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CHAPTER I

INTRODUCTION

Analytical methods have been developed in recent

years to evaluate the ground motions induced in soil

deposits during earthquakes. A knowledge of these motions

is essential to the understanding of the earthquake behavior

of Btructures.

The characteristics method opens a new approach to

the solution of problems of earthquake generated transient

disi:urbances traveling through soil deposits. One of the

first attempts to compute soil motions using the method of

characteristics was made by Streeter, Wylie and Richart [71]*.

The method has not been thoroughly exploited and tested as

in the case of hydraulic transient problems [69]. Therefore,

the research reported herein was not restricted to a narrow

objective but a modest contribution was attempted to a wider

range of problems often encountered in soil vibrations

induced by earthquakes.

In this study the characteristics method is applied

to problems involving the computation of bedrock motions

from recorded ground surface motions, the propagation of

shear waves through tapered cross sections (earth dams),

the propagation of pressure waves through saturated soil

deposits, and two dimensional simulations.

*Numbers in brackets indicate references listed at the end
of the thesis; numbers in parentheses denote equations.

1
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A review of methods for the one-dimensional shear

wave propagation through horizontal layers of unsaturated

soil is presented in Chapter II. The rather extensive

review is broad in scope to provide an overall background

of the sUbject and to facilitate the presentation of the

subsequent investigations. The accuracy of results obtained

by the method of characteristics compared to closed form

solutions is briefly examined in Chapter III.

For the computation of bedrock motions from recorded

ground surface motions the Base Motion Synthesis method

based on the method of characteristics and on a centered

implicit method is developed in Chapter IV. Shear waves

traveling vertically through horizontal unsaturated soil

deposits are considered. Assuming that the soil reacts as

a linear viscoelastic material, the aforementioned method is

compared with an analytical method developed by Schnabel

et al [58]. The Base Motion Synthesis method is extended to

situations where the soil reacts as a "strain-softening"

material. Ramberg-Osgood type shearing stress-shearing

strain curves are employed in this case to model the non­

linear behavior of the soil.

One-dimensional shear wave propagation through

tapered cross-sections of earth dams with truncated crests

is examined in Chapter V. A closed form solution is

obtained involving Hankel functions with complex arguments
I

in the case in which the earth dam material is unsaturated

and linear viscoelastic. The characteristics method is
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used to provide a solution to the same problem. The two

methods compare favorably. An additional confirmation ema .....

nates: from a comparison between the method of characteristics

and the shear slice theory [63].

The vertical propagation of pressure waves through

saturated horizontal elastic soil deposits is treated in

Chapter VI. BiotOs field equations [9] are reduced to one­

dimension. An analytical solution is obtained which accounts

for ~vave reflections at the boundaries (free surface and bed­

rock)!. The method of characteristics is also used to solve

the four partial differential equations involved, and to

calculate pore pressures and stresses under seismic loading.

Two-dimensional transmission of shear and pressure

waves through unsaturated viscoelastic layered systems is

studied in Chapter VII. A latticework of one-dimensional

elements is used to simulate two-dimensional earth struc­

tures, i.e. earth dams, earth embankments or valleys. Six­

teen linear equations are solved simultaneously at each

interior node of the latticework. Eight of these equations

are the characteristics equations from the linear elements

surrounding the node and they represent the relation between

pressure or shear and the corresponding velocities. Invest­

ment in computer time for solving two-dimensional problems

by the latticework method is small in contrast with other

widely used two-dimensional analyses.

A number of examples are included in each Chapter to

illu.strate the applicability of the characteristics method



~
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I
I,

and to provide comparisons of tWe solutions obtained from

the method of characteristics and from other methods of

analysis.



CHAPTER II

F~VIEW OF ONE-DIMENSIONAL SHEAR WAVE PROPAGATION
METHODS THROUGH HORIZONTAL SOIL LAYERS

Ground motions near the surface of a horizontal

unsaturated soil deposit may be attributed mainly to the

vert:ical propagation of shear waves from an underlying rock

formation. In such cases the soil deposit can be considered

as a one-dimensional shear beam, since the ground motions

induced by a seismic excitation at the base are only the

result of shear deformations in the soil.

One of the first attempts to calculate the motion

of a soil layer subjected to a base vibration was made by

Jacobsen [40J in 1930. Jacobsen assumed that the soil

behaves as a linear viscoelastic material, that the rigidity

of the soil deposit is constant with depth and that the

motion of the base of the layer is horizontal and simple

harlnonic. His objective was to find the amplification of

the base motion in alluvial deposits. Kanai [43,44J,

Herrera and Rosenblueth [29], and others studied more thor-

oughly the same problem. The equation of motion used by

those investigators to model the response of a soil deposit

of finite depth to a horizontal seismic motion at its base

is:

l-[G(Z)dU] =
dZ dZ - pa

g (1)

in 'which p = mass density of soil; c = viscous damping

coefficient; u = relative displacement at a depth Z from

5
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the surface of the deposit at time t; a :::; horizontal seismicg

acceleration at the base of the deposit; and G(z) = shear

modulus at a depth z. If G(z) is constant with depth,

Equation (1) reduces to a linear hyperbolic partial dif-

ferential equation. If a is taken as zero, u in Equation
g

(1) is the absolute displacement at a depth z.

Ambraseys [1] considered that the rigidity of a

soil deposit increases linearly with depth, i.e., G(z) = fz,

where f is a constant. The amplification of the base motion

and the natural period of the deposit were then found analy-

tically.

Since experimental investigations [21,26] have shown

that the modulus of a cohesionless soil varies with the

confining pressure to powers of 1/3 to 1/2, Idriss and Seed

[35,36) used a shear modulus variation prescribed by

d
G(z} = fz , where f and d are constants and d = 1/3. Thus,

Equation (1) becomes a second order hyperbolic partial

differential equation, a closed-form solution of which was

obtained by the method of separation of variables.

In order to analyze the response of a soil deposit

having linearly elastic but irregularly varying soil pro­

perties, Idriss and Seed [35,36] used a lumped mass analysis.

The lumped mass solution was essentially a finite difference

method for the solution of Equation (1).

A generalized viscoelastic solid is specified by the

existence of a functional equation of state connecting

stress, strain and time. A linear viscoelastic solid is
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further restricted to the requirement that its mechanical

properties conform to the Boltzmann superposition principle.

The simplest examples of linear viscoelastic solids are: a

Voigt solid (a spring connected "in parallel with a dashpot);

a Maxwell solid (a spring connected in series with a

dashpot); and a Newtonian fluid.

In Equation (1), the dissipative force was assumed

to be proportional to the velocity. However, internal fric-

tion depends also on frequency. In 1927, Sezawa [65] as-

sumed that soil behaves as a Voigt solid for small vibration

amplitudes. Adopting this assumption, Kanai [42] approxi-

mated a solution to the problem of vertical propagation of

plane shear waves through a viscoelastic soil layer. The

equation of motion for this distributed system is:

(2)

where p = soil mass density; G = shear modulus, constant

or function of depth z; ~ = soil viscosity; and u = absolute

displacement at a depth z from the ground surface at time t.

Equation (2) was used by Schnabel, Lysmer and Seed

[58] to compute the responses of a soil deposit for a

desi.gn motion given anywhere in the system.

In the simple case where the base of a soil formation

is subjected to a harmonic displacement of frequency wand

amplitude W, the solution to the wave equation (2) is:

u(z,t) = we iwt e iwz/ v * + e- iwz/ v *
iwH/v* -iWH/V*

e + e
(3)
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then

V(z,t} =iwu(z,t) (4)

where H = total thickness of soil deposit; V = absolute

particle velocity at depth z at time t; and v* = complex

shear wave velocity equal to

v* = I(G + i~w)7p = IG*7P (5)

where G* is the complex shear modulus.

The method of characteristics in the form of a

graphical solution was first used by Westergaard [72] in

1933 to find horizontal shear in buildings idealized as

shear beams. However, the method could be used only if

the ground excitation was of a very simple form.

Du:ring the past decade, solutions of hyperbolic

partial differential equations by the method of character­

istics have been applied to a variety of hydraulic tran­

sient problems [69,67,68]. In 1973, Streeter, Wylie and

Richart [71], applied the method of characteristics to wave

propagation through soils. Shear waves induced by earth­

quake motions in linear viscoelastic and "strain-softening"

materials were considered. Voigt's assumption that the

stress components in a solid can be expressed as the sum

of two terms, the first term being proportional to the

strains and the second term being proportional to the rate

of change of the strains, was adopted. Under this assumption
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the dynamic stress-strain relationship for the soil consi-

dered to behave as a viscoelastic material was written:

(6)

where T = shearing stress; ]J = soil viscosity; and u =

absolute horizontal displacement at a depth z at time t.

Under dynamic conditions the equation of motion was

writ:ten as:

(7)

It should be noted that if Equation (6) is differ-

entiated with respect to z and substituted into Equation

(7), Equation (2) is developed. Since the particle velocity

is V = au/at, Equation (7) was written as:

av
p at

aT
E = 0 (8)

Differentiating the equation of state (6) with

respect to time and using the particle velocities instead

of the particle displacements, Streeter, Wylie and Richart

obtained the equation:

The third term of Equation (9) was approximated as:

(9)

a av 1 [av av ]
at <az} = !'It az - <az} c (10)

where the subscript C denotes the value determined at point

C on the z-t diagram (Fig. 2). With this finite difference
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approximation, Equation (9) becomes;

.£.l _ (G + l-lav l-l av =
at l\t) az + l\t <az)c 0 (11)

Equations (8) and (II) are two linear hyperbolic

partial differential equations in terms of two dependent

variables, shear stress and particle velocity, and two

independent variables, depth along the soil layer and time.

The method of characteristics is a mathematical technique

used to transform these two partial differential equations

into four ordinary differential equations which are then

solved by a suitable finite-difference technique.

In reference [71], Equation (8) multiplied by an

unknown multiplier e was added to Equation (II) to obtain:

[ aT aT] [ av 1 l-l av 11 av
at + 8 3Z - p8 at + P6 (G + l\t) az] + 6t (az) C = o (12)

From the definition of an Eulerian derivative, i.e.,

d _ a dz a 1.'t· t th t th b k t d tdt _. at + dt ai' 1.S apparen a e rac e e erms

in Equation (12) become total derivatives if

from which

dz
dt = e = 1 IIep (G + l\t) (13)

e = + ~~ + ~6t = + v
S

(14)

in which v is the apparent shear wave velocity in the soil,s

equal to the slope of the characteristic lines in the z-t
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diagram of Figure 2. Equations (12) and (13) are desig-

+ plus sign is used fornated as C when the e and C when

the negative sign is used:

dT dV + j.1 av
0 (15)dt - pv llt (a-z}c =

C+
s dt

dz (16)dt = v s

dT + dV + 11 av
0 (17)pv

flt (az}c =dt s dt
C

dz (18)dt = -vs

The quantity (Clv/aZ}c was expressed in terms of

central finite differences for the interior points of the

z-t diagram. A forward and backward finite difference

scheme was used at the boundaries. After specifying a con-

venient time interval flt, to be kept constant throughout

the calculations, Equations (15) and (17) in finite­

difference form become:

By solving Equations (19) and (20) the unknown

quantities Tp and Vp can be found. The distance interval,

flz in Equations (19) and (20) is equal to:

(21)
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In the simplest case, b.z could be found to be a sub-

multiple of the soil deposit's total thickness. However,

in reference [71], more sophisticated cases, such as G

changing in a prescribed way with depth, were treated by

using interpolations.

At the ground surface the boundary condition is

_. o.

as:

Then Vp can be found from the C- characteristic,

L B 1
= VB + - ~ (V

C
- VB)pVs ~z PVs

(22)

At the base, the boundary condition consists of a

known Vp as a function of time from the seismic excitation

under consideration.

characteristic as:

+Then, L p can be found from the C

The z-t diagram (Fig. 2) facilitates the under-

standing of the step by step solution. At time to the

shearing stresses L and particle velocities V are assumed

to be known (initial conditions). If the earthquake starts

at time to, since the soil deposit is horizontal, L and V

are zero throughout (static conditions). These values

permit calculation of L and V at points p (one time step

later) by using Equations (19), (20), (22) and (23). The

same procedure is used for the next time step.
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To this point all methods mentioned considered the

soil to behave as a linear viscoelastic material which

could be the case for small strains. However, shearing

stress-shearing strain curves for most soils are nonlinear

and Hardin and Drnevich [25] have experimentally demonstrated

that this relationship may be approximated by a hyperbola.

Heierli [28] theoretically and experimentally studied

the problem of one-dimensional pressure wave propagation in

inelastic media such as soils. "Locking-up" dynamic stress­

strain curves were determined experimentally for the

material. The theory developed using a step-by-step pro­

cedure, closely resembles the method of characteristics.

Parmelee, et al. [52], and Seed and Idriss [61,35,36]

used a lumped-mass solution to evaluate the seismic response

of soil layers with shearing stress-strain characteristics

approximated by a bilinear hysteretic model (Fig. A-l).

The lumped masses were connected with a Voigt model attached

in series to a dashpot, the latter to represent creep charac­

teristics of the soil. The equations of motion were then

solved using a step-by-step procedure [74].

Constantopoulos [15] modeled the soil as a series

of lumped masses, springs and dashpots. The springs were

defined by a nonlinear shearing stress-shearing strain

relationship frequently adopted by structural engineers,

known as the Ramberg-Osgood curve (APpendix l). The

solution was then carried out by direct numerical integra­

tion in the time domain.
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Streeter, Wylie and Richart [71] used the Ramberg­

Osgood nonlinear stress-strain relationship in conjunction

wit:h the appropriate equations of state and motion. They

used a distributed parameter model and they solved the pro­

blem of one-dimensional shear wave propagation by employing

the method of characteristics with specified time intervals

and interpolations.



CHAPTER III

THE ACCURACY OF THE METHOD OF CHARACTERISTICS

In order to examine the accuracy obtained by using

the method of characteristics and the sensitivity of the

method to varying time increments as well as to varying

degrees of viscous damping, the author conducted a series of

simple case studies, three of which are presented in the

following:

A homogeneous dry elastic soil deposit having constant

mass density p = 4.0 slugs/ft S , constant shear modulus G =
10 6 psf and a thickness of 50 feet was subjected at its base

to a horizontal harmonic excitation of the form V=0.2sin4rrt

feet/second. The shear wave velocity was equal to Id/p =

500 ft/sec, therefore the natural period of the system was

Tn = 4 x 50/500 = 0-.4 sec and the forcing period was Tf =

0.5 sec. Since Tn < Tf and no viscous damping was present,

the excitation and the.response were in phase [57]. Equa­

tion (4) was used to find analytically the particle veloc­

ities at the surface and at mid-height of the layer (Fig.3).

The shearing forces at any depth were obtained from Equation

(6) after sUbstituting u from Equation (3). A time interval

of 0.01 sec and reaches of length 6z = 5.0 feet were used

in the method of characteristics. The use of T = 0 and

V = 0 throughout the soil layer as initial conditions for

the method of characteristics would cause the generation of

an initial transient which would not vanish since no dissi­

pating mechanism is available (~ = 0). By using as initial

16
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conditions the shearing stresses and the particle velocities

found from the analytical solution at time t = 0, at equal

distances of 5 feet throughout the soil layer, the method of

characteristics immediately converged on the exact solution

as shown in Figure 3.

A homogeneous dry viscoelastic soil deposit 141.4 feet

thick resting on a horizontal rock base was next considered.

The mass density p = 4 slugs/ft 3
, the shear modulus G = 8 X

10 5 psf and the viscosity ~ = 12000 Ib·sec/ft 2 were assumed

constant throughout the soil layer. A horizontal sinusoidal

velocity having an amplitude of 1.0 ft/sec and a frequency

of 4n rad/sec was exerted on the base rock. The shear wave

velocity was 447.2 ft/sec. Two time intervals were used.

For ~t = 0.010 sec the soil deposit was divided into 20

reaches with ~z = 7.07 feet. For ~t = 0.025 sec the soil

deposit was divided into 10 reaches with ~z = 14.14 feet.

Shearing stresses and velocities both equal to zero were

used as initial conditions to the method of characteristics.

After 18 cycles, the initial transient vanished completely

due to the presence of viscous damping. The particle veloc­

ities at the surface of the formation computed by the method

of characteristics after 9.0 seconds were found to be in

agreement with the velocities obtained from the analytical

solution (Fig. 4). Slight differences of less than 1% when

using ~t = 0.025 sec were attributed to the coarser discre­

tization used. Since discretization depends on both ~t and

~z, the case with ~t = 0.010 sec and ~z = 7.07 ft was five
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times more densely discretized than the case with ~t = 0.025

sec and ~z = 14.14 ft. However, even such a difference in

discretization did not influence the results obtained. In

Figure 5 the shearing stresses computed at the rock base

were plotted for comparison. The small differences observed

between the closed form solution and the method of character-

istics should be mainly attributed to the numerical approxi­

mations which accompany the latter. The differences between

the two characteristics solutions were more pronounced due

to numerical approximation errors in addition to discretiza­

tion.

In order to demonstrate the influence of the viscosity

term in the response of a soil layer to a periodic excita­

tion, a soil layer 100 feet thick resting on horizontal bed­

rock was considered. The soil was assumed to have a mass

density p = 4 slugs/ft 3 and a shear modulus G = 8 X 10 5 psf

constant throughout the depth of the deposit. The base rock

developed a horizontal periodic excitation V=0.2sin47rt in

feet per second. The period of the forced vibration was

Tf = 0.5 sec and since the shear wave velocity was 447.2

ft/sec the natural period of the system was T = 0.894 sec.
n

Since Tn > Tf , for the case of ~ = 0, as it was expected the

forcing function and the response were 180 0 out of phase

(Fig. 6). Increase of the viscosity to values of 20,000

Ib-sec/ft 2 and 40,000 Ib'sec/ft 2 resulted in a decrease of

the corresponding amplitudes of the particle velocities at

the surface of the formation and to an additional change in
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phase. The analytical solution and that obtained by the

method of characteristics were in perfect agreement after

20 cycles (Fig. 6).

These examples were presented mainly to demonstrate

thai: solutions obtained by the method of characteristics are

only slightly influenced by the degree of discretization

employed and that numerical approximation errors are negli­

gible. In spite of ~he fact that the method of character­

istics is a numerical method developed to solve transient

problems, it can also successfully handle steady oscilla­

tory problems when the viscous damping is enough to gradually

dissipate the initial transient generated.



CHAPTER IV

COMPUTATION OF BEDROCK MOTION FROM A RECORDED
GROUND SURFACE MOTION

Review 06 U.te!La:tuJte

In the united States, most seismographs that recorded

strong earthquake motions were located on alluvial soil

deposits. Therefore, data on rock motions are very limited.

Prior to the San Fernando earthquake of February 9, 1971,

the only strong rock motion recordings on sedimentary rock

were those of Helena, Montana, 1935; Taft, California, 1952;

and Golden Gate Park, San Francisco, 1957 [31].

Assuming that upward shear wave propagation from the

underlying rock is the main cause of horizontal ground

motions during earthquakes [54], various procedures have

been developed (Chapter II) to compute the response of a

soil deposit to a known bedrock motion. Since ground sur-

face records of earthquake motions are more numerous, it is

of importance to use these records to determine the rock

motions from which they were generated. This is desirable

because the computed bedrock motions could be used to find

ground responses of adjacent but different soil formations

overlying the same bedrock.

Schnabel, Seed and Lysmer [59] developed a computa-

tional method to model shear wave transmission through

layers of viscoelastic soil overlying bedrock. All displace-

ments were assumed to be horizontal caused by shear waves

propagating vertically through the soil. The damped wave

24
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equation ~Eq. 2) was used to model the system!s response. A

soil deposit was subdivided into n layers each of thickness

h.{j=l, ..• n), with a local coordinate system z for each layer.
J

The soil properties at each layer were considered to be con-

stant. The boundary conditions used at the ground surface

were zero shearing stresses and a harmonic displacement with

frequency wand known amplitude W of the form:

(24)

The solution to the wave equation for a harmonic

motion of frequency w, for the jth layer was:

u. (z,t) = E. eiw(z/v~+t) +F. e-iw(z/V*J.- t )
J J+1 J J+1 (25)

where h. > Z > 0, and v'I': = .; [G. + iWll') !p . = v'G'lf!p.
J J J J J J J

The first term of Equation (25) represents the incident wave

traveling upwards and the second term the reflected waV49

traveling downwards (in the positive Z direction). The

amplitudes E.+ and F.+ of these two waves were computed
J i J 1

by cl recursion formula developed from the condition that

strE~sses and displacements should be continuous at all layer

interfaces. These amplitudes are functions of the complex

impE~dance ratio a. :
J

E = 0 5E (l+a.) exp(K.) + O.5F. (I-a.) exp(-K.) (26)
j+1 • j J J J J J
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F
J
'+

1
= O.5E.{1-a.) exp{K.) + O.5F.{1+a.) exp{-K.) (27)

J J J J J J

where

K. = iwh./v~
J J J

(28)

(29)

and exp(K.) is equal to the base of the natural logarithms e
J

raised to the K. power.
J

The above expressions developed by Schnabel, et ale

[58,59] are valid only for steady state harmonic motions.

If the surface of a soil deposit develops a harmonic dis-

placement of the form of Equation (24), then the rock

motion u n +
i

(z=hn,t) which caused this displacement may be

computed from Equation (25).

Schnabel, Lysmer and Seed [58] extended the theory to

transient motions through the use of Fourier transformation

by employing the Fast Fourier Transform algorithm developed

by Cooley and TUkey [16] (Appendix 2). In the case of

transient motions the assumption was made that the complex

shear modulus is independent of frequency and equal to:

G* =G(1+2iD) (30)

where D is the critical damping ratio assumed constant for

any value of w. Generally, D and ware related through the

expression [57]:
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D = Wll/(2G)

The above analytical method is used later in this

(31 )

chapter to compare with the method of characteristics in a

case study.

The methods reviewed in Chapter II, ·to calculate the

grou.nd surface motion of a soil deposit for a known bedrock

motion are methods of analysis (feed-back process). The

method of characteristics is used in the following to solve

the reverse problem, i.e., to compute the bedrock motion

which caused a known transient motion at the ground surface.

This method resembles the valve stroking concept as used in

hydraulic transients [66] and may be characterized as a

method of synthesis (feed-forward process). It is termed

herein, "Base Motion Synthesis" method.

