"ja = 0 (91)
1 J
But N-1
)) cotzja’:%-N2 (table 2)
1 Mo )
Hence {bteT)T = - %- ; Im (Gj) cot Jo (92)

Also, the third and fourth conditions give now {compare with eqs. (80), (88):

N-1 Re {G.) 2 N-1 .2,
cot?ja + 1, ; EQEEJQ +
sin“jo 8N sin’ja
_ (b"‘CT)T N-1 Cotzja = D (93)
N ; sin"jo
Also, (table 2)
N1 cot?ja . 6an®
; sin jo 945
N-T cotz'a % §Hf_
§ sin"ja 45
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Therefore
2.
CT2 = 21 (b+cT)T - 945 z Re (G } (COt OL) (94)
4N 4 2.
8N sinjo

which should be compared to eqs. (82), (89). The coefficients a, b, ¢
follow now from eqs. (68), (92) and (94).

Summary of equations for baseline parabola

y=a+bt+ct" , t = kat
- = k -k \Z .
3+ Bl +Elp)®, At = T/2N
3= a, B = bT, T =Tl
-, 1, 1= _
a+§b+~3—c = —GO
b+¢c = -p
¢ = -(rp+q)

with coefficients p, r, q given below for the various cases.
TABLE 3
p r q

Continuous

m

= Im(g.) w Re(g.)
12 A 1890 j

Pseudo
continuous
agANi1 I?SG.) 21 945 {N-1 Re(GJ) . 1 Re(GN) }
"y W i2NZw.r‘2‘ 1 i%in‘je 2 N2
E
Central f
Difference {
_E_NE] Im(G. ) 21 igﬂi N-1 Re(Gj)
VT singia (W N T sinfia sin2ja
{ {?
fL .
Linear i () 5
accelera- . N-1 | N-1 Re(G.)cot™ju
tion %- Y Im(G, )COtJ%‘g%- _QE%- ——-—QLjf————-
method. 1 | i 8N 1 sin” jo
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Limited Parabolic Baseline Correction

The baseline correction technique described above extends over the
duration of the earthquake (0 < t < t;) and during the quiet zone added
at the end of the record (td <t<T). As a result, an acceleration pat-
tern will be introduced during the quiet zone, where acceleration was
originally non-existent in the real earthquake.

_ The length of the quiet zone will be dependent upon the earthguake
data and the algorithm used to compute the Fast Fourier Transform. If
this zone is sufficiently large, it may exercise an unduly large effect on
the baseline parabola used to correct the earthquake. Thus, an alternate
method is explored below.

Redefining the shape of the baseline correction in the form

Flt) = a-x(t) + bey(t) + c-z(t) ., (95)
where  x(t) =1 y{t) =t (b)) = t8 for 0 <t <z,
=0 =0 = 0 td <t<T,

then a parabolic correction is introduced that will not have the spurious
acceleration in the quiet zone. '

The discontinuity of the function at time td prevents a concise analyt-
ical expression to be written for the funcitons hj and Hj’ the CFS and DFS
of f(t). Nevertheless, Hj may be expressed in the form

. = . . . 6
HJ aXJ + bYJ + cZJ s (96)

where Xj, Yj, and Zj are the DFS of the functions x(t), y(t) and z(t),
respectively. X., Yj and Zj can be evaluated numerically from equation (4),

using the FFT algorithm.
Restricting our attention to the discrete case, the first criterion

of zero mean acceleration requires that

aX0 + bY0 + cZ0 = . GO . (97)
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As stated previously, by imposing the second and third conditions
of zero initial and mean velocities, equation (71) can be derived. That
is, '

N-1
; Re(Vj) =0

For notational convenience, given the spectral acceleration coefficient Aj,
then the ve]oEjty spectral components shall now be denoted as Aj. The
coefficients Aj are evaluated using the formulae in Table 1. Using this
notation and realizing that the formulae in Table T are linear transforma-
tions, it follows that

Y3

(Gj + HJ.)

¥ ax. . .
‘(% a&‘+b%-+c%)

= (G, + aX, + bY, + cZ, . 8
(GJ aXJ bYJ cZJ (98)
Substituting this result into equation (71) yields
N-1 _ N-1 N-1 _ N-1 _ _
a ) ReX,+b) ReV,+c] Rez.=-§ Re G. (99)
1 J 1 ] 1 J J

Using the results of equations (97) and (99}, one obtains

Xo da + YO db + Z0 dc = 0

N-1 : N-1 _ N-1 7 d 0
X. .db + Re Z.dc =
% Re XJda + ; Re YJdb % e Z;dc

Solving these two equations for da and db in terms of de yields

da = Rdc and db = Sdc , {100)
where N-1 N1 N=1 N-1 _

R = {(Yo ; Re 75 - 7, % Re Y'J.)/(Xo % Re Y&\- Y, % Re Xj)}
(101)

N-1 T N-1 _ N1 7 N:1 ) ¢ .
S = {(Zo ! X, -X_ 1 Re Zj)/(x0 % Re Y, - Yo % Re i)}
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The final condition of mimimizing the mean squared velocity has been demon-
strated {in equation (73)} to require that

2Ni](dv Vv, dvy) v v e
2 S T T M i

VN + VN dVN e .

