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PREFACE

The article translated in this report appeared originally

in Computational Seismology, Volume 6, 1974 (in Russian). The pub­

lication was given to Professors Whitman and Cornell during their

visit to Moscow in January 1974 and discussed extensively with the

authors at that time. Following initial translation in Cambridge,

the translation was edited first by Dr. Keilis-Borak and then by

Betsy Schumacker.

A translation of the entire table of contents of Volume 6

appears on the pages following this preface. A translation has

also been made of the first paper in the volume and is available

as Internal Study Report No. 43.

Any opinions, findings, conclusions
or recommendations expressed in this
publication are those of the author(s)
and do not necessarily reflect the views
of the National Science Foundation.
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The algorithm presented here makes it possible to calculate the

probability characteristics of various effects of a number of earthquakes

on a given object in a seismic zone. The algorithm is based on the simp­

lest models:*

1) the sequence of earthquakes in space, time, energy;

2) spatial distribution of intensity of ground tremors from fixed

earthquakes;

3) effects that the given object experiences from ground tremors

of a certain intensity.

A computer version of the algorithm permits the use of practically

any engineering, seismological & economic information (see section 5)

necessary for estimates of effects of earthquakes. It can find appli­

cation in problems of insurance and optimization of systems of measures

for protecting against the after-effects of earthquakes. Examples of

problems which may be calculated are given in section 7~ Specific cal­

culations are given in [4, 10]. The present article is a continuation

of [3, 10J ; our basic attention is concentrated on the computational side

of the problem. Therefore, some facts and hypotheses introduced in [3]

are given without proofs. Model 2, given here reflects the theoretical

and statistical analysis of Italian isoseismals presented by the authors

in [4] •

Contents of this article: in section 1 the formulation of the pro­

blem and basic definitions are given; in section 2 basic hypotheses; in

section 3 the general solution of problems. In 2- 4, the models 1 - 3

are constructed, and parametrization of basic seismological characteristics

is introduced. Models and their parameters reflect the available data

for real earthquakes. An algorithm, implemented on an electronic computer,

is presented in section 5.6.

Two problems explored in section 5 may be of independent interest:

the coding in an electronic computer of various kinds of maps of the

earth's surface, and the algorithm permits one (in a program) to deter­

mine whether a given point lies within a closed region on the earth's sur­

face. Both problems are important for work with catalogues of earthquakes.

*See page$ 5-8 of the translation of [llJ and § 7 of this paper.



(2)

In section 6 is discussed the problem of calculating a generalized

Poissonian distribution which is often encountered in statistics about

earthquakes and in the mathematical theory of risk.

A discussion of algorithms is given in section 7.

SECTION 1. THE PROBLEM AND DEFINITIONS

Earthquakes are regarded as random events (t, g, e) in the space T

x G x E, where t is the moment of occurrence of the event within the time

interval T, g is the vector coordinate of the epicenter within the seismic

region G, e is the measure of energy (magnitude, energy class and so on)

within the energy range E.

In G two subsets are distinguished -- object 0, and the zone of seismic

danger 6/. Each subset can consist of a set of areas, lines and points. In

the case of the object, this subset can be separate areas of the earth's sur­

face, networks of roads, cities and buildings, and in the case of zone G' the

subset is seismically active regions and faults threatening object O. It is

not necessary for the danger zone to overlap the object O.

An effect* is associated with each earthquake -- some random value

x(t, g, e), which characterizes the damage to the object caused by an earth­

quake (t, g, e).

The problem consists of calculating the statistical distribution func­

tion Fi (x) == P (X;, x) for the total effect

(1.1)g. e.)
l, l

X(T)
L-

"'­==/x(t.
1.-- l,

o<..t :'- T
l

caused by the sequence of events (t. g. e.) in the volume T x G' x E.
l, l, l

The algorithm allows the calculation of practically any effect for

which there are a minimum of necessary estimates of the value x(t, g, e)

the effect of individual earthquakes.

We will calculate the following effects:**

1. Tremors of the object: the total size of those parts of the objects

which experience tremors of a given intensity. Each part is counted as many

* See pages 3-4 of the translation of [11].

**See page 4 of the translation of[ll].
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times as it l'xpcricl1cct! such tTl'11l0rS during a set of l'arthquakl's. For nT,lolls

this is the sum of the areas affected, for lines --- the sum of the lengths

affected, for points --- the number of points affected.

2. Total damage to the object from seismic tremors: complete damage from

earthquakes or that part of the damage which was averted thanks to antiseismic

measures.

3. Size of population or other valuable commodity present in the zones of

tremors of given intensities.

Let us explain the notation. All distribution functions are symbolized

by the symbol F(.). The index below shows the random value to which the dis­

tribution applies: Fn (.) is the distribution of n. Functions like ~(x/y)

are defined as functions of argument x for a fixed value of y.

SECTION 2. HYPOTHESES

The algorithm given below for calculating F L (x) is based on the following

assumptions:

Hypothesis 1. Model of the sequence of earthquakes.

Events (t, g, e) form a Poissoian flow in the volume T x Gx E, this flow

is uniform in the time t. In other words, the number of events n(hV) , appearing

in the non- overlapping volumes f:,.V = At • Ag • Ae, are statistically independent

and have a Poisson distribution:

with parameters

P(n(AV) k) (2.1)

/)(AV) =Al>tSJp(g)f(e1g) dg de.

.:l~~'"

(2.2)

Parameter (2.2) defines the average number of events (t, g, e) in the

volume 6v; peg) is the average density of the epicenters of earthquakes in ~'

for an energy range E; fee/g) is the normalized frequency-of-occurrence law for

events at a point gE L)'; in other words, f (el g) b. e is the conditional probability

of the appearance of an event with energy e~Ae on the condition that it appeared

at point g; 1\ is the average number of events in volume4'x E for a unit of time.
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Hypothesis 2. Effects x(t, g, e) from various fixed earthquakes ;lre

statistically independent.