Propagation of shear waves vertically through horizon-

tal layers of dry soil is treated as a one-dimensional prob-

lem described by the partial differential equations of state

and motion (Equations 6 and 7). By using the method of

characteristics, Equations .(6) and (7) are transformed into

four ordinary differential equations (Equations 15, 16, 17

and 18). After a time interval 6t is selected, the soil

deposit is divided into reaches of length:

(32)
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Then" the unknown shearing stress and particle veloc-

ity at point P are obtained as:

CM - CP
V =

~IZzP 2PVs -

CM - CP
T = CP + pv

P s 2pv s - ~16.z

(37 )

(38)

Considering that an "action" at the bedrock causes a

"reaction" at the surface of a soil deposit, the Base

Motion Synthesis method can generate the "action" if the

"reaction" is known. This ability of the method becomes

evident by studying the z-t diagram in Figure 7. Shearing

stress and velocity at P are influenced by conditions exist-

ing one time step later at a distance 6.z away from P (point

B), because the incident shear wave travels the distance 6.z 1

in time 6.t. Following the C characteristics from point E

downwards, it is observed that "reaction" conditions at E

(z=o, t=7t.t) are related to "action" conditions at G (z=H,

t=3 t.t) •

A step-by-step procedure greatly facilitates the com-

putations. Based on known conditions at the surface, Equa-

tions (37) and (38) yield the shearing stresses and particle

velocities at a depth z = 6.z 1 in the time domain. Based on

known conditions at depth z = t.Zl, Equations (37) and (38)

yield the shearing stresses and particle velocities at a

depth z = t.Zl + t.Z2 in the time domain. The same procedure

is repeated until the bedrock is reached. Thus, the method

also provides the user with intermediate results, calculating
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shearing stresses and particle velocities at all reach

interfaces.

Exampl~ An unsaturated soil deposit 218.82 feet thick was

selected for study. The soil deposit consists of four

layers: 36.38 feet of fill with p = 3.73 slugs/ft 3
, G =

1.375 X 10 6 psf, ~ = 30,000 Ib"sec/ft 2
; 46.34 feet of soft

clay with p = 3.26 slugs/ft 3
, G = 0.5 X 10 6 psf, ~ = 10,000

lb·sec/ft2i 64.0 feet of medium clay with p = 3.42 slugs/ft S,

G = 10 6 psf, ~ = 20,000 lbosec/ft 2
; and 72.1 feet of sand

and gravel with p = 4.04 slugs/ft 3
, G = 6 X 10 6 psf, ~ =

120,000 lb·sec/ft 2 resting on a horizontal rock base (Fig­

ure 8). The first 8 seconds of the North-South component of

the 1940 El Centro earthquake accelerogram (Figure 9) were

coni3idered to be the hypothetical reaction of the ground

surface. Two methods were used to find the bedrock excita­

tion, the analytical method [58] reviewed previously, and

the Base Motion Synthesis method. The analytical method uses

as input the displacement record of the North-South component

of the 1940 El Centro earthquake obtained by twice integrat­

ing numerically the earthquake accelerogram [8]. The Base

Motion Synthesis method uses as input the velocity record of

the North-South component of the 1940 El Centro earthquake

obtained by integrating numerically the earthquake accelero­

gram.

A value of D = 0.01 was used in the analytical method.

This assumption of a constant ratio ~w/G, tends to underdamp

the higher frequency harmonics of the Fourier transform and



32

p=3.42
Medium G= 10 6
Clay

J.L= 20000

P=3.73
Fill G= 1.375 x 106

p..=30000

218.80'

Soft
Cloy

Sond a
Gravel

p=3.26
G= 0.5 x106

fL =10000

p= 4.04
G=6x106
J.L= I20000

1
36.381

t
46.34'

t
63.98'

72.10'

1

8.0

Figure 8. Profile.of soil deposit.

0.4..---------------------.
t:J) 0;2
I

zo
~ 0
Il:
W

~ -0.2
u
<J

« -0.41-----4-----...-----f-----oI__Io 2.0 4.0 6.0
TIME (Sec)

Figure 9. Acce1erogram of E1 Centro earthquake,
1940, North-South component.



33

overdamp the lower frequency harmonics. A time interval of

0.05 seconds was used in the Base Motion Synthesis method.

A computer program written in FORTRAN IV Language, presented

in Appendix 5, performed all the necessary computations for

the Base Motion Synthesis method. For this specific example,

the computer time required by the Base Motion Synthesis

method was approximately half the time required by the ana­

lytical method. The base rock displacements and velocities

calculated by both methods are plotted in Figures 10 and 11

for comparison. Small differences observed are mainly due

to the fact that the analytical method does not use the whole

range of frequencies of the Fourier transform in the evalua­

tion of the complex shear modulus G*.

An additional confirmation of the Base Motion Synthe­

sis method is obtained by the method of characteristics

(method of analysis) reviewed in Chapter II. The base rock

velocity resulting from the Base Motion Synthesis method was

used as input to the method of analysis. The velocity

response at the surface of the soil deposit,computed by

using the method of analysis was found to be SUbstantially

the same as that used as input to the Base Motion Synthesis

method (Figure 11).

In Figure 12, the shearing stress at the base rock

computed by the Base Motion Synthesis method is plotted

versus time.
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The inelastic or "strain-softening" behavior of soil

may be modeled by shearing stress-shearing strain curves of

the Ramberg-Osgood type (Appendix 1). The method of charac-

teristics in conjunction with a Ramberg-Osgood hysteretic

model was used by Streeter! Wylie and Richart [71] to solve

problems of one-dimensional shear wave transmission through

horizontal layers of dry soil. A seismic disturbance was

applied to the base rock and the response of the soil layer

overlying the bedrock was computed. This forward type of

solution is a method of analysis. In the following develop-

ment, the Base Motion Synthesis method is modified so inelas-

tic soil behavior can be modeled. Thus, the solution is

obtained to the reverse problem which is to find the seismic

disturbance at the base rock that caused a known response at

the surface of the overlying soil layer. The method of char-

acteristics in conjunction with a centered implicit method

are used in this development.

The damping effect of a Ramberg-Osgood hysteresis

model is more pronounced than that obtained by a viscoelastic

hysteresis loop. Therefore, since the presentation gains also

in simplicity, the viscous term is omitted from the governing

differential equations. However, viscous damping can also be

considered if necessary.

Under dynamic conditions the equation of motion is:

(39)
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where T is the shearing stress and V is the particle veloc-

ity at a depth z; p is the mass density of the soil. The

dynamic stress-strain relationship is:

dT ::: G dy (40)

in which y is the shearing strain equal to dU/aZ, G is the

shear modulus and u is displacement at a depth z. From

Equation (40) the following differential equation may be

derived:

(41 )

In Equation (41) the tangent shear modulus G, for static

and low frequency deformations is given by

G = dT/dy (42) .

Multiplying Equation (39) by an unknown multiplier 8,

and adding to it Equation (41) gives:

fe ~ + dT\_ e fG .l.. av, + av\::: 0
\ dZ at} p~ ep dZ at} (43)

The terms in parenthesis become total derivatives if:

dz 8 ::: ..!..G (44)=dt 8p

from which

8 = ±1G7'P ::: ±v (45 )s
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where v is the shear wave velocity in the soil. Two pairss

of total differential equations emanate from Equation (43),

designated c+ when the plus sign is used for e and C- when

the negative sign is used:

dT dV
0dt - pv

dt ==
c+ s

dz Vsd't==

dT + pv dV 0dt =dt s
C

dz ==dt -vs

(46 )

(47)

( 48)

(49 )

To solve numerically Equations (46) to (49), a convenient

timE~ interval ~t is selected to be kept constant throughout

the calculations and the soil layer is divided into distance

intervals equal to

(~Z)o = ~t IlG o ) ./0.
J J J

( 50)

where Go is the shear modulus for y =: 0, usually changing as

the square or cubic root of depth. However, the value of Go

calculated at mid-thickness of a layer (j) is used as con-

stant throughout that layer.

A shearing stress-shearing strain curve of the Ramberg-

Osgood type requires that G ~ Go in each layer (the equal sign

holds at the turning points of the curves). This means that

(C~) in Figure 13 is always less than the corresponding

(~z) 0' i.e. v . ~t ~ (~z) 0 at all times, a necessary condition
J s J

for the method of characteristics to be stable.
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In Figure 13, the part of the z .... t diagram correspond-

ing -to a layer (j) is drawn. Assuming that t. is the time
J

required for the shear wave to reach the bottom of layer (j)

from the base rock, conditions to the left of line (AS) are

static. Also, conditions (i.e. shearing stresses and parti-

cle velocities) at points ll; C; B, and F are known from the

The objective is to find the con-overlying layer (~z). •
J -1

ditions at points D; E and K of the z-t diagram. The proce-

dure is then repeated for the underlying layer (~z)j+l until

the base rock is reached.

Equations (46) and (48) can be expressed in a finite

difference form:

C :

(51)

(52)

whe:r:e v = IG7P is the shear wave velocity for the layers

under consideration. Equations (51) and (52) solved simul-

taneously yield the values of T and V at point P:

TA+TB +
VB-VA

pvTp = 2 2 s

Vp
VA+VB +

TB-TA
=

2pvs2

(53)

(54)

At time t. + ~t, the shear modulus G is still equal to Go ,
J

therefore points p and D coincide and Equations (53) and

(54) are sufficient to find TD and VD• A time interval
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later G < Go and (CP) < (~z) .• In this case, shear and
J

velocity at point E can be found by employing a generalized

centered implicit method [67].

The terms in Equations (39) and (41) in finite dif-

ference notation become:

(55 )

(56)

(57)

(58)

where ~ is a weighting factor. The quantities VR and L R
are found- by linear interpolation between the known values

(59)

(60 )
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Equations (55) to (58) are substituted back into

Equa'tions (39) and (41) which become:

= 0 (61)

(62)

The quantities Tp and Vp are known from Equations (53) and

(54), TR and V
R

are known from Equations (59) and (60) and

TD and VD are known from the previous time step. Therefore,

Equations (61) and (62) are solved simultaneously to find

the only unknowns T
E

and VEe In this case only one centered

implicit cell (DRPE) was used. However, if v ·~t becomess

small compared with (~z)., more implicit cells should be
J

used improving considerably the results obtained.

The implicit scheme has neutral stability if the

weighting factor ~ = 0.50 and it is unconditionally stable

for 0.5 < ~ ~ 1.0. The stability of the implicit method

does not depend on the ratio (PE)/~t as do the explicit and

characteristic methods. Under certain conditions however,

the implicit method has been observed to exhibit instabil-

ies [6,46]. In the present analysis instabilities did not

occur and improved results were obtained by using a weight-

ing factor ~ of 0.9 or even 1.0.

The Base Motion Synthesis method as modified above

for the case of inelastic soil behavior, is still based on
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a feed-forward process since conditions at time t + 6t and

depth z (i.e. point B) influence conditions at time t and

depth z + (6z). (i.e. point P and subsequently point E, in
J

Figure 13).

The same procedure is repeated for each time step. A

new value of G is obtained from the proper Ramberg-Osgood

curve (loading or unloading) based on the average value of

the shearing stress over the layer one time interval earlier.

The computational scheme moves forward in the time domain for

each layer starting from the top layer and proceeding to the

base rock. A solution by the Base Motion Synthesis method is

thus made feasible.

Examp!e. An unsaturated sand deposit 70.4 feet thick rests on

horizontal bedrock. The sand has a unit weight y = 100s

Ib/ft 3
• The static shear modulus, Go' is determined at the

mid-point of each layer at a depth z from the expression:

Go = 50000 Iy zs (63)

The time interval selected is 6t = 0.01 seconds.

According to Equation (50) the soil deposit is subdivided

into eight layers with thicknesses of 5.0, 6.8, 7.9, 8.8,

9.6, 10.2, 10.8, and 11.3 feet (Figure 14). Soil viscosity

is assumed to be zero. The yield shearing stress, Ty , is

determined from the expression [57]:

(64)
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where ~o is the angle of internal friction assumed equal to

30°. To describe the stress-strain relationship for the

sand, an exponent Ro = 5 is used in the Ramberg-Osgood Equa­

tions (Appendix 1).

Streeter, Wylie and Richart [71] applied a simulated

seismic disturbance at the base of the deposit described

above. Horizontal particle velocities at the base were cal-

culated from a random acceleration function suggested by

Bogdanoff, Goldberg and Bernard [12]:

a = t e-0.333t
g

10
L
j=l

cos(W. t+n .)
J J

(65 )

where the frequencies wj and the phase angles nj suggested

by Parmelee et ale [53] were used. In reference [71], the

velocity at the ground surface was computed from the velocity

applied at the base of the deposit by using the method of

characteristics (method of analysis).

The Base Motion Synthesis method used as input the

ground surface velocity found from the method of analysis

(Figure 15). The computed base rock velocities are in

agreement with the velocities calculated from expression (65)

that were originally used as input to the method of analysis

(Figure 16).

The normalized Ramberg-Osgood stress-strain diagram

computed at a depth of 8.4 feet by the method of analysis

and the Base Motion Synthesis method is plotted in Figure 17.

The sequential alphabetic characters at the turning points

of the Ramberg-Osgood curves correspond to the time
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indicated by the same letters on Figure 15. The differences

observed in Figure 17 are attributed mainly to the approxima­

tions introduced by the implicit scheme in the Base Motion

Synthesis method. The larger differences occurred at the

turning points of the Ramberg-Osgood curves (i.e. at point d

in Figure 17 where unloading stops and loading starts), the

reason being the abrupt change in the value of G from its

minimum to its maximum value Go during one time interval.

The computations for the Base Motion Synthesis method

were carried out by using the computer program appearing in

Appendix 6. The computing time for compilation, execution

and printout for this example was 57 seconds on the IBM

360/67 computer, while the solution by the method of analysis

required 31 seconds of computing time.



CHAPTER V

ONE-DIMENSIONAL SHEAR WAVE PROPAGATION
THROUGH EARTH DAMS

Mononobe, Takata, and Matumura [48J in 1936, presented

one of the first dynamic response analyses of earth dams.

Their theoretical development was based on the following

simplifying assumptions: the earth dam material was homo-

geneous and viscoelastic having uniform density and shear

modulus; the earth dam cross section was wedge-shaped and

the foundation was rigid; the dam was infinitely long and

its base width was greater than its height so that bending

deformations could be considered negligible compared with

deformations due to shear; the water stored in the earth

dam was not considered in the analysis; and shear stresses

over any horizontal plane were assumed to be uniformly

dis;::.ributed.

Hatanaka [27] in 1955 studied the case of a triangular

elastic cross section in a rectangular canyon and computed

the horizontal response over the length and the height of

the dam. Ambraseys [3,4,5] studied extensively the dynamic

reaction of dams to earthquakes. In 1960, he investigated

the shear response of a two dimensional symmetric wedge of

finite length which had a truncated crest. The wedge was

considered to be linearly elastic, bounded at its base and

its two vertical sides by rigid planes. Internal or Coulomb

friction was modeled by a viscous damping term proportional

51
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to' the particle velocities. The shear modulus was assumed

to be constant since Ambraseys previous work showed that

an error of less than 10% occurred in computing natural

frequencies when the variable shear modulus was replaced

with its mean value.

In 1966, Seed and Martin [63] summarized all the

previous work done on the elastic response analysis of

earth darns in what they called the one-dimensional shear

slice theory. The derived differential equation of motion

was solved analytically for a random horizontal base motion.

Viscous damping forces were considered to be proportional

to the particle velocities. Making use of the orthogonal

properties of mode shapes and the principle of mode super­

position, the general solution of the equation of motion

was obtained as a summation of an infinite number of terms

involving Duhammel (or Convolution) integrals. The dis­

sipation mechanism was represented in the solution by the

fraction of critical damping for each mode. Results ob­

tained by the above analysis were of similar form with

measurements of the response of the Cachuma Dam in Cali­

fornia during a small earthquake in 1957 [4] and with

measurements of the response of the 100 foot high Sannokai

Dam in Japan to several small earthquakes [51].

During 1966 and 1967 Clough and Chopra [14] and

Chopra [13] applied the finite element method in an attempt

to develop an improved analysis to the problem of shear

wave propagation through earth dams. The dam material was
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considered to be isotropic and linear viscoelastic. The

influence of stored water was ignored. The analysis was

two dimensional. For the same dam height differences in

geometry of the cross section lead to differences in the

natural modes, a result not obtainable from the shear slice

theory. During the last few years numerous applications

of the finite element method appeared in the li-terature;

a more detailed review is presented in Chapter VII, since

the present chapter is dealing with the one-dimensional

dam analysis.

Anai..y:Uc.al Method

The basic assumption of the one-dimensional shear

slice theory, that shearing stress is uniformly distributed

over any horizontal plane is maintained through the following

development. The earth dam material is assumed to be

viscoelastic. The dam cross sections considered are wedge-

shaped with bank slopes 1 vertical to a/2 horizontal having

truncated crests.

For the one-dimensional shear wave transmission

through an earth dam under dynamic conditions, the equation

of ~)tion for a thin horizontal slice at depth z below the

crest 0 (Figure 18), is:

-TAo + [TAo + d~TZAo) dZ] [ aAodz] a
2

ua = pdz Ao + F 2 at2 (66)

where Ao = az is the area of the horizontal plane per unit

length~ T = shearing stress uniformly distributed over the
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horizontal plane o:t; area Ao; p ;:: mass density o:t; the soil;

u ;:: absolute horizontal displacement of the slice. Omitting

second order differentials and considering that Ao = az and

dAo/dZ = a, Equation (66) reduces to:

(67)

It should be noted that the slope a of the dam sides

has cancelled out and does not appear in Equation (67).

The effect of the tapered cross section is depicted by the

term (T/Z) for any degree of taper. For a + 0 this term

vanishes and Equation (67) reduces to the equation of motion

for the shear wave propagation through a one-dimensional

shear beam. Values of a often encountered in practice are

1.5 < a < 3. Such differences in the geometry of a dam

cross section clearly affect the dam's response. Therefore,

the advantage of using a two-dimensional analysis becomes

apparent. However, the one-dimensional approach is a simple

and inexpensive method to examine the reaction of dams to

eart:hquakes. Results obtained by this approach are usually

sati.sfactory along the dam's axis of symmetry.

The equation of state relating shear stress and stain

for a viscoelastic material, with the viscous damping term

proportional to the rate of change of strain, is:

where G ;:: shear modulus or modulus of rigidity; dU/dZ is

the strain; and ~ = soil viscosity.
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If Equation (68) is differentiated with respect to

z and Equation (67) is substituted, the equation presented

by Mononobe et al. [48] is obtained:

1 au a2 u
z (G az + v dZdt) = 0 (69)

using the mean values of V and G for the whole height

of the dam and neglecting their possible variation with

depth, Equation (69) reduces to:

p .~~~ - G(~~~ + ~ ~~) - V (~:~at + ; ~~~t) = 0 (70)

The motion produced by a harmonic excitation applied

at the base of a dam must also be harmonic with the same

period as the excitation. Therefore, a steady state solu-

tion of Equation (70) is assumed in the form:

u(z,t) = F(z)e iwt (71)

where w = circular frequency of the imposed excitation;

F = a function of z to be found.

Substitution of Equation (71) into Equation (70)

results to the equation:

d 2 F 1 dF 2
--+ dz + (~) F =0dZ2 Z v*

where
v* =J~ +

·llW1-
P

(72 )

(73 )

The quantity v* is called herein complex velocity of

shear wave propagation. If 11 = 0, then the soil is elastic,
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v* = IG7P is the real shear wave velocity and Equation

(72) reduces to an ordinary Bessel equation [30].

A general solution of Equation (72) in terms of

Hankel functions, is:

(74)

where A and B are constants to be determined from the

boundary conditions. The Hankel functions of order q are:

i1)(wz/v*) = J (wz/v*) + iY (wz/v*)
q q q

i~(wz/v*) = J (wz/v*) - iY (wz/v*)q q q

(75)

(76)

where J are Bessel functions of the first kind of order q,q

and Yare Bessel functions of the second kind of order q.q

If t:he viscous term is not zero, it is evident that the

argl~ents of the Hankel and Bessel functions are complex

nwm)ers. In this case, a special technique to evaluate

theBe functions is presented in Appendix 3. A computer

subprogram was written and used (Appendix 7) since existing

tables [49,50] require cumbersome interpolations.

The solution of Equation (70) becomes

At the truncated crest, where z = h, the shearing

stress T should be zero. By substituting Equation (77)
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into Equation (68) and considering that T ::; 0, the following

expression is obtained:

from which

At the base of the dam, where z = H, a harmonic

(79)

excitation acts having a single amplitude Wand a frequency

w, in the form:

u(H,t) = W coswt = Re(We
iwt

) (80)

where Re stands for "real part of." The letters Re are

dropped in the following but it is understood that only

the real parts of all complex expressions represent their

numerical values. Equation (77) for z = H yields the

value of A when B is substituted from Equation (79):

The solution of the equation of motion (70) becomes:

This solution is valid only for h ~ 0, since if h = 0,

then y 1 (0) -r -00. Fortunately the case of a truncated

crest is the rule and not the exception.
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The horizontal velocity of displacement of a thin

slicE~ of the dam is:

V(z,t) = au/at =iwu(z,t)

The shearing stress uniformly distributed over a

(83)

hori:wntal cross section at depth z can be found from the

equation of state substituting u from Equation (82):

• ( 11) _12) ll) _12) )
T(Z,t)=wpv*we1.wt Ifl (wZ/V*)-H'l (wZ/V*)Hl (wh/V*)/Hl (wh/v*) (84)

- ff'~) (wH/v*) -if~ (wH/v*) Iii' (wh/v*) /Rq> (wh/v*)

The above formulas apply only to steady oscillatory

motions. If n equidistant displacement values are obtained

from a digitized seismogram, the transient motion of the

dam base can be analyzed to a series of harmonics by

applying Fourier techniques and a least squares criterion

(Appendix 2). This procedure allows the user to select a

nu~)er of harmonics less than the number of equidistant

tabulated data points but sufficient to accurately represent

the transient motion. The frequencies obtained from the

harmonic analysis can be maintained without the need of

introducing the critical damping ratio into Equation (73).

Each one of the harmonic components of the Fourier transform

generates a solution of the form of Equation (82). The

superposition of these solutions by an Inverse Fourier

Transform provides the transient response of the dam to
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the applied excitation. A computer program written in

FORTRAN IV Language to perform all the above calculations

is presented in Appendix 7.

