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EARTHQUAKE WAVES IN A RANDOM MEDIUMt

L. Chu, A. Askar*, A.S. Cakmak

Princeton University,

Department of Civil Engineering, Princeton, N.J. 08544

ABSTRACT

Measurements are conducted with small samples in the laboratory

and thus for all practical purposes the medium is macroscopically
homogeneous. On the other hand the uncertainties and the irregular
changes in situ are macroscopic inhomogeneities. This work is an

effort for accounting for these stochastic changes in the elastic
properties and density in a rational manner. The method used is that
of Karal and Keller which is based on the use of the Green's function
and neglect of third order correlations. The resulting integral equa­
tions are solved by Laplace transform. The analysis indicates that the
energy decay in the mean motion through random mode coupling introduces
damping into even a purely elastic medium and enhances the damping in
a significant manner in a hysteretic viscoelastic medium. This con­
sideration is important in relating the damping and dispersion character­

istics of waves in situ to those measured in the laboratory. The formula­
tion is extended to multilayer systems through transfer matrices and to
arbitrary inputs by Fourier transform. Sample calculations are pre­
sented for single and multilayer systems to obtain response spectra

and for the response to Gaussian and actual earthquake input motions.
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1. INTRODUCTION

Earthquake investigators have been aware of the need to account for

uncertainty in the parameters appearing in deterministically based

forecasting equations in a quantitative and rational manner. Applica­

tions of stochastic methods in earthquake engineering have usually been

in the form of a random input into a deterministic system. However, the

geological configurations and the material properties of soil deposits

such as density, elastic moduli and damping coefficients are not always

known with sufficient accuracy to justify a deterministic analysis.

Consequently, uncertainties in the properties of the medium will result

in uncertainties in the response spectra. In addition, through random

mode coupling, the wave energy is distributed into various modes at the

expense of the energy in the mean motion. This energy decay from the

motion introduces damping into even an elastic medium and enhances the

damping in a significant manner for a viscoelastic medium. Indeed for

a set of calculations presented in Figure 3, increases in the damping

coefficient of the order of 100% are observed due to overall stochastic

changes in the density of 10-20% from the mean. For establishing the

relation between the damping coefficient measured in situ and in the

laboratory, this consideration may be quite significant. In fact, since

measurements are conducted with small samples in the laboratory, the

medium is a homogeneous one for all practical purposes. The distances

over which inhomogeneities occur are of microscopic size as compared

to the wave lengths involved. This analysis indicates that the use of

the damping characteristics measured in the laboratory may significantly

underestimate the actual damping in situ.



The basic idea in the derivations here follows those of Karal

and Keller [1] who studied elastic waves, electromagnetic waves and

diffusion problems in random media of infinite extent. The method

basically obtains an equation for the average displacements. Classical

perturbation theory fails in this problem due to the generation of

secular terms by the correlation functions of the stochastic properties,

which introduce non-local interactions. The resulting field equations

for the dynamics of the wave propagation are integro-differential

equations, similar to those in non-local continuum theories introduced

by Edelen and Eringen [2,3J. Similar considerations to those in this

paper have been applied by Beran and McCoy [4,5J for the study of composites

and by Tang and Pinder [6] to aquifer hydrology problems.
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2. EQUATIONS FOR THE AVERAGED DISPLACEMENT

The goal here is to study the amplification of shear waves in a

layer forced harmonically at one face and is traction free at the other.

We consider that the shear coefficient ~ and the density pare

stochastic functions of space and the probability variable is p.

Without loss in generality, these may be expressed as:

~ = ~o + ~l(x, p) (2.1 )

In this representation ~o and Po are the average values of ~ and

p and consequently ~l = Pl = 0 with the bar (-) indicating

statistical averages of the ensemble with probability density
00

P: f(x) = f f(x, p)Ptp)dp
-00

As one of the goals of this research is

to study the enhancement in the damping of the medium, we take the

damping coefficient s to be deterministic. The stress-strain relation

T av + a
2
vis hence taken as: = ~ ax s atax where v is the displacement

and x is the spatial coordinate. Then, the dynamics is described by

the momentum equation:

Substitution of T above yields:

