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CHAPTER I

INTRODUCTION

Analytical methods have been developed in recent
years to evaluate the ground motions induced in soil
deposits during earthgquakes. A knowledge of these motions
is essential to the understanding of the earthquake behavior
of structures.

The characteristics method opens a new approach to
the solution of problems of earthquake generated transient
disturbances traveling through soil deposits. One of the
first attempts to compute‘soil motions using the method of
characteristics was made by Streeter, Wylie and Richart [71]%
The method has not been thoroughly explcited and tested as
in the case of hydraulic transient problems [69]. Therefore,
the research reported herein was not restricted to a narrow
objective but a modest contribution was attempted to a wider
range of problems often encountered in soil vibrations
induced by earthquakes.

In this study the characteristics method is applied
to problems involving the computation of bedrock motions
from recorded ground surface motions, the propagation of
shear waves through tapered cross sections (earth dams),
the propagation of pressure waves through saturated soil

deposits, and two dimensional simulations.

*Numbers in brackets indicate references listed at the end
of the thesis; numbers in parentheses denote equations,



A review of methods for the one-dimensional shear
wave propagation through horizontal layers of unsaturated
soil is presented in Chapter II. The rather extensive
review is broad in scope to provide an overall background
of the subject and to facilitate the presentation of the
subsequent invesgtigations. The accuracy of results obtained
by the method of characteristics compared to closed form
solutions is briefly examined in Chapter III.

For the computation of bedrock motions from recorded
ground surface motions the Base Motion Synthesis method
based on the method of characteristics and on a cenﬁered
implicit method is developed in Chapter IV. Shear waves
traﬁeling vertically through horizontal unsaturated soil
deposits are considered. Assuming that the soil reacts as
a linear viscoelastic material, the aforementioned method is
compared with an analytical method developed by Schnabel
et al [58]. The Base Motion Synthesis method is extended to
situations where the soil reacts as a "strain-softening"
material. Ramberg~-Osgood type shearing stress~shearing
‘strain curves are employed in this case to model the non-
linear behavior of the soil.

One-~dimensional shear wave propagation through
tapered cross-sections of earth dams with truncated crests
is examined in Chapter V. A closed form solution is
obtained involving Hankel functions with cbmplex arguments
in the caée in which the earth dam material is unsaturated

and linear viscoelastic. The characteristics method is



used to provide a solution to the same problem. The two
methods compare favorably. An additional confirmation ema-
nates from a comparison between the method of characteristics
and the shear slice theory [63].

The vertical propagation of pressure waves through
saturated horizontal elastic soil deposits is treated in
Chapter VI. Biot's field equations [9] are reduced to one-
dimension. An analytical solution is obtained which accounts
for wave reflections at the boundaries (free surface and bed-
rock). The method of characteristics is also used to solve
the four partial differential equations involved, and to
calculate pore pressures and stresses under seismic loading.

Two-dimensional transmission of shear and pressure
waves through unsaturated viscecelastic layered systems is
studied in Chapter VII. A latticework of one-dimensional
elements is used to simulate two-dimensional earth struc-
tures, i.e. earth dams, earth embankments or valleys. 8Six-
teen linear eguations are solved simultanecusly at each
interior node of the latticework. Eight of these equations
are the characteristics equations from the linear elements
surrounding the node and they represent the relation between
pressure or shear and the corresponding velocities. Invest-
ment in computer time for solving two-dimensional problems
by the latticework method is small in contrast with other
widely used two-dimensional analyses.

A number of examples are included in each Chapter to

illustrate the applicability of the characteristics method



i
' &
and to provide comparisons of tWe solutions obtained from
the method of characteristics and from other methods of

analysis.



vCHAPTER IT
REVIEW OF ONE~DIMENSIONAL SHEAR WAVE PROPAGATION
METHODS THROUGH HORIZONTAL SOIL LAYERS

Ground motions near the surface of a horizontal
unsaturated soil deposit may be attributed mainly to the
vertical propagation of shear waves from an underlying rock
formation. In such cases the soil deposit can be considered
as a one-dimensional shear beam, since the ground motions
induced by a seismic excitation at the base are only the
result of shear deformations in the soil.

One of the first attempts to calculate the motion
of a soil layer subjected to a base vibration was made by
Jacobsen [40] in 1930. Jacobsen assumed that the soil
behaves as a linear viscoelastic material, that the rigidity
of the soil deposit is constant with depth and that the
motion of the base of the layer is horizontal and simple
harmonic. His objective was to find the amplification of
the base motion in alluvial deposits. Kanai [43,44],
Herrera and Rosenblueth [29], and others studied more thor-
ougaly the same problem. The equation of motion used by
those investigators to model the response of a soil deposit

of finite depth to a horizontal seismic motion at its base

is:
2%u du d du, _
T §E[G(z)az] h P&y (1)

in which p = mass density of soil; ¢ = viscous damping

coefficient; u = relative displacement at a depth z from



the surface of the deposit at time t; ag = horizontal seismic
acceleration at the base of the deposit; and G{(z) = shear
modulus at a depth z. If G(z) is constant with depth,
Equation (1) reduces to a linear hyperbolic partial dif-
ferential equation. If ag is taken as gero, u in Equation
(1) is the absolute displacement at a depth z.

Ambraseys [l] considered that the rigidity of a
soil deposit increases linearly with depth, i.e., G(z) = fz,
where f is a constant. The amplification of the base motion
and the natural period of the deposit were then found analy-
tically.

Since experimental investigations {[21,26] have shown
that the modulus of a cohesionless soil varies with the
‘confining pressure to‘powers of 1/3 to 1/2, Idriss and Seed
[35,36] used a shear modulus variation prescribed by
G(z) = fzd, where f and d are constants and 4 = 1/3. Thus,
Eguation (1) becomes a second order hyperbolic partial
differential equation, a closed-form solution of which was
obtained by the method of separation of variables.

In order to analyze the response of a soil deposit
having linearly elastic but irregularly varying soil pro-
perties, Idriss and Seed [35,36] used a lumped mass analysis.
The lumped mass solution was essentially a finite difference
method for the solution of Equation (1).

A generalized viscoelastic solid is specified by the
existence of a functional equation of state connecting

stress, strain and time. A linear viscoelastic solid is



further restricted to the requirement that its mechanical
properties conform to the Boltzmann superposition principle.
The simplest examples of linear viscoelastic soclids are: a
Voigt solid (a spring connected in parallel with a dashpot);
a Maxwell solid {a spring connected in series with a
dashpot); and a Newtonian fluid.

In Equation (1), the dissipative force was assumed
to be proportional to the velocity. However, internal fric-
tion depends also on frequency. In 1927, Sezawa [65] as-
sumed that soil behaves as a Voigt solid for small wvibration
amplitudes. Adopting this assumption, Kanai [42] approxi-
mated a solution to the prbblem of vertical propagation of
plane shear waves through a viscoelastic soil layer. The

equation of motion for this distributed system is:

32 320 8w
P5gz ~ G35z " M dgrye - O (2)

o

where p = soil mass density; G = shear modulus, constant
or function of depth z; v = so0il viscosity; and u = absolute
displacement at a depth z from the ground surface at time t.
Equation (2) was used by Schnabel, Lysmer and Seed
[58] to compute the responses of a soil deposit for a
design motion given anywhere in the system.
In the simple case where the base of a so0il formation
is subjected to a harmonic displacement of frequency w and

amplitude W, the solution to the wave equation (2) is:

1 * -1 %
jwt eiWE/VE L miwz/v

u{z,t) = We : — (3)
ele/v* + e iwH/v*




then

V{z,t) = iwu(z,t) (4).

where H = total thickness of soil deposit; V = absolute
particle velocity at depth z at time t; and v* = complex

shear wave velocity equal to

v¥ = V(G + 1uw)/p = VG*/p (5)

where G¥* is the complex shear modulus.

The method of characteristics in the form of a
graphical solution was-first used by Westergaard [72] in
1933 to find horizontal shear in buildings idealized as
shear beams. However, the method could be used only if
the ground excitation was of a very simple form.

During the past decade, solutions of hyperbolic
partial differential equations by the method of character-
istics have been applied to a variety of hydraulic tran-
sient problems [69,67,68]. In 1973, Streeter, Wylie and
Richart [71], applied the method of characteristics to wave
propagation through soils. Shear waves induced by earth-
quake motions in linear viscoelastic and "strain-softening"
materials were considered. Voigt's assumption that the
stress components in a solid can be expressed as the sum
of two terms, the first term being proportional to the
strains and the second term being proportional to the rate

of change of the strains, was adopted. Under this assumption



the dynamic stress-strain relationship for the soil consi- |

dered to behave as a viscoelastic material was written:

ou 3%u _
dz *ou 3zot (6)

T =G
where T = shearing stress; Y = soil viscosity; and u =
absolute horizontal displacement at a depth z at time t.

Under dynamic conditions the equation of motion was

written as:

3%u 3T _
patz"ﬁﬁz"""o (7)

It should be noted that if Equation (6) is differ-
entiated with respect to z and substituted into Equation
(7), Eguation (2) is developed. Since the particle velocity

is V = Jdu/dt, Equation (7) was written as:

IT _
- ny T 0 (8)

«
|
i

Differentiating the equation of state (6) with
respect to time and using the particle velocities instead
of the particle displacements, Streeter, Wylie and Richart

obtained the equation:

@
=

4]
<
@
<

|
|

0 (9)

92V _ 3 AV, _ 1 3V _ 8V
= x—(57) = iE [—E (gz) 1 (10}

where the subscript C denotes the value determined at point

C on the z-t diagram (Fig. 2). With this finite difference
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approximation, Equation (9) becomes:

T _ (G + £ 9y B

T
s = Q0 (11)

Equations {8) and (l11) are two linear hyperbolic
partial differential equations in terms of two dependent
variables, shear stress and particle velocity, and two
independent variables, depth along the soil layer and time.
The method of characteristics is a mathematical technique
used to transform these two partial differential equations
into four ordinary differential equations which are then
solved by a suitable finite~difference technique.

In reference [71], Equation (8} mﬁltiplied by an

unknown multiplier 6 was added to Equation (1l1) to obtain:

\Y
d I+ f% (EE)C =0 (12)

3T 3Ty - v 1 + M
[se v 0 5;]-e0[5g+ 55 6+ 30

<

QJ)

Z

From the definition of an Eulerian derivative, i.e.,
g—— = @.._ + g'...z_ _8_._
dt ot dt 3z’

in Equation (12) become total derivatives if

it is apparent that the bracketed terms

dz _ o4 o L1 1
at - 9 = 5p (6 5P (13)
from which
- G |-
8 =+ 5+ SRE T v (14)

v

in which Vg is the apparent shear wave velocity in the soil,

equal to the slope of the characteristic lines in the z-t
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diagram of Figure 2. Equations (12) and (13) are desig-
nated as C+ when the plus sign is used for 6 and C when

the negative sign is used:

dt av . W v, _
gt " Vs at Tar B =0 (15)
+
c
dz _
= v, (16)
dt av w3V, |
_ at " s ac e BT O (+7)
C
g% = -V, (18)

The quantity (8V/3z)C Was‘expressed in terms of
central finite differences for the interior points of the
z-t diagram. A forward and backward finite difference
scheme was used at the boundaries. After specifyving a con-
venient time interval At, to be kept constant throughout
the calculations, Equations (15) and (17) in finite-

difference form become:

. o - - L _ =
C: T, Ta PV (vP VA) + 5hm (VB VA) 0 (19)
....- — — __._..u — -
C: Tp Ty + vy (VP VB) t 55 (vB VA) 0 (20)

By solving Equations (19) and (20) the unknown
quantities T, and V, can be found. The distance interval

Az in Equations (19) and (20) is equal to:

= }9‘_ n (21)
Az At 5 + ot
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In the simplest case, Az could be found to be a sub-
multiple of the soil deposit's total thickness. However,
in reference [71], more sophisticated cases, such as G
changing in a prescribed way with depth, were treated by
using interpolations.

At the ground surface the boundary condition is

TP = 0. Then VP can be found from the C characteristic,
as:
's U 1
Vo T VB T ov. T iz Yo m VB v, (22)

At the base, the boundary condition consists of a
known VP as a function of time from the seismic excitation
under consideration. Then, T, can be found from the e’

characteristic as:

T, = Tyt PVg (VP -V (23)

- B -
pe) S A) Az v v

C A)

The z-t diagram (Fig. 2) facilitates the under-
standing of the step by step solution. At time t, the
shearing stresses T and particle velocities V are assumed
to be known (initial conditions). If the earthguake starts
at time tgy, since the soil deposit is horizontal, T and V
are zero throughout (static conditions). These values
permit calculation of T and V at points P (one time step
later) by using Equations (19), (20}, (22) and (23). The

same procedure is used for the next time step.
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To this point all methods mentioned considered the
soll to behave as a linear viscoelastic material which
could be the case for small strains. However, shearing
stress-shearing strain curves for most soils are nonlinear
and Hardin and Drnevich [25] have experimentally demonstrated
that this relationship may be approximated by a hyperbola.

Heierli [28] theoretically and experimentally studied
the problem of one-dimensional pressure wave propagation in
inelastic media such as soils. "Locking-up" dynamic stress-
strain curves were determined experimentally for the
material. The theory developed using a step-by-step pro-
cedure, closely resembles the method of characteristics.

Parmelee, et al. [52], and Seed and Idriss [61,35,36]
used a lumped-mass solution to evaluate the seismic response
of solil layers with shearing stress-—strain characteristics
approximated by a bilinear hysteretic model (Fig. a-~1}).
The lumped masses were connected with a Voigt model attached
in seriesg to a dashpot, the latter to represent creep charac-
teristics of the soil. The equations of motion were then
solved using a step-by-step procedure [74].

Constantopoulos [15] modeled the soil as a series
of lumped masses, springs and dashpots. The springs were
defined by a nonlinear shearing stress-shearing strain
relationship frequently adopted by structural engineers,
known as the Ramberg-0sgood curve (Appendix 1), The
solution was then carried out by direct numerical integra-

tion in the time domain.
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Streeter, Wylie and Richart [71] used the Ramberg-
Osgood nonlinear stress-strain relationship in conjunction
with the appropriate equations of state and motion. They
used a distributed parameter model and they solved the pro-
blem of one-dimensional shear wave propagation by employing
the method of characteristics with specified time intervals

and interpoclations.



CHAPTER III

THE ACCURACY OF THE METHOD OF CHARACTERISTICS

In order to examine the accuracy cbtained by using
the method of characteristics and the sensitivity of the
method to varying time increments as well as to varying
degrees of viscous damping, the author conducted a series of
simple caée studies, three of which are presented in the
folloWing: |

A homogeneous dry elastic soil deposit having constant
mass density p = 4.0 slugs/fts, constant shear modulus G =
- 10°® psf and a thickness of 50 feet was subjected at its base
to a horizontal harmonic excitation of the form V=0.2sinédrnt
feet/second. The shear wave velocity was equal to vG/p =
500 ft/sec, therefore the natural period of the system was
Tn = 4 X 50/500 = 0.4 sec and the forcing period was T, =

£

0.5 sec. Since Tn < T_. and no viscous damping was present,

£
the excitation and the response were in phase [57]. Equa-
tion (4) was used to find analytically the particle veloc~-
ities at the surface and at mid-height of the layer (Fig.3).
The shearing forces at any depth were obtained from Equation
(6) after substituting u from Equétion (3). A time interval
of 0.01 sec and reaches of length Az = 5.0 feet were used
in the method of éharacteristics. The use of v = 0 and

V = 0 throughout the soil layer as initial conditions for
the method of characteristics would cause the generation of

an initial transient which would not vanish since no dissi-

pating mechanism is available (u = 0). By using as initial

16
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conditions the shearing stresses and the particle velocities
found from the analytical solution at time t = 0, at equal
distances of 5 feet throughout the soil layer, the method of
characteristics immediateiy converged on the exact solution
as shown in Figure 3.

A homogeneous dry viscoelastic soil deposit 141.4 feet
thick resting on a horizontal rock base was next considered.
The mass density p = 4 slugs/ft®, the shear modulus G = 8 x
10° psf and the viscosity u = 12000 lb-.sec/ft? were assumed
constant throughout the soil layer. A horizontal sinusoidal
velocity having an amplitude of 1.0 ft/sec and a frequency
of 41 rad/sec was exerted on the base rock. The shear wave
velocity was 447.2 ft/sec. Two time intervals were used.
For At = 0.010 sec the soil deposit was divided into 20
reaches with Az = 7.07 feet. For At = 0.025 sec the soil
deposit was divided into 10 reaches with Az = 14,14 feet.
Shearing stresses and velocities both equal to zero were
used as initial conditions to the method of characteristics.
After 18 cycles, the initial transient vanished completely
due to the presence of viscous damping. The particle veloc-
ities at the‘surface of the formation computed by the method
of characteristics after 9.0 seconds were found to be in
agreement with the velocities obtained from the analyticai
solution (Fig. 4). ©Slight differences of less than 1% when
using At = 0.025 sec were attributed to the coarser discre-
tization used. Since discretization depends on both At and

Az, the case with At = 0.010 sec and Az = 7.07 ft was five
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times more densely discretized than the case with At = 0.025
sec and Az = 14.14 ft. However, even such a difference in
discretization did not influence the results obtained. 1In
Figure 5 the shearing stresses computed at the rock base
were plotted for comparison. The small differences observed
between the closed form solution and the method of character-
istics should be mainly attributed tc the numerical approxi-
‘mations which accompany the latter. The differences between
the two characteristics solutions were more pronounced due
to numerical approximation errors in addition to discretiza-
tion.

In order to demonstrate the influence of the viscosity
term in the response of a soil layer to a periodic excita-
tion, a soil layer 100 feet thick resting on horizontal bed-
rock was considered. The soil was assumed to have a mass
density p = 4 slugs/ft® and a shear modulus G = 8 x 10° psf
constant throughout the depth of the deposit. The base rock
developed a horizontal periodic excitation V=0.2sindmt in
feet per second. The period of the forced vibration was
Te = 0.5 sec and since the shear wave velocity was 447.2
ft/sec the natural period of the system was 'I‘n = 0.894 sec.
Since Tn > Tf, for the case of u = 0, as it was expected the
forcing function and the response were 180° out of phase
(Fig. 6). Increase of the viscosity to values of 20,000
lbesec/ft? and 40,000 lbssec/ft? resulted in a decrease of
the corresponding amplitudes of the particle velocities at

the surface of the formation and to an additional change in
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phase. The analytical solution and that obtained by the
method of characteristics were in perfect agreement after
20 cycles (Fig. 6).

These examples were presented mainly to demonstrate
that soluticons obtained by the method of characteristics are
only slightly influenced by the degree of discretization
employed and that numerical approximation errors are negli-
gible. 1In spite of the fact that the method of character-
istics is a numerical method developed to solve transient
problems, it can also successfully‘handle steady oscilla-
tory problems when the viscous damping is enough to gradually

dissipate the initial transient generated.



CHAPTER IV

COMPUTATION OF BEDROCK MOTION FROM A RECORDED
GROUND SURFACE MOTION

Review of Literatune

In the United States, most seismographs that recorded
strong earthquake motions were located on alluvial soil
deposits. Therefore, data on rock motions are very limited.
Prior to the San Fernando earthquake of February 9, 1971,
the only strong rock motion recordings on sedimentary rock
were those of Helena, Montana, 1935; Taft, California, 1952;
and Golden Gate Park, San Francisco, 1957 {31].

Assuming that upward shear wave propagation from the
underlying rock is the main cause of horizontal ground
motidns during earthquakes [54], various procedures have
been developed (Chapter II) to compute the response of a
soil deposit to a known bedrock motion. Since ground sur-
face records of earthquake motions are more numerous, it is
of importance to use these records to determine the rock
motions from which they were generated. This is desirable
because the computed bedrock motions could be used to find
ground responses of adjacent but different soil formations
oVerlying the same bedrock.

Schnabel, Seed and Lysmer [59] devéloped a computa-
tional method to model shear wave transmission through
layers of viscoelastic sQil overlying bedrock. All displace-
ments were assumed to be horizontal caused by shear waves

propagating vertically through the soil. The daﬁped wave

24
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equation {Eq. 2) was used to model the system's response. A
soil deposit was subdivided into n layers each of thickness
hj(j=l,...n), with a local coordinate system z for each layer.
The soil properties at each layer were considered to be con-
stant. The boundary conditions used at the ground surface
were zero shearing stresses and a harmonic displacement with
frequency w and known amplitude W of the form:

u; (z=0,¢8) = we ¥t {24)

The solution to the wave equation for a harmonic

motion of frequency w, for the jth layer was:

_ i *+t) -iw(z/vE-t)
u,(z,t) =5, er@(B/V +F .
5 (2, 44 j Fip, © j (25)
where h., > z > 0, and v¥ = v {G. + 1 . . = VG%/p.
j ne vy Gy + 1ung) /ey 3P4

The first term of Equation (25) represents the incident wave
traveling upwards and the second term the reflected wave
traveling downwards (in the positive z direction). The
amplitudes E.
® 3+
by a recursion formula developed from the condition that

and Fj+1of these two waves were computed

stresses and displacements should be continuous at all layer
interfaces. These amplitudes are functions of the complex
impedance ratio aj:

= . 0.5F. (l-0.) exp(-K.) {26)
Ej+1 = O.SEj (l+aj) exp(K]) + 5 { 5 r 3
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. = 0,5E.(1l~a., .} + 0.5F. (l+0.) exp(-K.) (27)
Fyyy = 0.58;(0-0y) exp(X,) jiroy) expl-Ky
where
K, = ioh./v% (28)
J 1]
= * . * (29)
%5 = Py Yy / Py Vi

and exp(Kj) is equal to the base of the natural logarithms e
raised to the Kj power.

The above expressions developed by Schnabel, et al.
[58,59] are valid only for steady state harmonic motions.
If the surface of a soil deposit develops a harmonic dis-
placement of the form of Equation (24), then the rock
motion un+i(z=hn’t) which caused this displacement may be
computed from Equation (25).

Schnabel, Lysmer and Seed [58] extended the theory to
transient motions through the use of Fourier transformation
by employing the Fast Fourier Transform algorithm developed
by Cooley and Tukey [16] (Appendix 2)}. In the case of
transient motions the assumption was made that the complex

shear modulus is independent of frequency and equal to; -
G* = G(1+2iD) (30)

where D is the critical damping ratio assumed constant for

any value of w, Generally, D and w are related through the

A

expression [57]:
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D = wu/(2G) {(31)

The above analytical method is used later in this
chapter to compare with the method of characteristics in a

case study.

Base Motion Synthesdis. Viscoelasitic Soil.

The methods reviewed in Chapter II, to calculate the
ground surface motion of a soil deposit for a known bedrock
motion are methods of analysis (feed-back process). The
method of characteristics is used in the following to solve
the reverse problem, i.e., to compute the bedrock motion
which caused a known transient motion at the ground surface.
This method resembles the valve stroking concept as used in
hydraulic transients [66] and may be characterized as a
method of synthesis (feed-forward proceés). It is termed
herein, "Base Motion Synthesis” method.

Propagation of shear waves vertically through horizon-
tal layers of dry soil is treated as a one-dimensional prob-
lem described by the partial differential equations of state
and motion (Eguations 6 and 7). By using the method of
characteristics, Equations (6) and (7) are transformed into
four ordinary differential equations (Equations 15, 16, 17
and 18). After a time interval At_is selected, the soil

deposit is divided into reaches of length:

bag = bt 5‘1 R (32)
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The soil properties G, p, u, although they can be
considered to change with depth in a prescribed manner, are
assumed to be constant within each reach (j) and their values
at mid~-thickness of the reach are used.

