.. Publication Nﬁ. R76-38

1y

Order No.

NONLINEAR DYNAMIC RESPONSE
OF REINFORCED CONCRETE FRAMES

by
KENNETH MUN SUNG MARK

Supervised by
José M. Roesset

August 1976
REPRODUCED BY

555 |

-————J/
T 70 B [
B A
\ J . ;
A R T
Py [l '
|“\‘JrH .
|‘\.\fﬂ'|| ! Il
by P
v I
, ‘\’I il ‘ .
LJ vy - i
-
PB80-10285 i

=TTy
DEPA

fay=ey e Wy e [\ prragen}
=y TN N T
SAENY

N

O

S RO GERENCINEERING
MASSAEEUSETTS WSTITUTE OF TZBHRTLEEY

S ——

U.S. DEPARTMENT OF COMMERCE .
NATIONAL TECHNIGAL '
INFORMATION SERVICE

SPRINGFIELD, VA 22161 ;
-

Sponsored by the National Science Foundation
Division of Advanced Environmental Research
and Technology
Grant GI-4310"

ASRA INFORMATION RESQURCES
NATIONAL SCIENCE FOUNDATION




Additional Copies May be Obtained from

National Technical Information Service
U.S. Department of Commerce
5285 Port Royal Road
Springfield, Virginia 22151



Massachusetts Institute of Technology
Department of Civil Engineering
Constructed Facilities Division
Cambridge, Massachusetts 02139

NONLINEAR DYNAMIC RESPONSE OF REINFORCED CONCRETE FRAMES

by

KENNETH MUN SUNG MARK

Supervised by

José M. Roesset

August 1976

Sponsored by National Science Foundation
Division of Advanced Environmental Research and TEchnology
Grant GI-43106

Research Report R76-38 Order No.

555



2
ABSTRACT

NONLINEAR DYNAMIC RESPONSE OF REINFORCED CONCRETE FRAMES

The purpose of this study is to investigate the applicability of
a fiber model to the determination of the nonlinear dynamic response of
frames. In this model the stress and strain are monitored through time
at each fiber of several cross sections along each member. The tangent
moduli for the steel and concrete resulting from the assumed nonlinear
stress-strain relationships are then used to assemble a tangent stiff-
ness matrix for the structure at each step. The dynamic analysis is
carried using a central difference formula to advance the solution in
time.

Several models for the concrete and the steel are first reviewed
and compared. The effect of these models on the moment curvature rela-
tionship for a cross section is investigated and results are compared
to experimental data. The process is repeated for simple members under
static cyclic loading. Finally the fiber model is used to study the
dynamic response of a single-bay one-story frame under sinusoidal and
earthquake excitation. Results are again compared to experimental data
and to those of simpler models.,

The fiber model reproduces well the qualitative behavior of a rein-
forced concrete section or member and explains the effect of constant
or variable axial loads. A point by point agreement with experimental
data cannot be, however, obtained. Results for the frame are somewhat
better than those provided by other, simpler models, but the model is
mainly of academic interest, because of the cost of computations. Sev-
eral refinements are suggested.
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CHAPTER 1 - INTRODUCTION

1.1 SCOPE

In order to study the nonlinear dynamic response of reinforced
concrete frames, a fiber model using the incremental stiffness ap-
proach is developed. The effectiveness and limitations of this model
are demonstrated by parameter studies and comparisons with experi-
mental data.

Reinforced concrete behavior is complex and particularly hard
to quantify. Formulations for the nonlinear behavior of both the
reinforcing steel and concrete are derived, but the complete general-
ity of these is not assumed. Of the two materials, steel has been
shown to have a much greater effect on the reinforced concrete member
behavior.

It is common to use a fiber model in moment-curvature studies.
Several studies have even applied it to predict the load-deflection
behavior of simple members such as cantilever beams. This is as far
as it went, for to obtain deflections curvatures were integrated
across the member and were determined by iteration for equilibrium
at each cross-section. This type of analysis became prohibitively
time (computer) consuming. Using the jncrementa1 stiffness approach
to advance the solution, studies of members and even frames is feasi-

ble. However, the incremental stiffness is sensitive to increment

size and subject to error propagation.
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To study the dynamic response of frames there have been sev-
eral approaches. In some cases springs which represent the stiff-
ness degradation in the cyclic loading are used to represent members
of the frame or the whole frame. There are intermediate models
where the moment rotation curves for a member are specified and
"hinges” are assumed to occur at the ends of each member. The fiber
model is very complex, because of all the parameters that must be
monitored. However, the fiber model is theoretically a consistent
approach, which carries the formulation from the stress-strain be-
havior of the individual fibers of concrete and steel, through the
cross-section behavior, and finally to the behavior of structures

under static and dynamic loadings.

1.2 THESIS ORGANIZATION

Chapter 2 studies the behavior of both plain concrete and con-
crete in a reinforced member. A simple formulation for the stress-
strain relationship, which inciudes the effect of cyclic unloading
and reloading, is proposed. Comparisons are made to show the effect
of various concrete formulations on the moment-curvature behavior.

Reinforcing steel which exhibits a distinctly nonlinear behav-
jor {the Bauschinger effect) is discussed in Chapter 3. Under a
variety of loading conditions, various steel formulations are com-
pared, and the best curvilinear formulation is selected for subsequent

studies.
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At the cross-section level, member behavior is studied through
the moment-curvature relationship. This study is carried out in
Chapter 4, where the incremental stiffness is presented, and effects
such as axial force, concrete tensile capacity, and slippage of the
reinforcement are discussed.

In Chapter 5 the model is used to represent the load-deflection
behavior of members under cyclic loading. Effects such as slippage
at the joints and shear deformation are discussed.

Finally, Chapter 6 covers the use of the fiber model and the
incremental stiffhess approach to study the dynamic response of simple
reinforced concrete frames. Comparisons are made with experimental

values and also with simpler models.
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CHAPTER 2 - BEHAVIOR OF CONCRETE IN A
REINFORCED CONCRETE MEMBER

2.1 INTRODUCTION

In arder to investigate the effect of material properties as
far as the concrete is concerned, an analytic model will be used,
where the concrete at each cross section is represented by fibers
distributed in layers and related by an assumed linear strain dis-
tribution, Each fiber has a stress-strain relationship which is
strongly dependent upon its previous loading history.

Most of the information available on the behavior of plain
concrete has been obtained from standard cylinder tests where the
specimen is loaded in compression to failure. However, the stress
conditions for a fiber in a reinforced concrete member may be sig-
nificantly different. At a cross-section there are the presence

of a ;train gradient(s’g)

and corresponding differences in strain-
ing rates,(z) Web reinforcement provides confining action for the
concrete fibers in the core. Tensile strains and the occurrence
of finite cracks along the member complicate further the problem,

Several analytic formulations for the behavior of concrete
fibers which have been proposed by other authors will be compared.
A suitable model will be selected by determining how the various

features of the stress-strain relation affect member behavior, and

how sophisticated a model is required.
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2.2 PLAIN CONCRETE, MONOTONIC LQADING

There have been many analytical expressions for concrete's
stress-strain curve under monotonic loading to failure. Results
based on cylinder tests show, however, a great scatter. This varia-
bility can be attributed to such diverse factors as mix proportions,
quality control, age of the specimen and to the testing procedure
itself.

The nonlinear stress-strain relation has an ascending porfion

to the maximum stress, f then a descending branch to failure,

c max’
as shown in Fig. 2-1. The most widely used formulation is due to

Hognestad and it has a second order parabola for the ascending branch
and a straight line for the descending branch.

Ascending relation

Descending relation (2.1)

£ - E
fo=f [1 - .15 & <o ]
C C max ECU _ECO

where ¢ is the strain at which the maximum stress occurs, and ¢

co cu

is the ultimate strain.

(1)

Popovics has tabulated many such formulations from a variety

of researchers. In addition he has collected expressions relating
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€ and ECo with f

o These expressions show that both €

c max’ co

and ECO increase with concrete cylinder strength, fé.

2.3 EFFECT OF CONFINEMENT ON THE STRESS-STRAIN CURVE

Unlike the standard concrete cylinder, the concrete in the
core of a reinforced concrete member is usually confined by web
reinforcement. Increasing the web reinforcement (i.e., decreasing
the stirrup spacing) has the primary effect of reducing the slope
of the descending branch of the stress-strain curve., There is then
additional ductility, since the concrete can accommodate larger
strains and has less strength reduction for a given strain incre-
ment. This confining action was considered by both Brown(16) and
AKent(]a) in their concrete formulations.

Brown's relationship, shown in Fig. 2-2, extrapolates from
Yamashiro's data to obtain a variation in the slope of the descend-
ing portion with different spacings of #3 rectangular stirrups.
Brown has also indicated an increase in the maximum concrete stress
in a member from .85 fé to f;, and attributes this increase to the
effect of confinement.

As shown in Fig. 2-3, Kent has proposed a more general formu-
lation. The slope of the descending branch is related to the bind-

. . *
ing ratio, p .
*
« A 6"+ dY)
P = (2.2a)
b*d™s :
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* * *
where AS is the area of a rectangular stirrup and b and d are
the dimensions of the confined core. s 1is the stirrup spacing in
inches. Kent identifies the strain at which the stress in the
descending branch is half the maximum stress as €eg-
1
3+ .002 f !
- c 3 * |b_ . .
Esc = '1:|__--[0T + 4 p S (fc n pS'I) (Z.Zb)
c
The descending branch is represented by a straight line from

f , €. ) through (f

c max® co /2, 650). In the expression for g,

C max
the first term is the strain for unconfined concrete and the second
term represents the effect of confinement. The negative slope of
the descending branch then decreases with increasing confinement as
indicated by the proportionality of the second term to p*/¢§'.

Kent states that f; should be the maximum stress for both con-
fined and unconfined concrete. He argues that the .85 f; normally
used is based on column tests and that tests where a strain gradient
is imposed, @S in Sturman, Shah, and Winter's studies,(g) indicate
that the use of f; is conservative. In this thesis, f; will be used
as the maximum stress in the concrete stress-strain relationship.

The effect of the slope of the descending branch can be shown
by considering the moment curvature relations. In the initial load-
ing cycle, the moment curvature curve has a plateau with a slight

positive slope after the tension steel has yielded. If the curvature

continues to increase, eventually the extreme concrete fiber will
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reach the descending branch of the stress-strain curve. From this
point the moment curvature curve will start to bend downward as
additional fibers reach the descending branch. This effect will
be more pronounced when the section is singly reinforced or when
there is an axial force imposed on the cross-section.

In the subsequent unloading cycle, the curvature begins to
decrease and the concrete fibers unload. The unloading continues
until concrete contributes nothing to the stiffness; later fibers
on the opposite side of the neutral axis will provide compressive
strength. If the extreme concrete fibers had reached the descend-
ing branch, then the zero contribution point on the unloading curve
will be reached sooner., Other characteristics of the moment-curva-

ture curve will be discussed in greater detail in Chapter 4.

2.4 BEHAVIOR OF CONCRETE UNDER CYCLIC LOADING

Under dynamic, earthquake-type loading, the individual con-
crete fibers are subjected to cyclic loading where there may be se-
vere strain reversals. Concrete's inability to take significant
tension and the formation of cracks make the cyclic behavior complex.

(1)

Shina, Gerstle and Tulin cyclically tested 24 standard
cylinders with 2000, 3750, and 4000 psi concrete. A typical set of
experimental curves for one test is shown in Fig. 2-4. Generally

the slope of the reloading and unlcading curves decreased as the maxi-

mum strain in the cycle increased. The 1imiting or envelope curve,
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which the reloading curves reach and then follow, was found to be
slightly higher than the monotonic loading curve. These authors
proposed the following relationships to represent the family of

unloading and reloading curves:

Unloading
- J 2
fo= % (5. - X)° - H (2.3)
f ;1 +H f.+H 2 2
_ cl cl
K=t '\/(Ec1+ 7
Reloading
fc =Y (€C +1) -K
o et t K
eq * L

where (fc]’ €c1) is the end point of the previous cycle and H, J,
K, L are parameters which are specified for given cylinder strengths
(i.e., for 3000, 3750. 4000 psi concrete only).

The form of these equations and the variation of the param-
eters with f; make it difficult to extend the relations for other
than the concrete strengths tested.

Shina, Gerstle, Tulin considered each unloading and reloading
curve to be independent of the previous loading history. In their
formulation one point uniquely specified the unloading or reloading

curve passing through it.
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Karson and Jirsa(7)

used 46 - 3" x 5" rectangular columns in
their cyclic loading tests. Their experimental results were essen-
tially the same as those of the previous researchers. The unload-
ing and reloading curves were shown to be dependent on the maximum
stress and strain in the previous cycle, The analytical formulation
consists of equations which determine three points through which a
second order parabola is passed. The points are: one on the envelope
curve, one on the zero stress axis, and a common point, defined as

the point where the reloading curve crosses the previous unloading

curve,

Envelope curve

Fp = .85 S e{1-sg) (2.49)
Common point curve
S
5 (1- o)
Fc -8 C o 315 - .77R
315 + 778

The location of the common point is determined by the peak of
the previous load cycle. If the peak is above the common point 1imit,
B = .75. 1If it is between the common point and the stability limit,

B varies between .76 and .62. If the peak is below the stability
1imit, then the peak becomes the common point and a closed hystere-

sis loop is formed. Thus the stability 1limit curve defines the points

below which stable closed hysteresis loops occur.
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Zero stress point

= 2
Sp = (1.76 -8) (.160 St .133 SC)

For reloading zero stress point

: 2
Sp .093 SE + .09] SE . (2.4b)

For unloading zero stress point
2

Sp = ,145 SE + .13 SE

f £
where F = ~$— and S = E—E
fC co

The procedure in both of these experimental programs was to
load, then unload the specimens. No tensile force was exerted. How-
ever, in a flexural member with loading reversals, some fibers are
subjected to tensile stress. Discrete cracks occur when the tensile
stress exceeds the 1imiting tensile strength, usually taken to be
fr’ the modulus of rupture, and with cracking there is a redistribu-
tion of stress. Once the fiber has cracked, it can never take ten-
sile stress again.

In the analytic model that will be used, the location of cracks
will not be precisely determined since this requires a much more
sophisticated analysis. Using the "plane-sections<remain-plane"
assumption at each cross-section, "average" tensile strains are de-
fined. With this type of averaging, finite cracks are crudely ac-
counted for; thisis usually adequate for obtaining overall behavior

of the member., These tensile strains then must be considered in the
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analytic behavior of the individual concrete fibers.

It will be assumed that the concrete fiber cannot supply
compressive strength until the crack closes; that is, until the
tensile strain is recovered. In the situation where the fiber has
incurred significant plastic deformation before unloading, the fiber
will crack upon Toad reversal with an unrecoverable strain. Point A
in Fig. 2-5 is such a point if no tensile capacity is assumed or
if the fiber has previcusly cracked. With additional unloading
there would be straining without any stress contribution to points
such as B or €. If reloading were to proceed from one of these
points, it is consistent to assume that the strain must exceed €
before any compressive stress can be supplied by the fiber. Sozen(]z)
has pointed out that the reloading would probably follow a path Tike
the dashed line beginning at EB' Physically this can be explained
by the roughness and irregularity of cracks providing partial con-
tact as the crack closes. An extreme assumption would be to assume
that at the reloading point, full stiffness is obtained. In the next
section these assumptions on concrete behavior will be compared for
their effect on the moment-curvature relations and on the concrete

stress distribution in a section.