(2.2)

(2.3)



For the harmonic waves as v = ueiwt
t the reduced wave equation becomes:

d ( dU) +' d
2
u + 2dx f.l dx l1;;w -2 w p u = 0

dx

With (2.1) the above equation is rearranged as:

where

(2.4)

(2.5)

(2.6)

'wt
Similarly the stress-strain relation with T(x, t) = T(x)e'

( . (du dU)T = f.l 1 + ,K) -- + n --o dx 2 dx

reads:

(2.7)

In the form in (2.5) the equation appears as L u + R u = 0 where

L is the deterministic operator and R is the random operator below:

By their definitions

[ = L ~ = 0

(2.8)

(2.9)



With the above definitions, equivalent to (2.5), one also has

x

- f G(x. x')[(1 + i<)-l ~X (n2~~;) + q~ nJ u']dx' (2.10)

x=o

Where G(x, Xl) is the Green's function associated with Land

Xo = u(o) , Yo = u'(O) are initial conditions at x = O. The primes

on the dependent variables, in (2.10) indicate that their argument is

Xl: u l = u(x l ) , ni = nl(x ' ) and n2= n2(x ' ). The Green's function

used here is one sided and is defined as:

GI = 0
x=x'

dGj = 1dx
x=x'

(2.11)

The problem could also be formulated in terms of the Green's function for

the boundary value problem. However, the formulation as a boundary

value problem is quite inconvenient since one would need a two-sided

Green's function defined piecewise. The formulation here is aimed to con-

structing the general solution when the initial conditions X ,Yareo 0

viewed as integration constants. One can thus obtain the solution to the

boundary value problem from this general solution by determining the constants

Xo ,Yo from the prescribed boundary conditions. As a preparation
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dufor obtaining the terms n2 dx and n1 u , integration by parts of the

first integral yields:

x

- (1 + '"K)-l J ~ I du' dx'ax n2 dx·

x'=o

x

- q~ f G ni u' dx'

x'=o

(2.12)

In obtaining the above expression use is made of the first boundary

condition in (2.11) and of the antisymmetry of the Green's function

~ = aG
ax - ax'

From (2.13), by the use of Leibnitz ' ru1e*, and the substitution

a2G/ax2 = -q~ G according to (2.11), one obtains:

du aG ( ) 2G( ) (1 . )-1 aG ( ) ()dx = Xo ax x, 0 - Yoqo x, 0 + + lK ax x, 0 n2 0 Yo

(2.13)

(1 + " )- 1 () du +
- lK n2 x dx

x

(1 + iK)-lq~ J G n2 ~~: dx'

xl=O

2
- qo

x

f
aG Iax n1

x'=O

u· dx' (2.14)

* B(x)

~x J F(x,x')dx'

A(x)

B(x)

= J aF(x,x')
ax

A(x)

dx' + F(x,x')1 ~~ - F(x,x')! ~~
x'=B(x) x'=A(x)

f:· .....



Finally, by the substitution of (2.14) into (2.7), the stress is obtained

as:

x

I
x'=o

The stress-strain relation above is exactly equivalent to that in

(2.7) and no approximation has been made thus far. In obtaining the

(2.15)

equations for the averaged quantities, the following approximations are

adopted [1,8J:

u(x',p)
(2.16)

This approximation amounts to assuming that the correlations between

ni(x,p) and ni(x',p) in the random operator R are stronger than

those between ni(x,p) and u(x,p). Furthermore introducing the

correlation functions

N. ·(lx-x'l)lJ (2.17)

Q
....i



and noting that n. = 0 , Eq. (2.15) yields:,

x

fxl=o

Above:

S2(X) = aG(x-x
l

) N (x-xl)1
ax 22 xl=O

K
12

(x-x ' ) = aG(x-x ' ) N (X-Xl)
ax 12

(2.18)

(2.19)