Hypothesis 3. Earthquakes (t, g, e) cause at each point gG~1 tremors,

the intensity of which is defined by the random function I(glg, e). In other

words, tremors are of an intensity c and higher in the random areas ~(c) =

fg: I (g/ g, e) ~ c} «(j' (c) are called below isoseismal areas).

Hypothesis 4. The effect of earthquake x(t, g, e) is the sum of the effects

caused by tremors on each point of the object.

Hypothesis 5. A tremor of intensity c causes at each point of an object

g ~ 0 a determined effect, defined by the function

x(t, g, e) pet, g)x (g, c).
a

(2.3)

where x (g, c) is the effect of the tremor (g, c) at an initial moment in time,
a

and pet, g) is a nonrandom function characterizing the dynamics of the effect in

time.*

We will present two examples explaining the meaning of pet, g).

Let XI be the total number of people (within the given object) who experience

tremors of a given intensity during time T. Then the multiplier pet, g) is

equal to exp(a(g)t). It takes into consideration the chance in population

at point g from initial time t=o until the moment of occurrence at time t.

The parameter a(g) indicates the rate of the growth in population in a unit of time.

Second example: let X~ be the economic effectiveness of antiseismic measures.

It is necessary to attribute their cost to some momemt of time t = 0, for example

to the moment of completion of construction. The value x (g, c) now measures
o

prevented damage from tremors of intensity c at a moment t; x • exp (- G t) is theo I

part of the cost of antiseismic measures th2t was returned during the tremor

(t, g, c). Parameter; is the normative indicator (bank interest) of investment

effectiveness. If in addition, the damage in the period of the object's con­

struction is considered, then for t~O J pet, g) =tf(t, g).exp(-;f>t), where

the coefficient ~(t, g) signifies that part of the damage x (g, c) at the time
o

t before the moment when the object will be completed.

In the frame of the given algorithm it is not difficult to calculate also the

*At the suggestion of Robert Whitman & Allin Cornell, the algorithm was modified
in such a way as to define the effect by means of a damage probability matrix.
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chance fluctuation in values x (g, c). We limit ourselves to simple events
o

since the outside probability models x (g, c) depend to a large degree on
o

specifics of effects, and in practice run into considerable difficulties

connected with weak research on the question and limited statistical material.

SECTION 3. SOLUTION OF THE PROBLEM

Under hypotheses 1 & 2 (pages 3,4), the distribution function F~(x) of

total effect (1.1) is a generalized Poissonian distribution ((3), p. 99):

:::. (AT)" -"T (n)
F f (x) = L - 01 ,- e.. f ()\)

.y::o
(3.1)

where F(n) (x) is the n-th convolution of F(x). F(x) is the distribution of

the effect of a single arbitrary earthquake in volume T x ,'x 'E:

F(x) =.;IffF(xlt, g, e)p(g)f(elg)dt dg de 0.2)
16'£

Function F(xlt, g, e) defines the distribution of the effect x(t, g, e).

Allowing for hypotheses 4 and 5 we find that effect x(t, g, e) is

x(t, g, e) = f pet, g)x (g, I(g\g, e»dg, (3.3)
o 0

if the field of intensity of the tremor is l(g\g, e). It follows from

hypothesis 4 that the probability of (3.3) is equal to the probability of

the realization of l(g/g, e).

SECTION 4. SUPPLEMENTARY HYPOTHESES

In this section the models of isoseismals & the frequency-of-occurrence

law (models 1,2 on page 1) are specified. For the functions involved, the

parametrization shown is that which is used in the computer program. Para­

metrization is chosen according to available experimental data and can be

easily changed.

1. MODEL OF ISOSEISMALS. Hypothesis 6. The function 1(~lg, e), defining

the intensity of tremor I at point g from an earthquake (g, e), is defined by:

l(g/g, e) (4.1)
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Here I (g~g, e) corresponds to the intensity of tremor at point g for
o

areas with "normal" soil, and 1\ I (g)ls a determined correction for I , es-
o

tablished from local soil conditions ("correction for microseismic zoning").

Hypothesis 7. Analytic presentation of I. The isolines I =c of
o 0

function I (gig, e) are assumed to be concentric elipses with center at point
o

g. We will define these elipses by three parameters: area Q, ratio of axes

L, and azimuth A of the long axis.

Areas Q (el g), inside isoseismals ;J~ (c), are represented by the model
c

A.

I g Q (e Ig) = I g Q ( e Ig) + /\ Q(g) ,
c c

(4.2)

/'-
where 19 Qc defines the mean value of the logarithm of area Qc(elg), and

nQ(g) is a random addition, defined by the distribution functions

F (~Ig).
1'.:"

(4.3)

If Q (elg) in (4.2) happens to be less than certain threshold values
c

Q (c, g), then we assume Qc(e1g) = O.

Let us clarify and make more specific hypothesis 7. As is shown by in­

vestigation of facts collected in the field and some theoretical considera­
A

tions (see [4] and the literature there), 19 Q and the magnitude of an earth­
c

quake M are connected by an approximately linear dependence, within some in-

tervals of magnitude (M , M), that is
-c

(4.4)a (g) + b (g)M. M?' M .
c C'--c

= 0 for M< M
-c

.A.

19 Q (Mig)
!' c
Q

c
(Mig)

A
The thresholds of areas Q(c, g) are equal to the value Q (M clg) in (4.4).- e-

We notice that everywhere we leave out the focal depth of an earthquake,

which is considered fixed.

The distribution function of correction!Q in (4.3) is defined by the

observed dispersion of empirical data relative to model (4.4). From here, the

truncated normal distribution can serve as a natural model for distribution (4.3).

_ 415=1 .• ,l (-k)
F:. \ (xl g) - 1-2f (-k)

(4.5)



where 4J(x)

on g.

x
=1:... 5' exp(- ~)du·rrrr L'

_OP

(7)

parameter k and dispersion parameter (f' depend

The dispersion v~N\ of distribution (4.5) is connected with (71. in the

following way:

where P3(x) is the r~ distribution with 3 degrees of freedom. For k 3 or

2.5 the relation is ~~/~ = 0.986 or 0.943.

The ratio of the major axes of an eliptical isoseismal is a nonrandom

function

L(e, g)..2: 1. (4.6)

The orientation of isoseismal areas is defined by the azimuth A of the

largest axis. We assume that

A A(g) +Li A(g, e), (4.7)

where A(g) is the average direction of extension of isoseismal areas, actually

coinciding with the predominate direction of the major geological faults near

the area of point g; b. A(g, e) is the random correction for the average

azimuth, depending on the energy and location of the earthquake. This is

defined by distribution function F hA (-I g, e).

The dependence of corrections on energy is connected with the fact that

for strong earthquakes the isoseismals are usually elongated along major

faults, whereas the isoseismals of weak earthquakes can reflect the directions

of smaller faults.

The introduction of corrections ~I (hypothesis 6) results in the distortion

of the correct (eliptical) form of the isoseismal; this explains many features

of actual isoseismals.

Consequence. Hypotheses 6 and 7 result in the following expression for

the probability of effect x(t, g, e) (formula (3.3)). If for earthquake

(t,g,e) the correction to the area of the isoseismals (see (4.2)) happened to be

L,Q in (4.2), and the correction to the azimuth (see (4.7)) happened to be! A,
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then the intensity I (gIg, e) for "normal" soil is defined by the isoseismal
o

~ (c) = O~:I <i~ I g, e) ~ c). These isoseismals are of the following form:
o

~ - 2«x - x)sin(A +ilA) + (y - y)cos(A +AA)) /L(g, e) +
- ..... - 2«S{ - x)cos(A +AA) - (y - y)sin(A +~A)) .L(g, e)5

··1" J\~
21'r Q (e I g)lO .

c

Here (x, y) = g, (x, y) = g are local Cartesian coordinates of points g and

g. The probability of effect x(t, g, e) in (3.3) is equal to

(4.9)

2. THE SEQUENCE OF EARTHQUAKES. The intensity of the flow of events

(t, g, e) in an arbitrary point in volume T x6'Jx E is defined by the function

~~(e) = A,p(g)-f(elg), (see 2.2), which we usually call the frequency-of­

occurrence law of earthquakes at point g.

The next hypothesis, which defines one of the possible parametrizat ions of

At (e), is slightly broader than Gutenberg's linear law hypothesis, and
J

takes care of the possibility of the attenuation of the frequency-of-occurrence

curve at large energies [ 3 t

Hypothesis 8. The frequency-of-occurrence law - A)<N) is a function of

magnitude M and has the appearance

where

f\ (MI g) 1\0 (g) y (MI g) , (4.10)

Parameters of slope 'i and 'J
1

' point of bend M
1

, and maximum magnitude M depend

on point g. The lower threshold of magnitude ~ is defined by the range of e

under consideration. The parameter A~(g) defines the intensity of the flow

of earthquakes of magnitude M
l

at point g.
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SECTION 5. DESCRIPTION OF THE ALGORITHM.

Computation of the distribution of total effect is divided into 3 parts:

map of the region;

distribution of the effect of a single earthquake;

distribution of the total effect.

The first part includes the reading and compact coding of initial information; the

second calculates the distribution function of the effect of a single event

F(x) in (3.2); and the third computes the final function Fr(x) from (3.1).

We will describe each part of the algorithm.

1. MAP OF THE REGION*. In each point g of the area G; it is necessary to

specify the following values:

1) O(g) --- a sign (0 or 1) defining whether the point g belongs to the

object 0;

2) (,'(g) --- a sign (0 or 1) defining, analogously with 1), whether the

point g belongs to the danger zone for the object;

3) 61(g) --- correction to the intensity of tremors for the soil condi-

tions;

4) A(g) --- average azimuth of isoseisma1s;

5) FAA (_Ie, g) --- distribution function of the correction to the azimuth;

6) Ac(g) --- intensity (frequency-of-occurrence) of earthquakes for

some fixed energy e ;
o

7) F(elg) --- type of distribution of the number of earthquakes by energy;

it is defined by the parameters: y(g), }~(g), M
l

(g), M(g) (formula (4.10));

it may also be defined by table ;

--- dynamics of effect x (g, e) (see formula (2.3));
o

g) --- average model of isoseismals for normal soil.

8)

9)

10)

includes

seisma1s

x (g) --- effect from a tremor of intensity c at point g;
c

p (t Ig)

I O~I e,o
the parameters: a (g), b (g) defining the areas_Q (e, g) of

c c c
(see formula (4.4); L(e, g) --- e1ogation of isoseisma1s;

The model

iso-

11) F Ab/ (./ g) --- distribution function of logarithmic corrections for

areas of isoseismic zones (see formula (4.5)).

*It may be easier to read this section while looking at the specific example
of the coding of information in [12].
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The set of all these functions which depend on a point g we will call

map of area G, and conditionally note by the vector

K(g) = (L). (g), ... ,Il' (g»,•. 5 s = 11. (5.1)

We will similarly call any function (vector or scalar) that permits us

to find the values of these functions.

The basic goal of the first part of the program is to read into the com­

puter the map of area GE and to code it in a compact fashion in the computer

memory. This can be done in several ways. In real situations, the set of

possible values of each component of map K(g) is not large, because seismo­

logical and engineering information is limited and the models are very rough.

Reading in the value of the function J;(g), that is

F for each sub region.
/'., \

st
two stages. 1-- stage.

For example, region G could actually be divided into a few subregions (2 - 3)

differing only in the model of isoseismals I (g\g, e) and in the distribution
. 0

Therefore, the reading of maps K(g) can be done in

of the sets

(5.2)

Elements D. can be figures, like in the case of functions p (g); or functions,
1 0

for instance types of the frequency-of-~ccurrencelaw of fee/g); or vector-

functions, for example models Io(g!e, g). After the ordering of elements D
i

the map of area G is transformed into the function

keg) (5.3)

where keg) is a vector and each of its components is an interger. The com­

ponent ni(g) is the ordinal number of the specific function (( i(g) in the

list D.. 2
nd

stage. Construction of the map keg). A map of (5.3) turns out
1

to be even more complicated than the function, and preparing it directly for

each point g is rather difficult work. We construct maps keg) by super­

position of elementary maps.
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Elementary map k(g) is a vector function with integer components; it

is equal to (n
1

, ••. ,ns ) in the subset G ~ 6 and is equal to (0, ... ,0) outside

G , that is

k(g) = S(n l ,··· ,ns )L(0, ... 0)
g e G,
g ~ G, (5.4)

The set G can be an area)a line or a point.

Elementary maps are superimposed by the following rule.

Let ki(g) = (n~ (g), ... ,n~(g), i = 1, 2 be some maps of region ~ .

Then the super position of these maps

k(g)

is defined by the rule

1- .J- °n~ r

nt ° (5.5)

In other words, the operation of superposition of maps keeps already stored

information if the next map does not bring new information on the same parameters,

and replaces old information by the new if there is new information. By super­

imposing elementary maps on another, one can achieve arbitrarily complicated maps.

The contours G of the elementary maps are the isolines of the function specified

by this map.

Reading in the groups of elementary maps. The elementary map k(g) can

be read in by specification of the contour G, and the value k(g) = k within or

on this contour (see Jordan's algorithm). The reading is considerably simplified

because many contours of elementary maps have common parts. Therefore, maps

k(g) are divided into groups. For each group of maps (JG, k), a family of

lines L = (1) can be defined , that is a set of the parts of the contours from

which any contour can be constructed. The contour is a set of numbers

(5.6)

where (n , •.. ,n ) are the ordered set of numbers of the lines which form contour L
1 p
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and k shows which value is defined within the contour. The contour is

followed in one direction; the sign of n. is negative if the ith line is stored
1

having opposite direction.

The line IE L is defined by the set of points (gl, ... gn(l)) which are used

as knots of polygons on a sphere, that is the contour between neighboring

points gi' gi+l is interpolated by a geodesic arc. The positive direction

is assumed from g. to g. l'
1 1+

The information presented is enough to construct an arbitrary set of elemen-

tary maps. It remains to describe the algorithm which can define if a given

point is inside the contour or not.

"Jordan I s" algorithm. Let us look at the arbitrary, closed area G, sur­

rounded by polygonal contours - continous and non-intersecting. The contour

is defined on the half-sphere S by the knots (g.). Below, the test function
a 1

cf (g), gE" S , will be defined: it is equal to 1 for all points inside area G,
o

and equal to 0 for points outside G.

Let tt,4' be the spherical coordinates of points g, 11 is the longitude,

{ is the latitude. Let us find those sides of polygon G which cross the

meridian, with ~ passing through point g ; that is those sides which are arcs
o

lk = (g. , gi ), k = l, ... ,n, for which
1.k k+l

a. -: I' i\ - -" '". I" . - t\ \'. I~ - I;\ - - /')-, "I > (.)". .... "t' 11 '"' (.. " &. L 0I-l<. ...... J. .... !<tL
(5.7)

Here Ix\ is equal to 1,0 or - 1 if x is respectively larger than, equal

to, or less than zero. We define for the trio of points gl' g2' g3 ~rom

S the determinant
o

(5.8)

where (x, y, z) = (cos" • cos 4 ' sin A • cos 4', sin 4J ) are the euclidian

coordinates of point g. Let us find the numbers

(5.9)
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Let us denote f(1 -
ak) • sgndk/Z if dk f °

4'k - ° if d
k 0, b?O

stop if d
k

0, bk~ a

(5.10)

where, analogously to (5.7)

(5.11)

(5.12)

H- "II ,( i<. =f d-,p) /1 t Co

if ~M' J k == s+"'f, t1 'to

o

our test function is the following:
n

\ 1:4',,1-1
k"J
i

Proof. Let (g(t), as t $. 1) be some smooth, single valued para­

metrization of contours, and aCt) be a continuous function which defines

the angle between rays (geodesic arcs) v = (g , g(O)) and vt = (g , get»);
o 0 0

Here g is a fixed point from s. From the "argument principle"
o 0

it is known that for contour G which is non-intersecting, a(l) 2 1Y

if g is inside G, and a(l) = a if g is outside G. Let t=t., i = 0,o 0 l

1, .•• ,n be consecutive moments of intersection of contours with direction

v. Then a(t.+1) - a(t.) = 21Ytt , where Ei = ±1 or O. Since aCt) is
o l l

continuous and is not equal to aCt,), a(t.) ± 21'(' , inside the interval
l l

a(t i +1) - a(t i ) = -Jf~-­
sgnc::l. (t

i
+ 03)

[ sgn 0( (tHl - 0) +

and therefore

1'1-.1
a (l)/ff = L Isgn~ (t

i
+ 0) + sgn ~ (t i - 0) I +

i.=j + [sgn~(to + 0) + sgn~(tn - 0 )])

where t
o 0, t = 1n .
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We define the number lf7k by the condition: cfJ k = ± 1, ±0.5 or 0 if the sides

of the polygon 1k respectively intersect the ray v
o

' coincide with one of the

end points of ray vo ' or do not intersect v
o

; the sign ofdV
k

corresponds to

the positive or negative increment of the amplitude aCt). Then we get

jEbi

s4G

Let us consider the meridian passing through go' as the two rays vol and vo2 '

leaving g in opposite directions, and let us sum the tests for both directions.
o

Then we obtain the test (5.10) - (5.12). It remains to note that the sign of

dk in (5.9) defines in which direction the arc 1k crosses the meridian at point

go. The case dk = 0 arises when go lies on the arc 1k or on its extension.

According to (5.7), in the first case bk '::=' O. If bk> 0, the arc 1
k

lies on the

meridian of point g , g ~ 1k and consequently, should be excluded from con-
o 0

sideration.

2. DISTRIBUTION OF EFFECTS OF A SINGLE EARTHQUAKE F (x)*. The algorithm

for calculating the distribution function of the effect of a single event is

described in Section 3 ("Solution of problems"), and comes to the numerical

integration of function F(x/t, g, 1) over the volume T x 6' x E (see 3.2)).

F(xlt, g, 1) is defined by the formulae (3.3, 4.8, 4.9).

The corresponding computations are rather long in their general form.

Therefore, some "specialization of an algorithm, using the most specific

features of the particular problem, can significantly improve the speed and

accuracy of the algorithm. Below, we will show a method of discretization of

the maps of the region, and we will specify an algorithm in one important

practical case.

Discretization of Maps. Region G is taken as a spherical rectangle with

new spherical coordinates ~,?;; the long side ~ lies on the equator ~=O, f\ Z 0,
N "i'>

arid -the smaller 'side lies on the zero meridian .1\ = 0, [1_ O.

Let us look at the transformation of area ~

(5.13)

*See page 10 of the translation of [11].
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into the plane (x, y) where R is the radius of the Earth. It transforms
~

~

the spherical axes A= 0 and 4' = 0 into Cartesian axes x = 0 and y = 0, and

does not change the element of the area ds .. R2 cos if d.f d/). The linear

elements, except the direction of latitude, do not remain linear, and the

distortion in point (5.13) is the larger, the larger is the value r sin J
x tg y. Consequently, in choosing a system of coordinates (l,h) in~, it is

preferable to minimize the maxiumun latitude '~I, than longitude I" \ , which

follows from the inequality x tg y < y tg x for x ~ y.

The presentation of the region in the plane (x, y) is convenient for

computations, thanks to the simple relationship of the coordinates (5.13).

We also notice that the isoseismic areas defined in (4.8) in the coordinate

system (x, y) will keep on the sphere exactly the same area and almost the

same elliptical form.

The region is discretized in the following manner. On the plane (x, y)

the region is covered by a rectangular grid of knots ((i + 0.5)~, (j + 0.5)£)

= (x. y.) with spacing $; these knots correspond to the points on a
1., J

sphere:

A -=(0 ,_)\/~ -A. ° ::'((+L•• ~·)[/(Kl.L)jJ)
(.{ .i J -+- ,,~ , ":> ". (5.14)

The map of the region is approximated by constants inside the squares

dX £with centers at knots (x., y.). Point obj ects are transferred to the
1. J

closest knots, and linear objects are divided into elementary segments of

length i, each segment is replaced by the knot closest to its center. In

this manner, all the initial information is concentrated in the knots (5.14).

Distribution function F(x). Let us consider the case when the coeffici­

ent pet, g), which defines the dynamics of effect (2.3), is not dependent on

g, that is

(5.15)

Then in this case x(t, g, e) = p(t).x (g, e), and if F (x) is the distribution
o 0



(16)

of x (g, e) averaged by g and e, then
·0

L

=f- ( )( )d T
F(x) 1-0 p(Tor '

o

(5.16)

We will illustrate the calculations of F (x) with the following limitations.
o

Let the energy interval E be divided into several intervals a.E. in
1. l-

each interval: a) the distribution of random corrections to the azimuth

F~A (.Ig), and the elongation of the isoseismals L(g) do not depend on the

energy; b) the parameter b (g) of the area of the isoseisma1 in model (4.4)
c

does not depend on the intensity c. In practice these conditions are not

too limiting. Moreover, as a compensation, hypothesis lib" allows a nonlinear

""dependence 19Q on the magnitude (see (4.4)).
c

Let us introduce the notation: let g or g be the knots (5.14) and

6 be the distance between them. From (4.10) we define the integral

Then

I (q) A £) .= ! 1jr(M /3)d M )
AM

/\ ;: 2. :t(l.h£) ;'.,(~)a~

9E:g

(5.17)

(5.18)

is the intensity of the flow of earthquakes with epicenters in zone ~ and

with energy in the range E;

(5.19)

is the probability of an earthquake with energy in range E in the knot g;

(5.20)

in the knot g;
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(5.21)

is the distribution of the random value q = 10b(g)M+AQ, where M has the

density of probability r(Mlg)jI(g,6LE) in interval ALE, and ~Q, independent

of M, is a random value with distribution FA~(.tg) (see (4.3)).

If t(Mlg) is defined by (4.10 ) and F~ is defined by (4.5), then F~

(.lg,&[E) can be calculated by ~xplicit formula through a Gaussian distribu­

tion function.

The algorithm consists of consecutive choosing of all possible combin­

ations of arguments in the following order.

1. Knots gE~', that is, the sources of the earthquake. Probability

of an earthquake is defined by p(g).

2. Energy intervals ~q. An earthquake with energy in the interval

6Ei. has a probability p (AE:i./q ) • For given g and 6E.: the model of isoseismals

is defined, that is, the distribution of the areas &(A£·, g) with parameters
c. L

a (g) and b(g,6£i) (see (4.4)), the elongation of the isoseismal L(gIA£,),
c

the orientation A(g) and distribution function ~A(tlg,AEL) for azimuth

correct ions.

3. Azimuth corrections tlAi.' Probabilities of azimuth corrections P~AL'

are defined by the distribution F~A,which we discretize.

4. Points of an object g C!S 0, making a contribution to the total effect

of an earthquake with epicenter at g.

The set of points g is defined by the largest possible isoseismal for

earthquakes with center at g and with energy e. '=6.Ei •

Let R(g, g) be the left side of the inequality (4.8). We define the

numbers

(5.22)

where gc(g) is the area of the smallest isoseismal of intensity c. The

values q (g) have the following meaning. Suppose that at point g an earthquake
c

with magnitude M and random correction to the area of isoseisma16Q occurred,

so that

q = lOb (g)M+AQ
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belongs to the interval (qc' qc+l). Th.en at point g, according to (4.8)

and (4.9), the intensity of tremors will be c +AI(g), where6Iis a correc....

tion to intensity for local soil conditions. Consequently, with probability

the effect of the earthquake on point g is equal to

(5.24)x
o = 2 x(g, c + 6 I(g» (qc on <. q <. qc+l (g») •

~Jc.

where [a < x < bl is equal to 1 if a < x <. b, and is equal to 0 in the oppo­

site case; x(g, c) is the effect of the tremor at point g. In this way, the

distribution function F (x) is defined by the set of numbers p and x •
o .00

The described version of the algorithm for calculating functions F(x)

has a number of operations proportional to

(5.25)

I
where S' is the area of danger zones of volume ~ ; S is the average area

c
of the largest isoseismal in the energy intervals AEl ; NM is the number of

energy intervals; NA is the average number of azimuth corrections; N is the
- q

average number of steps for a variable q in intervals 6Ei.' N't defines the

discretization of distribution F
f

(, Ig, D~E).
The last part of the algorithm --- distribution of total effect --- is

necessary to describe in more detail; we will do it in the next section.

SECTION 6. TOTAL EFFECT F~(x)

We denote by

~

11 (xl t, F) = T-
(I;:: 0

,- (n). )r (x (6.1)

a generalized Poissonian distribution, defined by parameter t and "step

function" F(x). (In the future we shall always assume that F(x) is con-
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centrated on the half-axis x ,2:: a.)
From (6.1) it follows that t if F(x) is a distribution function of the

effect from a single earthquake in volume T X~/x Et then the distribution

of the total effect is defined by the formulae

F~(x) =iT (xl"T t F) (6.2)

or

p-L(x) =11'(xl/\,Tt ~) (6.3)

where

1\;=1\_ (1 - F(a» (6.4)

and
~(x) = F(x) - F(a) (6.5)

1 - F(O)

The identity of (6.2) and (6.3) becomes obvious t if they are transformed by

a Laplace transform.

In the last presentation of FL(x) only those earthquakes which give a

non-zero effect are included. Parameter /\0 defines the average number of

such earthquakes in the volume T x~/x E and ~(x) is the distribution of

the non-zero individual effect of a single earthquake.

In connection with problems of insurance t various asymptotic formulae

were obtained for distribution (6.1) with the assumption that parameter t

is large and F(x) does not depend on t (see the review in [8]). These results

are applicable to our situation t if we assume that parameters AoT are large

and the dependence F(x) on T for large T is weak. This means the following.

Inasmuch as F(x) depends on time through the coefficient p(tt g)t which

defines a dynamic effect (see (2.3»t then it is necessary to assume that

p (t t g) is 1imited from above and below: a<: C1 <. P < Cz < 00 as T-lor;P.

For example, if p(tt g) = exp (-fit)t thenp= D(l/T).

These conditions are not always fulfilled. This is especially true for

the effect of strong earthquakes t for which A.T is small. Therefore t it is

necessary in actual problems to calculate the generalized Poissonian dis­

tribution in a sufficiently broad range of the values of parameter t.
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~elow are presented (some in a more general form) the asymptotic expansions

of'rf(xlt, F) for t~!)C, found by Kramer [8], and also the direct method of

calculation of Tr(xlt, F), suitable for moderately large and moderately small

values of t.

1. ASYMPTOTIC FORMULAE [a]. The distributionIT(x/t, F) has an average

value mI = tml , and dispersion .cr. =Jtm2 , where ~ is the moment of the kth order

of the distribut ion F(x) • As t-+O"', the distribution 1Y(x It, F) is asympto­

tically normal with the same parameters --- average ml, and dispersion a-~

(see (6.20».·

Statement 1 that follows below gives an asymptotic expansion of the distribu­

tion tr(x/t, F), which defines more precisely the convergence of n'(xlt, F) to

a normal distribution as t~~. This expansion is an analogue of the Edgeworth

series known in the theory of summation of independent random values.

Statement 1. Assume that the following conditions are satisfied:

a) F(x) includes an absolutely continuous component;

b) F(x) has r + 1 finite moments

ot>

~ = f xkdF(X)<"""),
D

In this case even for all real x

K = 1, .•• , r + 1. (6.6)

Here~(x) is the standard normal distribution and ~(x) is its density; Rk(x)

are polynomials, defined for r = 3·: 6 as:

(6.8)

4
( .l- Ll ('X\

r',L ) i
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Here ~(x) are Hermite polynomials of order k ~ 1, defined by the recursive

relation

~+l (x) = xHk(x) ~ (k - l)Hk~l (x),

and for coefficients ck we have

k
1 -z:

ck = k! ~m2

(6.9)

(6.10)

Observation 1. In the case when pet, g) = exp (~J3t), the distribution

F(x) has the form (5.16). In this case, if~ are the moments of distribution

F (x), then
o

(6.11)

The asymptotic expansion (6.7) represents W(xlt, F) in the best way

near central values of x, that is, in the interval fx: Ix - tmj \ = a (Jt)}
For large values, when Ix - tmll = OCt), another expansion is preferable:

Statement 2. If the conditions of the preceding observation are satis­

fied, and the function is defined

eP

p(h) = f ehxdF(x)

o

for h..t.. h , h > 0, then the asymptotic expansion holds:
o 0

(6.12)

h < 0
)

/.,>0
)

(6.13)

where

00

Pk(h) = fxkehxdF(x)

0'

(6.14)
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/3 (h) = 1 .. P (h) + hPl (h)

and
.- k i . ['~1..... ""='" __ .~ M. I) l<. .. - - )

r(v.).= H, (lA.) +- L -t. 1... R (u) [- ~:\ ,'I'" +- {) (f: 2.-

, k =3 k.

(6.15)

(6.16)

,., ........
Functions ~(u) and Hk(u) are defined by (6.8) with coefficients c

k
instead

of ck ' where ck are:

(6.17)

"""~(u) is defined by the recursive relation

with initial values

(6.18)

....... ~L2
H (u) = e I lP(-u) ,

o

.~ i
H_l (0) = - -(i---~- .. (6.19)

Observation 2. The Berry-Esseen theorem [2, 6J gives a simple estimate

of error for the approximationfr(x/t, F) of the first term of expansion

(6.7) and (6.13):

(6.20)

(6.21)

Estimate (6.21) follows easily from the formulae given in ~,2].

For distribution F(x) of the form (5.16), with li?D the marginal distrib­

ution 'fr (x/p) = lim 11' (xl t, F) exists for t = /\0 f T ~cP ; its moments of the
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thk--order are:

Here P(h) t dx, where dJ (....u) is the Laplace trans...
"

formation of distribution Fo(x). Allowing for this, formulae (6.7, 6.13,

6.20 and 6.21) can easily be rearranged into an expansion of distribution

-1Y(xlf-') by parameter (J \0. In particular from (6.20) we find

(6.22)

A similar estimate is found in [9J with constant 5.4.

2. DIRECT METHOD. For small values of parameter t, the series (6.1) is

a natural expansion of 1I(x\t, F) by t and it seems convenient enough for

calculations. The basic difficulty is the calculation of convolutions of

high order, because of the fast accumulation of errors from numerical integra...

tion of F (,.,) (x) • We replace the functions F in) (x) for large n by their

normal approximation; then we come up with the following approximate formula:

~ in .t; lr'\) ~.... x- (VI,Lt1.\ . . \ .
1Y(xlc)F)=L--;;-re. F (x)+L f", (r{t; j-t-£'l-{N1J4-£J,{tv,,)t'i(6.23)

, ,,'=-O e i')~Wlrl

where ml and rr =I ~ - mf are the average and dispersion of F(x), and Fn (x)
this a section of the Edgeworth series for convolutions of the n-- order, that

is

(6.9) according to

They are defined below

.....
Here ~(x) is expressed by the polynomials Hk(X) in

formulae (6.8) with coefficients ~k' instead of ck •

by (6.25) for k = 3 '';- 6.

Let m
ok

be the central moments of the function F(x), then

(6.24)
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and

A.i -k---m G"
,;M-- - kl ok

#<.. c

, (6.26)

Errors in formulae (6.23). The error f
2

(N
2

) proceeds from the trun­

cation of the series (6.23) on the N2-component, that is

(6.27)

(6.28)

The value of ~ is easy to estimate in the process
1

where Pf(x) is the)(2 distribution with f degrees of freedom. The second er­

ror £3 is due to the replacing of convolutions by their normal approximations.

It is known [6] that an error of such approximations

-k/2+iapproaches zero and has the order 0 (n ). If we assume that when n

increases ,,~monotonically approaches zero, than

.& . '" -1: )It3 \ <. i"w
1
~ ~ \ e= t NJ.(PlW!t-.L) (2t.) - Pz (Nl.,tl) (2. t ) ,

c·
" ;' tv.!ri

since (;':+k..<. ,,~J. as assumed.

of calculations.

The error ~l(Nl) is connected with the numerical integration of convolu­

tions F(n) (x), n~ N
l

• For its estimation, we first note that if F(x) is

some approximation of F(x) , with error

(6.29)
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then

(6.30)

where * is the symbol of the convolution. Estimate (6.30) follows from

(6.29) and from the fact that the items standing under the summation sign are

the distribution functions, and consequently cannot exceed 1. For the numer--ica1 calculation of convolutions it is convenient to take for F(x) the step

function

"....

F(x) = (F(kh), Ix - khl <. h/2,

In this case

EF~ max (F«k + l)h) - F(kh».
k

k = 0, 1, 2 ••• (6.31)

(6.32)

Allowing for (6.30) we find an estimate of the error El(Nl ):

that is

(6.33)

Another method of estimation of ~(N1) for an arbitrary interval of variable

x is given in [3].

Observation 3. The direct method (6.23) requires a considerable volume of

calculations for moderate values of t, when parameter Nl should be chosen

relatively large. The following method, based on the possibility of the
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unlimited division of distribution 1r (x It, F) [6J:

11' ('l(lt11-tnf)·=11{r:.ltl)f)~1\"'('X\t2.J e) ) allows a shortening of the

calculations. Let

and the error term of the calculation 1Y(x It, F) is £(t). Then 1r(x \t, F) =

~~(x) can be obtained from 1Yk(x) in k steps; these steps are the consecutive

operations of "self-convolution":

(6.35)

Allowing for (6.30), the calculation error is

k -"-)t. (f-) =2. .. E. (I: ' 2... ,. (6.36)

3. NUMERICAL EXAMPLES. The methods of calculating the generalized

Poissonian distributionrr(xjt, F) are illustrated below for the example

function.

F(x) = f P - p.exp(-x),L1 - p.exp(-x),
o~ x ~ 0.53143
x >- 0.53143 (6.37)

for p = 1 and 0.75.

The following values of the parameters were taken: The order of approxi­

mation r in formulae (6.7, 6.24) equals 6, and in (6.13) r = 4. In (6.24)

function F(x) was given in 200 points with spacing Ll= 0.05, the number of

calculated convolutions N1 = 4.

The results of calculations (l-'ff(Xlt, F»105 are presented in a table,

where comparisons are made of: a) three methods of calculation for large

parameter t(t = 16, p = 1); c, d) methods (6.7) and (6.24) respectively for

"moderate" values of t(t = 8; 4 and p = 0.75). In table "c" calculations of

-rr(xlt, F) by the direct method (6.24) are given for "small" parameters
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,t = l(p = 1; 0.75), when the asymptotic method is non-applicable.

In the example given, all three methods are practically equal for the

"large" parameter t = 16; m.ethod(6.24) also gives a fairly good result for

small t = l.

For practical use, formulae (6.7) and (6.24) are more convenient. For

large parameters, m.ethod (6.13) is more accurate, although it requires the

numerical calculation of Laplace-Stiltess transformation of the function

F(x). In this way, even more accurate methods of calculating ~(xlt, F) for

the whole range of parameter t can be expected, if the modern technique of

Laplace transform is used. Let us clarify this. If.

"'"
L(F) = re-sx df(x) ,

and L-l is the opposite operation, then

(6.38)

However, considerable difficulty arises here in relation to the necessity of

insuring a sufficiently high accuracy of the calculation of LF.
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Table

a) I = 16, x = 0 (4) 40
Ta6Jlllua

6) 1= 1, x = 0 (1) 10

11= 1.

TO'/HO I III

p =~ 0.7[, l' = I

TO'JII0 I III

G3212 63212 63212 63212
30818 30800 34574 34579
14(iG(j 14649 18258 18262
7098 7093 938f; 9389

3382 3381 4723 4726
1589 1592 2335 2338
738 743 1137 1142
340 346 547 553
155 163 260 267
70 80 122 131
31 41 57 66

,. ,.

g3gfj1 !Bf/51 O:Wli7 93!)G3
74til<'1 7/jIJl5 "W30 74G15
4ti4liO 4Ij·~Cll 4G·~'.J 41i45!)
22!i13 22li14 22!i24 22fi13
8828 8823 88:\2 8828

2850 2858 2850 2850
782 781 782 784
186 180 186 190
39 42 40 40

TO'Il!O II (f = 0) III (I" = I,)IIII (1"=6)

100000 I mmR3j - 1100000
99658 D!!IiIJO !)1)(jS!l !JUG54

I 'I ,,>. P = 0.75, x = 0 (2) 24

T a 6 J( U Il a (OKOlfq,lHlJe

1') t = 4, p = 0.75, x = 0 (1.5)18
---.-----:------

: TOtlllO III I III

!JH%7 100267 99775
(l5!l15 95812 95g71
80012 80025 80035
5G723 5!i763 56748
3/,818 34851 34842
18%5 18\)82 18g96
g363 9337 9371
42fiO 430g 42G8

1810 1870 18W
725 G(ig 732
27fi 241 285
101 120 111
35 50 46

98168 g8153 g8075
77891 77703 77976
50596 50G57 50554
291G0 29202 29170
15378 15319 , 15374

7576 7449 i 7566

3531i 3DOG 3596
157(1 lCOf 15tiS

G:ID 374 670
283 283 299
115 210 113
45 69 62
18 12 34

Note. Function 1 -'i (xlt, F) is for F defined by (6.37). The line divides

the values of the function into intervals \ x - m/(\§ ':"~t' Here mrr and '/"

are the average and dispersion of "(xlt, F); I, II, III correspond to the

methods of calculating Ii' by formulae (6.13), (6.7), and (6.24) respectively.
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SECTION 7. DISCUSSION OF THE ALGORITHM

The advantages of the suggestL~d :11 god thm are:

a) a broad possibility for usinp, practically all presently available

seismological and engineering information;

b) universality --- that is, the possibility of calculating a great

range of economic as well as seismological effects of earthquakes.

We will list here the aspects of earthquake effects for which we cal­

culated distribution functions with the help of the program that we described.*

All calculations refer to the given interval of time:

a) tremors of the object: total size of those parts of the object that

experienced tremors of a certain intensity; each part is counted as many

times during earthquakes as it experienced tremors. Regions, cities, roads

and buildings can serve as objects;

b) total amount of population that felt tremors of a certain intensity

in the given region;

c) total cost of valuables or production of a given type, present in

the zone of tremors of certain intensity in the given region;

d) the damage to the object from seismic tremor of the object this

can be total loss, or that part of the damage which was avoided due to anti­

seismic measures.

The distribution of the given characteristics presents not only seismo­

engineering interest. They can be applied to questions of insurance, planning

the building in seismic regions, optimization of building codes (see ; III ) .

The shortcomings of the suggested algorithm are a strong idealization of

earthquake sequence and the macroeffects of earthquakes. In most cases, this

is due to an insufficiency of data about these questions. Above all, a hypo­

thesis about the independence of earthquakes in close space-time volumes is

doubtful. For example, such phenomena dependency as after- and fore-shocks

of strong earthquakes and chains of earthquakes of similar energy are known.

However, only a relatively small part of earthquakes is joined in chains

(see L"5]). More significant parts of related events --- aftershocks ---

* See also [11, 4 10].
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can be allowed ror in the fr':lml'work 0 r the described prop.;ram by inc.l wI i Ill!, till'

effect of aftershocks in the effect or the basic earthquake (for a dl~ww,slon

of this question see 131).

Construction of models of isoseismals demands serious attention. The

suggested model is sufficiently flexible, but all the same, further examina­

tion of the data is needed.

We note that in the framework of the suggested algorithm, the influence

of the focal depth can be taken into consideration. For this, a minimum of

data is necessary --- distribution of the density of the hypocenters by

depth and dependence of the parameters of isoseismals on the focal depth.

In the absence of these data, the depth effect is allowed for indirectly since

in the construction of the probabilistic models of isoseisma1s we average

the data for all depths at which earthquakes actually took place. In the

framework of the suggested algorithm, a random variation of the deterministic

characteristics / .. I(g) , x (g), L(e, g), x (g,) is possible.
c c

Due to the approximate nature of the models and the roughness of the ac-

tual information, more accurate answers can be expected in those problems

where the objects are considerably extended in space, and the effects are

studied for long intervals of time. In such cases, the effect of tremors

x (g) is a more homogeneous function ofg, and the approximate character of
c

the models and the local variations of them are smoothed out.

To this class of problems belong problems of insurance, and also the

general problem of optimization of the whole system of anti-earthquake

measures.
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