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ABSTRACT 

In a number of recent investigations, a buried pipe undergoing seismic 

excitation was modelled as a beam on a visco-elastic foundation. However, 

it is known that two of the observed failure modes in the buried pipelines 

under seismic loads are buckling and fracturp. Therefore, in this paper a 

thin circular cylindrical shell model in a resisting soil medium is used for 

a buried pipe. The coupled equilibrium equations arising from this model 

are modified to yield three decoupled equations which somewhat simplify the 

analysis. Then, an application for a long buried pipe is presented and 

the results are discussed and compared with those of the beam model. 
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NOMENCLATURE 

Radius of :shell 

Constants defined in the t'ext 

Constant defined in the text 

Roots of the polynomial 

Bending l:igidity 

Constant defined in the text 

Modulus of elasticity 

Normal strain components of the shell 

Constant defined in the text 

Force per unit area 

Roots of the polynomial 

Thickness of the shell 

Spring constants defined in the text 

Extensional rigidity 

Donne~Mushtari operator 

A modifying operator used in conjunction with Ld 

Constants defined in the text 

Ratios of displacement 

Constant 

Time 

Pipe displacement componenm 

Relative displacement of pipe to soil 

Particular form of the solution 

Ground displacement components 

Amplitude of ground deformation 
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U~V',W'etc = Dimensionless quantities defined in the text 

x = Shell coordinate 

x* = A dimensional coordinate defined in the text 

x' = Dimensionless quantity defined in the text 

= Second order spatial operator 

e: = A dimensionless parameter 

= A constant 

= Mass Density of Shell Material 

= Laplacian 

= Fourth-order spatial operator 

e = Shell coordinate 

= Curvature and twist related teams 

= Wavelength 

= Damping constants 

= Firs.t and second-order time operators 

v = Poisson's ratio 

~2 Shell parameter, h2 
= = 

l2a 2 

«Pl = Excitation function 

4>, X. = Operators defined in the text 

Yx9 = Shear strain 

III = 27T/A 



Introduction 

Due to the great potential for destruction, damage and disruption, the 

seismic problems of utility systems have recently attracted the attention of 

earthquake engineers and researchers [l,2]~ It became apparent that the 

seismic behavior of buried pipeline systems is quite different than that of 

above ground structures. For example bridges and dams,for which horizontal in-

ertia force is the most important factor, are mostly designed by the seismic 

coefficient method. However, in the seismic resistant design of buried pipe-

lines very small pipe stresses are obtained by this method. This is because 

the seismic load is mainly resisted by the surrounding soil. Therefore, it 

is not suitable in the design of underground piping systems. Seismic damage 

to underground piping systems is caused primarily by ground movement and 

faulting, traveling seismic waves, liquefaction of sandy soil, or difference 

in stiffness of two horizontally adjacent soil layers [3]. 

Furthermore, since utility systems are networks having sources, 

transmission lines, storage facilities and distribution systems within them-

se1ves,damage to single locations in a utility network often affects signi-

ficant portions of the entire system. 

Recently a number of investigators [4,.5 through 9 ] have examined 

the behavior of a buried pipe undergoing seismic excit'ation. An extensive 

and up-to-date review of the subject is recently provided by Ariman and 

Mu1eski [10]. The vast majority of this work has modelled the system as 

a beam on a visco-elastic foundation with the exciting function ~i in the 

form 

u. 
1. 

* References are presented at the end of the report. 

(1) 
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where i = 1,2,3;k is a spring constant and Ad is a coefficient of viscous 

damping. The relative displacement (in the i-th direction) of the pipe to 

the soil is denoted by u .• 
~ 

It is known that two of the observed failure modes in buried pipelines 

under seismic excitations are buckling and fracture (Figs. land 2). Clearly 

the buckling phenomenon exhibited in Fig. 1 cannot be described with the use 

of the beam model. Furthermore the same beam model also fails in the 

formulation of fracture problem of a pipe. Therefore, in order to examine 

. these failure modes, it is the intent of the present paper to model a buried 

pipe as a thin circular cylindrical shell in a resisting soil medium. The 

coupled equilibrium equations arising from this model are modified to yield 

three decoupled equations which somewhat simplify the analysis. Then the 

governing equations are utilized for the analysis of long buried pipe when 

the ground is deformed sinusoidally in the direction of the pipe axis. The 

results are discussed and compared with those of the beam model. 

