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INTRODUCTION

To design a structure which will behave elastically during strong
ground motion is economically unfeasible. The goals of earthquake
design can only be limited to providing structures with a capability
to resist minor earthquakes without damage and to resist major earth-
quakes without collapse. Damages are expected during moderate to severe
earthquakes. However, the damage should not be so great that the
structure is rendered unrepairable even in a major earthquake. To
ensure the design goals, structures have to be designed under the
philosophy of two levels of performance; elastic for service levels
and the frequent earthquakes, and inelastic for ultimate strength and
major earthquakes. Dynamic analysis of an elastic system is well
developed and many computer programs have been made available, however,
reliable methods for predicting inelastic behavior of a multidegree
system are still lacking. A major issue in earthquake resistant design
is thus to provide and to mobilize energy absorption capability of a
structure under earthquake excitation. Evidently, the work capacity of
a structure reaches its maximum when all components which comprise the
structure reach their maximum allowable inelastic deformation simultaneously.
The components must therefore be proportioned so that the ductility
factors, the ratios of the ultimate deformation to the yielding deformation,
reach their allowable values under the excitation of the design earthquake.
For regular steel or concrete buildings, maximum ductility factors

which may be achieved are more or less uniform for all stories. A



uniform ductility factor distribution over the stories may be most
efféctive in developing the work capacity of a structure. However,
the soft-story concept is of practical wvalue in building design if the
allowable ductility factor of a story can be made much larger than the
others. The soft story is not necessarily restricted to the bottom
story.

The study reported here addresses the question of how to provide
and to mobilize work capacity of a structure under strong ground motion
so that no structure will collapse by excessive deformation of a
certain story while the rest of the building suffers little to no damage.
Structures studied here are a hypothetical 6-story reinforced concrete
frame and a hypothetical 6-story steel frame. Both structures are
assumed to be of shear-type and are modelled by close-coupled mass-—
spring systems with masses concentrated at floor levels. The difference
between the concrete frame and the steel fr=me is that the concrete
frame 'is represented by a system with uniform spring constant and
the steel frame by a system with a variable spring constént such that

the first mode shape of the system is a straight line.
STRUCTURAL RESPONSE DURING EARTHQUAKE EXCITATION

The structural responses during earthquake excitation may be
estimated by using either the response spectrum technique or time history
analysis. The response spectrum method requires little effort, but the

solution is approximate for multidegree systems. Time history analysis



is an expensive procedure, but the solution is exact in that the
structure is properly modelled and errors from numerical integration are
negligible. Within the elastic range, solutions derived from the
response spectrum method approximate those from time history analysis
(1, 2). While the inelastic response of a single degree system may

be approximated by an inelastic response gpectrum (3, 4), the time
history analysis remains the only method to assess the inelastic
responses of a multi-degree system since normal modes do not exist

in an inelastic system, The ductility factor cannot yet be considered
quantitatively in earthquake design processes. -An excellent summary of
what has been done in the area oflinelastic behavior of siﬁgle and
multidegree systems through 1969 is given by Newmark and Rosenblueth

(5}.
METHODS OF ANALYSIS

Since no close-form analytical solution is available, inelastic
behavior of a multidegree freedom system is too complex to be treated
analytically. Digital computer simulation of the system behavior appears
to be the only method and is used for this study. In essence, properties
of a mechanical system and the time history of a gfound motion are input
to a computer program and the system responses are calculated by numerical
integration performed step by step at small time increments.

Two 6-degree-of-freedom systems, designated Systems C and S, are
used as physical models simulating a 6-story reinforced concrete frame and

6-story steel frame. Since it is reasonable to assume that masses at



each floor level are identical and column sizes are uniform on all floors,
the concrete frame is modelled as a 6-~degree spring system with uniform
spring constants and masses. Steel buildings, on the contra?y, usually
have a straight line first mode shape and therefore the steel frame is
represented by a 6-degree spring system with uniform masses and variable
spring constants such that a straight line first mode is preserved.

To compare the results from both systems, the first fundamental
periods are made identicai for both (Tl = 0.638 seconds) by lowering>the
masses in System S. The ratio of masses of System S to System C is
0.82 assuming the same stiffness at the first story level. The stiffness
ratio and the first mode shape of the systems are givén in Table 1.