Na.:twr.ai. Etequenc.i.u an TJW.nc.ated VaYn6

Considering the undamped vibration of a wedge-shaped

dam of height H, the natural frequencies of oscillation of

the dam are obtained from the zero values of the frequency

equation Jo (wH!P.7G) = O. Thus, for the first mode of

vibration the fundamental frequency is:

w = 2.4 rc.;­
n H \j P (85 )

The degree of truncation h of the crest of a wedge-

shaped dam as well as the amount of damping influence its

natural frequency. The bracketed term in Equation (82) is

the amplification factor of the response. A plot of the

modulus of the amplification factor for different fre-

quencies versus these frequencies (Figure 19), for a given

degree of damping, reveals the response characteristics of

the system. Two dams with H = 100 ft, h = 25 ft, and

H = 150 ft, h = 25 ft were studied. The mass density of the

dam material was assumed to be p = 3.1 slugs/ft 3 and the

shear modulus G = 650000 psf. Two values of viscosity were

considered: ~ = 0 and ~ = 6250 lb-sec/ft 2 • The natural

frequency of the 75 ft high truncated dam for both viscosity

values was about the same, equal to w = 12.22 rad/sec. For
n

higher damping, it would be expected that the corresponding
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frequency would be less than 12.22 rad/sec. The undamped

natural frequency of the whole 100 ft high wedge from

Equation (85) is 10.99 rad/sec. The natural frequency of

the 125 ft high truncated dam for both viscosity values was

found to be w = 7.70 rad/sec. The undamped natural fre-n

quency of the corresponding 150 ft high wedge is w = 7.33
n

rad/sec.

Response curves of the type of Figure 19 are very

useful in studying resonance effects in dams.

The same basic partial differential equa-tions

governing the propagation of shear waves through tapered

cross sections are used in the following analysis, namely

the equation of motion (Eq. 67) and the equation of state

(Eq. 68). If Equation (68) is differentiated with respect

to time, it can be written in terms of the horizontal par-

ticle velocities V:

(86)

The equation of motion (Eq.67) can also be written

in terms of the horizontal particle veloc1ties V:

dT T dV
dZ + Z - p at = 0

The third term of Equation (86) containing the

(87)

viscosity II may be represented by a finite difference approx-·

imation as:

(88 )
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where 6t is a selected time interv~l and the subscript

C refers to the value determined at point C on the z-t

diagram of Figure 20. Combination of Equations (86) and

(88) gives:

~ _ (G +~) 3V + ~ (3V = 0at 6t az az)c (89)

Equations (87) and (89) can be transformed into four

ordinary differential equations by the method of charac-

teristics. Equation (87) is multiplied by an unknown

multiplier e and is added to Equation (89) to give:

(90)

The bracketed terms in Equation (90) become total

derivatives if:

dz 1 ~
dt = e = ep (G + fit)

Equation (91) solved for e gives:

(91 )

G+_~_=
P pflt

(92 )

whe]~e v is the apparent shear wave velocity in ft/sec.
s

Two pairs of ordinary differential equations originate

from Equation (90), one pair with the positive value of e

(c+) and the other pair with the negative value of e (c-):
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Figure 20. z-t diagram. Method of characteristics.
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(
dT dV + T ..ll-. av

0 (93 )dt - pv v - + (az) c =s dt s z 6t
c+

1
dz (94 )dt = v s

dT dV T L 3V 0dt + pv v + (a-z}C =s dt s z flt

C
dz
dt = -vs

(95)

(96 )

In a central finite difference form using a second

order approximation, Equations (93) and (95) reduce to:

C : (98 )

where the subscripts A, B, and P refer to values at the

corresponding points of the z-t diagram (Figure 20).

Equa.tions (97) and (98) apply in both cases of a wedge-

shaped cross section and of a cross section with truncated

top.

In cases where the dam crest is of finite width

(h i O), a better approximation of the third term of

Equations (93) and (95) emanated from Professor Wylie's

suggestion that only T should be approximated. This term
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if integrated becomes:

Lp+LA Z
c+)/1- v dt =f~ dz = In-l: {for (99)Z s Z 2 zA

Lp+LB zB
(for -= In- C ) (100)2 zp

By using this approximation, Equations (97) and (98)

may be rewritten as:

c+: l - L - pv (V - V ) +
Lp+LA zp VB-VA

0 (101)2 In- +l.l =PAs P A zA 2 f1z

-
lp- LB + pvs (Vp - VB)

Lp+lB ZB VB-VA
C . - In- + j.l 2 f1z = 0 (102).

2 zp

All quantities with subscripts A and B refer to the

previous time increment and are known. Also:

Zp = zA + f1z = zB - f1z

where
f1t~%f1z = + j.l

pf1t

(103)

(104 )

The method is not restricted to constant values of G,

p or j.l. For example, in case the shear modulus is consi-

dered to be a function of depth, the distance intervals

computed from Equation (104) will not be equal. However,

G should be considered constant within each layer having

the value calculated at mid-thickness of the layer.
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To determine the unknowns Tp and Vp,Equations (101)

and (102) are solved conveniently'by grouping all known

quantities for each of these two equations and calling them

CP and CM:

LA zp VB-VA
pVsVACP = L - In- - ]J -A 2 zA 2 t:..z

CM
LB zB VB-VA

= LB + "2" In- - ]J + PVSVBzp 2 fj,z

(105)

(106)

Equations (101) and

L = (CP + CM)/(2p

(102) then yield:
z

+ lnh)
zAzB

(107 )

Zp
= (Tp(l + 0.5 In-) - CP]/pv

zA s
(108)

At the crest where zp = h, the boundary condition

is expressed as L p = O. The C characteristic equation

becomes:

(109 )

The particle velocity Vp at the crest of the dam is

readily available from Equation (109). At the base of the

darn where zp = H, the boundary condition is that Vp is

known as a function of time for the seismic motion under

consideration. The C+ characteristic equation becomes:

= 0 (110)
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The shearing stress Tp at the base of the dam is

obtained by solving Equation (110). The next step is to

compute Tp and Vp for all layer interfaces for the next

time interval and repeat the procedure stepwise in the

time domain. A computer program in FORTRAN IV Language

which performs the necessary step-by-step calculations is

presented in Appendix 8.

Four tapered dam cross sections were selected for

study. Cross Section III is a whole wedge. The other

three cross sections present a truncated crest (Figure 21).

Examples 2 and 3 are of a rather academic nature since soil

properties were selected in such a way as to facilitate a

comparative analysis, and a study of the influence of an

earth dam height on its frequency responses. However, it

should be noted that the methodology developed previously

is applicable for any selected realistic data.

E~ple 1. The analytical method and the method of character­

istics were compared in the case of harmonic vibrations.

Cross Section I was used having h ; 5 feet, and H ; 50 feet.

The average value of the density of the earth material was

assumed to be p = 4.0 siugs/ft 3 and the average shear mod­

ulus G = 10 6 psf. The base developed a horizontal sinusoidal

velocity of the form V = 0.2 sin4~t in feet per second. The

dam material was considered to be elastic (~ = 0). A time

interval of 6t = 0.01 seconds was used in the method of
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Figure 21. Tapered dam cross-sections.
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characteristics which resulted in a distance interval I1Z = 5

feet (9 reaches) and a shear wave velocity v . = 500 it/sec.s

Applying the method of characteristics, the generation of

\an initial transient should be avoided since there is no

damping mechanism to dissipate it. For this purpose, the

values of shearing stresses and velocities calculated by

the analytical method at time t = 0 were adopted as initial

conditions for the method of characteristics. The two

methods were in perfect agreement for all subsequent time

steps in calculating the particle velocities at the dam

crest (Figure 22).

The same example was examined considering the dam

material to be viscoelastic. Viscosity ~ = 20000 Ib.sec/ft 2 ,

soil mass density p = 4 slugs/ft 3 , and shear modulus

G = 800000 psf were assumed constant throughout the dam. A

time interval of I1t = 0.01 sec was used in the method of

characteristics. The distance interval was found to be 5

feet and the apparent wave velocity was 500 ft/sec. For

the same excitation at the dam base, initial conditions for

the method of characteristics were considered the static

shear stresses and velocities at time t = 0, all equal to

zero. The initial transient generated, dissipated after

18 cycles. The particle velocities at the dam crest com­

puted by the analytical method and the method of charac­

teristics appear in Figure 23 at the beginning of the 19th

cycle. The agreement between the two methods was satis­

factory.
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Example 2. A 75 feet high d~m with trunc~ted crest (Cross

Section II, Figure 21) was considered resting on a horizontal

rock base subjected to the S69°E component of the Taft, 1952,

earthquake. The first 12 seconds of the accelerogram appear

in Figure 24. Shear modulus G = 650000 psf, viscosity

~ = 6250 lb·sec/ft 2 and soil mass density P = 3.1 slugs/ft 3

were considered constant throughout the dam. A time incre­

ment of 0.05 sec was used in the method of characteristics.

The apparent wave velocity was 500 ft/sec and the dam was

divided into three reaches, each 25 feet thick. The dis­

placement and velocity responses at the crest of the dam

are plotted in Figures 25 and 26. The shearing stresses

developed at the base of the dam appear in Figure 27a.

The analytical method was also used to solve the

above problem. Displacements at the base of the dam were

obtained every 0.05 sec by twice integrating numerically the

accelerogram of Figure 24. The result is presented in the

lower graph of Figure 25. This displacement diagram was

analyzed into 24 harmonics by using Fourier transform in

conjunction with a least squares criterion (Appendix 2) •

The amplification factor at the dam crest for each harmonic

was computed from Equation (82) and an Inverse Fourier

Transform reconstituted the transient response which is

plot-ted in the upper graph of Figure 25. The comparison with

the displacements obtained by the method of characteristics

was considered unsatisfactory. The reason that smoother

results were obtained by the analytical method was that the
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24 harmonics did not model frequencies less than 0.625 sec.

Therefore, the problem was solved again by analyzing the

base motion into 48 harmonics. The response at the crest

found from the analytical solution was substantially the

same as that found from the method of characteristics

(Figure 25). In both cases, the base rock displacement

record which was analyzed into 24 or 48 harmonics, was

extended to 15 seconds with the displacements dropping

gradually to zero. This resulted in better Fourier trans­

forms especially for the time intervals from 0.0 to 1.0 sec

and from 11.0 to 12.0 sec.

A dam of Cross Section III (Figure 21) was selected

to study the influence of a truncated crest on the responses

of a dam to a seismic disturbance. This cross section is

similar to the Cross Section II previously used, the dif­

ference being that Cross Section II is truncated. The same

soil properties were retained. The response of th~ dam at

elevation E, 75 feet above the base (at the same elevation

with the crest of Cross Section II), to the S69°E component

of the Taft 1952 earthquake was found using the method of

characteristics. Displacements and velocities at E are

presented in the middle plot of Figures 25 and 26. Shear

stress at the base of the dam is plotted in Figure 27b. It

is observed that all values obtained are larger than the

corresponding values at the crest of the dam with Cross

Section II. The two cross sections have different natural
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frequencies but it seemstha.t concentrAtion of stresses and

a stronger reflection pattern a.t the crest D of the Cross

Section III accounts for part of the differences.

E~pie 3. A 125 feet high dam with truncated crest (Cross

Section IV, Figure 21) was selected to demonstrate resonance

effects. The dam material was assumed to have p = 3.1

slug/ft 3
, G = 650000 psf, ~ = 6250 1b e sec/ft 2 and the time

increment used was ~t = 0.05 sec (then ~z = 25 ft and

v = 500 ft/sec). The dam rested on a horizontal rock bases

subjected to the S69°E component of the Taft earthquake,

1952. The response spectrum of this earthquake reveals a

predominant frequency of about 7.4 rad/sec. The natural

frequency of the structure from Figure 19 was found to be

7.7 rad/sec. The displacements and velocities at the crest

and the shearing stresses at the base of the dam, computed

by the method of characteristics, are presented in Figures

28 and 29. The excessive magnification of these responses

is in accordance with the closeness of the natural periods

of the excitation and the structure.

~pie 4, A 100 feet high wedge-shaped dam (Cross Section

III, Figure 21) has a constant shear modulus G = 4 X 10 6

psf and a density of 130 Ib/ft 3
• The base of the darn is

subjected to the North-South component of the 1940 El Centro

eart.hquake accelerogram. Two methods were used to obtain
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the response accelerations at midheigh't a.nd at the crest

of ,the dam: the method of characteristics and Seed and

Martin's analytical solution [63].

A time increment 6t = 0.01 sec was used in the method

of characteristics. Soil viscosity was assumed to have a

constant value ~ = 71250 Ibosec/ft 2 • Six reaches were

used, each of thickness 6z = 16.67 ft. The apparent wave

velocity was found to be v = 1667.71 ft/sec.s

A time increment 6t = 0.02 sec was used in Seed and

Martin's solution. A damping factor of 0.2 was assumed,

constant for each mode. Equation (6) of reference [63]

was used and the responses for the first six modes of

vib:ration were superimposed.

The results obtained by both methods are plotted in

Figure 30, and are of a very similar form despite the

differences. Since the damping mechanisms used by the

two methods were different and the first six modes were

only considered in the analytical solution, quantitatively

the results obtained by the two methods were in unexpectedly

good agreement.



CHAPTER VI

ONE-DIMENSIONAL PRESSURE WAVE PROPAGATION
THROUGH SATURATED SOIL DEPOSITS

In evaluating the response of saturated soil deposits

under seismic loading, a method for the determination of

pore pressures and intergranular stresses is necessary.

Due to lack of such a method early attempts were made [14,33]

to model the saturated soil by an equivalent solid with the

same total properties.

Another approach to the problem of wave propagation

through saturated porous media was to assume that the porous

rnaterial consisted of a homogeneous and elastic frame with

the pores filled with liquid. Zwikker and Kosten [75] stud-

ied the propagation of one-dimensional pressure waves through

porous materials with the pores filled with air. They mainly

used the concept of impedance to examine problems of sound

absorption.

Biot [9] presented in 1956 the most complete treat-

ment of the problem. The three-dimensional propagation of

shear and pressure waves in an infinite fluid saturated

porous solid with elastic properties was analyzed. The fluid

was considered to be viscous, compressible and free to flow

through the pores. Stress-strain relationships were devel-

oped for the material in terms of the elastic constants of

the fluid and the solid frame and two additional constants

relating to the coupling between the fluid and solid con-

stituents. These relationships were introduced to the

84
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equation of motion whose solution as developed holds only

for cases of harmonic vibrations of a medium of infinite

extent. Ishihara [38,39] using the continuity equation and

some specific test conditions succeeded to relate Biot's

coupling coefficients to the compressibilities of the indi­

vidual constituent materials. Ishihara's results made Biot's

approach more realistic.

In 1960, Deresiewicz [17] treated the problem of the

one-dimensional propagation of elastic waves in a semi­

infinite non-dissipative liquid-filled porous solid. A gen­

eral solution of Biot's differential equations was deduced.

These field equations govern the relationship between the

displacements in the solid and the displacements in the

liquid. An approach used to solve similar equations of

linear thermoelasticity was employed, namely the resolution

of e:ach of the solid and liquid displacements into a lamel­

lar and a solenoidal part (Helmholtz resolution). However,

the solution obtained did not find any practical application.

Biot [10,11] incorporated internal dissipation to his

theory considering the solid frame to be viscoelastic. The

theory of deformation in a porous viscoelastic medium was

developed on the basis of the thermodynamics of irreversible

processes. Biot stated that "the equations governing the

mechanics of porous media are formally the same for an

elastic or viscoelastic system, provided that the elastic

coefficients are replaced by the corresponding operators."

Thus, the effects of viscous damping were included into the
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elastic constants and the coupling coefficients by introduc­

ing two relaxation constants. According to this approach,

the solid was considered elastic for rapid deformations

while it was considered viscous for slow deformations (type

of Maxwell solid). However, a theoretical or experimental

procedure to define these new constants was not presented

and still none is available, seriously restricting the appli­

cation of this theory.

Ghaboussi and Wilson [22,23] in 1971 developed a

numerical method for the dynamic analysis of a saturated

porous solid. The field equations of Biot's theory [9] were

used to systematically develop a Gurtin-type variational

formulation of the problem. The response of a half-space to

a step loading applied to the free surface was examined.

The system consisted of a sequence of one-dimensional elements

along the vertical axis. Wave reflections at the base rock

were not considered since the fixed boundary was located at

such a distance from the surface that it was not reached

from the motion during the time of interest.

It becomes apparent that solution techniques have

lagged behind the development of the theory for nearly a

decade. Experimental work to evaluate the effects of void

ratio, degree of saturation, grain characteristics, and con­

fining pressure on the shear and pressure wave velocities in

granular materials was carried out by Hardin and Richart [26].
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AnalytiealMethod

Assuming a conservative physical system statistically

isotropic, comprised of an elastic solid skeleton and of

compressible liquid free to flow through the pores, Biot [9]

derived stress-strain relations containing four distinct

elasi:ic constants. These relations in the vertical z-dir-

ection reduce to:

(J (2G+:\ ) dW + Q
dW= az8z

Q dW + R
dWs = -np = azdZ

(Ill)

(112)

where (J = stress at the z-direction on the solid part of a

unit area, positive when tension; s = stress on the fluid

part per unit area, negative when pressure; p = porewater

pressure; n = effective porosity; G and :\ = Lame's constants,

G being the modulus of rigidity; Q and R = coupling coeffi-

cients relating to the coupling between the fluid and solid

constituents; w = vertical displacement of solid particles

at a depth z from the ground surface; W= vertical displace-

ment of liquid particles defined in such a way that the pro-

duct of this displacement by the cross-sectional fluid area

represents the volume flow.

If the total volume of the aggregate is held constant,

R is a measure of the pressure required to push a certain

additional volume of fluid into the aggregate. The constant

Q is a coupling coefficient between the volume change of the

solid and that of the fluid. Ishihara [38] by using the



88

equation of continuity and an expression for the internal

energy of the system plus some rather theoretical specific

states of stress (unjacketed compression test, jacketed

test), arrived at the same equations of state as Biot (Equa-

tions III and 112). However, in the process of doing so,

Ishihara obtained expressions for the coupling coefficients

relating them to the compressibilities of each of the sys-

tem's substances:

-n[(n-l)C + C ]
Q = P s

Cb(C~-Cs) + C C
P s

R
nCb

=
Cb(C~-Cs) + C C

P s

(n-l)2C + (n-l)C + C~ 2and also A = P s G
Cb(C~-Cs) + C C 3p s

(113)

(114)

(115)

where C = compressibility of the soil particles; C = pores p

compressibility; C~ = fluid compressibility, and Cb =

n C + C = bulk compressibility of the soil skeleton.p s
Biot derived the dynamic equations of equilibrium

using Lagrange's equation. The concept of generalized co-

ordinates was employed according to which the position of

every particle is completely determined when the values of

the independent variables (or generalized coordinates) wand

ware known. Biot's dynamic equations of equilibrium in the

vertical z-direction neglecting the effect of gravity forces

are:
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where

a 2 _
b

a - ao
dt 2 (PII W+PIZ W) + a£(W-W) =

~

a 2 _
b a - as

atz (PIZW+P22W) - --(w-w) = Eat

P11 = (l-n)PS + Pa

P22 = n PL + Pa

P12 = -Pa

~L n 2

b = K

(116)

(117)

(118)

(119)

(120)

(121)

In the above relations PII and P22 = mass of solid

and liquid per unit volume of aggregate, respectively; Ps
and P

L
= mass densities of the solid and liquid respectively;

Pa = apparent mass density due to the fluid, considered to

be zero at low frequencies by Ishihara; ~L = dynamic viscos­

ity of the fluid in Ib e sec/ft 2
; and K = intrinsic permeabil­

ity, a characteristic of the medium alone, in ft z •

The author, working with Eulerian coordinates, assum-

ing Darcy's friction as the dissipation mechanism, derived

the equations of motion for the solid and the fluid constitu-

ents respectively including the effect of gravity forces

(Appendix 4). These equations prove to be identical with

Biot's equations of equilibrium (116) and (117) if the grav-

ity effect was neglected.

Because of the assumption of statistical isotropy of

the material, Biot concluded that the rotational or shear

waves are uncoupled from the dilatational or pressure waves
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and obey independent equations of propagation. This is cor-

rect, since elastic materials do not undergo changes in vol-

ume when subjected to shear. The presence of fluid in the

pores little affects the propagation of shear waves. There-

fore, the subsequent analysis is concentrated on the pressure

waves.

By substituting the equations of state (Ill) and (112)

into the equations of equilibrium (116) and (II?), Biot [9]

obtained the following two differential equations (reduced

here to the z-direction):

aZ [(' 2G) + Q-] aZ ( + --) + b a (w-w)az z A+ w w = at Z PIIW PIZW at (122)

= az ( + -) _ b a(w-w}
at2 PlZW PZzW at (123)

The bulk mass density is P = Pil + 2P12 + PZ2 and the

bulk modulus of compressibility is B = M + R + 2Q where M =

A + 2G is the constrained modulus of elasticity. It is

convenient to introduce the following non-dimensional para-

meters:

and

CI = M/B, Cz = R/i3,

F2 = P22/P,

where Cl + Cz + 2C3 = 1 and FI + F 2 + 2F 3 = 1, i.e. there

are only four independent parameters. The parameters C.
J

define the elastic properties of the material and the

parameters F. its dynamic properties.
J
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Substitution back into Equations (122) and (123)

yields:

C aZw + a 2 w 1 (F a
2
w + azw b () (w-w)

(124 )C3-- =
v Z F3

at
Z) +

pvzlaz z az z lat Z at
c c

aZw a 2 w 1 (F a Zw + azw b a (w-w) (125)C'I-- + Cz-- =
v Z F Zat 2 ) -

pv 2'az 2 az z 3at 2 at
c c

where v = /S/p is a characteristic wave velocityc

depending on the bulk properties of Jehe material c In Equa-

tions (124) and (125) the elastic properties and the densi=

ties of the aggregate constituents were considered to be

cons·tant with depth. Therefore, the only unknown quan'ei ties

are the displacements wand w.
Biot and Ishihara studied the propagation of elastic

waves through a saturated medium of infinite extent. If

horizontal bedrock is underlying a saturated soil deposit

and if a free surface exists where stresses should be zero,

a more general solution is needed. Such a solution is pre-

sented in the following and accounts for wave reflections at

the boundaries. Normal incidence is assumed, so incident

waves are reflected back as themselves not accompanied by

waves of other types.

Assuming that the harmonic excitation applied at the

bedrock has a circular frequency w, steady state solutions

to Equations (124) and (125) may be written as:

w(z,t) = A exp(iwt+iwz/vd )

W(z,t) = B exp(iwt+iwz/v
d

)

(126)

(127)
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where A and B are constants to be found from the boundary

conditions; and v
d

is the dilational wave velocity.