J N

As a further notational simplification, this requirement shall be denoted
as |

N *
{/(dvj VJ. + vJ. dvj) =0 (102)
5 .

But from equation (98)

. = X.da + Y.db + 7. .
dVJ XJda YJdb ZJdc

Using equations (100) and (101)

. = (RX, + SY., + Z. =U.d .
vJ (RxJ SYJ ZJ)dc UJ c (103)
In a similar manner
AV = G." + aX: + bY, + ¢, (104)
J J J J J
and * * .
dvj = Uj dc. _ (105)

Substituting equations (98), (103), (104) and (105) into equation
(102) results in

N _* _* ok X i _ — — *
, . .+ .+ L+l 4+ .+ aX, + bY, + cZ,){U. d =
H(quc)(eJ aX; 4 BV, + CZ) 4 (B + aK, + BY, + cZ))(U] c)} 0
and by expansion
Y T +X *y &b ; (U 7* + Y'U*) + ; 1] 7* + 7'U* +
{a%(”jj*j“:;’ F Yy + ¥yU) + e g (U3 + 25

+ % (UjGj + GjUj)} dc = 0

Consequently, the fourth condition results in



g (VX + .05 bg v ) 7
a AL+ + + Y.U.) + =
1 2l J J 1 (UJ J YJ'UJ) ¢ ? (UJZJ ¥ ZJ +u )
N I,
. + GLU.
) % (UJGJ GJUJ) (106)

Using equations (97), (99), (103) and the real part of equation (106),
the correction coefficients a, b and c may be uniquely determined. It
should be noted that this formulation is valid for any three arbitrarily
chosen correction functions x(t), y(t) and z(t).

Numerical Example--The Golden Gate Earthquake

The frequency domain integration techniques and the baseline correc-
tion methods described in this paper, are applied to the Golden Gate Earth-
quake S80E of March 22, 1957.. The earthquake lasted 13.03 seconds, with a
peak acceleration of .12837g occurring at t = 1.45 seconds. The accelera-
tions were recorded at intervals of at = .01 seconds (1304 acceleration
values). This corresponds to a Nyquist folding frequency of 50 Hz. To
compute the Fast Fourier Transform, a value of 2N = 2048 was chosen (T =.
20.48 seconds). The coefficients for the baseline parabola calculated
according to the various methods described in this report are Tisted in
Table 4.

Graphical results of this investigation are presented in figures 1.1.1
through 4.3.3. The three digits for the figures have the following meaning:

a) First #igit: Integration method.
1. - Continuous (Aliasing)
2. - Pseudocontinuous

3. - Central Difference
4. - Linear acceleration method

b) Second digit: Baseline correction method (see also Table 3).

1. - No baseéline correction
2. - Parabolic baseline correction (period of baseline = T)
3. - Limited baseline correction (period of baseline = td)
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¢) Third digit: Record component.

1. - Acceleration
2. - Velocity
3. - Disp]acement_

TABLE 4 - BASELINE CORRECTION COEFFICIENTS

Full Parabolic Base- 2.

line Correction f{t)=a + bt + Ct, OsteT
Method a b c
Continuous (aliasing) 3.607798 x 1073  ~1.160212 x 10°3  4.792435 x 107°
Pseudo-continuous 3.604624 x 1075 -1,159281 x 107>  4.787889 x 107>
Central difference 3.637456 x 1075 -1.164434 x 107 . 4.787838 x 107>