In the stress-strain relation above, the first term with N22 (O) indicates

a local contribution, the term S2(x) a surface energy contribution and

the last term under the integral a non-local contribution. The form of

the stress-strain relation above is similar to the one derived formally

by using the axioms of nonlocal continua [2,3]. In these latter the

kernel K12 , which represents the correlations between the stochastic

changes in the shear modulous and density, is absent. It appears that a

formal derivation from a non-local continuum view point could also yield

the same term. For noncorrelated density and modulous fluctuation,

clearly K12 = O. Similarly, if the shear modulous is deterministic on

the sufrace, i.e. n2(O) = a surface energy contribution S2(x)

vanishes. In the derivations here, all of the terms are carried.
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Finally, for the term aT/ax in the field equation, the integral terms

in (2.18) are rearranged as follows:

x x

J
- J aK -. d du • ,_ 22 du I ,

1. dx K22 dx' dx - - 3""X' dx' dx

x'=O xl=O

x

2: d Jdx
xl=O

dx' (2.20)

Above use is made of Leibnitz' formula and the following properties of

K22 and K12 according to (2.19):

aK22- --ax
aK12- --ax (2.21)

By the integrations by parts of the integrals in (2.20) and again use of

the definitions in (2.19), one obtains respectively

x

S4(x) Y + J K (x-x I) d
2
u' dx'

o 22 dx.2
x'=O

x

2: 53(x) Xo + J K12(x-x') ~~: dx'

x'=O

11
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Above S3(x) and S4(x) are surface correlation tenns similar to

Sl (x)

S3(x) = aG(x-x'l N (x-x' ) I
ax 12 x'=O

Therefore with the use of (2.22) in (2.18) one obtains:

dT d2- 2
dx = ~o{(l - N22 (O) ) + i~) dX~ - qo(l + iK)S3(x)Xo

dS 2 2
+ (dx + QoS4(x) )Yo

x
r 2- -

2 J d u . du I+ qo (K22 -----2 - (1 + lK)K12 dX') dx'}
dx'

x'=O

In obtaining the final equations, the term p = po(u + nlu) is also

needed. With (2.12) used in the second term,

(2.23)

x
r

J
aG • du' d 'ax n1nz dx I x

xl=O

x

- q~ JG "1"1
xl=O

12

u· dx'} (2.25)



The statistical average of (2.25) yields:

x

- J (
xl=O

(2.26)

where K12 has the same express i on as in (2.19) and

Sl(x) = G(x-x l
) N12 (x-x')1

xl=O

Kll (x-x I) = G(x-x') Nll (x-x') (2.27)

Consequently by the substitution of (2.24) and (2.26) in (2.2) the field

equation for the averaged displacement becomes:

x

+ q~ J (
xl=O

(1 + ,·K)-l d2'U, 2 + iK du' 2 -K K q K uI ) dx I = 022 dx I 2 - 1 + iK- 12 dx I - 0 11

13
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3. SOLUTION FOR A SINGLE LAYER

One of the aims of the above derivations is to account for random

changes in the properties of soils as related to earthquake phenomena.

Towards this end, typically for modeling the effect of the local geology,

the problem of a single layer which is forced by a harmonic displace­

ment at one face and is traction free at the other is solved. In this

case, first the auxiliary initial value problem as defined by the integro­

differential equation in (2.28) and the initial conditions

u(o) = Xo du(o) Y is studied. Once the general solution for the
dx °

system in (2.28) is obtained for arbitrary Xo and Yo' the solution

to the actual problem is generated by imposing the actual boundary

conditions. The Green's function for the problem in (2.11) is:

G(x - x') = sin qo(x - x')/qo

Furhtermore, a common choice for the correlation function is

( = NO•. e- 1x - Xl IiaN•. x-x')
1J 1J

Such a stochastic process is termed as an IIUhlenbeck-Ornstein Process"

(3.1 )

(3.2)

[7]. An overall measure of the stochasticity may be taken as

1 d 0d f o Nijtlxl)dx ~ Nij ald. Since by the construction of the equations in

{2.28), 0 ~ Xl ~ x the absolute value sign in (3.2) may be dropped. In

(3.2), although not necessary, the correlation length a is taken to be

the same for all (i, j). Thus collecting (2.19), (2.23), (2.27), (3.1)

and (3.2) together the kernels and surface correlation terms become:

i ii..J:.'_



/
I

I

Kll(x-x ' ) = ~o N~l sinqo(x-x')exp(-(x-x')/a)