Calling XQ = vc/vd and

x = ib
pw = (128 )

and substituting Equations (126) and (127) into Equations

(124) and (125), two compatibility relationships are obtained:

(FI - X~CI - X}A = (X~C3 - F3 - X}B

(F 3 - X~C3 + X}A = (X~C2 - F 2 + X}B

(129 )

(130)

Division of these two equations by parts gives:

or

F I - XijCI - X

F 3 - X~C3 + X
= X~C3 - F 3 - X

X~C2 - F 2 + X
(131)

Four roots XII -XII X2, and -X2 are obtained from the

solution of the biquadratic equation:

Then, Equation (132) can be written as:

(134 )

From Equation (134) four complex roots XII -Xl' X2

and -X2 are obtained. Since Xo = vc/vd , four complex

values of the pressure wave velocity vd emerge:
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= v /(-X2) ==c

(135)

Three factors S~, 61, S2 are introduced for conven-

ience, as follows:

6~ == iwt, f3 1 :::: iwz/vd 1 1 ,-)2 :::: iwz/v
02

(136)

Equations (124) and (125) are partial differen~

tial equations and superposition of solutions of the form of

Equations (126) and (127) results in the following general

solu.tions:

w=A jexp (13 ~+13 I> +Ai'exp (S ~ -S I ) +A z8Xp (/3'" +( 2 ) +]l,; exp \ B... -8 2 )

W"=B j exp(S"'+SI)+Blexp(S"'-SI)+B2 8Xp(S"'+8z)+Bzexp(S"'-62)

(137)

(138)

where All All Az , A~, B lI Bi', Bz , and Bz are coefficients to

be evaluated from the boundary conditions.

From Equations (137) and (138) it is observed that

there are two pressure waves propagating through the satu-

rated medium with wave velocities v d and v,. The first
1 Q2

two terms of Equations (137) and (138) represent the incident

and reflected waves traveling with a velocity vd 1 throug-h t.he

medium. The other two remaining terms represent the incident

and reflected waves of phase velocity v
dz

' Many investiga­

tors refer to the two pressure waves as the fluid wave and

the frame wave although there is coupled motion of the fluid

and the frame in both waves. Therefore, both waves travel

through both the solid skeleton and the liquid except in

cases of a very weak coupling.
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u = ow/at = iww (152 )

The stresses 0 and s acting on the solid and liquid

parts respectively are:

(153)

(154 )

The stresses computed from Equations (153) and (154)

are dynamic, i.e. are changes of stress from the initial

static conditions. The analysis presented above is also

valid for the case of no dissipation with the fluid dynamic

viscosity considered zero, which however is not a realistic

situation. In this case X = 0, Xl = Xl, Xl = X2 and Xl' Xl'

V
dl

and v
dl

are not complex but real.

The analysis presented above only applies to harmonic

motions. If n equidistant displacement values are available

from a digitized seismogram for the transient motion of the

bedrock, a Fourier transform with a least squares criterion

(Appendix 2) could be used to analyze the transient motion

in a selected number of harmonics. Superposition of the

solutions obtained for each harmonic provides the transient

response of the system to the seismic action considered. A

computer program to perform all necessary calculations is

presented in Appendix 9.
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The particle velocities of the solid and liquid con-

stituents of a saturated soil deposit are denoted by V=Clw/Clt

and U=dW'/dt respectively. Biot's equations of equilibrium

in the z-direction (Equations 116 and 117) may be written as:

dO dV _ b (V - U) 0 (155)az - P I I =at

'Os dU + b (V - U) 0 (156)az - P22 =Clt

The apparent mass was omitted from Equations (155) and

(156) since the particles are of small size and the relative

velocities are also small. If Biot's equations of state (Ill)

and (112) are differentiated with respect to time, they may

be written in terms of the particle velocities V and U as:

dO dV au
dt - M dZ - Q az = 0

~ _ Q dV _ R au = 0
dt az az

(157)

(158 )

where M = A + 2G is the constrained modulus of elasticity.

In case the soil is dry, the parameters s, P22, U,

llL' b, Q, and R become zero. Equations (155), (156), (157),

and (158) degenerate to two equations for the one-dimensional

propagation of pressure waves through elastic unsaturated

soil:

dO dV
- - PII = 0dZ at

(159 )

(160)
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Equations (159) and (160) present a striking similarity

to Equations (39) and (41) which model one-dimensional shear

wave propagation. The normal stress a and the constrained

modulus M are used instead of the shear stress T and the shear

modulus G. Therefore, by solving Equations (155) to (158),

both cases of one-dimensional propagation of pressure waves

through saturated or unsaturated elastic porous media can be

studied.

Equations (155) and (156) and therefore Equation (159)

do not include the effect of gravity forces. Thus, solutions

obtained by using these equations are purely dynamic. How-

ever, since the equations are linear, superposition of static

stresses would provide the real stress response of the system,

if desired.

Equations (155) and (157) are transformed into four

ordinary differential equations by the method of characteris-

tics. Equation (155) is multiplied by an unknown multiplier

8 1 and is added to Equation (157) to give:

The bracketed terms become total derivatives if:

dz M
erE = 81 = 81P11 (162)

From the solution of Equation (162), the pressure wave

velocity vM through the soil skeleton is obtained:

(163)
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The four ordinary differential equations then are:

do dV aU 0 (164)at- VMP 11 - - bv (V-U) - Q (az)e ==

e+
dt M

M
dz
dt - vM

(165)

do + dV au 0 (166)vMP 11 dt + bvM(V-U) - Q <az)e ==
dt

eM
dz
dt - -v (167)M

The sUbscript e indicates the value determined at

point e of the z-t diagram in Figure 31. Using the same

approach, Equation (156) is multiplied by an unknown multi-

plier 82 and is added to Equation (158) to give:

[e2~: + ~~J - e2P22[82~22 ~~ + ~J + 82b(V-U) - Q ~~ = 0 (168)

The bracketed terms become total derivatives if:

dz R
-=82=""-­dt 8 2P22 (169)

From the solution of Equation (169), the pressure wave

velocity v L through the liquid part is:

(170)

Equations (156) and (158) are transformed into the

following four ordinary differential equations:

e
L

ds dU av
at - V L P22 at + bvL(V-U) - Q (az) C ::: 0

dz
-= v

Ldt

ds + dU (dV)VLP22 at - bv (V-U) - Q = 0dE t L dZ C

dz _
-vdE- L

(171)

(172)

(l73)

(174)
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Figure 31. z-t diagram. Saturated porous media.
Method of characteristics.
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In Figure 31 the time (t) - distance (z) grid for the

finite difference approximation is shown. Since v M is always

smaller than vL ' the saturated soil layer is partitioned into

distance intervals equal to 6z = v L6t where 6t is a selected

time interval to be kept constant throughout the calculations.

Then v M6t = 6z; < 6z at all tim~s, a condition necessary to

satisfy stability criteria of the method of characteristics.

For the interior points of the z-t diagram (Figure 31),

the central finite difference form of Equations (164), (166),

(171), and (173) using a second order approximation is:

All quantities with subscripts A, B, C, Rand S refer

to the previous time step (z-t diagram, Figure 31). Using

specified time intervals 6t, the conditions at points Rand S

can be evaluated by linear interpolations as follows:

UR = Uc-(UC-UA)v~vL' Us = Uc-(UC-UB)vM/vL

V = Vc-(VC-VA)VM/VL' Vs = Vc-(VC-VB)vM/vL (179)R

° = °C-(OC-OA)vM/vL , Os = °C- (OC-OB) v:r-lvLR
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The four unknowns 0p' sp' Vp ' and Up are obtained from

the solution of Equations (175) to (178) and (179). All

known quantities in each of Equations (175) to (178) are

grouped together for convenience:

CP2 = s ­
A

CPl

CMl

CM2

~t US~UR
= oR - PIIVMVR + bVM ~(VR-UR) + Q6t 26z~

6t US-UR
= Os + PIIVMVS - bVM ~(Vs-US) + Q6t 2~z~

6t VB-VA
P22 VLUA - bVL ~(VA-UA) + Q6t 2~z

(180)

(181)

(182 )

(183)

also

(184)

The solution of Equations (175) to (178) written in

terms of the above quantities is:

0p = (CPl + CM1)/2 (185)

sp = (CP2 + CM2)/2 (186)

Up = ~l (CPI-CMl) + ~4(CP2-CM2) (187)
2 (~1~2-~3~4)

Vp = ~3(CPl~CMl) + ~2(CP2-CM2) (188 )
2(~1~2-$3~4)

At the surface (z = 0) , the boundary conditions are

expressed by 0p = 0 and sp = O. The C; and C~ characteris­

tics Equations (176) and (178) are solved to find the par­

ticle velocities Vp and Up at the surface. Equations (176)

and (178) can be written as:
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US-UC
CCM1~~Vp-~2Up = as+PIIVMVS-~2(Vs-Us)+Q6t 6z~ = (189)

~9Up-~IVp
~~ CCM2 (190)= SB+P22VLUB+~I(VB-UB)+Q6t 6z =

The solutions are: = ~1'CCMl+~4'CCM2

W3~4-~1~2
(191)

(192)

At the bedrock (z = H) the particle velocities Vp

and Up are equal and known as a function of time for the

seismic motion considered. The C: and C~ Equations (175)

and (177) are solved to find 0p and sp at the bedrock:

(193)

(194)

It should be noted that using the method of charac-

teristics, the guantities M, Q, R, PIl, PZ2 and b can vary

with depth; they should be considered constant only within

each reach of thickness ~z. The method, as developed here-

in is applicable to cases where there are more than one

saturated or unsaturated soil layer present in the soil

formation. This method is not restricted to harmonic vibra-

tion cases. Appendix 10 includes a program written in

FORTRAN IV Language which performs all necessary calculations.
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Example 1 A saturated sand layer 200 feet thick rests on a

horizontal rock base subjected to a harmonic excitation of

the form V(H,t) = U(H,t) = 0.2 sin4nt or w(H,t) = w(H,t) =

-0.016 cos4nt. Specific mass densities are assumed to be

Ps = 5.11, PL = 1.94, Pa = 0.5,p = 4.0 in slugs/ft 3
• Elastic

constants are G = 4 X 10 6 , A = 37.5 X 10 6
, R = 20 X 10 6

,

Q = 10 X 10 6 in psf. Two cases are examined, with and with­

out dissipation.

The influence of porosity n is studied in the case of

no dissipation, which however is not a realistic situation.

The pressure wave velocities were found to be v
d1

= 2820

ft/sec, vd2 = 5100 ft/sec for n = 0.35 and v d1 = 2668 ft/sec,

v
d2

= 4958 ft/sec for n = 0.45. The water and solid particle

velocities at the surface of the deposit were computed from

the analytical method and are presented in Figure 32. The

difference between solid and fluid velocity ampitudes (rela-

tive velocity) decreases for increasing n, since increased

porosity reduces the resistance to the flow of the fluid

through the pores. No difference in phase is obsered since

dissipation is absent.

Disipation is next introduced by assuming that water

viscosity is ~L = 1.8 x 10- 5 lbosec/ft 2 and intrinsic perme­

ability is K = 14.4 X 10- 9 ft 2 . Porosity is assumed to be

equal to 0.35. The damped pressure wave velocities were

computed as vd1 = 677 ft/sec and vdz = 4624 ft/sec. The

water and solid particle velocities at the surface of the
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Figure 32. Water and soil particle velocities at surface of a 200 ft
thick saturated soil deposit, for different values of porosity. No
dissipation (~L = 0).
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Figure 33. Water and soil particle velocities at surface of a 200 ft
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saturated soil deposit were computed by using the analytical

method and are presented in Figure 33. The solid and water

particle velocities have about the same amplitudes, with the

amplitude of the latter being larger. However, because of

the phase difference due to the presence of dissipation,

relative velocities are of considerable magnitude. From

several other similar examples, it was observed that an

increase in permeability decreases the phase difference, i.e.

for very large permeability values the solid and fluid consti-

tuents tend to move together.

Example 2 A 200 feet thick saturated sand layer is resting on

horizontal bedrock which develops a sinusoidal velocity of

the form V(H,t) = U(H,t) = 0.2 sin4TIt (ft/sec). Porosity is

assumed equal to n = 0.30. Specific mass densities are

assumed: Ps = 5.13, PL = 1.94, Pa = 0.0, and P = 4.173

slugs/ft 3
• Elastic constants are G = 6 X 10 6

, A = 56 X 10 6
,

R = 27 X 10 6 and Q = 11 X 10 6 in psf. Two cases are examined,

with and without dissipation and the results obtained by the

analytical method and the method of characteristics are

compared.

For zero dissipation, the sand layer was divided into

five 40-feet thick reaches with the time interval selected

for the method of characteristics being ~t = 0.00587 seconds.

The pressure wave velocities computed are v L = 6811 ft/sec

and vM = 4351 ft/sec. The dynamic pressure 0 on the soil

skeleton computed 80 feet below the surface by the analytical

method is plotted in Figure 34. To avoid the generation of
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an initial transient, conditions found at time zero through­

out the layer by the analytical method were used as initial

conditions for the method of characteristics. Linear inter-

polations and fifth order Lagrange interpolations were used

in conjunction with the method of characteristics. The

dynamic pressure on the soil skeleton computed by the method

of characteristics for both interpolation schemes is in

agreement with the analytical solution as shown in Figure 34.

Dissipation is next introduced by assuming that the

water viscosity is ~L = 1.8 x 10- 5 Ib·sec/ft 2 and intrinsic

permeability is K = 15 X 10-9 ft 2 • For a time increment 6t

= 0.00587 sec the saturated soil layer was divided into five

40-feet thick reaches. For a time increment 6t = 0.00293

sec the soil layer was divided into ten 20-feet thick reaches.

The dynamic pressure on the soil skeleton 80 feet below the

surface computed by the method of characteristics using linear

interpolations was substantially the same for the two time

increments selected. Fifth order Lagrangian interpolations

did not improve the results obtained by using linear inter­

polations. The initial transient generated because of the

use of initial conditions zero throughout the layer, vanished

after 2.3 seconds due to the presence of the dissipation.

The dynamic pressure on the soil skeleton 80 feet below the

surface computed by the analytical method is plotted in

Figure 35. Linear interpolations and numerical approxima­

tions in the method of characteristics accounted for the

differences in the results (maximum 5%). The effect of
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dissipation on the peak magnitudes of cr can be observed by

comparing Figures 34 and 35. In the presence of dissipation

the amplitude is considerably reduced.

Example 3 A transient problem involving a real earthquake

motion is solved by the method of characteristics. The first

7.5 seconds of the vertical component of the 1952 Taft earth­

quake (Figure 36) act at the base rock of a saturated sand

deposit 1953 feet thick. Water viscosity is ~L = 1.8 x 10-5

lb·sec/ft 2
, intrinsic permeability is K = 15 X 10-9 ft 2

,

porosity is n = 0.35, mass densities are Ps = 5.11, PL = 1.94,

Pa = 0.0, P = 4.0 slugs/ft 3 and elastic constants are R =

20 X 10 6 , Q = 10 X 10 6 , A = 37.5 X 10 6 , G = 4 X 10 6 psf. The

pressure wave velocities computed are v L = 5427 ft/sec and

vM = 3701 ft/sec. A time increment ~t = 0.015 sec is assumed

constant throughout the computations. The layer is parti­

tioned into 24 distance intervals of 81.4 feet. Linear inter-

polations were used.

The dynamic stress on the soil skeleton cr and the pore

water pressure p, 81.4 feet below the ground surface, cal­

culated by the method of characteristics are plotted in

Figure 37. It can be observed that increase in pore water

pressure results to a decrease in stress on the soil

skeleton. The soil and water particle velocities computed

81.4 feet below the ground surface are plotted in Figure 38.

These two velocities are of about the same magnitude but

are slightly out of phase.

The method of characteristics provides the means to

evaluating the transient pore water pressure in a saturated
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soil deposit. If pore water pressure builds up to the point

that the effective stress becomes zero, the sand completely

loses its strength and liquefies. Since Biot's equations

hold for an elastic soil skeleton, it is obvious that only

instantaneous liquefaction can be modeled. Permanent defor­

mations and plastic rebound of the soil skeleton due to read­

just~ment of soil grains should be incorporated to solve suc­

cessfully the problem of liquefaction. At low pressure

rang"es, soil still reacts as a "strain-softening" material

and a "locking-up" model for the soil is not necessary.

Future investigations on the subject should try to incorpor­

ate a Ramberg-Osgood type of stress-strain curves in the

analysis. Thus, the constrained modulus for the soil at a

particular instant will be represented by the slope of the

tangent to the corresponding stress-strain curve. The var­

iation of the coupling coefficients Rand Q under dynamic

conditions of loading and unloading should also be studied.

Such a model would definitely provide a more realistic solu­

tion to the problem of potential liquefaction under dynamic

conditions.



CHAPTER VIl

TWO-DIMENSIONAL PROPAGATION OF SHEAR AND
PRESSURE WAVES THROUGH SOIL

The Finite Element method is a mathematical dis-

cretization technique (basic variation of the Ritz method)

where the governing differential equations are replaced

by a related system of simultaneous algebraic equations.

The material properties of the prototype are retained in

the individual elements so that varying material properties

and geometric configurations may readily be handled. Since

the advent of high speed computers, this method has been

widely used. The initial application of the Finite Element

method to the solution of linear elasto-dynamic soil pro-

blems in two dimensions is due to Clough and Chopra [14].

They studied the response of earth fill dams to earthquakes.

Idriss and Seed [34J in 1967 studied the response

of earth banks to earthquakes. The earth banks were ideal-

ized by a number of triangular elements and the Finite

Element method was used. The problem was complicated by

the necessity of extending the finite element mesh a

sufficient distance from the area of the slope in order

to obtain an accurate response picture [60]. In 1969,

Dibaj and Penzien [20] used the Finite Element method and

a step-by-step integration method to study the nonlinear

response of two-dimensional earth structures to earthquakes.

114
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The nonlLne~r problem wa.s reduced to ~ number of successive

linear problems. Relative differences between linear and

nonlinear solutions were discussed.

Dezfulian and Seed [18] applied the method of Finite

Elements to linear-viscoelastic soil deposits underlain by

sloping rock boundaries. The analysis incorporated strain

compatible values of moduli and damping factors. This

method was applied to analyze the response of the valley

passing through the Palos Grandes area during the Caracas

earthquake of July 29, 1967 [73.62,64]. The actual elastic

conotinuum was idealized as an assemblage of triangular

elements interconnected at a finite number of nodal points.

In ~these analyses, the rock motions were treated as a time

dependent phenomenon with the same motions developed at all

points in the rock at a given time. Spacial variations in

rock motions, due to wave propagation effects, were studied

by Dezfulian and Seed [19]. The interaction between soil

and embedded foundations during earthquakes was studied by

Isenberg and Adham [37] in the case of an embedded nuclear

reactor building. A finite element solution was obtained

considering a two-dimensional, dynamic, elastic continuum

representation of the soil, embedded foundation, walls,

and containment and support structures.

Results obtained by the Finite Element method near

the edges of valleys or at the toes of earth dams tend to

be erratic [18,62]. The reasons behind these inaccuracies

are: that stresses are small near these regions compared
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with the stresses in the earth structure itself; and that

triangular finite elements adjacent to these regions are

stiffer, thus restricting deformations. The computer time

required to obtain solutions by the Finite Element method

is rather excessive. Realizing the need for a more econo-

mical method, Streeter, Wylie and Richart [71] replaced

the visco-elastic continuum with a latticework of one-

dimensional linear elements as used in hydraulics [70].

The linear elements of the latticework transmitted shear

and pressure waves to the interior nodes of the lattice-

work where an imaginary nodal transfer element received and

transmitted all shear and pressure waves. The nodal element

was considered to be rigid, weightless and free to move

horizontally and vertically but not to rotate. The rigidity

of the nodal element was responsible for the lack of coup-

ling between shear and pressure waves. A force balance was

written in the x and z directions and two equations (the

+C and C characteristics equations) were used from each

linear element correlating pressure or shear with the

corresponding velocity. For the interior nodes, there were

5 equations in 5 unknowns for each of the x and z directions ..

Soil deposits with uniform properties were considered.

Cases with a shear wave velocity being half of the pressure

wave velocity were examined (i.e., v = 1/3 for ~ = 0).

This method is termed in the following "10-Latticework

method," the number referring to the number of equations

at each internal node.
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To create a coupling between shear and pressure

waves, Professor Streeter's suggestion that the nodal

transfer elements of a latticework (Figure 39) should

be deformable was adopted. Sixteen simultaneous linear

equations were obtained for each interior nodal transfer

element. Two equations represent the force balance in

the x and z direction. +A pair of equations (C and C

characteristics) from each surrounding linear element relate

preeisure and shear to the corresponding velocities. Two

equations model the deformation of the transfer element

in the x and z directions including the Poisson ratio

effects. The last four equations relate the velocities

of t~he four faces of the transfer element to the velo-

cities of the element itself in the x and z directions.

This: method is termed herein "l6-Latticework method, II the

number referring to the equations used, and it is explicit

in the solution of the equations involved at each node,

which explains the low computer cost associated with the

method.

A nodal transfer element and the sixteen unknown

quantities (shearing stresses, pressures and velocities)

are shown in Figure 40. Each of the unknowns has a two

capital alphabetic character subscript. The first char-

acter refers to the face of the nodal element (~p, ~own,

!eft, ~ight) and the second refers to the corresponding

position on the x-t or z-t diagram (Figures 41 and 42).
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One Dimensional
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-.,..-~
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Figure 39. Two-dimensional latticework
with linear and nodal elements.
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Figure 40. Transfer element and the eight unknowns
for each of the two coordinates.
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The force balance in the x and z direction yields:

(195)

(196)

where 6X and 6Z are the dimensions of the nodal transfer

element which is considered to be weightless, deformable

and free to move in the x and z directions but not to

rotate. Therefore, the relations between the vertical and

parallel velocities of the four faces of the transfer ele-

ment are:

(197)

(198)

Since there are stresses in both principal directions

x and z of the transfer element, the strain in either

direction will depend not only upon the stress in that

direction but also upon the stress in the orthogonal

direction because of the Poisson ratio effect. Differen-

tiation of the total strains with respect to time yields:

dVx
dx

dV
~
dz

(199)

(200 )

where v is the Poisson ratio and E is the modulus of
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elasticity. Subscripts indicate the two principal dir-

ections x and z. Equations (199) and (200) in finite

difference form become:

VRP-VLP crRP+crLP-crRA-crLA
+ v crUP+crDP-crUB-crDB

=!1X 2E!1t E 2 !1t

VUP-VDP crUP+crDP-crUB-crDB
+ v crpR+crLP-crRA-crLA

=!1Z 2E!1t E 2 !1t

(201)

(202)

where !1X and !1Z are the transfer element's dimensions which

may be considered equal. However, they subsequently cancel

out and they do not appear in the final solution.