‘Referring to the z~t diagram in Figure 7, shearing
stresses.and velocities are zero at all the nodes of the
diagram to the left of line FA. At the surface points A, C,
B and E, shear is zero and velocity is known. By using the
method of Base Motion Synthesis, the shearing stresses and
particle velocities at the base (FG) that produced the sﬁr—
face motion are sought. 1In terms of forward and backward
finite differences, the compatibility equations which are
~valid along the €7 and ¢~ characteristic lines (Equations 15

and 17) reduce to:

(33)

"
(=]

. - - - M -
C : Tp Ta pvs(Vé VA) + 55 (VD VA)

it
o

. - - M -
C : T T, + va(VB VP) t i3 (VP VC)

B P (34)

The distance intervals Az are given by Equation (32)
and Vg is equal to Az/At. The simultaneous solution of
Equations (33) and (34) is facilitated if all the known

quantities of each of these two equations are gathered

together and called CP (for the C+) and CM (for the C ):

A (Vy=Vy) (35)

M
Az A

— - B -
CM = Ty + vaVB s VC (36)
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Then,  the unknown shearing stress and particle veloc-

ity at point P are obtained as:

CM ~ CP

Vp = ipvs - u/Az

(37)

T = CP + pv M - Cp

P 8 2DVS - H/AZ (38)

Considering that an "action" at the bedrock causes a
"reaction" at the surface of a soil deposit, the Base
Motion Synthesis method can generate the "action" if the
"reaction" is kndwn. This ability of the method becomes
evident by studying the z-t diagram in Figure 7. Shearing
stress and velocity at P are influenced by conditions exist~-
ing one time step later at a distance Az away from P (point
B), because the incident shear wave travels the distance Az,
in time At. Following the C characteristics from point E
downwards, it is observed that "reaction" conditions at E
{z=0, t=7At) are related to "actiqn" conditions at G (z=H,
t=3At).

A step-by-step procedure greatly facilitates the com-
putations. Based on known conditions at the surface, Equa-
tions (37) and (38) yield the shearing stresses and particle
velocities at a depth 2 = Az, in the time domain. Based on
known conditions at depth z = Az, Equations (37) and (38)
yvield the shearing stresses and particle velocities at a
depth z = Az; + Azz in the time domain. The same procedure
is repeatéd until the bedrock is reached. Thus, the method

also provides the user with intermediate results, calculating
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shearing stresses and particle velocities at all reach
interfaces.
Exampfe An unsaturated soil deposit 218.82 feet thick was
selected for study. The soil deposit consists of four
layers: 36.38 feet of fill with p = 3.73 slugs/ft?, ¢ =
1.375 x 10% psf, u = 30,000 lb-sec/ft?; 46.34 feet of soft
clay with p = 3.26 siugs/ft®, ¢ = 0.5 x 10°% psf, u = 10,000
lbesec/ft?; 64.0 feet of medium clay with p = 3.42 slugs/ft?3,
G = 10° psf, W = 20,000 lbesec/ft*; and 72.1 feet of sand
and gravél with p = 4,04 slugs/ft®, G = 6 x 10° psf, p =
120,000 lbesec/ft? resting on a horizontal rock base (Fig-
ure 8). The first 8 seconds of the North-South component of .
the 1940 E1 Centro earthquake accelerogram (Figure 9) were
considered to be the hypothetical reaction of the ground
surface, Two methods were used to find the bedrock excita-
tion, the analytical method [58] reviewed previously, and
the Base Motion Synthesis method. The analytical method uses
as input the displacement record of the North-South component
of the 1940 El Centro earthquake obtained by twice integrat-
ing numerically the earthquake accelerogram [8]. The Base
Motion Synthesis method uses as input the velocity record of
the North-South component of the 1%40 El Centro earthguake
obtained by integrating numerically the earthquake accelero-
gram.

A value of D = 0.01 was used in the analyﬁical method.
This assumption of a constant ratio pw/G, tends to underdamp

the higher frequency harmonics of the Fourier transform and
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overdamp the lower frequency harmonics. A time interval of
0.05 seconds was used in the Base Motion Synthesis method.

A computer program written in FORTRAN IV Language, presented
in Appendix 5, performed all the necessary computations for
the Base Motion Synthesis method. For this specific example,
the computer time required by the Base Motion Synthesis
method was approximately half the time requiréd by the ana-
lytical method. The base rock displacements and velocities
calculated by both methods are plotted in Figures 10 and 11
for comparison. Small differences observed are mainly due
to the fact that the analytical method does not use the whole
range of frequencies of the Fourier transforﬁ in the evalua-
tion of the complex shear modulus G*,

An additional confirmation of the Base Motion Synthe-
sis method is obtained by the method of characteristics
(method of analysis) reviewed in Chapter ¥I. The base rock
velocity resulting from the Base Motion Synthesis method was
used as input to the method of analysis. The velocity
response at the surface of the soil deposit computed by
using the method of analysis was found to be substantially
the same as that used as input to the Base Motion Synthesis
method (Figure 11).

In Figure 12, the shearing stress at the base rock
computed by the Base Motion Synthesis method is plotted

versus time.
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Base Motion Synthesis. Inelasiic Sodl.

The inelastic or "strain-softening"” behavior of soil
may be modeled by shearing stress-~shearing strain curves of
the Ramberg-Osgood type ({(Appendix 1l). The method of charac-
teristics in conjunction with a Ramberg-Osgood hysteretic
model was used by Streeter, Wylie and Richart [71] to solve
problems of one-dimensional shear wave transmission through
herizontal layers of dry scoil. A seismic disturbance was
applied to the base rock and the response of the soil layer
overlying the bedrock was computed. This forward type of
solution is a method of analysis. In the following develop-
ment, the Base Motion Synthesis method is modified so inelas~
tic soil behavior can be modeled. Thus, the solution is
obtained to the reverse problem which is to find the seismic
disturbance at the base rock that caused a known response at
the surface of the overlying soil layer. The method of char—.
acteristics in conjunction with a centered implicit method
are used in this development.

The damping effect of a Ramberg-Osgood hysteresis
model is more pronounced than that obtained by a viscoelastic
hysteresis loop. Therefore, since the presentation gains also
in simplicity, the viscous term is omitted from the governing
differential equations. However, viscous damping can also be
considered if necessary.

Under dynamic conditions the equation of motion is:

Q2
~

vV _
> "~ P 5E T 0 (39)

s>}
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where T is the shearing stress and V is the particle veloc-
ity at a depth z; p is the mass density of the soil. The

dynamic stress-strain relationship is:

dr = G dy (40)

in which y is the shearing strain equal to 3u/dz, G is the
shear modulus and u is displacement at a depth z. From
Equation (40) the following differential equation may be

derived:

,g%-gg_lzf.=o (41)

In Equation (41) the tangent shear modulus G, for static

and low frequency deformations is given by
¢ = dt/dy (42)

Multiplying Equation (39) by an unknown multiplier 6,

and adding to it Equation (41) gives:
T 9T 1 oV oV _ ‘
(e- 7z " "5'5)“ SO(G 5 5z m—:)- 0 (43)
The terms in parenthesis become total derivatives if:

L

at - 5 © (44)

from which

8 = +/GJp = v (45)
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where vy is the shear wave velocity in the soil. Two pairs
of total differential equations emanate from Equation (43),
designated ct when the plus sign is used for 6 and C when

the negative sign is used:

dt dv _
dz _
T " Vg an
at av _

- datt Py ge =0 (48)
dz _ _ '
ac - Vs (49)

To solve numerically Equations (46) to (49), a convenient
time interval At is selected to be kept constant throughout
the calculations and the soil layer is divided into distance

intervals equal to

(8z) 5 = at /IGT 703 (50)

whére Gy, is the shear modulus for y = 0, usually changing as
the square or cubic root of depth. However, the value of G,
calculated at mid-thickness of a layer (j) is used as con-
stant throughout that layer.

A shearing stress-shearing strain curve of the Ramberg-
Osgood type requires that G € G, in each layer (the gqual sign
holds at the turning points of the curves). This means that
(CP) in Figure 13 is always less than the corresponding
(Az)j, i.e, vs-At £ (Az)j at all times, a necessary condition

for the method of characteristics to be stable,
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In Figure 13, the part of the z-t diagram correspond-
ing to a layer (j) is drawn. Assuming that tj is the time
required for the shear wave to reach the bottom of layer (3j)
from the base rock, conditions to the left of line (A8) are
static. Also, conditions (i.e. shearing stresses and parti-
cle velocities) at points A, C, B, and ¥ are known from the
overlying layer (Az)j“l° The objective is to find the con-
ditions at points D, E and K of the z-t diagram. The proce-
dure is then repeated for the underlying layer (Az)j+1 until
the base rock is reached.

Equations (46) and (48) can be expressed in a finite

difference form:

(51)

it
()

C : TP - Ty~ va(VP—VA)

il
o

C : TB - TP + pvs(VB—VP) (52)

where vy = YG/p is the shear wave velocity for the layer
under consideration. Egquations (51) and (52) solved simul-~

taneously yield the values of t and V at point P:

T +T V. -V

_ 'a"'sm B A
Tp = —— +* —5— PVq (53)
V_+V T..—T
_'aA"Vg B™ A
Vp = = + 2pvs | _ (54)

At time tj + At, the shear modulus G is still equal to G, .,
therefore points P and D coincide and Equations (53) and

(54) are sufficient to find =~

D and VD’ A time interval
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later G < G, and (CP) < (Az)j. In this case, shear and
velocity at point E can be found by employing a generalized
centered implicit method [67].

The terms in Eguations (39) and (41) in finite dif-

ference notation become:

E(VE—VP) + (1-5)(VD~VR)

oV
3z (Az). - v_AL : (35)
J s

3T _ Eltg-Tp) + (l—a)(TD-TR) (56)

3z (Az)j - vsAt
Vo + V_ - V_. -V

V. _ 'p E R D

3t T 2 At (57)
T + T, - T. =~ T

3T _ P E R D (58)

t 2 At

where £ is a weighting factor. The quantities VR and LN
are found by linear interpolation between the known values

pf VA’ T. and V

A pr Tpr @8 follows:

Vg At

R = Ta T ry (TpmTa) (59)
3

vs At

VR = VA + -(-Ez-j—j- (VD_VA) (60)
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Equations (55) to (58) are substituted back into

Equations (39) and (41l) which become:

E(TE—TP) + (l—g)(TD—TR) Y VP + VE - VR - VD o (61)
(Az). - v_ At 2 At
3 s
Tp + Ty T TR = Tp g(VE“VP) + (lwi)(VDva)

(Az)j - Vg At

The guantities Ty and VP are known from Equations (53) and

{54}, Tn and VR are known from Equations (59} and (60} and

Tp and vV, are known from the previous time step. Therefore,
Equations (61l) and (62) are sclved simultanecusly to £ind
the only unknowns T and Vge In this case only one centered
implicit cell (DRPE) was used. However, 1if vs-At becomes
small compared with (Az)j, more implicit cells should be
used improving considerably the results obtained.

The implicit scheme has neutral stability if the
weighting factor £ = 0.50 and it is unconditionally stable
for 0.5 < £ €£1.0. The stability of the implicit method
does not depend on the ratio (PE)/At as do the explicit and
characteristic methods. Under certain conditions however,
the implicit method has been observed to exhibit instabil-_
ies [6,461. In the present analysis instabilities did not
occur and improved results were obtained by using a weight-
ing factor £ of 0.9 or even 1,0.

The Base Motion Synthesis method as modified above

for the case of inelastic soil behavior, is still based on
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a feed-forward process since conditions at time t + At and
depth z (i.e. point B) influence conditions at time t and
depth z +‘(Az)j (i.e. point P and subsequently point E, in
Figure 13).

The same procedure is repeated for each time step. A
new value of G is obtained from the proper Ramberg-Osgood
curve (loading or unloading) based on the average value of
the shearing stress over the layer one time interval earlier,
The computational scheme moves forward in the time domain for
each layer starting from the top layer and proceeding to the
base rock. A solution by the Base Motion Synthesis method is
thus made feasible.

Exampfe. An unsaturated sand deposit 70.4 feet thick rests on
horizontal bedrock. The sand has a unit weight Yy = 100

1b/ft®. The static shear modulus, G,, is determined at the

mid-point of each layer at a depth z from the expression:
Gy = 50000 /y's z " (1b/£t?) (63)

The time interval selected is At = 0.01 seconds.
According to Equation (50} the soil deposit is subdivided
into eight layers with thicknesses of 5.0, 6.8, 7.9, 8.8,

9.6, 10.2, 10.8, and 11.3 feet (Figure 14). Soil viscosity

is assumed to be zero. The yield shearing stress, Tys is
determined from the expression [57]:
1, = 0.8 yv_ z tang, (64)

Y 8
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where ¢, is the angle of internal friction assumed equal to
'30°. To describé the stress-strain relationship for the
sand, an exponent R, = 5 is used in the Ramberg-Osgood Equa-
tions (Appendix 1).

Streeter, Wylie and Richart [71] applied a simulated
seismic disturbance at the base of the deposit described
above. Horizontal particle velocities at the base were cal-
culated from a random acceleration function suggested by
Bogdanoff, Goldberg and Bernard [12]:

10
-0.333¢
a =t cos{w.t+n. ‘ 65
e > (wJ ny) .( )

7 i=1

 where the frequencies-wj and the phase angles nj suggested

by Parmelee et al. [53] were used. 1In reference [71], the
vélocity at the ground surface was computed from the velocity
applied at the base of the deposit by using the method of
characteristics (method of analysis).

The Base Motion Synthesis method used as input the
ground surface velocity found from the method of analysis
(Figure 15). The computed base rock velocities are in
agreenent with the velocities calculated from expression (65)
that were originally used as input to the method of analysis
(Figure 16).

The normalized Ramberg-Osgood stress-strain diagram
computed at a depth of 8.4 feet by the method of analysis
and the Base Motion Synthesis method is plotted in Figure 17.
The sequential alphabetic characters at the turning points

of the Ramberg-Osgood curves correspond to the time
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indicated by the same letters on Figure 15. The differences
observed in Figure 17 are attributed mainly to the approxima-
tions introduced by the implicit scheme in the Base Motion
Synthesis method. The larger differences occurred at the
turning points of the Ramberg-Osgood curves (i.e. at point d
in Figure 17 where unloading stops and loading starts), the

| reason being the abrupt change in the value of G from its
minimum to its maximum value G, during one time interval.

The computations for the Base Motion Synthesis method
were carried out by using the computer program appearing in
Appendix 6. The computing time for compilation, execution
and printout for this example was 57 seconds on the IBM
360/67 computer, while the solution by the method of analysis

required 31 seconds of computing time.



CHAPTER V .

ONE-DIMENSIONAL SHEAR WAVE PROPAGATION
THROUGH EARTH DAMS

Reviow of Literature

Mononobe, Takata, and Matumura [48] in 1936, presented
cne of the first dynamic response analyses of earth dams.
Their thebretical development was based on the following
simplifying assumptions: the earth dam material was homo-
geneous and viscoelastic having uniform density and shear
modulus; the earth dam cross section was wedge-shaped and
the foundation was rigid; the dam was infinitely long and
its base width was greater than its height so that bending
deformations could be considered negligible compared with
deformations due to shear; the water stored in the earth
dam was not considered in the analysis; and shear stresses
over any horizontal plane were assumed to be uniformly
distributed.

Hatanaka [27] in 1955 studied the case of a triangular
elastic cross section in a rectangular canyon and computed
the horizontal response over the length and the height of
the dam. Ambraseys [3,4,5] studied extensively the dynamic
reaction of dams to earthquakes. Iﬁ 1960, he investigated
the shear response of a two dimensional symmetric wedge of
finite length which had a truncated crest. The wedge was
considered to be linearly elastic, bounded at its base and
its two vertical sides by rigid planes. Internal or Coulomb

friction was modeled by a viscous damping term proportional

51
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to the particle velocities. The shear modulus was assumed
to be constant since Ambraseys previous work showed that
an error of less than 10% occurred in computing natural
frequencies when the variable shear modulus was replaced
with its mean value.

In 1966, Seed and Martin [63] summarized all the
previous work done on the elastic response analysis of
earth dams in what they called the one-dimensional shear
slice theory. The derived differential equation of motion
was solved analytically for a random horizontal base motion.
Vigcous damping forces were considered to be proportional
to the particle velocities. Making use of the orthogonal
properties of mode shapes and the principle of mode super-
position, the general solution of the equation of motion
was obtained as a summation of an infinite number of terms
involving Duhammel (or Convolution) integrals. The dis-~
sipation mechanism was represented in the solution by the
fraction of critical damping for each mode. Results ob-
tained by the above analysis were of similar form with
measurements of the response of the Cachuma Dam in Cali-
fornia during a small eafthquake in 1957 [4] and with
measurenents of the response of the 100 foot high Sannokai
Dam in Japan to several small earthquakes [51].

During 1966 and 1967 Clough and Chopra [l14] and
Chopra [13] applied the finite eiement method in an attempt
to develop an improved analysis to the problem of shear

wave propagation through earth dams. The dam material was
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considered to be isotropic and linear viscoelastic. The
influence of stored water was ignored, The analysis was
two dimensional. For the same dam height differences in
geometry of the cross section lead to differences in the
natural modes, a result not obtainable from the shear slice
thecry. During the last few years numercus applications

of the finite element method appeared in the literature;

a more detailed review is presented in Chapter VII, since
the present chapter is dealing with the one-dimensional

dam analysis.

Analytical Method

The basic assumption of the one-dimensional shear
slice theory, that shearing stress is uniformly distributed
over any horizontal plane is maintained through the following
deveiopment. The earth dam material is assumed to be
viscoelastic. The dam cross sections considered are wedge-
shaped with bank slopes 1 vertical to /2 horizontal having
truncated crests.

For the one-dimensional shear wave transmission
through an earth dam under dynamic conditions, the equation
of motion for a thin horizontal slice at depth z below the

crest O {(Figure 18), is:

3 (tA
-TAg + [1Ay + _%E*QL

A, dz+ 8%n
5]

dz] = pdz [A, + 5> T3

(66)

where Ay = az is the area of the horizontal plane per unit

length; t = shearing stress uniformly distributed over the
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horizontal plane of area Ay; p = mass density of the soil;
u = absolute horizontal displacement of the slice, Omitting
second order differentials and considering that A, = az and

3Ay/2z = o, Equation (66) reduces to:

2
P (67)

at

at
A

N

It should be noted that the slope o of the dam sides
has cancelled out and does not appear in Eguation (67).
The effect of the tapered cross section is depicted by the
term (t/z) for any degree of taper. For o + 0 this term
vanishes and Equation (67) reduces to the equation of motion
for the shear wave propagation through a one-dimensional
shear beam. Values of a often encountered in practice aré
1.5 < o < 3. Such differences in the geometry of a dam
cross section clearly affect the dam's response. Therefore,
the advantage of using a two-dimensional analysis becomes
apparent. However, the one-dimensional approach is a simple
and inexpensive method to examine the reaction of dams to
earthquakes. Results obtained by this approach are usually
satisfactory along the dam's axis of symmetry.

The equation of state relating shear stress and stain
for a viscoelastic material, with the viscous damping term

proportional to the rate of change of strain, is:

_ A du 3%u (68)
TEC 5 TN e

. where G = shear modulus or modulus of rigidity; 3u/3z is

the strain; and p = scil viscosity.
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If Equation (68) is differentiated with respect to

z and Equation (67) is substituted, the equation presented

by Mononobe et al.

of the

depth,

at the

period

[48] is obtained:

9%u
L TY Y

du
oz

1
' -2

(G
Using the mean values of yu and G for the whole height
dam and neglecting their possible variation with

Equation (69) reduces to:

3%u
0Z?

3%u

at? (70)

+

1 3u
z 320 ~ ¥

- G
The motion produced by a harmonic excitation applied
base of a dam must also be harmonic with the same

as the excitation. Therefore, a steady state solu-

tion of Equation (70) is assumed in the form:

where w

F

iwt (71)

u{z,t) = F{z)e

circular frequency of the imposed excitation;

a function of z to be found.

Substitution of Equation (71) into Equation (70)

results to the eguation:

where

shear wave propagation.

dzF , 1 dr w2 o
Gz tzaz T G F=0 (72)
G, .jyw
* = = + oudidl
v 5 i D (73)

The guantity v* is called herein complex velocity of

If p 0, then the soil is elastic,



57

v* = /G/p is the real shear wave velocity and Eguation
(72) reduces to an ordinary Bessel equation [30].
A general solution of Equation (72) in terms of

Hankel functions, is:
F(z) = AHP(wz/v*) + BHD(wz/v*) (74)

where A and B are constants to be determined from the

boundary conditions. The Hankel functions of order g are:

Hg(mz/v*) = Jq(mz/v*) + qu(mz/v*) (75)
H?(wz/v*) = Jq(wz/v*) - qu(wz/v*) (76)

where Jq are Bessel functions of the first kind of order q,
and Yq are Bessel functions of the second kind of order q.
If the viscous term is not zero, it is evident that the
arguments of the Hankel and Bessel functions are complex
numbers. In this case, a special technique to evaluate
these functions is presented in Appendix 3. A computer
subprogram was written and used (Appendix 7) since existing
tables [49,50] require cumbersome interpolations.

The solution of Equation (70) becomes

ulz,t) = e YA (oz/v*) + BED (wz/v*) ] (77)

At the truncated crest, where z = h, the shearing

stress 1t should be zero. By substituting Equation (77)
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into Equation (68) and considering that T = 0, the following
expression is obtained:

Y et (Gripw) 1KY (wh/v*) + BED(uh/vH)] = 0 (78)

<

from which

B = -AHP(wh/v*) /H? (wh/v¥) (79)

At the base of the dam, where z = H, a harmonic
excitation acts having a single amplitude W and a frequency

w, in the form:

t

u(H,t) = W cosyt = Re (We ™Y (80)

where Re stands for "real part of." The letters Re are
dropped in the following but it is understood that only
the real parts of all complex expressions represent their
numerical values. Equation (77) for z = H yields the

value of A when B is substituted from Equation (79):
A = w/ (] (wi/ve) -8 /v B wn/ve) /i wh/vey 1 (8D

The sclution of the eguation of motion (70) becomes:

B (wz/v*) ~E3 (wz/v*) HP (wh/v*) /E (wh/v*) (82)
HY (wH/v*) -5 (wH/v*) HY (wh/v*) /HY (0h/v*)

u(z,t)zWelwt(

This solution is valid only for h # 0, since if h = ¢,
then ¥;(0) » - . Fortunately the case of a truncated

crest is the rule and not the exception.
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The horizontal velocity of displacement of a thin

slice of the dam is:
V(z,t) = 3u/dt = iwu(z,t) (83)

The shearing stress uniformly distributed over a
horizontal cross section at depth z can be found from the

equation of state substituting u from Equation (82):

. ) )] (1) 2)
e it (HY (wz/vE) ~HD (0z/v*) B (wh/v*) /HY (wh/v*)
Tz ) mwpvive (Huo)(mH/v*)-ﬁ(ﬁ)(wH/v*)}fi’(wh/v*)/ﬂul)(wh/v*) (84)

The above formulas apply only to steady oscillatory
motions. If n equidistant displacement values are obtained
from a digitized seismogram, the transient motion of the
dam base can be analyzed to a series of harmonics by
applying Fourier technigques and a least sguares criterion
(Appendix 2). This procedure allows the user to select a
number of harmonics less than the number of equidistant
tabulated data peints but sufficient to accurately represent
the transient motion. The frequencies obtained from the
harmonic analysis can be maintained without the need of
introducing the critical damping ratic into Equation (73).
Each one of the harmcnic components of the Fourier transform
generates a solution of the form of Egquation (82). The
superposition of these solutions by an Inverse Fourier

Transform provides the transient response of the dam to
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the applied excitation. A computer program written in
FORTRAN IV Language to perform all the above calculations

is presented in Appendix 7.