2.5 COMPARISON OF VARIOUS MODELS FOR CONCRETE FIBER BEHAVIOR

In order to understand how the various formulations for the un-

leading and reloading Of the concrete fibers compare, a simple tri-
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linear envelope was used for all the formulations (Fig. 2-6) and

the following schemes were tonsidered:

a)

LINEART FORMULATION

Unloading and reloading Tinearly with slope E., the ini-
tial loading slope. Reloading beginning at the reversal
point (i.e., the crack doesn't have to close before com-
pressive strength is supplied).

LINEARZ FORMULATION

Unloading and reloading Tinearly with slope Ec‘ The
crack must close before compressive stress can be supplied
by the fiber. (Strain must return to EA in Fig. 2-5 be-
fore reloading. The strain where the unloading curve inter-
sects this zero stress axis will subsequently be called ¢

).

rev

The remaining formulations will follow this reloading procedure of

returning to €

c)

rev’
SGT FORMULATION

Unloading and reloading according to Shina, Gerstle, Tulin's
formulation where the relationship at any point is uniquely
specified.

KJ FORMULATION

Unloading and relocading according to the general Karson,
Jirsa formulation, which depends upon the previous loading
history.

LINEAR3 FORMULATION
Unloading and reloading linearly with a slope which varies
with the maximum strain in the previous cycle. -Karson, Jir-

sa's equation for unloading S_ will be used to determine
this step. (Eqn. 2-4b)
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a) In Fig. 2-7 (A to F), these five formulations are compared.
Each of the analytic results were obtained for the same strain
Timits in each cycle. The Toading and unloading cycles are numbered
and arrows indicate the direction of loading. In this test conduc-
ted by Shina, Gerstle, Tulin, the specimen was loaded, then unloaded;
no tensile stress was applied to the specimen.

In LINEAR1, the stiffness in unloading initially fits well,
but the experimental curve becomes much softer as most of the load
is removed. In reloading the stiffness is larger to begin with and
gets closer to the experimental value as the envelope is approached.
This formulation supplies a Toop for unloading and reloading which
is significantly larger than the one experimentally observed.

The same general comments apply for LINEAR2, bDut the loops
are now smaller. It should be noticed that the unloading and re-
loading curves should coincide in this model, but the zero stress

point (0, En ) is determined with one increment delay.

ey
The SGT and KJ formulations used here are modifiﬁations of

the original models because of the manner in which tensile strains

are handled. In both of them the unloading curve provides good

agreement. Reloading is better than in the previous two formulations,

but the agreement decreases with larger strains. Overall, the KJ

formulation gives the best fit.

LINEAR3 does reflect the change of unloading and reloading

slopes with increasing strains. For this simple model there is a
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good fit as far as the end points of the unloading curves are con-
cerned, although the variation in stiffness between these points is
not correctly reproduced.

b) More important perhaps is to see how these unloading and re-
toading formulations affect member behavior. To investigate this
effect analytic moment-curvature curves were obtained using each

of these formulations. A simple elasto-plastic steel was used for
these studies in order to make comparisons easier. In addition,
the concrete stresses for the cross-section were compared at selec-
ted points of the moment-curvature diagram.

In Figs. 2-8 (A to E), the loading sequence used provides a
conditicn where the curvature is always positive and there is Tittle
yielding for the negative moments. This loading sequence and cross-
section corresponds to an experiment by Agrawal, Tulin, and Gerstle
which will be again used for comparison in Chapter 4.

The LINEAR] formulation differs from the others in the initial
reloading stiffness (i.e., beginning at points 5 and 7). At these
points there is immediate concrete participation in this model, in-
dicated by a reloading branch with the same slope as the initial un-
loading branch. 1In all other formulations the concrete does not
participate until additional reversal of curvature has occurred.

The SGT and KJ models, which both have separate formulations
for loading and unloading, produce jumps in the yield moment plateau

which are not observed experimentally. This results because both are

stiffer in reloading than unloading.
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LINEAR2 and LINEAR3 produce moment-curvature relations which
are essentially identical.

In all of the formulations there is little change in the maxi-
mum moment capacity. Only LINEAR1 shows a significant difference in
the tangent stiffness.

In comparing the concrete stress diagrams for the specified
points in the cycle, stresses are determined at the midpoints of
each fiber and straight Tines connect these points. Points 1 and 2
are exactly the same for all formulations since unloading has not
begun. At point 3 SGT and KJ formulations produce results that are
significantly different from the others. The difference is in the
stress of the extreme fibers. There are only slight differences at
the remaining points, except for point 10, where SGT, KJ, LINEAR3
show stress and the others do not. The primary differences are then
at the ends of the unloading cycles, but they do not seem to affect
the ensuing behavior.

c) In Fig. 2-9 (A to E) the moment-curvature relationship used
for the concrete comparisen is cyclic with curvatures at the ends

of the cycles equidistant from the zero point. This cross-section
is the same as used in Fig. 2-8, but these cyclic loadings are arbi-
trarily chosen to demonstrate a different loading condition.

The SGT formulation provides positive and negative maximum
moment that is larger than any of the others. The KJ formulation

produces the loops which are most stable with respect to increasing
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maximum moment with number of cycles. LINEARZ and LINEAR3 are
essentially the same.

In the stress comparison, there is no difference in the first
four points. At point 5, which is at the middle of the first reload-
ing cycle, a large variation of stress distribution exists. LINEAR]
and SGT have the most stress contribution, while KJ supplies none.
The differences at points 6, 7 and 8 are minor. For this loading,
fibers on both the top and bottom of the section participate.

In selecting an analytic formulation as simple a model as pos-
sible should be used, since increased complexity means additional
parameters which must be kept track of. The KJ formulation is the
most complex and requires four additional variables per fiber to de-
scribe its behavior. The différences in both the moment curvature
and stress distribution is, on the other hand, slight, In normal
loading these differences will occur only in the extreme fibers, since
most of the section will remain in the "elastic" range of the stress-
strain curve.

[t is felt that a simple model Tike LINEAR3 is adequate and
reasonably reflects the contribution of the concrete to member behav-

jor.

2.6 CONCLUSIONS
From the comparative studies carried ocut in this chapter, it

would seem that the details of the concrete model do not affect signif-
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icantly the section behavior. As a result, the concrete model
that will be used in subsequent chapters consists of the envelope
shown in Fig. 2-6, with fé as the maximum stress. The slope of
the descending branch will be determined by Kent's relationship
for €50 and p*. Unloading and reloading will proceed linearly,
with a slope such that the zero stress point satisfies Karson,
Jirsa's relation for unloading Sp. Reloading must recover the

strain up to ¢ ev before the concrete fiber can supply compressive

r
strength.
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CHAPTER 3 - BEHAVIOR OF REINFORCING STEEL

3.1 INTRODUCTION

The behavior of reinforcing steel under monotonic loading
to failure is well understood. The stress-strain curve is essen-
tially bilinear, with an initial slope of 29,000,000 psi and a
slope of nearly zero after reaching the yield point (;y, fy). For
higher strength steel there may be no distinct yield point, but
rather a roundhouse curve. After significant yielding, the steel
is able to provide additional strength through strain hardening.

However, under cyclic loading where the steel is subjected
to both tension and compression, the stress-strain curve becomes
distinctly nonlinear. For the initial loading cycle, it is essen-
tially elasto-plastic. Unloading from a point such as A in Fig.
3.1, it proceeds along a straight line with approximately the same
slope as the original loading curve. Once the stress is reversed
the stress-strain relation is nonlinear and the tangent modulus con-
tinually decreases. This phenomenon has been called the Bauschinger
effect. In subsequent cycles the behavior is always nonlinear when-
ever the stress changes sign and the steel behavior is strongly de-
pendent on the previous strain history.

In this chapter six different analytical formulations for the
behavior of the reinforcing steel under cyclic loading will be com-

pared. Experimentally, there have been three significant studies by
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Singh, Gerstle, and Tulin (1965);(1%) Kkent, Park (1971);(18)ang
by Akton, Karlsson, and Sozen (1973).(20) Each of these groups
proposed an analytic model. In addition, the simple elasto-plastic
model, a model by Brown,(lﬁ) and an improvement on the Singh,
Gerstle, and Tulin model will be discussed.

In subsequent discussions the terms reloading and unloading
will be used in an experimental context. That is, reloading will
signify adding load (tension or compression) to the specimen, and

unloading will mean decreasing the load.

3.2 ANALYTIC FORMULATIONS FOR REINFORCING STEEL

3.2.1 Elasto-Plastic Formulation

The elasto-plastic formulation shown in Fig, 3-2 is the sim-
plest, but it does not reproduce the observed Bauschinger effect in
cyclic loading. Unloading and reloading are assumed to take place
along a line having the initial slope, 29,000,000 psi. Further
straining will continue along this line until ~fs| reaches the yield
stress, fy. The stress-strain relationship then follows a T1ine with
zero slope, and the steel becomes “plastic" since additional strain-

ing is possible without a corresponding increase in stress.

3.2.2 Singh, Gerstle, Tulin (SGT) Formulation

These researchers carried out tests on hard-grade reinforcing

steel specimens machined from the same batch. The steel had an aver-
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age yield strength of 52 ksi. Each specimen was cycled between
prescribed strain limits, and these 1imits were varied to study
the effect of initial plastic strain (defined as the strain where
the initial stress reversal took place). As the initial plastic
strain increases, the stiffness in the first Toad reversal (e.g.,
segment BC in Fig. 3-3 decreases at a greater rate. The curve
becomes flatter, as shown in Fig. 3-4.

The following expression for the nonlinear portions, such
as BC and EF, was proposed:

1000 €s
lfsl = 64.5 - 52.7 {.838) (ksi)  (2.1)

where ¢ is the strain measured fromthe point where the unloading
curve crosses the strain axis (e.g. from point A). Singh, Gerstle,
and Tulin (SGT) felt that one expression was sufficient to represent
the whole family of such curves. This curve corresponds to an
initial plastic strain of .004,

Unloading proceeds linearly, with slope Eo’ until intersect-
ing the nonlinear curve given by the preceding expression. For a
yield stress of 52 ksi, there is a jump in the tangent modulus from
29,000 to 8,750 (ksi). 1In the incremental stiffness method, where
the tangent modulus and not the actual stress is important, a more
gradual transition is desirable.

To apply this formulation to steels with different yield

strengths, the expression for the nonlinear curve was scaled with
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'respect to fy and new junction points were determined.

3.2.3 Improved SGT Formulation

This formulation extends the SGT expression to include the
change in the nonlinear relation with the variation of initial
plastic strain, The definition of initial plastic strain is inter-
preted to be the strain between successive zero stress points (e.g.,
between A and D for curve EF in Fig. 3-3).

The nonlinear relationship can be expressed in the form
= 14 i
£l = a+810g, (1000 &)  (ksi) (2.2a)

This expression is obtained by plotting the SGT reloading data

(Fig. 3-4) on semi-log paper. From the resulting straight lines,
parameters A and B are evaluated. Both A and B vary with the initial
plastic strain, and the following expressions were found by curve

fitting:

-
1]

12.4 -.450 (1000 eip - 4.0) (2.2b)

o]
n

(25.5 -.177 (1000 Eip - 4,0))/7(.602 x 2.3)

where Eip is the initial plastic strain.

This relationship is valid for (1000 €) > 1. Unloading is
initially linear with slope Eo’ and a transition curve with a Tinearly
varying tangent modulus is necessary to connect the nonlinear portion

to the zerc stress point. For a strain of .001 from the zero stress
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point the tangent modulus changes from 29,000 (ksi) to B. For the non-

linear segment the tangent modulus is simply
™ = B/(1000 £,) - (2.2c)
A scale factor proportional to the yield strength was used

for steels with different fy.

3.2.4 Brown's Formulation (16,17)

The steel stress-strain relationship proposed by Brown is
shown in Fig. 3-5 and is also based on SGT data.

Although most tests have shown that unloading proceeds linearly
with slope Eo, Brown introduces stiffness degradation into his formu-
lation by varying thi; slope. In an apparently arbitrary manner, the
slope is adjusted so that Eip’ the initial plastic strain, is equal
to 80% of the peak strain in that half cycle. Comparison with the
experimental data of Kent and Aktan show this is not a valid assump-
tion for the behavior of steel, and in subsequent comparisons this
assumption will not be implemented.

Brown includes the change in curvature with additional strain-
ing by having one of his parameters be a function of aip. The expres-

sion for the nonlinear reloading portion is

-2.,06¢
Ifs‘ = fyl:] - exp : 5 4 '1?9 ]
“sh “sh

1 _ ESh E_?R
and sh ¥ 7.38 199 ey

(2.3)

W\
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where E§h is the strain at which strain hardening begins. € sh is
‘thus another parameter that must be specified and the nonlinear
relation was found to be very sensitive to its specification.
Whenever the absolute value of the stress exceeds f_, Brown
reverts back to a strain hardening relation proposed by Burns.(]a)

Brown's formulation has the advantage of having a smoothly

varying tangent modulus, uniike the previous Ones.

3.2.5 Kent's Formu]ation(]s’]g)

Kent tested 11 specimens with an average yield stress of 45
ksi and based his analytic model on these tests. The specimens were
of different bar sizes and from different batches of steel. The
loadings were varied to create earthquake-type behavior and several
of his results will be used to compare the analytic formulations.

The primary difference in this formulation is in the nonlinear
reloading curve where Kent uses a Ramberg-Osgood* type medel. The

important parameters are Eo’ a characteristic stress, fcp, and an

exponent r.
fo £ (
E_ = = [ 1+ = ] 2.4)
> Es fch
| ) 744 071
where fen = Ty [1oge(l 1000 &) T000e 241 ]
: 1 -e

'S Ramberg and W. R. Osgood(13) formulated an expression to describe
a nonlinear stress-strain curve in terms of three parameters.
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and
. 4.49 6.03
ro= ]Oge(1+ﬁ) - en?T’ + .297 for odd numbered runs

(from tension)

r = 2.20 - +862 + 3.04 for even numbered runs

logo (+n) o 4 (from compression)

The nonlinear stress-strain equation must be solved by an
iterative procedure such as Newton's method. The effect of plastic
deformation on the curvature is taken care of by the €p term in
the expression for fch‘ fch decreases with increasing €5 and

P

thus the curve becomes flatter.

Kent's data showed that r was different for compression and
tension, and that r decreased with an increasing number of cycles.
A decrease in r means an increase in stiffness. This coincides with
Singh, Gerstle, Tulin's observation that the stiffness increases
with the number of cycles. However, this applies when cycling is
carried out between the same fixed limits, and this may not be the
general behavior for loadings where the limits are varied.

Kent also uses a slope Eo for unloading and reverts back to

a modified Burns' equation for strain hardening.

