NSF-RA-8-74-533

PB80-104755

OPTIMUM SEISMIC PROTECTION FOR NEW BUILDING

CONSTRUCTION IN EASTERN METROPOLITAN AREAS

NSF GRANT GK-27955 and GI-29936

Internal Study Report No. 41

SEISMIC RISK ANALYSIS OF SIMPLE SERIES SYSTEMS

George Panoussis

May 1974

Department of Civil Engineering Massachusetts Institute of Technology

Cambridge, Massachusetts

ASRA INFORMATION RESOURCES NATIONAL SCIENCE FOUNDATION

.

.

50272 -101				
REPORT DOCUMENTATION	1. REPORT NO.	2.	3. Recipient's Accession No.	
4. Title and Subtitle	MJI - M-E-/4-333		1 0 8 0 - 104 75	<u> </u>
Seismic Risk Analys	is of Simple Series S	ystems (Optimum Seismic	May 1974	
Protection for New I	Building Construction	in Eastern Metropoli-	6.	
tan Areas, Internal	Study <u>Report 41</u>)			
G. Panoussis			8. Performing Organization Rept. 1	No.
9. Performing Organization Name a	nd Address		10. Project/Task/Work Unit No.	
Massachusetts Insti	tute of Technology			
Department of Civil Engineering		11. Contract(C) or Grant(G) No.		
Cambridge, Massachu:	setts 02139		^(C) GK27955 (G) GI29936	
12. Sponsoring Organization Name a	and Address		13. Type of Report & Period Cover	red
Engineering and Appl	ied Science (EAS)			
National Science Fou 1800 G Street N W	indation			
Washington, D.C. 20)550		14.	
15. Supplementary Notes			L	
10. Abstract (Limit: 200 words)				
A method is presente	ed for the evaluation	of the seismic risk at	a site of an engineer	ring
the concentration of	f the system at one p	the geographical spread	of the site, rather i	than
geographically in a	linear manner with a	known random distributi	on of strongth It	
can then be assumed	to be a series of "s	hort" links. Each link	has a resistance which	ch
is a known random va	ariable and is indepe	ndent of every other lin	k. Four plots are de	e-
tailed comparing var	rious results: proba	bility of failure of a o	ne-site system, two-	
site system, and for	ir-site system; proba	bility of failure of a o	ne-site system versu	s
resistance: and prot	site; probability of	failure of a one-site s	ystem versus increas	ing
ployed is included i	in this report.	i a two-site system. In	le computer program ei	111-
17. Document Analysis a. Descript	ors			
Risk		Probability theorv		
Earth movements		Computer programs		
Earthquakes		Sites		
b. Identifiers/Open-Ended Terms	;			
c. COSATI Field/Group			p	
18. Availability Statement		19. Security Class (This	s Report) 21. No. of Pages	
		20 Convite Class (This	Page) 22 Brian	
		ZU. Security Class (This	PC AOS	ACI
(See ANSI-Z39.18)	See Inst	tructions on Reverse	OPTIONAL FORM	2 72 (4-77
		٤	Department of Con	nmerce

.

INTRODUCTION

An extension is made of a paper (3) introducing a method for the evaluation of the seismic risk at a site of an engineering project. The added feature is the geographical spread of the site, rather than the concentration of the system at one point.

DETERMINISTIC ANALYSIS

It is assumed that the particular form

$$Y = b_1 e^{b_2 M} d^{-b_3}$$
 (1)

recommended by Esteva and Rosenblueth (4) for peak ground acceleration (Y = A), peak ground velocity (Y = v), and peak ground displacement (Y = D) is exact and deterministic, given d, the straight-line distance between the point of interest and a point that just generated an earthquake of magnitude M. $\{b_1, b_2, b_3\}$ are suggested constants typically equal to $\{2000, .8, 1.7\}$, $\{16, 1.0, 1.7\}$, and $\{7, 1.2, 1.6\}$ for A, V, and D respectively in southern California, with A, V, and D in units of centimeters and seconds, and d in kilometers.

Assume that a point site has a deterministic resistance R_0 , and that a point earthquake source generates an earthquake of magnitude M_0 . The coordinates of the site and the source are x_s and y_s , and x_e and y_e , respectively (Fig. 1). Then,

> Any opinions, findings, conclusions or recommendations expressed in this publication are those of the author(s) and do not necessarily reflect the views of the National Science Foundation.

l

d =
$$\sqrt{(x_s - x_e)^2 + (y_s - y_e)^2}$$
(2)

and the peak-ground effect S_0 is

$$S_0 = b_1 e^{b_2 M} d^{-b_3}$$
 (3)

If S_0 is greater than or equal to R_0 , the site will fail. If S_0 is less than R_0 , the site will survive^{*}.

