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INTRODUCTION

An extension is made of a paper (3) introducing a method for the
evaluation of the seismic risk at a site of an engineering project. The
added feature is the geographical spread of the site, rather than the

concentration of the system at one point.

DETERMINISTIC ANALYSIS

It is assumed that the particular form

b,M b,

Y =b e R O (1

recommended by Esteva and Rosenblueth (4) for peak ground acceleration
(Y =A), peak ground velocity (Y =v), and peak ground displacement (Y =D)
is exact and deterministic, given d, the straight-line distance between
the point of interest and a point that just generated an earthquake of
magnitude M. {bl » by ,b3} are suggested constants typically equal to
{2000, .8, 1.7}, {16, 1.0, 1.7}, and {7, 1.2, 1.6} for A, V, and D
respectively in southern California, with A, V, and D in units of centi-
meters and seconds, and d in kilometers.

Assume that a point site has a deterministic resistance R,, and that
a point earthquake source generates an earthquake of magnitude M,. The
coordinates of the site and the source are X, and ys, and Xe and ye,

respectively (Fig. 1). Then,
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d = f(xs-xe)2+(ys—ye)2‘ e, e (D)

and the peak-ground effect S0 is
So = b, e d e tesiseiaceantaann I )

If S, is greater than or equal to Rj, the site will fail. If 5, is less

than Ro’ the site will survive®.
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Figure 1

ASSUMPTION RELAXATIONS; INTRODUCE RANDOMNESS

A. Assume M is random, i.e., M = M(m).

Then

* The [survive,fail] or [0,1] type of site is assumed throughout this

report.



and

So b, eb, ™ 47Ps
— = et et tateetea e (5)
R, R,
M -
S, 1 D2M(m) gbs
P[site survives] = P[— < 1] = P[ < 1] =
Ry Ry
1 R 1 R
=PM@m) < — ln —— ] = F (= In ———) ..... (6)
%2 b, d7b3 ™ b, b, d7Ps

where Fm(m) is the cumulative distribution of the magnitude M.

B. M and R are random.

R(r)

ALY sz(m)
g d

P[site survives] = P[ > 1] = P[R(x) > b1 e _bsl m] ¢« P[M=m] =

M
max

= j [1 - Fp(b, e d"b3)]fm(m)dm R ¢).
min

where FR(r) is the cumulative distribution of the site resistance R.

C. Expand the earthquake source to a set of sources with the distribution

of active source location given.

d = d(t) = f(xs +x ()7 + (7, - ye(t))?“ el (8)



where xe(t) and ye(t) are the parametric equations of the earthquake

sources. (See Fig. 2)

P[site survives] = P[%- < 1] =

b, oP2M g(e)Ps
= PJ < lIm,t] * P[T=¢t] * P[M=m] =

R(r)

J [1 - Fo(b, ™™ a®H1E () + £ (D)dndt oennne. 9)
m

R

t
where ft(t) is the PDF of the active source location.
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SYSTEM SITE RELIABILITY

Assume a fault with coordinates x(t), y(t), t € [0,L] where L is the
length of the fault.

Also assume a site distributed geographically in a linear manner with
a known random distribution of strength. The site can then be assumed to
be a series of '"'short'" links. (See Fig. 3) &Each link has a resistance
which is a known random variable and is independent of each other link.

Then,

P[site system survives] =

P[site system survives | m,t] * P[M=m] * P[T=t] =

P[ (site link 1 survives) Ml (site link 2 survives) ... [ m,t] *
* P[M=m] * P[T=¢t] =
n

-TT {P[site link i survives, i=1,2,...,n | m,t]} .
i=1

» P[M=m] « P[T=t]

By substituting Eq. 1

n S5
= J j;[g_[P(EI < 1 [ m,t) ] fM(m) . fT(t)dmdt =
m t
n b e (0 |
i=1 R,
mt i
- bom -b
m t
r bym b
—bs . ) . .
= j J;EE {1-7 |m, t (b, e 27 d, (e) %) } £ (m) « £.(8) ~dm+ dt
m t

(10)



Equation 10 is the expression necessary to calculate the reliability
of a continuous system, In many cases, however, it may be preferable to

calculate the probability of failure directly, i.e.,

P{failure of system] = 1 - P[system survives] =

n
-t J J . l{l - FR.Im,f (b, ebzm di(t)_b3)} ‘fM(m) 'fT(t) edm * dt =
= i
m t

H

bom di(t)_bs)] + £, (@) + £.(t) *dm * dt

o
= jf{l— .[| [1—]:*R‘|m’t (b, e
ot i=1 i

(11)

The purpose of this transformation is the ability to obtain more

accurate significant figures of the computed reliability expressions.