Assuming that the soil material is linear visco-

elastic, the partial differential euqations governing

the propagation of shear waves through the vertical one-

dimensional linear elements of the latticework are:

aT av
0az - p at =

dT
G

av a2v
0at - az - )1 dzat =

(203)

(204 )

The same equations hold for the horizontal one-

dimensional linear elements if x is substituted for z.

The partial differential equations governing the propa-

gat:ion of pressure waves through the vertical one-dimensional

linear elements of the latticework are:

~~ - pg - p ~~ = 0 (205)

(206 )
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where M is the constrained modulus and the term pg in­

troduces the effect of gravity. The same equations hold

for the vertical one-dimensional linear elements if x is

substituted for z and if the gravity term pg is omitted.

If dynamic stress conditions are sought the gravity term

pg should be also omitted from Equation (205). In this

case, total stresses are obtained from the superposition

of dynamic and static stresses.

The method of characteristics is employed to solve

Equations (203), (204), and (205), (206) as well as the

corresponding equations in the x direction. A common time

step 6t is selected. After transforming the partial

differential equations to ordinary differential equations

by the usual procedure, the apparent shear and pressure

wave velocities are obtained:

v = J% + _ll_ (207 )s p6t

and v = ~~ + II (208 )
P p6t

The lengths of the vertical and horizontal one-

dimensional linear elements are assumed to be:

6x = 6z = 2v 6ts (209)

The one-dimensional linear elements are therefore

partitioned into two reaches for the case of shear wave

propagation. For pressure waves the condition required to
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satist'y stability criteria ot' the method of characteristics

is:

/:,x ~ V /:'t >/:'x/2
P

(209a)

and should be always satisfied. If ~ = 0, condition (209a)

holds for any v .:S 1/3. For values of ~ > 0, higher values

of v satisfy condition (209a). Usual Poisson ratio ranges

are: for sandy soils 0.25 ~ v ~ 0.35; for clay with some

sand and silt 0.30 ~ v ~ 0.40; and for clays 0.35 ~ v ~ 0.45.

Therefore, condition (209a) holds for all practical purposes.

Linear interpolations are required in this case. Figures

41 and 42 show the x-t and z-t diagrams for the two hori-

zon"tal and the vertical linear elements surrounding a

transfer element.

The finite difference expressions of the ordinary

differential equations emanating from the method of char-

acberistics for the case of shear waves are:

e+: TLP-TN-pvS{V~P-VN) + 2~ " 0/:'X(VLA-VN) =s

Hor.

e : TRP-TM+Pvs{Vip-VM) + 2~ (V -V" ) = 0s /:'x M RA

(2l0)

(211)

e+: TDP-TJ-PVS(V~P-VJ) + 2~ (V" -V ) = 0 (212)s /:'x DB J
Vert.

e : TUp-TI+pvs{V~P-VI) + 2~ ( ") 0 (213)/:'x VI-VUB =s

where v is the apparent shear wave velocity. The first
s

character of the two capital alphabetic character subscripts
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refers to the face of the transfer element and the second

to the corresponding position on the x-t or z-t diagram.

Single alphabetic character subscripts refer to positions

on the x-t and z-t diagram.

The finite difference expressions of the ordinary

differential equations emanating from the method of char-

acteristics for the case of pressure waves are:

c+: aLP-aR+Pv (VLP-VR) tx (VLA-VR) = 0p p

Hor.
-

aRP-aS-pvp(VRP-VS) :x (VS-VRA) 0c . - =.
p

(214)

(215)

Vert.
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The 16 unknowns that appear in Figure 40 are ob-

tained from the solution of the linear simultaneous

Equations (195) to (198), (201), (202), (210) to (217)

together with Equation (218). To present the solution,

it becomes necessary for purposes of clarity to group known

quantities under different headings:

co = p (vS +vp )

Cl = ]l/L1x

C2 = 211/b.x

CC = pgVpL1t

CM = pv -211/L1x
S

CCM = pv -ll/(V L1t)p p

Fl = cr -CCM·V -Cl·VS S RA

F2 = cr
R

+CCM.V
R

+C1·V
LA (219)

F3 = crR~+CCM.VR~+Cl'VDB-CC

F4 = °S~-CCM'VS~-Cl'VUB+CC

F5 = L -CM· V -C2·~N N LA
~

F6 = L M+CM .VM+C2 'VRA

~

F7 = L -CM·V -C2·V
J J DB

~

F8 = L r +CM.Vr +C2,V
UB

Bl = (F2+F8-FI-F7)/CO

B2 = (F3-F4+F6-F5)/CO
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Gl = 2+pv I (E . t.t)
P

G2 = vpvp/ (E . t.t)

G3 = E.~t[V(Fl+F2-crRA-crLA)-F3-F4+crUB+crDBJ
(219 cont.)

G4 = E .It.t [v (F3+F4-crUB -crDB ) -FI-F2+crRA+crLA ]

The velocites perpendicular to the faces of the

transfer element are:

VLP = (Al+Bl)/2 (220)

VDP = (A2+B2)/2 ( 221)

VRP = (Bl-Al)/2 (222)

VUP = (B2-A2)/2 (223)

Velocities V~P' V~, V~P' and V~p are now obtained

from Equations (197) and (198). Shearing stresses T
LP

'

T RP , T DP ' and T Up are found from Equations (210) to (213).

Pressures crLP' cr RP ' cr DP ' and cr UP are calculated from

Equations (214) to (217) in conjunction with Equations

(218) .

In order to proceed to the next time step and repeat

the procedure described above, the values of shearing

stresses and particle velocities at points M~, N~, I~,

and J~ of the x-t and z-t diagrams are needed. Shearing

stress and velocity at point M~ of the x-t diagram (Figure
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41 ) a,r.e obta,.ined from the equations;

+
TM~-TRA-pvs(VM~-V~)

2}.l ( ~) 0Cs : + Ax VM-VRA =

cs : TM~-TLP+pvS(VM~-V~D) + 21l ( ~ ) 0!::.X VLD-VM =

(224 )

(225)

From the similar c: and Cs characteristics equations,

shearing stress and velocity at point N~ of the x-t diagram

can be found. Shear and velocity at point J~ of the z-t

diagram (Fiture 42) are obtained from the equations:

(226 )

(227)

From the similar C: and Cs characteristics equations

shear and velocity at point I~ of the z-t diagram (Figure

42) are computed. The procedure outlined above applies

to all nodal transfer elements of the latticework and then

it :is repeated at any subsequent time step.

Horizontal and vertical steps make up the lateral

boundaries of the latticework. Boundary conditions at

the edges of the latticework where no transfer elements

exist (Figure 39) are handled as in the one-dimensional

propagation of shear or pressure waves. Pressure and

shear are zero at earth-air interfaces and the appropriate

+ -C and C characteristics equations are used to determine

the corresponding velocities.

A computer program written in FORTRAN IV Language

is presented in Appendix 11. The program is quite general
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applying to latticework configurations of earth dams,

earth banks and valleys. The IBM 360/67 hardware was

used for the execution of the program.

eM e .StucUu

Example 1. The study of a small soil-filled valley (Figure

43) reveals the differences between the 10-Latticework

and the 16-Latticework models. The valley soil material

has p = 4.0 slugs/ft 3
, G = 800000 psf, E = 2186560 psf and

M = 3800000 psf since the Poisson ratio was assumed to be

v = 0.367. The soil viscosity is ~ = 2000 Ib·sec/ft 2
•

The entire rock boundary surrounding the valley develops

a horizontal sinusoidal velocity equal to V = 0.2 sin12.5TIt

feet per second. The latticework modeling the soil-filled

valley is comprised of 24 vertical and 16 horizontal linear

elements and 14 transfer elements. The time step selected

is ~t = 0.01 sec. The apparent shear wave velocity is

found to be 500 ft/sec and the apparent pressure wave velo­

city is 1000 ft/sec. The distance between transfer elements

is 10 feet.

The la-Latticework model did not compute any ver­

tical velocities at point A on the soil surface. This

results from the assumption that the nodal transfer ele­

ments of the la-Latticework model are rigid. Therefore,

transients generated by vertical motions of the underlying

rock are uncoupled from those generated by horizontal

motions. The l6-Latticework model incorporating the
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Figure 43. Horizontal and vertical velocities computed
at point A by the 10- and 16-latticework models.
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Poisson ratio effecta, calculated a vertical response at

A as shown in Figure 43. The horizontal velocities computed

at A by the l6-Latticework model are smaller than the cor­

responding values obtained from the 10-Latticework model.

The explanation is that part of the energy received in the

horizontal direction by the transfer elements of the 16­

Latticework model is transmitted vertically due to the

Poisson ratio effect.

Example 2. The effect of the slope of the rock boundary on

the response of a semi-infinite soil deposit is examined.

Two semi-infinite sand layers 165 feet thick are considered

having a vertical rock boundary and a 1:1 rock slope res­

pectively. The soil properties are: mass density p = 4

slugs/ft 3 ; Poisson ratio v = 0.25; viscosity ~ = 40833

lb·sec/ft 2
; shear modulus G = 2 X 10 6 psf; and modulus of

elasticity E = 5 X 10 6 psf. The time interval selected

is ~t = 0.03 sec. The apparent shear and pressure wave

velocities were found to be 916.7 ft/sec and 1356.6 ft/sec

respectively. The soil deposits were modeled by lattice­

works of 55 foot long linear elements (Figure 44).

The entire rock boundary was assumed to move as a

rigid body. The horizontal exciting motion was the S2l o W

component of the Taft earthquake, 1952. The soil layers

were considered to extend 9500 feet horizontally, enough

to guarantee that the first 550 feet would behave as if

the soil layers were actually of semi-infinite extent.
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Values of the maximum ground surface acceleration

may be represented as ampli:l;ication factors expressing

the ratio of the maximum ground surface acceleration at

any point to the maximum acceleration in the adjacent

rock formation. These amplification factors were found

by using the l6-Latticework model and are plotted in

Figure 44 for the two layers under consideration. The

results of a one-dimensional shear wave propagation analysis

(shear beam, Chapter II) are also plotted for comparison.

The influence of the two different slopes on the response

is observed in the immediate vicinity of the slope. The

influence of the slope on the accelerations obtained 350

feet beyond the toe of the slope is practically nonexistent.

The amplification factors obtained from the one-dimensional

and the two-dimensional analyses are in agreement for that

region.

Ex.ample.. 3. A 300 foot high earth dam with truncated crest

and side slopes 1:2 is considered resting on a horizontal

base rock (Figure 45). The base rock develops the same

horizontal excitation with the North-South component of

the El Centro earthquake of 1940 (Figure 46). The response

of the earth dam is computed by the l6-Latticework method

and by the one-dimensional shear slice analysis (Chapter V).

This example is rather academic since soil properties were

selected in such a way as to facilitate demonstration of

the comparisons between one and two-dimensional analyses.
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HoweveX', the methodology associated with the Latticework

model is independent of the data used with the exception

of conditions (209) and (209a) required to satisfy stability

criteria of the method of characteristics.

The earth dam material is assumed to be sand with

the following properties: mass density p = 4 slugs/ft 3 ,

viscosity ~ = 15000 Ib·sec/ft 2
, Poisson ratio v = 0.25,

shear modulus G = 700000 psf, constrained modulus M =

2.1 X 10 6 psf and modulus of elasticity E = 1.75 X 10 6 psf.

The latticework used for the two-dimensional analysis has

160 linear elements of 50 feet length and 65 transfer

elements. The time increment selected is 6t = 0.05 sec.

The apparent shear and pressure wave velocities were found

equal to 500 ft/sec and 774.6 ft/sec respectively. For

the one-dimensional analysis, the same time step was used

and the dam height was partitioned into 12 reaches, each

having a length of 25 feet.

Horizontal velocities and shearing stresses computed

at points A and C of the dam centerline by the one­

dimensional and the two-dimensional analyses are presented

in Figures 47 and 48. The response pattern is very similar.

However, a time delay occurs by using the latticework model.

The shear wave travels through the latticework at an

apparent wave speed that is less than the wave speed for

a single one-dimensional element of the continuum. If

the latticework did not include any transverse elements,
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the above statement would no longer be true. The time

dela.y is caused by the fact that a wave arriving at a.

node (transfer element) is transmitted as a wave of lower

magnitude.

The velocities and shearing stresses computed at

points Band D to the right of the dam centerline (Figure

45) by using the l6-Latticework model, are also plotted

in Figures 47 and 48. As expected, the results obtained

at i:he same elevations on the dam centerline are of higher

magnitudes but similar form.

The same example was examined assuming a higher value

for the soil viscosity, p = 47000 Ibosec/ft 2 • A time

increment of 0.035 sec permitted the use of the same

lati:icework. The shearing stresses at the base of the

dam on its centerline (point C) computed by the one­

dimensional analysis and by the two-dimensional analysis

are presented in Figure 49. These results are similar and

the time delay due to the latticework is again noticeable.

Co~)aring the responses in Figures 48 and 49, it is observed

thai: the same increase in viscosity causes a higher damping

in t:he results obtained by the two-dimensional analysis.

The computer time for loading the object code, exe­

cuting and printing the results for the above example

using the l6-Latticework model (Program in Appendix 11) f

was approximately 65 seconds on the IBM 360/67 Computer.



2.0 4.0 6.0 8.0
TIME (Sec)

138

-
~ 4000
Q.-
~ 2000
0::
~ 0 .....r~.......-H-:~r--".----t--.\-.-,;;.,..-t---c---"ltr--.....
(f)

(!)

~-2000a:::«
~-4000 .......---.......---.......-----.1

(f) 0.0 2.0 4.0 6.0 8.0
TIME (Sec)

-'t;;
Q.

- 4000,...---------..:.-----....,
~
~ 2000
~
(!) O.....-=~~--__,f__--_+_-__t--------=>Il~----t

Z

~ - 2000 Comp.ufed
W athDh
~ -4000 w..-__---! --+ -+ .....

0.0

Figure 49. Dynamic shearing stresses computed at points C
and D by l-D and 2-D analyses. El Centro N-S motion. Vis­
cosity ~ ~ 47000 lb-sec/ft2•



139

Exa.mple. 4. The Caracas earthquake of July 29, 1967,although

of a magnitude of 6.4, caused excessive da,mages to struc­

tures. Four buildings collapsed and almost all high struc­

tures suffered damage in the Palos Grandes area of east

Caracas (Figure 50). Since the actual earthquake was not

recorded, Seed et ale [62] proposed the use of the S210W

component of the accelerogram recorded at Taft in the Kern

County (California) earthquake. This accelerogram was

scaled, multiplying amplitudes by 0.166 and ·time by 0.9

(Figures 51 and 52). Such an accelerogram presents a

maximum rock acceleration of 0.03g, and a predominant

period of rock motions equal to 0.3 sec and is character­

istic of a shock of magnitude 6.4 at an epicentral distance

of about 35 miles.

A cross section through the Palos Grandes area

(Figure 50) of the Caracas valley in the North-South

dir,ection along AA~ is shown in Figure 53. The rock

und,erlying the valley soil deposits is assumed to move

horizontally as a rigid body according to the accelerogram

of :E'igure 51. Maximum ground surface accelerations were

computed by the l6-Latticework method and compared to

those obtained by the Finite Element method.

Seed et ale [62] used a shear modulus varying with

the overburden pressure for the granular soils which

predominate in the valley. Typical variations of shear

modulus and damping ratio with shear· strain were used from

test data obtained in previous studies of similar materials.
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Figure 50l Topographic map of Caracas at the
vicirl1tyof Palos Grandes (Refer. 62).



141

1816141242 6 8 10
TIME (Sec)
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The Latticework method in its present ~orm is applicable

to problems involving constant shear modulus and visco­

elastic soil behavior. This limitation neccessitated the

use of average values for the Caracas valley soil proper­

ties: p = 4 slugs/ft 3 ; ~ = 60000 Ib'sec/ft 2 , v = 0.25;

and G = 23 X 10 6 psf. A one-dimensional shear wave pro­

pagation analysis by the method of characteristics, using

these average values of soil properties, resulted in approx­

imat:ely the same values of maximum ground surface accelera­

tion as those obtained by Seed et ale [62] using a one­

dimemsional uncoupled soil column analysis (Figure 54).

Two latticeworks were used to represent the geometry

of t:he valley section. Latticework I has 330 linear elements

of length 150 feet and 133 transfer elements (Figure 53).

The corresponding time increment is ~t = 0.030 sec. Lat­

ticework II has 500 linear elements of length 126 feet and

210 transfer elements (Figure 53). The corresponding time

increment is ~t = 0.025 sec. Values of the maximum ground

surface acceleration computed by the Latticework method

are presented in Figure 54. The responses obtained by

both latticeworks are in quite close agreement. The peaks

of the envelope curves observed along the valley surface

may be the result of focusing of reflected waves. Three

of the collapsed buildings in the area are located under

one of these peaks. However, definite conclusions could

be made only if the acceleration time history in that

location was also examined. Computer time for only
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executing the program in the case 0;1; Latticework I was

approximately 80 seconds and in the ca.se of La.tticework II

was approximately 200 seconds.

Seed et ale [62] using the finite element mesh shown

in Figure 53 obtained the values of the maximum ground

surface acceleration plotted in Figure 54. Previous

studies [18] have shown that results computed by the

Finite Element method near the edges of such sections

tend to be in error and estimated values are shown by the

dashed lines in Figure 54. The results obtained by a

one-dimensional shear wave analysis are also plotted in

Figure 54 for comparison.

A standard method of assessing the adequacy of a

finite element mesh is to vary systematically the mesh

size and the element size[45]. The same technique was

used to study the latticework adequacy. Latticeworks I

and II were found to be compatible. However, results

obtained by using two coarser latticeworks with 6t = 0.040

sec, 6x = 198 ft and 6t = 0.050 sec, 6x = 246 ft, differed

considerably from the results obtained by using lattice­

works I and II. The coarser discretized latticeworks

exhibited a tendency to smooth out the envelope of maximum

acce,lerations computed at the surface of the valley.

The results computed by using latticeworks I and II

and the Finite Element method are of the same order of

magnitude. However, the envelope of maximum accelerations

obtained by using the Finite Element method is smoother than
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the one obt~ined by the L~tticework method. This may be

partly attributed to the fact that the soil near the

ground surface is considered by the Latticework method to

be more rigid due to the average shear modulus used. An

extentio~ of the Latticework method to cover cases of shear

modulus varying with depth is required before making any

definite statements concerning its accuracy.



CHAPTER VIII

CONCLUSIONS

In the foregoing chapters the method of character­

istics was applied to a variety of problems of seismic wave

propagation through soil deposits. The accuracy of the

method was examined and numerous examples were presented

in a.ll cases studied to demonstrate the applicability of

the method and to compare solutions obtained by the charac­

teristics method and by other methods of analysis.

The Base Motion Synthesis Method was developed by

combining the method of characteristics and a centered

implicit method. The Base Motion Synthesis method was

shown to be applicable for computation of bedrock motions

when surface motions of a viscoelastic or a II s train­

softening" horizontal soil deposit were considered to be

known.

The study of one-dimensional shear wave propagation

through earth dams with truncated crests was carried out

by using the method of characteristics. For viscoelastic

matE:rial, results obtained by the characteristics method

were: confirmed by the shear slice theory and by an analytical

method involving Hankel functions with complex arguments.

Biot's field equations, governing the propagation

of pressure waves through saturated elastic soil deposits,

were reduced to one-dimension and were solved by using the

method of characteristics taking into account wave reflec­

tions at the boundaries of the soil formations. An

147
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analytical solution developed for purposes 01; comparison

was used to confirm the results obtained by the character~

istics method. This development could be the basis for

future extension of the studies of soil liquefaction by

incorporating a Ramberg-Osgood type of stress-strain curve

in the analysis to model the inelastic behavior of soils

for moderate pressure ranges.

For two-dimensional shear and pressure wave propaga­

tion through viscoelastic soil material the latticework

approach was used. Two-dimensional systems, i.e. earth

dams, embankments, or valleys, were modeled by a latticework

of one-dimensional elements and the method of character­

istics was incorporated in the solution. Results obtained

have indicated the applicability of this method to regional

micro zonation studies. Computer time economy was found to

be one of the major advantages of the latticework method.

This study, although of a rather preliminary nature, reveals

the versatility of the method. The major disadvantage of

the Latticework method is the time delay of a response

reSUlting from the latticework used. Future investigations

could incorporate the variation of shear modulus with

depth by using linear interpolations for both shear and

pressure waves.

Extensive application of the characteristics method

to problems of earthquake generated transient disturbances

traveling through soil deposits revealed that the main

advantages of the method are: relative simplicity;
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verl:lati1ity; applicability to problems 0;1; purely transient

nature; accuracy 0;1; results; and low computing cost

associated with the solutions obtained.



APPENDIX 1

RAMBERG-OSGOOD HYSTERETIC MODEL

The vibration of a horizontal soil layer subjected

to the horizontal motion of an earthquake is a good example

of simple shear. Hardin and Drnevich [25] experimentally

proved that the shearing stress-strain relationships for

soils are nonlinear and that they may be represented by

a hyperbola.

The hysteretic behavior of soil excited by random

vibrations is most frequently represented by bilinear models

[61], simplicity being their principal advantage. For

dynamic studies, it is desirable to use nonlinear hysteretic

stress-strain relationships which are general enough to

describe yielding behavior varying between linear and elas­

toplastic. Structural engineers [7,41,56] have extensively

studied such relationships referred to as Ramberg-Osgood

models, defined by a skeleton curve equation:

( I RO-l)
Y = ~p 1 + ~yl

for stresses increasing from zero, and a branch curve

equation:

_T-Tl( IT-TlIRo-l)Y - Yl - ---- 1 + ----Go 2T, Y

150

(A-l)

(A-2)
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BILINEAR HYSTERETIC MODEL

Branch Curve,Origin
Q(Eq. A-2) ~ Sceleton

CUfve 3

OriginO
(Eq. A-I)

YI Yy

Branch Curve,
Origin P (Eq.A-2)

RAMBERG - OSGOOD MODEL

Figure A-l. Bilinear and Ramberg-Osgood
hysteretic models.
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for unloading from (LI,YI). The shearing stress is indicated

by L, Yis the shearing strain, Go is the shear modulus at

Y = 0 and the subscript y represents values at "yield" (or

reference values).

