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ABSTRACT

The dynamic response of pipe systems buried in soil is studied.

The degree of interaction between the pipe and surrounding soil as well

as the amount of damping is established for pipes subjected to incoherent

motion. The model considered is represented by a pipe of diameter D sub-

jected to time-harmonic longitudinal forces acting periodically at

intervals L in alternating directions. Such a loading pattern corresponds

to the incoherent component of earthquake excitation.

The pipe and the soil are assumed to behave as linear isotropic

elastic materials and the interaction between the surrounding soil and

pipe is assumed to occur through a shear force mechanism acting at the

pipe-soil interface. The response is found to be expressible in terms of

non-dimensional ratios ot density, velocity of wave propagation and the

aspect ratio D/L of the pipe.

Results are presented in terms of dynamic amplification factors for

various applied frequencies of the applied forces. Peak response and

resonant frequencies are determined and regions where radiation damping

occurs are established.

By choosing the suitable values of the governing parameters judiciously,

the response can be obtained for either a continuous pipe or for an infinite

train of pipe segments, interconnected by elastic joints at intervals L.





I. INTRODUCTION

The effect of earthquakes on lifeline systems has received considerable

attention in recent yea~s [1-3J. One question of concern is the dynamic

response of pipe systems buried in soil and subjected to earthquakes.

Among the most important facts to be established are the degree of inter­

action between the pipe and surrounding soil and the amount of damping,

if any, which takes place in the system. Inertial effects are generally

considered to be neglible [4-5J, leading to the conclusion that the pipes

follow the free-field motion. In the present report, it is shown that the

dynamic interactive effect can be considerable, resulting in large dynamic

amplification particularly for pipes whose diameters are not small compared

to the predominant wave lengths in earthquakes.

The axial displacement response of buried pipes to earthquake

excitation can be conveniently studied by response spectral techniques

[6J, provided that the dynamic response parameters of the pipe-soil

medium syste~ are available.

In this study, the response of an infinite train of pipe segments

of diameter D, interconnected by elastic joints at intervals L, is

considered, (Fig. 1). The periodic, longitudinal axial forces act at

the joints at intervals L. Since the relevant seismic input on the pipe

is the incoherent component of the excitation [6J, these forces are

taken in alternating directions. The model, therefore, is assumed

-I "



to be an infinite pipe subjected to periodically spaced forces as shown in

Fig. (2). The pipe as well as the soil are assumed to behave as linear

isotropic elastic materials and the interaction between the surrounding

soil and pipe is assumed to occur through a shear force mechanism acting

at the soil-pipe interface which prevents slip at the pipe-soil interface.

To simulate the realistic condition of a jointed pipe, the effect of

the joints (which are much more flexible than the pipe material itself)

is taken into account in determining the average overall longitudinal

stiffness of the pipe. Since the radial displacements of the pipe are

known to be small, for mathematical simplicity, the pipe is assumed to be

radially rigid. Such an assumption has been used previously [7J.

Numerical results of the analysis are presented for a pipe buried

in a typical soil where c , the propagation velocity of S-waves, is 400 ft/sec
s

and for which Poisson's ratio v = 0.3. It is seen that the response can

be expressed in terms of several non-dimensional ratios of density and

velocity of wave propagation. The response is also seen to depend strongly

on the aspect ratio D/L of the pipe. Responses to several such pipes are

obtained as a function of the forcing frequency of the applied force.

In order to demonstrate the dynamic effect of the earthquake, results

are presented in terms of a dynamic amplification factor (DAF) defined as

the ratio of dynamic to corresponding static response.

A subject of major interest is the determination of peak responses

which occur at resonant frequencies. Resonance occurs when the forcing

frequency coincides with the frequency of an excited wave of specific wave
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length in the system. (It is noted that corresponding to any given wave

length, propagation can occur only at certain discrete frequencies. Such

frequency-wave length relations are a result of the dispersive character

of the system.) Frequency ranges are established where no radiation

damping occurs and it is observed that in this range, the response contains

infinite DAF.

