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ABSTRACT

NONLINEAR DYNAMIC RESPONSE OF REINFORCED CONCRETE FRAMES

The purpose of this study is to investigate the applicability of
a fiber model to the determination of the nonlinear dynamic response of
frames. In this model the stress and strain are monitored through time
at each fiber of several cross sections along each member. The tangent
moduli for the steel and concrete resulting from the assumed nonlinear
stress-strain relationships are then used to assemble a tangent stiff
ness matrix for the structure at each step. The dynamic analysis is
carried using a central difference formula to advance the solution in
time.

Several models for the concrete and the steel are first reviewed
and compared. The effect of these models on the moment curvature rela
tionship for a cross section is investigated and results are compared
to experimental data. The process is repeated for simple members under
static cyclic loading. Finally the fiber model is used to study the
dynamic response of a single-bay one-story frame under sinusoidal and
earthquake excitation. Results are again compared to experimental data
and to those of simpler models.

The fiber model reproduces well the qualitative behavior of a rein
forced concrete section or member and explains the effect of constant
or variable axial loads. A point by point agreement with experimental
data cannot be, however, obtained. Results for the frame are somewhat
better than those provided by other, simpler models, but the model is
mainly of academic interest, because of the cost of computations. Sev
eral refinements are suggested.
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CHAPTER 1 - INTRODUCTION

1.1 SCOPE

In order to study the nonlinear dynamic response of reinforced

concrete frames, a fiber model using the incremental stiffness ap

proach is developed. The effectiveness and limitations of this model

are demonstrated by parameter studies and comparisons with experi

mental data.

Reinforced concrete behavior is complex and particularly hard

to quantify. Formulations for the nonlinear behavior of both the

reinforcing steel and concrete are derived, but the complete general

ity of these is not assumed. Of the two materials, steel has been

shown to have a much greater effect on the reinforced concrete member

behavior.

It is common to use a fiber model in moment-curvature studies.

Several studies have even applied it to predict the load-deflection

behavior of simple members such as cantilever beams. This is as far

as it went, for to obtain deflections curvatures were integrated

across the member and were determined by iteration for equilibrium

at each cross-section. This type of analysis became prohibitively

time (computer) consuming. Using the incremental stiffness approach

to advance the solution, studies of members and even frames is feasi

ble. However, the incremental stiffness is sensitive to increment

size and subject to error propagation.
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To study the dynamic response of frames there have been sev

eral approaches. In some cases springs which represent the stiff

ness degradation in the cyclic loading are used to represent members

of the frame or the whole frame. There are intermediate models

where the moment rotation curves for a member are specified and

IIhinges II are assumed to occur at the ends of each member. The fiber

model is very complex t because of all the parameters that must be

monitored. However t the fiber model is theoretically a consistent

approach t which carries the formulation from the stress-strain be

havior of the individual fibers of concrete and steel t through the

cross-section behavior t and finally to the behavior of structures

under static and dynamic loadings.

1.2 THESIS ORGANIZATION

Chapter 2 studies the behavior of both plain concrete and con

crete in a reinforced member. A simple formulation for the stress

strain relationshipt which includes the effect of cyclic unloading

and reloading t is proposed. Comparisons are made to show the effect

of various concrete formulations on the moment-curvature behavior.

Reinforcing steel which exhibits a distinctly nonlinear behav

ior (the Bauschinger effect) is discussed in Chapter 3. Under a

variety of loading conditions, various steel formulations are com

pared, and the best curvilinear formulation is selected for subsequent

studies.
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At the cross-section level, member behavior is studied through

the moment-curvature relationship. This study is carried out in

Chapter 4, where the incremental stiffness is presented, and effects

such as axial force, concrete tensile capacity, and slippage of the

reinforcement are discussed.

In Chapter 5 the model is used to represent the load-deflection

behavior of members under cyclic loading. Effects such as slippage

at the joints and shear deformation are discussed.

Finally, Chapter 6 covers the use of the fiber model and the

incremental stiffness approach to study the dynamic response of simple

reinforced concrete frames. Comparisons are made with experimental

values and also with simpler models.
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CHAPTER 2 - BEHAVIOR OF CONCRETE IN A
REINFORCED CONCRETE MEMBER

2.1 INTRODUCTION

In order to investigate the effect of material properties as

far as the concrete is concerned, an analytic model will be used,

where the concrete at each cross section is represented by fibers

distributed in layers and related by an assumed linear strain dis-

tribution. Each fiber has a stress-strain relationship which is

strongly dependent upon its previous loading history.

Most of the information available on the behavior of plain

concrete has been obtained from standard cylinder tests where the

specimen is loaded in compression to failure. However, the stress

conditions for a fiber in a reinforced concrete member may be sig-

nificantly different. At a cross-section there are the presence

of a strain gradient(8,9) and corresponding differences in strain

ing rates, (2) Web reinforcement provides confining action for the

concrete fibers in the core. Tensile strains and the occurrence

of finite cracks along the member complicate further the problem.

Several analytic formulations for the behavior of concrete

fibers which have been proposed by other authors will be compared.

A suitable model will be selected by determining how the various

features of the stress-strain relation affect member behavior, and

how sophisticated a model is required.
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2.2 PLAIN CONCRETE, MONOTONIC LOADING

There have been many analytical expressions for concrete's

stress-strain curve under monotonic loading to failure. Results

based on cylinder tests show, however, a great scatter. This varia

bility can be attributed to such diverse factors as mix proportions,

quality control, age of the specimen and to the testing procedure

itself.

The nonlinear stress-strain relation has an ascending portion

to the maximum stress, f c max' then a descending branch to failure,

as shown in Fig. 2-1. The most widely used formulation is due to

Hognestad and it has a second order parabola for the ascending branch

and a straight line for the descending branch.

Ascending relation

[

2EC
f c = f c max E

CO

Descending relation

E 2 ]
- ( EC )

co

(2. 1 )

fc = f c max [1 - . 15

where E
CO

is the strain at which the maximum stress occurs, and E
CU

is the ultimate strain.

Popovics(l) has tabulated many such formulations from a variety

of researchers. In addition he has collected expressions relating
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Sco and Eco with fc max' These expressions show that both sco

and Eco increase with concrete cylinder strength, f~.

2.3 EFFECT OF CONFINEMENT ON THE STRESS-STRAIN CURVE

Unlike the standard concrete cylinder, the concrete in the

core of a reinforced concrete member is usually confined by web

reinforcement. Increasing the web reinforcement (i.e .• decreasing

the stirrup spacing) has the primary effect of reducing the slope

of the descending branch of the stress-strain curve. There is then

additional ductility, since the concrete can accommodate larger

strains and has less strength reduction for a given strain incre

ment. This confining action was considered by both Brown(16) and

Kent(18) in their concrete formulations.

Brown1s relationship, shown in Fig. 2-2, extrapolates from

Yamashiro's data to obtain a variation in the slope of the descend

ing portion with different spacings of #3 rectangular stirrups.

Brown has also indicated an increase in the maximum concrete stress

in a member from .85 f~ to f~, and attributes this increase to the

effect of confinement.

As shown in Fig. 2-3, Kent has proposed a more general formu

lation. The slope of the descending branch is related to the bind

i ng rat i 0, P*.

(2.2a)
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* * *where As is the area of a rectangular stirrup and band dare

the dimensions of the confined core. s is the stirrup spacing in

inches. Kent identifies the strain at which the stress in the

descending branch is half the maximum stress as sso:

I

3 + .002 f cs -
50 - f I _ 1000

c .
3 *j£;+ - p -4 s

I

(fc in psi) (2.2b)

The descending branch is represented by a straight line from

fc max' sea) through (fc ma/ 2, sSO)· In the expression for sso'

the first term is the strain for unconfined concrete and the second

term represents the effect of confinement. The negative slope of

the descending branch then decreases with increasing confinement as

* indicated by the proportionality of the second term to p /Is .
I

Kent states that fc should be the maximum stress for both con-
I

fined and unconfined concrete. He argues that the ,85 f c normally

used is based on column tests and that tests where a strain gradient

is imposed, as in Sturman, Shah, and Winter's studies, (9) indicate
I I

that the use of fc is conservative. In this thesis, fc will be used

as the maximum stress in the concrete stress-strain relationship.

The effect of the slope of the descending branch can be shown

by considering the moment curvature relations. In the initial load-

ing cycle, the moment curvature curve has a plateau with a slight

positive slope after the tension steel has yielded. If the curvature

continues to increase, eventually the extreme concrete fiber will
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reach the descending branch of the stress-strain curve. From this

point the moment curvature curve will start to bend downward as

additional fibers reach the descending branch. This effect will

be more pronounced when the section is singly reinforced or when

there is an axial force imposed on the cross-section.

In the subsequent unloading cycle, the curvature begins to

decrease and the concrete fibers unload. The unloading continues

until concrete contributes nothing to the stiffness; later fibers

on the opposite side of the neutral axis will provide compressive

strength. If the extreme concrete fibers had reached the descend

ing branch, then the zero contribution point on the unloading curve

will be reached sooner. Other characteristics of the moment-curva-

ture curve will be discussed in greater detail in Chapter 4.

2.4 BEHAVIOR OF CONCRETE UNDER CYCLIC LOADING

Under dynamic, earthquake-type loading, the individual con-

crete fibers are subjected to cyclic loading where there may be se-

vere strain reversals. Concrete's inability to take significant

tension and the formation of cracks make the cyclic behavior complex.

Shina, Gerstle and Tulin(ll) cyclically tested 24 standard

cylinders with 2000, 3750, and 4000 psi concrete. A typical set of

experimental curves for one test is shown in Fig. 2-4. Generally

the slope of the reloading and unloading curves decreased as the maxi

mum strain in the cycle increased. The limiting or envelope curve,
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which the reloading curves reach and then follow, was found to be

slightly higher than the monotonic loading curve. These authors

proposed the following relationships to represent the family of

unloading and reloading curves:

Unloading

fc = ~ (E _ X)2 HX c

fcl + H V(EC1

fcl + H 2
X = E + 2J + )cl 2J

(2.3)

2
Ecl

Reloading

y =

where (fcl ' Ecl ) is the end point of the previous cycle and H, J,

K, L are parameters which are specified for given cylinder strengths

(i .e., for 3000, 3750. 4000 psi concrete only).

The form of these equations and the variation of the param-
I

eters with fc make it difficult to extend the relations for other

than the concrete strengths tested.

Shina, Gerstle, Tulin considered each unloading and reloading

curve to be independent of the previous loading history. In their

formulation one point uniquely specified the unloading or reloading

curve passing through it.
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Karson and Jirsa(7) used 46 - 311 x 5" rectangular columns in

their cyclic loading tests. Their experimental results were essen

tially the same as those of the previous researchers. The unload

ing and reloading curves were shown to be dependent on the maximum

stress and strain in the previous cycle. The analytical formulation

consists of equations which determine three points through which a

second order parabola is passed. The points are: one on the envelope

curve, one on the zero stress axis, and a common point, defined as

the point where the reloading curve crosses the previous unloading

curve.

Envelope curve

(2.49 )

Common point curve

F =8c .315 + .778

Sc
(1- . 31 5 - . 778 )

e

The location of the common point is determined by the peak of

the previous load cycle. If the peak is above the common point limit,

S = .75. If it is between the common point and the stability limit,

8 varies between .76 and .62. If the peak is below the stability

limit, then the peak becomes the common point and a closed hystere

sis loop is formed. Thus the stability limit curve defines the points

below which stable closed hysteresis loops occur.
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Zero stress point

Sp = (1.76 - S) (.160 S~ + .133 Sc)

For reloading zero stress point

(2.4b)

S =and

For unloading zero stress point
2

Sp = .145 SE + .13 SE

f cF = -r
f c

where

The procedure in both of these experimental programs was to

load, then unload the specimens. No tensile force was exerted. How-

ever, in a flexural member with loading reversals, some fibers are

subjected to tensile stress. Discrete cracks occur when the tensile

stress exceeds the limiting tensile strength, usually taken to be

f r , the modulus of rupture, and with cracking there is a redistribu

tion of stress. Once the fiber has cracked, it can never take ten-

sile stress again.

In the analytic model that will be used, the location of cracks

will not be precisely determined since this requires a much more

sophisticated analysis. Using the "plane-sections-remain-plane"

assumption at each cross-section, "average" tensile strains are de-

fined. With this type of averaging, finite cracks are crudely ac

counted for; this1s usually adequate for obtaining overall behavior

of the member. These tensile strains then must be considered in the
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analytic behavior of the individual concrete fibers.

It will be assumed that the concrete fiber cannot supply

compressive strength until the crack closes; that is, until the

tensile strain is recovered. In the situation where the fiber has

incurred significant plastic deformation before unloading, the fiber

will crack upon load reversal with an unrecoverable strain. Point A

in Fig. 2-5 is such a point if no tensile capacity is assumed or

if the fiber has previously cracked. With additional unloading

there would be straining without any stress contribution to points

such as B or C. If reloading were to proceed from one of these

points, it is consistent to assume that the strain must exceed EA
before any compressive stress can be supplied by the fiber. Sozen(12)

has pointed out that the reloading would probably follow a path like

the dashed line beginning at EB. Physically this can be explained

by the roughness and irregularity of cracks providing partial con-

tact as the crack closes. An extreme assumption would be to assume

that at the reloading point, full stiffness is obtained. In the next

section these assumptions on concrete behavior will be compared for

their effect on the moment-curvature relations and on the concrete

stress distribution in a section.

2.5 COMPARISON OF VARIOUS MODELS FOR CONCRETE FIBER BEHAVIOR

In order to understand how the various formulations for the un-

loading and reloading of the concrete fibers compare, a simple tri-
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linear envelope was used for all the formulations (Fig. 2-6) and

the following schemes were considered:

a) LINEARl FORMULATION

Unloading and reloading linearly with slope Ec ' the ini
tial loading slope. Reloading beginning at the reversal
point (i .e., the crack doesn't have to close before com
pressive strength is supplied).

b) LINEAR2 FORMULATION
Unloading and reloading linearly with slope Ec' The
crack must close before compressive stress can be supplied
by the fi.ber. (St rai n mus t return to sA in Fi g. 2-5 be
fore reloading. The strain where the unloading curve inter
sects this zero stress axis will subsequently be called Erev )'

The remaining formulations will follow this reloading procedure of

returning to E .rev

c) SGT FORMULATION

Unloading and reloading according to Shina, Gerstle, Tulin's
formulation where the relationship at any point is uniquely
specified.

d) KJ FORMULATION

Unloading and reloading according to the general Karson,
Jirsa formulation, which depends upon the previous loading
his tory.