General Theory 

It is assumed that the reader is acquainted with the equilibrium 

equations for a thin isotropic shell and is aware that these may be written 

in terms of the displacements u, v, and w in the x, 9, and r (radial) 

directions, respectively, as shown in Figure 3. The equilibrium equations 

may be presented as follows [11] 

(2) 
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aMx 1 aMex 
Qx 0 --+- ag- -ax a 

aMxe' 1 aMe 
Qe 0 --+- ae- - = ax a 

(2) 

Here qi represents the external loading and force and moment stress resultants 

(Figs. 4 and 5) are given as: 

= 2{1+v) h Yxe 
E 

(2a) 

M. = D (I<: + V I<:n) 
X S X t7 

In these expressions 

h, a, E and v represent the thickness, radius, Young's modulus and Poisson's 

ratio for the cylinder respectively. Furthermore 

and 

e 
x 

K =­
X 

= au + av 
Yxe aae dX 

The equilibrium equations in operator notation are presented as 

u F 
1 

x 
v = - Fe K 
w F r 

where 

*Equations (Z), (Za) and (Zb) correspond to the case of L =0. 
m 

(2b) 

(2c) 



x 

symmetric 

in which 

a v -ax 

1 a 
a. ae 

2 1 h 2 
~ = 12 (a) K = Eh 

2 I-v 

The forces per unit area are denoted by F ~ F", and F • x 't7 r 

(3) 

(4) 

The operator Ld in (2c) and (3) is known as the Donnell-Mushtari 

operator~ with time dependence through forcing terms~ while L 
m 

represents 

a "modifying operator~" which allows extension of (2c) to other shell 

theories. Leissa [12] lists nine L 's in this 3 x 3 notation, from a minimum 
m 

of two non-zero entries involving four operations (Houghton-Jones Theory) 

to a maximum of nine non-zero elements encompassing a total of 28 operations 

(Epstein-Kennard Theory). 

Donnell's Equations and Complete First-Order Equations 

In the Donnell-Mushtari theory, L = 0 and thus presents the simplest 
m 

set of equilibrium equations represented by (2c). Nevertheless, each equation 

involves all three displacements u, v and w. By suitable operations, these 

equations may be decoupled, resulting in three other equations, one involving 

only u and w, another only v and w, and, finally, a differential equation in 

w alone. This decoupling is important in the application of thin shell 
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theory in that, given the loading situation, the third equation may be 

solved for wand, knowing w, u and v are found from the first two equations 

directly. 

However, in the derivation of these equations (commonly referred to as 

Donnell's equations), a number of assumptions must be made [13j. These 

amount to the neglecting of 

1. The Qg term in the second equation of (2) 

2. The v terms in the last two expressions of equations (2b). 

In the present paper, the terms neglected by Donnell are retained and 

carried through a series of similar operations to obtain the following set 

of decoupled equations: 

1 v 2 4 2 2 3-v 2 2~2 
l~ (1+ ~ ) 'i/ u + K2 (1+V) n (u)- K(l+v) 'i/ T) (u) - K(l + v) X n (u) 

1 a2v 2 
= Ka II (axag) + -K""'2-(1-+-V-) nv (U) 

2(1+~2) ( ) 2v (aw) 
K(l+v) ~ u U + Ka(l+v) n dX 

2 
2v(1 + ~) Caw) 
a(l+v) x ax 

(Sa) 



2 2 aw 
K(l+v) iPll(V) + 2 n(a~) 

. Ka (l+v) 

2 
2 

a (l+v) 

and finally, 

2 2 4 2 . 
.L"8 + I-v a w • _~ _ {2(2+) (I-v) 
12 v w 2 4 T I-v 2 

a oX a 

6 (l+v) (2v-3) 
4 a 

3-v {V2 Tl 1. n _ h
2 

,,6n }(w) + 2(1+v) (a
2
w) 1 ,,4 () 

K(l-v) K "r 12" Ka2 n ax2 + K Tlr w 

1· 1 a1 
2 } v au + (1 2 2 av 

+K ll{adxde+K(l+v)Tl [a- dX 2-~")de] 
a 

6 

(5b) 