3.2.6 Aktan, Karlsson, Sozen (AKS) Formu]ation(zo)

A series of 9 coupon tests on reinforcing steel with an aver-
age yield stress of 69 ksi was carried out with large strain rever-

sals. This was by far the most extensive and thorough study of rein-
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forcing steel under fearthquake type loading. Whereas previous
investigators had used strain ranges of approximately -.01 to .03,
these authors used a range of -.05 to .08.

Aktan, Karlsson, Sozen propose an analytic model using a
Ramberg Osgood function for the complete cycle, rather than only
for the nonlinear portion as Kent did. Again a cyclic procedure
Tike Newton's method must be used to obtain specific values. Fig.

3-7 shows the AKS formulation:

S 51 S s ( S sl ) (2.5a)

where (551, f51) is an end point of the cycle and €y fo are char-

acteristic parameters given by:

f0
= = 29,000 (ksi)
° (2.5b)
fo = 47.628 + .51723 (fmax - fmin)
for cycles starting from compression
fo = 46,410 + '47989\(fmax - fmin)
for cycles starting from tension
(fmax - fmin) is the difference between the maximum tensile

stress and the maximum compressive stress reached prior to the

half cycle under consideration.
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In applying this formulation, an initial elasto-plastic
branch is assumed. If the loading in this portion continues until
& > 4.,2447 ?y’ then a strain hardening curve is used. In subse-
quent cycles the nonlinear relation is used with the exception

that in the first unloading, (fmax -f . )=2f

min max’

AKS obtained these relationships by curve fitting techniques;
The exponent, r, is determined by assuming Ifsl will be 110 ksi at
a strain &1 + .09. As pointed out by the authors, the parameters
specified in this formulation were developed specifically for the
reinforcing steel studied (i.e., fy =59 and f = 110 ksi}, and
there was no attempt to generalize them for other steels other than

factoring out fy'

3.2.7 Strain Hardening

To consider the additional strength produced by strain harden-

ing, several authors, e.g. Kent and Brown, use the following formula

from Burns:(]4)

112(85- Ssh)+2 (e_- Ssh) - f 1.7) ] (2.6)

= + S _U_
fs fy [ 60(53- esh)+2 (eu- Esh) (f

y

where €h = strain at which strain hardening begins

—h
1l

ultimate strength

™
1]

strain at which fu occurs.

These are three additional parameters over the normal fy and

Eo' They may be obtained from a standard tensile test on a reinforc-
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ing steel specimen. However, these tests are not always carried
out for the steel in a reinforced concrete member, and it is de- .
sirable to have some guidelines to estimate them.

The change of the steel stress-strain curve with increasing
yield strength can be seen in Fig. 3-8, which indicates representa-

tive curves for mild steel. The yield plateau, Ep = €y decreases

Y
while the ratio fu/f also decreases, with increasing fy.
Grandholm,(21) from whose book this figure is taken, states that the

range on fu/fy is normally 1.5 to 1.8, but may be as extreme as 1.3

to 2.0.

Several crude approximations were obtained from this figure,

and no generality is presumed.

fsh _ 7070
?y fl'77
y
f -.00408 f
7 = 2.26e Y (2.7)
y
€ -.0363 f
M- 2,04 Y
€
y

where fy is the yield strength in ksi.

These ratios will be used whenever more accurate information

is unavailable.
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3.3 COMPARISONS OF THE ANALYTIC FORMULATIONS FOR STEEL

Computer prodrams were written for each of the six steel
formulations. The cyclic loading data used for comparison were
taken from the work of Kent and AKS. Although only four such com-
parisons were made, they represent four different "earthguake-type"

loading conditions.

3.3.1 Kent Steel #8 Data, Fig. 3-9

In this test, the specimen was loaded into tension, then into
compression with larger strains in the second cycle. Strains range
from -.0028 to .0211. Even though there is considerable straining,
no strain hardening is apparent.

At the end points of the cycles, the Elasto-Plastic steel fits
well, but it does not represent adequately the nonlinear behavior
in between these points.

The SGT model has only one shape for the nonlinear relonading
curve. For segments BC and DE, the model is too soft, but in FG
the fit is good.

For the Improved SGT, the same general comments apply. 1In
DE, this model is initially better than SGT, but it becomes too
stiff with increasing strain. Here the analytic model should have
been more plastic. The "kink" at point F is due to the crude transi-
tion between the linear unleading curve and the nonlinear reloading

curve.
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O0f the models based on SGT data, Brown's is the hest up
to point D. It should be noticed, however, that there is no stiff-
ness degradation in the experimental results. As a consequence
Brown's formulation deviates significantly in the segment EFG.

Kent's relationship fits best over all, but it must be re-
membered that it was derived specifically for this data.

The AKS model behaves very well up to the first third of
segment DE. After this it becomes much too stiff and predicts a
strength 50% higher than the observed one. This occurs because the
AKS model was formulated for a steel with a much higher yield
strength than this one.

[t seems that all curvilinear models have the same trend:
too much softening initially and too stiff later. The experimental

result is somewhat between the Elasto-Plastic steel and the Improved

SGT (such as the average of both) for this experiment.

3.3.2 Kent Steel #17 Data, Fig. 3-10

In this test the steel bar is loaded to yielding in tension,
then the load is reversed four times to a compressive stress that
is half the yield stress. There is no compressive strain, and the
maximum tensile strain is .01272. In reloading to tension, the
curve takes a very sharp bend to the "plastic" plateau. There is
no distinct strain hardening point.

Except for providing a compressive stress 70% higher, the

Elasto-Plastic model gives a good representation of this type of

Toading.
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For the SGT and Improved SGT models, the reloading curves,
both to tension and to compression, are much too soft. The loops
then are too wide. Even though there is agreement with the experi-
mental data for the maximum compressive stress, the reloading to
tension produces a tensile stress much Tower than observed. Brown's
steel provides a closer agreement, but the loops are still wide
and the tensile stress Tow.

Of course Kent's model seems to fit the data best. However,
it becomes too stiff in the last reloading cycle. The AKS model was
not suited again to reproduce with this set of data. For this“
type of loading condition it is too stiff in reloading to tension
and the error seems to propagate. The AKS formulaticn assumes an
ultimate strength of 110 ksi, and this is very high for Kent's inter-
mediate grade steel. An attempt to use a more realistic fy and
strain hardening point led to an unstable formulation as the expon-
ent r became negative.

Since this type of loading does not cause significant strain-
ing upon reversal of loading direction; the Bauschinger effect is
slight. In reloading to tension, the behavior is essentially elasto-
plastic. To consider situations such as this, the steel will be
considered to be elasto-plastic if this initial plastic strain is
less than ey. Fig. 3-10H shows the effect of this when applied to
the Improved SGT formulation. The loops are still wider than ob-

served, but the maximum tensile stresses are now in agreement.
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3.3.3 AKS Steel #3 Data, Fig. 3-11

In this test, the specimen was subjected to cyclic load-
ing in tension and compression between strain Timits that gradu-
ally increase in magnitude. Generally the maximum strain in .com-
pression was the same as the strain in tension, and the maximum
strain range was -.0412 to .0382.

The Elasto-Plastic model compares very poorly because it
does not represent the nonlinearity and any increase in strength
due to the strain hardening phenomenon. At the end of the largest.
strain cycle the tensile stress is 60% of that observed.

The SGT model, with its unique curve formulation, has a
fixed limiting stress and thus has a maximum stress that is 75%
of the observed stress. Generally the nonlinear portion is stiffer
than the experimental results.

Very good agreement is found with the Improved SGT formula
throughout most of the cycles. The maximum stress at strain -.04
and +.04 corresponds well to the experimental value. Again the
slight kinks are due to the transition from linear unloading to
nonlinear reloading curves.

Brown's model with the stiffness degradation in the unload-
ing portion has very little resemblance to the observed curves.
Brown's model without stiffness degradaticn and without resorting
to the strain hardening curve after fy is reached was also run, and

this will be referred to as the Modified Brown formulation. The
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fit now is more reasonable, except that there are sharp jumps
in the tangent modulus at fhé transition point. Apparently the
stiffness degradation provided a better transition to the non-
linear curve.

Kent's formulation does poorly, especially in reloading
to compression, where it is significantly stiffer than the experi-
mental results would indicate. The fact that Kent has a differ-
ent formulation for the nonlinear portion, depending on whether
the reloading started from tension or compression, is obvious.
The increase in stiffness with the number of cycles is shown to
make the agreement increasingly worse.

The AKS formulation matches the data very well, since the

formulation is based, in part, on this data,

3.3.4 AKS Steel #5 Data, Fig. 3-12

The cyclic Toading in this test was similar to the previous
one, except that the strain limits in the cycles were skewed to
the tensile strain side. The range of strains were from -.0351 to
.0631. The specimen was initially loaded to strain hardening in
compression.

The comments for Elasto-Plastic and SGT models that were
made for the previous comparison still apply. Again the Improved
SGT fits very well in both the stiffness and maximum stress. The

Modified Brown also matches well.
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Kent's -formulation is obviously the poorest for this ex-
perimental data. In particular the reloading to compression
greatly overestimates the compressive stress. The AKS formula-
tion gives the best agreement, and is a very smooth curve with

no jumps at transition points.

3.4 CONCLUSIONS

The Elasto-Plastic model does well for conditions where
the strains are small and reversal of stress is not accémpanied
by significant straining. This type of behavior comes close to
repeated Toading without stress reversal, which is very much Elasto-
Plastic. For cyclic loading with a large range of strain, it is
poor.

The SGT is an attempt to provide some nonlinearity. With
its single curve, it does not compare favorably with any of the
experimental results,

The two Ramberg-Osgood type formulations, Kent's and AKS,
have limited applicability. They represent well the data for which
they are formulated, but do poorly in comparison with other experi-
mental results with different types of steel and different loading
conditions. These formulations require more parameters than the
others, and consequently are harder to implement.

The intermediate models, Improved SGT and Modified Brown,

give a better overall representation. Both these formulations are
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based on the work of Singh, Gerstle, and Tulin, which was an
early study. Even though the Modified Brown is slightly better
for small strains, the Improved SGT is better for the large
strain Timits in the AKS data. The Improved SGT will be subse-
quently used in this thesis, although further comparison of the
six steel formulations will be made on the cross-section level

in the next chapter on moment curvature behavior.
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CHAPTER 4 - CROSS-SECTION STUDY: MOMENT-CURVATURE RELATIONS

4.1  INTRODUCTION

The behavior of a reinforced concrete member is studied at
the cross-section level through the moment-curvature relations.
To obtain these relationships analytically, an incremental stiff-
ness approach and the fiber model will be used. Experimentally
moment ~curvature curves result from tests on simply supported beams
or sometimes cantilever beams which simulate beam-column behavior.
Of particular interest is behavior under cyclic loading where there
are load reversals.

The analytic model used in this part of the study consists
of fibers of concrete and steel which are related by an assumed
linear variation of strain across the cross-section. Analytic formu-
lations for moment-curvature studies have been proposed by Shina,

(23) 18)

Gerstle, Tuling Aoyama;(ZG) Kent, Park;(

(16)

and by Brown, Jirsa.
These models differ in two important respects. The first is
the difference in the assumed stress-strain curves and the second

is the use of an iteration for equilibrium technique to obtain the
moment-curvature relation. In this approach the extreme fiber strain
is varied for a given curvature until the computed stresses satisfy
equilibrium. In the incremental stiffness approach used here, the
tangent stiffness of the previously computed moment and curvature is

used to approximate the moment at the desired curvature, without
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correction for equilibrium. Small errors will thus be introduced

at each step.

It is part of the purpose of this study to investi-

gate the magnitude of these errors and how they propagate, since a

fiber type model with cyclic correction at each step would be pro-

hibitively expensive for dynamic studies.

4.2 CROSS-SECTION PROPERTIES AND THEIR EFFECT ON THE MOMENT-

CURVATURE RELATIONS

The following parameters are standard in reinforced concrete

design and will be used here:

b,t

d

width and depth of cross section

distance to centroid of the tensile (bottom) rein-
forcement measured from the extreme compressive
fiber

distance to centroid of the compressive (top) rein-
forcement, similarly measured

steel areas
yield strength of steel

concrete strength from standard cylinder tests.

In the course of this study comparisons will be made between

experimental results and the predictions of various analytical models.

It is important to realize, however, that experimental results are

also subject to uncertainties due to:

1) variation in material prop-
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erties from those assumed; 2) differences in dimensions and con-
figuration due to construction tolerances; 3) accuracy of measure-
ments. Proper comparison of any analytic model with different sets
of experimental data requires that the parameters listed above be
accurately known. But the degree of certainty depends on the quality
control of the construction and the accuracy of measurement.

For example, in some cases the analytic model provides a good
prediction of the yield and ultimate moments consistent with the assump-
tions, but even for these simple measures the agreement may be very
poor in other cases. It is thus important to keep in mind how a
variation in each of these parameters affects the moment-curvature
relationship.

In Figure 4-1 the moment-curvature relations are drawn with a
50% increase in the parameter indicated. (b and t were not varied,
because of all the parameters these should be most accurately known.)
For each of these analytic curves, failure is defined as the point
where the strain in the extreme concrete fiber reaches .006. The
section used for comparison is Kent's Beam #24, which has the same
reinforcement ratio for the top and bottom steel.

Increasing d has the greatest effects while an increase of 50%
is exaggerated, it 1illustrates the point. Varying f_ and AS
(for both top & bottom steel) had an effect that was approximately
proportional to their increase. The initial part (up to yield) of

the curves for 1.5d-and 1.5 AS are stiffer than the original curve,
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while the 1.5 fy curve maintains the original stiffness. The in-
crease in d causes an increase in ultimate curvature, while the
increase in AS and fy decreases the curvature.

Changing dl and f; does not seem to affect the initial stiff-
ness nor the yield moment, but there is a slight increase in moment
capacity. Increasing f; leads to a Targer ultimate curvature,
while increasing d' leads to a smaller one.

In Fig. 4-2 the variation of yield moment is drawn as a func-
tion of these parameters. The parameters are varied from .5 to 1.5
times the original value (the intersection point in this figure).
Variations in d, As’ fy provide nearly linear relationships with
approximately the same slope, while f; and dI have a relatively small
effect.

In any experimental program f; is obtained as an average of
several standard cylinder tests. This value of concrate cylinder
strength may vary from the strength of the concrete in the member
because of differences in curing conditions and differences in load-
ing. The steel strength usually reported comes from tests of the
reinforcing steel bars that are used in the members, but sometimes
only the supplier's designated strength is indicated.

The largest variation probably occurs in the location of the
steel. In the pouring and vibrating of the concrete, there can be
considerable movement of the steel, both laterally and vertically.

Unfortunately, it has been shown that this is critical as far as the
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moment capacity of the section is concerned. In this analysis d
(and d') will be adjusted to provide a reasonable fit for the

yield moment.

4,3  INCREMENTAL STIFFNESS APPROACH FOR MOMENT-CURVATURE

Figure 4-3 shows the typical reinforced concrete cross-section
divided up into concrete and steel fibers. Typical strain and stress
distributions are also shawn.

The strain in each of these fibers is determined from the
assumption that plane sections remain plane. While only an approxi-
mation, this assumption is usually valid; Figure 4-4 shows the actual
distribution of strain for a member with increasing load. However,
when significant cracking occurs under cyclic load, the assumption
becomes less valid since there may be considerable slippage between
the reinforcing steel and the adjacent concrete.

Given the centroidal strain, €g° and the curvature, ¢, the

straih in the ith fiber is computed as
E5 =EO+‘y'i¢ (4-])

The sign convention is such that compressive strain is positive, and
positive curvature causes compression on the top fiber of the beam.
The corresponding convention for moment, M, and axial force, N, are

also shown in Figure 4-3.

In the incremental stiffness approach, the moment curvature re-

lationship is obtained stepwise with the values at the (1'+I)th step
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obtained from the properties at the (1')th step.
At any step the incremental axial force, AN, and moment, &M,
are related to the incremental centroidal strain and curvature, 4€

and A¢, respectively, by the following expressions:

AN = an Ae + 2y, At

(4.2)
AM = 2o At + Py bd

where aij are the stiffness coefficients for the cross-section de-

fined as:
!
ay; = 1 bty E
11 jep ¢ 1
n
2 T 317 LYi P b E (4.3)
T2
B2 = L Yibi 4§
i=1
where . by t. s the area of the ith fiber

y; 1s the distance from the centroid of

the cross-section to the centroid of

the ith fiber

E. 1is the tangent modulus of the 1th fiber

For the moment-curvature study it is assumed that the axial

force does not change value. (The case when axial force varies

will be considered in a subsequent section.)
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a
MN=0 =+ Ae = - Elg Ad
11
ay, a
_ 12 "21
so M = (ay, - _—E;;__J Ad (4.4)
= k' ¢

where k' is then the tangent stiffness for rotation at the (1')th step.

To proceed from step(i)to step (i+1) (Fig. 4-5), k' is evaluated
and it is assumed to be constant in the interval. In the Euler method
the stiffness coefficients aij and thus ki are evaluated at step (i)
from the tangent moduli of the fibers. In the Modified Euler method
ki is evaluated at the midpoint of the interval, i.e., at (i+1/2),

and this stiffness is used for the interval, Both of these methods

will be used and compared.

4.4 EFFECT OF INCREMENT SIZE

To obtain the analytic moment-curvature relation, curvature
is incremented and the resulting change in moment is determined. The
results provided by the incremental stiffness approach will be sensi-
tive to the size of the app11ed increment. To illustrate this effect
and to determine an appropriate increment size, an analytic moment-
curvature relationship {Kent's beam #24, Elasto-Plastic steel) is run

with varying increment sizes. 1In Fig. 4-6 (A to D)Ad varies from
approximately ?y/10 to ?y/BO. In addition, Table 4-1 summarizes the

results of this comparison.



94

FIG. 4-6 - INCREMENTAL STIFFNESS APPROACH
FOR MOMENT-CURVATURE
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TABLE 4-1 - INCREMENT SIZE COMPARISON FOR KENT'S BEAM #24

Cycle C:gvgﬁ:re Eerr. M s M 5 M o M 5 Mode?ed Euler

of cycle M (ap ~ T%o (ap ~ ?%9 (a9 ~ E%' (8 ~ E%J (Ao ~ %%9

7 .000230 79.5 76.6 75.9 75.6 72.5 75.3

8 -.000230 -75.5 -19.0 -88.6 -82.0 -76.1 -75.9°

9 .0001225 108.0 194.1 145.5 134.0 129.7 129.4

10 -.000790 -96.0 | -220.2 -147.6 -130.2 -123.0 -111.3

11 .001870 108.0 223.9 148.1 130.2 124.6 125.1

12 -.001555 -100.0 | -258.3 -164.0 -136.6 -126.4 -118.5

13 .0000135 81.0 21.9 62.2 88.2 95.6 102.2

Fig. 4-27A 4-6A 4-6B 4-6C 4-6C 4-6E

+M0ments in kip-in.

56
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At §y/10 the maximum moments are greatly overestimated.

There is clearly an increase in moment capacity with the number of

cycles and this reflects the accumulation of error. As the incre-

ment size is decreased, the maximum moments approach the experimen-
tal value. For increment sizes ?y/40 and ¢y/80 the analytical re-

sults are close to each other.

The Modified Euler method, being a second-order formulation,
provides results which stabilize at a larger increment size. In
Fig. 4-6E, the Modified Euler method is used with an increment size
of ¢y/20.

If the stiffness of the cross-section were constant, then for
any choice of increment size the computed yield moment would be off
by at most kA¢. However, the reinforced concrete section has a
stiffness which continually varies. It is initially very stiff,
since all concrete fibers are participating. But each fiber has
little tensile capacity, and upon cracking, it no longer contributes
to the section stiffness. In addition, the nonlinear stress-strain
behavior of both steel and concrete fibers causes the stiffness to
vary.

In the initial loading the stiffness is decreasing, so the
Euler method will overestimate the moment until there is a direction
change. This truncation* error is the result of dropping higher

order terms (i.e., dZM/de + ....) from the Taylor series represen-

* Crandall (28)
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tation of the moment. At the same time, roundoff error occurs
because the number of significant figures retained in the computa-
tions is limited. For example, in single precision computer calcu-
lations, there are approximately 7 significant figures. As the
increment size is decreased, the truncation error decreases, but
the roundoff error increases. Decreasing the increment size indef-
initely is therefore not the solution.

In this M-¢ study a comparison under monotonic loading was
used to select an appropriate increment size. The standard of com-
parison was a formulation where equilibrium was enforced by itera-
tion. The third curve is the moment-curvature relation obtained
from the stress distribution at the points determined by the incre-
mental stiffness approach. Figure 4-7{(A to C) show examples of this
comparison. A¢ = ¢y/80 seemed to provide reasonable agreement for

this example.

4.5 CHARACTERISTICS OF THE MOMENT-CURVATURE RELATIONSHIP

The moment-curvature relationship is a function of the non-
linear behavior of both reinforcing steel and concrete and their
interaction. To point out the typical characteristics of a doubly
reinforced section under cyclic loading, an elasto-plastic steel and
a linearized concrete model will be initially used.

Abrupt changes in the slope of the moment-curvature curve

occur whenever the steel yields either in tension or compression,
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because most of the section stiffness is contributed by the rein-
forcement. Small curvature limits are used in Fig. 4-8 A and the
M-¢ relationship reflects the reinforcing steel behavior as far as
the occurrence of yield plateaus. At points A and E the tensile
reinforcement has yielded, causing the corresponding drastic change
in stiffness in the M-¢ curve, Between points C and D, the reduced
stiffness is caused by the lack of concrete fibers contributing to
the section stiffness. The fibers of the top of the beam have com-
pletely unloaded, while the bottom fibers have yet to come into
compression.

In Fig. 4-8 B the same cross-section is subjected to a larger
curvature. before reversal (point B) takes place. There is a "kink"
in the unloading branch at point D, a result of the bottom steel
yielding in compression. At point B the bottom steel had incurred
considerable straining in tension, and after an unloading strain
of Zey, it yielded in compression. Between points C and D no con-
crete participates. At E the fibers at the bottom begin to supply
compressive strength and the stiffness of the cross-section increases
substantially. Finally, the top steel yields in tension at point F
and a yield plateau exists until reversal.

Approximate strain distributions corresponding to points B, D,
E, F are shown in Fig. 4-8 €. For this symmetrically reinforced
cross-section the yield moments in both directions are approximately
the same. In the case of the reloading beginning at G, similar com-

ments are applicable.
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When a steel formulation with the Bauschinger effect (Fig.
4-8 D is used, these M-¢ transition points will not be so distinct.
In particular, except for the initial yielding, yield plateaus

will not occur,

4.6 EFFECT OF AXIAL FORCE ON CYCLIC LOADING

4.6,1 Constant Axial Force

The fiber model with the incremental stiffness approach is used
in this section to study the effect on a cross section of combined
bending and axial deformation. The formulation automatically takes
into consideration the coupling between moment and axial force,

Figure 4-9 is an interaction diagram relating the axial
force to the moment capacity of the cross-section, An excellent
discussion of interaction diagrams and moment-curvature behavior

(22). From

for monotonic loading is given by Pfrang, Siess, Sozen
the moment-curvature curves, Figs. 4-10 and 4-11, e2ach corresponding
to a particular axial force, the maximum moment and the applied axial
force, are obtained, and they represent a point on the interaction
diagram. The long descending branches on the moment-curvature curves
reflect the descending branch assumed for the concrete stress-strain
curve.
With an axial force there are two distinct types of behavior

for monotonic loading. The first is chafacterized by significant

ductility due to the yielding of the tensile reinforcement., The
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doubly reinforced section with no axial force can sustain a large
curvature before the extreme concrete fibers fail in compression.
As the axial force is increased, the initial stiffness and the
maximum moment capacity increase, while ductility decreases. Even-
tually a point is reached where the tensile reinforcement just
yields as the extreme concrete fiber reaches its descending biranch,
This is the balance point which separates the tensile mode of fail-
ure from the compressive mode. With additional axial force, the
moment capacity decreases and is limited by the strength of the con-
crete. Failure then occurs due to crushing of the concrete fibers
before the tensile steel can yield.

Figure 4-12 (A to D)shows the effect of constant axial force
on cyclic loading using an elasto-plastic steel. The applied axial
force varies from 0. to %’Pmax’ where Pmax is the maximum short

column load the section can take with no bending moment. The sec-

tion is again Kent's beam #24, and curvature 1imits were arbitrarily

ot

set at + .0012 for this example. An increment size of a¢ ® ¢y/80
was used-

In Fig. 4-12 A, no axial force is applied. The initial load-
ing and unloading branches are stiffer than those in subsequent cy-
cles. In addition, the moment capacity is slightly larger in the
first loading cycle. These effects are due to the greater participa-

tion of the concrete fibers.



CKIPIN )

MOMENT

CRKRIP IN )

MOMEINT

110

-1.95 -1.0 -D.5 0.0 0.9 1.0 113

A, E-F STEEL,(N = D) CURVATLRE:

400 T T T T T
300 - =

200 —

H. E-P STEEL, (N = PWAX ¢ 1B ) CURVATURE

b

FIG. 4-12 - CYCLIC MOMENT-CURVATURE RELATIONS WITH AN AXIAL FORCE



I ATIFP IN )

MOMENT

i KIF-IN 2

MOMEINT

m

40D T T T T
300 —
i
200 ~
i
ipp r ‘l
oo =
|
~10D0 I~ —
-=200
. .
-4 0 - "l
—ann I 0 | |
-1.5 -1.0 -0, 5 n.n N.5 1.0 1.9
£~ -3
. £-P STEEL, | N = PMAX ~ 9 ) CLRVA TLRE
400 I i 1 F !
30 —
=200 -
iDo _
| I _
-100 | .
~20D .
-300 ~
wapn | | 1 1 |
-1.9 -1.0 -, 5 D.0 a.5 1.0 1.9
-3 £E-3
D. E-P STEEL, | N = D.22PMAX ) CLRVATLRE

FIG. 4-12 (Continued)



112

Figures 4-12 (B to D) show moment-curvature relations for
axial forces that still allowed some ductility in the section. The
predominant effects of the axial force are the increase in moment
capacity and the “"squeezing-in" of the middle of the loops. The
latter occurs when the reinforcement which previously yielded in
tension now yields in compression. This is followed by the partici-
pation of the cracked concrete fibers as the crack closes.

As the axial force is increased, the pinching effect increases,
and the hysteresis loop resembles the number "8". With further in-
crease in axial force up to %-Pmax, the concrete fibers begin to
reach their descending branches and the moment-curvature relation-
ship becomes curved rather than always reflecting the elasto-plastic
steel used.

Another aspect of the cross-section behavior is the variation
of the centroidal strain with the cyclic leading. In Fig. 4-13 A
a plot of moment vs. strain is shown for cyclic loading with no axial
force (corresponding to the moment-curvature curve in Fig. 4-12 A}.
The Tetters indicate corresponding points on both figures, In the
initial loading, the strain becomes increasingly tensile. For the
unloading cycle BCDE, the tensile strain decreases up to D*, then
increases to point E. At point D the bottom steel which had previ-
ously yielded in tension yields in compression; the section is now
behaving as a singly reinforced section. When the top steel finally

yields at D* the sign of the ay, stiffness coefficient will change.
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Since Ag = (-a12/a]])A¢, and A¢ and a]] retain the same sign, the
centroidal strain now begins to change direction.

Figure 4-13 B illustrates the situation when an axial force,
Pmaxlg’ is applied (corresponding to the moment-curvature curve in
Fig. 4-12 C.) The strain is initially compressive because of the
axial force, but becomes tensile in the first loading cycle. The
loading and unloading moment-strain path has taken the shape of an
“S" and can be followed by observing the segment ABCDEF.

The effect of using a more realistic, curvilinear steel for
the moment-curvature relations with axial force is shown in Fig.

4-14 (A to D). The Improved SGT steel is used and those curves more
closely resemble the experimental ones.

One of the few experimental studies on moment-curvature be-
havior with axial loads was carried out by Parducci and Ferretti.(27)
An example of their experimental results is shown in Fig. 4-15 (A to
F). The general shape agrees with the analytical studies carried out
in this thesis. Unfortunately this paper did not contain sufficient
information on the steel and concrete strengths to be able to analyt-
ically duplicate their results. The larger stiffness of this initial
cycle has been accounted for in the analytic model as was the stabil-
ity of subsequent cycles when an axial force is applied. Parducci
& Ferretti showed that with axial force the moment capacity decreases

significantly with the number of cycles. To account for this, the

analytic model should have a failure criteria for the concrete, and
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consider buckling of the compressive reinforcement when the sur-
rounding concrete has spalled.

Finally, Fig. 4-16 (A and B) illustrate the effect of an
axial force that is tensile. There is concrete participation in
the first loading and unloading cycles, but thereafter the section

becomes a steel couple.

4.6.2 Axial Force Proportional to the Moment

In a typical frame, Fig. 4-17A, the columns will have a con-
stant axial force Vo’ and a smaller distributed axial force due to
the dead load. When the frame is Taterally loaded, additiconal axial
forces will develop in the columns; tension in one and compression
in ihe other. For many practical cases, Vo will be much larger
than the laterally-induced axial forces, and the behavior of the
frame will be essentially the same as the constant axial force case.
However, this may not be true for tall slender frames. In addition,
many experimental tests are carried out without large loads in the
columns and the axial forces resulting from the lateral loading can
significantly affect the behavior.