3) LINEAR3 FORMULATION
Unloading and reloading linearly with a slope which varies
with the maximum strain in the previous cycle ..Karson, Jir
sa's equation for unloading S will be used to determine
thi s step. (Eqn. 2-4b) P
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a) In Fig. 2-7 (A to F), these five formulations are compared.

Each of the analytic results were obtained for the same strain

limits in each cycle. The loading and unloading cycles are numbered

and arrows indicate the direction of loading. In this test conduc

ted by Shina, Gerstle, Tulin, the specimen was loaded, then unloaded;

no tensile stress was applied to the specimen.

In LINEAR1, the stiffness in unloading initially fits well,

but the experimental curve becomes much softer as most of the load

is removed. In reloading the stiffness is larger to begin with and

gets closer to the experimental value as the envelope is approached.

This formulation supplies a loop for unloading and reloading which

is significantly larger than the one experimentally observed.

The same general comments apply for LINEAR2, ~ut the loops

are now smaller. It should be noticed that the unloading and re

loading curves should coincide in this model, but the zero stress

point (0, Erev ) is determined with one increment delay.

The SGT and KJ formulations used here are modifications of

the original models because of the manner in which tensile strains

are handled. In both of them the unloading curve provides good

agreement. Reloading is better than in the previous two formulations,

but the agreement decreases with larger strains. Overall, the KJ

formulation gives the best fit.

LINEAR3 does reflect the change of unloading and reloading

slopes with increasing strains. For this simple model there is a
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good fit as far as the end points of the unloading curves are con

cerned, although the variation in stiffness between these points is

not correctly reproduced.

b) More important perhaps is to see how these unloading and re-

loading formulations affect member behavior. To investigate this

effect analytic moment-curvature curves were obtained using each

of these formulations. A simple elasto-plastic steel was used for

these studies in order to make comparisons easier. In addition,

the concrete stresses for the cross-section were compared at selec

ted points of the moment-curvature diagram.

In Figs. 2-8 (A to E), the loading sequence used provides a

condition where the curvature is always positive and there is little

yi~lding for the negative moments. This loading sequence and cross

section corresponds to an experiment by Agrawal, Tulin, and Gerstle

which will be again used for comparison in Chapter 4.

The LINEARl formulation differs from the others in the initial

reloading stiffness (i.e., beginning at points 5 and 7). At these

points there is immediate concrete participation in this model, in

dicated by a reloading branch with the same slope as the initial un

loading branch. In all other formulations the concrete does not

participate until additional reversal of curvature has occurred.

The SGT and KJ models, which both have separate formulations

for loading and unloading, produce jumps in the yield moment plateau

which are not observed experimentally. This results because both are

stiffer in reloading than unloading.
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LINEAR2 and LINEAR3 p~duce moment-curvature relations which

are essentially identical.

In all of the formulations there is little change in the maxi

mum moment capacity. Only LINEARl shows a significant difference in

the tangent stiffness.

In comparing the concrete stress diagrams for the specified

points in the cycle, stresses are determined at the midpoints of

each fiber and straight lines connect these points. Points 1 nnd 2

are exactly the same for all formulations since unloading has not

begun. At point 3 SGT and KJ formulations produce results that are

significantly different from the others. The difference is in the

stress of the extreme fibers. There are only slight differences at

the remaining points, except for point 10, where SGT, KJ, LINEAR3

show stress and the others do not. The primary differences are then

at the ends of the unloading cycles, but they do not seem to affect

the ensuing behavior.

c) In Fig. 2-9 (A to E) the moment-curvature relationship used

for the concrete comparison is cyclic with curvatures at the ends

of the cycles equidistant from the zero point. This cross-section

is the same as used in Fig. 2-8, but these cyclic loadings are arbi

trarily chosen to demonstrate a different loading condition.

The SGT formulation provides positive and negative maximum

moment that is larger than any of the others. The KJ formulation

produces the loops which are most stable with respect to increasing
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maximum moment with number of cycles. LINEAR2 and LINEAR3 are

essentially the same.

In the stress comparison, there is no difference in the first

four points. At point 5, which is at the middle of the first reload

ing cycle, a large variation of stress distribution exists. LINEARl

and SGT have the most stress contribution, while KJ supplies none.

The differences at points 6, 7 and 8 are minor. For this loading,

fibers on both the top and bottom of the section participate.

In selecting an analytic formulation as simple a model as pos

sible should be used, since increased complexity means additional

parameters which must be kept track of. The KJ formulation is the

most complex and requires four additional variables per fiber to de

scribe its behavior. The differences in both the moment curvature

and stress distribution is, on the other hand, slight. In normal

loading these differences will occur only in the extreme fibers, since

most of the section will remain in the "elastic" range of the stress

strain curve.

It is felt that a simple model like LINEAR3 is adequate and

reasonably reflects the contribution of the concrete to member behav

i or.

2.6 CONCLUSIONS

From the comparative studies carried out in this chapter, it

would seem that the details of the concrete model do not affect signif-



\
\

45

icantly the section behavior. As a result. the concrete model

that will be used in subsequent chapters consists of the envelope
,

shown in Fig. 2-6. with fc as the maximum stress. The slope of

the descending branch will be determined by Kent's relationship

*for E50 and p. Unloading and reloading will proceed linearly,

with a slope such that the zero stress point satisfies Karson,

Jirsa's relation for unloading Sp' Reloading must recover the

strain up to Erev before the concrete fiber can supply compressive

strength.
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CHAPTER 3 - BEHAVIOR OF REINFORCING STEEL

3.1 INTRODUCTION

The behavior of reinforcing steel under monotonic loading

to failure is well understood. The stress-strain curve is essen-

tially bilinear, with an initial slope of 29,000,000 psi and a

slope of nearly zero after reaching the yield point (Ey ' fy )' For

higher strength steel there may be no distinct yield point, but

rather a roundhouse curve. After significant yielding, the steel

is able to provide additional strength through strain hardening.

However, under cyclic loading where the steel is subjected

to both tension and compression, the stress-strain curve becomes

distinctly nonlinear. For the initial loading cycle, it is essen-

tially elasto-plastic. Unloading from a point such as A in Fig.

3.1, it proceeds along a straight line with approximately the same

slope as the original loading curve. Once the stress is reversed

the stress-strain relation is nonlinear and the tangent modulus con-

tinually decreases. This phenomenon has been called the Bauschinger

effect. In subsequent cycles the behavior is always nonlinear when-

ever the stress changes sign and the steel behavior is strongly de-

pendent on the previous strain history.

In this chapter six different analytical formulations for the

behavior of the reinforcing steel under cyclic loading will be com

pared. Experimentally, there have been three significant studies by
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Singh, Gerstle, and Tulin (1965};(15) Kent, Park (1971);(18)and

by Akton, Karlsson, and Sozen (1973). (20) Each of these groups

proposed an analytic model. In addition, the simple elasto-p1astic

model, a model by Brown, (16) and an improvement on the Singh,

Gerst1e, and Tu1in model will be discussed.

In subsequent discussions the terms reloading and unloading

will be used in an experimental context. That is, reloading will

signify adding load (tension or compression) to the specimen, and

unloading will mean decreasing the load.

3.2 ANALYTIC FORMULATIONS FOR REINFORCING STEEL

3.2.1 E1asto-Plastic Formulation

The elasto-plastic formulation shown in Fig. 3-2 is the sim

plest, but it does not reproduce the observed Bauschinger effect in

cyclic loading. Unloading and reloading are assumed to take place

along a line having the initial slope, 29,000,000 psi. Further

straining will continue along this line until Ifsl reaches the yield

stress, fy . The stress-strain relationship then follows a line with

zero slope, and the steel becomes II p1astic" since additional strain

ing is possible without a corresponding increase in stress.

3.2.2 Singh, Gerstle, Tu1in (SGT) Formulation

These researchers carried out tests on hard-grade reinforcing

steel specimens machined from the same batch. The steel had an aver-
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age yield strength of 52 ksi. Each specimen was cycled between

prescribed strain limits, and these limits were varied to study

the effect of initial plastic strain (defined as the strain where

the initial stress reversal took place). As the initial plastic

strain increases, the stiffness in the first load reversal (e.g.,

segment mrin Fig. 3-3 decreases at a greater rate. The curve

becomes flatter, as shown in Fig. 3-4.

The following expression for the nonlinear portions, such

as mr and rr, was proposed:

1000 €s
Ifs ' = 64.5 - 52.7 (.838) (ks i ) (2. 1 )

where € is the strain measured from the point where the unloading

curve crosses the strain axis (e.g. from point A). Singh, Gerstle,

and Tulin (SGT) felt that one expression was sufficient to represent

the whole family of such curves. This curve corresponds to an

initial plastic strain of .004.

Unloading proceeds linearly, with slope Eo' until intersect

ing the nonlinear curve given by the preceding expression. For a

yield stress of 52 ksi, there is a jump in the tangent modulus from

29,000 to 8,750 (ksi). In the incremental stiffness method, where

the tangent modulus and not the actual stress is important, a more

gradual transition is desirable.

To apply this formulation to steels with different yield

strengths, the expression for the nonlinear curve was scaled with



50

c.

+..

~ If~ I.: <O"f.5 - 52.7 (.e38)'t.XlCII~"E:".1
v

FIG. 3-3 - SINGH, GERSTLE, TULIN FORMULATION FOR STEEL

(j"o._---..--_-

.002004 .CO", .ooe .010

50

\0

FROM SINGH, GERSrLE.

TUL/IIJ (15)

STRA.IN

FIG. 3-4 - EXPERIMENTAL STRESS-STRAIN CURVES FOR STEEL



51

respect to fy and new junction points were determined.

3.2.3 Improved SGT Formulation

This formulation extends the SGT expression to include the

change in the nonlinear relation with the variation of initial

plastic strain. The definition of initial plastic strain is inter

preted to be the strain between successive zero stress points (e.g.,

between A and D for curve EF in Fig. 3-3).

The nonlinear relationship can be expressed in the form

If I =A + 8 log (1000 £s)s e (ksi) (2.2a)

This expression is obtained by plotting the SGT reloading data

(Fig. 3-4) on semi-log paper. From the resulting straight lines,

parameters A and 8 are evaluated. 80th A and 8 vary with the initial

plastic strain, and the following expressions were found by curve

fitting:

A = 12.4 -.450 (1000 £ip - 4.0)

8 = (25.5 -.177 (1000 £ip - 4.0))/(.602 x 2.3)

(2.2b)

where £. is the initial plastic strain.
'p

This relationship is valid for (1000 £) > 1. Unloading is

initially linear with slope Eo' and a transition curve with a linearly

varying tangent modulus is necessary to connect the nonlinear portion

to the zero stress point. For a strain of .001 from the zero stress
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point the tangent modulus changes from 29,000 (ksi) to B. For the non-

linear segment the tangent modulus is simply

(2.2c)

A scale factor proportional to the yield strength was used

for steels with different fy '

3.2.4 Brown's Formulation (16,17)

The steel stress-strain relationship proposed by Brown is

shown in Fig. 3-5 and is also based on SGT data.

Although most tests have shown that unloading proceeds linearly

with slope Eo' Brown introduces stiffness degradation into his formu

lation by varying this slope. In an apparently arbitrary manner, the

slope is adjusted so that E. , the initial plastic strain, is equallp

to 80% of the peak strain in that half cycle. Comparison with the

experimental data of Kent and Aktan show this is not a valid assump-

tion for the behavior of steel, and in subsequent comparisons this

assumption will not be implemented.

Brown includes the change in curvature with additional strain

ing by having one of his parameters be a function of Eip' The expres

sion for the nonlinear reloading portion is

Ifs I = fy [1 - exp
-2.06e:s + .129 ]I

C:
sh

E
sh (2.3)

Esh E
and E

sh = loge --..i.E.
1. 38 Ey
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where \h is the strain at which strain hardening begins. e: sh is

thus another parameter that must be specified and the nonlinear

relation was found to be very sensitive to its specification.

Whenever the absolute value of the stress exceeds f y ' Brown

reverts back to a strain hardening relation proposed by Burns. (14)

Brown's formulation has the advantage of having a smoothly

varying tangent modulus, unlike the previous ones.

3.2.5 Kent's Formulation(18,19)

Kent tested 11 specimens with an average yield stress of 45

ksi and based his analytic model on these tests. The specimens were

of different bar sizes and from different batches of steel. The

loadings were varied to create earthquake-type behavior and several

of his results will be used to compare the analytic formulations.

The primary difference in this formulation is in the nonlinear

*reloading curve where Kent uses a Ramberg-Osgood type model. The

(2.4 )]
r-l

important parameters are Eo' a characteristic stress, fch, and an

exponent r.

where f = f [ .744
ch y loge(l + 1000 Eip )

.071 + .241 ]
1000Ei- e p

* W. Ramberg and W. R. Osgood(13} formulated an expression to describe
a nonlinear stress-strain curve in terms of three parameters.
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r = 4.49 6.03 + .297 for odd numbered runs
log eO +n} - en -, ( )from tension

r = 2.20 _ .~62 + 3.04
loge (l +n ) e-l

for even numbered runs
(from compression)

The nonlinear stress-strain equation must be solved by an

iterative procedure such as Newton's method. The effect of plastic

deformation on the curvature is taken care of by the sip term in

the expression for f ch . fch decreases with increasing sip and

thus the curve becomes flatter.

Kent's data showed that r was different for compression and

tension, and that r decreased with an increasing number of cycles.

A decrease in r means an increase in stiffness. This coincides with

Singh, Gerstle, Tulin's observation that the stiffness increases

with the number of cycles. However, this applies when cycling is

carried out between the same fixed limits, and this may not be the

general behavior for loadings where the limits are varied.

Kent also uses a slope Eo for unloading and reverts back to

a modified Burns I equation for strain hardening.

3.2.6 Aktan, Karlsson, Sozen (AKS) Formulation(20)

A series of 9 coupon tests on reinforcing steel with an aver

age yield stress of 69 ksi was carried out with large strain rever

sals. This was by far the most extensive and thorough study of rein-
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forcing steel under lIearthquake type loading. Whereas previous

investigators had used strain ranges of approximately -.01 to .03,

these authors used a range of -.05 to .08.

Aktan, Karlsson, Sozen propose an analytic model using a

Ramberg Osgood function for the complete cycle, rather than only

for the nonlinear portion as Kent did. Again a cyclic procedure

like Newton's method must be used to obtain specific values. Fig.