3

Linear acceleration - 3.614157 x 10'3 -1.160223 x 10~ 4.787967 x 10°

Limited Parabolic Base- _

Tine Correction f(t) = ax(t) + by(t)‘+ cz(t) 0<tx td
Method a b C -

Continuous (aliasing) -2.360215 x 107°  2.636531 x 107> -3.053304 x 10”7

Pseudo-continuous -2.360080 x 107°  2.636439 x 107° -3.052234 x 10~%

Central difference -2.264105 x 10°°  2.627296 x 10> -3.059660 x 10”4

Linear acceleration -2.356620 x 10_3 2.640890 x 10"3 -3.058959 % 10'4

The velocity and displacement records were computed (and plotted on
the same graph) both in the frequency and in the time domains. The compu-
tation in the frequency domain was made according to the integration formulas
Tisted in Table 2, while the time domain integration corresponded to the
Tinear acceleration method with zero initial conditions; inspection of the
graphs reyeals an excellent agreement in all cases, with the exception of the
uncorrected record using the central difference formula (figs. 3.1.2, 3.1.3).
"~ The discrepancy in this case follows from the inability of the formula to
handie the discontinuity of the end of the record; once the correction is
performed (which removes the discontinuity), the agreement improves substan-
‘tially (figs3.2.2, 3.2.3, 3.3.2, 3.3.3).
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The four methods of frequency domain integration produce highly con-
sistent resujts. The computed motions are virtually indistinguishable
from those computed in the time domain. Of the four methods presented,
the central difference is the one that produces the poorest results. On
the basis of these observations, it is recommended to use the simplest of
all, namely the pseudocontinuous method.

The limited baseline correction technique, on the other hand, may be
more suitably employed when a large discrepancy occurs between the physical
length of the record and the augmented record length (T). This prevents
the spurious acceleration pattern in the quiet zone and confines the cor-
rection to velocities and displacements. This can be seen by comparing
figs. x.2.2 and x.2.3 with x,3.2 and x.3.3 (x = 1, 2, 3, 4),

Since the functions x(t), y(t) and z(t) are chosen arbitrarily, the
nature of the correction may be altered by adjusting x, y and z. As an
example, X, y and z may be defined only during the last quarter of the
ground shaking to limit the duration and the location of the baseline cor-
rection.

Conclusion

Various integration schemes in the frequency domain were examined in
this report and compared to the trapezoidal integration rule ("linear accel-
eration method") in the time domain, These methods were then applied to a
real earthquake record, to which a baseline correction parabola was added.

It was found that the various methods yield consistent results, with excel-
lent agreement between the time domain and frequency domain analyses. It

is thus recommended to use the simplest of all integration methods, which

is the one labeled "pseudocontinuous" in Table 1. The coefficients of the
baseline parabola, on the other hand, are best computed with the "continuous"
method in Table 3 (the inconsistency in the choice of methods has no practi-
cal consequences). Alternatively, one may use arbitrary correction functions
Xs ¥, Zz and apply the technique described in the last section of this report,
computing the spectral amplitudes of the correction numerically with the

FFT algorithm.
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APPENDIX I
PART I) The derivation of several equations mentioned in the main text

of this paper can be more readily demonstrated by first evaluat-
ing the following expressions.

B Tk )
[6)
i ﬁ-j
let z =@ #1 such that
B
S;=z)k 251
J a
=z é%.(z 25y
ol
. B
R A i

oz® —(p+1)28"] . 2z -8ty
1-2 (]“2)2

On the other hand, for j = 0 (z = 1), we have

_ - B(p+t) _ (a-1)
So = g kK =B BZ ~ 32 o

1) For a = -(N-1) and g = N-1, observe that 2% = z(- 1)J and
B+] (-1)3, so for j # 1

;= M2y (]

VAR V.

= -N(;])J {2_1/2 i 21/2}

B . [cosH 1 2% j
= -N(-1) {-t-—t—3¥*~tf}
sinH 1 EN-J

_(1)5l
= cot 2N J



Consequently:

Ni] ) i
oty

-~

J

=23

72

(107)

Also, one can observe from equation (107) (taking the complex con-

jugate) that

N1

N-1 i Tk o= - 22 €os - j (i #+ 0)
;7 ke N 1 2N (108)
-(8=1) - 0 (5= 0)
2) For g=0 and g=2N-1, we observe that 23” = 1 and z% = 1.
So for j # 0
_ -
5717
_ =2\ 71/2
2—1/2 _ Z1/2
N{cos gﬁ-jfi sin %h-j)
- . s m 2
isin 55 J
= -N(1 + 1 cos 7y 3)
Consequently
2N-1 1 Ejk = -N(1 + i cot o ) (j #0)
K N 2N
) ke ) (109)
0 = 2N - N (j =0)
And similarly
2N-1 -i & ik . T s .
N = -N(T - § cot =y Jj) (j #0)
=M - N (3 =0)
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B i Ik
b) T. =) k% N
iTa .y
As in Part a), let us denote z = e N
B
T, = ) k22K
I q
' 8
5 ken)Zk o T ke
o o
2 B . ' B
2 d k d k
=" =5 (] 2)tzg ]z
dZZ o dz 5
=0t S