Natural Frequencies of Truncated Dams

Considering the undamped vibration of a wedge-shaped
dam of height H, the natural frequencies of oscillation of
the dam are obtained from the zero values of the frequency
equation J, (wHVp/G) = 0. Thus, for the first mode of

vibration the fundamental frequency is:

n H V P (85)

The aegree of truncation h of the crest of a wedge-
shaped dam as well as the amount of damping influence its
natural frequency. The bracketed term in Equation (82} is
the amplification factor of the response. A plot of the
modulus of the amplification factor for different fre-
guencies versus these frequencies (Figure 19), for a given
degree of damping, reveals the response characteristics of
the system. Two dams with H = 100 ft, h = 25 f£t, and
H =150 £ft, h = 25 ft were studied. The mass density of the
dam material was assumed to be p = 3.1 slugs/ft? and the
shear modulus G = 650000 psf. Two values of viscosity were
considered: u = 0 and yu = 6250 lbrsec/ft?. The natural
frequency of the 75 ft high truncated dam for both viscosity
values was about the same, equal to W, = 12.22 rad/sec. For

higher damping, it would be expected that the corresponding
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frequency would be less than 12.22 rad/sec, The undamped
natural frequency of the whole 100 ft high wedge from
Equation (85) is 10.99 rad/sec. The natural frequency of
the 125 £t high truncatéd dam for both viscosity values was
found tb be mﬁ = 7.70 rad/sec. The undamped natural fre~
quency of the corresponding 150 ft high wedge is w, = 7.33
rad/sec.

Response curves of the type of Figure 19 are very

useful in studying resonance effects in dams.

Chanracteristics Method

The same basic partial differential equations
govefning the propagation of shear waves through tapered
cross sections are used in the following analysis, namely
the equation of motion (Eg. 67) and the equation of state
(Eq. 68). If Equation (68) is differentiated with respect
to time, it can be written in terms of the horizontal par-

ticle velocities V:

aT 3V 3V
st ~ %9z " Vame - O (86)

The equation of motion (Eg.67) can also be written

in terms of the horizontal particle velocities V:

3T
0Z

The third term of Equation (86) containing the

T —
+E—p§1€-—0 (87)

viscosity 1 may be represented by a finite difference approx-
imation as:

b2y _ 18y v
vwame T P relsz - Gl (88)
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where At is a selected time interval and the subscript
C refers to the value determined at point C on the z-t

diagram of Figure 20. Combination of Equations (86) and

(88) gives:

Q2
=1

|

—(G+E—)%\Z+u

X = 0 (89)

(Bz C

Q3
o+

Equations (87) and (89) can be transformed into four
ordinary differential equations by the method of charac-
teristics. Equation (87) is multiplied by an unknown

multiplier 6 and is added to Eqﬁation (89) to give:

W, AV | 3V T, U OV, _
[ J'e[ep +At)§E+ £1+0 2 z T aesz)c T O (90)

The bracketed terms in Egquation (90) become total
derivatives if:

dz _ , _ 1 M
=8 =55 (G+ (91)

Equation (91) solved for & gives:

-
+ pAt : Vg (92)

=3[

where vS is the apparent shear wave velocity in ft/sec.
Two pairs of ordinary differential equations originate
from Equation (90), one pair with the positive value of 8

+ . : . -
(C') and the other pair with the negative value of & (C ):
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dr _ av T Ho2yy o
‘ ( G "~ s ar T Vs z tht BT O (93)

C+

dz _

It = VS (94)

at av _ R A A

at T Vs at " Vsz tic Ggle 70 (93)
.

dz _ _

a-E— VS (96)

In a central finite difference form using a second

order approximation, Equations (93) and (95) reduce to:

Tot+T V.~V
+ A B A _
C : To ™ Ty pvs(VP VA) + v At ZP+ZA\+IJ 5. = 0 (97)
Tot+T V_-V
-~ N _ _ P "B B A _
C : Tp TB‘FQVS(VP VB) vSAt 2P+ZB + 1 g 0 (98)

where the subscripts A, B, and P refer to values at the
corresponding points of the z-t diagram (Figure 20).
Equations (97) and (98) apply in both cases of a wedge-
shaped cross section and of a cross section with truncated
top.

In cases where the dam crest is of finite width
(h # 0), a better approximation of the third term of
Equations (93) and (95) emanated from Professor Wylie's

suggestion that only 1 should be approximated. This term
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- if integrated becomes:

To+T z
T =f§ X = 2 _ AP +
J/; vs dt .jr; dz 5 lnZA (for C ) (99)
T +T . Z
=22 12 (for ¢) (100)
Zp

By using this approximation, Equations (97) and (98)
may be rewritten as:

T +T VA v_-Vv

+ ‘P 'A P B 'A _

C : TP Ta va(VP-VA) + 7 1n2; +11—§*ZE‘— 0 (101)
T +T z V.-V

- - P B B B 'A _

C : TP TB-+DVS(VP VB) 3 lnE;-+11 3 Az 0 {(102)

All guantities with subscripts A and B refer to the

previous time increment and are known. Also:

z. =z + Az = z_ - Az (103)

where G ”
Az = Atﬂ’g + EKE (104)

The method is not restricted to constant values of G,
p or u. For example, in case the shear modulus is consi-
dered to be a function of depth, the distance intervals
computed from Eguation (104) will not be equal. However,
G should be considered constant within each layer having

the value calculated at mid-thickness of the layer.
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To determine the unknowns T, and VP,‘Equations (101)

P
and (102) are solved conveniently by grouping all known

quantities for each of these two equations and calling them

CP and CM:
T Z V.-V
A P B A
= — — = e, V
CP =Ty = 3 lnzA bRz T Vg a (105)
T z V.-V
- B B _ B A
CM = Ty + 5 anP n— s + pVSVB {106)

Equations (101l) and (102) then vield:

z
P
= (CP + CM 2 + 1n 107
A"B
Zp
V., = [t. (L + 0.5 1In—=) - CP]/pv (108)
P P Zp s
At the crest where Zp = h, the boundary condition
is expressed as s = 0. The C characteristié equatién
becomes:
T Z vV_-V
- - B aE B_C _
g + pvs(VP VB) > lnh + U iz 0 (109)

The particle velocity VP at the crest of the dam is

readily available from Equation (109). At the base of the

dam where Zy H, the boundary condition is that VP is

known as a function of time for the seismic motion under

. . + . L .
conslderation . The C characteristic equation becomes:

TatTp W, VC-VA
2 Z A H Az

T, = T, — pvs(VP - VA) + =0 (110)

P A



68

The shearing stress 1, at the bhase of the dam is

P
obtained by solving Equation (110). The next step is to
éompute Tp and Vp for all layer interfaces for the next
time interval and repeat the procedure stepwise in the
time domain. A computer program in FORTRAN IV Language
which performs the necessary step-by-~step calculations is

presented in Appendix 8.

Case Studies

Four tapered dam cross sections were selected for
study. Cross Section III is a whole wedge., The other
three cross secﬁiOns present a truncated crest (Figure 21).
Exémples 2 and 3 are of a rather academic nature since soil
properties were selected in such a way as to facilitate a
comparative analysis, and a study of the influence of an
earth dam height on its frequency responses. However, it
should be noted that the methodology developed previously

is applicable for any selected realistic data.

Example 1. The analytical method and the method of character-
istics were compared in the case of harmonic vibrations.
Cross Section I was used having h = 5 feet, and H = 50 feet.
The average value of the density of the earth material was
assumed to be p = 4.0 slugs/ft? and the average shear mod-
ulus G = 10° psf. The base developed a horizontal sinusoidal
velocity of the form V = (0.2 sindnt in feet per second. The
dam material was considered to be elastic (y = 0). A time

interval of At = 0.01 seconds was used in the method of
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Figure 21. Tapered dam cross-sections.
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characteristics which resuylted in a distance interval Az = 5
feet (9 reaches) and a shear wave velocity Vg = 500 ft/sec.
Applying the method of characteristics, the generation of
.an initial transient should be avoided since there is no
damping mechanism to dissipate it. For this purpose, the
values of shearing stresses and velocities calculated by
the analytical method at time t = 0 were adopted as initial
conditions for the method of characteristics. The two
methods were in perfect agreement for all subsequent time
steps in calculating the particle velocities at the dam
crest (Figure 22).

The same example was examined considering the dam
material to be viscoelastic. Viscosity p = 20000 lb.sec/ft2,
soil mass density p = 4 slugs/ft?, and shear modulus
G = 800000 psf were assumed constant throughout the dam. A
time interval of At = 0.01 sec was used in the method of
characteristics. The distance interval was found to be 5
feet and the apparent wave velocity was 500 ft/sec. For
the same excitation at the dam base, initial conditions for
the method of characteristics were considered the static
shear stresses and velocities at time t = 0, all equal to
zero. The initial transient generated, dissipated after
18 cycles. The particle velocities at the dam crest com-
puted by the analytical method and the method of charac-
teristics appear in Figure 23 at the beginning of the 19th
cycle. The agreement between the two methods was satis-~

factory.
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Example 2. A 75 feet high dam with truncated crest (Cross
Section II, Figure 21) was considered resting on a horizontal
rock base subjected to the S69°E component of the Taft, 1952,
earthquake. The first 12 seconds of the accelerogram appear
in Figure 24. Shear modulus G = 650000 psf, viscosity
U = 6250 lb*sec/ft? and soil mass density P = 3.1 slugs/ft’
were considered constant throughout the dam. A time incre-
ment of 0.05 sec was used in the method of characteristics.
The apparent wave velocity was 500 ft/sec and the dam was
divided into three reaches, each 25 feet thick. The dis-
placement and velocity responses at the crest of the dam
are plotted in Figures 25 and 26. The shearing stresses
developed at the base of the dam appear in Figure 27a.

The analyvtical method was also used to solve the
above problem. Displacements at the base of the dam were
obtained every 0.05 sec by twice integrating numerically the
accelerogram of Figure 24. The result is presented in the
lower graph of Figure 25. This displacement diagram was
analyvzed into 24 harmonics by using Fourier transform in
conjunction with a least squares criterion (Appendix 2).

The amplification factor at the dam crest for each harmonic
was computed from Equation (82) and an Inverse Fourier
Transform reconstituted the transient response which is
plotted in the upper graph of Figure 25. The comparison with
the displacements obtained by the methdd of characteristics
was considered unsatisfactory. The reason that smoother

results were obtained by the analytical method was that the
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24 harmqnics did not model frequencies less than 0,625 sec,
Therefore, the problem was solved again by analyzing the
base motion into 48 harmonics. The response at the crest
found from the analytical solution was substantially the
same as that found from the method of éharacteristics
(Figure 25). 1In both cases, the base rock displacement
record which was analyzed into 24 or 48 harﬁonics, was
extended to 15 seconds with the displacements dropping
gradually to zero. This resulted in better Fourier trans-
forms especially for the time intervals from 0.0 to 1.0 sec
and from 11.0 to 12.0 sec.

A dam of Cross Section III (Figure 21) was selected
to study the influence of a truncated crest on the responses
of a dam to a seismic disturbance. This cross section is
similar to the Cross Section II previously used, the dif-
ference being that Cross Section II is truncated; The same
's01il properties were retained. The response of the dam at
elevation E, 75 feet above the base (at the same elevation
with the crest of Cross Section II), to the S569°E component
of the Taft 1952 earthgquake was found using the method of
characteristics. Displacements and velocities at E are
presented in the middle plot of Figures 25 and 26. Shear
stress at the base of the dam is plotted in Figure 27b. It
is observed that all wvalues obtained are larger than the
corresponding values at the crest of the dam with Cross

Section II. The two cross sections have different natural
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frequencies but it seems that concentration of stresses and
a stronger reflection pattern at the crest D of the Cross

Section IIT accounts for part of the differences.

Example 3. A 125 feet high dam with truncated crest (Cross
Section IV, Figure 21) was selected to demonstrate resonance
effects. The dam material was assumed to have p = 3.1
slug/ft?®, G = 650000 psf, u = 6250 lbe+sec/ft? and the time
increment used was At = 0.05 sec (then Az = 25 £t and

v, = 500 ft/sec). The dam rested on a horizontal rock base
subjected to the S69%°E component of the Taft earthquake,
1952. The response sgpectrum of this earthquake reveals a
predominant frequency of about 7.4 rad/sec. The natural
frequency of the structure from Figure 19 was found to be
7.7 rad/sec. The displacements and velocities at the crest
and the shearing stresses at the base of the dam, computed
by the method of characteristics, are presented in Figures
28 and 29. The excessive magnification of these responses
is in accordance with the closeness of the natural periods

of the excitation and the structure.

Example 4. A 100 feet high wedge-shaped dam (Cross Section
ITI, Figure 21) has a constant shear modulus G = 4 x 10°

psf and a density of 130 lb/ft’. The base of the dam is
subjected to the North-South component of the 1940 E1 Centro

earthquake accelerogram. Two methods were used to obtain
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the response accelerations at midheight and at the crest
of the dam;: the method of characteristics and Seed and
Martin's analytical solution [63].

A time increment At = 0.0l sec was used in the method
of characteristics. Solil viscosity was assumed to have a
constant value u = 71250 lbesec/ft?. Six reaches were
used, each of thickness Az = 16.67 ft. The apparent wave
velocity was found to be v, = 1667.71 ft/sec.

A time increment At = 0.02 sec was used in Seed and
Martin's solution. A damping factor of 0.2 was assumed,
constant for each mede. Egquation (6) of reference [63]
was used and the responses for the first six modes of
vibration were superimposed.

The results obtained by both methods are plotted in
Figure 30, and are of a very similar form despite the
differences. Since the damping mechanisms used by the
two methods were different and the first six modes were
only considered in the analytical solution, quantitatively
the results obtained by the two methods were in unexpectedly

good agreement.



CHAPTER VI

ONE-DIMENSIONAL PRESSURE WAVE PROPAGATION
THROUGH SATURATED SOIL DEPOSITS

Review of Literatunre

In evaluating the response of saturated soil deposits
under seismic loading, a method for the determination of
pore pressures and intergranular stresses is necessary.

Due to lack of such a method early attempts were made [14,33]
to model the saturated soil by an equivalent solid with the
same total properties.

Another approach to the problem of wave propagation
through saturated porous media was to assume that the porous
material consisted of a homogeneous and elastic frame with
the pores filled with liguid. Zwikker and Kosten [75] stud-
ied the propagation of one-dimensional pressure waves through
porous materials with the pores filled with air. They mainly
used the concept of impedance to examine problems of sound
absorption.

Biot [9] presented in 1956 the most complete treat-
ment of the problem. The three-dimensional propagation of
shear and pressure waves in an infinite fluid saturated
porous solid with elastic properties was analyzed. The fluid
was considered to be viscous, compressible and free to flow
through the pores. Stress-strain relationships were devel-
oped for the material in terms of the elastic constants of
the fluid and the solid frame and two additional constants
relating to the coupling between the fluid and solid con-

stituents. These relationships were introduced to the

84
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equation of motion whose solution as developed holds only

for cases of harmonic vibrations of a medium of infinite
extent. Ishihara [38,39] using the continuity egquation and
some specific test conditions succeeded to relate Biot's
coupling coefficients to the compressibilities of the indi-
vidual constituent materials. Ishihara's results made Biot's
approach more realistic.

In 1960, Deresiewicz [17] treated the pyoblem of the
one-dimensional propagation of elastic waves in & semi-
infinite non-dissipative liquid—-filled porous soliid. A gen-
eral solution of Biot's differential equations was deduced.
These field equations govern the relationship between the
displacements in the solid and the displacements in the
liquid. An approach used to solve similar equations of
linear thermoelasticity was emploved, namely the resolution
of each of the solid and liquid displacements into a lamel-
lar and a solenoidal part (Helmholtz resolution). However,
the solution obtained did not find any practical application.

Biot [10,11] incorpofated internal dissipation to his
thecry considering the solid frame to be viscoelastic. The
theory of deformation in a porous viscoelastic medium was
developed on the basis of the thermodynamics of irreversible
processes. Biot stated that "the eguations governing the
mechanics of porous media are formally the same for an
elastic or viscoelastic system, provided that the elastic
coefficients are replaced by the corresponding operators.”

Thus, the effects of viscous damping were included into the
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elastic constants and the coupling coefficients by introduc-
ing two relaxation constants. According to this approach,
the solid was considered elastic for rapid deformations
while it was considered viscous for slow deformations (type
of Maxwell solid). However, a theoretical or experimental
procedure to define these new constants was not presented

and still none is available, seriously restricting the appli-
cation of this theory.

Ghaboussi and Wilson [22,23] in 1971 developed a
numerical method for the dynamic analysis of a saturated
porous solid, The field equations of Biot's theory [9] were
used to systematically develop a Gurtin-type variational
formulation of the problem. The response of a half-space to
a step loading applied to the free surface was examined.

The system consisted of a sequence of one-dimensional elements
aloﬁg the vertical axis. Wave reflections at the base rock
were not considered since the fixed boundary was located at
such a distance from the surface that it was not reached

from the motion during the time of interest.

It becomes apparent that solution techniques have
lagged behind the development of the theory for nearly a
decade. Experimental work to evaluate the effects of void
ratio, degree of saturation, grain characteristics, and con-
fining pressure on the shear and pressure wave velocities in

granular materials was carried out by Hardin and Richart [26].
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Analytical Method

Assuming a conservative physical system statistically
isotropic, comprised of an elastic solid skeleton and of
compressible liquid free to flow through the pores, Biot [9]
derived stress-strain relations containing four distinct
elastic constants. These relations in the vertical z-dir-

ection reduce to:

_ dw ow
o = (2G+X) P + Q — (111)
s = -np = Q %g + R %g (112)

where o = stress at the z-direction on the solid part of a
unit area, positive when tension; s = stress on the fluid
part per unit area, negative when pressure; p = porewater
pressure; n = effective porosity; G and A = Lame's constants,
G being the modulus of rigidity; Q and R = coupling coeffi-
cients relating to the coupling between the fluid and solid
constituents; w = vertical displacement of solid particles
at a depth z from the ground surface; w = vertical displace-
ment of liquid particles defined in such a way that the pro-
duct of this displacement by the cross-sectional fluid area
represents the volume flow.

If the total volume of the aggregate is held constant,
R is a measure of the pressure required to push a certain
additional volume of fluid into the aggregate. The constant
Q is a coupling coefficient between the volume change of the

sclid and that of the fluid. Ishihara [38] by using the
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equation of continuity and an expression for the internal
energy of the system plus some rather theoretical specific
states of stress (unjacketed compression test, jacketed
test), arrived at the same egquations of state as Biot (Equa-
tions 111 and 112). However, in the process of doing so,
Ishihara obtained expressions for the coupling coefficients
relating them to the compressibilities of each of the sys-

tem's substances:

-—n[(n-—l)Cp + Cs]

cb(c2 C ) + cpcS
an
R = (114)

2 I
(n-1)°C_ + (n 1)cs + 02

2
and also A= — -5 G (115)
Cb(C£ CS) + CpCS 3

where CS = compressibility of the soil particles; Cp = pore
compressibility; C, = fluid compressibility, and Cp, =

n CP + Cs = bulk compressibility of the soil skeleton.
Biot derived the dynamic equations of equilibrium
using Lagrange's equation. The concept of generalized co-
ordinates was employed according to which the position of
every particle is completely determined when the values of
the independent variables (or generalized coordinates) w and
w are known. Biot's dynamic equations of equilibrium in the

vertical z-direction neglecting the effect of gravity forces

are:
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32 _ ) -~ _ 30 1
7tz (Pr1whpi2W) + b £ (w-w) = == (116)
2 (o1 w o (w-i) = 28 117
3t7 praw+pz2w) —- b 3¢ (w-w) = 5% ( )
where P11 = (l-n)og + P, {118)
P22 = NPy + 0 (119)
Prz = =P, (1203
2
U. n
p = = (121)

In the above relations p;; and p,» = mass of solid
and liquid per unit volume of aggregate, respectively; Pg
and p;, = mass densities of the solid and liquid respectively;

p. = apparent mass density due to the fluid, considered to

a

be zero at low frequencies by Ishihara; = dynamic viscos-

M
ity of the fluid in lbesec/ft?; and K = intrinsic permeabil-
ity, a characteristic of the medium alone, in ft?2.

The author, working with Eulerian coordinates, assum-—
ing Darcy's friction as the dissipation mechanism, derived
the equations of motion for the solid and the fluid constitu-
ents respectively including the effect of gravity forces
(Appendix 4). These equations prove to be identical with
Biot's equations of equilibrium (116) and (117) if the grav-
ity effect was neglected.

Because of the assumption of statistical isotropy of

the material, Biot concluded that the rotational or shear

waves are uncoupled from the dilatational or pressure waves
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and obey independent equations of propagation, This is cor-
rect, since elastic materials do not undergo changes in vol-
ume when subjected to shear. The presence of fluid in the
pores little affects the propagation of shear waves. There-
fore, the subsequent analysis is concentrated on the pressure
waves. |

By substituting the equations of state (111) and (112)
into the equations of equilibrium (116) and {117), Biot [9]
obtained the following two differential equations (reduced

here to the z-direction):

2 — 2 — —_

2 crow2e)w + 0l = S (o1 + praw) + b 2T (122)
32 — 3?2 — d (W-w)
EET[QW + Rw] = atz(plzw + p22w) - Db —sE {123)

The bulk mass density is p = py; + 2p12 + Py, and the
bulk modulus of compressibility is B = M + R + 20Q where M =
A + 2G is the constrained modulus of elasticity. It is
convenient to introduce the following non-dimensional para-
meters:

c, = M/B, C: = R/B, C, = Q/B
and

Fi = 011/0, Fo = paa2/py Fs = p12/p

where C; + C, + 2Cs = 1 and F, + F, + 2F; = 1, i.e. there
are only four independent parameters. The parameters Cj
define the elastic properties of the material and the

parameters Fj its dynamic properties.
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Substitution back into Equations (122} and (123)

yields:
32w 3w 1 92w 52w b 9 {w-w)

2 E + i = =5 (7 22+ F + 124
1522 Y5z2 v2 Frope Fyey ovi 3t (124)
5%w 3w 1 32w 3%w b 3 (w-w)

c, X 4+ = — (F,<—2~ - 125
g2 T Gy v Fsoto 25gz) pvi ot (125)

where Vo = /ﬁ?ﬁ is a characteristic wave velocity
depending on the bulk properties of the material. In Egua-
tions (124) and (125) the elastic properties and the densi-
ties of the aggregate constituents were considered to be
constant with depth. Therefore, the only.unknown guantities
are the displacements w and w.

Biot and Ishihara studied the propagation ©of elastic
waves through a saturated medium of infinite extent. If
horizontal bedrock is underlying a saturated soil deposit
and if a free surface exists where stresses should be zero,
a more general solution is needed. Such a solution is pre?
sented in the following and accounts for wave reflections at
the boundaries. Normal incidence is assumed, so incident
waves are reflected back as themselves not accompanied by
waves of other types.