3-7 shows the AKS formulation:

E - e:: 1s s
E
o

(2.5a)

where (e::sl' f sl ) is an end point of the cycle and EO' fo are char

acteristic parameters given by:

fo = 47.628 + .51723 (fmax - fmin )

for cycles starting from compression

f oe:: = 29,000
o

(ksi )
(2. 5b)

fo =46.410 + .47989 (fmax - fmin )

for cycles starting from tension

(fmax - fmin ) is the difference between the maximum tensile

stress and the maximum compressive stress reached prior to the

half cycle under consideration.
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In applying this formulation, an initial elasto-plastic

branch is assumed. If the loading in this portion continues until

£s > 4.2447 £y' then a strain hardening curve is used. In subse

quent cycles the nonlinear relation is used with the exception

that in the first unloading, (fmax - fmin ) = 2fmax '

AKS obtained these relationships by curve fitting techniques.

The exponent, r, is determined by assuming Ifs I will be 110 ksi at

a strain £sl + .09. As pointed out by the authors, the parameters

specified in this formulation were developed specifically for the

reinforcing steel studied (i.e., fy = 59 and fu = 110 ksi), and

there was no attempt to generalize them for other steels other than

factoring out fy '

3.2.7 Strain Hardening

To consider the additional strength produced by strain harden-

ing, several authors, e.g. Kent and Brown, use the following formula

from Burns: (14)

[
112(£ - £ h)+2 (£ - £ h)

f = f s s + s s
s Y 60(£ - £ h}+2 (£ - £ h)s sus

(2.6)

where £sh = strain at which strain hardening begins

f u = ultimate strength

£ = strain at which f occurs.
u u

These are three additional parameters over the normal fy and

E They may be obtained from a standard tensile test on a reinforc-
o'
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ing steel specimen. However, these tests are not always carried

out for the steel in a reinforced concrete member, and it is de-

sirable to have some guidelines to estimate them.

The change of the steel stress-strain curve with increasing

yield strength can be seen in Fig. 3-8, which indicates representa

tive curves for mild steel. The yield plateau, £sh - Ey ' decreases

while the ratio fuffy also decreases, with increasing fy'

Grandholm, (21) from whose book this figure is taken, states that the

range on fuffy is normally 1.5 to 1.8, but may be as extreme as 1.3

to 2.0.

Several crude approximations were obtained from this figure,

and no generality is presumed.

Esh 7070-= p7E
Y Y

fu -.00408 f
fy

= 2.26 e y (2.7)

£ -.0363 fYu = 2.94e: e
y

where fy is the yield strength in ksi ..

These ratios will be used whenever more accurate information

is unavailable.
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3.3 COMPARISONS OF THE ANALYTIC FORMULATIONS FOR STEEL

Computer programs were written for each of the six steel

formulations. The cyclic loading data used for comparison were

taken from the work of Kent and AKS. Although only four such com

pari sons were made, they represent four di fferent "earthquake-type"

loading conditions.

3.3.1 Kent Steel #8 Data, Fig. 3-9

In this test, the specimen was loaded into tension, then into

compression with larger strains in the second cycle. Strains range

from -.0028 to .0211. Even though there is considerable straining,

no strain hardening is apparent.

At the end points of the cycles, the Elasto-Plastic steel fits

well, but it does not represent adequately the nonlinear behavior

in between these points.

The SGT model has only one shape for the nonlinear reloading

curve. For segments BC and DE, the model is too soft, but in FG

the fi tis good.

For the Improved SGT, the same general comments apply. In

DE, this model is initially better than SGT, but it becomes too

stiff with increasing strain. Here the analytic model should have

been more plastic. The "kink" at point F is due to the crude transi

tion between the linear unloading curve and the nonlinear reloading

curve.
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Of the models based on SGT data, Brown's is the best up

to point D. It should be noticed, however, that there is no stiff

ness degradation in the experimental results. As a consequence

Brown1s formulation deviates significantly in the segment EFG.

Kent's relationship fits best over all, but it must be re

membered that it was derived specifically for this data.

The AKS model behaves very well up to the first third of

segment DE. After this it becomes much too stiff and predicts a

strength 50% higher than the observed one. This occurs because the

AKS model was formulated for a steel with a much higher yield

strength than this one.

It seems that all curvilinear models have the same trend:

too much softening initially and too stiff later. The experimental

result is somewhat between the Elasto-Plastic steel and the Improved

SGT (such as the average of both) for this experiment.

3.3.2 Kent Steel #17 Data, Fig. 3-10

In this test the steel bar is loaded to yielding in tension,

then the load is reversed four times to a compressive stress that

is half the yield stress. There is no compressive strain, and the

maximum tensile strain is .01272. In reloading to tension, the

curve takes a very sharp bend to the "plas tic" plateau. There is

no distinct strain hardening point.

Except for providing a compressive stress 70% higher, the

Elasto-Plastic model gives a good representation of this type of

loading.
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For the SGT and Improved SGT models, the reloading curves,

both to tension and to compression, are much too soft. The loops

then are too wide. Even though there is agreement with the experi

mental data for the maximum compressive stress, the reloading to

tension produces a tensile stress much lower than observed. Brown's

steel provides a closer agreement, but the loops are still wide

and the tensile stress low.

Of course Kent's model seems to fit the data best. However,

it becomes too stiff in the last reloading cycle. The AKS model was

not suited again to reproduce with this set of data. For this

type of loading condition it is too stiff in reloading to tension

and the error seems to propagate. The AKS formulation assumes an

ultimate strength of 110 ksi, and this is very high for Kent's inter

mediate grade steel. An attempt to use a more realistic fy and

strain hardening point led to an unstable formulation as the expon

ent r became negative.

Since this type of loading does not cause significant strain

ing upon reversal of loading direction, the Bauschinger effect is

slight. In reloading to tension, the behavior is essentially elasto

plastic. To consider situations such as this, the steel will be

considered to be elasto-plastic if this initial plastic strain is

less than €y. Fig. 3-10H shows the effect of this when applied to

the Improved SGT formulation. The loops are still wider than ob-

served, but the maximum tensile stresses are now in agreement.
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3.3.3 AKS Steel #3 Data, Fig. 3-11

In this test, the specimen was subjected to cyclic load

ing in tension and compression between strain limits that gradu

ally increase in magnitude. Generally the maximum strain in .com

pression was the same as the strain in tension, and the maximum

strain range was -.0412 to .0382.

The Elasto-Plastic model compares very poorly because it

does not represent the nonlinearity and any increase in strength

due to the strain hardening phenomenon. At the end of the largest,

strain cycle the tensile stress is 60% of that observed.

The SGT model, with its unique curve formulation, has a

fixed limiting stress and thus has a maximum stress that is 75%

of the observed stress. Generally the nonlinear portion is stiffer

than the experimental results.

Very good agreement is found with the Improved SGT formula

throughout most of the cycles. The maximum stress at strain -.04

and +.04 corresponds well to the experimental value. Again the

slight kinks are due to the transition from linear unloading to

nonlinear reloading curves.

Brown1s model with the stiffness degradation in the unload

ing portion has very little resemblance to the observed curves.

Brown's model without stiffness degrQdatic~ and without resorting

to the strain hardening curve after fy is reached was also run, and

this will be referred to as the Modified Brown formulation. The
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fit now is more reasonable, except that there are sharp jumps

in the tangent modulus at the transition point. Apparently the

stiffness degradation provided a better transition to the non

linear curve.

Kent's formulation does poorly, especially in reloading

to compression, where it is significantly stiffer than the experi

mental results would indicate. The fact that Kent has a differ

ent formulation for the nonlinear portion, depending on whether

the reloading started from tension or compress'ion, is obvious.

The increase in stiffness with the number of cycles is shown to

make the agreement increasingly worse.

The AKS formulatio~ matches the data very well, since the

formulation is based, in part, on this data.

3.3.4 AKS Steel #5 Data, Fig. 3-12

The cyclic loading in this test was similar to the previous

one, except that the strain limits in the cycles were skewed to

the tensile strain side. The range of strains were from -.0351 to

.0631. The specimen was initially loaded to strain hardening in

compression.

The comments for Elasto-Plastic and SGT models that were

made for the previous comparison still apply. Again the Improved

SGT fits very well in both the stiffness and maximum stress. The

Modified Brown also matches well.
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Kent's -formulation is obviously the poorest for this ex

perimental data. In particular the reloading to compression

greatly overestimates the compressive stress. The AKS formula

tion gives the best agreement, and is a very smooth curve with

no jumps at transition points.

3.4 CONCLUSIONS

The Elasto~Plastic model does well for conditions where

the strains are small and reversal of stress is not accompanied

by significant straining. This type 'of behavior comes close to

repeated loading without stress reversal, which is very much Elasto

Plastic. For cyclic loading with a large range of strain, it is

poor.

The SGT is an attempt to prOVide some nonlinearity. With

its single curve, it does not compare favorably with any of the

experimental results.

The two Ramberg-Osgood type formulations, Kent's and AKS,

have limited applicability. They represent well the data for which

they are formulated, but do poorly in comparison with other experi

mental results with different types of steel and different loading

conditions. These formulations require more parameters than the

others, and consequently are harder to implement.

The intermediate models, Improved SGT and Modified Brown,

give a better overall representation. Both these formulations are
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based on the work of Singh, Gerstle, and Tulin, which was an

early study. Even though the Modified Brown is slightly better

for small strains, the Improved SGT is better for the large

strain limits in the AKS data. The Improved SGT will be subse

quently used in this thesis, although further comparison of the

six steel formulations will be made on the cross-section level

in the next chapter on moment curvature behavior.
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CHAPTER 4 - CROSS-SECTION STUDY: MOMENT-CURVATURE RELATIONS

4.1 INTRODUCTION

The behavior of a reinforced concrete member is studied at

the cross-section level through the moment-curvature relations.

To obtain these relationships analytically, an incremental stiff

ness approach and the fiber model will be used. Experimentally

moment-curvature curves resul t from tests on simply supported beams

or sometimes cantilever beams which simulate beam-column behavior.

Of particular interest is behavior under cyclic loading where there

are load reversals.

The analytic model used in this part of the study consists

of fibers of concrete and steel which are related by an assumed

linear variation of strain across the cross-section. Analytic formu-

lations for moment-curvature studies have been proposed by Shina,

Gerstle, Tulin;(23) Aoyama; (26) Kent, park;(18) and by Brow~, Jirsa.

(16) These models differ in two important respects. The first is

the difference in the assumed stress-strain curves and the second

is the use of an iteration for equilibrium technique to obtain the

moment-curvature relation. In this approach the extreme fiber strain

is varied for a given curvature until the computed stresses satisfy

equilibrium. In the incremental stiffness approach used here, the

tangent stiffness of the previously computed moment and curvature is

used to approximate the moment at the desired curvature, without
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correction for equilibrium. Small errors will thus be introduced

at each step. It is part of the purpose of this study to investi

gate the magnitude of these errors and how they propagate, since a

fiber type model with cyclic correction at each step would be pro

hibitively expensive for dynamic studies.

4.2 CROSS-SECTION PROPERTIES AND THEIR EFFECT ON THE MOMENT
CURVATURE RELATIONS

The following parameters are standard in reinforced concrete

design and will be used here:

b,t

d

I

d

width and depth of cross section

distance to centroid of the tensile (bottom) rein
forcement measured from the extreme compressive
fiber

distance to centroid of the compressive (top) rein
forcement, similarly measured

steel areas

yield strength of steel

concrete strength from standard cylinder tests.

In the course of this study comparisons will be made between

experimental results and the predictions of various analytical models.

It is important to realize, however, that experimental results are

also subject to uncertainties due to: 1) variation in material prop-
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erties from those assumed; 2) differences in dimensions and con

figuration due to construction tolerances; 3) accuracy of measure-

ments. Proper comparison of any analytic model with different sets

of experimental data requires that the parameters listed above be

accurately known. But the degree of certainty depends on the quality

control of the construction and the accuracy of measurement.

For example, in some cases the analytic model provides a good

prediction of the yield and ultimate moments consistent with the assump-

tions, but even for these simple measures the agreement may be very

poor in other cases. It is thus important to keep in mind how a

variation in each of these parameters affects the moment-curvature

relationship.

In Figure 4-1 the moment-curvature relations are drawn with a

50% increase in the parameter indicated. (b and t were not varied,

because of all the parameters these should be most accurately known.)

For each of these analytic curves, failure is defined as the point

where the strain in the extreme concrete fiber reaches .006. The

section used for comparison is Kent's Beam #24, which has the same

reinforcement ratio for the top and bottom steel.

Increasing d has the greatest effect; while an increase of 50%

is exaggerated, it illustrates the point. Varying fy and As

(for both top &bottom steel) had an effect that was approximately

proportional to their increase. The initial part (up to yield) of

the curves for 1.5d·and 1.5 As are stiffer than the original curve,
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while the 1.5 fy curve maintains the original stiffness. The in

crease in d causes an increase in ultimate curvature, while the

increase in As and ~ decreases the curvature.
I ,

Changing d and fc does not seem to affect the initial stiff-

ness nor the yield moment, but there is a slight increase in moment
I

capacity. Increasing fc leads to a larger ultimate curvature,
,

while increasing d leads to a smaller one.

In Fig. 4-2 the variation of yield moment is drawn as a func

tion of these parameters. The parameters are varied from .5 to 1.5

times the original value (the intersection point in this figure).

Variations in d, As' fy provide nearly linear relationships with
I ,

approximately the same slope, while fc and d have a relatively small

effect.
,

In any experimental program fc is obtained as an average of

several standard cylinder tests. This value of concrete cylinder

strength may vary from the strength of the concrete in the member

because of differences in curing conditions and differences in load-

ing. The steel strength usually reported comes from tests of the

reinforcing steel bars that are used in the members, but sometimes

only the supplier's designated strength is indicated.

The largest variation probably occurs in the location of the

steel. In the pouring and vibrating of the concrete, there can be

considerable movement of the steel, both laterally and vertically.

Unfortunately, it has been shown that this is critical as far as the
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moment capacity of the section is concerned. In this analysis d

(and d
l

) will be adjusted to provide a reasonable fit for the

yield moment.

4.3 INCREMENTAL STIFFNESS APPROACH FOR MOMENT-CURVATURE

Figure 4-3 shows the typical reinforced concrete cross-section

divided up into concrete and steel fibers. Typical strain and stress

distributions are also shown.