EXAMPLES

Four plots are presented comparing various results.

1. Probability of failure of a one-site system, two-site system, and
four-site system. The geometric configuration of the system and

source are:

a) 1l-site system ¢




b) 2-site system
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Notice that the probability of failure for one site remains constant
as long as A is less than the fault length minus some short length,

say Le In algebraic form

ff*

P[failure | A < | FLONG - Logg | 1 = constant .... (12)

where FLONG = fault length.

Once A becomes much larger than the fault length, the probability of

failure will decrease as a power function with a negative exponent.
For the two-site case, notice that the failure of one of the two

sites is dependent on the failure of the second site for some small A,

say

A < Reff et et s eeeecesen e et et eacanacoreetenons (13)
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It seems that Re and Le are equal to 2.5 - 3.0 times the distance

ff ff

from the fault for the given set of parameters.

The probability of failure of a one-site and two-site system are
also plotted for a different distance from the fault line (d = 50km).
Again, R

and Le are probably equal, but the short length of the

eff ff
fault, compared to d, hides this fact. (Fig. 4)

Probability of failure of a one-site system versus the location of the
site. Note again, that, for small distances from the fault, the

P[failure] is constant, but for large distances, the P[failure] drops. (Fig. 5)

Probability of failure of a one-site system versus increasing resistance.
For all three examples, the resistance is a random variable, normally
distributed with an extremely low standard deviation, thus making the
site almost deterministic. Cornell's results are superimposed using the

same parameters. (Fig. 6)

The probability of failure of a two-site system is plotted for 0 = 1
(system almost deterministic) and ¢ = 200 (system with random normally
distributed resistances). The only apparent change is at separation
distances d = 0. to 10. This is expected to be, since the two sites
are not totally dependent on each other (i.e., their resistances are
not equal). (Fig. 7)

Table 1 shows the change of probability of failure for a one-site
system with increasing standard deviation, 0, and mean equal to

1000 cm/sec?.
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o (cm/sec?) P(£f)
1 .1681

2 .1676

5 .1666

20 .1665

50 .1669

70 .1672

150 .1691

Table 1

By no means are these results exhaustive, but they are an indication

of the potential in the described analysis.



COMPUTER PROGRAM
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2.0 MAIN NDATE = 74137 12/31/729

DOUBLE INTEGRATICN SCHEME FOR EVALUATING PROBABILITY OF SUCCESS
OF STTES IN SERIES SUBJECT TTO AN EARTHQUAKE FROM A GIVEN FAULT.,
DIMENSICGN MEAN(LD0),SICMACLICD),X{10D),Y(100)

REAL NUSMMIN,MMAX ,MEAN

COMMON Xy Yy NUMFEAN,STGMA, FLONGyNSTTESyMMIN,START

READ{5,100) FLCNGySTART,END,MMIN,MMAX,yNU

TF{FLONGoEQeDo) CALL EXIT

FORMAT (6F10.7)

READ{5,101) NSITES

FCRMAT(I3) .
READ{S,200){X (1) Y{I ), MFANLT)},SIGMA(T),I=1,NSITES)
FORMAT{4¥10,4)

WRITE(6,63C) FLONG4NSITES

WRITE(6,601 1 (X(T)yY(T),MEAN(T),SICMA(T)},T=1,NSITES)

FORMATI{9(/),!' THE FAULTS LENGTH IS*',F20.5/' THE NUMBER OF SITES CON

SIDERED IS ',13,* AT THE FOLLOWING COORDINATES®,/*' X
MEAN AND STANDARD DEVIATION QOF RESISTANCE',/)

FORMAT(4F1C.4)

VOL=0.

DO 1000 L1l=1,4¢

A= { MMAX-MMIN)%_1/50, +MMIN

DO 1000 1.2=1,49

B=START+{(END-START }*L2/50,

CALL FUN{A,B,GFF)}

VOL =VOL+GFF

B=START .

PO 1001 L1=1,49

A={ MMAX-MMIN}*L1/50,+MMIN

CALL FUN(A,B,GFF}

VI =VOL+GFF/ 2,

IF(ABS{R-END) LT, .0301) GO TO 1225

BR=END

GO TO 1902

A=MMIN

DO 1003 L2=1,49

B=START+(ENC~-START )*L2/50,

CALL FUN{A,R,GFF)

VOLL=VOL+GFF /2,

TF{ABS{A-MMAX) .GT..0%1) GO T2 1026

A=MMAX

G TO 1004

DO 1005 Li=l,2

DO 1005 L2=1,2

B=START+{END-START)I*(L1-1)

A=MMI N+ {MMAX-MMIN)}X(L2~1)

CALLL FUN{A,B,GFF)

VOL=VOL#+GFF/4,

VOL=VOLX{ MMAX~-MMIN}I*{END-START ) /25601,

WRITE{6,301}VEL

FORMAT(? PROBABILITY OF FAILURE = *,E10.4)

GO 70 18
CALL EXIT
END

I



RELEASE 2.0 FUN DATE = 74137 12/01/29

SUBROUTINE FUNI{EM,T,GFF)
REAL NU,MMIN,MEAN
DIMENSION MEAN{1ICO),SIGMA{100) ,X(100}),Y(100)
COMMON X, Yy NU,MEAN,SIGMA, FLONG,NSITES,MMIN,START
81=2000,
XT=T
YT=0.
FT=1e/FLONG
FM=NUXEXP (-NU*{EM-MMIN}}
. BZ=08
B3=1.7
FS=1.
DO 10 I=1,NSITES
DEE=SQRTUIX{T)-XT)*¥2+{Y{T1)})=YT)%%2}
ES=B1*EXP{B2*EM)/DEE**B3
30 CALL DNDTR{ES,MEAN(T),SIGMA(I)},P}

P=1.-P
10 FS=FS*P ]
GFF=(1.~FS)%FT*FM <
RETURN
END
269 SUBROLTINE DNDTR{XsEXySX,sP)
c THIS SUBROUTINF EVALUATES THE CUMULATIVE DISTRIBUTION FOR A NORMALLY
c DISTRIBUTED RANPOM VARIABLE, GIVEN ITS MEAN,AND STANDARD DEVIATION
270 AX=ABS({X-EX)/SX)
271 T=1./(1.+.2316419%AX)
272 D=0
273 IF{AX.CT.10.) GC TC 5
274 D=.3GEG423%EXP{—AX*¥AX/ 2. )
275 5 P=lo=DAT*({{(10330274%T-1,821256)%T+1o 781478)%T-0,3565638)%T+,31935
1815 )
276 IF(X.LT.EX) P=1,-P
217 RETURN
278 END

(7



THE FAULTS LENGTH 1S 150, 08050
THE NUMBER OF SITES COSIDERED TS 1 AT THE FOLLOWING CONRDINATES
X Y MEAN AND STANDARD DEVIATION CF RESISTANCE

SC. 000G 5.0009 10682,0000 1.2009
PROBARILITY OF FAILURE = 0o2CC9E+CO

THE FAULTS LENGTH IS 150.0C000
THE NUMBER OF SITES COSTNDERED IS 1 AT THE FOLLOWING COORDINATES
X Y MFEAN AND STANDARD DEVIATICN OF RESISTANCE

100.0000 5.,0000 100J.0000 1.02¢0
PROBABILITY OF FATLURE = 0.1541E-01

THE FAULTS LENGTH IS 150.00020
THE NUMBER OF SITES COSIDERFD IS 1 AT THE FOLLOWING COORDINATES
X Y MEAN AND STANDARD GEVIATION OF RESISTANCE

0c0 50,000C 1090,000D 1. 0020
PROBABILITY OF FATLURE = {,1780F-Q1

THE FAULTS LENGTH IS 150 .58 00
THE NUMBER 0OF SITES COSIDERED IS 1 AT THE FOLLOWING COCRDINATES
X Yy MEAN AND STANDARD DEVIATION 0OF RESISTANCE

50.002¢C 53,0000 1000.2000 1.0000
PROBARILITY OF FATLURE = 0.1l463E-01

gO\U\e l'»,”;\’g q\ ‘ff‘%ui‘Ls
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