Equations (A-I) and (A-2) were used by Streeter,

Wylie and Richart [71] to describe the nonlinear behavior

of "strain-softening" soil layers. Constantopoulos [15] used

a similar Ramberg-Osgood model without the refinement of

the absolute values in equations (A-I) and (A-2) which

complicates the analysis but permits the use of noninteger

values of the coefficient Ro- A wide variety of physical

behaviors may emanate from equations (A-I) and (A-2). For

Ro = 1 the linear elastic behavior of a system can be

modeled. The elastoplastic case is represented by Ro + 00.

For a cyclic loading with fixed amplitude, a unique

hysteresis loop is defined. A very clear description of

the hysteresis law in the case of the Ramberg-Osgood model

is given by Goel [24].



APPENDIX 2

HARMONIC ANALYSIS OF TRANSIENT MOTIONS

If n equidistant displacement values u., j = O, ••• n-l,
J

are obtained from a digitized seismogram of ground motion,

the displacement at a time t can be represented by -'the

complex form of a finite Fourier series:

n-l
u (t) = L: as exp (iwst)

s=O
(A-3)

(A-4)s=O, ••••n-lu j exp(-27fisj/n)a = 1
s n

where~ ws = 27fs/ (nflt), (s = 0, ••• n-I), fit is the time step

betwE~en the data points and as are the Fourier coefficients:

n-l
.L
)=0

Using the Inverse Fast Fourier Transform Algorithm

developed by Cooley and Tukey [16], the calculation of the

Fourier coefficients is performed n/ln(n) times faster than

direct computation. The use of a number of data points n

equal to 2£ where £ is an integer, offers important advan-

tages for computers with binary arithmetics, both in ad-

dressing and in multiplication economy. If n is less than

the closest 2£, the remaining 2£-n data locations should be

filled out with zeroes to satisfy the requirement of a quiet

zone after the acceleration record. The subroutine HARM of

the IBM Scientific Subroutine Package [32J was used to cal-

culate the Fourier coefficients, with the variable

IFSET = -1. According to the above procedure, a transient

motion represented by n equidistant values is analyzed to

153
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n harmonics. In order to reobtain the n equidistant dis-

placement values, .the subroutine HARM can be used, this

time with IFSET = 1.

The Fast Fourier Transform Algorithm was used in

soil vibration problems by Schnabel, Seed and Lysmer [58]

in a similar fashion to the one presented above.

The Fourier coefficients obtained from equation

(A-4) are complex numbers. However, the displacement values

obtained from equation (A-3) have imaginary parts zero.

The Fourier analysis of the transient function u(t) is valid

only at the data points originally considered. There is

no guarantee that between these points values of the func-

tion u(t) will be approximated correctly by equation (A-3).

This drawback can be avoided by employing a least squares

criterion in conjunction with the Fourier Transform [55].

If 2N+l equidistant displacement values are obtained

from a digitized seismogram, the function u(t) can be

analyzed into M harmonics (M ~ N)

M
u (t) ~ L: (amcoswmt + bmsinwmt)

m=Q
(A-5)

where wm = 2~m/(2N+l)~t, (m = Q, ••• M), ~t is the time step

between data points and am' bm are the Fourier coefficients

obtained from the least squares criterion:

2N+l
E

.n:=l
(A-G)
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When N = M the least squares criterion becomes equi-

valent to the requirement that the two members of (A-5)

agree exactly at the 2N+l points considered. The

coefficients a. and b. (j = 0, 1, ••.M) of the Fourier series
J J

which approximates the given displacement function, are

obtained by using the subroutine FORIT of the IBM Scien-

tific Subroutine Package [32].

Equation (A-5) for the purposes of the present analy-

sis may be written as:

u (t)
M

~ Re { L
m=O

a'" exp(iw t) }-m m (A-7)

when:.~ Re stands for "real part of" and:

a'" =/a2 + b 2 exp(-i<P
m

)m '1 m m

with

(A-8)

(A-g)

Equations (A-3) and (A-7) are analogous, the only

difference being the number of harmonics used. However,

equa-tion (A-7) approximates closely the values of the

func·tion u (t) between the tabulated data points if a suf-

ficient number of harmonics is employed. In case of earth-

quake motions, this technique is more expensive in computer

time.



APPENDIX 3

_BESSEL FUNCTIONS WITH COMPLEX ARGUMENTS

Bessel functions of the first kind, of order q

equal to zero or one, from definition are:

00

J [pexp (i~)] = 1:
q K=O

(_I)K(p/2)2K+q exp[(2K+q)i,l
K! (K+q)! (A-IO)

In complex form Bessel functions of the first kind

are written as:

where
00 (_I)K(p/2)2K+q

Uq(p,~) = L cos(2K+q)~

K=O K! (K+q) !

00 (_I)K(p/2)2K+q
Uq(p,~) = L sin(2K+q)~

K=O K! (K+q) !

(A-II)

(A-12)

(A-13)

When 26 terms of the above series are considered, the

truncating error induced by omitting the rest of the terms

and by working in single precision was found to be of the

order of 10 -4.

Equation (A-II) holds for the first quadrant of the

complex plane. For the fourth quadrant:

(A-14)

Bessel functions of the second kind, of order zero

or one may be written as:

(A-IS)

IS6
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whexe

Uo (p,</» = ~ [uo (p,</» (Y+ln~) -</>Do (p,</» + S(p,</»] (A-16)

Vo (p,</» = ~ [Do (p,</» (Y+ln~) + </>uo (p,</» + T(p,</»] (A-17)

Y = Euler's constant = 0.5772156649 ...E

00

S(p,</» = L:
K=l

00

T(p,</» = L:
K=l

(A-I8)

(A-19)

Bessel functions of the second kind, of order one

can be found from the "cross-relation" between Bessel

functions of both kinds [47]:

Jo (Z)YI (z) - JI (z)Y o (z) = 2
1TZ

(A-20)

where z is complex. This leads to the following relations

bet'ween real and imaginary parts of the Bessel functions:

(A-21)

(A-22 )

From Equations (A-21) and (A-22), VI and U1 are

obtained in order to calculate YI [pexp(i</»].

Equation (A-IS) holds for the first quadrant of the

complex plane. For the fourth quadrant:

U (p,</» - iV (p,</»
q q

(A-23)
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The use of existing tables [49,50] to evaluate Bessel

functions of the first or second kind and of order zero

or one, for any complex argument, was found to be exces­

sively time consuming because of the necessity of double

interpolations in the values of p and ¢. Therefore, sub­

routine BES, included in Appendix 7, was written to cal­

culate any Bessel function of the first or second kind and

of order zero or one with complex argument. Single pre­

cision proved to give satisfactory results.



APPENDIX 4

DERIVATION OF BlOT'S EQUATIONS OF EQUILIBRIUM
IN EULERIAN COORDINATES

The Lagrangian viewpoint and the concept of gener-

alized coordinates were used by Biot [9] to derive the

equa.tions of equilibrium (116) a.nd (117) which govern the

vert.ical propagation of waves through a saturated elastic

porous medium when dissipation is present. Biot used

Lagrange's equation after expressing the kinetic energy

of t:he system per unit volume in terms of the generalized

coordinates.

An Eulerian analysis is used in the following to

derive Biot's equations of equilibrium with the additional

consideration of the gravity forces acting on the system.

A non-deformable control volume fixed in space is employed.

Fluid and solid particles move through the fixed control

volume with velocities U and V respectively. The fluid

part.icle velocity U is actually the seepage velocity. The

corresponding superficial velocity is nU where n is the

porosity. The fixed control volume has a cross-sectional

area Ao and height /::"z. Assuming that the relative flow of

fluid with respect to the solid skeleton is laminar, the

equation of motion for the fluid constituent (Figure A-2)

may be written as:

au av au
Ao/::"zPLnat - Ao6ZPa (at - at) =

a( ) n
2

PLg(u-V)
-Ao/::"z d~P + Ao/::,.znpLg - AO/::,.z----~k------
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(A-24)
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where PL ;::; mass density of fluid; P
a

;::; apparent mass density;

p = porewater pressure; k = coefficient of permeability;

and g = acceleration of gravity. Small terms, such as

vav/at and uau/at, have been omitted from Equation (A-24).

The second term of the left hand side of Equation

(A-24) represents the apparent mass effect. By considering

that~ the solid part of the porous medium is accelerating

relative to the liquid part, the force pushing the solid

part: has to perform work to increase the kinetic energy

not only of the solid but also of the fluid.

The second term of the right hand side of Equation

(A-24) represents the force due to gravity. The last term

of Equation (A-24) represent a viscous force resisting

the flow. If au/at and av/at are set to zero and the

gravity force is omitted, Equation (A-24) degenerates to:

n(U-V) (A-25)

which is Darcy's equation. Therefore, Darcy's friction

is t.he dissipative mechanism represented by the last term

of :E:quation (A-24).

Division of Equation (A-24) by the volume of the

fixed control volume, yields:

n 2 p g
a(np) + nPLg + L (V-U)

az k (A-26)

where p = - sIn = porewater pressure and s ;::; stress on the

fluid part per unit area, negative when pressure. The
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coeff;icient of permeabil;ity k is connected with the in­

trinsic permeability K through the relation:

(A-27)

By expressing the velocities of the liquid and solid

constituents in terms of the corresponding displacements,

i.e, U = dW/at and V = dW/at, and by SUbstituting Equations

(119), (120), (12l) and (A-27) into Equation (A-26), the

latter becomes:

(A-28 )

The equation of motion of the fluid as derived above

(Eq. A-28) contains the effect of gravity. Therefore,

static stresses should be considered as initial conditions.

If however a purely dynamic solution is sufficient, the

second term of Equation (A-28) should be omitted and initial

conditions should be zero throughout the saturated soil

deposit. In this case, Equation (A-28) becomes identical

with Biot's dynamic equation of equilibrium in the

z-direction for the fluid constituent (Equation 117).

The equation of motion for the solid constituent

moving vertically through the fixed control volume (Figure

A-2) may be written as:

(A-29)
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where Ps = mass density of solid; and 0 ;::; stress on the

solid part of a unit area, positive when tension. The

forces due to the apparent mass and due to Darcy's friction

expr,essed by the second and fifth terms of Equation (A-29)

are the same in magnitude with the corresponding forces

in Equation (A-24) but with opposite signs owing to the

law of action and reaction. The last term of Equation

(A-29) may be visualized as a kind of drag force excerted

on the soil skeleton due to the fluid flowing through the

pores. Division of Equation (A-29) by the volume of the

fixed control volume, yields:

dOaz + (l-n) psg - (A-30)

By expressing the velocities of the fluid and solid

constituents in terms of the corresponding displacements

and by substituting Equations (118), (120), (121) and (A-27)

into Equation (A-30), the latter may be written as:

(A-31)

Equation (A-31) becomes identical with Biot's

dynamic equation of equilibrium in the z-direction for the

solid constituent (Equation 116) by omitting the second

term which expresses the effect of gravity.

Note~: In the preceding development the porous material was
assumed to be statistically isotropic. Therefore, all
cross-sections have the same ratio n of fluid area to total
area since the volume of fluid in a thin slab is always a
fraction n of the total volume (n = porosity) .
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C **************************************************
C MFTHon (IF CHARACTFRISTICS+VALVF STROKIMG CONCFPT
C FIND RFf1ROCK MOTlnN FRlltJ, A KNflWN SliRFACE 1'10TlflN
C SEMI-INFINITF SOIL LAYFR. lINITS IN PSF,FT,SFC.
C snIL UI\IFARLV VIscnFLASTIC.
C IF 1I\1n=1 fARTHOIII'tKF MnrrON,JF INn=? STFAnV OSCIL.MOTInN.
C IF INn=1 RFAf) FO!l!nISTANT VELOCITY VALliFS FRnM f)FVICF. 7
C IF IWR=2 PRII\.ITDIIT RFDUCED.
C x=o IS AT SliRFACE.
C **************************************************

RFAL L,MIlI,MIliO
rH MF. NS I 01\1 TAli ( 20.200 ) , V( 20,200) , I, ( 20) , \I S ( ;> 0 ) , X( 20 ) , MIll ( 20 ) ,

lL ( 20) • R0 ( 20) ,M I IIn ( 20 ) ,1,0 I ?0 ) ,R nn ( 20) ,I f I 200) , VP Ll 200) , TP L( 200 I,
2T(200)

NAMFLIST/DIN/NL,L,GO,MIlIn,nT,Rnn,TMAX,TOTL,A,OM,IND,IF.ND,IWR
10 RFADI5.nIN,ENn=991

HRITE(o,OINI
Xlll=O.O
11(1)=0.0
N=O
1\11\1=0

C SHFAR MOOIILllS CO"JSTANT FOR FACH REACH
00 300 J=I,NL
r,G=GO( J I /144.
VVS= S0 RT ( ( GO 1J I +"II 1I f) 1J I / 0 T I / Ron I J I I
nX=VVS*fH
K=I+NN
N=L(J)/OX+l
nIF=LIJI-OX*N
IFIARS(OIFI.GT.IO.95*OXIIN=N-1
NN=NN+N
DL=LIJ)-N*OX
no 102 I=K,NN
GI I I =GG
r~ I 1)( I ) =1\11 U0 I J I
ROI I )=ROOIJ)
\lSII)=VV5
JJ=I+l

102 xIJJ)=XIII+OX
IFI IJ+I).GT.NLIGn TO 300
LIJ+l )=L(J+ll+0L

3()O COl\ITINLJE
f\ll=JJ
1\1=1\1 1-1
WRTTFIA,131IXII),I=I,Nll

13 FnRMATIRX,'X='.115FFl.211
t·/R I TFlo. 14 I I VS I I ) , I = 1 , N I

14 FORMATI7X,'VS=',4X,114FB.211
t·IR I TEl f, • 16 ) ( I, I I ) , I = 1 ,N I

If, FORMAT( 3X, 'Gl PSI )=' ,4X, I 14FR.01 I
I F I I HiD. EO. 1 1ST OP
nn 12 I=I,Nl
TAUII,II=O.O

12 VII.II=O.()
JLI M=TMAX/DT
JM=JLIM+N
00 ?1 '2 J= 1, N
TAllI1.,I)=0.0

21? VI 1 , J 1=0.0
nn 213 J=N1,JM
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213 TAlI(I.J)=O.O

IF ( pm. FO. 1 ) REA f) ( 7,20) ( v ( 1. J ) • J =N I, JM )
20 FnRMATI7(FI0.5))

IF(INf).Eo.1IGO Tn 50
on 214 J=Nl,JM
TT=( ,)-Nl )~'fH

21411(I.JI=A*SIN(OM*TT)
50 K=,IM-l

on 100 I=2.Nl
on 120 J=2,K
C}=Rn( 1'-1 I~'VS( I-I)
C2=fv\IlJ( I-I I/(X( I I-Xl I-I I)
c: P = Til \I ( 1-1 • ,1-1 ) - ( c: 1-C 2 ) ,:' II ( 1-1 , J-l ) -C 2'~ II ( I , J-1 )
r. M= T Ai.I ( 1-1, ,1+ 1 ) +C I';' II ( I-I, J + 1 I -C 2':<\1( 1-1 , J )
V( I.J )=(CP-CM)/(C2-2.'~Cl)

I F ( I • F (1 • 1\1 1 ) I J ( J ) =I J ( ,) - 1 )+ (1. ') ,:, ( II ( I , J ) + \I ( I • J - 1 ) )~, nT
12n TtlIJ ( I hi ) =Cp +C1 ,~ II ( I , J )

K=K-l
lno cnNTINIIF.

nn 70 J=l,JLIM
7n T(J)=(J-l)~'nT

IF( I\oJR.FO.21GO Tn 55
nn 72 J=l.JLIM
1,1 RIT F ( A, ? IT ( J ). (II ( I , J ) , I =1 , 1\11 ) ,{J( J I

2 FnRMATI' T=',FS.?,'V=',O?F9.3).'II=',FR.3)
1,1 R I TE ( A , 3 ) ( TAU ( I • J ) , I = 1 , N1 )

3 FOR'..j AT ( 6 X, , T AII = , , ( 13 F 9 .2 I )
72 CmHINlJE
55 nn AO J=I,JLIM

VPLlJ)=II(Nl,J)
AO TPL(J)=TAU(Nl,J)

CALL PLOT(T,VPL,JLIM.XMIN,YMIN,nX,nYI
CALL PLnT(T,TPL,JLIM,XMIN,YMIN,nX,nY)
CHLP LOT ( T , lJ , ,I LIM, X~1I N, YMI 1\J, n X, f) Y I
GO TO 10

99 STop
Ff\'n

c **************************************************
SIJRRntJTII\IF PLnTIX,Y,K,XMIN,YMIN,nX,DY)
nIMFNSInN X(ROO).Y(ROOI
CALL PSCALF(R •• l .• XMIN.nX,X(1 ),K.l1
CAll PSC:AlE(6 •• 1 •• YMIN.nY.Y!lI.Ktl)
CAll PlTnFS(XMIN.nX.YMIN.nY.2 •• 2.)
CAll PAXIS(?,2 • .l4HX ( TIMF,SFC ),-1401~•• O•• XMII\I,DX,l.)
C/II. L P /I XIS ( 2 •• ? • .It, HY ( ) • 1 4 , A•• q O. , YMIN, DY.I • )
C/lLl PLINE(X(I),Y(ll.K.l,O.O,lI
CALL Pl TFNO
RFTIJRN
Ff\IO



AP;I?ENDIX 6

c **************************************************
C MFTHOn OF CHARA(TFRISTICS+IMPlTCIT MFTHOn. VAlVF STRnKING CnNCFPT.
C RAMBERG-nSGnnn S TRf:SS-S TRA I N NnNLI "IFIIR REHAV I OIIR.
C VISCnELASTIC nISSIPATInN !\InT INCLlJnFrl.
C VFLnCITY KNOWN AT SURFACE-FINn RFnRnCK MOT InN.
C **************************************************

COM 1-1 n"l R l 12 ) • TY ( 1 2 ) • GO ( 1 ? ) • T\Ie ( 12 ) • G( I? ) , L
nI /'<' F. NSInN vl 1 2 • 3 () 0) • vv(1 2 dO 0 ) , T A ( 1 ? , 300 ) , TT l 1 2 , 300 ) , Xli 21 ,

1Rn ( 12 ) , 1I ( I?, 3(0) • YYY l 3(0) , xxXl 300 ) , T ( 300 ) , vP L ( 300 ) ,or l 12 ) ,
?GK I P l 3(0), TK 1 P (300)

"I fI MEL 1ST I n I N/ nT, F , R , Rn, GO, T MII X, I I I , N, K, 1ST n P, 1ST , NIT, I ( I'R , MM
I/nV/VPL

nflTfI TA/3600*0.01
10 REfln( 5.nIN,Ef\ln=99)

RFAn(5.nV)
\oJR I T F ( 0, [) I 1\1 )
l)(I,I)=O.O
V(I.1)=O.O
no 20 I=2,K
V( l.I )=VPLC I)
II ( 1 • I ) =IJ l 1 , I -1 ) + O. 5* (V( 1 , I ) + v ( 1 , I-I ) )~, I) T

20 T( I )=T( I-1)+nT
P=2.*F
CC=2.*DT
CA=P':'OT*CC
CB=CA*P/2.
O=I.-F
K1=K

Nl=N+1
VIl\ll,I)=O.O
KK=K-N!
KL=K-III-l
"IK=KL-IST
TI 1 )=0.0
X(1)=O.O
no 16 1=2,N1

10 XII )=X( I-I )+nT~~soRHGOCI-II/Rnc I-III
WRITFlo,32)CX( I),I=l,Nl)
nn lOO 1=2.1\11
IF( I.FO.ISTOP)Gn TO 99
K=K-l
L=I-1
nX=X(I)-XIL)
C=RO(l)*SORTlGO(L)/ROlL»
TYll)=0.4616*Rnll)*32.2*(XII)+X(l)1/2.
nT(L)=O.O
GlLI=GOIll
IVC(L)=1
,IS T=Nl +2-1
V( L "IST-l )=0.0
VlL"JSTI=O.O
CP=TAlL,JST-!)-C*VIL,JST-ll
CM=TAlL,JST+I)+C*V(L,JST+ll
TAll,.JST)=ICM+CP)/2.
VII,JSTI=ITA(I.JSTI-CPI/C
TT T = 0 • 5>~ I T A ( I , J S T ) + T A( L , J S T ) )
CAll GG(TTT,OT(LII
nTILl=TTT
,JSTART=JST+l
lJ( I "JST)=O.O

166
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YYYIJST)=O.O
XXXIJST)=O.O
JINf1=IClJR
IF! I.GF.41JINrJ=ICIJR-40
M=JST
INR I TF 16.3 RIM. TIM I • VI 1 • MI. TAI 1 • MI ,1I I 1 ,M ) , TT T ,GO I L I , XXX( Ml , YYY I M I
on 200 NJ=JSTART,K
J=N,J
.JJS= 1
GOO=(;ILI
INnFX=1
LJ=J-l

51 CI=SCRTIGIL)/ROIL»)
C=CI*RO(L)
CP=TAIL,LJI-(*VIL~LJ)

CM=TAIl..J+ll+('~Vll,J+11

TT(L,J)=I(M+(PI/2.
VVIl,JI=ITTIL,J)-CP)/C
IFIJJS.FC.2IGO TO 59
DX 1=rn*c I
S=OX-DXl
IFIS.I.T.O.IIGO TO 59
Al=IV( I,I.J)-VII.,LJ)l/nX
A?=ITAII,L.!I-TAIL,LJ)l/nX
All=Al*S
1>.22=A2*S
SK=S*S
IFIS.LT.nX/3.IGO TO 121
N=S+I+f\lIT
( l1 LLIMP I I>. 1 , A;;> , N , n, F , 5 , 5K ,C A "C P. , CC , v, T I>. , VV , TT , 1 , L , J , L J , G, RnI
Gn TO J.22

12 1 VV ( L , L ,J 1= \I I I , L J ) - I>. 11
TTl L , L ,j 1= TAI I , L.J 1- A2 2

122 (1 =\1\1 I L • J 1-1/ \I I L , LJ 1- \I I I , L J )
C2 =n* I T AI I, U 1- TT I L, LI 1 1-F'~ TT I L, J I
( 11 = n~' I \I I I , LJ 1- \I VI L , LJ 1 1- F'~ \IV I l , J I
C2?=TTII.,J)-TTIl,LJI-TAII,lJI
A=((*S*IF*(22-(21
1/ I I , J) = I i\-C A~' (; IL )~, C11 +R 0 ILl ':'C 1;~ 5 KIII GIL 1*CR- R0 ILl *5 K )
TA I I. J 1=CCt" GIll * I F':' V ( I ,J 1+C 11 115-C 22
r;n Tn 69