For a particular incremental lateral Toad or displacement,
incremental axial forces and moments will be induced at each cross-
section. The incremental axial force will be approximately propor-
tional to the incremental moment, although the ratio may not be

constant as the behavior becomes significantly nonlinear. To con-



I WRIP IN )

MENT

Mlﬁ-ﬂ

119

T 1 1 | 1 _1
1.5 -1.0 -0. S 0.0 0.9 1.0

e
e

Al E-P STEEL, | N= -PMAX/18 ! CURVATURE

I KIP-IN 2

MOMENT

| ]

1
-1.5 -1.0 -D. 95 .0 0.5 1.0 1.9
(-3 £-3

150

B, I-86T STEEL, | N= -PMAX/1B 2 CLIRVATURE

FIG. 4-16 - CYCLIC MOMENT-CURVATURE RELATIONS WITH A TENSILE AXIAL FORCE



[ KIP--IN 2

MOMENT

250

300

]

- T 1 I 1 1
L% v,
p B
1 1 n
AN
V, LY
A, * _
C=0
C-149 - 224
C= =29
| .. }
- 2 4 B 8 10 12
£-3 E-™
= KENT REAM & 24 CLRYATURE

FIG. 4-17 -~ MOMENT-CURVATURE RELATION FOR AN AXIAL FORCE
THAT VARIES WITH MOMENT

iral



121

sider the situation when axial force is proportional to moment,

the following equation is used:

AN =c M (4.5)

where ¢ 1s a constant of proportionality which has the units of
1ength-1. The parameter c¢ can be positive or negative. A posi-
tive ¢ will mean that when moment increases, an incremental com-
pressive axial force is applied.

For any cross-section in the frame, the value of ¢ would
depend on the location of the cross-section, the dimensions of the
structure, and the support conditions.

Substitution of the above equation results in:

ciM

n

(4.6)
AM

a]2 Ae + a22 Ao

In order to obtain the moment-curvature, 4A¢ is specified and

MM and Ae are computed from the stiffness coefficients. Solving

for AM, Ae :

a a - a a

M o 22a 1 _ IZC 12 4

11 12

a C - a
22 12

Ae = =—=————= A (4.7)
a1 ~ e ¢

If ¢ = 0, these equations revert back to the incremental stiffness

equation of Section 4.3 (Eqn. 4.2).
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In Fig. 4-17 moment-curvature relations for tensile failure
modes are shown for different values of ¢. The values of ¢ were
chosen such that when the maximum moment occuvrred, the cross-section

would have the same N/M ratios as the curves in Fig. 4-10, in

max
which the axial force is constant. For example, ¢ = .148 corre-

/9.

In comparing the moment-curvature curves for these two figures,

sponds to the case where N = pmax
the moment capacities have not changed for corresponding curves.
However, there are slight differences in the descending branches.
For the varying axial force case, the axial force is also decreas-
ing in this range, since it is proportional to the moment. The vary-
ing axial forces provide s1ightly greater ultimate curvatures. For
negative values of c, the moment capacity decreases and ductility
increases. With larger negative c¢ values, the doubly reinforced
cross-section may become a gteel couple.

The effect of cyclic loading is shown in Fig., 4-18 (A to E),
where the parameter c ranges from .22]1 to .010. In the loading
and reloading stages, incremental compressive forces are applied,
while in unloading,incremental tensile forces are applied. The
compressive axial ferce increases the positive moment, while a
tensile one decreases the negative moment capacity.

The primary effect of an axial force which varies with moment
is a significant decrease in the area enclosed by the hysteresis

loops. In Fig. 4-18 A, for example, there is a long yield plateau,
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FG, formed in reloading when the top steel yields in compression.
The top steel had previously yielded in tension at point D. Be-
cause of the tensile stress imposed on the section, the concrete
fibers at the top must recover this additional tensile strain be-
fore supplying compressive strength. At point G the concrete
fibers are participating again after making no contribution in
CDEFG.. The bottom steel barely yields before the loading direc-
tion 1s changed and a "spike" has occurred. The delay in picking
up compressive strength from the concrete has caused this reduc-
tion in the area of the hysteresis Toop.

Although the section is symmetrically reinforced, the result-
ing moment-curvature relationship is no lTonger symmetric. As c
decreases, symmetry returns. In unloading, the incremental tensile
axial force prevents compression from developing in the bottom con-
crete fibers; as a consequence the reloading (up to point G, Fig.
4-18A) proceeds with only the stiffness supplied by the steel. This
effect takes place even when ¢ 1is as small as .010.

The behavior of the centroidal strain under cyclic loading
with axial force varying is shown in Fig. 4-19, where c = ,149.
The corresponding moment-curvature curve is that of Fig. 4-188, Here
the strain is always tensile. When concrete fibers are participat-
ing, the ratio ae/A¢ is negative, but when only the steel contributes

to the stiffness it is positive.
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In. Fig. 4-18F, c is negative; so as moment is increased,
an incremental tensile force is applied. Essentially the moment-
curvature relation has been flipped over an axis parallel to the
curvature axis. In Fig. 4-20 (A and B) the strain Timits were var-
jed for the case ¢ = .149. Changing these Timits did not alter
the behavior, especially the long yield plateau and resulting
"spikes" in the moment-curvature relétion.

Fig. 4-21 (A to D) are comparable to Fig. 4-18 (A to D), ex-
cept the Improved SGT steel formulation was used to provide a more

realistic relationship.

4,6.3 Constant Axial Force Combired with an Axial Force that Varies

with Moment

A constant axial force, N, merely applies an initial compres-
sive stress and therefore a compressive strain to the cross-section.
Previously, in Fig. 4-12¢, the case of a constant axial force wa§
considered where N/Mmax was approximately .15. To provide visual
comparison (Fig. 4-22 A to F) of the effect of the constant axial
force plus an incremental force that varies with moment, ¢ has the

maxlg‘
With positive ¢ the maximum positive moment is increased

values + .15, + .10, + .05 apnd N =P

and the negative moment decreased (Table 4-3 compares the maximum
moments). As should be expected, when ¢ 1is small in relation to
N/max, the varying axial force is less important. The "flipping"

of the moment-curvature relationship with a change in the sign of
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TABLE 4-2

- COMPARISON OF MAXIMUM MOMENTS WITH AN
AXIAL FORCE WHICH VARIES WITH MOMENT

C* Curvature Limits ", M.
(kip-in) (kip-in)
.221 .0012 .0012 306.1 _67.8
.149 .0012 .0012 220.7 77.1
.100 .0012 .0012 177.0 _85.5
.050 .0012 .0012 146.1 ~95.1
.010 ,0012 .0012 126.7 -105.0
-.149 .0012 .0012 83.1 ~220.0
.149 .0012 .0018 2240 77.0
.149 _.0018 .0018 224.0 -77.0
* o= NM For Kent Beam #24

TABLE 4-3 - COMPARISON OF MAXIMUM MOMENTS FOR INCREMENTAL
AXIAL FORCES IN ADDITION TG AN AXIAL CONSTANT FORCE

Elasto-Plastic Improved SGT

C M+ M- M+ M-
0 226.8 -228.1 226.8 -228.1
.05 260.0 -197.2 260.0 -197.2
.10 300.4 -172.1 300.4 -188.5
.15 334.8 -152.7 334.8 -171.7
-.05 199.4 -268.1 199.4 263.1
-.10 176.6 -302.0 176.6 -303.1
-:15 158.7 -334.9 158.7 -340.2
N=P _./9 For Kent Beam #24

max
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c is reduced with smaller c.
Figure 4-23(A to E)shows the same loading conditions,

but with the Improved SGT steel.

4.6.4 Effect of Concrete Tensile Capacity on Moment-Curvature
Relations with Axial Forces

Permitting tensile capacity in an incremental stiffness ap-
proach will lead to a violation of equilibrium when the fiber cracks,
unless some means of correcting for this is implemented. A particu-
lar fiber may be carrying tensile stresses up to fr’ the modulus of
rupture, then it cracks with additional stress and its tangent modu-
lus becomes zero. Unless there is a scheme such as using a negative
slope in the next step, equilibrium will not be satisfied: the ten-
sile stress the fiber had before cracking has not been redistributed.
The model with tensile capacity will then overestimate the moment
capacity. Fig. 4-24(A to E)illustrates this effect for a tensile
capacity of f;/IO and various combinations of N and c. On the other
hand, any scheme where there is iteration for stress equilibrium
will correctly cause the redistribution of tensile stresses from
the cracked fibers.

Since in the incremental approach, tensile capacity causes’
an overestimation of moment and since corrective action after crack-
ing will involve a complicated iteration scheme, no tensile capacity

in the concrete will be assumed
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4.7 EFFECT OF SLIPPAGE BETWEEN CONCRETE AND THE STEEL REINFORCE-
MENT

In a reinforced concrete member there is slippage between the
reinforcing steel and the adjacent concrete, As a result, there is
a violation of the assumption that plane sections remain plane. In
bending deformation of a member, the adjacent concrete is attempting
to transfer stress to the steel and the lack of perfect bgnding be-
tween the two materials leads to slippage.

Part of the observed stiffness degradation occurring in rein-
forced concrete members has already been explained in terms of the
Bauschinger effect in the steel. The diminished participation of
the concrete with increasing number of cycles is another aspect.
The slippage of the reinforcement is ajso a factor.

Consider that the adjacent concrete fibers are attempting to
transfer an increment of strain, Ae, and this results in an incre-

ment of steel strain and some slippage:

Ae = Aegyapd AEs]ip (4.8)
AEsteed
Let s be the ratio ————— , s0
Ae
Aegtee] = A€ (4.9)

AesTip =" (1-s)ae

The slippage phenomena can be visualized as a "bond" spring
transferring load from the concrete to the steel. The steel is

also a spring in series with the bond spring.



144

A = (TM_, 0q)0e (4.10)

stee steel

where Afs is an incremental steel stress and TMstee] is the instan-
taneous tangent modulus {or steel spring stiffness). The fictitious

bond spring stiffness is then

- (S
™5, = (155) T (4.11)

steel

which results from Eqns. 4.8, 4.9 and 4.10, The equivalent stiff-

ness (tangent modulus) for the system is

T™_ .. TM

equiv. ~ TMg7ip+ TM_ o0

stee1) (4.12)

Thus the effect of slippage between the steel and concrete is
to reduce the effective stiffness supplied by the reinforcing steel.
A loss of bond therefore reduces the cross-section stiffness.

In describing their results on steel bars encased in a concrete

cylinder, Bresier and Bertero(zg)

reported that the stress transfer
effectiveness (bord) was dependent upon the maximum peak stress in
the steel. Larger stresses caused greater damage in the boundary
layer between the steel and concrete and consequently the reduction
in stress transfer became more severe.

Bond-s1ip relationships have been derived by researchers such

(

as Nilson, 30) but they require an analysis where the location of
cracks is maintained and the -1oading -is monotonic.
One approach to including the effect of slippage would be to

assume s is constant for a given cycle and is dependent on the maxi-
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mum deformation (either steel strain or curvature for example).
Experimentally it is difficult to measure because of the formation
of cracks and the problems in instrumenting. Using data from

Bertero, Bresler, Liao,(al)

reporting the average curvature, con-
crete strains, and steel strains, the crude values obtained showed
that s does decrease with larger curvatures. This indicates an
increase in slippage. The problem with this type of determination
of s is that in the model the concrete strains are "averaged over
the cracks" whereas experimentally this type of concrete strain
measurement has to be taken somewhere between the cracks,

Another method would be to compare analytic moment-curvature
curves with experimental ones and vary s for a given cycle until
there is agreement in a least squares sense. However, the s values
s0 determined would be strongly dependent on the assumed formulations
for the reinforcing steel and concrete, and the assumed strain dis-
tribution.

Because of a lack of adequate data and variability of the other
parameters considered in the formulation so far, the inclusion of the

effect of slippage is a refinement not considered in this thesis.

4.8 COMPARISON OF MOMENT-CURVATURE RELATIONS FOR DIFFERENT ANALYT-
ICAL FORMULATIONS

In this secticn analytic moment-curvature relations, using the

six steel formulations, are compared with experimental data which
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TABLE 4-4 - PROPERTIES OF MEMBERS USED FOR MOMENT-
CURVATURE COMPARISON IN SECTION 4-8

Section Aoyama(26) Agrawal, Kent(lg) Kent(19)
Properties A2 Tulin #24 #27
Gerst1e(24)
#2
A (ind)|  .e8 .20 .40 1.20
As  (ind)| .88 .20 .40 .40
b (in) 6.0 3.0 4.83 4,83
t (in) | 12,0 6.0 8.0 8.0
d'/d; (in) | 2.0/2.6 1.0/1.0 1.25/1.67 |1.25/1.70
d/d (in} | 10.0/10.0 | 5.0/4.8 6.75/6.33 [6.56/5.80
fy {psi) 53000. 51000. 48400. 47000.
£ (psi) | 4900, 4400. 6950, 7490.
€ .0018 .0022 .0027 .0028
stirrups #3 —_ #2 #2
s (in) 6. — 2. 2.
axial force 36. — — —
(kip)
]
loading alb&a albga ala a@a
- 2 4 2 A~ Py 9
a 3!0" 2131| 4[2:| 4n2|1
b ﬁloll ]IZII —_— —_—
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represent a variety of cyclic loading conditions. Each of the

models uses LINEAR3 for the concrete stress-strain relationship,
and twenty concrete fibers and two steel fibers to represent the
cross-section. The incremental stiffness approach uses the Euler
method and an increment size of A¢ ~ %/80. Table 4-4 lists the

section properties for each of the members used.

4.8.1 Aoyama's ‘%) Beam A2, Fig. 4.25 (A to G)

For this test the specimen was cycled through the following
curvature limits: .00044, -.00117, .000911. With an axial force
of 36 kips, the section barely yields in the initial loading, but
has significant yielding in the other direction.

For all of the analytic models there is a sharp increase in
stiffness when the curvature is nearly zero {in branch éE). At
this point all the concrete fibers are participating because of the
compressive strain caused by the axial force and the lack of tensile
strain from bending. This increase in stiffness is not, however,
apparent in the experimental curve.

Up to point ¢ the behavior of the section is purely elasto-
plastic, and there is no difference among the six steels. 1In the
reloading curve, CD, differences occur.

The Elasto-Plastic steel provides good agreement for the
average stiffness up to point D', and then it is too stiff until

the bottom steel yields in compression. The moment at the end of

the cycle, point D, is close to the experimental value.
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Among the curvilinear steels, the SGT and Improved SGT pro-
vide good agreement. In the latter, the initial reloading branch,
where the stiffness is due to the bottom concrete fibers still
participating, is longer than experimental results. For Brown's
steel, reloading is initially softer, then stiffer, but agreement
is still reasonable. The problem with Kent's and AKS steel is that
they become too stiff after the point where concrete stress is

again supplied by the top fibers (point 1 on the analytic curves).

4.8.2 Agrawal, Tulin, Gerstle‘??) eam #2, Fig. 4-26 (A to 6)

This doubly reinforced section is unloaded and reloaded so
that a positive curvature always exists. Unloading occurs without
the section reaching its negative moment capacity.

The Elasto-Plastic steel overestimates the moment at the end
of the unloading cycle by being too stiff and the loops formed are
too narrow.

Of the curvilinear steels, Brown's {modified) and Kent's
formulation provide the best overall fit. The AKS model in these
cases greatly overestimates the positive moment capacity after the
first reloading cycle. Al1 the curvilinear models have a tendency
to overestimate the unloading stiffness (such as AB and CD) and
underestimate the reloading stiffness (BC and DE). For additional
reloading straining they would become stiffer than observed, and

this would lead to a larger than observed moment.
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4.8.3 Kent's'!?) Beam #24, Fig. 4-27 (A to G)

A symmetrically reinforced cross-section is cycled between
curvature limits of -.00156 to .00189. This is the same section
used for many of the previous discussions of moment-curvature be-
havior.

Overall the Elasto-Plastic steel provides a good fit on the
moment curvature relations. It should be noticed that there are
changes in the stiffness provided by the concrete fiber participa-
tion. In the unloading curves BC and DE the Elasto-Plastic model
is providing some of the observed stiffness degradation. This is
due to fewer concrete fibers participating in DD' than in BE". The
stiffnesses after points B' and D' are the same because only the
steel couple is participating. In general the end points appear
to match well.

Generally the problem with all the curvilinear models seems
to be in the reloading (CD and EF), where they appear to be much
softer than the experimental results. In a real beam there may be
more concrete participation in reloading than the model provides.

Kent's and the Improved SGT formulations do very well on
the unloading portions (BC, DE) and do slightly better on reload-
ing than the other formulations. For Targer curvatures, the AKS

has the tendency to overestimate the moment.
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4.8.4 Kent's'!?) Beam #27, Fig. 4-28 (A to G)

In this unsymmetrically reinforced section, the bottom steel
area is three times the top steel (AS = 1.20 inz, A; = .40 1n2).
This results in a significant difference in the observed moment
capacities of +300 and -96 kip-in, Curvatures encountered in this
loading ranged from -.000748 to .00208. From the experimental
curves there seem to be a tendency to form closed loops. In the
cycle BCD, the reloading branch CD passes very close to point B
and EF in cycle DEF seems to be heading toward point D.

The Elasto-Plastic steel does very well in representing the
unloading and reloading branches in an average sense. It has yield
plateaus at points C' and E' which the test data does not have, but
the end points of the cycles have good agreement.

The first three curvilinear steels, SGT, Improved SGT, and
Brown's (modified) are very close to each other. Again the unload-
ing curves, BC and DE, provide good agreement, but the reloading
curves are top soft, particularly CC'D. The experimental data is
showing a distinct yield plateau which none of the curvilinear models
have. However, these formulations provide a good estimate of the
end point D.

In CD, both Brown's and AKS formulations become very stiff
after point C' and since the steels do not yield near point B, the
maximum moment is greatly overestimated. The same thing happens in

reloading branch EF.
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4.9 CONCLUSIONS

The fiber model with the incremental stiffness approach is
able to represent the main features of the behavior of a reinforced
concrete cross-section. The incremental stiffness approach is very
sensitive to increment size, but for a given section reasonable
values can be obtained by a trial and error procedure as described.

With the model representing the coupling between axial for-
ces and bending, the "pinching-in" effect and changes in moment
capacity under axial force have been reproduced. In addition, an
axial force which varies with moment can significantly affect the
moment-curvature relationship, by reducing the area of a typical.
loop.

None of the analytic models is able to represent, in a point
by point correspondence, the observed moment curvature behavior.
There is too much variability in the materials and their behavior
to find a perfect model. Agreement has been reasonable only in a
general sense, The Elasto-Plastic steel model provides better
~agreement than was expected and may have value in the subsequent
member studies. A1l modes with the curvilinear steels tend to repre-
sent well the unloading stiffness, but are softer than observed in
reloading. The moment-curvature relations reflect strongly the
assumed steel formulation, and the conclusions made in the previous
chapter on the steel carry over for the section behavior. In the
remaining chapter only the Elasto-Plastic steel and the Improved

SGT steels will be used for comparisons.
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CHAPTER 5 - MEMBER STUDY

5.1  INTRODUCTION

In this chapter the fiber model along with the incremental
stiffness approach is extended to study the behavior of members
under cyclic loading. The structures considered are simply-suppor-
ted beams, cantilever beams and simple frames.

The purpose of this chapter is to compare the analytic models
(elasto-plastic and curvilinear steels) with experimental results
and to discuss the advantages and limitations of the solution tech-

nique when extended beyond moment- curvature studies.

5.2  INCREMENTAL STIFFNESS ANALYSIS

5.2.1 Solution Scheme

The stress-strain behavior of each fiber at a cross-section
is monitored, during the loading process. From the tangent moduli,
stiffness coefficients, aij’ are obtained (Eq. 4.3). Inversion re-
sults in flexibility equatioms relating Ae, Ad to AN, AM. Using
small deflection relations for the incremental strains and curva-

tures leads to

b]] AN + b]2 AM

Ae ‘;—x (Au)

(5.1)
2

d

—{A
w2

A b21 AN + b22 AM
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where u, v are the axial and lateral displacements of the member;
x is the location of the cross-section; and bij are the flexibil-
ity coefficients.

Equation (5.1) is then integrated to obtain a flexibility
relation for the member. This relates the end displacements {Au;}
to the end forces {Ap§L The integration is carriedout numerically
by the trapezoidal rule at each of the twenty equally spaced cross-

sections.

Finally inversion of the flexibility matrix yields the member

stiffness matrix,

i i i
AY
A AY
AvA AVB
Tl B
AX AM, AV /AU
oM, A FORCES B "'A  DISPLACEMENTS A
where
i
i
AYA AvA
i
. AM . AB
(2]} = % 4 fauly = (0
J AXB J UB
AYE AVB
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[l%] is 6 x 6 and it is a tangential stiffness matrix; that

th member at

is, it represents the instantaneous stiffness of the j
step (i). Appendix A provides a detailed derivation of this matrix.

Once all the member stiffness‘matrices are computed, stand-
ard methods of assembling the total stiffness matrix for the struc-
ture and modifying for support conditions are used. The structures
considered in this study are planar, and each member is assumed to
be represented by a 1ine element.

The Euler method is used in the member study to proceed from

step (i) to (i+1). The incremental displacements at the joints are

determined from:

fagly = [Ki]-]{APi} (5.3)
T T T '

where {AP}} may be forces due to specified displacements. The total

displacements and forces at (i+1) are simply

i+] i i
{UT } {UT} + {AUT}

(5.4)

i+] i i
{PT } {PT} + {APT}

From the incremental joint displacements, member end forces
can be determined from Eq. 5-2, once the displacements are rotated
to member coordinates. To update the tangent stiffness matrix, the
incremental axial forces and moments at each cross-section have to

be determined.
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AYA AV

] S

&

(5.5)

2
=
+
Z

This relationship assumes the member is represented by a
straight Tine between joints. From these incremental forces and
the flexibility coefficients at step (i), new strains, stresses and
tangent moduli are computed at each cross-section. The tangent stiff-

ness matrix is then determined for the structure at step (i+1).

5.2.2 Nonlinear Effects

- After each application of an incremental load (or displace-
ment), the geometry of the structure js updated, by adding the com-
puted incremental displacements to the corresponding joint coordin-
ates.

With the incremental stiffness equations, equilibrium is satis-
fied in the undeformed position, and corrective forces should be
applied to satisfy equilibrium in the deformed position. This is
particularly important in the case of members with axial forces and
lateral displacements and is usually called the "P-A" effect. If the

axial force is compressive, the lateral deflections of the member will
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be amplified. Roesset (45)

et al have shown that use of corrective
lateral forces will reproduce the elastic stability (P-A effect) of
the member. Latona(32) incorporates the corrective forces into the
tangent stiffness matrix, thereby correcting before the next step.

The following are changes to the member stiffness matrix: {(Eq. 5.2).

) Xp
Kog = Koo + [
_ Xg
Kos = Ko5 - T
X (5.86)
K. =K. --B
52 = Ksp - T
Ag
Keg = Kgg +

These terms relate lateral forces to lateral displacements.

Latona's scheme is included in the member study.

5.2.3 Limitations of the Incremental Stiffness Approach for the
Member Study

As pointed out in the previous chapter, results from the incre-
mental stiffness approach are very sensitive to increment sijze. An
appropriate increment size was again chosen by trial (values used
were on the order of yield deflection divided by 160). Although de-
flections are controlled in the member study, incremental forces AM,
AN are applied at the cross-section level. This can lead to large
errors when there are sudden changes in the cross-section stiffness,

such as when the steel yields,
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Since inversion of the stiffness coefficients aij is re-
quired in the solution scheme, numerical problems occur when z-.tij
approaches zero. This situation can occur when there is no concrete
participation after a few cycles of loading, and both steel fibers
yield., To prevent numerical instability, a 1% second slope on the
steel stress-strain curve is provided.

A similar difficulty occurs when the moment-curvature rela-
tions have a descending branch following that of the concrete
stress-strain curve. The stiffness coefficients can approach zero
and even become negative, for large straining of the cross-section.

Consider the case of a cantilever beam with the deflection
at the free end being increased. The maximum moment occurs at the
fixed end. When this section's moment capacity is exceeded, the
descending branch of the moment-curvature relationship is reached,
and the rotational stiffness becomes negativé. An inelastic hinge

d(36) describes)} has formed, and increased curvature

(such as Barnar

results in a decrease in moment. In an experimental setup this means

that if displacements are controlled, the applied load will drop,

but if load is controlled, failure of the member will result.
Generally the analytic solution is able to represent this be-

havior. However, because the computation of the member stiffness in-

volves integration by the trapezoidal rule (essentially a weighted

averaging of section properties), it is possible that the member stiff-

ness will not be negative even though the rotational stiffness at the
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support is. If this occurs, increased deflection will lead to an
increment of moment being applied to the cross-section, and the type

of behavior illustrated below will occur.

M

1 oM

The result is that the solution now becomes unstable, so the incre-
mental stiffness method is not able to portray a descending branch
for the load-deflection relationship, although it can indicate the
point at which hinges form,

To prevent this problem, no descending branch on the concrete
stress-strain curve was permitted. In Fig. 5-1 (A to B) moment-
curvature curves are shown for Brown's cantilever beam, which will
be studied in Section 5-4.1. The first shows the relationship with
a descending branch and failure occurring at ¢ = .005, defined by
the extreme concrete fiber unloading to zero stress at €c = .01,

In Fig. 5-1B there is no 1imiting strain on the concrete, and infin-
ite curvature is possible. Figures 5-1 (C and D) show the effect of
1% slope on the steel and strain hardening. These assumptions sig-

nificantly change the shape of the M-¢ curve, but this is beyond the

range when the member fails. In the useful range of curvatures such

as segment AB the difference is not large.
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One method of handling the problem of hinging would be to
consider the formation of a semi-rigid joint when a section exceeded
the maximum moment capacity (this formulation is discussed in Appen-
dix B). As the hinging spread more sections could be considered in
obtaining the moment-rotation relationship. In this way the member
stiffness would become negative whenever any cross-section stiffness

became negative. This, however, was not implemented.

5.3 D BEAM STUDY
5.3.1 Kent's\'?) Beam #24, Fiqure 5-2 (A to C)

This simply supported beam 1caded at midspan is the same mem-
ber used for a significant portion of the moment-curvature compari-
sons in Chapter 4. The loading is cyclic and deflections range from
-.48" to .70".

Both analytic models reproduce well the load-deflection be-
havior of this member under this cyclic loading with relatively small
deflections. The average slopes of each half cycle and the end points
agree with the experimental curves.

The analytic moment-curvature relations from this member study
can be compared with the experimental one and those obtained analytic-
ally in the section study (Fig. 4-27). The elasto-plastic M-¢ curves
in Fig. 5-2B show significantly larger curvatures than observed.

Point D is at a curvature of .0031, while the measured value is .0018,
This is a result of sharp changes in section stiffness after yielding

and the M-¢ curve being incremented on &M and AN.
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On the other hand, the M-¢ curve for the curvilinear steel
is much closer to the experimental. The section stiffness changes
gradually, and this leads to the incremental stiffness method being

better behaved.

5.3.2 Burns and Siess(33) Beam J-12, Figure 5-3 (A to C)

This unsymmetrically reinforced member is a simply supported
beam with loads applied at midspan. It has a length of 12'0", and
deflections are on the order of 3".

For both analytic models, the unloading portion AB provides
good agreement with the experimental values as far as stiffness and
end values are concerned. For segment DEF, the experimental results
indicate a noticeable change in stiffness after unloading to zero
at point E. In segment DE both models are stiffer. After E the
experimental curve maintains a nearly constant slope, but the analy-
tic models show abrupt changes when the concrete suddenly begins to
participate again.

For the loop BCD, the analytic models indicate a load reversal
because they are stiffer than the observed curve. The loops for the
elasto-plastic model are significantly wider. The curvilinear model
is noticeably different in segment CD because of the load reversal

and resulting curvilinear behavior.
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5.4 CANTILEVER BEAM STUDY

5.4.1 Brown's!?) Cantilever Beam 86-35-RV10, Figure 5-4 (A to E)

An unsymmetrically reinforced cantilever beam was subjected
to very large deflections: 6.2" for an unsupported length of 60".
These deflections are larger than can be accounted for by purely
flexural deformations.

Figure 5-4 (B and C) indicate an attempt to obtain the ob-
served deflections by only the bending deflections. The numerical
procedure had stability problems, because by consideration of the
maximum strains the section had failed. To obtain a numerical solu-
tion a 1% second slope on the steel and no descending branch for the
concrete was assumed. Both analytic models produce load-displace-
ments which compare as well as previous member studies do, with the
same problems in not being able to obtain a point-to-point fit.

However, the deformations are beyond what the member can rea-
sonably be expected to survive. Analytic curvatures of .025 are re-
quired, but an analysis (Fig. 5-1A) shows an ultimate curvature on
the order of .005.

The rotation of the member at the "fixed" end, due to the
slippage of the reinforcement anchorage, becomes very important in
this case. Brown took actual measurements of the rotation during
his cyclic loading tests. Using curve fitting techniques, he was
able to formulate relations between &FE and MFE’ the rotation and

moment at the support. (Brown expressed these relations in terms of



LOADIKIP?

185

b= 6.00" A = 1.58 in
t = 12.00" A= 88 it 4 }
d= 9.88" £ = 45.0 ksi 4 60"
d'= 2.00" fé = 5.0 ksi
20 T T T | T T T T

m

] I i 1 ] | ] i i l

-4 -3 -2 -1 0O 4 2 3 a & &

A, EXPERIMENYAL . DEF ECTION [ IN)

FIG. 5-4 - LOAD-DEFLECTION BEHAVIOR FOR BROWN'S CANTILEVER BEAM



IR

LDAD

RIP-IN)

NOMENT

186

203 Y T T T T T T T T
i5 -
ib ~
5 —~
i
0 —
-5 -4
10 ] ] | ] i L y | i ]
-4 -3 -3 -A 8] 1 = =3 4 =) 5 7
DTEPLALEMENT INY
1200 1 T T
500
oD I
00 b
ocor ~
-300 ~
€00 i { 1
~-30 ~-24 -12 = 15
£-3 &-3

A, &-F LTee

FIG. 5-4 (Cont.)



KIF?

LI3AD

TKIR -IN)

NTMENT

187

e2n T T T T T T T ]
AN 7
ip I B
S 7
0 F 7
—5 o =
-10
-4 -3 -2 -1 D 1 2 3 7
DFGSPRLACE MEENT 1 TN)
1200 T T T
500 B
OG- 7]
300 I n
o N
~300 I 7
600 L : :
-30 -2 - - 15
com €3

. I-BGT 5TeeL

FI1G. 5-4 (Cont.)



IKIF?