(5c) 



Here the forces per unit area are introduced as 

F = ll(U) - n(u) x 

Fe = ll(V) - n(v) (6) 

Here U, V, andW represent the ground displacements in the x, e and r 

directions respectively and ll, llr and n, nr are first-and second­

order time operators as; 

k + ' a 
llr = r I\d at 

r 

n 

nr 

= k-r 

= k r 

a a2 

Ad at + ph-
at2 

+ Ad 
a a2 

ph-
r at at2 

(6a) 

The k and Ad implied in II and n by equations (1) and (6a) are assumed to 

be constant. This situation greatly facilitates the decoup1ing process in 

that the various operators then commute and allow the simplification of the 

expressions. However, k and 
r 

and nr may be considered 

functions of time and space. Namely 

k =k (x,e, t) 
r r and Ad = Ad (x,e,t) 

r r 
(7) 

Note that these operators include inertia terms as well as the visco-

elastic forces implied in equation (1). 

It will be noted that, by setting the shell parameter ~2 = 0, the 

dynamic Donnell equations result. While it is customary to neglect the 

shell parameter with respect to unity for thin shells, there are clearly 

terms in (5) in which ~2 stands alone. 
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Theory of FlUgge-Lur'ye-Byrne. 

It is well known fll, 13-15] that Donnell's equations can prove in-

adequate, especially for cases in which the circumferential distortion's wave-

length increases. With this in mind, Morley [13] proposed a different 

spatial operator for the w-equation in the static case. A similar dynamic 

expression is now derived. 

Morley proposed a spatial operator for the third equation in the form 

(8) 

Examination of (5c) reveals be had 

by the simple retention of the terms neglected by Donnell. As such, one 

must appeal to another shell theory. The Flugge-Lur'ye-Byrne theory gives 

the desired results. 

The modifying operator 

be written as 

I-v 32 

2 aQ2 

L = m 

synnnetric 

L 
m 

in this case and in non-dimensional form may 

3 a3 
0 a I-v ---+--

axaQ2 ax3 2 

3 (l-v) a
2 

3-v a3 

2 ax2 --2-
ax2aQ 

(9) 

1 + 2 a2 

3Q2 

8 

These additional terms in the Flugge-Lur'ye-Byrne (FLB) [12] theory result from 

the relaxation of the thinness assumption. In writing strain-displacement 

relations, one encounters terms involving the radial coordinate divided by 

a radius of curvature. In the Donnell-Mushtari theory, this is neglected 

with respect to unity. However, the fact that this quantity is less than 

unity enables one to expand the quotient by a geometric series which may 



then be truncated at a suitable order. This is precisely where the FLB 

theory differs from the Donne11-Mushtari and why the FLB theory is termed 

a "higher-order approximation." 

The equilibrium equations in terms of the displacements 

appear in F1ugge's 1934 text, Statik und Dynamik der Scha1en U~ 

(interestingly, the year after Donnell's equations were published). The 

same results were found independently by Lur'ye [17], Byrne Qru, and Biezeno 

and Gramme1 [1.9]. In 1955, Kempner f1sJ showed that, for circular cylindrical 

she11e, m:tiege's equations [16,20] could be expressed in a form analogous to Donnell's 

equations. It is his approach that is now pursued for the dynamic situation. 

Decoup1ed FLB Equations 

Consider first the non-dimensional quantities defined as 

x' x = -
a 

u u·'· = -

u U' =­
a 

a 

and then the operators 

V' 

,. v w" w 
v = - = -a a 

V W' W = - = -a a 

n"" = an = all 

n = an 
r r 

11 ,. = all 
r r 

The primes are now dropped for ease of notation. The operators 

and n are also defined as 

(10) 

(11) 

-4 V,a.,S, 
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1 3-v a2 
a=----

~2 2 ax2 
(12) 

v ("2 3-v a2 
8-- v --) 

- ~2 - - 2 ae2 

or v S = - - Q 
E,,2 

The first two equations in (2c) can be solved for one term each. From the 
2 

first, an expressio~ for ~~;e in terms of derivatives of u and w is obtained; 

o . 0
2 

from the second, dXd~ is expressed in terms of v and w. Tak~ng dXOe of 

each of the first two equations and using the previous results gives the first 

two decoupled equations; 

-4 2 a
6 4 2 

V u + I-v 2 ~ n (u) 
DI:) 

1 2 3 4 2 ~2 ~2 
= +v(LU)+ =-- Da ~ nS(~wx) + {(1+3S; )v _0 ___ 0_ 

I-v I-v s ° dX2 de2 

(13a) 
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2 3 ~2v 
_ I-v ; ~2n {(3;v + ~2 I;V) V2v + ~2 (I-v) -" -2 } = 

s ax 

where the following quantities are pres~med known (13b) 

3 2 'iv 2 2 3(1 ) a2 2 a 3 -2 
(LU)= ~ t;. {1l(--) -- (X+ t; --~ -2)1l(U)+ l+v -D ~nll(U)} 

Ds axag l+v· 2 ax s 

(14) 

in which 

(15) 

and all operators are as given after non-d1mensionalization. 

The decoupling is completed by taking a 
S ax of the u-equation in (13) 

and a ;g of the v-equation and adding the results. The third equation in 

(2c) implies that 

(16) 

This term appears as the argument of several operators in the final result 

of the last decoupling operation. Substitution of equation (16) gives one 

equation in terms of w alone. The terms in this equation will be divided 

into two groups: (1) terms that involve only spatial derivatives of w, and 

(2) terms that are either purely temporal or mixed (time and space). Letting 

{5} denote the first set and . {T} the second, we have 

{s} = {T} (17) 

11 
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Consider first the {S} term. This expression is eighth-order and 

expansion reveals that 

. B 2 a6 2 2 a6 
{S}= [V + 2v(1+3; )-6 + [6 + 3s (2 - \I - v)] 4 2 

ax ax ae 

.... 

1 2 aB aB 
+ 2 [(7-3v) + 3(1-v)~] 2 6 + --S)}](w) 

ax ae ae 
(18) 

If sZ« 1, equation (18) may be written (noting that all terms in the 

last part of the operator have counterparts in the first), 

. . 8 a6 a6 a6 
{S} = {V + 2v -6 + 6 4 2 + 2(4-v) "x2",,4 

ax ax ae 0 0'3 

(19) 
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or, 

(20) 

To maintain consistency, we note that the shell parameter will be neglected 

in favor of unity. Furthermore, the last term is neglected in Morley's 

static equations; we follow suit. Thus, 

{s} (21) 

which is recognized as Morley's operator as previously given by equation (8). 

The term involving time derivatives, {T}, is now considered. 

Expansion reveals that, if 

(22) 

then, 

+ "n term" (23) 
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where 

(24) 

Expansion of the argument of the "'11 term" gives 

2 2 d2 
arg n =n (1+ ~)A - Y-] _d - + (1+ 1

2
) A -

~2 1 ~2 dX2 ~ 1 de2 

(25) 

in which 

(26) 

Assuming that ;2 can be neglected wi~h respect to one, equation (25) 

becomes 

(27) 
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and equation (23) becomes 

{T} 
3 4 2 9 42 

= (LW) - 2- 'il n (w) - - ~ ~ n n (w) 
Ds r 1-v D6 r 

3-v 6 
~2 2 a +-

D2 
n 'il nr(w) 1-v 

s 

2 6 
~4 n2 

2 a {\l~ + ..!... w + 2 a w }' - 1-v D2 ~2 ae2 
s 

(28) 

3 
+ 2 a 2 

1-v nz ~ n [argn ] 
s 

where 

6 
(W)- _2_ ~ ~2 (3-v 'il2) [n ()] 

1-v D2 ~ 2 ~r W 

9 
+ _2_ ~ ~4 2 (w) +l+v [et. L (LV) +(3 L (LU)] 

1-v 3 n ~r 1-v de dX 
Ds 

(28a) 

with 

and 

(28b) 

Equation (27) is somewhat reminiscent of equation (20); three'i1 

operators are involved, with an additional x derivative term corresponding 

to the lowest order V operator-. vIe choose to neglect the last term in equation 

(27) with the following justification: If the term is operated upon by 

the Laplacian {which would result in an expression even more reminiscent of 

(20», then two derivatives in the final bracket are those neglected by 

Morley. The other term would be the second derivative with respect to x 
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of the third term Morley neglected. This is dropped because, as Morley 

remarks, terms involving G derivatives are more important than derivatives 

with respect to x. With this assumption, equation (27) becomes 

3-v 4 2 arg n = [-2- 'V ('V + 2) (29) 

Finally the equation for w is given by 

2 a 6 4 2 2 6 4 2 4 I a2 
+ I-v -2 ~ n lnr(w) - - ~ ~ n ['V +- + 2 -2](w) (30) 

Ds I-v D~ ~2 aG 

Morley's static equations differ from Donnell's only in the w equation; 

the equations for u and v are identical to Donnell's. With this in mind, 

we complete the system of governing equations by listing the dynamic Donnell 

equations after non-dimensionalization (recall that these are had by 

setting ~2 = 0 in (5»: 

{ '14 _ 3-v t;2 
3 

V
2n 2 3 

n2
} 

a + ( ~2 ~)2 (u) ·1-v D I-v D s s 

l+v 2v 3 a2 a2 
= (LU) + { t;2 ~ n +~- v } ( dW ) (3Ia) 1-v I-V D ax2 dX s ae 



= 

3-v - --
3 

~2 a 
D 

s 

l+v 
I-v 

I-v 

. 2 
(LV) + {I-V 

2 
+ I-v 

3 
~2 .!!... 

D s 

An Application to a Buried Pipe 

(3lb) 

As a simplified application of the equation (30) and (3la), consider 

an axisymmetric example in which 

a a 
-at=ag=O o 

n = II = k 
(32) 

v = W = 0 

U = U cos(.U~ 

where U, k, and A are constants. Further,it is assumed that the pipe is 

infinitely long. Thus, this example is the steady-state solution when the 

ground is deformed sinusoidally in the direction of the pipe axis. 

In light of the axial symmetry, we have 

17 



1 3-v d 
2 

a =----
~2 2 dx2 

The "loading term" (UJ) is given by 

where, 

·35 (LW) = {w A-wB - w C}sinwx 

a -C = - kU 
K 

Equation (30) becomes 

where 

d 
D =­

dx 

18 

(33) 

(34) 

(35) 

(36) 



and 

= 2 _ 3-v a k 
P I-v K 

r = .;,. (2v + 3) ~k 
K~2 

2a
2 

k2 s = 
K2~2(1_v) 

This polynomial in D in (36) clearly has at most eight distinct roots. Let 

n be the number of distinct roots, j. the order of the i-th root, and let 
~ 

be the i-th root itself. It will be noted that 

n 
~ ji = 8 

i=l 

A complementary solution for w is 

n ji 
(j-l) L ~ b .. 

g.x 
w = x e ~ 

c i=l j=l ~J 

where the b .. are constants. It should be noted that, if any root has a 
~J 

non-zero real part or if any root has an order greater than one, then the 

constant b .. corresponding to that root must vanish because _00 < x'" 00. 

~J 

A particular solution for w is found by setting1 

w = Psinwx + Qcoswx 
p 

where P and Q are constants. Substitution into (36) yields 

Q = 0 

p = 

~ote that this implies that gi I w for all i=l, ••• ,n 

(37) 
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The complete solution is thus 

w = w + Psinwx 
c 

(38) 

Thus a ground displacement in the axial direction gives rise to a radial 

pipe displacement. 

where 

and 

Now, equation (3la) gives, for b .. all zero, 
1J 

(D4 + mD
2 + n)u 

{(2wv ka 3) 
= 1-v JK + vw p 

2 
+ (w2 ka + _2_ (ka) ) U}· coswx 

. K I-v K. 

d D =­
dx 

3-v ka 
m = - I-v K 

2 ka 2 
n=-(-) 

I-v K 

The solution to (40) is found as before and is given by 

N 
u = L 

i=l 

j . 
1 

L 
j=l 

j-l 
d .. (x) e 

1J 

(39) 

(40) 

(41) 

where N is the number of distinct roots of the fourth-degree polynomial, 

c
i 

the roots, ji the order of i-th root, and dij constants. Furthermore, 

u is the particular solution 
p 

u = F coswx + G sinwx 
p 

where F and G are constants~ Equation (40) gives 

G = 0 

20 



Thus, 

F = 
[0)2 ka + _2_ 

K 1-v 

N 
u = I 

j=l 

(42) 

+ F coswx (43) 

and again, if any real part of the ci is nonzero or if the order is greater 

than one, the dij term corresponding to that root must vanish. 

Finally, v is seen to have the solution 

N ji 
v = I L 

i=l j=l 

f.. x(j-1) 
1.J 

(44) 

where the ci are the same as in (41) and the fij are constants. The same 

admonition following equation (43) also applies here. 

The shell model thus gives displacements in three directions for only 

axial ground displacement. O'Rourke and Wang have investigated a similar 

problem using the beam model, which gives only axial displacements [9]. 

An Example 

Let the dimensionless quantity E be defined as 

ak 
e: =-

K 

With this definition, A, Band C from equation (35) become 

Thus 

A = U CV e:-e:? 1+V) 
~2 I-v 

2v 
B = ---,,---

~2(1_v) 
2-

e: U 

C = e:U 

P 
R = - = 
w IT 

3 5 w A - wB - w C 
8 6 42-

(w -pOl + qw -rw + s) U 

(45) 

(46) 
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where p, q, rand s are now given by 

3-v p=2---E 
I-v 

l_v2 2(3-v) 2 2 
q = 7 - I-v E + I-v e: 

r = - (2v + 3) E 
~2 

As . .tm . example, consider a 30" (76.2 em) diameter steel pipe with 

a = 15 in (38.1 em) 

h = 0.375 in (.95 em) 

v = 0.3 

aA = 1000 ft (304.8 em) 

w= a2'11"/12000 in (a 2'11"/30480 em) 

and let all b .. , d .. , f .. be zero. An order of magnitude analysis 
~J ~J ~J 

simplifies (46) to 

v 3 2v 2 

~2 
w E - 2 WE: 

R = ~ (I-v) 
w I-v 2 

w4
+(2v+3) £.-- w2 + _2_ 

2 
E 

~2 2 I-v ~2 

It will be noted that 

1) E = 0 gives 

~ 

R = 0 
w 

2) For suitably large E, R :: - Vl:1l' 
W 

(47) 

(48) 



Furthermore, a plot of Rand £ is to be found in Figure 6. w 

Similarly, if the ratio of pipe axial displacement amplitude to ground 

displacement amplitude is defined as 

then· 

R 
u 

F =-
U 

R = 
u 

3 2v 2 vw R + [---1 w R + W ]£ 
W -v W 

4 + 3-v 2 + 2 2 w --we: --e: I-v I-v 

+ _2_ e:2 
I-v 

(49) 

(50) 

Here it will be noted that if k=O (i.e., the soil and pipe are not inter-
• < 

connected); Rw=Ru=O, which is to say, the ground's deformation does not 

give rise to either axial or radial displacements in the pipe. As seen in 

Figure ~ R is approximately one for 
u 

-3 
E > 10 . In this range of 

then, the pipe's displacement follows that of the ground. 

Conclusions 

E, 

It will be noted that in Figures 6 and 7 three regions of E are defined, 

I, II and III. In region I, k < 8.3 psi (57.2 KPa) and the ratio R is quite 
u 

small. In III, k > 830 psi (5.72 M Pa) and R z 1, indicating that the 
u 

pipe moves with soil. Region II represents a transition from I to III. 

It is well known that, during seismic excitation, a buried pipe moves 

with the ground [3,10]. Thus, demanding that e: lie in Region III, we have 

830 psi (5.72 M Pa) ~ k (51) 

For k satisfying (51) it would appear that the thin shell theory of buried 

pipelines give results consistent with observation [3,10]. However, use of 

the thin shell model does give rise to other displacements (and hence, stresses) 

in the pipe. In the present model, account is taken of the coupled displace-

ments arising from the curvature of the pipe and therefore it appears that 

the shell model is not only necessary for the investigation of the buckling 
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and failure modes of the buried pipelines but it also provides a more realistic 

stress field than the beam model in the seismic investigation of pipelines. 

Acknowledgement 

This technical report is a partial outcome of the research program 

entitled "Earthquake Response and Aseismic Dp.sign of Underground Piping 

Systems," sponsored by the Earthquake Hazards Mitigation Program of the 

ASRA Branch (formerly RANN) of National Science Foundation under the Grant 

No. ENV-77-23236. The authors acknowledge the financial support and deeply 

appreciate the continuous encouragement and advise of Dr. S. C. Liu, 

Program Manager, during the course of this investigation. 

24 



References 

1. Ariman, T., "A Review of the Earthquake Response and Aseismic Design of 
Underground Piping Systems," The Current State of Knowledge of Lifeline 
Earthquake Engineering, ASCE, New York, 1977, pp. 282-291. 

2. Isenberg, J. et aI, "Underground Pipelines in a Seismic Environment," 
The Current State of Knowledge of Lifeline Earthquake Engineering, ASCE, 
New York, 1977, pp. 267-281. 

3. Katayama, T., Kubo, K. and Sato, N., "Earthquake Damage to Water and 
Gas Distribution Systems," Proceedings of the U.S. National Conference 
on Earthquake Engineering, Earthquake Engineering Research Institute, 
1975, pp. 396-405. 

4. Miyajima, N., et al., "An Example of Seismic Design and Earthquake Response, 
U.S. - Japan Seminar, 1976, pp. 1-33. 

5. Parmelee, R.A., and Ludtke, C.A., "Seismic Soil-Structure Interaction 
of Buried Pipelines," Proc. of the U.S. National Conference of Earth-

~------~~~~----------------------------~----quake Engineering, 1975, pp. 406-415. 

6. Takada, S., "Earthquake Resistant Design of Underground Pipelines," 
Proc. Sixth World Conference on Earthquake Engineering, New Delhi, 
1977, pp. 97-103. 

7. Tamura, C., "Design of Underground Structures by Considering Ground 
Displacements During Earthquake," U.S. - Japan Seminar, 1976. 

8. Wang, L.R., "Vibration Frequencies of Buried Pipelines," Technical 
Report No. 2R, Dept. of Civil Engineering, Rensselaer Polytechnic Institute, 
January 1978. 

9. O'Rourke,M. and Wang, L.R.L., "Earthquake Response of Buried Pipeline," 
Technical Report No.4, Dept. of Civil Engineering, Rensselaer Polytechnic 
Institute, March 1978. 

10. Ariman, T. and Muleski, G.E., "Seismic Response of Buried Pipelines - A 
Review," Technical Report No.1, Department of Aerospace and Mechanical 
Engineering, University of Notre Dame, October 1978. 

11. Kraus, H., Thin Elastic Shells , John Wiley and Sons, New York, 1967. 

12. Leissa,A.W., Vibration of Shells, NASA SP-288, 1973. 

13. Morley, L. S. D., "An Improvement on Donnell's Approximation for Thir..­
Walled Circular Cylinders," Quart. Journ. Mech. and Applied Math., 
12, 1959, pp. 89-99. 

14. Hoff, N.J., "The Accuracy of Donnell's Equations," J. Aprl. Mech., ~, 
1955, pp. 329-334. 

15. Kempner, J., "Remarks on Donnell's Equations," J. Appl. Mech., ~, 1955, 
pp. 117-119. 

16. FlUgge, W., Statik and Dynamik der Schalen, Julius Springer, Berlin, 1934. 

25 



17. Lur'ye, A.I., "The General Theory of Thin Elastic Shells," Prikl. Mat. 
Mekh., i, 1940, pp.7. 

18. Byrne, R., "Theory of Small Deformations of a Thin Elastic Shell," UCLA 
Publications in Mathematics, N.S., l, 1944. 

19. Biezeno, C.B. and Gramme1, R., Technische Dynamik, Julius Springer, 
Berlin, 1939. 

20. F1ugge, W., Stresses in Shells, Julius Springer, Berlin, 1960. 

26 



27 

Figure 1 Compression Forces Buckled 16 inch Steel Pipe and 10 inch T. 



28 

Figure 2 Brittle Crack Propagation in a Concrete Pipe. 
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Figure 3. Geometry of the Cylindrical Shell. 



30 

Figure 4. Force Stress Resultants on Shell Element. 

Figure 5. Moment Stress Resultants on Shell Element. 
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