5q HII,JI=TTII.,.11
\I I I , J 1=VVI I. ••) 1

f,q TTT=O.5;QTAII,JI+TAIL"lll
1'1 I , ,J ) =I J I I ••1- 1 1+ O. 'i~, I \f I I , J 1+1/ IT, .J -1 1 1*n T
YYYI J 1:= I TA I I , ,I 1+ T /I I L , •.11 ) IT YI L ) *0 • '5
X XX I J ) = I II I I , J ) -II I L, ,I ) ) I rJ x,~ GO ILl IT YI l )
IFllf\InFX.Fo.?lGO Tn 55
C.HL (;r,( TTT,nTI I.) 1
JFLI.I.T.Jlf\ln+~)GO Tn 50
IFIJJS.H.\.2.0R.I.LF.?lr.0 TO 50
JF((;ILl.I.T.GOOIGfl Tn 50
.LJ S =2
Jlf\'I1=J
GIL) =G 0 III
Gn TO ')1

<;() nTII. I=TTT
GKIPIJ1=GOO
TKIPIJ)=TTT
I F I I • LF. "3. OR .I\U.Ll • Mt-I. OR. T AI 1 , J) *T AI 1, J-2 ) .lT • 0.0) GO TO 56
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TR=IIRSlTtd I.U))
I FIT R • LT. II RSIT /\ I I ••1) ) • 1\ f\I [) • TR • LT. II RSIT II ( I ••)- 2 ) ) ) I NDF. X=2
IF{TNOEX.NF.?)GO Tn ~h

Til ( I • I. ,I ) = I TAI I • J ) + TII I I • J -? I ) 12 •
\I I I • L" ) = I VI I ••J 1+\/ I I • J -? ) ) 12 •
.I=LI
(,n Tn hq

S'" TKI PI ,1)=TTT
SA CmHINIJE

zoo CONTI NIlF
nn 201 .I=.ISTIIRT,K

201 I·JR I TF I A , 3 R ) J , T I J I • VI I , J I , TII I I , J ) ,I' I I ," ) , TKIP I ,) ) , r, KIP I J ) ,
lXXX(,JI,YYYLfl

3R FORMATI 15,F~.?,Fl0.3,Fln.l,FI0.4,2Fln.l,?FI0.h)
I F I L • f\1 E. I I I I(, [) TOR 2
nn 11 II=I,NK
XXXI IT I=XXXI I I+ISTl

31 YYYIII)=YYYIJI+ISTl
CALL PLnTIXXX.YYY.NK.XMIN.YMIN,nX,nYI

R2 CONTINUF.
100 CnNTINUE

CALL PLOTIT,vPL.Kl.XMIN,YMIN.nX,ny)
no ? 1 I =1 , KK

21 \/PLlII=IIINl.I1
CALL PLOTIT.VPl,KK,XMIN,YMIN,OX,OYI

::12 FnRMATI (lhFR.4»
Gn Tn 10

qq STnp
HI[)

c *************************************~************
SIlRRnlJTI Nt: GG ITT, OTT I
cnM~~nN R11?) • TY 112 I, roo ( 1? I. I \lC 1121 ,G I 12). I
oI 1'1 FNSInN J (; I 1? I, I lP I 121 • YMI 15, 12 I
GVIoy.nR)=I./ll.+lnRI*ARSIOY)**IOR-I.))
r,R n lOY, rw 0, OR ) = 1. I I 1. + I nR )*AR S I I nY-OYO 1/2. )*,q OR-I. ) )
T=TT /TY! I)
nT =nTT ITY 1 I )
IF{IVCCI).FO.O) GO TO 10
IFIARSCTI.LT. ARScnT)) Gn Tn 5

9 (,(II=GOCI)*G\lCT,R{I))
1(/1)=0
Rt:TIIRN

5 IIICCI)=O
IIPII)=I.
IFIl.LT.OTl UPIII=-I.
Tell)=?
YMll,II=-nT
YMC?,II=nT
r. CT I =G 0 CT I':' r.R 0 CT, n T. R I I I )
RFTIJRf\1

10 IFCIIRSCTI.r.F.II.RSIYMCI,I)IIr,n Tn 15
IFCCT-nrl':QIPIII.r,T •• OI Gn TO 20
tlPIII=I.
J F I To LT. or) UP I I ) =-1.
ICI I )=T(I I )+1
IF IIlPIJ)*(T-YMIICII)-I,I)).r.T •• O) r.n Tn 22
YMIICIII,I)=nT

11 r, I I ) = (,0 CI )*GRnIT, YM I I C I I ) .r )•R I I ) )
RFTIIRN

15 J VC I I ) =1
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r;n Tn q

20 IFIIJPII)*lT-YMIIC(J)-ltI».LT •• O) r,n Tn 11
?? ICII )=ICI I )-7

IFIICII).FCl.l) ICII):::?
If=IICII).F.C\.21 Go Tn 11
Gn Tn flO
F~ln

c **************************************************
SLJ RRn1 JTIN F. IMP I AI. AI'. N. n. F. S , SK, CA, CR. CC, V. TA, VV, TT • I • L , J , LJ , G, RO I
nI ~1 F ~1 S 1ON \I ( I? , 300 ) • T A II? ,300 I , \I ViI? • 300 ) , T T ( I? • 300) , (; I 12 ) , Rn 1 1 2 )
S=S/N
SK=S* S
MI\I=N-l
nn ?O IA=I.NN
\/ F =If I 1 • I. .) ) - AI::: 1'1*S
TF= T AI 1 • L.I ) - A?* I\j,:, S
VV I L • LJ ) =vI I. L.J ) - Al*S* ( N-l )
TT I L. LJ) =TA II, L.I) -1I2*S* 11'1-1 )
C1=If 1/ I I. • J ) - VF -If 1/ I L. LJ )
C? = n,:< I 1" T( L•L.I ) - TF) - F,n TIL, J )
C11=n,:, I 11111 t, I..) )"':VF )-F~'VVI L, J)

C??=1"TIL,J)-TF-T1"IL,LJ)
A=CC*S*IF*C?7-C21
\1 \/ ( L , .I ) = 1A-C lI* G( I. H' C11 +Rn ( l ),~ C 1# SK ) I I GIL )*CR- RnIL ) *SK)
TT I L ••1) =cc*r, 1 L 1* I F;~ VV 1 L, J ) +C 11) IS-C 22

20 "'="'-1
QETIIRN
FNf)

C :~*************************************************
Sllp,RnllTINF PlnTI X.Y.K,XMIN,YMIN,nx.oV)
nIMENSION XIROO).YIROO)
CAll PSCALFII0 •• 1 •• XMIN,nX.XIl),K.1)
CALL PSCALFIR.,I.,YMIN,nY,Ylll,K,11
~ALl PLTnFSIXMIN,OX.YMIN,nYi2.,?)
CALL PAXISI2.,2.,14HX 1 TIME,SFC 1,-14,lo.,n•• X~IN,DX,1. I
CALL PAXISI?.2.,1 4 HV 1 ),14,R.,90.,YMIN,DY,I.)
CALL PLINEIXIll,YIl),K,l,O,O,ll
ellLL PL THIf)
QETlIRN
F'~ln



APPENDIX 7

c *******************************************~******

C TRIANGULAR EARTH OAM. ANALYTICAL SnUJTlnN. RESSEL FUNCTIONS
C l,nTH cnMPLEX ARGUMENTS. VIscnus OAMPII\IG II\IClIII1En.
C DAM CREST YHIET) RFLnI.J TnP. (TRUI\ICflTFn Tnp ONLY)
C FINO DISPLACEMFNTS AND VELnCITIES AT CREST.
C READ 1\11 FOlIIO"ISTAI\IT \/ALiIFS nE Rt\SF nrSPLACFr~ENTS U FRnM
C OFVTCF 7. FIl\ln FnllRIFR cnFF-.fW LFAST SOIJflRFS FITTING.
C IF INnFX::2,RFAn FOIIRIFR cnFF. FRnM DFVICE A.
C **************************************************

IMPLICIT CO~'PLFX~'16(Z),RFl\L"~AIII-H,n-Y)

f) I MFN SInN II I 51? ) • ZII I ~OO ) , A151;> ) ,OM 151? ) , ZAI') I? ) , VI 512 ) , T( 5121
1. R(200)

NAMFLIST/DIN/YH,H,G,RO,nT,N,M,NI,NNM,AMl',INDEX
10 RFADI5,DIN,ENn::Q9)

Nl=2'~N+l

MM::M+l
ZP=OCMPLXI0.ODO,I.0DO)
I F I I NDEX. E() • ?l RFMH A, 14 ) I ZAI I ), nr~ ( I ) , I =1 , MM )

14 FnRMATI412FI0.5,FA.3»
IFCINnEX.EQ.?lGO TO 82
RFAD ( 7.11 ) I II 1.1) , .1= 1, NIl

11 FORMATf7IFI0.S»
CII LL FnR IT Ill, N• M, A, B.I ER )
OMlll::0.000
ZA(I)=DCMPLX(All).O.OOO)
cnN=6.2R3186/IN1*OT)
DO 50 1=2,MM
OM I I ) =cn[\l* I 1-1 )

50 ZAII)=nCMPLX(AIII,.,..RII»
RZ nn 80 J=I,Nl
RO T(J)::IJ-l}*OT

X=G/RO
XX=AMIl/RO
DO '+0 I =2,MM
ZC=nCMPLX( X, XX'~OMI I)}
ZVEL =C DSO RT I ZC )
ZH=OMI I )~'H/ZVEL
7HY=OMII )*YH/ZVEL
RH=CDARSIZH)
RYH=COARSIZHY)
Vl=nRFAll ZVEL)
\/2=f)IMAGI ZVFL)
PH=nARSIDATAN2IV?,VI) I
CALL RESIRH.PH,ZHJO,ZHJl.lHYO,7HYl.I,NI,NNMI
CALL RESIRYH.PH,ZHYJO,zHY"l,ZHYYO,7.HYYl,I.I\iI,NI\iM)
IS=(ZHYJl+ZP*ZHYYll/IZHYJl-ZP*ZHYYll
ZSl=ZHYJO+IP*ZHYVO-ZS*IZHYJO-ZP*ZHYYO)
ZS?=ZHJO+ZP*ZHYO-ZS*IZHJO-ZP*ZHYOI
ZSS=ZSlIZS2
WRITElh,?O)ZVEL,PH
k'R I TF I 6.75 l RH, ZH.1O, ZH.I 1 , ZHY°,Z HY 1
WRITElh.75)RYH,ZHYJO,ZHYJI,ZHYYO,lHYYl

75 FnRMATIF12.5.RF12.S1
WRITElh.77lZS.ZS1,ZS2.ZSS,nMIII

77 FnRMATIRE14.5,FIO.3)
70 FnRMATI3EIO.4)
40 ZAIII=ZAII)*ZSS

no 200 1=1, N1
ZAA=ZAll)
no 205 J=2,MM
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71=f)CMPLXIo.onO,nMIJ)*TII)1
?n~ 7AA=ZAA+7AIJI*cnEXPIZll
?on 71lIII=7"A

\./R IT F I (, , 15 I
l~ FnRMATI' DISPLACFMENTS AT CREST')
l~ EnRMATI7IEQ.511

Dn h5 J=l,Nl
(, I) AI J I =DR FAll ZII 1J »

WRTTE(4,13)IA(Jl.J=1,Nll
V(1)=O.O
Dn 6R I=2,NI

61' VIII=IAIII-AII-1)I/fn
HR I TEl (, , 26 I

2A FORMATI' VELOCITIES AT CREST')
WRITFI4.131IV(Jl.J=1,Nll

99 CALL EXIT
fl\1 D

c **************************************************
SII RROil TI 1\1 ERE S ( Rn, PHI, ZR,I O. ZR,11 • ZRYO, ZRY1 , M, NI , NNM)
IMPLICIT COMPLFX*16IZ).RFAL*RIA-H.O-YI

C nt\ILY FnR BESSfL FIJNCTIOI\IS I"ITH cmlPLFX ARGtJMFI\ITS OF THF FIRST
C AND SECOND KIND OF oRDFR 0 AND I.VALIIES FOR THE 4TH OUADRANT.

G=O.57721566
P=2.13.14159
R=R Ol?.
IJJO=O.O
V,IO=O .0
lJ ,11 =0. 0
VJl=O.O
F,l= 1.
NN=26
IFIM.Gr.NIINN=NNM
t\IM=NN-l
lin 50 I=l,NN
K=I-I
F,t=K*FJ
IFIK.FO.OIFJ=I.
CON=I-II**K*R**12*KI/FJ
cnt\I=CON/FJ
C=CON'~RII

ANG= 2':'K'~ PH I
IINGI=ANG+PHI
l)J O=\J J()+C m\'~ DC os ( liNG)
VJO=VJ()+CON*DSINIANGI
11J1=lIJI+C'~DCOS (IINGI I
\fJl=V,II+c"~nSIN( ANGI I

<;() Ull\1TINllF
7R,'0 =DC MPLX ( II ,) O. - VJ 0 I
n"ll=IICMPLX(IJJl,-V,1l1
FY=I.
FF=O.O
5n=0.0
Tf1=O.O
nn 150 K=1. NM
"K=K
FF=FF+l./AK
FY=K* FY
cnN=I-I )**(K+ll*R**IZ*KI*FE/FY
cnN=cnN/FY
M\'=2.*K*PHI
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sn=sn+cnN*ncnS(AN)
Tn=Tn+CnN*nSIN(AN)

150 cnNTINUE
CC=G+nLnGIR)
tlVO=P';' ( lIJO'~C C-PH I * V ./0+ sn)
\IV O=P;~ (V -l0* CC +PH P 1I.10+ Tn)
C 1 =ll-l] ,:q IYO-V ,J];~ Vyo-p,~ncns I PH I) IRO
C2 =U,J] ,;,vYo+VJ l':(lIYO+P;~os I N( PHI) IRn
VV] =( C?'~IIJO-C]'~V,IOI/11J.J(1;~lJJO+VJO)~VJO)

!IY] =1r.?-lIJO';'VYl I/V.1O
lRvo=nCMPLX(IlYO,-VVO)
lRYl=[l(.MPLXIIIYl.-VYl)
RF TIlR N
FNn

C **************************************************
SlIRRnllT I tilE FnR IT (HH. til, M. A. R. I FR)
IMPLICIT RfAl*R(A-H,n-Y)
nI~-\ENSIOtl' A(I),A(II,FNTll1
I ER=O

20 IF(M) 30.40,40
30 I ER =2

RETURN
40 IFIM-N)60,60,50
50 IFR=1

RETURN
60 AN=N

cnfF=2.000/12.0DO*AN+l.0DO)
Cn N ST=3.141593*COEF
SI=f"1SII\I(CONST)
Cl=ocnS(CONST)
C=I.0no
5=0.ODO
.1=1
FNTZ=FtlIT(1)

70 112=0.ODO
til =0. 000
1=2"~N+l

75 UO=FNT (I )+2. ODO*C*Ul-lJ2
112=U1
til =uo
1=1 -1
IF(I-l) AO,RO,75

RO AIJ)=cnH*IFNTZ+C*U1-U2)
R (,I) =COEF*S*lIl
IF(J-(M+1» 90,100.100

90 P=C PC-S l*S
s=c 1* S+S l*e
C=P
.1=.1+1
(;n Tn 70

100 A(1)=A(1)*0.5DO
RETURN
F.ND



APPENDIX 8

c **************************************************
C nNE nlMENSlnNAL PROPAGATlnN nF SHFAR WAVFS THRnUGH EARTH DAMS nF
C TR I ANf,UlAR CRnSS-SFCTInN. MFTHnn nF CHARACTFR 1ST Ies.
C IF IMnT=I fARTHOIIAKF VFLnCITIES AT RASF RFIID FRnM DEVICE 7,
C IF IMnT=2 STEAnv nSCILl.MnTlnN.
C IF ITnp=l CREST AT DISTANCF ny RFlnw Tnp nF TRIANG.
C IF ITnp=? THE CRFST IS AT V=O.
C snIl VIscnELASTIC
C **************************************************

nI Mf: N SInN v( I' 0 1• \lP ( ;;' 01 • TAl J ( 2 n 1•TAII P ( ? n 1• VV ( (, no 1• AC S ( (,001 • ACM I 6001 ,
ITI(,OO).AAI201.RRI201,A(TI(,OOI.VPM(AOOI.VPSI600),VPTIAOO),SHI600)

1\1 A f;/: FLIS T / D 1 "1/ G • II M, Rn , nT • T MAX , A • nM, H , NJ , I t-lnT, 1M ,IT 0 P , GR
In RFAI)I'i,nIN.ENn=991

\.JR I TF ( f, • n I NI
IF(IMnT.FO.l)RFAnI7.111IVVIJ),J=l,NJ)

11·Fnr~MATI7(FIO.511

VS=SORTIIG+tJM/nTI/Rn)
rw=vs'~nT

"IR=H/DV
1\11 =NR. + 1
I f =I
A(Sll)=O.O
flCM III =0. 0
/lCTlll=O.O
VPMlll=O.O
\/ PSI 1 ) =0.0
VPTlll=O.O
SHII)=O.O
O=IJM/OV
[nl\l=O/7..
n=Rn*vs
CII.=cnN-n
fFlITnp.FQ.?)Gn Tn 35
(=;:1

/lCA=O.5*lI.lnGl?)+I.
cnF=O.5*ALnG(H/lH-nVI)
,:;n Tn 36

35 \<=1
flCA=?
cnE=I./(2.*NI-3.)

36 TlII)=O.O
I<K=K+l
lin 42 I=KK,NR
Sf.l=I-1
SR=f-?
r F( !Tnp. FO.nGn Tn 25
,~A ( I ) =O. 5~~ MnG ( SA / S B)
F\ R ( I I =n • ')~, Al nc; ( I / S A I
(~n Tn 26

?'i AA[I)=I./1?*I-3.J
RBI f )=1./1 2.~~ I-I. I

26 PiIM=I.
l.? cnNTINtlF

Dn 1;:> I=I,Nl
\/(1)=0.0

I? T" IJ I I I =(). 0
Ti\tlP(?I=o.n
WRITEIA.14Inv,NR,VS

14 F[lRMATI5X,'nV='.F7.3,' NR=',I?,' VS=',FI0.21
?() WRITFIA,15)TIIII,IV( II,I=K,Nl)
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15 FnRMATI5X,F7.~.113FR.3»

\AIR I TF I (, , 1 h ) I TAll I I ) , I =K , N1 )
In FnRMI\TlI2X,(13Ffl.2»

11=11+1
TIII)=f)PIII-I)
IFITIIII.GF.TMAX)Gn Tn 18

C INTFRlnR pnINTS
nn 22 I=KK.NR
CP =T All I I-I );~ I J • - AAI I ) ) -C nN;~ v I 1+1 ) +C/l'~ VI r- 1 )
r. M= TAII I 1+1 ),~ I 1 • + R P. ( I ) I +c n"":<\1 I 1-1) -C A;~ VI I +1 )
Tl\llP I I I = I CM+C P If( 2. + AAI I 1- P. RI 1 ) )
vP I I ) = I TAl) P ( I I~' I 1 • + AA( I ) I -C P ) If)
I F I !Tnp. f O. 2 ) lie i I I I I = ACT I I I - I ) + I vPI 2 I +v I ? ) ) *n T12.