The strain in each of these fibers is determined from the

assumption that plane sections remain plane. While only an approxi-

mation, this assumption is usually valid; Figure 4-4 shows the actual

distribution of strain for a member with increasing load. However,

when significant cracking occurs under cyclic load, the assumption

becomes less valid since there may be considerable slippage between

the reinforcing steel and the adjacent concrete.

Given the centroidal strain, ~o' and the curvature, ¢' the

strain in the i th fiber is computed as

(4.1)

The sign convention is such that compressive strain is positive, and

positive curvature causes compression on the top fiber of the beam.

The corresponding convention for moment, M, and axial force, N, are

also shown in Figure 4-3.

In the incremental stiffness approach, the moment curvature re

lationship is obtained stepwise with the values at the (i+l)th step
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obtained from the properties at the (i)th step.

At any step the incremental axial force, ~N, and moment, ~M,

are related to the incremental centroidal strain and curvature, ~E

and ~¢, respectively, by the following expressions:

(4.2)

where a .. are the stiffness coefficients for the cross-section de
lJ

fi ned as:

n
= \' b. t. E.

• L. l 1 1 11=

n
a12 = a21 = I y. b. t. E. (4.3)

. 1 1 1 1 11=

n 2
~2 = ~ y. b. t. E.

i=l 1 1 1 1

where b. t. is the area of the i th fiber1 1
y. is the distance from the centroid of1

the cross-section to the centroid of
the i th fiber

E. is the tangent modulus of the i th fiber1

For the moment-curvature study it is assumed that the axial

force does not change value. (The case when axial force varies

will be considered in a subsequent section.)
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lIN = 0 -7-

a12 a21
so tJ-1 = (a22 - all ) 6¢

= k i 6¢

(4.4)

where ki is then the tangent stiffness for rotation at the (i)th step.

To proceed from step(i)to step (i+l) (Fig. 4-5), ki is evaluated

and it is assumed to be constant in the interval. In the Euler method

the stiffness coefficients aij and thus ki are evaluated at step (i)

from the tangent moduli of the fibers. In the Modified Euler method

ki is evaluated at the midpoint of the interval, i.e., at (i+l/2),

and this stiffness is used for the interval. Both of these methods

will be used and compared.

4.4 EFFECT OF INCREMENT SIZE

To obtain the analytic moment-curvature relation, curvature

is incremented and the resulting change in moment is determined. The

results provided by the incremental stiffness approach will be sensi

tive to the size of the applied increment. To illustrate this effect

and to determine an appropriate increment size, an analytic moment-

curvature relationship (Kent1s beam #24, Elasto-Plastic steel) is run

with varying increment sizes. In Fig. 4-6 (A to D)6¢ varies from

approximately ¢y/10 to ¢y/80. In addition, Table 4-1 summarizes the

results of this comparison.
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FIG. 4-6 - INCREMENTAL STIFFNESS APPROACH
FOR MOMENT-CURVATURE



TABLE 4-1 - INCREMENT SIZE COMPARISON FOR KENT'S BEAM #24

Cycle Curvature Exper. M q, M q, M M M
Modtfied Eulerat end q, q,

M+ U~q, - m-) (!lq, - ~) (!lq, - :m-) (!let> - .:Y..) (!let> - !i)of cycle 20 80 .20

7 .000230 79.5 76.6 75.9 75.6 72.5 75.3

8 -.000230 -75.5 -19.0 -88.6 -82.0 -76. 1 -75.9 .

9 .0001225 108.0 194.1 145.5 134.0 129.7 129.4

10 -.000790 -96.0 -220.2 -147.6 -130.2 -123.0 -111.3

11 .001870 108.0 223.9 148.1 130.2 124.6 125.1

12 -.001555 -100.0 -258.3 -164.0 -136.6 -126.4 -118.5

13 .0000135 81.0 21.9 62.2 88.2 95.6 102.2

Fig. 4-27A 4-6A 4-6B 4-6C 4-6C 4-6E

------- ----

+Moments in kip-in.

I.D
U1
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At ¢y/10 the maximum moments are greatly overestimated.

There is clearly an increase in moment capacity with the number of

cycles and this reflects the accumulation of error. As the incre-

ment size is decreased, the maximum moments approach the experimen

tal value. For increment sizes ¢y/40 and ¢y/80 the analytical re

sults are close to each other.

The Modified Euler method, being a second-order formulation,

provides results which stabilize at a larger increment size. In

Fig. 4-6E, the Modified Euler method is used with an increment size

of ~y/20.

If the stiffness of the cross-section were constant, then for

any choice of increment size the computed yield moment would be off

by at most k6¢. However, the reinforced concrete section has a

stiffness which continually varies. It is initially very stiff,

since all concrete fibers are participating. But each fiber has

little tensile capacity, and upon cracking, it no longer contributes

to the section stiffness. In addition, the nonlinear stress-strain

behavior of both steel and concrete fibers causes the stiffness to

vary.

In the initial loading the stiffness is decreasing, so the

Euler method will overestimate the moment until there is a direction

*change. This truncation error is the result of dropping higher

order terms (i.e., d2M/dx2 + .... ) from the Taylor series represen-

* Crandall (28)
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tation of the moment. At the same time, roundoff error occurs

because the number of significant figures retained in the computa

tions is limited. For example, in single precision computer calcu

lations, there are approximately 7 significant figures. As the

increment size is decreased, the truncation error decreases, but

the roundoff error increases. Decreasing the increment size indef-

initely is therefore not the solution.

In this M-¢ study a comparison under monotonic loading was

used to select an appropriate increment size. The standard of com

parison was a formulation where equilibrium was enforced by itera

tion. The third curve is the moment-curvature relation obtained

from the stress distribution at the points determined by the incre

mental stiffness approach. Figure 4-7(A to C) show examples of this

comparison. fi~ =¢y/80 seemed to provide reasonable agreement for

this example.

4.5 CHARACTERISTICS OF THE MOMENT-CURVATURE RELATIONSHIP

The moment-curvature relationship is a function of the non-

linear behavior of both reinforcing steel and concrete and their

interaction. To point out the typical characteristics of a doubly

reinforced section under cyclic loading, an elasto-plastic steel and

a linearized concrete model will be initially used.

Abrupt changes in the slope of the moment-curvature curve

occur whenever the steel yields either in tension or compression,
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because most of the section stiffness is contributed by the rein

forcement. Small curvature limits are used in Fig. 4-8 A and the

M-~ relationship reflects the reinforcing steel behavior as far as

the occurrence of yield plateaus. At points A and E the tensile

reinforcement has yielded, causing the corresponding drastic change

in stiffness in the M-~ curve. Between points C and 0, the reduced

stiffness is caused by the lack of concrete fibers contributing to

the section stiffness. The fibers of the top of the beam-have com

pletely unloaded, while the bottom fibers have yet to come into

compression.

In Fig. 4-8 B the same cross-section is subjected to a larger

curvature-· before rever~al (point B) takes place. There is a "kink"

in the unloading branch at point 0, a result of the bottom steel
--

yieldin~_in_compression. At point-~-the bottom steel had incurred

considerable straining in tension, and after an unloading strain

of 2Ey ' it yielded in compression. Between points C and D no con

crete participates. At E the fibers at the bottom begin to supply

compressive strength and the stiffness of the cross-section increases

substantially. Finally, the top steel yields in tension at point F

and a yield plateau exists until reversal.

Approximate strain distributions corresponding to points B, D,

E, F are shown in Fig. 4-8 C. For this symmetrically reinforced

cross-section the yield moments in both directions are approximately

the same. In the case of the reloading beginning at G, similar com

ments are applicable.
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When a steel formulation with the Bauschinger effect (Fig.

4-8 D is used, these M-¢ transition points will not be so distinct.

In particular, except for the initial yielding, yield plateaus

will not occur.

4.6 EFFECT OF AXIAL FORCE ON CYCLIC LOADING

4.6.1 Constant Axial Force

The fiber model with the incremental stiffness approach is used

in this section to study the effect on a cross section of combined

bendi ng and axi a1 deformati on. The formu1 ati on automati ca lly takes

into consideration the coupling between moment and axial force.

Figure 4-9 is an interaction diagram relating the axial

force to the moment capacity of the cross-section. An excellent

discussion of interaction diagrams and moment-curvature behavior

for monotonic loading is given by Pfrang, Siess, Sozen(22). From

the moment-curvature curves, Figs. 4-10 and 4-11, each corresponding

to a particular axial force, the maximum moment and the applied axial

force, are obtained, and they represent a point on the interaction

diagram. The long descending branches on the moment-curvature curves

reflect the descending branch assumed for the concrete stress-strain

curve.

With an axial force there are two distinct types of behavior

for monotonic loading. The first is characterized by significant

ductility due to the yielding of the tensile reinforcement. The
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doubly reinforced section with no axial force can sustain a large

curvature before the extreme concrete fibers fail in compression.

As the axial force is increased, the initial stiffness and the

maximum moment capacity increase, while ductility decreases. Even

tually a point is reached where the tensile reinforcement just

yields as the extreme concrete fiber reaches its descending branch.

This is the balance point which separates the tensile mode of fail

ure from the compressive mode. With additional axial force, the

moment capacity decreases and is limited by the strength of the con

crete. Failure then occurs due to crushing of the concrete fibers

before the tensile steel can yield.

Figure 4-12 (A to D) shows the effect of constant axial force

on cyclic loading using an elasto-plastic steel. The applied axial

force varies from O. to ~ Pmax ' where Pmax is the maximum short

column load the section can take with no bending moment. The sec

tion is again Kent1s beam #24, and curvature limits were arbitrarily

set at + .0012 for this example. An increment size of ~¢ ~ ¢y/80

was used·

In Fig. 4-12 A, no axial force is applied. The initial load

ing and unloading branches are stiffer than those in subsequent cy

cles. In addition, the moment capacity is slightly larger in the

first loading cycle. These effects are due to the greater participa

tion of the concrete fibers.
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Figures 4-12 (B to D) show moment-curvature relations for

axial forces that still allowed some ductility in the section. The

predominant effects of the axial force are the increase in moment

capacity and the IIsqueezing-inll of the middle of the loops. The

latter occurs when the reinforcement which previously yielded in

tension now yields in compression. This is followed by the partici

pation of the cracked concrete fibers as the crack closes.

As the axial force is increased, the pinching effect increases,

and the hysteresis loop resembles the number 118 11 • With further in

crease in axial force up to ~ Pmax ' the concrete fibers begin to

reach their descending branches and the moment-curvature relation

ship becomes curved rather than always reflecting the elasto-plastic

steel used.

Another aspect of the cross-section behavior is the variation

of the centroida1 strain with the cyclic loading. In Fig. 4-13 A

a plot of moment vs. strain is shown for cyclic loading with no axial

force (corresponding to the moment-curvature curve in Fig. 4-12 A).

The letters indicate corresponding points on both figures. In the

initial loading, the strain becomes increasingly tensile. For the

unloading cycle BCDE, the tensile strain decreases up to D*, then

increases to point E. At point D the bottom steel which had previ

ously yielded in tension yields in compression; the section is now

behaving as a singly reinforced section. When the top steel finally

yields at D* the sign of the a12 stiffness coefficient will change.
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Since ~€ = l-a12/all)~$, and A$ and all retain the same sign, the

centroidal strain now begins to change direction.

Figure 4-13 B illustrates the situation when an axial force,

Pmax/9, is applied (corresponding to the moment-curvature curve in

Fig. 4-12 C.) The strain is initially compressive because of the

axial force, but becomes tensile in the first loading cycle. The

loading and unloading moment-strain path has taken the shape of an

IISII and can be followed by observing the segment ABCDEF.

The effect of using a more realistic, curvilinear steel for

the moment-curvature relations with axial force is shown in Fig.

4-14 (A to D). The Improved SGT steel is used and those curves more

closely resemble the experimental ones.

One of the few experimental studies on moment-curvature be

havior with axial loads was carried out by Parducci and Ferretti. (27)

An example of their experimental results is shown in Fig. 4-15 (A to

F). The general shape agrees with the analytical studies carried out

in this thesis. Unfortunately this paper did not contain sufficient

information on the steel and concrete strengths to be able to analyt

ically duplicate their results. The larger stiffness of this initial

cycle has been accounted for in the analytic model as was the stabil

ity of subsequent cycles when an axial force is applied. Parducci

&Ferretti showed that with axial force the moment capacity decreases

significantly with the number of cycles. To account for this, the

analytic model should have a failure criteria for the concrete, and
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consider buckling of the compressive reinforcement when the sur

rounding concrete has spalled.

Finally, Fig. 4-16 (A and B) illustrate the effect of an

axial force that is tensile. There is concrete participation in

the first loading and unloading cycles, but thereafter the section

becomes a steel couple.

4.6.2 Axial Force Proportional to the Moment

In a typical frame, Fig. 4-17A, the columns will have a con

stant axial force Vo ' and a smaller distributed axial force due to

the dead load. When the frame is laterally loaded, additional axial

forces will develop in the columns; tension in one and compression

in the other. For many practical cases, Vo will be much larger

than the laterally-induced axial forces, and the behavior of the

frame will be essentially the same as the constant axial force case.

However, this may not be true for tall slender frames. In addition,

many experimental tests are carried out without large loads in the

columns and the axial forces resulting from the lateral loading can

significantly affect the behavior.

For a particular incremental lateral load or displacement,

incremental axial forces and moments will be induced at each cross

section. The incremental axial force will be approximately propor

tional to the incremental moment, although the ratio may not be

constant as the behavior becomes significantly nonlinear. To con-
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sider the situation when axial force is proportional to moment,

the following equation is used:

M=c~ (4.5)

where c is a constant of proportionality which has the units of
-1length . The parameter c can be positive or negative. A posi-

tive c will mean that when moment increases, an incremental com-

pressive axial force is applied.

For any cross-section in the frame, the value of c would

depend on the location of the cross-section, the dimensions of the

structure, and the support conditions.

Substitution of the above equation results in:

(4.6)

In order to obtain the moment-curvature, ~¢ is specified and

~ and 6£ are computed from the stiffness coefficients. Solving

for ~, ~£ :

~=

6£ =

a22 all - a12 a12
all - a12 c

a22 c - a12
all - a12 c

(4.7)

If c = 0, these equations revert back to the incremental stiffness

equation of Section 4.3 (Eqn. 4.2).
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In Fig. 4-17 moment-curvature relations for tensile failure

modes are shown for different values of c. The values of c were

chosen such that when the maximum moment occurred, the cross-section

would have the same N/Mmax ratios as the curves in Fig. 4-10, in

which the axial force is constant. For example, c = .149 corre

sponds to the case where N= Pmax/9.