ASSUMPTION RELAXATIONS; INTRODUCE RANDOMNESS

A. Assume M is random, i.e., M = M(m).

Then

$$S_0 = b_1 e^{b_2 M(m)} d^{-b_3}$$
 (4)

^{*} The [survive,fail] or [0,1] type of site is assumed throughout this report.

$$P[\text{site survives}] = P[\frac{S_0}{R_0} < 1] = P[\frac{b_1 e^{b_2 M(m)} d^{-b_3}}{R_0} < 1] =$$
$$= P[M(m) < \frac{1}{b_2} \ln \frac{R_0}{b_1 d^{-b_3}}] = F_m(\frac{1}{b_2} \ln \frac{R_0}{b_1 d^{-b_3}}) \dots (6)$$

where $F_{m}(m)$ is the cumulative distribution of the magnitude M.

B. M and R are random.

$$P[\text{site survives}] = P[\frac{R(r)}{S} > 1] = P[R(r) > b_1 e^{b_2 M(m)} d^{-b_3} | m] \cdot P[M=m] = \int_{max}^{M_{max}} [1 - F_R(b_1 e^{b_2 m} d^{-b_3})] f_m(m) dm \dots (7)$$

$$M_{min}$$

where $F_{R}(r)$ is the cumulative distribution of the site resistance R.

C. Expand the earthquake source to a set of sources with the distribution of active source location given.

$$d = d(t) = \sqrt{(x_s + x_e(t))^2 + (y_s - y_e(t))^2} \dots (8)$$

and

where $x_e(t)$ and $y_e(t)$ are the parametric equations of the earthquake sources. (See Fig. 2)

 $P[\text{site survives}] = P[\frac{S}{R} < 1] =$

$$= P[\frac{b_1 e^{b_2 M} d(t)^{-b_3}}{R(r)} < 1 | m, t] \cdot P[T = t] \cdot P[M = m] =$$

$$= \int_{t} \int_{m} [1 - F_{R}(b_{1} e^{b_{2}m} d^{-b_{3}})]f_{m}(m) \cdot f_{t}(t)dmdt \dots (9)$$

where $f_t(t)$ is the PDF of the active source location.

SYSTEM SITE RELIABILITY

Assume a fault with coordinates x(t), y(t), t ε [0,L] where L is the length of the fault.

Also assume a site distributed geographically in a linear manner with a known random distribution of strength. The site can then be assumed to be a series of "short" links. (See Fig. 3) Each link has a resistance which is a known random variable and is independent of each other link. Then,

P[site system survives] =

- = P[site system survives | m,t] P[M=m] P[T=t] =

$$= \prod_{i=1}^{n} \{ P[\text{site link i survives, } i=1,2,\ldots,n \mid m,t] \} \cdot P[M=m] \cdot P[T=t]$$

By substituting Eq. 1

$$= \int_{m} \int_{t} \prod_{i=1}^{n} \left[P\left(\frac{S_{i}}{R_{i}} < 1 \mid m, t\right) \right] f_{M}(m) \cdot f_{T}(t) dm dt =$$

$$= \int_{m} \int_{t} \prod_{i=1}^{n} \left\{ P\left[\frac{b_{1} e^{b_{2}m} d_{i}(t)^{-b_{3}}}{R_{i}} < 1 \mid m, t\right] \right\} f_{M}(m) \cdot f_{T}(t) dm dt$$

$$= \int_{m} \int_{t} \prod_{i=1}^{n} \left\{ P\left[R_{i} > b_{1} e^{b_{2}m} d_{i}(t)^{-b_{3}} \mid m, t\right] \right\} f_{M}(m) \cdot f_{T}(t) dm dt$$

$$= \int_{m} \int_{t} \prod_{i=1}^{n} \left\{ 1 - F_{R_{i}} \mid m, t \left(b_{1} e^{b_{2}m} d_{i}(t)^{-b_{3}}\right) \right\} \cdot f_{M}(m) \cdot f_{T}(t) \cdot dm \cdot dt$$

(10)

Equation 10 is the expression necessary to calculate the reliability of a continuous system, In many cases, however, it may be preferable to calculate the probability of failure directly, i.e.,

P[failure of system] = 1 - P[system survives] =

$$= 1 - \iint_{m \ t} \prod_{i=1}^{n} \{1 - F_{R_{i}|m, f}(b_{1} e^{b_{2}m} d_{i}(t)^{-b_{3}})\} \cdot f_{M}(m) \cdot f_{T}(t) \cdot dm \cdot dt =$$

$$= \iint_{m \ t} \{1 - \prod_{i=1}^{n} [1 - F_{R_{i}|m, t}(b_{1} e^{b_{2}m} d_{i}(t)^{-b_{3}})] \cdot f_{M}(m) \cdot f_{T}(t) \cdot dm \cdot dt$$
(11)

The purpose of this transformation is the ability to obtain more accurate significant figures of the computed reliability expressions.

EXAMPLES

Four plots are presented comparing various results.

- Probability of failure of a one-site system, two-site system, and four-site system. The geometric configuration of the system and source are:
 - a) 1-site system

b) 2-site system

c) 4-site system

Notice that the probability of failure for one site remains constant as long as A is less than the fault length minus some short length, say L_{eff} . In algebraic form

 $P[failure | A < | FLONG - L_{eff} |] = constant \dots (12)$

where FLONG = fault length.

Once A becomes much larger than the fault length, the probability of failure will decrease as a power function with a negative exponent.

For the two-site case, notice that the failure of one of the two sites is dependent on the failure of the second site for some small A, say

 $A < R_{eff}$ (13)

<u>Figure 4</u>

It seems that R_{eff} and L_{eff} are equal to 2.5 - 3.0 times the distance from the fault for the given set of parameters.

The probability of failure of a one-site and two-site system are also plotted for a different distance from the fault line (d = 50 km). Again, R_{eff} and L_{eff} are probably equal, but the short length of the fault, compared to d, hides this fact. (Fig. 4)

- Probability of failure of a one-site system versus the location of the site. Note again, that, for small distances from the fault, the P[failure] is constant, but for large distances, the P[failure] drops. (Fig. 5)
- 3. Probability of failure of a one-site system versus increasing resistance. For all three examples, the resistance is a random variable, normally distributed with an extremely low standard deviation, thus making the site almost deterministic. Cornell's results are superimposed using the same parameters. (Fig. 6)
- 4. The probability of failure of a two-site system is plotted for $\sigma = 1$ (system almost deterministic) and $\sigma = 200$ (system with random normally distributed resistances). The only apparent change is at separation distances d $\simeq 0$. to 10. This is expected to be, since the two sites are not totally dependent on each other (i.e., their resistances are not equal). (Fig. 7)

Table 1 shows the change of probability of failure for a one-site system with increasing standard deviation, σ , and mean equal to 1000 cm/sec².

Ø

Figure 5

Figure 6

$\sigma (cm/sec^2)$	P(f)
1	.1681
2	.1676
5	.1666
20	.1665
50	.1669
70	.1672
150	.1691

<u>Table 1</u>

By no means are these results exhaustive, but they are an indication of the potential in the described analysis.

COMPUTER PROGRAM

RELEASE	2.0	MAIN	DATE = 74	4137	12/01/29
C C	DOUBLE INTEGRAT DF SITES IN SERI DIMENSION MEAN() REAL NU,MMIN,MM	ICN SCHEME FOR EVAL LES SUBJECT TO AN H LOO),SIGMA(100),X(AX,MEAN	UATING PR ARTHQUAKE LOO),Y(100	ROBABILITY OF E FROM A GIVE D)	SUCCESS N FAULT.
18	COMMON X,Y,NU,MI READ(5,100) FLCI TF(FLONG.EQ.0.)	FAN,SIGMA,FLONG,NS NG,START,END,MMIN, CALL EXIT	TES,MMIN, MAX,NU	START	
100	FORMAT(6F10.2) READ(5,101) NSI	TES			
101	FORMAT(13) READ(5.200)(X(1),Y(I),MFAN(I),SIG	$(A(I) \cdot I = 1 \cdot$	NSITES)	
200	FORMAT(4F10.4) WRITE(6,600) FL(WRITE(6.601)(X(DNG,NSITES I),Y(I),ME∆N(I),SI(SMA(I).T=1	L.NSITES)	
600	FORMAT(9(/), TI LSIDERED IS ', I3 MEAN AND	HE FAULTS LENGTH I AT THE FOLLOWING STANDARD DEVIATION	GI,F20.5/	THE NUMBER	OF SITES CON Y
601	FORMAT (4F10.4)	STANDARD DEVIATION	DI NESISI	ANCL #77	
	DD 1000 L1=1,49 A=(MMAX-MMIN)*L1 D0 1000 L2=1,49 P=STAPT+(END=ST	L/50.+MMIN			
	CALL FUN(A,B,GFI	F)			
10 00	VOL=VOL+GFF B=START				
1002	DD 1001 L1=1,49 A=(MMAX-MMIN)*L1	1/50.+MMIN			
1001	VOL=VOL+GFF/2. IF(ABS(B-END).L ⁻ B=END GO TO 1002	001) GO TO 1025			
1025 1004	A=MMIN DO 1003 L2=1,49 B=START+(END-STA CALL FUN(A-B-GE	ART)*L2/50. F)			
1003	VOL=VOL+GFF/2 IF(ABS(A-MMAX).(A=MMAX)	GT001) GO TO 1024)		
1026	GB 19 1004 DO 1005 L1=1,2 DO 1005 L2=1,2 B=START+(END-ST A=MMIN+(MMAX-MM	ART)*(L1-1) IN)*(L2-1)			
1005	VOL=VOL+GFF/4. VOL=VOL*(MMAX-M	MIN)*(END-START)/2	501.		
301	FORMAT (* PROB	ABILITY OF FAILURE	= ',E10.4	4)	
19	CALL FXIT				

RELEASE	2.0	FUN	DATE = 74137	12/01/29
	SUBROUTIN	E FUN(EM,T,GFF)		
	REAL NU,M	MIN, MEAN		
	DIMENSION	MEAN(100),SIGMA(100),X(100),Y(100)	
	COMMON X,	Y,NU,MEAN,SIGMA,FI	_ONG,NSITES,MMIN,START	
	B1=2000.			
	XT = T			
	YT=0.	•		
	FT=1./FLO	NG		
	FM=NU*EXP	(-NU*(EM-MMIN))		
•	82=.8			
	B3=1.7			
	FS=1.			
	DO 10 I=1	,NSITES		
	DEE=SQRT((X(I)-XT)**2+(Y(I)-YT)**2)	
	ES=B1*EXP	(B2*EM)/DEE**B3		
30	CALL DNDT	R(ES, MEAN(I), SIGM	A(I),P)	
	P=1P			
10	FS=FS*P			
	GFF=(1F	S)*FT*FM		
	RETURN			
	END	•		

	TRMALLY
C THIS SUBROUTINE EVALUATES THE CUMULATIVE DISTRIBUTION FOR A NO	285 ALL I
C DISTRIBUTED RANDOM VARIABLE, GIVEN ITS MEAN, AND STANDARD DEVIAT	FION.
$270 \qquad AX=ABS((X-EX)/SX)$	
271 $T=1./(1.+.2316419*AX)$	
272 D=0.	
273 IF(AX.GT.10.) GC TO 5	
274 D=.3989423*EXP(-AX*AX/2.)	
275 5 P=1D*T*((((1.330274*T-1.821256)*T+1.781478)*T-0.3565638)*T+.3	31938
1815)	
276 IF(X.LT.EX) P=1P	
277 RETURN	
278 END	

50.0000 50.0000 1000.0000 1.0000 PROBABILITY OF FAILURE = 0.1463E-01

THE FAULTS LENGTH IS 150.00000 THE NUMBER OF SITES COSIDERED IS 1 AT THE FOLLOWING COORDINATES X Y MEAN AND STANDARD DEVIATION OF RESISTANCE

0.0 50.0000 1000.0000 1.0000 PROBABILITY OF FAILURE = C.1780E-01

THE FAULTS LENGTH IS150.00000THE NUMBER OF SITES COSIDERED IS1 AT THE FOLLOWING COORDINATESXYMEAN AND STANDARD DEVIATION OF RESISTANCE

100.0000 5.0000 1003.0000 1.0000 PROBABILITY OF FAILURE = 0.1541E-01

THE FAULTS LENGTH IS150.00000THE NUMBER OF SITES COSTDERED IS1 AT THE FOLLOWING COORDINATESXYMEAN AND STANDARD DEVIATION OF RESISTANCE

50.0000 5.0000 1000.0000 1.0000 PROBABILITY OF FAILURE = 0.2009E+00

THE FAULTS LENGTH IS150,00000THE NUMBER OF SITES COSIDERED IS1 AT THE FOLLOWING COORDINATESXYMEAN AND STANDARD DEVIATION OF RESISTANCE

REFERENCES

- 1. Chow, D., "System Seismic Risk Analysis," unpublished IAP-MIT report, Department of Civil Engineering, Structures Division, 1973.
- 2. Cornell, C. A., "Engineering Seismic Risk Analysis," <u>Bulletin of the</u> Seismological Society of America, Vol. 58, No. 5, October 1968.
- 3. Cornell, C. A., <u>Probability</u>, <u>Statistics and Decision for Civil</u> Engineers, McGraw-Hill, 1970 (with J. R. Benjamin).
- 4. Esteva, L. and Rosenblueth, E., "Spectra of Earthquakes at Moderate and Large Distances," <u>Soc. Mex. de Ing. Sismica</u>, Mexico II, 1-18, 1964.