Assuming that the harmonic excitation applied at the
bedrock has a circular frequency w, steady state solutions

to Equations (124) and (125) may be written as:

wi(z,t)

il

A exp(iwt+iwz/vd) {126)

n

W(z,t) B exp(iwt+iwz/vd) (127)
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where A and B are constants to be found from the boundary

conditions; and Va is the dilational wave velocity,

Calling xq = vc/vd and

(128)

and substituting Equations (126} and (127) into Equations

(124) and (125), two compatibility relationships are obtained:

(x5C3 - F3 - X)B {(129)

It

(F, - x3C; - X)A

(Fq x3C, + X)A = (x§C, - F, + X)B (130)

Division of these two equations by parts gives:

P - X%Cl - X = X%Ca - F3 - X (131)
F; - x§C3 + X x3Cy - ¥y, + X

or

(C1C,~C3)xg— (CoF1+C F,~2C;F ;) x3+(FF,~F3)+X (x5-1)=0 (132)

-~

Four roots xi, -xi, Xz, and —-x; are obtained from the

solution of the biquadratic equation:

(C1C2-C3)x§ = (CoF+C F2-2C3F3)x§ + (FiF,~F}) = 0 (133)

Then, Equation (132) can be written as:

X(x§-1)

(CiCo-C3) ~ ° (134)

-2 -
(x5-x7%)Y (x§-x3%)

From Equation (134) four complex roots xi, —Xi:s X
and -x, are obtained. Since x, = vc/vd, four complex

values of the pressure wave velocity v4q emerge:
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vdx = vc/x1 . vdz = vc/xz
(135}

Vg, = v/ (-x1) = Va,r Vg, = Y/ (mxe) = -y

Three factors B”, B3, B2 are introduced for conven-

ience, as follows:

B” = iwt, B1 = iwz/v. , B, = iwz/v
a1 dyo

{1367
Equations (124} and (125) are linear partial differen-
tial equations and superposition of solutions of the form of

Equations (126) and (127) results in the following general

solutions:

w=RA1exp (B +B1)+ATexp (87 -8 1)+ exp (B '+8, ) +Rjexp (R =R, {137

w=B,exp (R +B81)+Biexp (B ~B1)+B2exXp (B +R,) +Brexp {8 ~£2) (138}

where A,, A{, A;, A7, B;, Bf, B., and B; are coefficiants to
be evaluated from the boundary conditions.

From Equations (137) and (138) it is observed that
there are two pressure waves propagating through the satu-
rated medium with wave velocities v

d:

twc terms of Equations (137) and (138) represent the incident

and v. . The first
az

anc reflected waves traveling with a velocity v through the

oY
medium. The other two remaining terms repreéesent the incident

and reflected waves of phase velocity v Many investiga-

do’
tors refer to the two pressure waves as the fluid wave and
the frame wave although there is coupled motion of the fluid
and the frame in both waves. Therefore, both waves travel

through both the solid skeleton and the liguid except in

cases of a very weak coupling.
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U = 3@/3t = iww (152)

The stresses ¢ and s acting on the solid and liquid

parts respectively are:

g = iuw eXP(B‘){{EXP(BI)_QXP('BI)]‘M}J‘;;Q*@*L +
d,
[exp (8,) -exp (-6,) 1H2L28BL L (153)
d2
s = iv exp(8”) {lexp(8,)-exp (-5,) 19ALIRDL
d,
lexp (B2) ~exp (-6,) 19REEL L (154)
dz

- The stresses computed from Equations (153) and (154)
are dynamic, i.e. are changes of stress from the initial
static conditions. The analysis presented above is also
valid for the case of no dissipation with the fluid dynamic
viscosity considered zero, which however is not a realistic
situation. In this case X = 0, x; = X7, X2 = x; and X3, X,
V4, and vdz are not complex but real.

The analysis presented above only applies to harmonic
motions. If n equidistant displacement values are available
from a digitized seismogram for the transient motion of the
bedrock, a Fourier transform with a least squares criterion
(Appendix 2) could be used to analyze the transient motion
in a selected number of harmonics. Superposition of the
solutions obtained for each harmonic provides the transient
response of the system to the seismic action considered. A

computer program to perform all necessary calculations is

presented in Appendix 9.
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Chanaecternistios Method

The particle velocities of the solid and liquid con-
stituents of a saturated soil deposit are denoted by V=3w/dt
and U=3w/3t respectively. Biot's equations of equilibrium

in the z-direction (BEguationsg 116 and 117) may be written as:

%% - P11 %% - b {V - U} =0 {155)
%“sz%g+b(V"U)=o (156}

The apparent mass was omitted from Equations (155) and
(156) since the particles are of small size and the relative
velocities are also small. If Biot's equations of state (111}
and (112) are differentiated with respect to time, they may

be written in terms of the particle velocities V and U as:

30 oV _ au _ "
5t " Mgy T Q570 (157)
as oV 3u

5t~ 9%z " Rz <O (158)

where M = X + 2G 1s the constrained modulus of elasticity.

In case the soil is dry, the parameters s, p22, U,
M s b, 0, and R become zero. E@uations (155), (156), (157},
and (158) degenerate to two equations for the one-dimensional

propagation of pressure waves through elastic unsaturated

soil:
ag vV
90 v

- M =0 (160).
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Equations (159) and (160) present a striking similarity
to Equations (39) and (41) which model one~dimensional shear
wave propagation. The normal stress ¢ and the constrained
modulus M are used instead of the shear stress 1T and the shear
modulus G. Therefore, by solving Equations (155) to (158),
both cases of one-dimensional propagation of pressure waves
through saturated or unsaturated elastic porous media can be
studied. |

Equations (155) and (156) and therefore Equation (159)
do not include the effect of gravity forces. Thus, solutions
obtained by using these equations are purely dynamic. How-
ever, since the equations are linear, superposition of static
stresses would provide the real stress response of the system,
if desired.

Equations (155) and (157) are transformed into four
ordinary differential equations by the method of characteris-
tics. Equation (155) is multiplied by an unknown multiplier
6; and is added to Equation (157) to give:

oV

30, 30 M 3V _ -my - o U -
[91";‘*5%]' elp“[mﬁ-gi-—a—g] b8, (V-0) - @ 22 = 0 (161)

The bracketed terms become total derivatives if:

dz M

ci A FYTEY (162)

From the solution of Equation (162), the pressure wave

velocity v,, through the soil skeleton is obtained:

M

€1 = =/M/p11 = iVM (163)
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The four ordinary differential equations then are:
do av 38U

. JE " VMPrl FE ~ vafV—U) - Q (BZ)C = { (164)
CM
dz
EE': VM - {165)
do av 3U _
_ a—E- + VMpll aft— + bVM(V"'U) - Q {gg)c = { (166}
M
dz _ e,

The subscript C indicates the value determined at
point C of the z~t diagram in Figure 31. Using the same
approach, Equation (156) is multiplied by an unknown multi-

plier 8; and is added to Equation (158) to give:

s _ 3s R__ 38U , 3U A3V
[ngg + ﬁf] - ezOzz[g?B;; T * 5{] + 82b(V~-U) Q =% 0 (168}
The bracketed terms become total derivatives if:

dz _ _ R '
IE = B, = Topaz {169)

From the solution of Equation (169), the pressure wave

velocity vy, through the liquid part is:

B2 = +VR/p2z = vy (170)

Equations (156) and (158) are transformed into the

following four ordinary differential equations:

ds _ du _ _ vV _

CL QE .
dt L (172)
ds du _ B A

.- It VP22 FE bVL(V u) - Q (§;)C = 0 {(173)"

L

dz _ _y (174)
dt I
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Figure 3l. =z-t diagram. Saturated porous media.
Method of characteristics.
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In Figure 31 the time (t) - distance (z) grid for the
finite difference approximation is shown. Since iy is always

smaller than v the saturated soil layer is partitioned into

L’
distance intervals equal to Az = VLAt where At is a selected
time interval to be kept constant throughout the calculations.
Then VMAt = Az” < Az at all times, a condition necessary to
satisfy stability criteria of the method of characteristics.
For the interior points of the z-t diagram (Figure 31),

the central finite difference form of Egquations (164), (166),

(171), and (173) using a second order approximation is:

U.-U

+ e _ _ At oo _ S5 "R _
Co: 0 =Tutp11v., (Vo=V,) +bv AE(V_ +V ~U_~U ‘~QAtE§:EB =0 (176)
M OpTIgTP11Vy VpT iy M2 VpTVg T p Vg 2hz-
. vV, ,-V

+ e o _ At . B A
CL: Sp=s, ngvL(UP UA)+va—2—(VP+VA Up-U,} QAL S 0 (177)
CT: s_-s_+ (Uo-U) -bv. 2 (v_+v_-u_-u )—QA{-.Y?’:—-Yé = 0 (178)
L} SpTSpTP22Vy WWpTHp/ TRV ZmVpT VT p Tl 2hz

All guantities with subscripts A, B, C, R and § refer
to the previous time step (z—-t diagram, Figure 31). Using

specified time intervals At, the conditions at points R and S

can be evaluated by linear intérpolations as follows:

r = Yoo WeUp)vy/vpr  Ug = Ua={Ua70p) v/ vy

!
Il

Ve = VC—(VC—VA)VM/VL, Vg = VC“(VC"VB)VM/VL (179)
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The four unknowns ¢ Spe VP, and UP are obtained from

P,
the solution of Equations (175) to (178) and (179). All
known quantities in each of Equations (175) to (178) are

grouped together for convenience:

' At Ug~Ur
CPl = Op pllvMVR + va TT(VR—UR) + QAL AN {(180)
CMl = o, + v,,V. - bv At(V'-U } + QAt US_UR {181)

= Ug T Pn1VyVg M 2 Vg Vs Tz -

' V.-V

_ _ _ At _ B 'A

V_ -V

_ At B ‘A
CM2 = Sp + DszLUB + va TT(VB"UB) + QAt iz (183)‘

also ¥1 = bv At/2 ' Yz = bvyAt/2
' (184)
Y3 = ¢1+022VL ’ Py = ¢2+D11VM

The solution of Equations (175) to (178) written in

terms of the above quantities is:

0p = (CP1 + CM1)/2 (185)

sp = (CP2 + CM2)/2 (186)
_ Y1 (CP1-CM1) + Yy (CP2-CM2)

p * 2(Uat2=YaPu) (187)
_ Y3 (CP1-CM1) + Y2 (CP2-CM2)

Vp = Z(0102-Fsin) (188)

At the surface (z = 0), the boundary conditions are

expressed by.oP = 0 and Sp = 0. The Cg and C£ characteris-

" tics Equations (176) and (178) are solved to find the par-

ticle velocities VP and UP at the surface. Equations (176)

and (178) can be written as:
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U.=U
s ¢ _
VBrVC
! EiUP‘¢ 1VP = SB+pz ZVLUB+1],11 (VB"'UB) +QAt_KZ__ = CCM2Z (190)
g i . _ U1-CCM1+y, - CCM2
The solutions are: UP Ts0u=U1T2 (191)
Vp = (CCM1+w2‘UP)/¢4 (192)

At the bedrock (z = H) the particle velocities V

P
and UP are equal and known as a function of time for the
seismic motion considered. The C; and CE Eguations (175)
and (177} are solved to find 05 and S5 at the bedrock:

Ue~Ug

GP = qup—w ZUP+GR—p1 1VMVR+¢)2 (VR"UR) +QAt-W (193)
Ve Va

Sp = VaUp=U1Vp+s, 022V, Uy =01 (V,-U, ) +0At— 2 (194)

It should be noted that using the method of charac-
teristics, the guantities M, Q, R, p11, P22 and b can vary
with depth; they should be considered constant only within
each reach of thickness Az. The method, as developed here-
in is applicable to cases where there are more than one
saturated or unsaturated soil layer present in the soil
formation. This method is nct restricted to harmonic vibra-
tion cases. Appendix 10 includes a program written in

FORTRAN IV Language which performs all necessary calculations.
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Case Studies

Emm@£e7 A saturated sand layer 200 feet thick rests on a
horizontal rock base subjected to a harmonic excitation of
the form V(H,t) = U(H,t) = 0.2 sindrnt or w(H,t) = w(H,t) =
-0.016 cosd4nt. Specific mass densities are assumed to be

= 5.11, = 1.94, p, = 0.5,p = 4.0 in slugs/ft3. Elastic

Ps °L
constants are G = 4 x 10%, A = 37.5 x 10%, R = 20 x 10°%,
Q = 10 x 10°% in psf. Two cases are examined, with and with-
out dissipation.

The influence of porosity n is studied in the case of
no dissipation, which however is not a realistic situation.
The pressure wave velocities were found to be Va, = 2820

di

vd2 = 4958 ft/sec for n = 0.45. The water and solid particle

velocities at the surface of the deposit were computed from

ft/sec, Vg, = 5100 ft/sec for n = 0.35 and v = 2668 ft/sec,

the analytical method and are presented in Figure 32. The
difference between solid and fluid velocity ampitudes (rela-
tive velocity) decreases for increasing n, since increased
porosity reduces the resistance to the flow of the fluid
through the pores. No difference in phase 1s obsered since
dissipation is absent.

Disipation is next introduced by assuming that water
vigscosity is M o= 1.8 x 10”° 1lb+sec/ft? and intrinsic perme-
ability is K = 14.4 x 10~° £ft?. ©Porosity is assumed to be
equal to 0.35. The damped pressure wave velocities were
computed as Ve, = 677 ft/sec and Vg, = 4624 ft/sec. The

water and solid particle velocities at the surface of the
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Figure 32. Water and soil particle velocities at surface of a 200 ft
thick saturated moil deposit, for different values of porosity. No
dissipaticn (“L = 0).
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Figure 23. Water and soll particle velocities at surface of a 200 ft
thick satureted soil deposit, pp = 1.8 x 1072 lb-sec/ft2.
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saturated soil deposit were computed by using the analytical
method and are presented in Figure 33. The solid and water
particle velocities have about the same amplitudes, with the
amplitude of the latter being larger. However, because of

the phase difference due to the presence of dissipation,
relative velocities are of considerable magnitude. From
several other similar examples, it was observed that an
increase in permeability decreases the phase difference, i.e.
for very large permeability values the solid and fluid consti-
tuents tend to move together.

Example 2 A 200 feet thick saturated sand layer is resting on
horizontal bedrock which develops a sinusoidal velocity of

the form Vv(H,t) = U(H,t) = 0.2 sindnt (ft/sec). Porosity is
assumed equal to n = 0,30, Specific mass densities are
assumed:

= 5,13, = 1.94, Py = 0.0, and p = 4.173

Pg L,
slugs/ft3° Elastic constants are G = 6 X 106, A = 56 x 10°%,
R =27 x 10% and 9 = 11 x 10®%® in psf. Two cases are examined,
with and without disgipation and the results obtained by the
analytical method and the method of characteristics are
compared.

For zero dissipation, the sand layer was divided into
five 40-feet thick reaches with the time interval selected
for the method of characteristics being At = 0.00587 seconds.
The pressure wave velocities computed are v. = 6811 ft/sec

L

and Vy = 4351 ft/sec. The dynamic pressure ¢ on the soil

skeleton computed 80 feet below the surface by the analytical

method is plotted in Figure 34, To avoid the generation of



(91

PRESSURE ON SGOiL SKEL

Lo7

e Analytical

o Characteristics,
Linear Interpolations

a Characteristics,
Lagrange interpoictions

Computed 80'
Beiow Surface

- ] I
9OOO 005 OI0 0CiI5 020 025 030

TIME (Sec)

Figure 34. Dynamic pressure on soil skeleton computed
80 ft below surface of a 200 t thick saturated soil
deposit. No dissipation (ur, = 0).
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an initial transient, conditions found at time zero through-
out the layer by the analytical method were used as initial
conditions for the method of characteristics. Linear inter-
polations and fifth order Lagrange interpolations were used
in conjunction with the method of characteristics. The
dynamic pressure on the soil skeleton computed by the method
of characteristics for both interpolation schemes is in
agreement with the analytical solution as shown in Figure 34.
Dissipation is next introduced by assuming that the
water viscosity is u_ = 1.8 x 107° 1besec/ft? and intrinsic
permeability is K = 15 x 107° £t?2., For a time increment At
= 0.00587 sec the saturated soil layer was divided into five
40-feet thick reaches. For a time increment At = 0.00293
sec the scoil layer was divided into ten 20-feet thick reaches.
The dynamic pressure on the soil skeleton 80 feet below the
surface computed by the method of characteristics using linear
interpolations was substantially the same for the two time
increments selected. Fifth order Lagrangian interpolations
did not improve the results obtained by using linear inter-
polations., The initial transient generated because of the
use of initial conditions zero throughout the layer, vanished
after 2.3 seconds due to the presence of the dissipation.
The dynamic pressure on the soil skeleton 80 feet below the
surface computed by the analytical method is plotted in
Figure 35. .Linear interpolations and numerical approxima-
tions in the method of characteristics accounted for the

differences in the results (maximum 5%). The effect of
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Figure 35. Dynamic pressure on soll skeleton computed at 80 ft below

surface of a 20C ft thick saturated soil deposit,
1.8 x 1072 1lb-sec/ft2.
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dissipation on the peak magnitudes of ¢ can be observed by
comparing Figures 34 and 35. In the presence of dissipation
the amplitude is considerably reduced.

Example 3 A transient problem involving a real earthquake
motion is solved by the method of characteristics. The first
7.5 seconds of the vertical component of the 1952 Taft earth-
quake (Figure 36) act at the base rock of a saturated sand
deposit 1953 feet thick. Water viscosity is My = 1.8 x 1073
lbrsec/ft?, intrinsic permeability is K = 15 x 107° ft?,
porosity is n = 0.35, mass densities are Pg = 5.11, pp = 1.914,

= 0.0, p = 4.0 slugs/ft® and elastic constants are R =

Pa

20 x 10%, Q = 10 x 10°%, A = 37.5 x 10%, ¢ = 4 x 10° psf. The
pressure wave velocities computed are vy o= 5427 ft/sec and
vy = 3701 ft/sec. A time increment At = 0.01l5 sec is assumed

constant throughout the computations. The layer is parti-
tioned into 24 distance intervals of 8l1.4 feet. Linear inter-
peolations were used.

The dynamic stress on the soil skeleton o and the pore
water pressure p, 8l1.4 feet below the ground surface, cal-
culated by the method of characteristics are plotted in
Figure 37. It can be observed that increase in pore water
pressure results to a decrease in stress on the soil
skeleton. The soil and water particle velocities computed
81.4 feet below the ground surface are plotted in Figure 38.
These two velocities are of about the same magnitude but
are slightly out of phase.

The method of characteristics provides the means to

evaluating the transient pore water pressure in a saturated
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113

soil deposit. TIf pore water pressure builds up to the point
that the effective stress becomes zero, the sand completely
loses its strength and liguefies. Since Biot's eguations
hold for an elastic soil skeleton, it is obvious that only
instantanecus ligquefaction can be modeled. Permanent defor-
mations and plastic rebound of the soil skeleton due to read-
justment of soil grains should be incorporated to soclve suc-
cessfully the problem of liguefaction. At low pressure
ranges, soll still reacts as a "strain-softening® material
and a "locking-up" model for the soil is not necessary.
Future investigations on the subject should try to incorpor-
ate a Ramberg-Osgood type of stress-strain curves in the
analysis. Thus, the constrained modulus for the soil at a
particular instant will be represented by the slope of the
tangent tc the corresponding stress-strain curve. The var-
iation of the coupling coefficients R and Q under dynamic
conditions of loading and unloading should also be studied.
Such a model would definitely provide a more realistic solu-
tion to the problem of potential liquefaction under dynamic

conditions,



CHAPTER VII

TWO-DIMENSIONAL PROPAGATION OF SHEAR AND
PRESSURE WAVES THROUGH SOII

Review of Literature

The Finite Element method is a mathematical dis-
cretization technique (basic variation of the Ritz method)
where the governing differential equations are replaced
by a related system of simultaneous algebraic equations.
The material properties of the prototype are retained in
the individual elements so that varying material properties
and geometric configurations may readily be handled. Since
the advent of high speed computers, this method has been
widely used. The initial application of the Finite Element
method to the solution of linear elasto—dynamic soil pro-
blems in two dimensions is due tc Clough and Chopra [14].
They studied the response of earth fill dams to earthguakes.

Idriss and Seed [34] in 1967 studied the response
of earth banks to earthquakes. The earth banks were ideal-
ized by a number of triangular elements and the Finite
Element method was used. The problem was complicated by
the necessity of extending the finite element mesh a
sufficient distance from the area of the slope in order
to obtain an accurate response picture [60]. In 1969,
Dibaj and Penzien [20] used the Finite Element method and
a step~by-step integration method to study the nonlinear

response of two-dimensional earth structures to éarthquakes.

114
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The nonlinear problem was reduced to a number of successive
linear problems. Relative differences between linear and
nonlinear solutions were discussed,

Dezfulian and Seed [18] applied the method of Finite
Elements to linear-viscoelastic soil deposits underlain by
sloping rock boundaries. The analysis incorporated strain
compatible values of moduli and damping factors. This
method was applied to analyze the regponse of the valleyl
passing through the Palos Grandes area during the Caracas
earthquake of July 29, 1967 [73.,62,64]. The actual elastic
continuum was idealized as an assemblage of triangular
elements interconnected at a finite number of nodal points.
In these analyses, the rock ﬁotions were treated as a time
dependent phenomenon with the same motions developed at all
peints in the rock at a given time. Spacial variations in_
rock motions, due to wave propagation effects, were studied
by Dezfulian and Seed [19]. The interaction between soil
and embedded foundations during earthquakes was studied by
Isenberg and Adham [37] in the case of an embedded nuclear
reactor building. A finite element solution was obtained
considering a two-dimensional, dynamic, elastic continuum
representation of the soil, embedded foundation, walls,
and containment and support structures.

Results obtained by the Finite Element method near
the edges of valleys or at the toes of earth dams tend to
be erratic [18,62]. The reasons behind these inaccuracies

are: that stresses are small near these regions compared
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with the stresses in the earth structure 1tself; and that
triangular finite elements adjacent to these regions are
stiffer, thus restricting deformations. The computer time
required to obtain solutions by the Finite Element method

is rather excessive., Realizing the need for a more econo-
mical method, Streeter, Wylie and Richart [71] replaced

the visco-elastic continuum with a latticework of one-
dimensional linear elements as used in hydraulics [70].

The linear elements of the latticework transmitted shear

and pressure waves to the interior nodes of the lattice-
work where an imaginary nodal transfer element received and
transmitted all shear and pressure waves. The nodal element
was considered to be rigid, weightless and free to move
horizontally and vertically but not to rotate. The rigidity
of the nodal element was responsible for the lack of coup-
ling between shear and pressure waves. A force balance was
written in the x and z directions and two equations (the

C+ and C characteristics equations) were used from each
linear element correlating pressure or shear with the
corresponding velocity. For the interior nodes, there were
5 eguations in 5 unknowns for each of the x and z directions.
Soil deposits with uniform properties were considered.
Cases with a shear wave velocity being half of the pressure
wave velocity were examined (i.e., v = 1/3 for u = 0).

This method is termed in the following "l0-Latticework
method," the number referring to the number of equations

at each internal node.
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Lattécawanh Method

To create a coupling between shear and pressure
waves, Professor Streeter's suggestion that the nodal
transfer elements of a latticework (Figure 39) should
be deformable was adopted. Sixteen simultaneous linear
equations were obtained for each interior nodal transfer
element. Two eguations represent the force balance in
the x and z direction. A pair of equations (C' and C~
characteristics) from sach surrounding linear element relate
pressure and shear to the corresponding velocities., Two
equations model the deformation of the transfer element
in the x and z directions including the Poisson ratio
effects. The last four equations relate the velocities
of the four faces of the transfer element to the velo-
cities of the element itself in the x and z directions.
Thig method is termed herein "lé-Latticework method," the
number referring to the equations used, and it is explicit
in the solution of the equations involved at each node,
which explains the low computer cost associated with the
method.