In comparing the moment-curvature curves for these two figures,

the moment capacities have not changed for corresponding curves.

However, there are slight differences in the descending branches.

For the varying axial force case, the axial force is also decreas

ing in this range, since it is proportional to the moment. The vary

ing axial forces provide slightly greater ultimate curvatures. For

negative values of c, the moment capacity decreases and ductility

increases. With larger negative c values, the doubly reinforced

cross-section may become a steel couple.

The effect of cyclic loading is shown in Fig. 4-18 (A to E),

where the parameter c ranges from .221 to .010. In the loading

and reloading stages, incremental compressive forces are applied,

while in unloading,incremental tensile forces are applied. The

compressive axial force increases the positive moment, while a

tensile one decreases the negative moment capacity.

The primary effect of an axial force which varies with moment

is a significant decrease in the area enclosed by the hysteresis

loops. In Fig. 4-18 A, for example, there is a long yield plateau,



123

~-3~J 0

~
I IB

3DD .,/~--7" ~

t
I

~~50 -1
z c?CCl If j I

t-1

~ ~
-.

ti.. 1.=:i0 /1t-1
::Co //iOD ~
t- F ------ -~//z so ! -------

(

~

?- i

Cl 0 'C
;}. //

-50 //
e .... -- 0

-~DD r
-150 L-_--l .J L--_______ J

-1... 5 -1. 0 -D. c r-, ;J :-J, r-- 1 __ I-'~ 1..", ~:._1 ... :J

E_"- 3 E_"- ~

A. E.'-P ~:'TE_J_L • r c" , 221 J C~RVA"TLJRE

-150
-1..5 -1.. D -D,S D ,':i 1..0

-""i
I

--j

~
I

1...5

E-_"-3

8. L-P~;TETL J r c", ,1<".:3 ) CURVATURE

FIG. 4-18 - MOMENT-CURVATURE RELATIONS WITH AN AXIAL FORCE THAT
VARIES WITH MOMENT



124

,
I

-4
I

~
I

--4
I

D.S

. ~ J

1..fJ:-:J.r)

/
/'

-D.S

---~.--:c~__.- _

-1,0-1..5

T3C i---,------- ---1'--------r-------.----.------\

~Du J
!

c~50

Z ~~DfJ
H

c.. :lSr::H
'3:

:lOU
t-
Z ~: lJLJ
~
[J D;;;:

-5D

~-1.DD

-1.50

C. f_-P ~3TU_L, I C= .1DD ; 2URVATURE

1...5

i
--'I

~
J
~

.JI --l
1..0:J.D

---T -- -- ·------·-T------- ----r--

~______lI .l...._ __1 __L__

-1.. D

'_l~-jD

3DD

;::~~[l

z 2DD
H

CL :lSOH
'3:.

l.DD
t-z ~.JOLJ
~
C1 02-

-50

...1. DO

"""1.50
1. ~-- .:::J

t:-3
D. E-P :3TU.L. (c= • O~;Ol CURVA1URE

FIG. 4-18 (Continued)



I
I

I
-l

I

1

L-']

,

/

,-., ,....,
• ...J .... ..J

_____..... _J . ..1-_. . _.1.

-1.D

50

125

r--------.- "r - ----- ---- - r---------- - -',- -- ------.

250 ~
I

,~O D t-

o
-5[;

15[1

-15C
-1. .s
L- ':"-3

-1DD

Z
H

ri.
H
-S:.

I
Z
I..J
~oz.

rLJR'v A1URE~

15D

100

~5 r..

z 0
H

ri. -50H
:(

-100

-150

-200

-25D

-3DD
~ _l .~ I ...... .J ____I

-3:50
-1. 5 -1. 0 -D. r,:j 0.0 1.0 1 I:;:. ......

E···P STETL, I C<= -. 'l,,~g ) CURVATURE

FIG. 4-18 (Continued)



126

FG, formed in reloading when the top steel yields in compression.

The top steel had previously yielded in tension at point D. Be~

cause of the tensile stress imposed on the section, the concrete

fibers at the top must recover this additional tensile strain be

fore supplying compressive strength. At point G the concrete

fibers are participating again after making no contribution in

CDEFG. The bottom steel barely yields before the loading direc

tion is changed and a "sp ike" has occurred. The delay in picking

up compressive strength from the concrete has caused this reduc

tion in the area of the hysteresis loop.

Although the section is symmetrically reinforced, the result

ing moment-curvature relationship is no longer symmetric. As c

decreases, symmetry returns. In unloading, the incremental tensile

axial force prevents compression from developing in the bottom con-

crete fibers; as a consequence the reloading (up to point G, Fig. ,"

4-18A) proceeds with only the stiffness supplied by the steel. This

effect takes place even when c is as small as .010.

The behavior of the centroidal strain under cyclic loading

with axial force varying is shown in Fig. 4-19, where c = .149.

The corresponding moment-curvature curve is that of Fig. 4-18B. Here

the strain is always tensile. When concrete fibers are participat

ing, the ratio ~£/~~ is negative, but when only the steel contributes

to the stiffness it is positive.
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In. Fig. 4-18F, c is negative; so as moment is increased,

an incremental tensile force is applied. Essentially the moment

curvature relation has been flipped over an axis parallel to the

curvature axis. In Fig. 4-20 (A and B) the strain limits were var

ied for the case c = .149. Changing these limits did not alter

the behavior, especially the long yield plateau and resulting

IIspikes" in the moment-curvature relation.

Fig. 4-21 (A to D) are comparable to Fig. 4-18 (A-to D), ex

cept the Improved SGT steel formulation was used to provide a more

realistic relationship.

4.6.3 Constant Axial Force Combined with an Axial Force that Varies
with Moment

A constant axial force, N, merely applies an initial compres

sive stress and therefore a compressive strain to the cross-section.

Previously, in Fig. 4-12c, the case of a constant axial force was

considered where N/Mmax was approximately .15. To provide visual

comparison (Fig. 4-22 A to F) of the effect of the constant axial

force plus an incremental force that varies with moment, c has the

values ~ .15, ~ .10, ~ .05 and N = Pmax/9.

With positive c the maximum positive moment is increased

and the negative moment decreased (Table 4-3 compares the maximum

moments). As should be expected, when c is small in relation to

N/max, the varying axial force is less important. The "flipping"

of the moment-curvature relationship with a change in the sign of
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TABLE 4-2 - COMPARISON OF MAXIMUM MOMENTS WITH AN
AXIAL FORCE WHICH VARIES WITH MOMENT

C* Curvature Limits M+ M-
(kip-in) (kip-in)

.221 -.0012 .0012 306.1 -67.8

.149 -.0012 .0012 220.7 -77 .1

.100 -.0012 .0012 177 .0 -85.5

.050 -.0012 .0012 146.1 -95.1

.010 -.0012 .0012 126.7 -105.0

-.149 -.0012 .0012 83.1 -220.0

.149 - .0012 .0018 224.0 -77 .0

.14~ - .0018 .0018 224.0 -77 .0

* C = N/M For Kent Beam #24

TABLE 4-3 - COMPARISON OF MAXIMUM MOMENTS FOR INCREMENTAL
AXIAL FORCES IN ADDITION TO AN AXIAL CONSTANT FORCE

Elasto-Plastic Improved SGT
C M+ M- M+ M-

0 226.8 -228.1 226.8 -228.1
.05 260.0 -197.2 260.0 -197.2
,10 300.4 -172.1 300.4 -188.5
. 15 334.8 -152.7 334.8 -171. 7

-,05 199.4 -268.1 199.4 263.1
- .10 176.6 -302.0 176.6 -303.1
- .. 15 158.7 -334.9 158.7 -340.2

N = Pma/9 For Kent Beam #24
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c is reduced with smaller c.

Figure 4-23(A to E)shows the same loading conditions,

but with the Improved SGT steel.

4.6.4 Effect of Concrete Tensile Capacity on Moment-Curvature
Relations with Axial Forces

Permitting tensile capacity in an incremental stiffness ap

proach will lead to a violation of equilibrium when the fiber cracks,

unless some means of correcting for this is implemented. A particu

lar fiber may be carrying tensile stresses up to f r , the modulus of

rupture, then it cracks with additional stress and its tangent modu

1us becomes zero. Unless there is a scheme such a's usi ng a negati ve

slope in the next step, equilibrium will not be satisfied: the ten

sile stress the fiber had before cracking has not been redistributed.

The model with tensile capacity will then overestimate the moment

capacity. Fig. 4-24(A to E)illustrates this effect for a tensile
I

capacity of fc/lO and various combinations of Nand c. On the other

hand, any scheme where there is iteration for stress equilibrium

will correctly cause the redistribution of tensile stresses from

the cracked fibers.

Since in the incremental approach, tensile capacity causes

an overestimation of moment and since corrective action after crack-

ing will involve a complicated iteration scheme. no tensile capacity

in the concrete will be assumed
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4.7 EFFECT OF SLIPPAGE BETWEEN CONCRETE AND THE STEEL REINFORCE
MENT

In a reinforced concrete member there is slippage between the

reinforcing steel and the adjacent concrete. As a result, there is

a violation of the assumption that plane sections remain plane. In

bending deformation of a member, the adjacent concrete is attempting

to transfer stress to the steel and the lack of perfect bonding be

tween the two materials leads to slippage.

Part of the observed stiffness degradation occurring in rein

forced concrete members has already been explained in terms of the

Bauschinger effect in the steel. The diminished participation of

the concrete with increasing number of cycles is another aspect.

The slippage of the reinforcement is also a factor.

Consider that the adjacent concrete fibers are attempting to

transfer an increment of strain, ~, and this results in an incre-

ment of steel strain and some slippage:

~ = ~£steel + 6£slip

~£steelLet s be the ratio , so
~£

~£steel = s&:

~£slip =-(l-s)~£

(4.8)

(4.9)

The slippage phenomena can be visualized as a IIbond li spring

transferring load from the concrete to the steel. The steel is

also a spring in series with the bond spring.
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(4.10)

where ~fs is an incremental steel stress and TMsteel is the instan

taneous tangent modulus (or steel spring stiffness). The fictitious

bond spring stiffness is then

TMSlip = (l~s) TMsteel (4.11)

which results from Eqns. 4.8, 4.9 and 4.10. The equivalent stiff

ness (tangent modulus) for the system is

TMSlip TMsteel
™ ,·v = TM + TM = s(TMsteel)equ. slip steel

(4.12)

Thus the effect of slippage between the steel and concrete is

to reduce the effective stiffness supplied by the reinforcing steel.

A loss of bond therefore reduces the cross-section stiffness.

In describing their results on steel bars encased in a concrete

cylinder, Bresler and Bertero(29) reported that the stress transfer

effectiveness (bond) was dependent upon the maximum peak stress in

the steel. Larger stresses caused greater damage in the boundary

layer between the steel and concrete and consequently the reduction

in stress transfer became more severe.

Bond-slip relationships have been derived by researchers such

as Nilson,(30) but they require an analysis where the location of

cracks is maintained and the-loadfngis monotonic.

One approach to including the effect of slippage would be to

assume s is constant for a given cycle and is dependent on the maxi-
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mum deformation (either steel strain or curvature for example).

Experimentally it is difficult to measure because of the formation

of cracks and the problems in instrumenting. Using data from

Bertero, Bresler, liao,(31) reporting the average c~rvature, con-

crete strains, and steel strains, the crude values obtained showed

that s does decrease with larger curvatures. This indicates an

increase in slippage. The problem with this type of determination

of sis that in the model the concrete strai ns are "averaged over

the cracks" whereas experimentally this type of concrete strain

measurement has to be taken somewhere between the cracks.

Another method would be to compare analytic moment-curvature

curves with experimental ones and vary s for a given cycle until

there is agreement in a least squares sense. However, the s values

so determined would be strongly dependent on the assumed formulations

for the reinforcing steel and concrete, and the assumed strain dis-

tribution.

Because of a lack of adequate data and variability of the other

parameters considered in the formulation so far, the inclusion of the

effect of slippage is a refinement not considered in this thesis.

4.8 COMPARISON OF MOMENT~URVATURE RELATIONS FOR DIFFERENT ANAlYT
ICAL FORMULATIONS

In this section analytic moment-curvature relations, using the

six steel formulations, are compared with experimental data which
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TABLE 4-4 - PROPERTIES OF MEMBERS USED FOR MOMENT
CURVATURE COMPARISON IN SECTION 4-8

Section
Properties

Aoyama(26)

A2
Agrawa1,

Tu1in
Gerstle(24)

#2

Kent(19)

#24

Kent (19)

#27

As (in 2) .88 .20
I

As (in2) .88 .20

b (in) 6.0 3.0

t (in) 12.0 6.0

dl/d
l (in) 2.0/2.6 1.0/1.0a

d/da (in) 10.0/10.0 5.0/4.8

f
y

(psi) 50000. 51000.
I

f c (psi) 4900. 4400.

.40 1.20

.40 .40

4.83 4.83

8.0 8.0

1.25/1.67 1.25/1.:0

6.75/6.33 6.56/5.80

48400. 47000.

6950. 7490 .

£0

stirrups

s (i n)

axial force
(ki p)

.0018

#3

6.
36.

.0022 .0027

#2
2.

.0028

#2
2.

4
1
2 l'

loading

a

b 6'0 11 11 211
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represent a variety of cyclic loading conditions. Each of the

models uses LINEAR3 for the concrete stress-strain relationship,

and twenty concrete fibers and two steel fibers-to represent the

cross-section. The incremental stiffness approach uses the Euler

method and an increment size of ~~ =~/80. Table 4-4 lists the

section properties for each of the members used.

4.8.1 Aoyama ' s(26) Beam A2, Fig. 4.25 (A to G)

For this test the specimen was cycled through the following

curvature limits: .00044, -.00117, .000911. With an axial force

of 36 kips, the section barely yields in the initial loading, but

has significant yielding in the other direction.

For all of the analytic models there is a sharp increase in

stiffness when the curvature is nearly zero (in branch Be). At

this point all the concrete fibers are participating because of the

compressive strain caused by the axial force and the lack of tensile

strain from bending. This increase in stiffness is not, however,

apparent in the experimental curve.

Up to point C the behavior of the section is purely elasto

plastic, and there is no difference among the six steels. In the

reloading curve, CO, differences occur.

The Elasto-Plastic steel provides good agreement for the
I

average stiffness up to point °, and then it is too stiff until

the bottom steel yields in compression. The moment at the end of

the cycle, point 0, is close to the experimental value.
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Among the curvil i near steels, the SGT and Improved SGT pro

vide good agreement. In the latter, the initial reloading branch,

where the stiffness is due to the bottom concrete fibers still

participating, is longer than experimental results. For Brown1s

steel, reloading is initially softer, then stiffer, but agreement

is still reasonable. The problem with Kent's and AKS steel is that

they become too stiff after the point where concrete stress is

again supplied by the top fibers (point 1 on the analytic curves).

4.8.2 Agrawal, Tulin, Gerstle(24) Beam #2, Fig. 4-26 (A to G)

This doubly reinforced section is unloaded and reloaded so

that a positive curvature always exists. Unloading occurs without

the section reaching its negative moment capacity.

The Elasto-Plastic steel overestimates the moment at the end

of the unloading cycle by being too stiff and the loops formed are

too narrow.

Of the curvilinear steels, Brown's (modified) and Kent's

formulation provide the best overall fit. The AKS model in these

cases greatly overestimates the positive moment capacity after the

first reloading cycle. All the curvilinear models have a tendency

to overestimate the unloading stiffness (such as AB and ~ and

underestimate the reloading stiffness (Be and DE). For additional

reloading straining they would become stiffer than observed, and

this would lead to a larger than observed moment.
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4.8.3 Kent's(19) Beam #24, Fig. 4-27 (A to G)

A symmetrically reinforced cross-section is cycled between

curvature limits of -.00156 to .00189. This is the same section

used for many of the previous discussions of moment-curvature be

havior.

Overall the Elasto-Plastic steel provides a good fit on the

moment curvature relations. It should be noticed that there are

changes in the stiffness provided by the concrete fiber participa

tion. In the unloading curves BC and DE the Elasto-Plastic model

is providing some of the observed stiffness degradation. This is

due to fewer concrete fibers participating in DOl than in~. The

stiffnesses after points B' and 0 1 are the same because only the

steel couple is participating. In general the end points appear

to match well.

Generally the problem with all the curvilinear models seems

to be in the reloading (CD and EF), where they appear to be much

softer than the experimental results. In a real beam there may be

more concrete participation in reloading than the model provides.

Kent's and the Improved SGT formulations do very well on

the unloading portions (BC, DE) and do slightly better on reload

ing than the other formulations. For larger curvatures, the AKS

has the tendency to overestimate the moment.
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4.8.4 Kent 1 s(19) Beam #27, Fig. 4-28 (A to G)

In this unsymmetrically reinforced section, the bottom steel

area is three times the top steel (As = 1.20 in2, A~ = .40 in2).

This results in a significant difference in the observed moment

capacities of +300 and -96 kip-in. Curvatures encountered in this

loading ranged from -.000748 to .00208. From the experimental

curves there seem to be a tendency to form closed loops. In the

cycle BCD, the reloading branch CD passes very close to point B

and EF in cycle DEF seems to be heading toward point D.

The Elasto-Plastic steel does very well in representing the

unloading and reloading branches in an average sense. It has yield

plateaus at points C' and E1 which the test data does not have, but

the end points of the cycles have good agreement.

The first three curvilinear steels, SGT, Improved SGT, and

Brown's (modified) are very close to each other. Again the unload

ing curves, BC and DE, provide good agreement, but the reloading

curves are too soft, particularly CC'D. The experimental data is

showing a distinct yield plateau which none of the curvilinear models

have. However, these formulations provide a good estimate of the

end point D.

In CD, both Brown's and AKS formulations become very stiff

after point C1 and since the steels do not yield near point B, the

maximum moment is greatly overestimated. The same thing happens in

reloading branch fr.
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4.9 CONCLUSIONS

The fiber model with the incremental stiffness approach is

able to represent the main features of the behavior of a reinforced

concrete cross-section. The incremental stiffness approach is very

sensitive to increment size, but for a given section reasonable

values can be obtained by a trial and error procedure as described.

With the model representing the coupling between axial for

ces and bending, the II pinching-in li effect and changes in moment

capacity under axial force have been reproduced. In addition, an

axial force which varies with moment can significantly affect the

moment-curvature relationship, by reducing the area of a typical.

loop.

None of the analytic models is able to represent, in a point

by point correspondence, the observed moment curvature behavior.

There is too much variability in the materials and their behavior

to find a perfect model. Agreement has been reasonable only in a

general sense. The Elasto-Plastic steel model provides better

agreement than was expected and may have value in the subsequent

member studies. All modes with the curvilinear steels tend to repre

sent well the unloading stiffness, but are softer than observed in

reloading. The moment-curvature relations reflect strongly the

assumed steel formulation, and the conclusions made in the previous

chapter on the steel carryover for the section behavior. In the

remaining chapter only the Elasto-Plastic steel and the Improved

SGT steels will be used for comparisons.
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CHAPTER 5 - MEMBER STUDY

5.1 INTRODUCTION

In this chapter the fiber model along with the incremental

stiffness approach is extended to study the, behavior of members

under cyclic loading. The structures' considered are simply-suppor-

ted beams, cantilever beams and simple frames.

The purpose of this chapter is to compare the analytic models

(elasto-plastic and curvilinear steels) with experimental results

and to discuss the advantages and limitations of the solution tech

nique when extended beyond moment-curvature studies.

5.2 INCREMENTAL STIFFNESS ANALYSIS

5.2.1 Solution Scheme

The stress-strain behavior of each fiber at a cross-section

is monitored, during the loading process. From the .tangent moduli,

stiffness coefficients, aij , are obtained (Eq. 4.3). Inversion re

sults in flexibility equatioffirelating ~£, ~¢ to ~N, 6M. Using

small deflection relations for the incremental strains and curva-

tures leads to

(5.1)
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where u, v are the axial and lateral displacements of the member;

x is the location of the cross-section; and bij are the flexibil

ity coefficients.

relation for the member.

then integrated to obtain a flexibility

This relates the end displacements {~u~}

The integration is carried out numerically

Equation (5.1) is

to the end forces {~p~}.
J

by the trapezoidal rule at each of the twenty equally spaced cross-

sections.

Finally inversion of the flexibility matrix yields the member

stiffness matrix,

{~p}} = [K~] {~u~} (5.2)
J J

~YA

6~6 ~vB

~
vA

XB~A ~B
FORCES

MB 11vA
DISPLACEMENTS

~uA

~MA

where

J lin i} _
l'"'t' • -

J

~uA

~vA

~eA

~uB

~vB

~eB
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[~J is 6 x 6 and it is a tangential stiffness matrix; that

is, it represents the instantaneous stiffness of the jth member at

step (i). Appendix A provides a detailed derivation of this matrix.

Once all the member stiffness matrices are computed, stand-

ard methods of assembling the total stiffness matrix for the struc

ture and modifying for support conditions are used. The structures

considered in this study are planar, and each member is assumed to

be represented by a line element.

The Euler method is used in the member study to proceed from

step (i) to (i+1). The incremental displacements at the joints are

detenni ned from:

{~i }
T (5.3)

where {~p+} may be forces due to specified displacements. The total

displacements and forces at (i+1) are simply

(5.4)

From the incremental joint displacements, member end forces

can be determined from Eq. 5-2, once the displacements are rotated

to member coordinates. To update the tangent stiffness matrix, the

incremental axial forces and moments at each cross-section have to

be determined.
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~YA ~v
tIM

~xAelll....-----1 [7 ~N
~A I------~)(-~

m = !J/..A

N>1 = tlt1A + t.YA x
(5.5)

This relationship assumes the member is represented by a

straight line between joints. From these incremental forces and

the flexibility coefficients at step (i), new strains, stresses and

tangent moduli are computed at each cross-section. The tangent stiff

ness matrix is then determined for the structure at step (i+l).

5.2.2 Nonlinear Effects

After each application of an incremental load (or displace

ment), the geometry of the structure is updated, by adding the com

puted incremental displacements to the corresponding joint coordin

ates.

With the incremental stiffness equations, equilibrium is satis-

fied in the undeformed position, and corrective forces should be

applied to satisfy equilibrium in the deformed position. This is

particularly important in the case of members with axial forces and

lateral displacements and is usually called the "P~" effect. If the

axial force is compressive, the lateral deflections of the member will



be amplified. Roesset (45) et al have shown that use of corrective

lateral forces will reproduce the elastic stability (P-~ effect) of

the member. Latona(32) incorporates the corrective forces into the

tangent stiffness matrix, thereby correcting before the next step.

The following are changes to the member stiffness matrix: (Eq. 5.2).

XB
K22 = K22 +r-
K25 = ~5

XB-r
XB (5.6)

K52 = K52 -r
KS5 KSS

XB= +r-

These terms relate lateral forces to lateral displacements.

Latona's scheme is included in the member study.

5.2.3 Limitations of the Incremental Stiffness Approach for the
Member Study

As pointed out in the previous chapter, results from the incre

mental stiffness approach are very sensitive to increment size. An

appropriate increment size was again chosen by trial (values used

were on the order of yield deflection divided by 160). Although de-

flections are controlled in the member study, incremental forces ~M,

~ are applied at the cross-section level. This can lead to large

errors when there are sudden changes in the cross-section stiffness,

such as when the steel yields.
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Since inversion of the stiffness coefficients aij is re

quired in the solution scheme, numerical problems occur when aij
approaches zero. This situation can occur when there is no concrete

participation after a few cycles of loading, and both steel fibers

yield. To prevent numerical instability, a 1% second slope on the

steel stress-strain curve is provided.

A similar difficulty occurs when the moment-curvature rela-

tions have a descending branch following that of the concrete

stress-strain curve. The stiffness coefficients can approach zero

and even become negative, for large straining of the cross-section.

Consider the case of a cantilever beam with the deflection

at the free end being increased. The maximum mo~ent occurs at the

fixed end. When this section's moment capacity is exceeded, the

descending branch of the moment-curvature relationship is reached,

and the rotational stiffness becomes negative. An inelastic hinge

(such as Barnard(36) describes) has formed, and increased curvature

results in a decrease in moment. In an experimental setup this means

that if displacements are controlled, the applied load will drop,

but if load is controlled, failure of the member will result.

Generally the analytic solution is able to represent this be-

havior. However, because the computation of the member stiffness in

volves integration by the trapezoidal rule (essentially a weighted

averaging of section properties), it is possible that the member stiff

ness will not be negative even tho~gh the rotational stiffness at the
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support is. If this occurs, increased deflection will lead to an

increment of moment being applied to the cross-section, and the type

of behavior illustrated below will occur.

M
I6M

Mmax.
-+ --J'--_q,

The result is that the solution now becomes unstable, so the incre

mental stiffness method is not able to portray a descending branch

for the load-deflection relationship, although it can indicate the

point at which hinges form.

To prevent this problem, no descending branch on the concrete

stress-strain curve was permitted. In Fig. 5-1 (A to B) moment

curvature curves are shown for Brown's cantilever beam, which will

be studied in Section 5-4.1. The first shows the relationship with

a descending branch and failure occurring at ~ ~ .005, defined by

the extreme concrete fiber unloading to zero stress at £c = .01.

In Fig. 5-1B there is no limiting strain on the concrete, and infin

ite curvature is possible. Figures 5-1 (C and D) show the effect of

1% slope on the steel and strain hardening. These assumptions sig

nificantly change the shape of the M-¢ curve, but this is beyond the

range when the member fails. In the useful range of curvatures such

as segment roB the difference is not large.
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One method of handling the problem of hinging would be to

consider the formation of a semi-rigid joint when a section exceeded

the maximum moment capacity (this formulation is discussed in Appen

dix B). As the hinging spread more sections could be considered in

obtaining the moment-rotation relationship. In this way the member

stiffness would become negative whenever any cross-section stiffness

became negative. This, however, was not implemented.

5.3 SIMpLY SUPPORTED BEAM STUDY

5.3.1 Kent ' s(19) Beam #24, Figure 5-2 (A to C)

This simply supported beam loaded at midspan is the same mem-

ber used for a significant portion of the moment-curvature compari-

sons in Chapter 4. The loading is cyclic and deflections range from

- .48" to . 70 II •

Both analytic models reproduce well the load-deflection be

havior of this member under this cyclic loading with relatively small

deflections. The average slopes of each half cycle and the end points

agree with the experimental curves.

The analytic moment-curvature relations from this member study

can be compared with the experimental one and those obtained analytic

ally in the section study (Fig. 4-27). The elasto-plastic M-~ curves

in Fig. 5-2B show significantly larger curvatures than observed.

Point D is at a curvature of .0031, while the measured value is .0018.

This is a result of sharp changes in section stiffness after yielding

and the M-~ curve being incremented on ~ and ~N.
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On the other hand, the M-¢ curve for the curvilinear steel

is much closer to the experimental. The section stiffness changes

gradually, and this leads to the incremental stiffness method being

better behaved.

5.3.2 Burns and Siess(33) Beam J-12, Figure 5-3 (A to C)

This unsymmetrically reinforced member is a simply supported

beam with loads applied at midspan. It has a length of 12 1 0", and

deflections are on the order of 3".

For both analytic models, the unloading portion AB provides

good agreement with the experimental values as far as stiffness and

end values are concerned. For segment DEF. the experimental results

indicate a noticeable change in stiffness after unloading to zero

at point E. In segment DE both models are stiffer. After E the

experimental curve maintains a nearly constant slope, but the analy

tic models show abrupt changes when the concrete suddenly begins to

participate again.

For the loop BCD, the analytic models indicate a load reversal

because they are stiffer than the observed curve. The loops for the

elasto-plastic model are significantly wider. The curvilinear model

is noticeably different in segment CD because of the load reversal

and resulting curvilinear behavior.
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5.4 CANTILEVER BEAM STUDY

5.4.1 Brown's(l]) Cantilever Beam 86-35-RVIO, Figure 5-4 (A to E)

An unsymmetrically reinforced cantilever beam was subjected

to very large deflections: 6.2 11 for an unsupported length of 60 11
•

These deflections are larger than can be accounted for by purely

flexural deformations.

Figure 5-4 (B and C) indicate an attempt to obtain the ob

served deflections by only the bending deflections. The numerical

procedure had stability problems, because by consideration of the

maximum strains the section had failed. To obtain a numerical solu

tion a 1% second slope on the steel and no descending branch for the

concrete was assumed. Both analytic models produce load-displace

ments which compare as well as previous member studies do, with the

same problems in not being able to obtain a point-to-point fit.

However, the deformations are beyond what the member can rea

sonably be expected to survive. Analytic curvatures of .025 are re

quired, but an analysis (Fig. 5-1A) shows an ultimate curvature on

the order of .005.