From the study of the analytic solution and observation of the

numerical results obtained, several general conclusions are established

which govern the response of the pipe-soil system.

II. GENERAL FORMULATION AND SOLUTION

The model considered represents an infinite cylindrical pipe of

radius a, embedded in soil and which is subjected to dynamic concentrated

forces F(t), acting in the longitudinal z-direction at periodic intervals L

as shown in Fig. (2). The forces are assumed to act harmonically in time

with frequency f.

The pipe is represented by means of an equivalent solid cylindrical

bar of cross-sectional area A with modulus of elasticity E, and density p,
whose motion in the longitudinal z-direction is denoted by U (z,t). Following

p

the assumption of radial rigidity [1J, the radial displacements are taken as

zero throughout the pipe.

The surroundin~ medium is assumed to behave as a linear elastic material

having density p and defined by a shear modulus ~ and Poisson ratio v.

For the axi-symmetric case considered here, the soil medium can undergo

time-dependent radial and axial displacements denoted by U (r,z,t) and
r

U (r,z,t) respectively.z
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The interaction between the pipe and surrounding medium is then due

to an interactive shear force mechanism, acting along the pipe-soil cylindrical

interface, which prevents slip between pipe and soil.

Denoting the harmonically applied periodic concentrated forces by

means of periodically spaced Dirac-delta functions a (z), the force F(t)
p

is represented by

F(t) FOa (z)e-iwt
p

(1)

where w 2rrf.

The governing equation of the pipe is then written as:

a2u (z,t) 2T (a,z,t)
- p rz
E ----:2-- + ------ -az a

F
_.JL a (z)e-iwt
A p

(2)

where T (a, z, t) represents the interactive shear stress at the interface.
rz

With the assumptions stated above, together with the requirements on

continuity of displacements at the pipe-medium interface, the boundary

conditions on the medium displacements become

U (a,z,t) = 0, U (a,z,t) = U (z,t)r z p
(3a, b)

The dynamic displacements of the surrounding medium, r ~ a may be expressed

in terms of outgoing wave expressions (which decay as r + 00) as follows

[7J:

*00 h () ~I [A -~ H 1 (h'r)
m';;l m hIm

-iwt
Ct z e

m
(4)

Uz(r,z,t)
*k

Em -:7 H(l)(k'\)]cosCt z e- iwt
k 0 m m

-4-
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where H(l) and H(l) are Hankel functions of the first kind of order zero
o 1

and one respectively,

a = (2m-1)7f/L,
m

(6)

h wi c
p

and

*2
h 2 0. 2h = -

m m

In the above,

k wlcs

*2
k

m

(7a,b)

(8a,b)

and c
p

[ 2 (1..:.ti. .J:.J!z
1-2v p

(9a,b)

are the propagation speeds in an elastic medium of outgoing S- and P-waves

respectively. Thus, the terms associated with the constants ~ represent

the P-waves, while the Bm terms represent the propagation of the S-waves.

The constants A and B must then satisfy the boundary conditions of Eq. (3).m m

From the first of these

fh: k 2 H(l) (h:a) 1
B =-11::7 __L-_ i

Amm ~h a H(l)(k*a)Jm
1 m

Furthermore, since U (a,z)
r

given by

(10)

0, the shear stress at the interface is

T (a,z,t)
rz

3U (a, z, t)
z

II --=---­
3r

(11)
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Using the remaining boundary condition, and substituting Eq. (11)

in Eq. (2),

32U (a,z,t) 2
E z +~

3z2 a

3U (a,z,t)
z
3r

Fa
<5 ( ) -iwt

A P z e
(12)

The periodic Dirac-delta function may now be represented in the

region 0 < z < L by the infinite series

()()

<5 p (z) = 1. I cos
Lm=l

Li. Z
m

( 13)

It is noted here in passing that the interval 0 2 z 2 L represents

a half-Fourier interval and hence the analysis of the infinite pipe is given

by the solution in a periodic interval 0 < z < A with A = 2L being the

total Fourier interval [See Fig. (3)J.