A nodal transfer element and the sixteen unknown
quantities (shearing stresses, pressureé and velocities)
are shown in Figure 40. Each of the unknowns has a two
capital alphabetic character subscript. The first char-
acter refers to the face of the nodal element (up, down,
left, right) and the second refers to the corresponding

position on the x-t or z~t diagram (Figures 41 and 42).
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Ground Surface

L~"0ne Dimensional
— Linear Elements

- Nodal Transfer
Elements

Lateral
Boundary

Figure 39. Two-dimensional latticework
with linear and nodal elements,

Figure LO. Transfer element and the eight unknowns
for each of the two coordinates.
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The force balance in the x and z direction yields:

( YAz + (T JAX = 0 (195)

°Lp~%rp UP_ 'DP

YAX + (7 JAZ = 0 (196)

(Opp=0yp rRP 1P

where AX and AZ are the dimensions of the nodal transfer
element which is considered to be weightless, deformable
and free to move in the x and z directions but not to
rotate. Therefore, the relations between the vertical and
parallel velocities of the four faces of the transfer ele-

ment are:

VDP = VUP = (VRP+VLP)/2 (197)
VL = VRP = (VUP+VDP)/2 (198)

Since there are stresses in both principal directions
x and z of the transfer element, the strain in either
direction will depend not only upon the stress in that
direction but also upon the stress in the orthogonal
direction because of the Poisson ratio effect. Differen-

tiation of the total strains with respect to time yields:

de 1 dox v dcz
& - TEa TE a (199)
EXE = _ L EEE + 2 fgﬁ. (200)
dz E dt E dt

where v is the Poisson ratio and E is the modulus of
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elasticity. Subscripts indicate the two principal dir-
ections x and z. Equations (19%9) and (200) in finite

difference form become:

Vee Vre _ _ “re"%rp %Ra%1a . v Jur" b U DB (201)
AX ZEAE E 2 At

Vur™Vop _ _ “ur™%0p™%p %8 v Tpr'ILp %Ra""1a (202)
AT ZEAL E 2 At

where AX and AZ are the transfer element's dimensions which
may be considered equal. However, they subsequently cancel
out and they do not appear in the final solution.

Agssuming that the sgoil material is linear visco-
elastic, the partial differential eugations governing
the propagation of shear waves through the vertical one-

dimensional linear elements of the latticework are:

aT av

e~ P Ep =0 (203)
Tt 3V _ 0%V _ .

3t " %3z "M 3me -0 (204)

The same equations hold for the horizontal one-
dimensional linear elements if x is substituted for z.
The partial differential equations governing the propa-
gation of pressure waves through the vertical one-dimensional

linear elements of the latticework are:

30 v
da t\Y 22y

AR ¥ A S

5t 5z ~ Y 5z5¢ = 9 (206)
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where M is the constrained modulus and the term pg in-
troduces the effect of gravity. The same equations hold
for the vertical one-dimensional linear elements if x is
substituted for z and if the gravity term pg is omitted.
If dynamic stress conditions are sought the gravity term
og should be also omitted from Equation (205). In this
case, total stresses are obtained from the superposition
of dynamic and static stresses.

The method of characteristics is employved to solve
Equations (203), (204), and (205), (206) as well as the
corresponding equations in the x direction. A common time
step At is selected. After transforming the partial
differential equations to ordinary differential equations
by the usual procedure, the apparent shear and pressure

wave velocities are obtained:

(207)

<
4]
i

I oo
+ +
| B
=| Bl
T

(3

d = 208
an vp ( )

pA

©

The lengths of the vertical and horizontal one-

dimensional linear elements are assumed to be:
- Ax o= Az o= ZVSAt {209)

The one-~dimensional linear elements are therefore
partitioned into two reaches for the case of shear wave

propagation. For pressure waves the condition required to
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satisfy stability criteria of the method of characteristics

is:
Ax 2 vat > Ax/2 (209a)

and should be always satisfied. If u = 0, condition (209a)
holds for any v £ 1/3. For values of u > 0, higher values
of v satisfy condition (209a). Usual Poisson ratio ranges
are: fo: sandy soils 0.25 2 v 2 0.35; for clay with some
sand and silt 0.30 2 v > 0.40; and for clays 0.35 2z v 2 0.45,
Therefore, condition (209a) holds for all practical purposes.
Linear interpolationsg are reguired in this case. Figures
41 and 42 show the x~-t and z-t diagrams for the two hori-
zontal and the vertical linear elements surrounding a
transfer element.

The finite difference expressions of the ordinary
differential equations emanating from the method of char-

acteristics for the case of shear waves are:

+ 24 . _
Cgr Tpp~ Ty oVg (VppVy) + 3xVia~Vy) = 0 (210)
Hor.
CS: TRprM+pvs(VRP—VM) + (VM RA) =0 (211)
+ _ 20, 0. _
Cgr Tpp~Tg~PVg (Vpp V) + 3x(Vig=Vy) =0 (212)
Vert.
-. 2U -
Cs' Tup~t +pv (VUP VI) + Ax(V VUB) = 0 {(213)

where v is the apparent shear wave velocity. The first

character of the two capital alphabetic character subscripts
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refers to the face of the transfer element and the second
to the corresponding position on the x~t or z-t diagram.
Single alphabetic character subscripts refer to positions
on the x-t and z-t diagram.

| The finite difference expressions of the ordinary
differential equations emanating from the method of char-

acteristics for the case of pressure waves are:

Cp: OLP R+pv (VLP VR) - (VLA R) = (214)
Hor. _
. - - B - =
Cp. Orp™ S -pV (VRP VS) AX(VS VRA) 0 (215)
+ —
Cp: ODP—OR’+pvp(VDP R’) Ax(VDB R,)+pgvat 0 (216)
Vert. -

. - - - - B - - -
Cp. GUP OS, pvp(VUP VS‘) Ax(VS’ VUB) pgvat 0 (217)

By calling r = vp/2vs, the necessary linear inter-

polations are written as:

O = Opa T T (Upa70pa) \

Ve = Via = ¥ Vpa Veo!

Og = Opa — T (GRA“GRD)

Vg = Vpu = T (Vpu=Vpr)

> (218)

Or+ = 9pp ~ T (OppTOyp)
Ve~ = Vpg = T (VppVyp!

Og- = Oyg = ¥ (OUB—GDE)'
Vg- = Vyg = ¥ (Vyg=Vpg! )
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The 16 unknowns that appear in Pigure 40 are ob-
tained from the solution of the linear simultaneous
Equations (195) to (198), {(201), (202), (210) £0 (217)
together with Equation (218). To present the solution,
it becomes necessary for purposes of clarity to group known

quantities under different headings:
CO = p(vs+vp)
Cl = u/Ax
c2 = 2u/Ax
cC = v_At

CM = pvs—zu/Ax

= - At
CCM pvp u/(vp )

Fl = O'S-"CCM-VS*-Cl 'VRA

F2 = 0 +CCM-V_+C1-V (219)
F3 = 0 . +CCM-Vp. +C1 -V ,=CC

F4 = 0o -~CCM V. =CL- Vo +CC

F5 = TN—CM-VN—CZ-ViA

F6 =‘TM+CM-VM+C2'V;A

F7 = TJ*CM-VJ~C2-V5B

F8 = TI+CM-VI+C2-VGB

Bl = (F2+F8-F1-F7)/CO

B2 = (F3-F4+F6-F5)/C0 /)
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Gl = 2+pvp/(E‘At) A

G2 = vpvp/(E-At)

1
= + - — - -
G3 = w5 [V(FLI4+F2-0p, -0, ) -F3-F4+o +o ] | 215 come.)
- l — — — — ? .
G4 = = [V (F3+F4-0, =0 ) "F1-F2+40 +0_, ]

Al (G2-G3+G1-G4) / (G2%2~-G1?)

A2

(G2-G4+G1-G3) /(G2%-G1?) y

The velocites perpendicular to the faces of the

transfer element are:

Vip = (A1+B1)/2 (220)
Vpp = (A2+B2)/2 | (221)
Vep = (B1-al)/2 (222)
Vyp = (B2-A2) /2 | (223)
Velocities ViP’ VﬁP’ VaP, and VéP are now obtained

from Equations (197) and (198). Shearing stresses Tip?

rp’ Tpp’ and Tup are found from Eqguations (210) to (213).

Presgssures o

T
e’ ORrp’ ODP, and Oyp are calculated from
Equations (214) to (217) in conijunction with Equations
(218).

In order to proceed to the next time step and repeat
the procedure described above, the values of shearing
stresses and particle velocities at points M, N°, I-,

and J° of the x-t and z-t diagrams are needed. Shearing

stress and velocity at point M” of the x-t diagram (Figure
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41) are obtained from the equations:

Cq: TM,—TRA—QVS(VM_—VRA) + X(VM VRA) = 0 (224)
C: Tyr—Tentpv_ (V. .=V7 ) + éﬁ(v’ -vV.) =0
s’ M® 'LP s''M” "LD Ax'"1LD M (225)

From the similar CZ and C_ characteristics equations,
shearing stress and velocity at point N~ of the x-t diagram
can be found. Shear and velocity at point J° of the z-t

diagram (Fiture 42) are obtained from the equations:

—PVy (V AR (V ) =0 (226)

E: : T -

s 3 " tuF UF 7 Vor

tpvg (V V) o+ (V V) =0 (227)

bt T DB Vg

s J° "pB DB

From the similar C; and C; characteristics equations
sheér and velocity at point I” of the z-t diagram (Figure
42) are computed. The procedure outlined above applies
to all nodal transfer elements of the latticework and then
it is repeated at any subsequent time step.

Horizontal and vertical steps make up the lateral
boundaries of the latticework. Boundary conditions at
the edges of the latticework where no transfer elements
exist (Figure 39) are handled as in the one-dimensional
propagation of shear or pressure waves. Pressure and
shear are zero at earth-air interfaces and the aépropriate
ct and C characteristics equations are used to determine
the corresponding velocities.

A computer program written in FORTRAN IV Language

is presented in Appendix 1l. The program is quite general
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applying to latticework configurations of earth dams,
earth banks and valleys. The IBM 360/67 hardware was

used for the execution of the program.

Case Studies

Example 1. The study of a small soil-filled valley (Figure
43) reveals the differences between the 10-Latticework
and the lé6-Latticework models. The valley soil material

has p = 4.0 slugs/ft®, G = 800000 psf, E = 2186560 psf and

M 3800000 psf since the Poisson ratio was assumed to be

v = 0.367. The soil viscosity is i = 2000 lb-sec/ft’.

The entire rock boundary surrounding the valley develops

a horizontal sinusoidal velocity equal to V = 0.2 sinl2.5nt
feet per second. The latticework modeling the soil-filled
valley is comprised of 24 vertical and 16 horizontal linear
elements and 14 transfer elements. The time step selected
is At = 0.01 sec. The apparent shear wave velocity is
found to be 500 ft/sec and the apparent pressure wave velo-
city is 1000 f£t/sec. The distance between transfer elements
is 10 feet.

The 1l0-Latticework model did not compute any ver-
tical velocities at point A on the soil surface. This
results from the assumption that the nodal transfer ele-
ments of the l0-Latticework model are rigid. Therefore,
transients generated by vertical motions of the underlying
rock are uncoupled from those generated by horizontal

motions. The lé6-Latticework model incorporating the
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Poisson ratio effects, calculated a vertical response at

A as shown in Figure 43. The horizontal velocities computed
at A by the lé6-Latticework model are smaller than the cor-
responding values obtained from the l0-Latticework model.
The explanation is that part of the energy received in the
horizontal direction by the transfer elements of the 16-
Latticework model is transmitted vertically due to the

Poisgson ratioc effect.

Example 2. The effect of the slope of the rock boundary on
the response of a semi-infinite soil deposit is examined.
Two semi-infinite sand layers 165 feet thick are considered
having a vertical rock boundary and a 1:1 rock slope res-
pectively. The soil properties are: mass density p = 4
slugs/ft?; Poisson ratio v = 0.25; viscosity y = 40833
lb*sec/ft?; shear modulus G = 2 x 10° psf; and modulus of
elasticity E = 5 x 10° psf. The time interval selected

is At = 0.03 sec. The apparent shear and pressure wave
velocities were found to be 916.7 ft/sec and 1356.6 ft/sec
respectively. The soil deposits were modeled by 1éttice-
works of 55 foot long linear elements (Figure 44).

The entire rock boundary was assumed to move as a
rigid body. The horizontal exciting motion was the S21°W
component of the Taft earthguake, 1952. The scoil layers
were considered to extend 9500 feet horizontally, enough
to guarantee that the first 550 feet would behave as if

the soil layers were actually of semi-infinite extent.
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Values of the maximum ground surface acceleration
may he represented as amplification factors expressing
the ratio of the maximum ground surface acceleration at
any point to the maximum acceleration in the adjacent
rock formation. These amplification factors were found
by using the 1l6-Latticework model and are plotted in
Figure 44 for the two layers under consideration. The
results of a one-dimensional shear wave propagation analysis
(shear beam, Chapter II) are also plotted for comparison.
The influence of the two different slopes on the response
is obsérved_in the immediate vicinity of the slope. The
influence of the slope on the accelerations obtained 350
feet beyond the toe of‘the slope is practically nonexistent.
The amplification factors obtained from the one-dimensional
and the two-dimensional analyses arelin agreement for that

region.

Exampfe 3. A 300 foot high earth dam with truncated crest
and side slopes 1:2 is considered resting on a horizontal
base rock (Figure 45). The base rock develops the same
horizontal excitation with the North-South component of

the El1 Centro earthquake of 1940 (Figure 46). The response
of the earth dam is computed by the lé6-~Latticework method
and by the one-dimensional shear slice analysis (Chapter V).
This example is rather academic since soil properties were
selected in ‘such a way as to facilitate demonstration of

the comparisons between one and two~dimensional analyses.
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However, the methodology associated with the Latticework
model is independent of the data used with the exception

of conditions (209) and (209a) required to satisfy stability
criteria of the method of characteristics.

The earth dam material is assumed to be sand with
the following properties: mass density p = 4 slugs/ft?,
viscosity p = 15000 lb+sec/ft?, Poisson ratio v o= 0.25,
shear modulus G = 700000 psf, constrained modulus M =
2.1 x 10° psf and modulus of elasticity E = 1.75 x 10° psf.
The latticework used for the two-dimensional analysis has
160 linear elements of 50 feet length and 65 transfer
elements. The time increment selected is At = 0.05 sec.

The apparent shear and pressure wave velocities were found
equal to 500 ft/sec and 774.6 ft/sec respectively. For
the one-dimensional analysis, the same time step was used
and the dam height was partitioned into 12 reaches, each
having a length of 25 feet.

Horizontal velocities and shearing stresses computed
at points A and C of the dam centerline by the one-
dimensional and the two-dimensicnal analyses are presented
in Figures 47 and 48. The response pattern is very similar.
However, a time delay occurs by using the latticework model.
‘The shear wave travels through the latticework at an
apparent wave speed that is less than the wave speed for
a single one-dimensional element of the continuum. If

the latticework did not include any transverse elements,
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the above statement would no longer be true., . The time
delay is caused by the fact that a wave arriving at a
node (transfer element) is transmitted as a wave of lower
magnitude.

The velocities and shearing stresses computed at
points B and D to the right of the dam centerline (Figure
45) by using the lé6-Latticework model, are also plotted
in Figures 47 and 48. As expected, the results obtained
at the same elevations on the dam centerline are of higher
magnitudes but similar form.

The same example was examined assuming a higher value
for the soil viscosity, p = 47000 lbesec/ft?. A time
increment of 0.035 sec permitted the use of the same
latticework. The shearing stresses at the base of the
- dam on its centerline (point C) computed by the one-
dimensional analysis and by the two-dimensional analysis
are presented in Figure 49. These results are similar and
the time delay due to the latticework is again noticeable.
Comparing the responses in Figures 48 and 49, it is observed
that the same increase in viscosity causes a higher damping
in the results obtained by the two-dimensional analysis.

The computer time for loading the object code, exe-
cuting and printing the results for the above example
using the lé6-Latticework model (Program in Appendix 11),

was approximately 65 seconds on the IBM 360/67 Computer.
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Example 4.. The Caracas earthquake Qf July 29, 1967, although
of a magnitude of 6.4, caused excessive damages to struc-
tures. Four buildings collapsed and almost all high struc-
tures suffered damage in the Palos Grandes ;reacxﬁ east
Caracas (Figure 50). Since the actual earthquake was not
recorded, Seed et al. [62] proposed the use of the 521°W
component of the accelerogram recorded at Taft in the Kern
County (California) earthquake. This accelerogram was
scaled, multiplying amplitudes by 0.166 and time by 0.9
{(Figures 51 and 52). Such an accelerogram presents a
maximum rock acceleration of 0.03g, and a predominant
period of rock motions equal to 0.3 sec and is character-
istic of a shock of magnitude 6.4 at an epicentral distance
of about 35 miles.

A cross section through the Paleos Grandes area
(Figure 50) of the Caracas valley in the North-South
direction along RA~ is shown in Figure 53. The rock
underlying the valley soil deposits is assumed to move
horizontally as a rigid body according to the accelerogram
of Figure 51. Maximum ground surface accelerations were
computed by the lé6-Latticework method and compared to
‘those obtained by the Finite Element method,

Seed et al. [62] used a shear modulus varying with
the overburden pressure for the granﬁlar soils which
predominate in the valley. Typiéal variations of shear
modulus and‘damping ratio with shear strain were used from

test data obtained in previous studies of gimilar materials.
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The Latticework methqd in its present form is applicable

to problems involving constant shear modulus and visco=
elastic soil behavior. This limitation neccessitated the
use of average values for the Carécas valley soil proper-
ties: p = 4 slugs/ft®; uy = 60000 lb.sec/ft?; v = 0.25;

and G = 23 x 10°% psf. A one-dimensional shear wave pro-
pagation analysis by the method of charactevistics, using
these average values of soil properties, resulted in approx-
imately the same values of maximum ground surface accelera-
tion as those obtained by Seed et al. [62] using a one-
dimensional uncoupled soil column analysis (Figure 54).

Two latticeworks were used to represent the geometry
of the valley section. Latticework I has 330 linear elements
of length 150 feet and 133 transfer elements (Figure 53).
The corresponding time increment is At = 0.030 sec. Lat-
ticework II has 500 linear elements of length 126 feet and
210 transfer elements (Figure 53). The corresponding time
increment is At = 0.025 sec. Values of the maximum ground
surface acceleration computed by the Latticework method
are presented in Figure 54. The responses obtained by
both latticeworks are in quite close agreement. The peaks
of the envelope curves observed along the valley surface
may be the result of focusing of reflected waves. Three
of the collapsed buildings in the area are located under
one of these peaks. However, definite conclusions could
be made only if the acceleration time history in that

location was also examined. Computer time for only
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executing the program in the case of Latticework 1 was
approximately 80 seconds and in the case of Latticework II
was approximately 200 seconds.

Seed et al. [62] using the finite element mesh shown
in Figure 53 obtained the values of the maximum ground
surface acceleration plotted in Figure 54. Previous
studies [18] have shown that results computed by the
Finite Element method near the edges of such sections
tend to be in error and estimated values are shown by the
dashed lines in Figure 54. The results obtained by a
one-dimensional shear wave analysis are also plotted in
Figure‘54 for comparison.

A standard method of assessing the adequacy of a
finite element mesh is to vary systematically the mesh
size and the element sizel45]. The éame technique was
used to study the latticework adequacy. Latticeworks I
and II were found to be compatible. However, results
obtained by using two coarser latticeworks with At = 0.040
sec, Ax = 198 ft and At = 0.050 sec, Ax = 246 ft, differed
considerably from the results obtained by using lattice-
works I and II. The coarser discretized latticeworks
exhibited a tendency to smooth out the envelope of maximum
accelerations computed at the surface of the valley.

The results computed by using latticeworks T and II
and the Finite Element method are of the same order of
magnitude. However, the envelope of maximum accelerations

obtained by using the Finite Element method is smoother than
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the one obtained by the Latticework method. This may be
partly attributed to the fact that the soil near the

ground surface is considered by the Latticework method to
be more rigid due to the average shear modulus used. An
extention of the Latticework method to cover cases of shear
modulus varying with depth is required before making any

definite statements concerning its accuracy.



CHAPTER VIII

CONCLUSIONS

In the.foregoing chapters the method of character-
istics was applied to a variety of problems of seismic wave
propagation through soil deposits. The accuracy of the
method was examined and numerous examples were presented
in all cases studied to demonstrate the applicability of
the method and to compare solutions obtained by the charac-
teristics method and by other methods of analysis.

The Base Motion Synthesis Method was developed by
combining the method of characteristics and a centered
implicit method. The Base Motion Synthesis method was
shown to be applicable for computation of bedrock motions
when surface motions of a viscoelastic or a "strain-
softening"” horizontal soil deposit were considered to be
known.

The study of one-dimensional shear wave propagation
through earth dams with truncated crests was carried out
by using the method of characteristics. For viscoelastic
material, results obtained by the characteristics method
were confirmed by the shear slice theory and by an analytical
method involving Hankel functions with complex arguments.

Biot's field egquations, governing the propagation
of pressure waves through saturated elastic soil deposits,
were reduced to one-dimension andlwere Solved by using the
method of characteristics taking into account wave reflec-

tions at the boundaries of the soil formations. An
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analytical solution developed for purposes of comparison
was used to confirm the results obtained by the character-
istics method. This development could be the basis for
future extension of the studies of soil liquefaction by
incorporating a Ramberg~0$good type of stress-strain curve
in the analysis to model the inelastic behavior of soils
_for moderate pressure ranges,

For two-dimensional shear and pressure wave propaga-
tion through viscoelastic soil material the latticework
approach was used. Two-dimensional systems, i.e. earth
dams, embankments, or valleys} were modeled by a latticework
of one-dimensional elements and the method of character-
istics was incorporated in the solution. Results obtained
have indicated the applicability of this method to regional
microzonation studies. Computer time economy was found to
be one of the major advantages of the latticework method.
This study, although of a rather preliminary nature, reveals
the versatility of the method. The major disadvantage of
the Latticework method is the time delay of a response
resulting from the latticework used. Future investigations
could incorporate the variation of shear modulus with
depth by using linear interpclations for both shear and
pressure waves. |

Extensive application of the characteristics method
to problems of earthquake generated transient disturbances
traveling through soil deposits revealed that the main

advantages of the method are: relative simplicity:;
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versatility; applicability to problems of purely transient
nature; accuracy of results; and low computing cost

associated with the solutions obtained.



APPENDIX 1

RAMBERG-0SGOOD HYSTERETIC MODEL

The vibration of a horizontal soil layer subjected
to the horizontal motion of an earthquake is a good example
of simple shear. Hardin and Drnevich [25] experimentally
proved that the shearing stress-strain relationships for
soils are nonlinear and that they may be represented by
a hyperbola.

The hysteretic behavior of soil excited by random
vibrations is most frequently represented by bilinear models
[61]1, simplicity being their principal advantage. For
dynamic studies, it is desirable to use nonlinear hysteretic
stress—-strain relationships which are general enough to
describe yielding behavior varying between linear and elas-
toplastic. Structural engineers [7,41,56] have extensively
studied such relationships referred to as Ramberg-Osgood

models, defined by a skeletqh curve equation:

(1 + ‘%‘Rn_l) (A-1)

for stresses increasing from zero, and a branch curve

Ro -]_
: (A-2)

=
i
STle

equation:

_ _ I-T) =T
¥ Y1 Go (l * 'ZTY
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BILINEAR HYSTERETIC MODEL
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Figure A-1l.
hysteretic models.
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for unloading from (T:,yv:). The shearing stress is indicated
by 1, yis the shearing strain, G, is the .shear modulus at
Y = 0 and the subscript y represents values at "yield" (or
reference values).
Eguations (A-1) and (A-2) were used by Streeter,
Wylie and Richart [71] to describe the nonlinear behavior
of "strain-softening" soil layers. Constantopoulos {[15] used
a similar Ramberg—bsgood model without the refinement of
the.absolute values in equations (A-1) and (A-2) which
complicates the analysis but permits the use of noninteger
values of the coefficient Ry;. A wide variety of physical
behaviors may emanate from equations (A-1l) and (A-2). For
- Ry = 1 the linear elastic behavior of a system can be
modeled. The elastoplastic case 1is represented by Ry + o,
For a cyclic loading with fixed amplitude, a unique
hysteresis loop is defined. A very clear description of
the hysteresis law in the case of the Ramberg-Osgood model

is given by Goel [24].