The rotation of the member at the IIfixed li end, due to the

slippage of the reinforcement anchorage, becomes very important in

this case. Brown took actual measurements of the rotation during

his cyclic loading tests. Using curve fitting techniques, he was

able to formulate relations between 8FE and MFE , the rotation and

moment at the support. (Brown expressed these relations in terms of
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tensile force in the bars, but the relations presented here are

modified to consider moment and rotation).

After first yielding

o
6 FE = ml If'

c

M As f y

(d-d ' )2 - (d-d')
(5.7)

For reversed loading, #8 bar

where the units are kip, in. and 0 is the bar diameter. ml is an

experimentally derived coefficient which depends upon bar size).

The member now has a semi-rigid joint at the support, such

that Ke =~. When Ke ~ ~ the support is fixed (this is true be

fore yielding occurs). Appendix B discusses how the effect of

semirigid joints are incorporated into the member stiffness matrix.

For this particular member

#8 1st yield

#8 reversed load

Ke = 3550. (Kip-in.)

1
Ke = 6 7

3.274 x 10 + 3.273 x 10- M

Figures 5-4 (0 and E) show the effect of joint rotation on

the elasto-plastic and curvilinear models. The analytical curva

tures are now significantly smaller and are below the failure limits.

This indicates that a sizeable portion of the tip deflection is due

to the joint rotation. In the load-displacement curves the rotational
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stiffness appears to dominate, once yielding occurs. The analytical

load-displacement curves are close to the experimental results.

It must be remembered that Brown's joint rotation formulation

is for a very specific member and type of loading condition. More

study in this area is required if a general joint rotation formula

tion is to be developed.

5.4~2 Popov, Bertero,Krawinkler (34) Cantilever Beam, Figure 5-5(A-C)

This symmetrically reinforced cantilever beam is 78 11 long and

is loaded cyclically such that the maximum deflection in a cycle gradu

ally increases. The largest deflection is 311
•

Being a very deep section (t = 29 11
), shearing deformation be

comes an important consideration. These researchers found that the

large shear deformation causes a II pinching ll effect. This occurs af

ter several cycles of loading when flexural and diagonal tension

cracks force the member to carry the shear principally by dowel action.

In the experimental results (Fig. 5-5A) the pinching effect is more

pronounced as the number of cycles and the maximum deformation in

crease.

Analytic models with both elasto-plastic and curvilinear steels

were run to see if the model without shear deformation could reproduce

any of the effects. In the moment-curvature study it had been shown

that large deflectionS could cause a II pinching in ll effect when the

reinforcement which yielded previously in tension, yields in compres

sion before the other steel fiber yields in tension. Figure 5-5(B &C)
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show that this was not true for these loading conditions. Both

models are much stiffer than experimentally observed, and the loops

enclose larger areas.

No attempt was made to include the effect into the analytic

model. There are no clear-cut ways, however, of including this ef

fect and for the types of frames to be considered in the dynamic

analysis, shear deformation is not an important factor.

5.5 FRAME STUDY: GULKAN 'S(35) FRAME FS1, FIGURE 5-6 (A to C)

This frame was designed to have a very stiff girder in com

parison to the columns. The clear distance of the columns is 26 11

and deflections range from -.4 11 to .3 11
•

The analytic model used does not consider the effect of joint

rotation nor shear deformation. Centerline dimensions are used for

the member lengths.

Both analytic models are stiffer than the experimental re

sults in unloading. The areas enclosed by the hysteresis loops in

the analytic models are larger. However, the end point of the cycles

show good agreement, so in an overall sense the models are represent

ing the stiffness and behavior of the frame.

In Figures 5-6 (B2, B3, C2, C3), the moment-curvatures for

each column of both analytic models are shown. Differences in shape

and stiffness due to variation of axial forces in each column are

noticeable but not drastic.
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Probably the reason the models appear stiffer is that joint

rotation due to slippage of anchorage reinforcement is not considered.

Takeda, Sozen, Nielsen(37) show in an analysis of test results that

31% of the deflection could be attributed to joint rotation, 56% due

to flexural deformation, and only 2% due to shear deformation. Although

that was for another specimen, it indicates that joint rotation may be

important.

5.6 CONCLUSIONS AND RECOMMENDATIONS

The fiber model and the incremental stiffness approach have

been extended to represent the behavior of simple structures. In an

average sense the model can represent experimental results, but too

many variables and uncertainties preclude having a point-to-point fit

on the behavior.

The analytic model is sensitive to increment size,and numer

ical instability can occur when sections have zero or negative stiff

ness. This requires a modification of the model to include second

slope on the steel and no descending branch on the concrete. A fail-

ure criteria is then limited to the determination of when some maxi-

mum concrete strain is exceeded, since descending branches (negative

slope) for the load deflection relations cannot be reproduced.

The consideration of joint rotation due to slippage of anchor

age reinforcement was shown to be a significant factor in the load-

deflection behavior of reinforced concrete structures. However, nlore
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research into the modeling of this effect is necessary. For deep

members it may also be important to find a mechanism to account

for shear deformations and the ensuing pinching effect.
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CHAPTER 6 - DYNAMIC ANALYSIS

6. 1 INTRODUCT ION

In this Chapter the fiber model and the incremental stiff

ness approach a~e used to study the dynamic response of reinforced

concrete frames. In discussing this model's abilities and limita

tions, comparisons with simpler models will be made.

Two l-bay, l-story frames tested by Gulkan(35) will be used

to compare models. The first frame has a sinusoidal base motion

applied, and the second is subjected to a compressed El Centro earth

quake component. It is not assumed that these frames represent the

whole range of such structures, but many of the observations of their

behavior will be generally valid.

6.2 DYNAMIC ANALYSIS WITH THE FIBER MODEL

6.2.1 Analytic Formulation

For dynamic response of the structures to be considered, the

governing equations of motion, in matrix form, can be condensed to

the fonn: ..
[M]{U} + [KL] {U} = - [M] {U

G
}

where [M] is a diagonal mass matrix in which the mass is
lumped at each floor level (nfl x nfl)

[KL] is the lateral stiffness matrix having 1 degree

of freedom per floor (nfl x nfl)

(6. 1 )



204

{U} relative displacement vector (with respect to ground),
1 degree of freedom per floor

{U} relative acceleration vector
..

{UG} ground acceleration vector.

The damping usually included in this equation represents an

equivalent viscous damping and will not be considered in this model.

Shiga et al.(39) have shown that the damping in reinforced concrete

frames is hysteretic in nature and is proportional to the area en

closed by the loops of the load-deflection curves. It is of inter

est, therefore, to see how effectively the model represents this

hysteretic damping.

To obtain the lateral stiffness matrix for the structure, the

total stiffness matrix is condensed. The matrix equations relating

forces to displacements can be partitioned in the following manner:

[

KLL KLR]
----------
KRL KpR

(6.2)

where the subscript L indicates lateral degrees of freedom and R in

dicates vertical and rotational ones. To simplify the subsequent

equations, the brackets and braces will be left of the matrix quanti

ties.

In response to earthquake motion the vertical and rotational

inertial forces usually are smaller than the lateral inertial forces.

If PR is neglected with respect to PL, then
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or (6.3)

Then backsubstituting into Eq. 6.2 yields:

and (6.4)

*where KL has pnly a lateral degree of freedom at each joint.

The next step in the condensation process uses the assumption

that all joints at a floor level have the same lateral displacement.

The lateral stiffness matrix, KL, is obtained by adding the columns

*and rows of KL which correspond to joints on the same floor. KL now

is (nfL x nfL) where nfL is the number of floors.

Once the lateral displacements are known, the vertical and

rotational displacements can be obtained by backsubstitutlon into

Eq. 6.3.

To advance the numerical solution in time, a central differ-

ence formul ation is used for the acceleration vector. (The super-

scri pt re fe rs to the time step.)

iji 1 [U i+l 2U i i -1 ]= + U
(t,t)2

or (6.5 )

Ui+l = 2U i Ui-l (t.t)2 lji- +
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Similarly

Let
t.U i =Ui+l_Ui .. 2U i 3Ui - l _ Ui -2 + (t.t)2(Ui _ Gi-l)-

2till i - l _ t.U i -2 + (M)2(Ui ··i -1 (6.6)= - U )

where t.U i is the change in displacement in the (nth step.

From Eq. 6.1, (6.7)

(6.8)

Now KLU is simply the forces in the structure and in an incremental

fashion can be expressed as

i
Ki Ui - 'i' Kj - 1/2 t.Uj - 1

L - L t
j=l

where K~-1/2 is the lateral tangent stiffness matrix at step (i-l/2).

Notice that this uses the Modified Euler method. It was felt that

the added accuracy of a second order method was needed for the dynam

ic analysis because~fhe sensitivity of the incremental stiffness

method to increment size and the problems with propagation of errors.

Now (6.9)

Finally the following recursive relationship is formulated

Wi = 2 l1lJi-l _ Wi - 2

_(t.t)2 [M- 1Ki- l / 2 litJi-l + (U~ _ ·u~-l)J (6.10)
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6.2.2 Behavior of the Fiber Model under Sinusoidal Base Motion

The structure used in this section is a 1-bay 1-story frame

(with clear column height of 26") which Gu1kan(35) subjected to

steady-state base motion on the University of Illinois shaking table.

This frame was designed to have the girder much stiffer than the

columns, and a fixed support at the base.

In Fig. 6-1A, the base motion provided by the shaking table

is shown. Although the variation in peaks and changes in frequency

indicate that it is not purely sinusoidal, the major part of the

study on the fiber model was run with a true sinusoid (Fig. 6-1B)

having the average frequency and amplitude of the experimental exci

tation. This was an attempt to use a base motion where some engineer-

ing Ifee1" for the response existed.

Of interest are the effect of increment size, the effect of

nonlinear geometry, the "P-t."effect, and the steel fonnulation used.

Table 6-1 summarizes the effects included and the displacement aver-

ages for each of the nine comparison runs of the fiber model.

Figure 6-2 (A to I) has the displacement-time history for each

of the runs plotted to the same scale. After the first couple of

cycles the model's frequency of response matches the observed one.

The initial difference is due to the variation of the input accelera-

tion from the sinusoid assumed in the comparison. Maximum displace-

ments ranged from .260" to .283", while the maximum and steady-state

peak-to-peak amplitudes ranged from .388" to .409" and .262" to .301",

respectively.
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In. Fig. 6-2 (A, D, F) all nonlinear effects are included,

and the increment size varies from ~t = .002 to .0005 sec. (The

measured natural period of the structure varies from .063 to .125

sec.). For ~t = .002 and .001 there is a permanent set and some

plastic drift. Both effects decrease with increment size and are

not apparent at 6t = .0005. It was felt that accumulation of errors

due to Jlovershooting" at direction changes was reduced sufficiently

at the small' increment size.

In Fig. 6-2 (C, E, G) the increment size is similarly varied,

but now the nonlinear effects are not included. The effect of incre

ment size reduction is obvious. Comparing runs A and C, the nonlinear

effects appear to decrease the calculated plastic drift. A comparison

of Band C, where B has only the nonlinear geometry effect, shows that

this effect is more responsible than the P-6 for the reduction. Differ

ences in the models with and without the nonlinear effects become less

apparent at a smaller increment size.

Run H is for a curvilinear steel, and it corresponds to the

elasto-plastic run F. Up to the third peak there is very little dif

ference, since the behavior in both models is essentia11y elasto

plastic. Afterwards the curvilinear steel begins to exhibit a sig

nificant plastic drift which is not observed in either the elasto

plastic case or in the experimental results.

The corresponding moment-curvature relations (runs F9 G, and H)

for a cross-section at the top of each column are plotted in Fig. 6-3

(A to C). Significant differences may occur for each column in a
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frame. Laterally-induced axial forces cause differences in the

moment-curvature relations and in the resultant stiffness of each

column.

For the elasto-plastic steel (F and G) the loops formed be

come stable, but for the curvilinear steel they do not. This re

flects two aspects previously pointed out: 1) The I-SGT model and

other curvilinear models discussed do poorly for repetitive load

ings with small strain reversals; 2) The moment-curvature relation

with I-SGT steel tends to be softer in reloading in the initial

loading direction than in the opposite direction. Additional re

finement of the steel formulation may be required to meet t~ese cri

teria of performance.

For comparison with the simpler models to be discussed in

Section 3, the load-deflection relationships for runs F and Hare

displayed in Fig. 6-4 (A and B). These generally reflect the cor

responding moment-curvature relations. The loops for the elasto

plastic steel begin to show some rounding.

In the dynamic response of the frame there can be consider

able variation in the lateral stiffness (Fig. 6-4). Sudden changes

in the lateral stiffness correspond to changes in the loading direc

tion where the steel yields or begins to unload. The frame is ini

tially uncracked, and the stiffness eventually oscillates in a range

lower than the initial lateral stiffness. In the response of the

structure to a sinusoidal motion, the detailed variation of
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TABLE 6-1 COMPARISON OF PEAK DISPLACEMENTS FOR FIBER MODEL UNDER SINUSOIDAL BASE MOTION

A B C D E F G H I
flT .002 .002 .002 .001 .001 .000f .0005 .0005 .0005
NLG Yes Yes No Yes No Yes No Yes No
P-Li Yes No No Yes No Yes No Yes No

Steel E-P E-P E-P E-P E-P E-P E-P I-SGT I-SGT
Peak #

1 -.126 - .126 -.126 -.125 -.125 -.126 -.125 -.126 -.125
2 .282 .287 .283 .273 .274 .274 .260 .273 .273
3 -.075 -.077 -.076 -.099 -.101 - .131 -.129 - .150 - .150
4 .231 .202 .215 .215 .213 .110 .112 .126 .125
5 -.009 -.078 -.049 -.065 -.073 - .163 -.169 -.119 -.128
6 .259 .209 .287 .208 .273 .119 .107 .104 .099
7 -.043 -.086 .042 -.092 -.061 -.156 -.180 -.173 -.179
8 .232 .219 .322 .225 .257 .125 :102 .098 .087
9 -.038 -.059 .055 -.057 -.044 -.155 -.179 -.193 -.201

10 .247 .219 .333 .237 .254 .125 .103 .063 .082
11 -.024 -.070 .064 .044 -.055 -.159 -.179 -.217 -.226
12 .255 .236 .361 .240 .248 .120 .103 .037 .022
13 -.020 .- .026 .095 -.053 -.066 -.162 - .180 -.249 -.262

Max.Displ. .281 .283 .283 .273 .274 .273 .260 .273 .273

Max.Peak
to Peak .407 .409 .409 .398 .398 .404 .388 .243 .243
Displ.