LOAD

K1P--IN)

MOMENT

188

20 T 1 ] T T I T I T

15 =
-
i
_ﬁ
7

DTORLALEMENT 1IN

i200 T | T T
5300
GDO B
300 r =
0 r =
~300 r -
~E00 4 L !
-30 -21 -12 - (=t 15
E-3 &-3

D, E-P GTEEL, JOINT ROTATION

FIG. 5-4 (Cont.)



IKIPY

LAAD

IAIFP--IN)

MOMENT

189

20 T T T T T T [ T T T
15
iD [ ~
S .
0 r -
O -
10 i L | | o] 1 ! !
-4 -3 -2 -1 9 1 2 3 a = = 7
DTSELACEMENT  (IN)
1200 T T T T
200 -
ol -
300 T “
0 r _
300 -
<600 [ 1 [ | |
~30 -23 -12 - = 15
£-3 £-3

£, I-95T STEEL. JOINT ROTATION

FIG. 5-4 (Cont.)



190

tensile force in the bars, but the relations presented here are

modified to consider moment and rotation).

After first yielding

g = _0D M _ Asfy
Eom F (@d)S (d-d)
(5.7)
For reversed loading, #8 bar
2
OFf - .00?52 M o+ .0000?43M
(d-d") (d-d ")

where the units are kip, in. and D is the bar diameter, m' is an
experimentally derived coefficient which depends upon bar size).
The member now has a semi-rigid joint at the support, such
that Ky = g% . When Kg > = the support is fixed (this is true be-
fore yielding occurs). Appendix B discusses how the effect of
semirigid joints are incorporated into the member stiffness matrix.

For this particular member

#8 1st yield  Kg = 3550. (Kip-in.)

1
3,274 x 10

1]

#8 reversed lpad K
® 64 3.273x 107 M

Figures 5-4 (D and E) show the effect of joint rotation on
the elasto-plastic and curvilinear models. The analytical curva-
tures are now significantly smaller and are below the failure limits.

This indicates that a sizeable portion of the tip deflection is due

to the joint rotation. In the load-displacement curves the rotational
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stiffness appears to dominate, once yielding occurs. The analytical
Toad-displacement curves are close to the experimental results.

It must be remembered that Brown's joint rotation formulation
is for a very specific member and type of loading condition. More
study in this area is required if a general joint rotation formula-

tion is to be developed.

(34)

5.4.2 Popov, Bertero,Krawinkler Cantilever Beam, Figure 5-5(A-C)

This symmetrically reinforced cantilever beam is 78" long and
is loaded cyclically such that the maximum deflection in a cycle gradu-
ally increases. The 1argestvdef1ection is 3",

Being a very deep section (t = 29"), shearing deformation be-
comes an important consideration. These researchers found that the
large shear deformation causes a "pinching" effect. This occurs af-
ter several cycles of loading when flexural and diagonal tension
cracks force the member to carry the shear principally by dowel action.
In the experimental results (Fig. 5-5A) the pinching effect is more
pronounced as the number of cycles and the maximum deformation in-
crease.

Analytic models with both elasto-plastic and curvilinear steels
were run to see if the model without shear deformation could reproduce
any of the effects. In the moment-curvature study it had been shown
that large deflections couldcause a "pinching in" effect when the
reinforcement which yielded previously in tension, yields in compres-

sion before the other steel fiber yields in tension. Figure 5-5(B & C)
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show that this was not true for these loading conditions. Both
models are much stiffer than experimentally observed, and the Tloops
enclose larger areas.

No attempt was made to include the effect into the analytic
model. There are no clear-cut ways, however, of including this ef-
fect and for the types of frames to be considered in the dynamic

analysis, shear deformation is not an important factor.

5.5  FRAME STUDY: GULKAN'S‘3®) FRAME FS1, FIGURE 5-6 (A to C)

This frame was designed to have a very stiff girder in com-
parison to the columns. The clear distance of the columns is 26"
and deflections range from -.4" to .3".

The analytic model used does not consider the effect of joint
rotation nor shear deformation. Centerline dimensions are used for
the member lengths.

Both analytic models are stiffer than the experimental re-
sults in unloading. The areas enclosed by the hysteresis Toops in
the analytic models are larger. However, the end point of the cycles
show good agreement, so in an overall sense the models are represent-
ing the stiffness and behavior of the frame.

In Figures 5-6 (B2, B3, C2, C3), the moment-curvatures for
each column of both analytic models are shown. Differences in shape
and stiffness due to variation of axial forces in each column are

noticeable but not drastic.
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Probably the reason the models appear stiffer is that joint
rotation due to slippage of anchorage reinforcement is not considered.

(37) show in an analysis of test results that

Takeda, Sozen, Nielsen
31% of the deflection could be attributed to joint rotation, 56% due

to flexural deformation, and only 2% due to shear deformation. Although
that was for another specimen, it indicates that joint rotation may be

important.

5.6 CONCLUSIONS AND RECOMMENDATIONS

The fiber model and the incremental stiffness approach have
been extended to represent the behavior of simple structures. In an
average sense the model can represent experimental results, but too
many variables and uncertainties preclude having a point-to-point fit
on the behavior.

The analytic model is sensitive to increment size,and numer-
ical instability can occur when sections have zero or negative stiff-
ness. This requires a modification of the model to include second
slope on the steel and no descending branch on the concrete. A fail-
ure criteria is then Timited to the determination of when some maxi-
mum concrete strain is exceeded, since descending branches (negative
slope) for the load deflection relations cannot be reproduced.

The consideration of joint rotation due to slippage of anchor-

age reinforcement was shown to be a significant factor in the load-

deflection behavior of reinforced concrete structures. However, nore
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research into the modeling of this effect is necessary. For deep
members it may also be important to find a mechanism to account

for shear deformations and the ensuing pinching effect.
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CHAPTER 6 - DYNAMIC ANALYSIS

6.1 INTRODUCTICON

In this Chapter the fiber model and the incremental stiff-
ness approach arve used to study the dynamic response of reinforced
concrete frames. In discussing this model's abilities and limita-
tions, compariscns with simpler models will be made.

(35) will be used

Two 1-bay, 1-story frames tested by Gulkan
to compare models. The first frame has a sinusoidal base motion
applied, and the second is subjected to a compressed E1 Centro earth-
quake component. [t is not assumed that these frames represent the

whole range of such structures, but many of the observations of their

behavior will be generally valid.

6.2 DYNAMIC ANALYSIS WITH THE FIBER MODEL

6.2.1 Analytic Formulation

For dynamic response of the structures to be considered, the
governing equations of motion, in matrix form, can be condensed to

the form:

[MIE0) + [k T €0} = - D] {uy) (6.1)

where [M] is a diagonal mass matrix in which the mass is
lumped at each floor level (nfl x nfl)

[KL] is the lateral stiffness matrix having 1 degree
of freedom per floor (nfl x nfl)
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{U} relative displacement vector (with respect to ground),
1 degree of freedom per floor

{U} relative acceleration vector

{GG} ground acceleration vector.

The damping usually included in this equation represents an
equivalent viscous damping and will not be considered in this model.
Shiga et a].(39) have shown tHat the damping in reinforced concrete
frames is hysteretic in nature and is proportional to the area en-
closed by the loops of the load-deflection curves. It is of inter-
est, therefore, to see how effectively the model represents this
hysteretic damping.

To obtain the lateral stiffness matrix for the structure, the
total stiffness matrix is condensed. The matrix equations relating

forces to displacements can be partitioned in the following manner:

= . (6.2)

where the subscript L indicates lateral degrees of freedom and R in-
dicates vertical and rotational ones. To simplify the subseguent
equations, the brackets and braces will be left of the matrix quanti-
ties,

In response to earthquake motion the vertical and rotational
inertial forces usually are smaller than the lateral inertial forces.

If Pp is neglected with respect to P,, then

L!



205

K =

or 1 (6.3)

Up = -Kpr KrL UL

Then backsubstitufing into Eq. 6.2 yields:
T
LL L LR "RR "RL

and * -1
KL= KL= KL Kr KaL

K, U -K U P

L~ "L

(6.4)

*
where KL has only a lateral degree of freedom at each joint.

The next step in the condensation process uses the assumption
that all joints at a floor level have the same lateral displacement.
The lateral stiffness matrix, KL, is obtained by adding the columns
and rows of Kt which correspond to joints on the same floor. K, now
is (nfL x nfL) where nfL is the number of floors.

Once the Tateral disp]aéements are known, the vertical and
rotational displacements can be obtained by backsubstitution into
Eq. 6.3.

To advance the numerical solution in time, a central differ-

ence formulation is used for the acceleration vector. (The super-

script refers to the time step.)

Ui

1 i+] i i-1
S T ]
(At)2 U

or (6.5)

Ut 2ol T o (an)?
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Similarly
Ui - 2Ui-1 } Ui-2 + Lat)z Ui-]

Let . . : . . . i s
AU'l = U'H’]_ U'I a ZU'I - 3U'|-] - U'|-2 + (At)z(U1- U1-1)

T L LA A TS A (LT L (6.6)

where AU’ is the change in displacement in the (1')th step,

Tyu-i (6.7)

From Eq. 6.1, U= -M L G

Now KLU is simply the forces in the structure and in an incremental
fashion can be expressed as

i

khut 2§ 312 ppd- (6.8)
L T
j=1
where Kl']/z is the lateral tangent stiffness matrix at step {i-1/2).

Notice that this uses the Modified Euler method. It was felt that
the added accuracy of a second order method was needed for the dynam-
ic analysis because?the sensitivity of the incremental stiffness

method to increment size and the problems with propagation of errors.

Now Ui - ﬁi—l - _ M-T [Ki-1/2 AUi-]] _ (Ui

L. Ué") (6.9)

Finally the following recursive relationship is formulated

at o2 oagicl L oayi-2

-(ae)? V2 i1 % - Ui-Nyg (6.10)
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6.2.2 Behavior of the Fiber Model undef Sinusoidal Base Motion

The structure used in this section is a 1-bay 1-story frame

(with clear column height of 26") which Gulkan¢3%)

subjected to
steady-state base motion on the Univérsity of I11inois shaking table.
This frame was designed to have the girder much stiffer than the
columns, and a fixed support at the base.

In Fig. 6-1A, the base motion provided by the shaking table
is shown. Although the variation in peaks and changes in frequency
indicate that it is not purely sinusoidal, the major part of the
study on the fiber model was run with a true sinusoid (Fig. 6-1B)
having the average frequency and amplitude of the experimental exci-
tation. This was an attempt to use a base motion where some engineer-
ing "feel" for the response existed.

Of interest are the effect of increment size, the effect of
nonlinear geometry, the "P-A'"effect, and the steel formulation used.
Table 6-1 summarizes the effects included and the displacement aver-
ages for each of the nine comparison runs of the fiber model.

Figure 6-2 (A to 1) has the displacement-time history for each
of the runs plotted to the same scale. After the first couple of
cycles the model's frequency of response matches the observed one.
The initial difference is due to the variation of the input accelera-
tion from the sinusoid assumed in the comparison. Maximum displace-
ments ranged from .260" to .283", while the maximum and steady-state
peak-to-peak amplitudes ranged from .388" to .409" and .262" to .301",

respectively.
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In. Fig. 6-2 (A, D, F) all nonlinear effects are included,
and the increment size varies from At = .002 to .0005 sec. (The
measured natural period of the structure varies from .063 to .125
sec.). For At = .002 and .001 there is a permanent set and some
plastic drift. Both effects decrease with increment size and are
not apparent at &4t = .0005. It was felt that accumulation of errors
due to "overshooting" at direction changes was reduced sufficiently
at the small increment size.

In Fig. 6-2 (C, E, G) the increment size is simiiarly varied,
but now the nonlinear effects are not included. The effect of incre-
ment size reduction is obvious. Comparing runs A and C, the nonlinear
effects appear to decrease the calculated plastic drift. A comparison
of B and C, where B has only the nonlinear geometry effect, shows that
this effect is more responsible than the P-4 for the reduction. Differ-
ences in the models with and without the nonlinear effects become Tess
apparent at a smaller increment size.

Run H is for a curvilinear steel, and it corresponds to the
elasto-plastic run F. Up to the third peak there is very 1ittle dif-
ference, since the behavior in both models is essentially elasto-
plastic. Afterwards the curvilinear steel begins to exhibit a sig-
nificant plastic drift which is not observed in either the elasto-
plastic case or in the experimental results.

The corresponding moment-curvature relations (runs F, G, and H)
for a cross-section at the top of each column are piotted in Fig. 6-3

(A to C). Significant differences may occur for each column in a
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frame. Laterally-induced axial forces cause differences jn the
moment-curvature relations and in the resultant stiffness of each
column.

For the elasto-plastic steel (F and G) the Toops formed be-
come stable, but for the curvilinear steel they do not. This re-
flects two aspects previously pointed out: 1) The I-SGT model and
other curvilinear models discussed do poorly for repetitive load-
ings with small strain reversals; 2) The moment-curvature relation
with I-SGT steel tends to be softer in reloading in the initial
loading direction than in the opposite direction. Additional re-
finement of the steel formulation may be required to meet these cri-
teria of performance.

For comparison with the simpler models to be discussed in
Section 3, the load-deflection relationships for runs F and H are
displayed in Fig. 6-4 (A and B). These generally reflect the cor-
responding moment-curvature relations. The loops for the elasto-
plastic steel begin to show some rounding.

In the dynamic response of the frame there can be consider-
able variation in the lateral stiffness (Fig. 6-4). Sudden changes
in the lateral stiffness correspond to changes in the Toading direc-
tion where the steel yields or begins to unload. The frame is ini-
tially uncracked, and the stiffness eventually oscillates in a range
Tower than the initial Tateral stiffness. In the response cof the

structure to a sinusoidal motion, the detailed variation of
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TABLE 6-1  COMPARISON OF PEAK DISPLACEMENTS FOR FIBER MODEL UNDER SINUSOIDAL BASE MOTION

A B C D E F G H I
AT .002 .002 .002 .001 .001 .000f ,0005 .0005 . 0005
NLG Yes Yes No Yes No Yes No Yes No
P-4 Yes No No Yes No Yes No Yes No
Steel E-P E-P E-P E-P E-P E-P E-P 1-SGT I-SGT
Peak #
1 ~-.126 -.126 -.126 -.125 -.125 -.126 -, 125 -.126 -.125
2 .282 .287 .283 .273 .274 .274 .260 .273 .273
3 -.075 -.077 -.076 -.099 -.101 -.131 -.129 -.150 -.150
4 .231 .202 .215 .215 .213 .110 .112 .126 .125
5 -.009 -.078 -.049 -.065 -.073 -.163 -.169 -.119 -.128
6 .259 .209 .287 .208 .273 119 .107 .104 .099
7 -.043 -.086 .042 -.092 -.061 -.156 -.180 -.173 -.179
8 232 .219 .322 .225 .257 125 2102 .098 .087
9 -.038 -~.059 .055 -.057 -.044 -.155 -.179 -.193 -.201
10 .247 .219 .333 .237 .254 .125 .103 .063 .082
1 -.024 -,070 .064 .044 -.055 -.159 -.179 -.217 -.226
12 .255 .236 .361 .240 .248 120 .103 .037 .022
13 -.020 -.026 .095 -.053 -.066 -.162 -.180 -.249 ~.262
Max.Displ. .281 .283 .283 .273 .274 .273 .260 .273 .273
Max.Peak
to Peak .407 .409 .409 .398 .398 404 .388 .243 .243
Displ.
Ave .Peak 281 262 267 301 279 283 273 276
to Peak 272 .28 . . . . . . .
Displ.
Drift at 112 .105 228 .094 .091 -.021 .039 -.106 -.120
t=.6 sec.