APPENDIX 2

HARMONIC ANALYSIS OF TRANSIENT MOTIONS

If n equidistant displacement values uj, 3 = 0,...0-1,
are obtained from a digitized seismogram of ground motion,
the displacement at a time t can be represented by the
complex form of a finite Fourier series:

n

ult) = a_ exp(iwst) (A-3)

-1
s=0
where Wy = 2ns/(nAt), (s = 0,...n-1), At is the time step

between the data points and as are the Fourier ccefficients:

n-1

B

a =

s u. exp(-2risj/n) ; s=0,....n-1 (A~4)

j=0 7

Using the Inverse Fast Fourier Transform Algorithm
developed by Cooley and Tukey [l6], the calculation of the
Fourier coefficients is performed n/ln{n) times faster than
direct computation. The use of a number of data points n
equal to 22 where £ is an integer, offers important advan-—
tages for computers with binary arithmetics, both in ad-
dressing and in multiplication economy. If n is less than
the ¢losest 22, the remaining 2%-n data locations should be
filled out with zeroces to satisfy the requirement of a guiet
zone after the acceleration record. The subroutine HARM of
the IBM Scientific Subroutine Package [32] was used to cal-
culate the Fourier coefficients, with the wvariable
IFSET = -1. According to the above procedure, a transient

motion represented by n equidistant values is analyzed to
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n harmonics. In order to reobtain the n equidistant dis-
placement values, the subroutine HARM can be used, this
time with IFSET = 1.

The Fast Fourier Transform Algorithm was used in
soil vibration problems by Schnabel, Seed and Lysmer [58]
in a similar fashion to the one presented above,

The Fourier coefficients obtained from eguation
{A-4) are complex numbers. However, the displacement values
cbtained from equation (A-3) have imaginary parts zero.
The Fourier analysis of the transient function u(t) is valid
only at the data points originally considered. There is
no guarantee that between these points values of the func~
tion u(t) will be approximated correctly by equation §A-3).
This drawback can be avoided by employing a least squares
criterion in conjunction with the Fourier Transform [55].

If 2N+1 equidistant displacement values are obtained
from a digitized seismogram, the function u(t) can be
analyzed into M harmonics (M < N) :

M .
ul(t) =z %;5 (amcoswmt + bmSanmt) (A-5)

where W = 2mm/ (2N+1)At, (m = 0,...M), At is the time step
between data points and A bm are the Fourier coefficients

obtained from the least squares criterion:

2N+1 M |
ézé [u(tn) - éé% (a cosuw t + bmsinmmtn)]2 = min. (A-6)
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When N = M the least squares criterion becomes egui~
valent to the requirement that the two members of (A-5)
agree exactly at the 2N+1 points considered. The
coefficients aj and bj (j = 0, 1,...M) of the Fourier series
which approximates the given displacement function, are
obtained by using the subroutine FORIT of the IBM Scien-
tific Subroutine Package [32].

Equation (A-5) for the purposes of the present analy-

sis may be written as:

u{t) é exp(iwmt)}‘ (A-7)

n
&
P,
]
v

where Re stands for "real part of" and:

as :\’aé + bé exp (-i¢_) (A-8)

with

¢ = tan™' (b_/a_) (A-9)

Equations (A-3) and (A-7) are analogous, the only
difference being the number of harmonics used. However,
equation (A~7) approximates closely the values of the
function u(t) between the tabulated data points if a suf-
ficient number of harmonics is employed. In case of earth-
quake motions, this technidque is more expensive in computer

time.



APPENDIX 3

'BESSEL FUNCTIONS WITH COMPLEX ARGUMENTS

Bessel functions of the first kind, of order g

equal to zero or one, from definition are:

o . ..K 2K+gq .
Tgleexp (i) = 3 SR RLEKAIL (10
| K=

In complex form Bessel functions of the first kind

are written as:

Jglrexp(i®)] = u_(p,¢) + iv,(p,9) (A-11)
o0 K 2K+g
_ (-1) " (p/2) -
where ‘uq(p,¢) = gé% R (K ! cos (2K+q) ¢ (A-12)
0 K 2K+g
- (=1) “(p/2) . _
Uq(pr¢) = & KT (RFq) T sin (2K+q) ¢ (A-13)

When 26 terms of the above series are considered, the
truncating error induced by omitting the rest of the terms

and by working in single precision was found to be of the

order of 10°"%,

Equation (A-11) holds for the first quadrant of the

complex plane. For the fourth quadrant:

Jq[pexp(—1¢)] = uq(o.¢) - 19q(p,¢) (A~14)

Bessel functions of the second kind, of order zero

or cne may be written as:

Yq[pexp(i¢)] = Uq(o,¢) + di(p,¢) (A~-15)
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where
Uo (0,0) = 2 [uo (p,0) (y+In§) = 6ug(p,8) + S(0,8)]1  (A~16)
Vo(ps0) = % [Un(p,¢)(v+ln%) + duo(p,¢) + T(p,0}]  (A-17)

Yp = Euler's constant = 0.5772156649 ...

K+1 2K

-1 2 1,0 .1 :

Se9) = % (L) 072 (14lel . 4dycos2ke  (a-18)
® K+1 2K

T(pl’d)) - Z (—l) K! (Ig{z) (1+%""---+%) SiHZKCb (A“lg)

Bessel functions of the second kind, of order one
can be found from the "cross-relation™ between Bessel

functions of both kinds [47]:

Jo(2)Y:(2) -~ J1(2)¥¢(2) = - — (A-20)

where z is complex. This leads to the following relations

between real and imaginary parts of the Bessel functions:

uiUp - v,V - 2 cosd/mp {(A-21)

il

UoUyr = UV
UeU; + 1oV = u1Vgy + 01Uy + 2 sing/mp {(A=-22)

From Equations (A-21) and (A-22), Vv, and U, are
cbtained in order to calculate Y, [pexp(i¢)].
Equation (A-15) holds for the first quadrant of the

complex plane. For the fourth guadrant:

Yq[pexp(-l¢)] = Uq(p,¢) - 1Vq(o,¢) (A-23)
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The use of existing tables [49,50] to evaluate Bessel
functions of the first or second kind and of order zero
or one, for any complex argument, was found to be exces-
siVely time consuming because of the necessity of double
interpolatiohs in the values of p and ¢. Therefore, sub-
routine BES, included in Appendix 7, was written to cal-
culéte any Bessel function of the first or second kind and
of order zero or one with complex argument. Single pre-

cision proved to give satisfactory results.



APPENDIX 4

DERIVATION QF BIOT'S EQUATIONS OF EQUILIBRIUM
IN EULERIAN COORDINATES

The Lagrangian viewpoint and the concept of gener-
alized coordinates were used by Biot [9] to derive the
equations of equilibrium (116) and (ll?)lwhich.govern the
vertical propagation of waves through a saturated elastic
porous medium when dissipation is present. Bilot used
Lagrange's equation after expressing the kinetic energy
cf the system per unit volume in terms of the generalized
coordinates.

An Eulerian analysis is used in the following to
derive Biot's equations of equilibrium with the additional
consideration of the gravity forces acting on the system.
A non-deformable control volume fixed in space is employed.
Fluid and solid particles move through the fixed control
volume with velocities U and V respectively. The fluid
particle velocity U is actually the seepage velocity. The
corresponding superficial velocity is nU where n is the
porosity. The fixed control volume has a cross-sectional
area Ap, and height Az. Assuming that the relative flow of
fluid with respect to the solid skeleton is laminar, the
equation of motion for the fluid constituent (Figure A-2)
may be written as:

ByAzp ndU _ AogAzp (EX - E—a-g)
L3t a‘at at

2 -
np, g (U-V)
k

—AqugéEEL + Aquanq - AgAz (A-24)
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- Surface

‘Lu (Fluid Velocity)
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Figure A-2. Flow of fluid and solid constituents of a saturated
porous medium through a fixed control volume.
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where p; = mass density of fluid; Py ™ apparent mass density;
p = porewater pressure; k = coefficient of permeability;
and g = acceleration of gravity. Small terms, such as
V3V/3t and U3dU/3t, have been omitted from Equation (&-24).
The second term of the left hand side of Equation
(A-24) represents the apparent mass effect. By considering
that the solid part of the porous medium is accelerating
relative to the liquid part, the force pushing the solid
part has to perform work to increase the kinetic energy
not only of the solid but also of the fluid.
The second term of the right hand side of Equation
(A~24) represents the force due to gravity. The last term
of Equation (A-24) represent a viscous force resisting
the flow. If 30/9t and 9V/9t are set to zero and the

gravity force is omitted, Equation (A-24) degenerates to:

1 3p '
n(U~v) = ~k —— (A~25)
pr 9 ¥4

which is Darcy's equation. Therefore, Darcy's friction
is the dissipative mechanism represented by the last térm
of Equation (A-24).

Division of Equation (A-24) by the volume of the

fixed control volume, vields:

2
U _ v _ _ a(np) il P )
(npp*o ) 5§~ 054 58 = Ng - T 0P gt e (V-U) (A-26)
where p = - s/n = porewater pressure and s = stress on the

fluid part per unit area, negative when pressure. The



le2

coefficient Qf permeability k is connected with the in-
trinsic permeability K through the relation:
P19
k = K T (A-27)
L
By expressing the velocities of the liquid and solid
constituents in terms of the corresponding displacements,
i.e, U = 3w/t and V = 3w/9t, and by substituting Equations
(119), (120), (121) and (A-27) into Equation (A-26), the

latter becomes:

QL

%%r(p:zwwzﬁ) - (pya2tp22)g - bg-%—(w—ﬁ) = *-Z (A-28)

The equation of motion of the fluid as derived above
(Eq. A-28) contains the effect of gravity. Therefore,
static stresses should be considered as initial conditions.
If however a purely dynamic solution is sufficient, the
second term of Equation (A-28) should be omitted and initial
conditions should be zero throughout the saturated soil
deposit. In this case, Equation (A-28) becomes identical
with Biot's dynamic equation of equilibrium in the
z-direction for the fluid constituent (Equation 117).

The equation of motion for the solid constituent

moving vertically through the fixed control volume (Figure

A-2) may be written as:

v \Y U
AoAsz(l~n)§E + AoAzpa %E - 5?’ =

ag
. AoAZ‘é‘z‘ + AUAZ(]. n) pSg + ApAz K (A—29)
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where DS = mass density of solid; and 0 = stress on thg
golid part of a unit area, positive when tension, The
forcaes due to the apparent mass and due to Darcy's friction
exprassed by the second and fifth terms of Equation (A-29)
are the same in magnitude with the corresponding forces

in Equation (A-24) but with opposite signs owing to the

law of action and reaction. The last term of Egquation
(A-29) may be visualized as a kind of drag force excerted
on the soil skeleton due to the fluid flowing through the
pores. Division of Equation (A-29) by the volume of the

fixed control volume, yields:

3V U _ 30 n'erg
[{l-n)pg+p dax - p, 55 = 52 + (Indeg9 - —x;

(V-U) (A-30)

By expressing the velocities of the fluid and solid
constituents in terms of the corresponding displacements
and by substituting Equations (118), (120), (121) and (A—27)

into Equation (A-30), the latter may be written as:

3* = d s 39 |
3z (P11WHP1oW) = (P11H+P12) g + bgp(w-w) = 5> (A-31)

Equation (A-31) becomes identical with Biot's
dynamic equation of equilibrium in the z-direction for the
solid constituent (Equation 116) by omitting the second

term which expresses the effect of gravity.

Note: In the preceding development the porous material was
assumed to be statistically isotropic. Therefore, all
cross-sections have the same ratio n of fluid area to total
area since the volume of fluid in a thin slab is always 4
fraction n of the total veolume (n = porosity).
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APPENDIX 5

3 e 25 e 3 e e A Koo e il e s dte sl e o ol o e e e gk e e e ek ol ol e e e Rl o o ol e ke e ok

METHOND OF CHARACTERTSTICS+VALVE STRAKING CONCFPT
FIND BEDROCK MAOTION FROM A KNOWN SUHRFACE MOTION
SEMI—-INFINITE SOIL LAYFER., UNITS IN PSF,FT4SFC.
SOIL LIMNFARLY VISCOFLASTIC.

IF ITND=1 EARTHOUAKFE MOTIOMGIF IND=2 STFADRY OSCIL.MOTINON,
IF IND=1 READ FONINISTANT VELACITY VALUES FROM DFVICE 7
IF IWR=? PRINTOUT RFDUCED.

X=0 1S AT SURFACE,

el 2l e e st i e el e sl sl ol e e e ol Sl ale ol ol ol e 32 e e seals ol sl e e sk i e ok e sk Al
REAL L.MIU,MIUD

NIMENSTION TAL20.200),VI20:200),G(20),VS{20},X(20),MIU(20),
TLI?20) «RO20) «MIUDI20) 4 G0(20)RONIZO) L2001, VPLIZ200) ., TPLIZ0OO ),
2T1200)

NAMEL IST/DIN/NLyLoGOWMIUD DT 4RNDZTMAX, TOTL ,ALOM, INDy ITFENMD, TWR
READ(S,NIN, END=59)

VRITEL{H4+DIN) ’

X{1)=0.,0

Hi1)=0.0

N=0

NAh=()

SHFAR MODULUS CONSTANT FDR .FACH REACH

ne 300 J=1,NL

GG=6G0(J)/ 144, .
VVS=SORTIIGO(I)Y+MTIUR{J)Y/DTI/RODII))

NX=VVS&NT

K=14+NN

N=U{J)/DX+1

DIF=L{J)Y-DX%N

IF(ARS(ﬂIF).GT.(O.95$DX))N=N—1

MN=NN+N

DL=L{J3)-N%=DX

N 162 I=K,NN

G(1)=6G06

MIUCTY=MIUD(J)

RO(TYI=ROD{J)

VS(1)=VVsS

JI=T+1

X{JJ)=X{11+DX

IFI{J+1).GT.NLIGD TN 300

Lid+1)=LlJ+L)+DL

CONTINUE

N1=4J

Nz=NT -1

WRITF(A«13)IX{T)eI=1,N1)

FARMATIBX, " X=1,{15F8,2))

HRITF (64143 (VS(T)}eI=1,4N)
FORMAT(TX P VS=t,4X, (14F8,2))
VRITE(HLI6I(GIT)el=1,N)
FORMATI3X4 tGIPST =1 ,4X,(14FR,01))

TF(IEND,EQ.2}STOP

PN 12 I=1,4N1

TAU{T »13=0.0

Vilel1)=0.0

JLIM=TMAX/DT

JM= B TM+N

NN 212 Jd=1.N

TAU(L1, })=0.,0

V{1,J)=0.0

NO 213 J=NLyJM
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213 TAULL +J1=0.0
TFCINDLEQLIIREAD(IT . 200{VI14J) ¢ J=N1, M)
20 FORMATIT7{F10,5))
IFLINDEQLTIGO TO S0
NN 214 JsNis UM
TT=(J=~N1)}%DT
214 V1, )=A%SIN(OMETT)
50 K=JM=1
nno100 I=2,N1
N 120 J=2.K
Cl=RN{I=1)=xvS(I-1)
C2=MIULI=1)}/{X{T1)-X{I-1)}
CP=TAIHI=-T 4 J=13~-{C1~-C2 ¥ V{TI-1,J-11=02%V{T4J=1)
CM=TA T =1, J+1)4+C1ARVII=1, 0+ }=C25V{I~1,)
VIT+J)={CP=CMY/{C2-2.%C1)
TRITLFOLNIIUL ) =00 =1 4055 (VT J)+VI{Tsd=11))2DT
120 TAILT +J)=CP+CL%VITJ)
K=K~1
100 CANTINUE
no 70 J=l,JLIM
70 TLJY=(J~1)%DT
IF(IWR.FOL2)G0 TO 55
N 72 J=1,J4L1IM
WRITF(ﬁv?)T(J)!(V(IVJ)QIzlle)?‘U(J)
2 FORMATIY T=',F5,2:'W=t,{12F9.3).'i=',FB.3)
WRITE(A3IMTAU(TI+JYsI=14N1)
3 FORMAT(HX ' TAU=?'{13F9.2)}
72 CANTINUF
55 PO 60 J=1,JLIM
VPL{JY=VINL1,J)
A0 TPLLDY=TAUINL, })
CALL PLOT{TyVPLyJLIMy XMIN, YMIN,DXsDY)
CALL PLOT{T+TPLeJLIMGXMINL,YMINLZDX,DY)
CALL PLNT(Tyy JLIM, XMIN,YMIN,DXsDY)
GO TN 10
99 STnpe
ENDY
st 3503t ke e sl o e e e s sl st ot Ele o o o 5l e e sl Bl o sl sl ol st sl e el Sl ek sl ot o ik ke e ol e K
SHRROUTINE PLATIXeY K,y XMIN,YMINGDX DY)
DIMENSION X{RN0),Y(A00)
CALL PSCALF{R. s 1eo XMINNXX(1) K41}
CALL PSCALE(G6. 41 s YMINGDYSY{1)4Ke1)
CALL PLTAFSEXMINCDX JYMINGNY+2..2.)
(.ﬂLL PAXIS{?.,?.vI‘{*HX ‘ TFMF-VSFC )?-IévavvnsVXMINvDleo,
CALL PAXIS(?.,?.,IGHY { ,!ll*vf‘otqﬂvvyMIN'Dleo)
CALL PLINEAX{1)sY(1}eKs140,0,11}
CatLl PLTEND
RETURN
FND
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APPENDIX 6

e 2k e e e e e Ak A e e e ol 2o e s oo e ale e o ok ke 3l A e 3k e ok ode R e e e ale e e ek ol e ok N e ke le ik

METHOND NF CHARACTFRISTICS+IMPLICIT MFTHON, VALVE STROKING CONCEPT.
RAMRERG-NSGONON STRESS~STRAIN NONLINFAR REHAVIOQUR.
VISCOFLASTIC DISSIPATINN NOT INCLUDED,

VFLOCITY KNOWN AT SURFACF=FIND REDROCK MOTINOM,

ste s e e sl s s s sl s ol sie e e ol A e e e s sle ool ale ek o s Al B e A ok sl e e st o Ak el ke sk
COMMON R({12),TY(12)1,G0012)IVC(12)+G012),41,
DIMENSION V{12,300),VV{12,3001),TA(12,300)},TT(12,3001,X(12},
IRNE1Z2).UE123300),YYY (3001 XXX{300),T{300)},VPL{300},0T{12),
ZOGKIRL300),TKIP{300)
NAMELIST/DIN/DTvFvRanvGOVTMAXvIIIQN?KV [STOP !STVNIT?I(I'R,MM
1/DV/VPL

NATA TA/3600%0.0/

REANDLB+DIN, ENN=99)

RFEAD({S,DV}

WRITE({&DINY

U{ls+1}=0,0

Vil,1}=0,0

nn 20 I=2,K

VI1:T)=VPLIT)

Y14 13Ul I~E) 405 (V{1 1)+V{1,1-1})%DT
TAT)=T{I~11+DT

P=2  kF

CC=2.%DT

CA=P¥DT*CC

CB=CA®P /2.

D'-:l."F

Ki=K

Nl=N+1

VINL,1)=0.0

KK=K~=N1

KL=K-~TFI-1

NK=KL-IST

TE1)=0,.0

X{1)=0.,0

NN 16 I=2,N1

X{I)=X{[-1)+DT=SORTLGO(I~1} /RO I-1)}
WRITF(64321IXIT)sI=]1,N1)

Nnn 100 I=2.N1

ITF{T.EQ.ISTOPYGH TO 99

K=K~1

L=1-1

DX=X{T)=X{LY)

C=RO(L)I*SORTLGO(LY/ROLLY)
TY(L)=04616FROILIEI2, 2 (XITI+X(L)) /2,

NTELY=N,L0

GLLI=GO(L)

IvCiL)=1

JET=N1+2-T

VIiL.JdST=1)=0,0

VELs JSTI)=0.0

CP=TA(L4JST~1}-CHV(L,JS5T-1)
CM=TA(L,JST+1)+CEVIL,JST+1)

TA{T,IST)=(CM+CP) /2,

VET$JSTI=(TALL.JSTI-CP)Y/C
TTT=0,5%{TA(T,JST)+TA(L,JST))

CALL GGITTT,OTIL))

ATIL)Y=TTT

JSTART=JST+1

H{T+JST)}=0.0
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YYY{JST)=0.0
XXX{JSTI=0.0

JIND=ICHUR
TF{T.GF.4YJINND=TCHR=-40
M=gST
WRITF(A+38IMeTIMY 3 VT MY TACT MY ULT oMY TTToGO(L) XXXIMIZYYY (M}
DN 200 HJI=JSTART,K

J:N\J

JdS=1

GN0=G(L)

INDEX=1

Li=Jd=-1
CI=SORT(G{L)/ROLL))
C=CT#=RO(L)
CP=TA({L,LJ)=C=VIL; L)
CM=TA(L o 341V +CHVIL, 0+1)
TT(LLJ)={CM+CPY /2,
VWL I=(TT{L. )-CP)/C
1F{JJS.EN,2)6G0 TO S9
PX1=DT*CI

S=DX=-DX1

IF{S.LT.0,1)GN TN 59
Al=(VITd)=VILsLJY)/DX
A2=(TALT,L))=-TA(L,LJ)YY/DX
AlI=A1%S

AZ2=A2%S

SK=5%§

ITFIS.ET.OX/3,.060 TO 121
N=S+T+NIT

CCALL IMPLIALS A2 Ny Dy FeSeSKHCALR,CCVaTALVVYTTeIslyJsLJaGyRD)

121

122

59

49

50

GN TN 122

VVILeLJ)=VIT,LJ)-AL]

TTIL L) =TALT L J1-A22
Cl1=VVILeJY=VVIL LD -VII, L)
C2=N%{TALTZ LJ)=TTUL LI} I-FETT{L )}
CI1=Na VT, LIV =VVIL LS =FEVVIL )
C22=TT{L  J)=TT{LsLJVI=TALT, L)
A=CCRSR(FX(22-02)

VT, )= A=CAZGLL)*CIL+ROLL IRCIHSKY/{GIL)RCR-ROTL ) %SK )
TALT I Y=COGIL Y IFEV{T,J)}+C1Y)/S5-C22

GO TN 69

TA(T ) =TT{L,J)

VITsJY=YVIL.d)

TTT=0.8%(TALT, )I+TA(L.J))

P T e )=l e =140 85 (VT I +V (T4 J=1)1%NT
YYY (I = (TALT o )+ TALL+ )} ZTY(L)I®*0D,5

XXXOJ = (U e JI=ULe ) ) /DXEGO(LYZTY (L)
TECINDEXLEN. 2160 TN 55

CALL GGITTTNTELY)

TFIJ.LTLIJIND+3IGN TO 50
TRFOJJS.FOL 2,00, ILLF. 2160 TO 50

TRF{GIL) LLT.GNMGH TN &0

J4S5=2

JIND=

GILI=GO(L)