(3.3)

The form of the integrals in (2.28) being of convolution type, the

Laplace transform method is ideally suited for the solution. In fact

this is the major motivation for formulating the system as an initial

value problem. For the script letters denoting Laplace transforms, e.g.

ex>

U(s)" J u(x)exp(-sx) dx

a
(2.28) yields:

F(s)Xo + G(s)YoU(s) = -~,........,..---=­V(s )

15
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where

1 N
o .

- 22 + lK 2 2 . -1 2 + ;K
F(5) = ( 1 + ;K )5 + qo $3 + qO(l + lK) 5 K22 - 1 + ;K K12 (3.6)

1 No .
- 22 + 1 K 2 2 4 - 1 2 2 2 + ; K

V(5) = ( 1 + ;K )5 + qo - qo K11 + (1 + ;K) q05 K22 - 1 + iK 5 K12

In view of (3.3). with 8 = l/a •

$2 = N~2(5 + 8)/d(s)

$3 = N~2(s + 8)/d(s)

oK22 = N22 /d(s)

d(S) = (5 + 8)2 + q2o

16
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Substitution of (3.7) into (3.6) yields:

F(s)

G(s)

v(s)

(3.8)

Above it is seen that F(s) , G(s) and V(s) are respectively poly­

nomials of degree 3, 2 and 4 in s. Thus once the poles sk

(k = 1,2,3,4) (i.e. the zeros of V(s) ) are determined, the inverse

transform of (3.5) is readily obtained [9J. In this case,

where

(3.9)

A = F(s) I
k L V(s)

ds
sk

B = G(s)
k d

CiSV(s)
sk

f(x) g(x) (3.10)

17



Due to the construction, a check of the ca1uc1ations is obtained by the

considerations

4 4
ul = X LAk + Y L Bk = X f(o) + y g(o) = X

x=o 0k=l 0k=l 0 0 0

- 4 4
dul = X L s A + Y L S B = X df(o) + Y dg(o) = Y
dx 0k=l k k 0k=l k k 0 dx 0 dx - 0

x=o
(3.11)

i.e.

4 4
f(o) = L Ak = 1 g(o) = L B = 0

k=l k=l k

~=
tf dg(o) 4
L skAk = 0 = L skBk = 1 (3.12)dx k=l dx k=l

For calculating the stress according to (2.18), first note the integrals

x
-skx j skx'

I1k(x) = e K22(~-x')e dx'

x'=o

x

I
s Xl

K (x-x')e k dx'12
x'=O

18
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In the integrals above, obviously

for the upper and lower limits being the same. Then by the use of the

above integrals in (2.18), ~ is found to be:

where

(3.14)

(3.15)

¢(x)

ljJ(X) (3.16)

In view of (3.12) and (3.14),

¢(o) = a

and

T I = ~ (1 + iK)Y
x=O 0 0

(3.17)

(3.18)

Consider now a layer where the displacement is prescribed at one face

while the stress vanishes at the other. In this problem the choice of

the coordinates as x = a for the face where zero stress is prescribed



proves more convenient for it leads to simpler expressions. (Clearly

the physical values are the same in all coordinate systems.) Thus, we

take the boundary conditions as:

L I = 0
X=O

u I = 0
x=d

(3.19)

The arbitrary coefficients Xo and Yo are determined by the use of

~.l~ in the expressions in (3.9) and (3.15) as:

Y = 0o (3.20)

Consequently, the solution satisfying the actual boundary conditions

becomes

-u = f(x)
a fTdT

Similarly the amplification coefficient is:

(3.21 )

(3.22)

The preceeding equations take a particularly simple form and the

poles sk can be found explicitly when only the density is stochastic.



Thus for n2 = 0 we have N22 = N12 = 0 and consequently

$1 = $2 = $3 = $4 = K12 = K22 = Ilk = 12k = O. In this case, (3.8)

reduces to:

f(s) = ( (s+s)2 + q~)s

G(s) = f(s)/s

(3.23 )

Furthermore it is observed that V(s) is a biquadratic in (s + S/2) .

Indeed for

the poles in (3.24) are readily obtained by solving V(s) = 0 for

(s+S/2). The poles therefore are:

(3.24 )

*s = i r - e122 0

(3.25)

where

21

(3.26)



Similarly by the use of (3.23) in (3.10):

(3.25)

Furthermore. for Ilk = 12k = 0 • (3.16) reduces to

i.e.

ep(x) = df(x)
dx

IjJ(X) = dg(x)
dx (3.26)

~ = ~ (l+iK)(X df(x) + y dg(X)) = ~ (l+iK) du(x)
o 0 dx . 0 dx 0 dx (3.27)



4. MULTILAYER SYSTEM

The extension of the solution of the previous section to a multi­

layer system is achieved through the usual transfer matrix formalism [8 ].

Let k = 2,3, ... n denote the layers and k = 2,3 ... n-l the interfaces

and k = 1 and n the lower and upper faces of a multilayer system.

Thus, typically for the kth layer, the lower face is (k-l) and the

upper face is k. In this case from (3.9) and (3.15) the displacement

and stress at the lower face, by construction are:

(4.1)

Similarly, on the upper face of the layer

(4.2)

The substitution of Xk_1 and Yk- l in (4.2) in terms of the expressions

in (4.1) yields the transfer matrix equation:

f(d)

=
~(d) (4.3)



By this notation the continuity in the displacements and stresses across

the interfaces is achieved automatically. The information from the

first face to the nth face can be carried by successive matrix multi-

plications [8J. Rewriting (4.3) in more compact form with

4-1 = (U k- l ' Tk-l) and ~ = (Ok ' Tk) , one has

4 = ~k • ~-l

Successive matrix multiplications yield:

(4.4)

4 = ~k • £1

where ~l = Identity matrix and

~k = ~k • ~k-l

Consequently on the last interface,

=

k = 2,3, .•.

k = 2,3, ...

°1

(4.5)

(4.6)

Tn
R21,n f l (4.7)

For 01 = a , the prescribed bedrock displacement and Tn = 0 , f, is

solved from the last equation above and with 11 = (01 ,fl ) thus being

determined, lk = (Ok' i k) is obtained automatically by the use of (4.5).



For this problem with (n-l) layers, there are normally 2(n-1) integra­

tion constants which are determined by the 2(n-2) continuity conditions

at the interfaces and the 2 prescribed boundary conditions one at each of

the faces 1 and n. The transfer matrix formalism avoids the solution

of the 2(n-l) equations for the integration constants and provides the

solution from a single equation for a single unknown.

In this case the amplification coefficient is obtained as:

(4.8)

Figure (2b) shows the amplification response spectrum for a multilayer

system taken as homogeneous and stochastic. The layer thicknesses,

average shear modulus and density for each layer are taken from actual

data for a site in California, USA [lOJ.
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5. ARBITRARY INPUT

The response of a single or multilayer system to an arbitrary forcing

at its boundary is readily found by Fourier analys'is. Let the forcing

at the face k = 1 be:

F(t) (5.1)

Here the index £ is introduced to differentiate between the various

frequencies w = w£. For the particular mode £, the displacement

amplification factor A£ is obtained from (3.22) for a single layer

and (4.8) for a multilayer system. Thus the response of the system

becomes:

L .
G(t) = l a A e,wet (5.2)

t=-L £ £

Figures (3 -5) show various responses. In Figure 3, the input function F(t)

is of Gaussian distribution given by

2
F(t) = Be- t /2 (5.3)

where B is the amplitude of the impulse and the response is given by

G(t)/B. Figures 4 and 5 show respectively the responses to an actual

earthquake (N21E component of the 1952 Taft strong motion record) of a

single and multilayer system. The multilayer system is that shown in

Figure 2a and the parameters for the top layer in this latter configuration

are used for the single layer calculations in Figures 3 and 4.
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6. DISCUSSION

In the solution of the differential equations with stochastic

coefficients, one of the obvious attempts would be to apply a perturba-

tion analysis, assuming for small deviations from the mean. However such

a perturbation is of a singular kind [1] and diverges through the genera­

tion of secular terms. Instead, the integro-differential equation of the

type in (2.28) needs to be solved. This amounts to the incorporation of

the long range interactions and though they may be small are not of per­

turbative nature. Formally, the equations are of the same structure as in

the nonlocal continuum theories. Conceptually also, the correlations are

indeed expressions of nonlocal properties. An important consequence of

the integro-differential equation describing the mean motion is that this

latter is different from the solution of the equation with the mean

properties. For the homogeneous elastic case based on the average material

coefficients, Eq. (3.5) in the Laplace transform domain has only the poles

at s = ~ iko These pure imaginary numbers generate trigonometric

functions which display resonance infinities at kod = t (2n + 1). In

the problem with the integro-differential equation however, the solution

in the Laplace transform domain has four complex poles [9]. The real

parts of the roots amounts to decays and as a result the solutions are

not pure trigonometric functions and the resonances are removed. Physically

this is a situation analogous to a viscoelastic medium where the real

parts of the poles characterize the damping. However, the equations for

the mean field display a decay of a different origin. The wave energy

through random mode coupling is distributed into various modes to the

expense of the energy in the mean motion. This energy decay in the mean

27



is physically a manifestation of the scattering of the waves through the

inhomogeneities in the medium. In Figure 1, it is observed that the effect

of the inhomogeneities gets stronger as the frequencies increase and that

the uncertainties get large at "resonant" frequencies. Random mode

coupling is not confined to the coupling of modes of the same type e.g.,

shear modes. The three dimensional equations show that there are no pure

shear and volumetric waves as in homogeneous media and these are coupled

through random mode mixing. In certain measurements indeed, the arrival

of the volumetric, shear and Rayleigh surface waves are not detected

separately, but rather a combined wave group is observed. From the study

of Figures la-c it is seen that the stochastic changes in the shear modulus

shift the spectra to the left, while those in the density shift the spectra

to the right, as compared with the homogeneous models.

The effect of the stochastic changes in increasing the damping

characteristics is displayed in FigS.3-5. The figures show the displace­

ment response at the top of a layer subjected to a Gaussian and an earth­

quake record (N21E component of the 1952 Taft strong motion record) D-1J

as input at the bottom. The curve with the broken lines is the response

of a homogeneous layer with hysteretic damping coefficient K of 0.02 or 0.05.

The curve drawn in solid line corresponds to a stochastic layer with the

same average properties of a layer as in the preceding case. The coefficients

describing the stochasticity are shown in the figure legends. It is seen

that the waves in the stochastic case are damped out more rapidly than

those in the homogeneous case. The significance of this observation is

in that the va}ue for the damping coefficient obtained in the laboratory
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corresponds to a macroscapically homogeneous sample. In the field

however the stochastic inhomogeneities are always present and are

likely to increase the damping characteristics in a significant way.

The method presented here provides a tool for accounting for this

phenomenon.
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FIGURE CAPTIONS

Figure 1 Effect of the stochastic correlation parameters on the mean

displacement amplification spectrum for a single layer.

(a) 0 0 o , s = 5 (b) 0 a = 0 , s = 5N22 = N12 = Nll = N12

(c) a a a , S = 5Nll = N12 = N22

Figure 2a Data for a multilayer system

Figure 2b Effect of the stochastic correlation parameters on the mean

displacement amplification spectrum for a multilayer system.

000
Nll = N12 = N22 = 1/4 , S = 5 .

Figure 3 Response of a single layer to a Gaussian pulse (a) 0 0.5Nll = ,

S = 1.0 K = 0.02; (b)
a _

S = 5 0.05Nll - 0.5 K =

(c) 0 0.9 S = 1.0 , K. = 0.02 (d) 0 = 0.9 5Nll = ; Nll S =• , •
K = 0.02

Figure 4 Response of a single layer to an earthquake input (a) 0 0.9Nll = ,

1.0 0.02 (b) 0 , S = 5 0.02S = , K = ; Nll = 0.9 • K =

(c) a = 2.0 , 5 K = 0.02Nll S = ,

Figure 5 Response of a multilayer system to an earthquake input.

oNll = 2.0 K = Q.02, S = 5
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Figure Ie
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Figure 2b
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Figure 3a
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Figure 3b
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Figure 3d
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