Noting that

-Hl(l)(X) (14)

substituting the expression for U and its appropriate derivatives from
z

Eq. (5) and using the representation of Eq. (13) in Eq. (12), we obtain,

assuming a steady-state solution, the following equation:

()() 2F O ()()
I A {[Ea 2 - pw2 ]D(a)- ~.l:I. g } Cos a z = - I cos

m m zm a m m AL m--lm=l

where

a z
m

(15)

* *h k
+ m m
~

m

(16a)
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and

aD (r)
zm
3r

r=a

*h
m
-~

m
(16b)

By satisfying Eq. (15) term by term, the constantS A are found, after
m

some algebraic manipulation, to be

1A
til

= -
em

where

*2 h
'1 _ w )A + 2~ m
l c2a 2 m Ea ~

m m

and

(17a)

(17b)

In Eq. (17),

- - - !,;
c = [E/pJ2

(l7e)

(18)

represents the familiar propagation velocity of longitudinal waves in a free

elastic rod.

Substituting finally Eqs. (17) in Eq. (5) and using Eq. (3b), the

displacement U (z,t) is obtained; viz
p

-iwt
4

00 A cos a ze
\' m m

= ;:l L (2m-l)2G
m=l m

-7-
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At this point it is advantageous to express the solution in terms of

non-dimensional quantities and more specifically in terms of non-dimensional

ratios relating the propagation velocities of the P- and S-waves in the

medium and the propagation velocity c of waves in the free bar. To this

end, we define the following new non-dimensional variables:

n a/A where A = 2L

r nrc

and

R cplc s • ~ c/cc

Also, let the ratio of the densities of medium to pipe be

~
pip

(20)

(21)

(22a,b)

(23)

Using these new parameters, the expression for the longitudinal displace-

ment Up of the bar becomes

U - 00

(t-) (/o-~2)= ~ I
m=l

where now

-iwtcos ex z e
m (24)

A
m

H(l)(y )
o sm

H(I) (y )
1 sm

(25)

in which
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and

(27)

It is noted that the non-dimensional displacement given by Eq. (24)

is uniquely determined by five quantities: r,~, Rv ' and Rc ' and n.

In the above, terms containing p and s subscripts correspond to con-

tributions from the P- and S-waves respectively. Thus, it is observed that

coupling of the two wave types occurs through A given in Eq. (25).m

Certain limiting cases of the solution represented by Eq. (24) are of

particular interest.

For example, noting that

Lim
R-+O

v

Ypm
A

m

o (28)

the solution degenerates to

-iwtcos a z e
m

(29)

Similarly if RD = 0 or if Rc+OO while both ~ and Rv remain finite,

Eq. (29) is recovered from Eq. (24). The solution given by Eq. (29) is

recognized as the solution for a free infi.nite bar with no interaction,

i.e. as the uncoupled solution. In all three cases such a solution is

expected since (a) ~ = 0 implies a massless soil, (b) Rv = 0 implies a soil

of no rigidity and (c) Rc+OO (with R
v

' ~ finite) also implies a soil of no shear

rigidity since,

(30)
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when

It is noted that for the response of the free bar, resonance occurs

r 2m-1 , m 1, 2, 3 ... (31a)

i.e. when the forcing frequency f is given by

f C/A, 3e/A, Se/A, 7e/L .. (31b)

It is thus convenient to define

(32)

which is the fundamental frequency of vibrations of the uncoupled bar, or

in terms of wave propagation, the wave frequency for a longitudinal wave of

wave length A propagating in the z-direction.