Observe that Sj has been evaluated in Part a). So, considering

only the. first term

_ z2 d2 Z0- ZB+1

I A (E)

afa-1)2+ B(8+1)25TT 2200 (3+1)PY)  22(:%- A
= + - +

]"Z (]_2)2 (]_2)3
Consequently
Al 2 B+1
+ -
el (10 MNP T(C- TS D € ) sl W G
J -2 (1_2)2 (]_2)3
For the Timits ®=0 to B=2N-1, with =1 and zB+I = 1, then
_ =N 2z
Tj il (2N +1-z )
-2Nz—1/2

221/2
R /- 2 FN Y72 1/2]
FA -Z z - 7

o . . . T .
( N{cos sy d - 1 sin EN-J)

2N -
L

ST, .
COS—ZWJ""IS'IH*Z"N"J
g . T . . )

l isin e | i sin 5]

- N%(1 + i cot o ) + —p e
2N L 2T .
st
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Also, it can be proved by mathematical induction that
N K ‘ .
) K = D (2041) (n#1)

and in particular 2 ‘
g k =§(8N - 6N+1)

~ Consequently
N-1 ., 1Tk ’
JoKe T s ot fri) s (5#0)
sin® X j (111)
N
= X (an? - 1) (i =0)
Similarly
s 2, . . N
2N-1 - id ik = - 28°(1-1 cot & j) + ——r
E ke N 2N sind %k-j (7 #0)
(112)
- N an? - e (i =0)

PART II) In reference to equations mentioned with the text.

a) In reference to equation 19

o0 . ) o .
z 3_?l?Nﬁ'= acot jo where o = wr J 0
M=o
=5 i
e J ¥ Nm
1 . Z 1
= <+ 2] PRV
J -m=1 j° - (2Nm)

1
+2jo. Z }
{3“ m=1 (jo)? - nom?
=g cot jo

(See: Abramowitz, M. and Stegun, I., EDS Handbook of Mathematical Functions,
New York,, Dover Pubiications, 1965, Page 75, Equation 4.3.91}.
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b) In reference to equations(23-24):

N i3 ik
_zNeN =g,
J:-
Proof:
N iijk
S= f e N
-N
N il gk
= J e N
-(N-1)
For k = 0
N
S= F (1) =2N
-(N-1)
+ T
1Wk
For k # 0, let's denote z = e # 1, then
N .
s= 7 2z
-(N-1)
- T%E_(Z-(N-l)_ZN+1)
__Z ¢,-N __N
=15 (z z')
+ ok
=0 (since NN = (-])k)

c) In reference to equations (25-26):

RS F 3]
j=-(N-1)

=7l
'Skz NT

I Reot (kepda k- g # 0

0 k-2=20
This follows directly from equation (107).
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d) In reference to equation (44):
-3 (T+1cot gum)  m#0

CN-1/2 - m=0
This follows directly from equation (109).

e) In reference to equation (50)

0

(1) _ 1 . _ M g

(See part Ila, above).

(2) . 1 _ 2 1
2) Sj - g ) . 2 - o Y 2 .
m=-c (j+2Nm) sin“aj

(This follows directly by taking the derivatives with respect to
jo. on both sides of the equation for S§]) from above).

3) S(()” - m_{_:_m?%l?ﬂ_ =0 (by antisymmetry)

|
ro

3 s2) -

PART III) The Discrete Fourier Series of a Parabola.

An alternative derivation to equation {51) is presented. An
expression for H, is formulated directly from equation (4) without
using the aliasing relation of equation (5}.

Beginning with equation { 4)

2N-1 -q
fk e

jk

==

,
Ho =
I M



But for a parabola

2
f,=at EI k + —=— el 2
(2N)
so that 2N-1 ik N1 - Tk
H, = g%— e N + -EI§ k e N
J 0 (2N) 0
- - 1L 5
+ -ﬁlz_g zg 1o STk . (113)
(2N) 0
But 2N-1 -1 T ik
R,= § e M 2N §

Substituting (110), (112) and (114} into equation (113) yields

2
Ho= 2 (o) + Dl (anZn) + S0 Koan? | g

2
(1 _2N)+CT (.I "iN"'—]_)

TN )
and
Hj ( N{1-1 cos N i)} +
(ZN)
p (-2N°(1 - 1 cot A% §) 4 ——p b
(2n)° [ | 2N sin A §

2
N (-1 + 1 cot ?—-J) + —Jef-—T—E-fE——T

_ (b + DT 1
q 8N~ sin E_'J"

which agrees with. the relationship obtained by aliasing.