AN TR 51

NTLLY=TTT

GKIPL.IY =600

TKIP(J)=TTT

TRUTLLEL3 R ONILLT.MMNR.TAIT, 38 TALT,J=2).LT.0.0)GD TO 56
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TR=ARSITALI,L 1))
TFITRWLTLARSITA{T )Y LAND,TR . LTLARS(TALT yJ=-2))}INDEX=?
FFTNDEX.NEL2160 TN 56
TAT WL D= (TALT . DI+TA(T+0-2))/2,
VETL L = (VI JY+VI(Tsd-2)1/2,
J=0Jd
GN 7O 49
55 TKIP{MY=TTT
56 CANTINUE
200 CONTIMUF
NO 201 J=JSTART WK
201 WRITF(AWIRYIIGTIIYaVIT vy o TALT )4l T o) TKIPTS)LGKIPLD),
IXXXLD e YYY ()
38 FARMATIIS,FH,2,F10,3,F10,1.F10,4,2F10,1,2F10,6)
TE(L.NELITITIGO TN B2
nn 31 Il=1,0NK
XAX(OTIT ) =XXX{II+1IST)
31 YYY(IT)=YYY{IT+IST)
CALL PLOT{XXXsYYYeNKyXMIN,YMIN:DX+DY)
82 CONTINUFR
100 CNNTINUE
CALL PLNT{T s VPL+K1+XMIN,YMIN,DX,DY)
nn 21 I=1,KK
21 VPLITIY=VINI, T} .
CALL PLOTUT,VPL.KKyXMIN, YMINyDX+DY)
32 FORMATI(16FB.4))
G TN 10
99 STNP
FND
a1 e v s ok %6 a3 sl ol 6 ik ofe 3 e 46 Ak A o Al e o e ke ok 2 3 e s e oo Al AR A ARl e kol ol e e ok ke
SURRAUTINE GGUTT.OTT)
COMMNON RIL1234TY{12)YG0032),TVCIL2).6112),1
DIMENSTION TCUI2)5UP{12)1.YM{15,12}
GVINY.NRYI=L,. /(1 ,+(NRIXABSI{NY)I*%{DR=1.))
GRO(BDY+NY0. DR I=14 /{1 +(DRIXARSTADY=DYD) /2, )% (DR=-1.))
T=TT/TY(1)
NT=NTT/TY{I)
IF(IVCIT),.FO.0) GO TO 10
IF(ABS(T)aLT. ABS(OTYI} GO TN 5
g GITYI=GOLEYRGVIT,RIIY)
ICLI)Y=0
RETURN
5 IVC(TI)=0
UPL1y=1, ‘
IFETLLTOTY UP{T)==1,
IC(I)=2
YM({1,1¥==0T
YM{2, 1)Y=0T
GITY=G0{I)EGROIT20T-R{1)}
RETURN
10 IF(ARSIT)I.GF.ARSIYMIlLI1)IGA TN 15
JRO(T-NTIH=UPLI).GTL..0) GO TN 20
Uptr)=1.
TR{T.LT.OTY UP(I)=-1.
1ICEI)y=ICL{IV+)
TF (UP{TYR{T=-YMIICET)-1+11}3,.GT,..0) GO TN 22
YMOICIT).1=0T
11 GUIYI=G0CEYRGRO(ITYMOICTIT) 1) RUT)}
‘ RETIRN
15 Jve{T)=1
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LGN TN §

TRUP TN T=YMIIC(TI)=1, 1)), L T,.0) 6O TN 11

IC{Iy=1C(1)=2

FTRATICUIYLFDLY)Y 160 )=2

TELICLTY . EQ.2Y GO T 11

o TN 20

ENR

e e oo e e ot s s sl e oo st oo el o S s e e e o e i e e e el e e

SURRNUTINE IMP(A1'A2¢N.nquSvSKvCAvCRgCC,V:TA;VV;TTqIquJgLJ,Gan)‘
DITMEMSTION VI12+300)TFTA(L124300),¥V{12,3003+TT(124300)},G112},RN{12)
$=S/N

SK=8%S§

MM=N~-1

PR 20 TA=1.NN

VE=V{T,LJ)~AT%N®S

TE=TAIT.LB)~AP#MkS

VVLL L) =VIT, Lay=ALxS*{N=-1)

TTIL L) =TALT L)) =A2%S%E({N=1)

Cl=VVI e J)=VE-VV{L LS}

CP=M= i TTILLIY=TEY~F*TT{L,J)

ClYI=DH{VYVIL, L JY=VEY=-FXYV (L ,J)

C22=TTlLyJY=TE~TTIL,LJ)

A=CChSH{FxCP2-~C2)

VL, D ={A-CARGUIIRCLI+RDILISCIESKY /UG ILIRCR~RO{ L)Y *SK)

TTUL« D) =CCEGE L) {FRYV{L,J}4+011)/S~C22
|\|=N—1

RETHRNM

FND

3 e A e ol e e s el aleafe ol o ol sl e sl sl sle e sl sl e e ool e ol sl e e ey
SHRRNDUTIME PLNATIX Y Ko XMIM,YMIN,DX,0Y)
NIMENMSTON X{800).Y(B00D)

CALL PSCALFI10,. 41« XMIN,DX X{1) K, 1)
CALL PSCALF{B.+lesYMING,DYsY{11,Ks1)
CALL PLTOFSIXMING,DXYMING,DY,2,.2.) )
CALL PAXIS{Ze92erla4HX { TIME, SFC )9‘14v100!0-vXM]N7DX91.1
COLL PAXISI(Z2,.424 ¢ 4HY | Yslb4y8,490. YMIN,OY1a)
CALL PLINE(XT{1)sY{1)1sKs190s041)

CALL PLTEND

RETURN

END

R e e e e ek
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'APPENDIX 7

e e s e e o o 3 e ol ol b i e e 0o o o st oo e o o ot e o K ool 2 o 7% 3 e i ol e e e ok e o ok o e

TRIANGULAR FARTH NDAM. ANALYTICAL SOLUTINN. BESSFL FUNCTIONS
WITH CNMPLEX ARGUMENTS. VISCMHIS DAMPING INCLUDED,
NAM CREST YH({FT) RFLOW TOP. (TRUNCATEN TOP ONMLY)
FIND DISPULACFMENTS AND VFLNCITIFS AT CRFST.

READ N1 EQUIPTSTANT VALUFS OF RASF DISPLACFMENMTS U FROM
DEVICFE 7. FIND FEOURIFR COFF.BY LFAST SOUARFS FITTING,
IF INDEX=2,READ FMIRIFR CNEF, FROM DEVICE &,
sie 2t e o oie s 3o s e ole e i sje e e sie sle st e 3l R e e sl 3l e e o e B s e e sl e sl ol e sl o e el e e e e
TMPLICIT COMPLFX#16(Z)yRFALRRIA=H,0~Y)
DIMENSTION UI5B12).21H300),A1512),0M{512),Z2A(R12),VI512),T(512)
1.8(200)
NAMEL IST/NIN/YH HeGoROGPT o N Mo NT L NMM , AMI TNDEX
10 READISNIN,END=99)
MI=2%N+1
MM=M+]
ZP=NCMPLX{0.OD0,1.0N0)
TR(TNDEX EQ.2IRFEAN{B 14 {2ZACT }4OMIT ), I=1,MM)
14 FARMAT(4L2F10.5,F8.3))
IF{INDEX FQ.2)GO TN 82
REANI 7,113 {00I),0=1,N1)
11 FORMAT{T(F10.5})
CALL FARIT(U N,M,A,B,IER)
OM{1}=0.0D0
2A01)Y=NCMPLX(A(1),0,000)
CNN=A, 283186/ (N1%DT)
DN 5N 1=2,MM
AMET Y=CONE{ [=1)
50 ZA(IY=NCMPLX(ALT),,~RLI))
]2 NN 80 J=1,N1
B0 TlIY=(J=-1)%0T
X=G/RN
XX=AMU/RD
PR 40 [=2,MM
ZC=DCMPLX{ Xy XX&NM{ 1))
JVEL=CNSORT{ZC)
IH=DOM{ T 1RH/ZVEL
ZHY =M T )RYH/ZVEL
RH=CNARS (ZH)
RYH=CDABS{ZHY)
V1=NRFAL{ZVEL)
VZ2=NIMAGIZVFL)
PH=NARSIDATANZ (VY2 ,V1))
CALL RESIRH,PHyZHIO ZHI1 e ZHYD s 7HY 1« T4 NT{NNM)
CALL RESIRYHPH, 7HYJD e 7HYJ1 ¢ ZHYY Dy 7HYY 1, T o NT o NNM)
7S=tZHYJL+ZPEZHYY L) /(ZHY JL=7PRTHYYL)
781=7ZHYJO+IPHTHYYN =755 [ ZHYJO =7 P& ZHYY D)
187=7HJI0+ZPRTHYO-Z S {IHJO-ZP% 7ZHYO)
7588=251/152
WRITE(6,20)7VFL,PH
WRITF{Gs75)RH, ZHIND s ZHIL ¢ ZHYO 4 ZHY 1
WRITE(6,75)RYH, ZHY IO, ZHY J1,ZHYYO, 7HYY]
75 FARMATIF12.5,8F12.5)
WRITE(6977125+2814,252+78S5,0M( 1)
77 FORMAT(RF14.5,F10.3)
20 FARMAT(3F10.4)
40 ZALT)Y=7A(011%2SS
NO 200 I=14N1
IAM=7A(1)
NN 205 J=24MM

170
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Z1=DCMPLX{D,.0DO,OM{JYET(T) )
206 FJAA=ZAA+7 AL U)HCNEXPIZ1)
200 7H(1Y=7AA
MRITE(6H415)
15 FORMATI? NDISPILACFMFNTS AT CRFESTY)
13 FNRMAT(T{F9.5)) :
DO A5 J=1,M)
65 A{J)=NREFALIZU(IY)
WRTITE(4,13)0A00) 4 d=14N1)
V{1l)=0,0
NN 68 1=2,4Nt1
68 V(I)=(A{I)-A(T=-1))/DT
WRITELA,26)
26 FORMAT(® VELNCITIES AT CREST'}
WRITE(4413)(VIJ)sd=1,N1)
99 CaLL EXIT
EMD
sz 24 e 2l vl e ale ok »le o ol ol sl ol ol sfe o ol ade ol ol e sle ol sde e sfe e sl e vl sl s e e Ao Bk oAt e s sz eoleae e e sk
SUBROUTINE BESIRDePHICIRJI0.IRILZZRYD ¢ ZRY Ly My NI 4 NNM)
IMPLICIT COMPLEXX®16(Z).RFALRB(A-H,O=Y)
ONLY FNR BESSEL FUNCTIONS WITH COAMPLFX ARGUMENTS (JF THF FIRST
AND SECOND KIND OF DRDFR 0 AND 1«VALUES FOR THE 4TH QUADRANT.
G=N,57721566
P=2./3,14159
R=RN/2.
H30=0,0
Vvin=90,0
Hal=0.0
Vil1=0,0
F\)'—_lc
NN=26
ITFI{M.GT.NT )NN=NNM
NM=MNN—-1
PN 50 T=1,NN
K=1~1
FUa=K=xFJ
TFIKLEQ.DIFJ=1,
CON= (=1 )3kRKxR¥ = 2%K) /FJ
CNN=CON/FY)
C=CON%R /1
ANG=Z2%K#PH1
ANGY =ANG+PHIT
HIO=UID+COMENCAS { ANG)
VJO=VJO+CONENDSTIN{ANG)
U121 +CRDCNSEANGYL)
VUl=VI1+CEDSINIANGY)
B0 CONTINIE
FRAO=NCMPLX U0, =VJ0O)
FRIV=NCMPLX(HIL .=V I1)
FY=1.
FE=0,0
SN=0.0
Tm=0.,0n
NN 150 K=1,NM
AK=K
FF=FF+1,/AK
FY =Kk £y
CNN={~] )% (K+ 1 )RRXX[ 28K J*FE/FY
CAN=CNN/FY
AN=2 (2 K%PH]
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SN=SA+CONSNCOS{AN)
TO=TA+LONENSIN{ AN}
1580 COANTINUER
CC=G+DLNG(R)
HYO =P (UI0%CC~-PHEXV JO+SN)
VY O=P(VIORCCHPHI*LI0+TO)
C1=UJ1NY0=V JIxYYO-PxNCNSEPHT ) /RO
C2=UJ1=VYo+VIL1UYO+PRNSIN{PHI ) /RO
VY T1=(C2%ngo~Clxvan) Z{1JoxUJ0+VI0%RVI0)
Uy 1={C2-UJgoxVYY Y /VJ0
ZRYO=NCMPLX(1IYD,=VYD)
ZRY1=0DCMPLX(1IY1,4-VY1)
RETIRN
END ‘
st 3l e e sl ol e st sie wie e il 3l o ok i B aie 3% ol 2k ol ok ol o ok sl e 2 e e ok S o ke o o ok ook e kool e e v ook
SURRAUTINE FORIT{ENT,NsM, A,B, IFR) '
IMPLICIT REALXA(A-H;0=Y)
DIMENSION AC(L)ILRILI$FNT{L)
1ER=0
20 1F{M) 30:40540
30 TER=2
RETURN
40 TF{M=N}60,60,50
50 IER=1
RETURN
60 AN=N
CNEF=2Z.0D0/ (2., 0D0%AN+1,.0D0)
CNNST=3,141593%CNEF
S1=NSIN{CONST)
C1=0COS{CONST)
C=1.0N0
S=0.0D0
J=1
FNTZ2=FNT(1}
70 U2=0,0Nn0
111=0,0D0
f=2%N+1
TS5 UO=FNT({I)+2.0D0%CxUL-142
yz2=ti
Ut =00
I=1-1
IF(I-1) RDOyB04,75
RO AL JY=CNFFx{FNTZ+Cx01-12}
B{JV=COFF*S%t1]
IF(J=-{(M+1)) 90,100,100
90 P=C1%L~S1%S
S=C1leS+51*%C
C=P
J=J+1
6N TN 70
100 A{1)=A11)1%0.5D0
RETURN
END
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APPENDIX 8

s e e e e e e sl e o e e ale ofe s e X de e e e e sfe e aje sl o e e e sfe e e afe s s sie e sl e s sle e slesfe e o e ok A

ANE DIMENSINNAL PROPAGATION NF SHFAR WAVES THRNOUGH EARTH DAMS NF
TRIANGUL AR CROSS-SECTIAN, METHOND NF CHARACTFRISTICS.,

TF IMNT=1 FARTHOUAKF VFLOCITIES AT RASF READ FROM DEVICE 7,

FE IMOT=2 STEADY OSCHLL.MNDTEAN.

IF ITOP=1 CREST AT DISTANCF DY RFLOW TOP OF TRIANG,

IF 1TAP=2 THE CREST IS AT Y=0.

SAOIL VISCOFLASTIC

by o2 St e ol whe ole o e afe 3 e ale wle 3! Sty St b sl sbe ARl ol AE o o ul e e
o stk s e ot oo o 2 e 2R ok sl ot ok ook 2ok ook ok ek ok Rk ko

2 P e B dla ko me o s o AW kAo

DIMENSION VI20)1,VP{20),TA{20) s TAHUP{20),VVIAND)Y,ACST{AQ0) , ACMIG00),

1TEAODY e AA(20) yRRIZ2D)YyACTIADO Y s VPMIBOD ), VPS{AON) VPT{600),SH{600)

NAMFLIST/DIN/G UM RN DT, TMAX A +NIMH N, IMOT, IM, ITOP,GR
10 RFAD(S,DIN,ENND=GT}

WRITF{H.,NIN}

TFIIMOT FEQLLIIRFANDITSI1IIVVII) o J=1sNJ)
11 FORMAT(T(FI0.5))

VS=SORTHIGHUM/DT) /RO

DY=YSxNT

NR=H/DY

NI=NR+1

oo

D000 0002

o

¢« &4 & o

O OCHOGL o

SH{1})=0.
O=tM/DY
CON=Q /2.
N=RN%VS
CA=CON=-D
IF{ITOPL,EQ,2)GN TH 35
K=y
ACA=Q.5EALNG(2.)+1.
COFR=0,5%ALNGIH/{H=-DY})
G0 TO 36
38 K=1
ACA=2,
COF=) ., /{2,.%N1~-3.)
36 TLI1)=0.0
KK=K+1
NN 42 IT=KKsNR
SAh=]-1
S5R=f-2
TRITTOPLFQ,2IGN TN 25
AATTYI=0.5ALDGISA/ZSB)
BRIT)=0,5%¥ALNDG{I/SA)
N T 26
25 AATTY=)1,./12.%]1-3,)
RBUT)=1a/(2.%]=14)
26 DuM=1,
42 CNNTINDE
nn 12 I=1,N1
V{l)=0.0
12 TAULI)Y=0.,0
TAUP{?2)Y=0,0
WRITE(A,14)DY,NR,VS ‘
14 FORMAT(S5X, 'NY=t ,F7,3,! NR=V, 124 VS=t,F10.2}
20 WRITF{G4IS)ITITII) o (VIT)eI=K4NY)

173
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15 FORMAT(5X,,F7.3,{13F8.31))
WRITFE(OH4I6IITALI{T) e T=KoNT)
16 FORMAT(12X,{13F8.21))
IT=11+1
T(I1y=NTx(1E~1)
TF(TLITY.GELTMAXIGD TO 1R
INTFRIDR POINTS
Dﬂ 72 I=KK¢NR
CPTAHI-11#{1.~-AACT ) ) =CONSV T+ 1) +CAXV( -1}
CM=TAUCT+1)% (1 #RRET) Y +CONRV (T=1)=CARV ([ +1)
TAUPLEY=(CMACP ) /{2 +8A(T1)-RRLT))
VP(T = TAUP{ TS (1. +AA(T)=~CP)/D
TF{ITOPLEQ 2YACTITI I=ACTIIT -1 )+{VPI2I+VI(Z))I%xDNT /2.
22 TFUTLFOLIMIACMITEY=(VP{IMI+V{IMI)ENT/2 . +ACM(TT~1)
NP B.C.
VPIK)=VIKKI+{TAUIKKIEZACA-OR (VKK }-V(K))}/D
ACSTIII=(VP{K)IFV{K}IRDT/2,+ACS(TI~1)
BROTTAOM R.C.
TRFLIMNTLEQLZIVPIML)=A=SIN(OMET(TT))
IFCIMATL.EOLIIVPENT ) =VVITT)
AP=DNa(VPINI)=V(NR)}
TAUP{NLIY=(TAU(NR ) (1, ~COEI+AP-Ox (V{NL)=-V(NR)))/{1.+COE}
VPM{TT)=VPIIM]
VPS{T1)=VP{K)
IFIITOPLEQ.2IVPTIIT)=VP{2)
SHITI)Y=TAUPINI1}
N0 23 1=KeN1
VII)I=vPL(T})
23 TAULTI)=TAUPLI}
GO TD 20
18 TI=11-1
WRITELR,11EACMIJ)yd=1s11}
WRITE{B,11)(ACSTJ)yI=1,11)
TF{ITOPLEQL2IWREITEIR,ITI(ACT(J)s»d=1,11}
CALL PLOTIT4ACMyIT 40409309304 04554091241}
CALL PLOT(T4ACS 11 40.09s-3c03.90.598+124)
CALL PLnT(TvVPM!11909()’_3"301005!40'120)
CALL PLOTIT VPSS, TIT140.04=3,43.40.544.412.1
CALL anT(T!SHCIIVO.OV-30000v3~’1000114916~)
TFOITAPLFRLLIGN TO 16
CALL PLnT(TvACT7II}0c01“3c73090-514!7170,
CALL anT(TQVPTv}I90.07"3.'3-v0-5!4o712v)
60 Tn 10
99 STOP
END
a2 she s sl e syl e she st sfe ol sl ste st she sde el ik o st ool s Aok ok R AR R Rl R R R R R
SURRNUTINE PLOTIX, Y Ky XMINYMINYDX DYy XLy YL)
DIMENSION XT800).Y{800)
CALL PLTDFS{XMINGDXyYMINGDY 424324}
CALL PAXIS(2492.+14HX { TIME,SEC ) ,=14 XL 0, XMIN,DXy1.}
CALL PAXIS{2.,249146HY { Joeldy YLy 90us YMINGDY 1)
CALL PLINE(XT1},Y(13},Ks1,0,0,1)
CALL PLTEND
RETHRN
END

e
e
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APPENDIX 9

3 e 3 e e gk fe o e o e e ot e sl o she e ok e o e e ol al ol S e s e R A e X e ool o s e el e e vk ok e ok X

PRESSURFE WAVE PROPAGATION THRMOAGH SATURATED FLASTIC SOIL.
HINT*S THENRY. ONF DIMFNSINONAL. NDISSTIPATION PRESENT,
(INTFARM PROPFRTIFS. N SUBLAYFRS NF THICKNFSS DX.
STFADY NSCILLATORY FXCITATINN OF THF BFAROCK.

et o 3l e sk sl Pl s ol ofe v R sie st 7 Rk s e o ool Ak ok ale o e ok s ok o stk vk o ik ol ol e ool ol ok AR
IMPLICTIT COMPLEXIZYWRFEALIM)
NAMFLTIST/DIN/CL4C24034F 13 F24F3 4 VO RN MUGH OMsEZPERGPNR 4P+ ORHyDT,
INX s TMAX LN

QFAD{5,NDIM, END=99)

WRITHE{A+DIN)

Az} FR2+(2%F1—2 ., %(3%F3

AA=AxA

B {C1#0C2-(3%C3)%2.

ABR=SORT{AA~2 %R (F1*F2=-F3%F3))

A7={A+BRY /R

RZ={A~-RR)/B

WN] =V /SORTEAZ)

VN2 =VE /SORTIRZ Y

WRITFR{ALI2IAZ BT VN] VN2

ENRMAT (Y 2=V, 2F10.4," UNDAMPED VEL='42F10.2)
R=MiEEPNRXPOR / ( PER®DM*RO )

RR=R/{R/2.)

7=CMPLX{0.N,RR}

7P=CMPLX(0.0,R)

WRITFE (64,1307

FORMAT (Y  7COMP =1,2F1043)

7C=(A7+R2-2V/2.

ICC=A7*RZ=1

PTE=72C27C=-7CC

I1=7C+CSORTIZTR)

Z1T=2C-CSORT(ZTE)

VI=VC/CSORT(ZT)

IMIT=VC/CSORTIZTT)

WRITRI6,1437T47211+42VIaZVIL

FORMATIAGFIN 4y ? NAMPED PROPVEL.=' 4 4F10.2)
7PI=(Fl=-C1%71=7P)Y/{Z21%C3=-F3~-7P)
JPII=(FI-CY*711-7P)Y/(Z211%C3-F3~-7P)
TEI=CMPILX(N,0,OMEH)/ZV]

ZIE=CNONJIGIZE]D)

JETT=CMPLX(B.0,NMxH) /2VI]

ZITF=CNNIG(ZFTTY

JFI=CEXP(ZFI)Y+CFXP{ZIF}

ZELT=CEXPIZETIY+CEXPLZIIE)
PCN=7FTI&{1.=2PIY/UZFI®={ZPI]~-14))
TAT=0/Z17FI+7CPZFIL)

JATI =2 A1X7C0

J7CE=72PIxZAl

JTETT=7PIIRIATI

70=CMPLXIO.0,0OM)

JENNE=7C/2V1

JCNNT I=2677V1Y

NI =P AT+ Z01

ICNTT=PxZ2ATT4+0x{CII

INT=0xZAT+R*ZC1

INTT=OZATT+R%Z2CT]

WRITE(ALIR)ZATILZAITL2CL,2C11

FOARMAT(Y  COMP . NISPL.AMPL,.SOL. 'YAF10.6/18Xy'LIN. P4 4F10L0)
N1=N+1 ‘ i
X=0,0
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Nt 20 I=1,N1

WRITF(A,19)X

FARMAT(®  DISTANGCE FROM SURFACF IS 1,F7.2,
JEI=CMPEX{Q.0,MMxXY/ZVI]
ZJIF=CONJGIZEL)
JETI=CMPEX{N,0,IM&X)/ZVI]
ZITF=CONJIGIZETIT)

71=CEXPLZETL)

12=CEXP{71IE)

23=CFXP(ZFITY

24=CEXP{ZIIE)

2PSI=21-22

IPS1I=23-14

ITHI=71+72

ZTHII=23+2¢

T':0.0

TF{T.GT.TMAXIGD TO 8
IE=CMPLX{0.0,0M%T)
ZFE=CEXPLIE)
ZUS=7FE={ZAT=ZTHI+ZATII®ZTHIT)
ZUF=ZFFx (ZCT%ZTHI+ZCTI*ZTHIT)
ZVS=7218%7C

IVF=7UF=2(

75=7CONI*ZERE*ZPSIT
76=7CNNTIXZEEXZPSII
IS1G=75%ICNn1+26%20011
2S5=75%701+26%7011

IP==7S5/PNR
WRITF(R«22YToZUS,7UFy 781G+ ZP42VS,y2VF
FIRMAT(FH.3,4F10.5,4F10.2,4F10.,.4)
T=T+DT

GO TN 1%

X=X+DX

CONTINUE

GNn TO 10

STOP

END

1

FEFT1)
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APPENDIX 10

3t se e e e sl e sde e e e ode ade e s e ale sje ol e ot sl ol ale e sle sl e e ool afe ale sie o ok e e e ek d e ol e e dkok

TRANSIENT SOLUTION OF RINT!S FOUATIONS BY METHOD OF CHARACTER,
SPECIFIFD TIMF INTERVALS, LINFAR INTERPOLATION,

ks ONE DIMENSTIOMAL PROPAGATION 0OF PRESSIHRE

WAVES THRMMIGH SATURATED FLASTIEC PORNUS MENT Awdx
INO=] STEADY DSCTLL.MOTINN, IND=2 QUAKFE MOTION

FTF INP=2 RFAD VFINCITIFS NF RFPRNACK FROM DFEVICE 4,
W VEL OF SDLIS PHASF.V VFL. NMF LIQIIIND PHASFE.
ST=PRFSSURFE NN SOIL GCFlFTﬂN-QIG_pRFQ AN FLUTID PART
S e ol s ek e e e sl e ol A e e 2 s Sl ol sl e sl s e s ole e e oo sl e e e sl e afe e e s e el e
REAL MUY

DIMENSTON QIP(?R).SP(?%),VP(2S),wp(?ﬁ).%f?%),VFL(?OOO),Rl(ZOOO)
LeRZ2{2000)R3L2000),R4{(2000).TT(2000)

COMMNON ST{25)3VE25) WI28)eSTITI2B)2MTI28),WTI25),TV,N,DX,0XL
NAMEEL TST/ZDIN/MULZPORWPER DT ¢ TMAX RO yRNZ 3 GaCLyR 4O, Hy AyOM
TeINDYNVL,TPRINT, I

READ{ 5+ NDIN,ENN=99)

WRITE{6«NIN)

FF{INDLEQ 2 IYREAD(4L4 16V {(VEL{T Y, I=1,4NV])
FORMAT(7(F10.5))

V1=SORTIR/ROZ)

VZ=SORTU(2.%G+CL)Y/ROL)

NX=DT*V1

Ji=0

NXL=NTxV2

AN=H /DX

K=H/NX

TF{ANSGT . {K+0, 51360 TN 11

N=K

GO TN 12

N=K+1

M1=N+1

B=Ml PNR%POR /P FR

Bl =R&=V1xNT/2,

RZ=ReV2xNT /2.

A1=V1=RN2+R1

AZ2=V2%RO1+B2

TVv=Vy2/y1

Fl=V1&RN2

F2=V2%xRN1

DI=0x=DT/INX%2,)

NZ2=0xDT/(DX1%2,)

CON=RI%RZ-AL%AZ

T=0.,0

INITIAL CONDITEIONS{S.SI ZERM ONLY IF VIRRATINN STFADY NOSCIL.)
DO 13 I=1,N1

SI{I)=0,0

ST )=0,0

V{11=0,0

WELY=0,0

AT SIIRGACFE

SP{1)=0,0

STP{1)=0.0

WRITF(6H, 14)}NX,V1,V2

FARMAT(3F10,2)

TFEIPRINT EO. 216G TO 29

WRITE{6,21)T

FORMAT({10Xs *TIMF=',F10.5)
WRITFE(AL22)Y(STITI I oSUEY WIT)eW¥{T)el=1,N1)

177



29

25

4n

99

178

T=T+DT

TFITGT, THAXYGD TD 40

Jl=Jdl+]

INTFRIOR PDINTS

NN 25 1=2,N

FN=D1{W{][+1)}=-WlI=-1))
CA=S{I-1)1=F sV l=-1)=RIx(W{T~-1)=-V{I~1))+EN
Caa=S{I+1)+E 1 V{T+1)+B L {W{I+1)=-VIT+1))I+EN
SPLT)=(C3+C4) /7.

CALL INTERII)

FNM=D25{VTIT+1)=VT{I~1))
Cl1=SIT(I=1}=F2eWT{I=1 ) +R2%{WT[I~-1)-VT({I=1))+FNN
C2=SITII+1 ) +F2=WT(I+1)-R2ZX(WT(I+1r~VT{I+1))+ENN
SIP(L)I={C1+C2)Y /2.
VPLI)=(RIx{CI~C2V+A2%(C3-C4) )}/ (2.%CONY
WPLTI=(AL1={C1=C2I+R2%((3=C4) ) /{2, %CON)

I=N]

BREDRNCK BNUNDARY
IFCINDLFOLLIVPINT ) =AXSINI(NMET )R] ,~FEXP{~B.*T}))
TE{INDLEQ.2YVPI{NL)=VEL{J1)

WPINT)=VP({N])
SPINYLY=(Al-RII*WPINL)+SIN}I~-ROZ%VI*¥YI(N)-BLIx(WIN}=V{N)}+2 ,XD1%
TIWINT Y~W{N))

CALL INTERI(T) ) .
SIPINLY=tA2=R2)IEVPINLI+STITINI-ROLIZ=VZEWT(N)+RZH(WTI(N)-VT{N) )+
12,3202 {V{N1)}=-VT(N})

SURFACE ROUNDARY

I=1
CoOHaS{2Y+RNZEVLIHVIZ2Y+RIXIWLZ2)~VI2) )42 .%D]1{W{Z2)~-Wi1))
CaLL INTER(I)
CB=STTI2)+RNIHFV2ZHEWTI2)-RB25(WT{2)-VT(2)1+2.6D22(VT(2)-V(1))
VP{1)=—{RIC5+A2%CA)/CON '
WP{1)=(CH+R2*VP(1)) /A2

PN 30 f=1.N1

VETY=VP{T}

W{T)=WP(T}

S{1)=5PI{1)

SI{I¥y=SIP(])

R1(J1}¥=ST{IT)

R2(J1)=S(I1}/(-POR})

R3{(J41)=VI(11)

Ra(JL)=WIIT)Y

TTt31)=T

GO TN 20

Cal L anT(TT:Rlel00.00"'5000.13092500005av4-‘

CALL PLOTITTSsR2:J1¢0,04~5000,43.942500.35444.)

CALL anT(TToR?)lecﬂ-ny‘2.03-9005r5-v8-)

CALL PLOT{TT+R44J1:0.03=2443¢20.5+¢5.4+8,)

GOTH 10
CaLL EXIT
STne
END

ol st ot o ot o o o e ko ok i e e e o 3k ok st ade ot el ol s ot e ol e ot et sl ool ofe e e e e el ok ek
SURROAUTINE INTFR({1)

COMMAN STI{25)YsVI25) o W{25)S5TT(25)+VT{25)WT{25),TV,N,NX,NXL
IFIT.FR.IIGD TO 1D

SITIT=-1)=ST(I}-TV={SI(T)~ST{1~1})
VTLI=-1)=V (I =Ty {V{I)=v{I~1})

WT(T=1)aW{ ) =TV (W({I}-WtI~1)}

IF{IL,EQ.IN+1)IGO TR 20



179

10 SETOI+1)=ST(1)-Tve(ST(I}~S51(1+1}))

20

VTI(I+1)=VIIY~Tys (VT )=VII+1))
WI(T+1)=W{T ) =TVsiw{I)=W{I+1))

RETURN

END

e ¥ sz s 2t 2 e e e e sfe sfe sle ol s se sfe 3 e e sle sl s sle ol e e e sle sl sl oo sl ol sl o A sl ol s e e e sl e s e ko
SHABRNAUTINE PLOTAX Y oK XMIMN,YMINLDX ,DY XL YL Y

DIMENSTONM X{(3000)sY({3000)

CALL PLTOFS{XMINGDX « YMINGDNY+24424)

CALL PAXIS{2442.+14HX { TIMFySFC Je—14,XL 3043 XMIN,DX,1,.)
CALL PAXIS(2402.¢el4HY | Joelb oYL + 904 YMINyDY 1.}
CALL PLINE(X({1)YaY{1)4KelsD,0,1)

CALL PLTEND

RETHRN

END



DOOOOOOOOOO0O0

10

20

APPENDIX 11

st e e e ol ofe e e el e e ok g el s e e o o e o e s et e ol ot e sl o o e o ot o e ol o e e e

Twa DIMENSTONAL PROPAGATION AF COMPRESSINN AND SHEAR WAVES
THROUGH HOMOGENENNIS SOIL. STFPWISE LATFRAL ANHNDARIES.
APLICARLE TO FARTH DAMS AND TO VALLEYS

ONFE LAYFR, CNAMSTANT MODHLT, PAR=PNISSAN RATIN

AT EACH NONDF 16 FOUATINNS AND 16 HINKNOWNS,

ANY RATIN NF VPR/VSH {INTFRPNOLATINNSG)Y,

ISUP=1 (R 2 RENDUCES PRINTAUT(? PRINTS ARSOL.MAX,HORIZ,

ACCFLFRATINONS AT SURFACE NMLY)Y.

IF TH=1 NMLY HORIZONTAL MATION INPIT.

ITF IDYNAM=T1,0WNLY NYMAMIC STRESSES COMPUTFEN, STATIC STRFSSFS

I1FE KMOWN rnN AF SUPFRIMPOSED,

o e e s ok e e 3o e e 3 ale wje sl s)e sie sl ol 2ie aie ae sl sl ot e e ole el s oy ode e sfe e e ale ale sl sle e sl ale e e le sl ale o

DIMENST DN PU(TOO),PD(?ﬂO)vPL(TOO)-PR(700)'PHPr700),PDP(TOD),
1PLP(TONYPREITO0) W TUITOOY . TNITO0) TRITOD),TL{TO0), TUP(TOOD)
2TDPITO0YyTRPITONYy TLP{T00)MULTON Y UDTTO0)VLLITON )y YRITOO)

A VHPLTNOY VNP ITNNY 4 VLP{TO0) WVRPITON) JVVHI{TOO ) s VUDL{TOO)Y SVVLITOO ),
SUVRITOO) 4 VVUP(TONY L, VVDPITOO) L VWLP{TON 4 VYRPITOO W YHO{ 7DD ) 4 YVELT00)
S THITOO) ,VHITOO)Y yWVITO0 ), TYVITO0) 4 INDEX (304 VFR{TOO) yHOR{TOOY
GIRNNINDISO), ISHRIBD)LINREIN)pINELIN) W TERIS50), INTH(30),INTV(30},
TINSR(IO),INSLIL0),IPRINT(30),AVIIGO) AH(100),AST(100)

INTEGFR PERINDI150) _

DATA VWV VH G VHIT L VVE VU 3 VN o VL s VR ¢ YV, VYD L VVL VYR, TD, TULTLs TR
1TV TH, VUP,VDP L, VLP, VRP, VVUP s VVDR s VYLPs VVRP L TNP s TUP, TLP s TRP,
ZPUP s PNP4PLP s PRPJMER yHNR 4 AST+PULPDLPL,PR/ZRIO0%0.0/

MAMELIST/DIN/POR, Ey INDEX ¢ AMUS RNy GRe DT s TMAX s NRyNJy LL oMM, TBOUND,
TISURGILByIMTH, INTV, INSR,INSL, IPRINT, NQTEP,INL.INR,DK,PERIND,ISUP-
2TSTART.NSURF,NPFR, ITH, INYNAM

FAR EARTHOUAKFE MOTION READ HORIZOMTAL VFLNCITIES FROM

DEVIGE 4 AND VFRTICAL VELOCITIES FRNM DEVICE 3,

READ(IE,DIN,END=99)

READ(4, TI{HOR(I)eI=1,NSTEP}

FORMAT({T(F10.5))

[FIIH.GTL1IRFANDI3,THIVERII )4 I=14NSTEP)

G=F/12.%(1.+PDNRY)

AL =PPR*E/{{1,+POR)%(1,~2.%PNR))

TM=AL+2.%6

YER=SORT{{TMENT+AMU)Y/(RO%EDTY)

VSH=SORTI(GEDT+AMY) /{ROEDT )

NX=2 %VSHENT

T2=VPR/(L2.%VSH}

T1=1.-T2

RATI=VPR/VSH

WRITE(6, 200X, VPRLVSH,RATT 4 Ge TM, 0K

FORMATIY DXI{FT)=' yFb2+% VPRIFT/SECI=" ,FTe2v"% VSH='4F7.2,
v RATIN=t,F5,2,¢* G=1,F9,1,¢ T=1sFllele'KN=V,F5,2/})

IN=(NJ=2)%2

ISTEP=1

T=TSTART

TF(IDYNAMJER.TIGN TD 18

STATI(C PRESSIIRFES

NN 1% J=1,NPER, 3

11=PERIND(.J)

[2=PERINND(J+1)

[3=PERIMD( J+2)

no 17 10=11,12

DN 16 Il=1,13

I=(0=-{11~-1)%NJ

PO(TY=0XEROEGR*:{ TI=1)

PULTI=PDIT}

180
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PLITY=0K=PDLT)
16 PR{TI=PL(T)
17 (ONTINIF
15 CONTINUE
18 L1=AMU/DX
C=ROEVYSH
CC=RN%YPR
LCnC=c+CC
C2=CCRGR*NT
TR{IDYNAM,EQ,1IC2=0,0
C3=2,%C2
Ca=2.%01
CM=C~C4
Ch=2.%C
COM=CC-AMII/ (VPR%=DT)
CF=1,/1EXxDT)
1=-2.~CF*CC
GZ2=P0OR%*CE*CC
AG=G2*6G2~-G1%G1
Cll=4,.2C1
IEN=IN=2
NIN=IBOUND( 1)
NZN= [ NDEX (1}
MAN={SHR({1}
NaN=TLR{1)
MSN=IML(1}
MAN=INR{1)
NYN=INTH(1)
NRN=TNTV{1)
MGN=]TNSR({1)
NION=TNSL({1)
MEIN=IPRINTI{1)
30 IF(ISUPL,EN.2}¥GN TN 508
WRITE(6,31}T
31 FORMATI{Y TIME=',FT7.3,' SECH/Y NODE'}
IF{ISUPLED.YIIGD TN 507
N 32 IN=2,N11N,2
T1=IPRINT(IN)
I172=TPRINT{IN+1)
nn 33 I=11,12
33 WRITE(G,34 T +VULTYGYDITY VLT VROD) »TUECTYTDCTIY, TLUTY W TROT Y LPULT)
TePDETYWPLLIT ) PRITI4VHOIT )}y VVFI(T)
34 FARMATI2Xy13+412F9,2,2F6,2)
32 COMTINUE
L0 TO 508
507 J=0
D333 I0=2,N3N,2
T1=1SHR(IN)
17=1SUR(IN+1)
nn 336 I=11.12
J=J+1
336 WRITE(A,IZIDFLZYNIT Yo YUYDTT) W VHOLI) 2 VVFIT ) AVIY) s AHLJ)
335 FORMATIZX,13.6F6.2)
333 CNMTINUE
508 T=2T+4DT
ISTEP=ISTEP+1
TFIT.GT.TMAXIGH TO 441
nn s IN=2,NIN, 2
T1=IRBROUNDRLINY
[12=1RNUND(IO+1}



53
50

182

nn 53 I=11,12
VUP{T)=VER{ISTEP)
VDP{E)Y=VER{ISTEP)
VVYLP(T)=VFR{ISTFP)
VVRPII)=VER{ISTEP)
VILPLTY=HOR(ISTFP)
VRPUIY=HNR(ISTFP)

VVUP (T ) =HOR{TISTFP}
VVDR{T ) =HOR(ISTEP)

CONTINUE

VHA{L L Y=HOR{ISTER)
VVFILLY=VER{TISTEP]}
YHO{MHA ) =HOR({TISTFPR)
VVEIMM)=VER{ISTEP)

INTERINR POINTS

NN o101 IN=2,N2N,72
T1=INDEX(ID)

I2=ITNDEX{TIO+1)

NN 102 I=11,12

J=i+1

K:I-{-NJ

L=1~1

M=1--NJ
Fr1=TIxPRET)+T2%HPL{ D)
F12=TIHAVR{T)I+T2xVLI())
F21=T1*PL{TI)+T2%PRIL}
Fp2=TlaVLI{TI)+T2%VR{L)
F31=TIxPN(TY+T2%PU(M}
FAR2=TEWD(T YT 28 VIH{M}
Fal=TIx=pPuUll+T2%Pn{K}
Faz=Tla2VU(1)+T2%VD(K}
F1=F11-F125CCM-C1®VR{I)
F2=FE21+E22%CCM+CL:VL(T)
F3sE31+E32:%CCM+CLVNIT)~-C2
Fa=F4l—Fa2u(M~ClxVULTY+C2
FS=TH{L )=VH{L}xOM-CaxvyLlI)
Fo=THIT ) +VH{TIHOM+C4EVVRT)
F7=TVIM)=VV{MICM=CaxVYN{I)
FA=TV{IT)+VV{1IRCM+CaeVYVU(T)
Fo={PU(T)+PD(1))*CF
F10=(PR{T}+PLIT))*CE
D1=CEx{F1+F2)

NZ2=CEx(Fa+F3)
GClO=PNR*DT1~O2-POR%F10+F9
G20=PNMR*=D2-01~POREFO+FI0
R10=(F2+FR-F1=-FT7)/C0C

B20=( FR3-F4+Fh=-F5) /COC
ALO=(6G22G10=-G1%G20) /A5
APO=((G2%G20~-GL*G10)Y/AS
VLPLIY={A1D+R1I0) /2,
VDR (T Y={AZ0+R20) /2.
VRPIII={(R10=-A10)/2.
VURPL T I=(NR20-A20)/2.
VHO( D)= (VLP{T }+VRP(I
VYFIT ) =(VUP{T}Y+VDP(]
VNPT )=VHO(T)
VVIIPL T Y =VVDP (T}
VVLP(I)y=VVE(I}

VYRP{ IY=VVLP (1)
PRP{TI)=F1+CCxVRP(1)

11/2.
11/2.



1p2
inl

40
51

206
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183

PLPUT Y=F2=-CCRVLP(T)

PP }=F3=CCEVNPET)
PUPLT Y =F4+CCHVIIP(T)
TLRP(I)=F5+CaVVLPIT)
TRP{])}=F6—-C%VVRPII}
THP{LI=FT+CHVVNP(T}

TUP{ T 1=FA=Cx:VVIIP{ 1)
CNNTINUE

CONTINUFE

SURFACE POINTS

J=0

hN 51 In=2qN3Nv2
T1=ISUR{IN)

[2=1SUR{IO+1)

NN 40 I=11,12

J=J+1

M=T=NJ
F31=TL¥PD(I+T2%PU{M)
F32=TLHVDL 1) +T 2% VUI{M)
F3=£31+E32%COM+CLHVD(T)-C2
FI=TVIMY-UV{M)PROM=Co4xvyYD(T)
VNP (T)=F3/CC

YVDP (T )=~FT7/C
VHOL T )Y=VYVDP(T)
VVELTY=VNP(T)

AHE DY ={VVYDPITY-VVYD(TI))Y/DT
AVIII=tYDNP (T Y=-VDLEY Y /DT
TFCARSTASTIU) )L LTLARSTAHE I NI YASTIU)Y=ARS{ARH{JY})
CONTI NUE

RENRNCK

NN 205 10=2,MN4N,2
T1=TLR{IN)

12=TLR(IN+1}

nen 206 I=11,12

K=T+NJ
Fal=TixPU{I)I+T2%PN(K)}
Fa22=TisVIH I)Y+T2%VD(K)
Fo=F41=F4puClM=ClevH{I}+C2
FR=TVII)+VV{T)CM+CaxyVII{T)
THUPIT)I=FB~-CxVVUR(T}
PUPELT ) =Fa+CCVUPLT)
TNP{TI1=0,0

PNPET)=0.0

VHO(T ) =VVUP(])
YVFLT)Y=VUP(T)

COANTINUE

SINES

IFINGN,EQ, 0G0 TN 151

NN 90 I0=2,N6N ' S

I=INR{IN)

Ji=1+1
FE=THITY+VHI I IRCM+CaxVVRIT)
TRPUT)=F&~-CHVVYRP(T)
TLP{T)=0,0
F11=T1*RPR{D)+T2%PLEJT)
F12=TIH&VYRITI}+T2*VL(J1)
F1=E11-F12%CCM-C1*VR{])
PRP{T)=F1+CC=VRPI(I)
PLELT)=0,0
VHO(T)=sVRP(T)



90
151

a5

152

96
153

97

154

191
190

181
180

184

VVF{1)}=VVRPL{])
ITRFINSNLEO,0)GO TN 182
9% T0=2,N5N

I=INLITO)

L=1~-1
FS=THIL ) =-VHIL }*CM=Ca4xVVIL{])
TLR{TI)Y=F5+03VvVLPITD)
TRE(I)=0,.0
F21=TI1&PLIT)Y+T2%PR{L)
Foo=T1=xVi([)Y+T2HVR(L)
FR=F2Y+F22%00M+CIRVILLTE
PLEPIL)=F2=CCxVLPLL)
VHOLT)=VLP(T)
VVEL T Y=vVIP({TI)

PRPIT)=0.0

CNRNER SHRFACE PNINTS
JFININLFO,0)GO TN 153

Ne 96 10=2,N9N

I=INSR{IN)

L=I-1
FOR=THIL)-VH L} CM=C4kVVL{]}
F21=T1xPL(I}Y+T2%PR(L}
E22=T1HVL{I)+T2%VR{L)
F2=F21+E22%CCM+C1VIL{ T}
VVLP{I}==~F5/C

viP{I)=F2/CC

VYE(TYy=VYVLP{T}
ITFENIONLFQL,O)GD TO 154

NN 97 10=2,N10N

IT=INSL{ID}

JI=T+1

FaR=THII)+VH{T 1=CM+CoVYR(IT)
Fll=TLl%pPR{TI+T2&PL{J]}
FI2=TI*VR{T)+T2%=VL{JT)}
Fl=F11-E12%CCM=C1%VR(I)
VVRP{T )=F6/C

VRP({I)Y=-F1/CC
VVE{T)Y=VVRP{I)}

MIDDLFE POINTS

DN 190 IN=2,N8N,?2
T1=INTV(IO)

12=INTV{IO+1)

DN 191 I=11,12

K=T+N.

CNN=VV({T}
VVETI=(TRIKY=-TIH Y+ VYV T Y+ VYDIKIISCMHCT IRV T Y)Y /CD
TV D) =TULT )Y+ VVLTI=C-CnNEla-vVH (T ) =M
CONTINUE

DN 180 IN=2,NTN,?2
I1=INTH{IN)

F2=INTH{IO+1)

nr o181 I=11,12

J=1+1

CAN=YH(I)

VHL T Y= (TLLd)~TROIY+(IVYRITIIHVVLIJ ) IHOCM+CIIHVHL{T }}/CD
THOI)=TR{I)+VHI 1 1*C~CONRCA&~-VVR{ [ )#CM
CONTENUF :
NN 9R [10=2,N11N,2
FIsTRPRINTLIM)
12=1PRINT{IO+])
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NN 84 I=11,12
THLIY=TUP(T)
THIY=THP{ 1)
TRUI)=TRPI{1}
TLOIY=TLPLE)
PHLT)=PUP{])
PRI Y=PDP(I}
PROT)Y=PRP(I)
PLIIY=PLP{T)
VE{ T ) =vHiP (T}
VDT Y=VNPLT)
VLETIY=VLEP (T Y
VRET)Y=VRPI(T)
UV 1) =VVUR ()
VR EY=VVDP(T)
VVLIT)Y=VVLPLT)
94 VVR{T)}I=VVRP(T]}
9/ CONTINUE
G TN 30
441 DO 442 I=1,NSURF
442 ASTII}=AST(I})I/AC1
WRITE(64340)LASTIT )4 1=14NSURF)
340 FORMATIR{FIO,3))
6N TN 10
99 STNP
FND
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