Yielding displacements at each floor level are assumed to be either
uniform or in a shape proportional to ﬁhe élastic maximum interstory
drifts calculated by the response spectrum method which equates the bottom
story yielding displacement to the uniform yielding displacement. The
former is termed uniform yielding displacement and the latter, the R. S.
yielding displacement, Even though both uniform and R, S, yielding
displacement may not be typical in a real structure, they are used to
show that the pattern of allowable yielding displacements greatly
influence the ductility requirements and that a structure's work
capacity may be fully utilized by properly adjusting the pattern.

Bilinear spring with dashpot damping is the most popular model used
to simulate inelastic behavior of a reinforced concrete frame or a steel
frame (6) and is used here, For simplicity, a bilinear spring with a
flat second segment is usually employed for structural analysis even

though experimental data have shown that post-yielding stiffness exists



for both frames (7, 8). This assumption may not distort the results
significantly for a spring system in parallel, while it may influence
the results to a certain extent for a spring system in series, The
effect of the'post—yielding stiffness is studied by varying it among
0, 3, and 10% of the initial stiffness. |

Stiffness degrading has long been observed to occur in concrete
frames loaded beyond yield point. To study the effect of stiffness
degrading on maximum ductility requirement, an elasto-plastic (bilinear
with flat second segment) stiffness degrading model is also used in
this study. The models are shown in Figures 1 and 2,

The input excitation used is an artificial earthquake time
history generated to simulate a target response spectrum as shown in
Figure 3. This response spectrum was constructed to be typical of
what might be appropriate for design in the Boston Area (9). Note that
the response spectrum used to estimate the elastic response of the
system is the target response spectrum but not the actual one computed
from the time history. Since the response spectrum solution is
approximate, this eétimation is juétifiable.

The intensity of the earthquake is regulated by multiplying the
whole time history by a common factor. To determine the effect of
earthquake intensity on the maximum and average required ductilities,
three intensity levels with maximum ground accelerations at 0.0135, 0.27
and 0.54 g are studied. The intensity level at which yield in the
systems begins is calculated and then the intensity ratios (intensity

level/yielding intensity) are found for the levels of 0.27 and 0.54 g,



A real earthquake motion record from the San Fernando earthquake
of 1971 is also used to study the effect of earthquake characteristics
on ductility requirements. The record is chosen arbitrarily. The
response spectrum of this record is shown in Figure 4.

In addition to the factors mentioned, damping is also thought to
be influential in ductility requirements. A value of 4% of critical
is used for most of the runs: 1 and 10% of critical are used to test
the effect of damping on ductility requirements: 4 and 10% are chosen
because they are believed to be typical for steel and concrete frames
at high strain range. For cobtaining another data point, 1% is used.

The computer program used was developed by Anagnostopoulos (7) for
nonlinear dynamic analysis of buildings. The first step of the numerical
integration is perfermed by the 4th order Runge-Kutta procedure while all
subsequent steps are done by the constant velocity method. Input to the
program contains the characteristics of the spring system and the
earthquake time history. Output of the analysis consists of the
natural periods, mode shapes, maximum interstory displacements, ductility
factors required, maximum shear forces and the time of occurrence.

Thirty-one computer runs were made., An index of the characteristics
of the systems is shown in Table 2a and the results are summarized in
Table 2b. 1In Table 2a are the rum number, system type, spring type,
post-yielding stiffness, yielding displacement pattern, damping value,
maximum ground acceleration, and type of earthquake. Table 2Zb presents
results on floor ductilities, intensity ratio, average ductility, ratio

of maximum ductility to average ductility, ratio of maximum ductility to



minimum ductility, ratio of maximum story drift to maximum pseudo-elastic
story drift, ratio of average story drift to average pseudo-elastic
story drift and location of maximum story drift. The pseudo-elastic
solution is obtained by multiplying the elastic solution at first

yield by the intensity ratio. In other words, the pseudo-elastic
solutions are calculated assuming that the yielding strengths of the

springs are extended to infinity.