The variable r can then be rewritten as

r (33)

and thus represents the ratio of forcing frequency to natural frequency of

the uncoupled free bar. This interpretation will subsequently prove signi-

ficant in understanding the results presented in the next section.

The static solution for the interaction problem may also be recovered

by letting f, or r, tend to zero. Noting that

Lim
r-+O

Lim
f-+O

where

Ysm

2nn(2m-1)i(1-s/2)

2nn(2m-1)i(1-R £/2)
c

(34a)

(34b)

r 2
€ = [R (2m-I)] < < 1

v

-10-
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and using the property [8J

2 .-(n:+l)K (x),
-- ~ n
'IT

(36)

upon taking the proper limits as r~, the following expression is obtained

Cos a z
m

where

(37)

v = 2'IT ( 2m-l) n (38)

The functions K (v) above are the modified Bessel function of ordern.
n

This static solution, expressed in terms of the non-dimensional para-

meters, RD, R , R is seen to be identical to that obtained directly using
v c

Love strain functions and given by eq. (18) of [9J.

III. NUMERICAL RESULTS AND CONCLUSIONS - RADIATION DAMPING

Numerical results and conclusions are presented below for the dis-

placements of a pipe, embedded in a typical soil, for a range of the

various governing parameters.

All results were calculated for a soil having a Poisson ratio

v = 0.30 and in which the propagation speed of shear waves c
s

400 ft/sec.

The ratio of the mass densities of soil to pipe was taken as ~ = 0.20

for all cases, The remaining parameters were chosen to simulate the

-11-



realistic condition of an infinite pipe of diameter D with flexible

joints at regular intervals L. Thus, in considering the overall longi-

tudinal stiffness of the jointed pipe, the global average modulus E is

so assumed that the wave frequency of longitudinal waves in a free pipe,

f = ciA, falls in the range from 1 Hz to 10 Hz, for the typical series

of ~esults with joints at periodic intervals L = 20 ft (A = 40 ft).

From a study of seismographic readings, spectral analyses show that

the significant components of major earth tremors fall within the range

of frequencies 0.1 Hz < f < 20 Hz. In order to study the dynamic

effect of earthquakes on the pipe-soil system, the response to forces

with given frequencies f is determined for a group of pipes having

aspect ratios D/L in the realistic range 0.1 2 D/L < 1.0.

Significant results which demonstrate the dynamic effects on the

displacements are best presented in terms of the ratio of the dynamic

response UD to the equivalent static response Us' as obtained in

[9J.

The responses are therefore given in terms of the dynamic amplification

factor

DAF
UD(z=O)

U (z=O)s
(39)

where the displacements UD(z=O) are evaluated from Eq. (24). Calculations

of this quantity, using M=15 terms were found to insure sufficient accuracy

in all cases.

In summary, the set of results presented are calculated with the

following parameters held constant:

c s 400 ft/sec., v = 0.3,

-12-
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and for aspect ratios D/L = 0.1, 0.2, 0.4, 1.0 (which correspond to

values n = 0.025, 0.05, 0.1, and 0.25 respectively). Three sub-series

of results are presented, each sub-series representing a pipe with f = ciA

as follows: (*)

(1) I 1 Hz for which R 18.71v

(2) f 2 Hz for which ~ 9.357

(3) f =10 Hz for which R 1.871v

The response in each case is presented as a function of r = f/I,

with the other above parameters held fixed. Analogously to the definition

of f [as given in Eq. (32) ], it is appropriate to define the equivalent

wave frequency of the s- and P-waves propagating in the medium by

f
s c IA

s
f

p
c IA

p
(40a,b)

respectively. These frequencies are indicated in all figures presented

below. It should be noted that from their definitions, f p = IRv '

In Fig. (4) to Fig. (7), the DAF for the axial displacements are

presented for I = 1 Hz and for the various aspect ratios D/L = 0.1, 0.2,

0.4, 1.0 respectively. From these figures, it is seen that, aside from

abrupt changes in behavior reflected, for example, by cusps at f = f ,
P

the behavior for small aspect ratios, say D/L ~ 0.2, is relatively smooth

and the DAF are of the order of magnitude of unity. However, for larger

aspect ratios D/L, the DAF occurring in the range I < f < f show sharp
p

(*) Note that R _ c Ic
v p

-13-
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peaks indicating an infinite response.

the system will experience damping.