2ee
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the stiffness becomes of particular importance because of the pos-
sibility of resonant excitation.

As was previously pointed out, the actual base acceleration
is not exactly a sinusoid. Figure 6-1 C shows a modified sinusoid
which has the same peak amplitudes and zero crossings as the shak-
ing table acceleration. The elasto-plastic model was run from this
base motion with the nonlinear effects and At = .0005 (Fig. 6-7).
Comparing this with the experimental response in Fig. 6-6, there is
good agreement in the frequency of response. There is better agree-
ment with the first three peaks than in previous runs with the sinu-
soidal excitation, but the agreement deterigrates later. The change
in response caused by a small change in the excitation is worth

noticing.

6.2.3 Behavior of the Fiber Model under Earthgquake Base Motion

Another frame (with a clear column height of 13"), designated
HE1, was tested by Gulkan using the E1 Centro (N-S) component com-
pressed in time as the base motion (Fig. 6-1D). The experimental
response is shown in Fig. 6-8. Due to the expense of the computation
required for the fiber model, only two seconds of response were com-
puted (this required 17 minutes on the IBM 370/M165) at an increment
At = ,0005.

For the elasto-plastic steel shown in Fig. 6-9A, there is a
very good match with the response of the structure for the first 1.1

seconds if the response is shifted in time .04 seconds (the large
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amplitude peaks occur sooner in the analytic model). The ampli-
tude of response and location of peaks then show good agreement in
this range. In the remaining part of the response the analytic
response frequency is noticeably greater. From this load-deflection
curve it appears that the frame is more-or-less elastic because
there is little yielding. The maximum calculated deflection is
.078", while experimentally the value is ,084". Maximum peak-to-
peak values are .151" and .143" for the analytic and experimental
results. |

The model with the curviiinear steel, however, displays a
significant permanent set after .92 seconds. The permanent set is
reflected in the moment-curvature and load-deflection relations,
where during one cycle there is a large deformation, after which
the loops become stable. Whether this is due to error propagation
in the model or to the momentary excitation of some resonant fre-

quency was not determined.

6.3 COMPARISON OF SIMPLE MODELS FOR FRAME BEHAVIOR

For use in design the fiber model is far too expensive (in
terms of computer time). Simpler models which attempt to represent
the overall behavior of reinforced concrete frames will be compared
in this Section. There jsno attehpt to imply that the models used
represent a complete survey of those available.

The following were used:
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1) Elastic This model is used more as a comparison
with other models than as a representation
of concrete frame behavior.

2) Bilinear This model is essentially elasto-plastic,
with a small second slope.

3) Trilinear The initial and final slope correspond to
the elasto-plastic, but the second branch
has a slope .ZKO and begins at half the
yield force.

4) C]ough's(47) This has an elasto-plastic envelope and un-
Model loads with the initial stiffness, but has
stiffness degradation in the reloading part
of the relationship.

5) Anagnostopou- This model further adds stiffness degrada-

tos' ModelmS) tion for the unloading branches according
to: K 8 .35
B (=)
0 Smax.

6) Takeda(37) These were used by Gulkan to obtain his ana-
Hysteresis

Laws lytic results and are reproduced here for

comparison. Slight differences in this model
may exist due to the digitizing of a small-
scale record.

The models (1 through 5) were formulated as 1 d.o.f. springs
which related the lateral force and displacement of the simple frame.
From Gulkan's experimental work, the average initial stiffness and
yield values were obtained. These models were subjected to the same
base motions as the fiber model was (modified sinusoid and E1 Centro).
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6.3.1 Behavior of Simpie Models to Sinusoidal Base Motions

The simple models were subjected to the modified sinusoid
base motion shown in Fig. 6-1 C. Fig. 6-10 (A to E) presents the
displacement-time history and corresponding force-displacement
relations. ‘

Generally alil the models agree with the number of peaks, and
thus with the average frequency of response. The location of the
peaks correspond except for a slight shift in the time axis of .015
sec., since the test frame appears to respond sooner.

In comparing the Anagnostopoulos and Clough models it appears
that response is not sensitive to the parameter used in the unload-
ing stiffness degradation (.35 for the former and 0. for the latter).
That is, whether there is degradation in the unloading branches does
not seem to be important. These two models overestimate the magni-
tude of response displacement.

The bilinear model indicates a permanent set contrary to the
observed response, and the average peak-to-peak response is again
larger. In the trilinear model used, the force-displacement does
not reach the final yield level. Except for a low fourth peak, the
agreement is reasonable. The elastic model produces significantly
larger response, especially for the second and third peaks.

The jaggedness of the Takeda displacement response plot is the
result of enlarging a small scale figure. The overall agreement is

reasonable.
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TABLE 6-2  COMPARISON OF MODELS FOR MODIFIED SINUSOIDAL LOADING

Peak # Elastic Bilinear Trilinear Clough Anagnosto- Takeda
poulos
1 -.067 -.068 -.0867 .067 -.068 -.040
2 .159 .158 .169 157 157 31
3 -.285 -.309 -.203 -.307 -.306 -.214
4 .287 .058 .022 .076 .101 .145
5 -.163  -.218 -.121 -.064 -.033 -.105
6 021 -.044 .108 .031 .035 .013
7 -.006 -.233 -. 141 -.228 -.216 -.100
8 167 .076 .150 .143 .158 147
9 -.283 -.044 -.143 -.145 -.145 -.214
10 .225 .013 .120 -.040 -.048 122
11 -.180 -,200 -.135 -.175 -.168 -.088
12 .152 .051 167 .55 .155 .021
13 -.094 -.294 -.076 -.24] -.245 -.113
14 129 141 .188" .090 .109 .141
Max.Displ. .287 309 .203 .307 .306 214
ﬂ:;kpgﬁtg$? 448 467 372 464 .463 .359
Ave, Peak-
to-Peak .300 . 323 .255 .282 . 287 .235
Displ.
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6.3.2 Behavior or Simple Models to Earthquake Base Motion

The simple models are used to represent the response of
frame HE1 under the £1 Centro earthquake motion. The predicted
responses are displayed in Fig. 6-11 (A to E). (The elastic
model was not included because large amplitude forces were
required for the spring to be elastic, causing the response to
be very different from that observed.)

Three of the models, Anagnostopoulos, Clough, and Takeda,
produce results that are nearly identical with each other. How-
ever, they overestimate the magnitude of response, although they
seem to agree well with the location of the peaks. (Maximum dis-
placements and peak-to-peak displacements are .234", .408", while
experimentally they are .084", .143".)

Both the bilinear and trilinear models also overestimate the
magnitude of displacement. In addition, the bilinear model has again

a permanent set.

6.4 CONCLUSIONS

The fiber model and incremental stiffness approach can repre-
sent reasonably well the dynamic behavior of a reinforced concrete
frame. But to be able to obtain a better fit to the experimental
data, a more sophisticated model would be required. One important
aspect would be a refinement of the curvilinear steel model which

has been shown to respond poorly to small repetitive loadings. Other
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effects such as slippage at the joints could be added.

For the simple models, it seemed that they could all repre-
sent well the location of peaké, but had difficulty with their mag-
nitudes. In particular ail the simple models overestimated the
deflections for the simulated earthquake motion. The fiber model
did better in this respect, and overall it appeared to represent

the dynamic response better.
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CHAPTER 7 ~ CONCLUSIONS AND RECOMMENDATIONS

1. To properly represent the behavior of reinforced concrete
structures with a fiber model, the stress-strain relationship for
the reinforcing steel isva key parameter. Although the curvilinear
stee1.formu1ation developed represented the behavior for large cyclic
straining, it was poor in reproducing the behavior under small repe-
titive Toadings. On the other hand, the elasto-plastic formulation
was reasonable for many circumstances. As far as the overall be-
havior of the members was concerned, the concrete formulation was

less important.

2. The model is able to reproduce the axial-bending couplting
in the members. Under axial load a pronounced pinching of the cyclic
moment-curvature and load-deflection curves appeared consistent with
experimental observations. For axial forces which vary with moment,
such as in a laterally loaded frame, the moment-curvature behavior
may be significantly altered. While the fiber model is reasonable
in predicting cross-section behavior, an added refinement would be

the consideration of slippage of the reinforcement along the member.

3. The fiber model is able to represent in an average sense the
behavior of members under static cyclic loadings. It is important,
however, to be able to reproduce the rotation of the joints due to
slippage of the anchorage reinforcement. For deep members shear de-

formation should also be considered. These are improvements which
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were not implemented in this work, but which should be undertaken

in the future if the fiber model is to be used.

4. In the dynamic frame analysis it was not possible to pro-
duce perfect agreement with experimental results. For sinusoidal
excitation, results obtained with the simpler models were of the
same order, but for the earthquake excitation the fiber model seemed
to predict better the observed response. Additional refinements of
the model may improve the performance, but the necessity of using a
very small time increment makes it expensive to run, and more of an
academic tool, rather than a practical design aid. Considering all
the uncertainties involved in the material properties, it may be hard
to justify this complexity versus attempting to improve the simpler

models.
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APPENDIX A
FORMULATION OF THE MEMBER INCREMENTAL STIFFNESS MATRIX

The incremental stiffness equations for a cross-section were
formulated in Chapter 4, and from them the flexibility relations

are obtained by inversion.

Ae

b11 AN + b12 AM

(A.1)
b

21 AN + b22 AM

A
where [bij] = [aij]-I

If the beam is considered to be represented by a line element

and the deflections are small, then the following relationships hold:

- du
€= Ox
2

o= 4Y (A.2)
dx
- dv
o = dx

where u and v are the horizontal and vertical displacements; 0 is
the chord rotation; and x is the distance along the centroid of the
member.

The ends of the member will be labeied A and B and the Tlength

of the member 1is L.
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3.

v

In the above figure a portion of the member is shown with the
forces acting at end A and at the cross-section a distance x away.

By considering equilibrium,

AN

AXa (A.3)

Substitution of the relations in (A.3) and (A.2) into (A.1)

leads to the following

= 4d -
be= 3= (Au) = byq aXy + Dyy X AYy - byy AMy -
A.4
42
8= _z(AV)
dx

boy &y * Doy x Ay - byy MMy

(A.4) can be integrated across the length of the member to ob-

tain:

L L IL
AUA - AuB = - L b” dx AXA + - L X b.l2 dx AYA + | b.lz dx AMA
AD AD [L A JL A jL

L L

L
+ f (L-x) b,, dx AM
. 22 A (A.5)



These equations can be easily be expressed in matrix form

where

ments

where

AVA - AuB + LASA
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[ £
fn fi2
fay T

Lf31 fa2

f13 By
fp AY
f1s M

(A.6)

[fijj is the flexibility matrix relating incremental displace-

to the incremental forces of end A.

If [fij] is inverted then:

&) Ky
oy \ = ]k,
Ma _ksl
ky;] = [F;507

SP

Koo

K3p

=

SE

ka3

k

33

A“A - A“B
AVA - AVB + LAGA
AGA - AOB

(A.7)

This matrix equation can be expanded and rearranged to get

_
A, SH
AYa | = | Koy
AMy ks
K4

+ 'kz-l

k3

k
k

12

22

k3o

Ky

-k22

k3,

(kyq + LK
(k
{k

93 + Lk

33 + Lk

-

“Kyg

~ka3

-k

33 |

12) Bu

22)

A

33) | 204

—

(A.8)
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{ﬁpA} = [Kyp] {80, 7 + [K)o] {aug} (A.9)

From the condition of equilibrium

Mg -1 0 0 Xy
AYB = o -1 0 AYA (A.10)
AMB i 0 L =1 | AMA
or
{APB} = [T] {APA}
= [TI[Kppd{aU,} + [TI[K,p] {aUg) (A.11)
= [Kgal {aUp} + [Kgpd {aUp}
SO
[Kgpd = £T1 [Kypd
(A.12)

[Kgp] = [T1 [Ky5)

With (A.9) and (A.11) the incremental member stiffness rela-
tions have been cbtained, relating incremental forces to the incre-

mental displacements.
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APPENDIX B

SEMI-RIGID JOINTS TO ACCOUNT FOR ROTATIONS
DUE TO SLIP OF ANCHORAGE REINFORCEMENTS

*
An alternate method of obtaining a member stiffness matrix
from the member flexibility matrix and to include semi-rigid joints
is described.

The flexibility matrix is now defined in the following way:

(- (= = = 7 ()0

Aug 1 Tz hz| (2%
avge = [T T Tz | {May (8.1)
2% REUNRE-REE ] IR CL)

(aug) = [F;;] (aPp)

This flexibility matrix differs from the one derived in Appen-
dix A {Eq. A.6), but can be obtained from it by considering end A to
be fixed (AuA = AvA = AGA = 0), and using the following result of

equilibrium:

10 0
{APA} =- {0 -1 o0 {APB}
0 -L -1
or (B.2)
{APA} = - [H] {APB}
* (46)

One source of this type of derivation is Livesley.
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From these equations:

fi1 12 i3 fi1 (flp + L fi13) fi3
for Tao fog| = [f12 (fpy + L f3) fyg (8.3)
fa1 f2 Ta3)  [fis Fy # L f3g) fy

Through use of the definition

APA KAA KAB AuA
= (B.4)
8Pg]  |Xea XpB| |*Ys
and the fact that KBA = KXB’ it can be shown that
[Kyad = [H] [F 370 [HIT [Kygd = - [HD LF, .17
AA ij AB i3
(B.5)

-1 | -1
[KBAJ = ’[HJ [F.[JJ [KBBJ = [F'l‘]l

These are the same member stiffness matrices as previously de-
scribed, in Appendix A.
Consider now that the member has semi-rigid jeints; it then can

be visualized as having rotational springs attached to each end.

6 = =
KA A MA and K6 M (B.6)
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Returning to the definition of the flexibility matrix (Eq. B.1),
the displacement at end B now is composed of the member distortions
plus the distortions due to the rotational springs at the ends of the

member. Thus

{ué}totaT - [[ng] UREE [fij]B] {PB} (8.7)

where [fij] and [fij] are the flexibility matrices due to the
A B

rotation springs at joints A and B, respectively.

0c 0 0
2
L
[f..1 _ |0 &t L
0 = 1
_ ARy
(B.8)
0o o0 0
and  ydi=o o 0
:
0 0 -
Finally, the flexibility matrix for the member becomes:
':_ _ _ =1
B} f12 f13
(1 = T Gt ) (gt b (8.9)
5 21 2t K 23" K :
13 total A A
- = Ly 7 .1 .1
f Fpr ) (Fagr v 1)
K nt Ry e R
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Substitution of this matrix into Eq. B.4 will yield the stiff-
ness matrices for the member. Note that if KA and Kg are equal to
infinity, the member stiffness matrix will revert to that of Appen-

dix A.
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