ANALYSIS OF THE RESULTS

Effect of Yielding Displacements, Damping, Stiffness Degrading and

Earthquake Characteristics on Ductility

Figure 8 compares ductility requirements for System C with uniform
yielding displacements and R. S. yielding diéplacements. Even though
the system with R. 8. yielding displacement is structurally weaker than
the system with uniform yielding displacement, it undergoes less
inelastic deformation and its work capacity is nearly fully utilized,
mainly because the response spectrum solution closely approximates the
elastic solution and the uniform ductility is nearly achieved in the
elastic range. A comparison of ductility requirements for Systems C
and S with uniform yielding displacements is shown in Figure 9. System
S is superior to System C in reducing the maximum required ductility.

Figure 11 shows the effect of damping on the required ductility.
The behaviors of the systems with 4 and 10% damping appear to be very
consistent and the maximum ductilities are nearly identical., The

pattern of the ductility requirement of the system with 1% damping is



somewhat different and the maximum ductility factor is larger than
the other two. The behavior of systems with low damping value is not
of our concern, since we are interested in the range where high |
damping values prevail.

The effect of stiffness degrading on ductility requirements is
showmn in Figure 12, Stiffness degrading appears to have an adverse
effect on the required maximum ductility at lower levels of excitation
and a favorable effect at higher levels. Reasons for these effects
are unclear and further work is needed for substantiation. However,
the required maximum ductility clearly relies on the type of model
used;

The required story ductilities during two different earthquakes
are shown in Figure 13 at two levels of earthquake intensity. The
curves, as expected, do not coincide. The shapes, however, are similar

and the maximum ductilities are of the same order.

Effect of Post-Yielding Stiffness on Ductility

Effects of post-yielding stiffness of a bilinear spring on story
ductilities are depicted 1n Figure 10, The effect is negligible in the
region where inelastic deformation is less than the pseudo-elastic
solution, However, significant differences exist at the bottom story
where maximum ductilities are required. Further, the reduction of
maximum ductility from 0 to 3% post-~yielding stiffness is greater than
that from 3 to 10%. The reduction is highly nonlinear with the increase

of post-yielding stiffness as higher rates prevail in the range of low



post-yielding stiffness: the rate of reduction decreases as the post-
yielding stiffness increases, To prevent an excessive inelastic
deformation, 3% of initial stiffness appears sufficient.

Effects of post-yielding stiffness on maximum ductilities,
average ductilities and their ratios are summarized in Figures 14,

15 and 16 for the systems considered. In general, the maximum ductility
and average ductility increase more rapidly than does the intensity

ratio, especially when the ratio of maximum ductility to average ductility
is high, A scrutiny of the figures reveals that the nonlinearity may be
minimized by increasing the post-yielding stiffness or equalizing the
ductility requirements. Linear relations exist between intensity ratio
and ductility requirements for the systems with a 10% post-yielding
stiffness. High post-yielding stiffness may be achieved by special
design, e.g., by using high strength steel in some components.

For most cases, the ratio of maximum ductility to average ductility
increases with, but much more slowly than, the intensity ratio. In other
words, the increase in the maximum ductility factor is greater than the
increase in the average ductility factor. The increase is significant
at lower earthquake intensities and levels off at higher intensities.

For the cases with post-yielding stiffness, the curves are practically

flat at higher intensity levels.

Use of Elastic Analysis to Predict Inelastic Response

Figures 5 to 7 show the comparisons of inelastic maximum interstory
displacements and the pseudo-elastic maximum interstory displacements.

As soon as the force in one of the springs reaches its yielding strength,
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the spring becomes softer and deforms excessively, while the other
unyielded springs deform less than the pseudo-elastic drifts as shown
by the first pair of the curves im Figure 5, The deviation between
inelastic and pseudo-elastic deformation grows as the earthquake intensity
increases; the pattern and magnitude of the gap depend on the relative
stiffness and yielding displacements of the system. Observations reveal
that the pattern of deviation between inelastic and pseudo-elastic
deformation depends primarily on the pattern of ductility factors in
the elastic range., If the ductilities are basically uniform, as in

the case of System C with R. S. yielding displacements and System S
with uniform yielding displacement, many floors will surpass the
psuedo-elastic deformation at high levels of excitation. The maximum
ratio of inelastic to pseudo-elastic solution is somewhat limited to
less than 1.5. On the other hand, the bottom story is the only flecor
to deform beyond the pseudo-elastic limit and the amount of excessive
displacement is significantly higher for system C with uniform yielding
displacements. In all cases, the maximum story drifts and the maximum
ductility required occur at the bottom story, which suggests that the
bottom story is more likely to collapse during a strong earthquake.
Thus, perhaps, the yielding strength of the bottom story should be
increased or the story should be made more ductile.

To predigct the required maximum ductility factor without an
inelastic time history analysis, a relation between the maximum
inelastic story drift and the maximum pseudo-elastic story drift is
required. To make a preliminary study of this relationship, the ratios

of maximum and average story drifts to the corresponding pseudo-elastic
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solutions against intensity ratio are plotted in Figure 17. The
maximum story drifts are larger than the corresponding pseudo-elastic
solutions in all cases where KZ = 0 or 0.03 Kl' The ratios are mostly

less than 1.5. Note that the maximum story drifts are near or less than

the pseudo—elastic values for the cases when K, = 0.1 Kl' The

Z
effectiveness of post-yielding stiffness in reducing the maximum
ductility factor is clearly demonstrated.

The average story drifts, generally, are less than the corresponding
pseudo-elastic solutions. Therefore, it is safe to approximate the
inelastic drift of the top story by the pseudo-elastic solution in
designing for maximum building drift during earthquake excitation., The

pseudo-elastic solution may be easily obtained by the response spectrum

model.

SUMMARY AND CONCLUSIONS

From the results of the 31 computer runs reported here, the
following conclusions may be drawn.

1. The pattern of yielding displacements significantiy affects
the required ductilities. A pattern which results in a
uniform ductility in the elastic range appears to ensure
a low value {(less than 1,.5) of the ratio of the maximum Inelastic
story drift to the maximum pseudo-elastic story drift.

2. Post-yielding stiffness has a great effect on the required

maximum ductility. A value of 3% of initial stiffness seems
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to effectively reduce the excessive inelastic deformation.
The ratios of maximum story drift to the corresponding
pseudo~elastic solution are less than 1.25 for the cases
studied. A value of 10% of initial stiffness would be

ideal since it results in a linear relatiomnship between the
required ductility and intensity ratio. Also, the interstory
drifts are less than the corresponding pseudo-elastic
solutions for cases considered.

3. Ductility requirements appear to be less sensitive to damping
for values higher than 4% of critical,

4, The ratio of the maximum inelastic story drift to the
corresponding pseudo-elastic solution is usually larger
than 1, For cases where the yielding displacement is distributed
so that the maximum difference between two~story ductility in
the elastic range is less than 10%, the ratio appears to be less
than 1.5,

5. The average inelastic story drift is usually less than the
corresponding pseudo—elastic solution. Therefore, one may
approximate the top-story displacement by the pseudo-elastic
solution in designing for maximum drift requirement during
earthquake excitation. The pseudo-elastic solution may be
approximated with the response spectrum technique,

Note that the conclusions are based only on the results of computer

simulation and are by no means extensive. Extrapolations of the results

to other cases must be done carefully.
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TABLE 1

Stiffness Ratios and First Mode Shapes

of the Physical Systems

SYSTEM C _ SYSTEM S
Stiffness 1st Stiffness 1st
Floor Ratio Mode Shape __Ratio Mode Shape
6 1 4.16 0.286 6
5 1 3.91 0,481 5
4 1 3.44 0.714 4
3 1 2.77 0.857 3

2 1 1.94 0.952 2

-1 1 1 1 1
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CHARACTERISTICS OF COMPUTER RUNS
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Figure 1. Bilinear Model.
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Figure 2. Stiffness Degrading Model,
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Figure 17, Effects of Intensity Ratio and Pest-Yielding Stiffness on the Ratios of

Maximum Story Drift (M.S.D.) to Maximum Pseudo-Dlastic Story Drift
(M.P.-E.S5.D.) and the Ratio of Average Story Drift (A.S.D.) to Average
Pseudo-Elastic Story Drift (A.P.-E.S.D.).