22 IFII.FO.IM)I\r.""(II)=IVPIIM)+VIIM»'~nTI2.+IICMIII-l)

C TOP R.C.
VP I K) =VI KK)+ I T11\1 (KK )':'ACfl-O'~ (VI KK )-VI KJ» In
ACSI II I=IVPIK)+V(K) )~qn/?+IICSI11-1)

C RnTTnM R.C.
I F ( I MnT• ECJ. " ) vPIN 1 ) = A>:' SIN I nM;q I 1 1 I I
1 F I 1 MnT • FO.l ) VP I· Nil =VV ( II )
AP=f)*(VPINll-V(NRII
TAllP I NIl = I TAll I NR I* I 1 • -co E l+ AP-0* I vI N 1 ) -v I NR I I I I I 1. +C DE )
VPMIII)=VPIIMI
VPSI I 1 I=VPIK J
I F I nnp. EO. 2 ) VP T I I I 1= VP I 2 I
SH ( 1 I ) =TII LJ PIN 1 I
nn 23 I=K,Nl
VI I ) =VP I I I

23 TAUII1=TAlJPIIl
Gn Tn 20

1811=II-l
WRITEIR,11)IACMIJ).J=I,II)
WRITE(R.l1)IACSIJI,J=I,II)
I F I IT np. FO. 2 )\,'R 1 TE I R ,11 J ( AC T I J ) ,J =1, II J
CALL PLnTIT.ACM.II.O.O.-3.,3 •• 0.5,4.,12.)
CALL PLnTIT,ACS.II,O.O,-3.,3 •• 0.5,4 •• 12.)
CALL PLnTIT.vPM.II,O.0,-3 •• 3.,O.5,4.,12.)
CALL PLnTIT.VPS,II,O.O,-3.,3.,O.5,4.,12.)
CALL PLnTIT,SH.II,O.O,-::IOOO.,3.,1000.,4.,6.)
IFIITnP.Fo.I)r,n Tn 10
CALL PLnTIT.ACT,II,O.0,-3 •• 3 •• 0.5,4.,I? I
CALL PLnTIT.VPT,II,O.O,-3.,3.,O.?,4.,12.)
Gn Tn 10

99 STnp
END

c ********~*****************************************
SURRnUTINF PLnT(X,Y,K.XMIN,YMIN,DX,f)Y,XL,YL)
DIMENSION X(ROO),YIROO)
CALL PLTOFSIXMIN.nX,YMIN,DY,2.,2.)
CALL PAXISI2.,2 •• 14HX I TIMF,SEC J,-14,XL,O.,XMIN,DX,I.1
CALL PAXISI2 •• 2.,14HY I ).14,YL.90.,YMIN,DY.l.1
CALL PLINEIXII),YIII,K,l,O,O,I)
CALL PL TENO
R ETIIRN
END



APPENDIX 9

c **************************************************
C PRFSSllRF ~It\\lF PRnPAr.ATInN THRntlGH SATlIRATFn FLASTIC SOIL.
C kInT's THEORY. nNF nIMFNSIONAL. nlSSIPATION PRFSENT.
C IJNIFnR'" PROPERTIES. N SIIRli\YFRS OF THICKNFSS nx.
C STFIII1Y nSCILLIITnRY FXCITATInI\l OF THF REI1RnCK.
C *****~********************************************

IMPLICIT CnMPLFXIZ),RFlIlIM)
~AMFLIsT/nIN/Cl,C2,C3,Fl,F7,F3,vc,Rn,MIJ,H,nM,E,PER,pnR,P,O,R,DT,

IfiX. rr'1/1x. N
In RFllnl "i.nHl.F.f\I[)=99)

1.1 R I T F I (, , n IN)
A=Cl*F7+C2*FI-2.*C3*F3
f\A=A~'A

R=(Cl*C2-(3*(3)*2.
RR=SORTIAA-2.*R*IF1*F2-F3*F3»
r:.Z=IIl+RR)/R
Rl=IA-RR)/R
\/NJ.=\fC/SORTIIIZ)
\/~I?=1I1. /SORT I RZ)
WRJTFIA.J.?)AZ,RZ,\lNl,VN2

12 F nR~~ 1\ T( , Z= 1 , ? E10. 4, 1 II Nf) II MPEn vF l = , , 7. FlO. 7. )
R=MII':' pnR~'POR/ I PF.R~'oM*Rn)
RR=RI<R/?.l
7 =r: ~1 P LXI 0 • 0 , RR )
7P=CI~PLX I O. 0, R)
\·JR I T F. I A. 13) Z

13 FnR''1ATI' lcnMP =',2FIO.3)
7C=IA7+RZ-Z)/2.
lCC= Al'~ Rl-Z
7 TF=1('.>:: 7.(-1((

7 I =7(+C SORT I ZTF.)
ZIJ=ZC-(SORTIZTF)
11l1=VC/CSORTt 1I)
7111 J=\/C/CSORTI ZI I)
\..IR I TF ( A, 14) 7. I , ZI I • Zv I • ZVI I

14 FORMAT(4FI0.4,' DAMPEn PRnp.VEL.=' ,4FIO.2)
7PJ=IFI-CI*11-lPI/lzr*C3-F3-ZP)
7PII=IFI-Cl*ZII-ZP)/(ZII*C3-F3-ZP)
7F I =01 P LX (0.0, m1':' H ) / Z VI
7 I F =C nt,L1 G ( 1 F r )
7 F I I =C MP LXI O. 0, m1;~H) IZ VI I
7 I TF= (J1N.I r, ( ZF J 1 )
ZFI=CFXP(ZFI )+Cr-XPIZJF)
IFTT=CFXP(lFII )+(FXP(lIIF)
7 Cn:::: 7 F I J ;~ ( 1 • -lP I ) / I ZF I~: ( ZP I 1- 1. ) )
7AT=f/(ZFI+lcn*ZFII)
7Al r=lfll~~lcn

7CI=7PJ~~ZAI

7Cl T=7PII*Zhll
7(=01PLX I0.0. m1)
7(.rlN I :::: ZCIZ \I I
nON I I=ZC/lIII J
nnl =P'~7i\I+O;~ZCI

7(. f1 I I =P~' ZAI 1+o;~ ZCI I
7nI=n'::1f1.J+R'~Z(1

7niT :(),~ ZII I 1+ R# 7C 1 I
~RITFIA.IR)lAI,lAII,ZCI,ZCII

1 R FnR ~1 J\ T I I r. n~, P • nI SPl. AMP l , Snl • ' ,4 FlO. £>/1 RX• ' l J0. ' , 4 FlO. 6 )
~l=N+l

x=o.o
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no 20 l=l,Nl
WR I T F I h , 19 l X

19 FOR~'ATI' nISTflI\'CF FROM SlIRFflCF IS ',F7.2,' FEFT'l
ZFI=CMPLXln.n,nM*Xl/ZVI
7 I F=Cnf\UG CIF I I
7FII=CMPLXln.n,OM*Xl/ZVII
1 I I F=rnl\l.JGI1E J I)
ZI::CFXPIZFI)
Z2=CFXPClIF.)
D::CFXPI HI I)
74=CF.XPC7IIF)
ZPSr=Zl-Z2
ZPSI I=Z3-U~
ZTHI=Zl+Z2
ZTHII::Z3+Z4
T=O.O

IS IFIT.GT.TMAXlGO TO R
ZE=CMPLX(O.O,OM*T)
ZEE=CFXPIZE)
ZIIS=Z FF':' I ZAP ZTH I+ZA I 1* ZTH I I )
ZtlF=ZFF':' I ZCI'~ZTHI+ZCI I~:ZTHI I)
ZVS=Z IIS*ZC
ZVF=ZtlF*ZC
zs=zcnNI*ZFF.*ZPSI
ZA=zcnNII*ZF.F*ZPSII
ZSIG=75*ZCOI+ZA*ZCOII
ZS=Z5*znI+ZA*ZOII
Zp=-zs/pnR
WR IT F I h. 2? ) T, ZII S, 7 II F , ZsIr;, ZP. ZvS • ZVF

22 FORMATIFA.3,4FIO.5,4FIO.2,4FI0.4)
T=T+[)T
GO TO 15

R X=X+OX
20 COl\lTINIJE

GO TO 10
99 STOP

ENO



APPENDIX 10

c **************************************************
C TR fI [\1 S I F1\1 T Sn LtI TI n [\J nF RI fl T' S F0 tI fI T I nN S RY MFT Hn f) 0 F CHARACIE R•
C SPFCIFIFn TIME INTERVALS. LINEAR INTERPnLATInN.
C ;~'~':' nNE nU1F[\ISInNhL PRnPAGATInl\1 nF PRFSSIJRF
C WAVE'S THRnllGH SATliRATFfl FLASTIC PflRnllS MFOIA'~**

c Il\In=1 STFAflV nSCJLL.MnTInf\I,JI\ln=? OIlAKF MOTlflN
C IF INn=? RFAfl VFLOCITIFS flF RFnRnCK FRflM nfVICE 4.
C I,.) VFL OF snLIS PHASF.II VFL. flF L!01110 PHASF.
C SI=PRFSStJRF flN SfllL SCFLFTnN,SI(,=PRFs.nN FLl/In PART

C ********~:*****************************************
REAL MU
[) 1M f NS I ON SIP ( 2') ) • S p ( ? "i ) • it p ( ? '5 ) , WP ( ? 5 ) , S ( ? 5 ) , VFL{ 2000 ) , R1 ( 2000 )

l,R?IZOOO),R31?OOO),R412000),TT(2000)
cnMMnN SII2'5),V(25),WI25),SITI?5),VTI?5),WTI?5),TV,N,nX,nXl
NAMFLIST/OIN/MII,pnR,PER,nT,TMAX,Rnl,Rn?,G,CL,R,C,H,A,OM

1 • INn, N V, J PRJ [\1 T, I I
10 RFAn( 5,nIN,FNf)=991

1,IRITF(IS,nIN)
I F ( INn. EC. 2 ) RF. An ( 4 , 16 ) I VEL( I ) , 1=1 , NV I

IA FnRMAT(7IFI0.5)1
III=SORT(R/R02)
V2=SORTI (2.*G+Cl)/ROl)
nX=OT'~Vl

,j 1 =0
nXL=f)T':'V2
AI\I=H/OX
K=H/OX
IFI/IN.GT.IK+().51)GO TO 11
N=K
Gn TO 12

J.I [\1=K+l
I2 N 1 =1\)+ 1

R= 1'111';' PflR~' P OR / P FR
R1=R':<\tl *nTI?
R2=R~' V2~~nT12.
Al =Vl':'RnZ+R 1
t\2=V2~'Rnl+R2

TII=V?/1I1
F 1= \11 ;~ R02
F2=\I?':'Rnl
Ill=o)~nT/(f)X*2.)
112 =0':' OT 1 ( nx L~~ 2. I
cnN=R 1~'R?-AI*A2

T=().()
C INITIAL CONOITInNS(5,SI ZFRn ONLY IF VIBRATInN STEADY nSCIL.)

nn 13 1=I,Nl
S I ( I ) =0.0
5(1)::0.0
\1(1)=0.0

11 ~1(11::().o

C liT SlJRGACF.
5P(1)=O.0
SI P ( 1 ) =0.0
WRITF(A,14InX,\ll,V2

14 FnRMAT(1Fln.?1
20 IF( IPRINT.EO.?lGO Tn 29

\o'R 1 TF ( IS, 21 ) T
?l FORMAT(lnX,'TIMF='.FI0.51

~RITF(A,??)(SI(I),S(I),WI I),VI I),I=I,Nl1
22 FnRMAT(5X,2Fl~.2.2F15.4)
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29 T=T+OT
IF(T.GT.TM~X)GO TO 40
Jl=Jl+l

C INTERIOR POINTS
on 25 I=2,N
Ff\J=f)l'~ (WI I+II-WI 1-1»
(3=SI I-II-Fl':'VI l-ll-f"\l'QW( I-I )-VI I-I) )+EN
C4 =S I I +1 1+ E 1~' VI I + 1 I+fH ~~ I W( I +1 )- v I I +1 ) ) +FN
SPI 11=IC3·~Ci.I/2.

(ALL INTER( I)
Ff\.If\I=02';' I VT I 1+1 1-\lT I I-I) )
C1=SIT I I-I ) - F 2~~ \H I I - 1 ) +P. 2 ~< I WT I I - 1 )- VTI I-I ) l+ ENN
C2=SITI 1+1 )+E2,~wTI 1+1 )-R2* I WTI 1+1 )-VTI 1+1) )+ENN
.SIPIII=ICI+C21/2.
VPI I )=IRI',«CI-C21+A2'~IC3-C4) )/12.'~cnN)

25 hiP! I )=IAPICI-C2l+R2~'IC3-C4) 1/12.~'cnN)

I =f\\ 1
C REDROCK PnlJNnARY

IFIINf).FO.IIVPINl)=A*SINlnM*T)*II.-EXPI-R.*T»
IFIINO.EO.2)VPINI)=VElIJI)
WPI [\11 )=VPINI)
SPINII=IAI-RI)*WPINI)+SIN)-R02*VI*VIN)-Bl*IWIN)-VIN»+2.*01*

lIWINll-WIN)
CALL INTERI I)
SIPINll=IA2-R2)*VPINl)+SITIN)-Rnl*V2*WTIN)+R2*IWTIN)-VTIN))+

12.*DZ*IVINll-VTIN))
C StiR FACE p.nllNf)ARY

1=1
CA=$I?I+Rn2*vl*\l12l+Rl*IWIZ)-VIZ)l+2.*nl*lwI2l-WII»)
CALL INHRI I I
C5=SIT(2)+Rnl*V2*WTIZ)-RZ*lwTI2)-VTIZII+2.*n2*IVTI2)-V(1)1
VPI 11=-IP.l~'C5+/l2*Co)/CON

WP( ll=(C5+R2*VPll»/A2
nn 30 1= 1, N1
\lII)=VPII)
HI r )=WP I I )
SIl)=SPII)

30 SIII)=SIPIIl
R 1 I J 1 ) =S I I I I )
R2( .111=5111 )/(-POR)
R3IJll=VIII)
R4IJI)=wIII)
TTIJl)=T
Gn Tn 20

40 CALL PLnTITT.Rl.Jl.0.0.-5000 •• 3.,2500 •• 5.,4.)
CALL PLnTITT.R?,Jl.O.O,-5000.,3.,?500.,5 •• 4.)
CALL PLOTlTT.R3,Jl.O.O,-Z •• 3.,O.5,5.,R.)
CALL PlnTITT.R4,Jl,O.O,-2 •• 3.,O.5.5 •• R.)
r,n Tn 10

99 CAlL EX I T
STOP
FI\If)

C **************************************************
SllRRnUT I NE I NTFR ( I )
cnMMnN SI(25),VI25).wIZ5l.SITI25),VTI25).WTI25).TV,N.nx.nXL
IF( I.FO.J )GO tn 10
SITII-l)=SII II-TV*ISII I)-SII I-I»
vT ( I -1 ) =v( I ) - Tv';, I VI I l - v ( 1- 1 ) )
WT I J -1 ) =W( I ) - Tv'~ I W( I ) - Wf I -1 ) )
IFI I~EO.IN+l) )GO Tn 20
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In SITII+ll=SII II-TV*ISII II-SIII+l»
IITI 1+1 I=VI I I-TV*I VI I I-VI 1+1»
\..1 T( I +1 I =WI I I - TV~~ I WI I I - WI I +1 ) )

2n RFTlJRN
Hm

c **************************************************
SI\RRO\lTINf PLOTIX,Y,K,XMIN,YMIN,nX,OY,XL,Yl.}
nIMENSION XI3nnn),Y/3nnnl
(ALL PLTOESIXMIN.nx.YMIN,nY.2 •• 2.1
CALL PAXISI?,2.,14HX I TIME,SEC 1,-14,XL,O.,XMIN,OX,1. I
CALL PAXISI2.,?,14HY I 1,14,YL,9n.,YMIN,DY,1.1
CIILL PLINfIXIlI,YIll,K.I,O,O,lI
CALL PL TENO
RETURN
Ef\10
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C **************************************************
C hrn DIMENSIONAL PRnPAGATInN nF CnMPRFSSJrlN ANn SHEAR I",AVES
C THRnU(;H Hm,nGENFntIS sniL. STFPI,JISF LATFRAL RnllNDARIES.
C APLICI\RLF. TO FI\RTH OI\MS ANn TO VI\U.EYS
C nNE LAYER. COI\ISTI\I\IT WlniILI. PrJR=PIlIssnN RATIn
C !IT fllr.H N(JnF If:, FOIIATlflNS ANO 16 IINKI'Hl\ms.
C 1\ NY RAT Inn F \I PR I \I SH (I t\1 TFRPnL AT lfl t\l S 1•
C ISIJP=1 OR 2 RFOIJr.r:S PRlt\ITIlIIT(2 PRINTS IIRsnL.MI\X.HORIZ.
C I\CCFLFRATIONS AT SIIRFACF nNI.Yl.
C IF IH:=1 miLY HnRIznNTAL MIlTInN INPllT.
C IF I[)YNM1=I,nNLY nYNI\~IIr. STRFSSFS CrH-1PIITFn, STArIC STRFSSFS
C I F K~JnH ~1 r: II N RF SII P FRIM PnS r- n.
C *******~:******************************************

[) I r~ ENS I 11N PI J( 700 1 , P n ( 700 ) , PI. ( 700 1, PR ( 700 I , PII P ( 700 I , PoP ( 700 1 ,
1 PLP ( 7001 • PRP ( 7001 , TIl( 700 1 • TO ( 700 I , TR ( 700 I , TL ( 700 I , Hi P ( 7001 •
2 T() P ( 700 I , TRP ( 7 () () I , TL P ( 7 00 I • 1/1 J ( 700 I , Vfi ( 700 I • VL ( 700 ) , VR ( 700 I
'3. VIIP ( 7(0) , \10 P ( 700) , VLP ( 700) • \lR P ( 700 I ,v \Ill ( 700 I , VVII ( 7(0) ,VV L (700) ,
4VVR ( 700 I, V\lt IP ( 7001, VVoP ( 700 I • VVL P ( 700 I, VVR P ( 70() I , VHO { 700 I , VVE (700 l
5.TH(7nO),VH(7nn),\I\I(7nO),TVI700),INOFX(3nl,VFR(7001,HnR(700),
6 I Rnil NfH 5 0 I ,IS' }R ( 3 0 I ,INR { 10 l , I f\1 L ( 1 0 l , II. R I '5 0 ) , 11\1 TH ( 3 0 I , I NT V( 3 0 I ,
7 I NSR ( 1 n ) , INS L ( 10 I , I PR I NT ( 30 I ,A \I ( 100 l , AH( 100 l , AS T ( 100)

INTEGFR PERINO(I'10)
II ATA VV, \11-1 , \I Hn , \I VE , VlJ , V0 , \I L , VR , \I \Ill , VV0 , vVL , VVR, Til, TU , TL, TR ,

1 T\I, TH, VU P, vOP, \I L P , VR P , VVIIP , \filliP, VVL P, VV RP , TOP, Ttl P , TLP , TRP,
2 PUP, POP, PL P , PR P , \fER, HnR , AS T , P U ,P [1, P L ,P R I 2 R 1 ()O,~o. 0/

NAM ELI ST10 I NIP OR, E, I NOE X, M~t I, Rn, GR, OT , T MA X, NR , NJ, LL, MM , I 80ll NO,
1 I SlJR , I LR , I NT H, I NT 1/, INS R , INS L , I P R I NT ,I\IS TE P , I t\1 L , I NR, OK , P FR I NI), I SUP.
2TSTART.NSlJRF,NPER, IH, lfiYNAt~

C FnR EARTHOUAKE ~1nTInN REAO HnRlznNTAL IIFLnCITIES FROM
C OFVICE 4 ANO VFRTICAL VELOCITIES FRnM'oEVICE 3.

10 RFAO(5,OIN,ENO=99)
RE II 0 ( 4, 7 ) (H OR ( I I • I =1 , NSIE P )

7 FnRMAT(7(FI0.'5))
I F ( I H. GT• 1 I RF AO ( 3,7 I { VER ( 1 I, 1:= 1 , NS TEP l
G=E/(2.*II.+pnR)l
AL= POR ':' E / ( I 1. +P OR I':' ( 1 • - 2 .'~ POR I I
TM=Al+2.*G
VPR = SORT ( (H1~' IIT+III~U I / (Rn~'OT I l
VSH= SOR T ( (Gt.'fH +AMll I I (Rn~'OT) )
ox =2 .~'VSH*OT

T?=VPR/(2,"~VSH)

T1=1.-T2
R/I. T 1= VPR /VSH
WRITE(f:,,2010X.\lPR,VSH,RATI,G,TM,OK

20 FnRMAT(' OX(FT)=',Ff,.2,' VPR(FT/SF.C)=',F7.2,' VSH=',F7.2,
l' RATI0=',F5.?,' G=',F9.1,' T='.Fl1.1,'KO=',F5.2/1

IN=(NJ-21*2
ISTEP=1
T=TSTflRT
IF(IDyNAM.FO.IlGn TO 18

CSTATI CPR ESS I JR FS
lin 15 J=I,NPFR,3
Il=PERIND(,11
I2=PERINO( ,1+1)
!3=P ER I NO (,1+2 I
fin 17 In=Il,I2
on 16 I 1=1, 13
T=In-( II-ll*NJ
PO(I)=[)X*Rn*GR*( II-I)
Pll(I)=PO(I)
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PL I I ) == nK >:: P[) ( I )
lA PR(I)==PLlII
17 Cnr'JTINIJF
l'i Cl1NT I NlJf~

lA Cl=A/'1If/DX
C ::R(l'~VSH

C(==Rn*VPR
cnc=c+cc
(?=CC~:GR*rH

I F ( I f) YNM~. I: (,). 1 ) C? == O. 0
C3=2.':'I:2
C4=2.~:Cl

CM=C-C4
Cf)=Z.*C
CCM=CC-M11J/ ( VPR~: rn)
CF =1. / ( F* DT )
r.l=-2.-CE*CC
G2=PflR~:CE*CC

A5=G2;~G2-Gl'~Gl

Cll=4.':<Cl
I I f\I= I N-Z
1\)IN=IRflUND(l'
1\121\1=INDEXI l'
WiN=IStJRll)
1\,l.l\l= I LR ( l'
1\151\1 = I NL I 1 ,
1\",,"':: I NR 11)
1\'11\' = I I\!T H I 1 ,
1\11""= I I\ITV! 1 I
1\191\1= II\ISR 11'
1\' 1n 1\) =INS L I 1 )
1\11 1I\J = I P R I NT I 1 )

30 11=( ISIIP.ECl.2lGfl Tn 508
wRITE(6t3llT

31 FflR"'ATl' TII·1E=',F7.3,' SEC'/' f\lnOF'1
IF(ISlIP.EO.llGn Tn 507
nn 32 In==2,NIIN,Z
IJ.=IPRINTlIn'
I{'=IPRINT( 1n+l'
on 33 I=Il,1Z

33 ',.JR I TE ( 6 , 34 ) I , VI) I I I , V0 ( I ) , VL ( I I , VRI I I , Til ( I I , Tf) I I ) , TL( I I , TRI I ) ,P lJ I I I
1 • p n ( I ) , P L( I ) • PR ( I ) , VH n ( I ) , VVF ( I )

34 FnRMATI2X,I3.12F9.2,2F6.21
32 cnf\lTI NlJE

Gn Tn 'lOR
507 .1=0

nn 333 In=2,N3N,2
Il=ISIiRIIOI
12:: I SIIR (In+l1
nn 336 I:: I 1 , I 1.
.I=J+l

3 :1 0 ~I RI TE ( A , '1 3') , I • Vn( I ) , vvn( I ) , VHn I I ) , \I VFIr ) , AVI J ) , AH ( J )
335 FnRMATI2X,I3,6F6.21
333 U1NTINlJE
'SOP T=T+OT

IsTFP=ISTEp+l
IF(T.GT.TMAXIGfl Tn 441
on 50 In=2,NIN,2
I 1= I FH)l1NO I In)
12:: I RflUNo ( 10+ 1 )
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nn 53 I=Il.I2
\lllPI I )=VERI ISTFP)
vnPI I )=VFRI ISTEP)
VVLPII )=VFRIISTFP)
VVRP( I )=VERI ISTFP)
\lLPI I )=HnRI ISTFP)
VRPI I )=HnRI ISTFP)
Vv \I P I I ) =H I1R 1 I S TF P )

">3 VVDPII)=HI1RIISTEP)
'iO Cn~ITINIIF

VHilILI.)=HnRIISTFP)
VVF I LL )=VER I I STFP)
VHnIMM)=HI1RIISTFP)
VVFIMM)=VERIISTEP)

C II\ITERInR pnINTS
nn 101 In=2,N2N,2
I l=INOEXI In)
I 2=INOEX I IO+l)
nn 10? I = I 1 , 12
J=I+1
K=I+NJ
L=I-l
M=I-NJ
Fll=Tl*PR(I)+TZ*Pl(J)
FI2=TI*VRII)+TZ*VLIJ)
FZl=T1~'PL(I )+TZ~'PR I l)
1:22=Tl,n/[.II)+T2':'VRIL)
F31=T1~,pn([)+T2~'Pt/(M)

F32=Tl':'Vf)( I ) +T2';' \Ill I M)
F41 = T1 ,::(.) III I ) + T2~' