OPTIMUM SEISMIC PROTECTION FOR NEW BUILDING

CONSTRUCTION IN EASTERN METROPOLITAN AREAS

```
NSF GRANT GK-27955 and GI-29936
```

Internal Study Report No. 41

SEISMIC RISK ANALYSIS OF SIMPLE SERIES SYSTEMS

George Panoussis

May 1974

Department of Civil Engineering Massachusetts Institute of Technology
Cambridge, Massachusetts

REPORT DOCUMENTATION PAGE	1._REPORT NO. NSF-RA-E-74-533	${ }^{2}$	3. Recipient's Accession No. PB80-104755
4. Title and Subtitle Seismic Risk Analysis of Simple Series Systems (Optimum Seismic Protection for New Building Construction in Eastern Metropolitan Areas, Internal Study Report 41) 7. Author(s) G. Panoussis			5. Report Date
			6.
			8. Performing Organization Rept. No. No. 41
9. Performing Organization Name and Address Massachusetts Institute of Technology Department of Civil Engineering Cambridge, Massachusetts 02139			10. Project/Task/Work Unit No.
			11. Contract(C) or Grant(G) No.
			(c) GK27955
			(G) GI29936
12. Sponsoring Organization Name and Address Engineering and Applied Science (EAS) National Science Foundation 1800 G Street, N.W. Washington, D.C. 20550			13. Type of Report \& Period Covered
			14.
15. Suppiementary Notes			
16. Abstract (Limit: 200 words)			
A method is presented for the evaluation of the seismic risk at a site of an engineering			
geographically in a linear manner with a known random distribution of strength. It			
can then be assumed to be a series of "short" links. Each link has a resistance which			
is a known random variable and is independent of every other link. Four plots are de-			
tailed comparing various results: probability of failure of a one-site system, two-			
site system, and four-site system; probability of failure of a one-site system versus			
the location of the site; probability of failure of a one-site system versus increasing			
resistance; and probability of failure of a two-site system. The computer program employed is included in this report.			

17. Document Analysis a. Descriptors

Risk	Probability theory
Earth movements	Computer programs
Earthquakes	Sites

c. COSATI Field/Group

An extension is made of a paper (3) introducing a method for the evaluation of the seismic risk at a site of an engineering project. The added feature is the geographical spread of the site, rather than the concentration of the system at one point.

DETERMINISTIC ANALYSIS

It is assumed that the particular form

$$
\begin{equation*}
Y=b_{1} e^{b_{2} M} d^{-b_{3}} \tag{1}
\end{equation*}
$$

recommended by Esteva and Rosenblueth (4) for peak ground acceleration $(Y=A)$, peak ground velocity $(Y=v)$, and peak ground displacement $(Y=D)$ is exact and deterministic, given d, the straight-line distance between the point of interest and a point that just generated an earthquake of magnitude M . $\left\{\mathrm{b}_{1}, \mathrm{~b}_{2}, \mathrm{~b}_{3}\right\}$ are suggested constants typically equal to $\{2000, .8,1.7\},\{16,1.0,1.7\}$, and $\{7,1.2,1.6\}$ for A, V, and D respectively in southern California, with A, V, and D in units of centimeters and seconds, and d in kilometers.

Assume that a point site has a deterministic resistance R_{0}, and that a point earthquake source generates an earthquake of magnitude M_{0}. The coordinates of the site and the source are x_{s} and y_{s}, and x_{e} and y_{e}, respectively (Fig. 1). Then,

Any opinions, findings, conclusions or recommendations expressed in this publication are those of the author(s) and do not necessarily reflect the views of the National Science Foundation.

$$
\begin{equation*}
d=\sqrt{\left(x_{s}-x_{e}\right)^{2}+\left(y_{s}-y_{e}\right)^{2}} \quad \ldots \ldots \ldots \ldots \ldots \ldots \tag{2}
\end{equation*}
$$

and the peak-ground effect S_{0} is

$$
\begin{equation*}
S_{0}=b_{1} e^{b_{2} M} d^{-b_{3}} \tag{3}
\end{equation*}
$$

If S_{0} is greater than or equal to R_{0}, the site will fail. If S_{0} is less than R_{0}, the site will survive*.

Figure 1

ASSUMPTION RELAXATIONS; INTRODUCE RANDOMNESS
A. Assume M is random, i.e., $M=M(m)$.

Then

$$
\begin{equation*}
S_{0}=b_{1} e^{b_{2} M(m)} d^{-b_{3}} \tag{4}
\end{equation*}
$$

[^0]and
\[

$$
\begin{gather*}
\frac{S_{0}}{R_{0}}=\frac{b_{1}{e b_{2}}_{M(m)}^{R_{0}} d^{-b_{3}}}{R_{0}} \ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots \tag{5}\\
P[\text { site survives }]=P\left[\frac{S_{0}}{R_{0}}<1\right]=P\left[\frac{b_{1} e^{b_{2} M(m)} d^{-b_{3}}}{R_{0}}<1\right]= \\
=P\left[M(m)<\frac{1}{b_{2}} \ln \frac{R_{0}}{b_{1} d^{-b_{3}}}\right]=F_{m}\left(\frac{1}{b_{2}} \ln \frac{R_{0}}{b_{1} d^{-b_{3}}}\right) \ldots \ldots \tag{6}
\end{gather*}
$$
\]

where $F_{m}(m)$ is the cumulative distribution of the magnitude M.
B. M and R are random.
$P[$ site survives $\left.]=P\left[\frac{R(r)}{S}>1\right]=P\left[R(r)>b_{1} e^{b_{2} M(m)} d^{-b_{3}}\right] m\right] \cdot P[M=m]=$

$$
\begin{equation*}
=\int_{M_{\min }}^{M_{\max }}\left[1-F_{R}\left(b_{1} e^{b_{2} m} d^{-b_{3}}\right)\right] f_{m}(m) d m \tag{7}
\end{equation*}
$$

where $F_{R}(r)$ is the cumulative distribution of the site resistance R.
C. Expand the earthquake source to a set of sources with the distribution of active source location given.

$$
\begin{equation*}
d=d(t)=\sqrt{\left(x_{s}+x_{e}(t)\right)^{2}+\left(y_{s}-y_{e}(t)\right)^{2}} \ldots \ldots \tag{8}
\end{equation*}
$$

where $x_{e}(t)$ and $y_{e}(t)$ are the parametric equations of the earthquake sources. (See Fig. 2)
$P[$ site survives $]=P\left[\frac{S}{R}<1\right]=$

$$
=P\left[\left.\frac{b_{1} e^{b_{2} M} d(t)^{-b_{3}}}{R(r)}<1 \right\rvert\, m, t\right] \cdot P \cdot[T=t] \cdot P[M=m]=
$$

$$
\begin{equation*}
=\int_{t} \int_{m}\left[1-F_{R}\left(b_{1} e^{b_{2} m} d^{-b_{3}}\right)\right] f_{m}(m) \cdot f_{t}(t) d m d t \ldots \ldots \ldots \tag{9}
\end{equation*}
$$

where $f_{t}(t)$ is the PDF of the active source location.

Figure 2

Figure 3

Assume a fault with coordinates $x(t), y(t), t \in[0, L]$ where L is the length of the fault.

Also assume a site distributed geographically in a linear manner with a known random distribution of strength. The site can then be assumed to be a series of "short" links. (See Fig. 3) Each link has a resistance which is a known random variable and is independent of each other link. Then,

P [site system survives] =
$=P[$ site system survives $\mid m, t] \cdot P[M=m] \cdot P[T=t]=$
$=P[($ site link 1 survives) \cap (site $1 i n k 2$ survives) $\cap \ldots \mid m, t]$.

- $P[M=m]$ - $P[T=t]=$
$=\prod_{i=1}^{n}\{P[$ site link i survives, $i=1,2, \ldots, n \mid m, t]\}$.
- $P[M=m] \cdot P[T=t]$

By substituting Eq. I

$$
\begin{align*}
& =\int_{m} \int_{t} \prod_{i=1}^{n}\left[P\left(\left.\frac{S_{i}}{R_{i}}<1 \right\rvert\, m, t\right)\right] f_{M}(m) \cdot f_{T}(t) d m d t= \\
& =\int_{m} \int_{t} \prod_{i=1}^{n}\left\{P\left[\left.\frac{b_{1} e^{b_{2} m} d_{i}(t)^{-b_{3}}}{R_{i}}<1 \right\rvert\, m, t\right]\right\} f_{M}(m) \cdot f_{T}(t) d m d t \\
& =\int_{m} \int_{i=1}^{n} \prod_{m}^{n}\left\{P\left[R_{i}>b_{1} e^{b_{2} m} d_{i}(t)^{-b_{3}} \mid m, t\right]\right\} f_{M}(m) \cdot f_{T}(t) d m d t \\
& =\int_{m} \int_{i=1}^{n}\left\{1-F_{R_{i}} \mid m, t\left(b_{1} e^{b_{2} m} d_{i}(t)^{-b_{3}}\right)\right\} \cdot f_{M}(m) \cdot f_{T}(t) \cdot d m \cdot d t \tag{10}
\end{align*}
$$

Equation 10 is the expression necessary to calculate the reliability of a continuous system, In many cases, however, it may be preferable to calculate the probability of failure directly, i.e.,
$P[$ failure of system] $=1-P[$ system survives $]=$

$$
\begin{align*}
& =1-\int_{m} \int_{t} \prod_{i=1}^{n}\left\{1-F_{R_{i}} \mid m, f\left(b_{1} e^{b_{2} m} d_{i}(t)^{-b_{3}}\right)\right\} \cdot f_{M}(m) \cdot f_{T}(t) \cdot d m \cdot d t= \\
& =\int_{m} \int_{t}\left\{1-\prod_{i=1}^{n}\left[1-F_{R_{i}} \mid m, t\left(b_{1} e^{b_{2} m} d_{i}(t)^{-b_{3}}\right)\right] \cdot f_{M}(m) \cdot f_{T}(t) \cdot d m \cdot d t\right. \tag{11}
\end{align*}
$$

The purpose of this transformation is the ability to obtain more accurate significant figures of the computed reliability expressions.

EXAMPLES

Four plots are presented comparing various results.

1. Probability of failure of a one-site system, two-site system, and four-site system. The geometric configuration of the system and source are:
a) I-site system

b) 2-site system

c) 4-site system

Notice that the probability of failure for one site remains constant as long as A is less than the fault length minus some short length, say $L_{\text {eff }}$. In algebraic form

$$
\begin{equation*}
\text { P[failure } \left.|\mathrm{A}<| \text { FLONG }-\mathrm{L}_{\mathrm{eff}} \mid\right]=\text { constant } \ldots \tag{12}
\end{equation*}
$$

where $\mathrm{FLONG}=$ fault length.

Once A becomes much larger than the fault length, the probability of failure will decrease as a power function with a negative exponent. For the two-site case, notice that the failure of one of the two sites is dependent on the failure of the second site for some small A, say

$$
\begin{equation*}
A<R_{e f f} \tag{13}
\end{equation*}
$$

Figure 4

It seems that $R_{e f f}$ and $L_{e f f}$ are equal to $2.5-3.0$ times the distance from the fault for the given set of parameters.

The probability of failure of a one-site and two-site system are also plotted for a different distance from the fault line ($\mathrm{d}=50 \mathrm{~km}$). Again, $R_{\text {eff }}$ and $L_{\text {eff }}$ are probably equal, but the short length of the fault, compared to d, hides this fact. (Fig. 4)
2. Probability of failure of a one-site system versus the location of the site. Note again, that, for small distances from the fault, the P[failure] is constant, but for large distances, the P [failure] drops. (Fig. 5)
3. Probability of failure of a one-site system versus increasing resistance. For all three examples, the resistance is a random variable, normally distributed with an extremely low standard deviation, thus making the site almost deterministic. Cornell's results are superimposed using the same parameters. (Fig. 6)
4. The probability of failure of a two-site system is plotted for $\sigma=1$ (system almost deterministic) and $\sigma=200$ (system with random normally distributed resistances). The only apparent change is at separation distances $d \simeq 0$. to 10 . This is expected to be, since the two sites are not totally dependent on each other (i.e., their resistances are not equal). (Fig. 7)

Table 1 shows the change of probability of failure for a one-site system with increasing standard deviation, σ, and mean equal to $1000 \mathrm{~cm} / \mathrm{sec}^{2}$.

Figure 5

Figure 6

Figure 7

$\sigma\left(\mathrm{cm} / \mathrm{sec}^{2}\right)$	$P(f)$
1	.1681
2	.1676
5	.1666
20	.1665
50	.1669
70	.1672

Table 1

By no means are these results exhaustive, but they are an indication of the potential in the described analysis.
COMPUTER PROGRAM

C TOURLE INTEGRATIEN SCHEME FOR EVALUATING PROBABII.ITY OF SUCCESS
C DF SITES IN SERIES SUBJFCT TO AN EARTHQUAKE FROM A GTVEN FAULT. DIMENSION NEAN(10O),SIGMA(10O),X(100),Y(100)
REAI. NU, MMIN,MNAX, MEAN
COMMON X, Y,NU,MFAN,STGMA, FLONG, NSITES,MMIN, START
18 READI5,1001 FLCNG, START, FND,MMIN,MMAX, NU
IF (FLDNG EQ. OO) CALL EXIT
100 FORMAT (6F10.2)
READ (5, 1011 NSITES
101 FCRMAT (I3)
READ(5,200)(X (I), Y(I), MFAN(I),SIGMAII),I=1,NSITES)
200 FGRMAT(4F10:4)
WRITE 6,600$)$ FLONG,NSITES
WRTTE (G, 601$)(X(I), Y(I), M E \Delta N(I), S I G M A(I), T=1, N S I T E S)$
600 FORMAT (91/), THE FAULTS LFNGTH IS:,F2R.5/: THE NUMBER OF SITES CON ISIDERED IS ' 13 , AT THE FOLLOWING COORDINATES*, * $X \quad Y$ 2 MEAN AND STANDARD DEVIATION OF RESISTANCE*, /1
601 FORMAT (4F1C.4)
$V O L=0$.
DO $1000 \mathrm{LI}=1,4 \mathrm{G}$
$A=(M M A X-M M I N) * 1 / 50 .+M M I N$
DO $1000 \quad 1.2=1,49$
$B=S T A R T+(E N D-S T A R T) * L 2 / 50$.
CALL FUN(A,B,GFF)
1000 VOI =VOI +GFF
$B=S T A R T$
1002 DO $1001 \mathrm{LI}=1,49$
$A=(M M A X-M M I N) * L I / 50 .+M M I N$
CALL FUN(A, R,GFF)
1001 VOI $=V O I+G F F / 20$
IF(ABS(B-ENO).LT..OOL) GO TO 1925
$B=E N D$
60 TO 1002
$1025 A=M M I N$
$1004001003 \mathrm{~L} ?=1.49$
$B=S T A R T+(E N D-S T A R T) * L 2 / 50$.
CALL FUN(A,R,GFF)
1003 VOI $=V O 1+G F F / 20$
$I F(A B S(A-M M A X) . G T .001) G O T O 1026$
$A=M M A$
GO TO 1004
1026 DO $1005 L L=1,2$
$001005 \mathrm{~L} 2=1,2$
$B=S T A R T+(E N D-S T A R T) *(L I-1)$
$A=M M I N+\{M M A X-M M I N) \neq(L 2-1)$
CAIL FUN(A,B,GFF)
$1005 \quad V C L=V O L+G F F / 4$.
$V O L=V O L *(N N A X-M M I N) *$ (END-START)/2601.
WRITE $6,3011 \mathrm{VCL}$
301 FORMAT PROBABILITY OF FAILURE $=1, E 10.41$ GO TO 18
19 CALL EXIT
END

```
RELEASE 2.0
FUN
DATE = 74137
    SUBROUTINE FUNIEM,T,GFFI
    REAL NU, MMIN, MEAN
    DIMENSICN MEAN(100), SIGMA(109), X(100),Y(100)
    COMMON \(X, Y, N U, M E A N, S I G M A, F L O N G, N S I T E S, M M I N, S T A R T\)
    \(B L=2000\) 。
    \(X T=T\)
    \(Y T=0\).
    \(F T=1 . / F L O N G\)
    \(F M=N U * E X P(-N U *(E M-M M I N))\)
    B2 \(=.8\)
    B \(3=1.7\)
    FS \(=1\) 。
    DO \(10 \mathrm{I}=1\), NSITES
    \(D E E=S Q R T((X(I)-X T) * * 2+(Y(I)-Y T) * * 2)\)
    \(E S=B 1 * E X P(B 2 * E M) / D E E * * B 3\)
30 CALL DNDTR(ES,MEAN(I),SIGMA(I),P)
    \(P=1 .-P\)
10 FS=FS*P
GFF=(1.-FS) \(\neq F T * F M\)
RETURN
END
SUBROLTINE DNDTR(X,EX,SX,P)
C this surroutine evaluates the cumulative distribution for a normally
C DISTRIBUTED RANDOM VARIABLE, GIVEN ITS NEAN, AND STANDARD DEVIATION.
\(A X=A B S((X-E X) / S X)\)
        \(\mathrm{T}=1 . /(1 .+.2316419 * \Delta X)\)
        \(D=0\) 。
        IF(AX.GT.10.) GC TO 5
        \(D=.35 \varepsilon 9423 * E \times P(-A X * \Delta X / 2\).

        1815 |
        IF (X.LT.EX) \(P=1 .-P\)
        RETURN
        END
```

THE FAULTS I.ENGTH IS 150.00000
ThE Number OF SITES COSIDERED IS 1 AT THE FOLlOWING COORDINATES
X Y MEAN AND STANDARD DEVIATIOA CF RESISTANCF
50.0000 5.0000 1007.0020 1.0000
PROBARILITY OF FAIIURE = 0.20C9E+00

```
```

THE FAULTS LENGTH IS 150.00000
THE NUMBER OF SITES COSIDERED IS l AT THE FOLLOWING COORDINATES
X Y MFAN AND STANDARD DEVIATICN OF RESISTANCE
100.0000 5.0000 100..0000 1.0000
PROBABILITY OF FAILURE = 0.1541E-01

```
```

THE FAULTS LENGTH IS 150.00000
THE NUMBER OF SITES COSIDERFD IS I AT THE FOIIGWING CDORDINATES
X Y MEAN AND STANDARD DEVIATION OF RESISTANCE
0.0 50.0000 100000000 1.0000
PROBABILITY CF FAILURF = C.1780F-01

```

Some typical results

\section*{REFERENCES}
1. Chow, D., "System Seismic Risk Analysis," unpublished IAP-MIT report, Department of Civil Engineering, Structures Division, 1973.
2. Cornell, C. A., "Engineering Seismic Risk Analysis," Bulletin of the Seismological Society of America, Vo1. 58, No. 5, October 1968.
3. Corne11, C. A., Probability, Statistics and Decision for Civil Engineers, McGraw-Hill, 1970 (with J. R. Benjamin).
4. Esteva, L. and Rosenblueth, E., "Spectra of Earthquakes at Moderate and Large Distances," Soc. Mex. de Ing. Sismica, Mexico II, 1-18, 1964.```


[^0]:    * The [survive, fail] or $[0,1]$ type of site is assumed throughout this report.