(*) In the range f < f, however,
p

Before examining the next series of results, it is worthwhile to

examine the damping mechanism and establish ranges of frequencies where

such a damping mechanism exists. An understanding of the basic damping

mechanism and resonant response is best obtained by examining Eqs. (4) and

(5) which define the displacements of points in the surrounding soil. From

these equations, it is observed that the displacement expressions contain

terms of the nature H(l) (h*r)e- iwt and H(l) (k*r)e- iwt n = 0 and 1, where
n m n m '

* *hand k are originally defined by Eqs. (8). In terms of the new para-
m m

* *meters given by Eqs. (20)-(22), (32) and (40), hand k are expressed
m m

respectively by

and

(41a)

*k
m

21f r 2 2 !z>: ~f j_)T(2m-1)]
s f

(41b)

* *Thus, if r > (2m-1)f If, h is real, while if r < (2m-1)f If, h is.p m p m

imaginary. *(Similar conclusions exist for k upon replacing f by f .)
m p s

(*) Resonance occurs, or there exist large DAF, when the frequency
ratio r causes a denominator appearing in Eq. (24) to vanish or
approach zero. The vanishing of such a denominator establishes the
dispersion relation. From the dispersion relation it is thus
possible to immediately determine frequencies at which resonance
will take place.

-14-



* ";'~
In the case where hand k are real, the response is expressed in

m m

terms of Hankel functions of real arguments. Such terms then represent

outward propagating waves in which energy is continuously propagated

outwardly by the respective P- and S-waves. Thus, there exists, due to

the outward radiation, a damping mechanism, and the system experiences

radiation damping.

On the other hand, if the arguments of the Hankel functions are

imaginary, the Hankel functions, in effect, are transformed into K
n

functions, as seen in Eq. (36). The response, expressed then in terms of

K
n

functions, no longer is represented by radiating waves. Hence, no

radiation of energy can take place and the system can experience no

radiation damping.

*Since the above discussion is applicable to both the h
m

*and k
m

terms

which correspond respectively to P- and S-waves, the following may be

concluded:

(a)

(b)

(c)

If (2m-1)f If < r, radiation damping will take place
p

through both the P- and S-wave mechanism.

If (2m-1)f If < r < (2m-1)f If, radiation damping will
s p

take place only through the S-wave mechanism,

If r < (2m-1)f If, no radiation damping can take place.
s

In Fig. (8) to Fig. (11), the response for identical parameters as

in the first cases (Rn, v, c
s

' L, niL) is presented with a frequency

f = 2 Hz. The behavior is observed to be similar to the case f

-15-
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In Fig. (12) to Fig. (15) the corresponding response for f 10 Hz

is given. It is noted that as f increases, with other parameters held

constant, the response becomes smoother and fewer cases of undamped

resonant behavior take place.

In conclusion, the results presented show several trends in the

frequency ranges encountered in earthquakes, which may be summarized as

follows:

(a) The DAF for pipes having relatively low aspect ratios,

(e.g. D/L < 0.2) will not contain sharp peaks in response

to earthquakes where low frequencies predominate.

(b) As D/L increases,the resonant response becomes more signi-

ficant, and relatively large DAF are encountered.

(c) High resonant responses will occur at low frequencies due

to an absence of radiation damping. Such responses will

tend to occur for pipe-soil systems where f = c /A is
s s

relatively large; i.e. in relatively stiff soils containing

pipes with joints spaced relatively closely.

-16-
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