Ave.Peak
.272 .281 .262 .267 .301 .279 .283 .273 .276to Peak

Displ.
-.120Drift at .112 .105 .228 .094 .091 -.021 .039 ·-.106

t=.6 sec.

N
N
N
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the stiffness becomes of particular importance because of the pos

sibility of resonant excitation.

As was previously pointed out, the actual base acceleration

is not exactly a sinusoid. Figure 6-1 C shows a modified sinusoid

which has the same peak amplitudes and zero crossings as the shak

ing table acceleration. The elasto-plastic model was run from this

base motion with the nonlinear effects and ~t = .0005 (Fig. 6-7).

Comparing this with the experimental response in Fig. 6-6, there is

good agreement in the frequency of response. There is better agree

ment with the first three peaks than in previous runs with the sinu

soidal excitation, but the agreement deteriorates later. The change

in response caused by a small change in the excitation is worth

noticing.

6.2.3 Behavior of the Fiber Model under Earthquake Base Motion

Another frame (with a clear column height of 13"), designated

HE1, was tested by Gulkan using the El Centro (N-S) component com

prp.5sed in time as the base motion (Fig. 6-10). The experimental

response is shown in Fig. 6-8. Due to the expense of the computation

required for the fiber model, only two seconds of response were com

puted (this required 17 minutes on the IBM 370/M165) at an increment

~t = .0005.

For the elasto-plastic steel shown in Fig. 6-9A, there is a

very good match with the response of the structure for the first 1.1

seconds if the response is shifted in time .04 seconds {the large
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amplitude peaks occur sooner in the analytic model). The ampli

tude of response and location of peaks then show good agreement in

this range. In the remaining part of the response the analytic

response frequency is noticeably greater. From this load-deflection

curve it appears that the frame is more-or-1ess elastic because

there is little yielding. The maximum calculated deflection is

.078 11
, whil e experimentally the value is .084 11

• Maximum peak-to

peak values are .151 11 and .143 11 for the analytic and experimental

results.

The model with the curvilinear steel, however, displays a

significant permanent set after .92 seconds. The permanent set is

reflected in the moment-curvature and load-deflection relations,

where during one cycle there is a large deformation, after which

the loops become stable. Whether this is due to error propagation

in the model or to the momentary excitation of some resonant fre

quency was not determined.

6.3 COMPARISON OF SIMPLE MODELS FOR FRAME BEHAVIOR

For use in design the fiber model is far too expensive (in

terms of computer time). Simpler models which attempt to represent

the overall behavior of reinforced concrete frames will be compared

in this Section. There isnoattempt to imply that the models used

represent a complete survey of those available.

The follOWing were used:



1) Elastic

2) Bilinear

3) Trilinear

4) Clough I s (47)
Model
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This model is used more as a comparison
with other models than as a representation
of concrete frame behavior.

This model is essentially elasto-plastic,
with a small second slope.·

The initial and final slope correspond to
the elasto-plastic, but the second branch
has a slope .2Ko and begins at half the
yield force.

This has an elasto-plastic envelope and un
loads with the initial stiffness, but has
stiffness degradation in the reloading part
of the relationship.

5) Anagnostopou- This model further adds stiffness degrada
los' MOdel~5) tion for the unloading branches according

to:

6) Takeda(37)
Hysteresis
Laws

These were used by Gulkan to obtain his ana~

lytic results and are reproduced here for
comparison. Slight differences in this model
may exist due to the digitizing of a small
scale record.

The models (1 through 5) were formulated as 1 d.o.f. springs
which related the lateral force and displacement of the simple frame.

From Gulkan's experimental work, the average initial stiffness and
yield values were obtained. These models were subjected to the same
base motions as the fiber model was (modified sinusoid and El Centro).
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6.3.1 Behavior of Simple Models to Sinusoidal Base Motions

The simple models were subjected to the modified sinusoid

base motion shown in Fig. 6-1 C. Fig. 6-10 (A to E) presents the

displacement-time history and corresponding force-displacement

relations.

Generally all the models agree with the number of peaks, and

thus with the average frequency of response. The location of the

peaks correspond except for a slight shift in the time axis of .015

sec., since the test frame appears to respond sooner.

In comparing the Anagnostopoulos and Clough models it appears

that response is not sensitive to the parameter used in the unload

ing stiffness degradation (.35 for the former and O. for the latter).

That is, whether there is degradation in the unloading branches does

not seem to be important. These two models overestimate the magni

tude of response displacement.

The bilinear model indicates a permanent set contrary to the

observed response, and the average peak-to-peak response is again

larger. In the trilinear model used, the force-displacement does

not reach the final yield level. Except for a low fourth peak, the

agreement is reasonable. The elastic model produces significantly

larger response, especially for the second and third peaks.

The jaggedness of the Takeda displacement response plot is the

result of enlarging a small scale figure. The overall agreement is

reasonable.
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TABLE 6-2 COMPARISON OF MODELS FOR MODIFIED SINUSOIDAL LOADING

Peak # Elastic Bilinear Trilinear Clough Anagnosto- Takeda
poulos

1 -.067 -.068 -.067 .067 -.068 -.040
2 .159 .158 .169 .157 .157 · 131
3 -.285 -.309 -.203 -.307 -.306 -.214
4 .287 .058 .022 .076 .101 .145
5 - .163 -.218 -.121 -.064 -.033 -.105
6 .021 -.044 .108 .031 .035 .013
7 -.006 -.233 -.141 - .228 -.216 -.100
8 .167 .076 .150 .143 .158 .141

9 -.283 -.044 -. 143 -.145 - .145 -.214

10 .225 .013 .120 -.040 -.048 •122
11 - .180 -.200 - .135 -.175 -.168 -.088
12 .152 .051 .167 .55 .155 .021
13 -.094 -.294 -.076 -.241 -.245 - .113
14 .129 . 141 .188· .090 .109 · 141

Max.Displ. .287 .309 .203 .307 .306 .214
Max.Peak-to .448 .467 .372 .464 .463 .359Peak Displ.
Ave. Peak-
to-Peak .300 .323 .255 .282 .287 .235
DiSpl.
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6.3.2 Behavior or Simple Models to Earthguake Base·Motion

The simple models are used to represent the response of

frame HEl under the £1 Centro earthquake moti on. The predi cted

respomies are displayed in Fig. 6-11 (A to E). (The elastic

model was not included because large amplitude forces were

required for the spring to be elastic, causing the response to

be very different from that observed.)

Three of the models, Anagnostopoulos, Clough, and Takeda,

produce results that are nearly identical with each other. How

ever, they overestimate the magnitude of response, although they

seem to agree well with the location of the peaks. (Maximum dis

pl acements and peak-to-peak di splacements are .234", . 408", whil e

experimentally they are .084", .143".)

Both the bilinear and trilinear models also overestimate the

magnitude of displacement. In addition, the bilinear model has again

a pennanent set.

6.4 CONCLUSIONS

The fiber model and incremental stiffness approach can repre

sent reasonably well the dynamic behavior of a reinforced concrete

frame. But to be able to obtain a better fit to the experimental

data, a more sophisticated model would be required. One important

aspect woulp be a refinement of the curvilinear steel model which

has been shown to respond poorly to small repetitive loadings. Other
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effects such as slippage at the joints could be added.

For the simple models~ it seemed that they could all repre

sent well the location of peaks, but had difficulty with their mag

nitudes. In particular all the simple models overestimated the

deflections for the simulated earthquake motion. The fiber model

did better in this respect, and overall it appeared to represent

the dynamic response better.
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CHAPTER 7 - CONCLUSIONS AND RECOMMENDATIONS

1. To properly represent the behavior of reinforced concrete

structures with a fiber model, the stress-strain relationship for

the reinforcing steel is a key parameter. Although the curvilinear

steel formulation developed represented the behavior for large cyclic

straining, it was poor in reproducing the behavior under small repe

titive loadings. On the other hand, the elasto-plastic formulation

was reasonable for many circumstances. As far as the overall be

havior of the members was concerned, the concrete formulation was

less important.

2. The model is able to reproduce the axial-bending coupling

in the members. Under axial load a pronounced pinching of the cyclic

moment-curvature and load-deflection curves appeared consistent with

experimental observations. For axial forces which vary with moment,

such as in a laterally loaded frame, the moment-curvature behavior

may be significantly altered. While the fiber model is reasonable

in predicting cross-section behavior, an added refinement would be

the consideration of slippage of the reinforcement along the member.

3. The fiber model is able to represent in an average sense the

behavior of members under static cyclic loadings. It is important,

however, to be able to reproduce the rotation of the joints due to

slippage of the anchorage reinforcement. For deep members shear de

formation should also be considered. These are improvements which
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were not implemented in this work, but which should be undertaken

in the future if the fiber model is to be used.

4. In the dynamic frame analysis it was not possible to pro

duce perfect agreement with experimental results. For sinusoidal

excitation, results obtained with the simpler models were of the

same order, but for the earthquake excitation the fiber model seemed

to predict better the observed response. Additional refinements of

the model may improve the performance, but the necessity of using a

very small time increment makes it expensive to run, and more of an

academic tool, rather than a practical design aid. Considering all

the uncertainties involved in the material properties, it may be hard

to justify this complexity versus attempting to improve the simpler

models.
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APPENDIX A

FORMULATION OF THE MEMBER INCREMENTAL STIFFNESS MATRIX

The incremental stiffness equations for a cross-section were

formulated in Chapter 4, and from them the flexibility relations

are obtained by inversion.

(A.l )
~~ = b2l ~N + b22 ~M

where [b .. J = [a ..r l
, J , J

If the beam is considered to be represented by a line element

and the deflections are small, then the following relationships hold:

(A.2)

e = dv
dx

where u and v are the horizontal and vertical displacements; e is

the chord rotation; and x is the distance along the centroid of the

member.

The ends of the member will be labeled A and B and the length

of the member is L.



(A. 3)

"~
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mA ~

~A f-ll 1[4M

MA I---x---~

In the above figure a portion of the member is shown with the

forces acting at end A and at the cross-section a distance x away.

By considering equilibrium,

liN = liXA

liM = -liMA + x liYA

Substitution of the relations in (A.3) and (A.2) into (A.l)

leads to the following

(A.4 )

(A.4) can be integrated across the length of the member to ob-

tain:
L

li uA - li uB = -tbll dx liXA + -tx b12 dx b. YA + f b12 dx liMA
0

li8
A - li8 B = - JL b12 dx liX + - JLx b

22 dx liy + J\22 dx tIM A.A A
0 0 0

li VA -li vB + L!l8 A =, fL
(L-X)b12dX liXA + - fL

x(L-X)b22 dx liYA
o 0

+ f(L-X) b22 dx ....MA (A.S)

-~-
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These equations can be easily be expressed in matrix fonn

llUA - tilB fll f 12 f13 w..A

/lVA - llU B+ Lll eA = f 2l f22 f 23 llYA (A.6)

ileA - llf13 f3l f 32 f 33 LMA

where [fijJ is the flexibility matrix relating incremental displace

ments to the incremental forces of end A.

If [fijJ is inverted then:

(A.7)4JA - lluB

=

~A

where [k .. J = [f .. r l
lJ lJ

This matrix equation can be expanded and rearranged to get

=

(k l3 + lk12 ) lluA
(k23 + Lk 22 ) llV

A

(k33 + Lk33 ) ileA (A.8)

-kl2 -k13
-k22 -k23
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{APA} = [KAAJ {6OA} + IKABJ {6OB}

From the condition of equilibrium

6.X B -1 0 0 &..A

I1Y B = 0 -1 0 I1YA

11MB 0 L -1 l1MA

(A.9)

(A. lO)

or

so

{I1PB} = [TJ {I1PA}

= [TJ[KAA]{I1UA} + [TJ[KAB] {I1U B}

= [KBAJ {I1UA} + [KBBJ {I1UB}

[KSA] = [TJ [KAA]

[KBBJ = [TJ [KAB ]

(A. 11)

(A. 12)

With (A.9) and (A.ll) the incremental member stiffness rela-

tions have been obtained, relating incremental forces to the incre

mental displacements.
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APPENDIX B

SEMI-RIGID JOINTS TO ACCOUNT FOR ROTATIONS
DUE TO SLIP OF ANCHORAGE REINFORCEMENTS

*An alternate method of obtaining a member stiffness matrix

from the member flexibility matrix and to include semi-rigid joints

is described.

The flexibility matrix is now defined in the following way:

6U B f" 712
:

121 6X B

721 f22 (B.l )lWB =
:23 J

tlY B

1"31 1"3268B f 33 6MB

This flexibility matrix differs from the one derived in Appen

dix A (Eq. A.6)t but can be obtained from it by considering end A to

be fixed (6uA = 6vA = 68A = O)t and using the following result of

equilibrium:

[-:
0

-~]{6PA} - - -1 {6PB}

-L

or (B.2)

{6PA} = - [H] {6PB}

'* Li ves 1ey. (46)One source of this type of derivation is
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From these equations:

1"11 712 1"13 f 11 (f12 + L f 13 ) f13

721 722 723 = f12 (f21 + L f 23 ) f 23 (8.3)

731 732 7~33 f 13 (f3l + l f 33 ) f 32

Through use of the definition

=

Tand the fact that K8A = KAB , it can be shown that

(8.4)

= - [H] [F ..r l
lJ

(8.5)

These are the same member stiffness matrices as previously de

scribed, in Appendix A.

Consider now that the member has semi-rigid joints; it then can

be visualized as having rotational springs attached to each end.

and (8.6)
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Returning to the definition of the flexibility matrix (Eq. B.l),

the displacement at end B now is composed of the member distortions

plus the distortions due to the rotational springs at the ends of the

member. Thus

{UB} = [[f..]+ [f .. ] + [f .. ] ] {pB}
total lJ lJ A lJ B

(B.7)

where [f i .] and [f .. ] are the flexibility matrices due to the
J A lJ B

rotation springs at joints Aand B, respectively.

a

[f .. J 0
lJ A =

a

o
and [f iJ·] - 0

B -

a

a
o

a

a
L
KA

1
KA

a
o
1
KB

(B.8)

Finally, the flexibility matrix for the member becomes:

rll

-
[f ..J = f 21

lJ total

f 13

-l
(f23+ r)

A
(B.9)
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Substitution of this matrix into Eq. B.4 will yield the stiff

ness matrices for the member. Note that if KA and KB are equal to

infinity, the member stiffness matrix will revert to that of Appen

dix A.
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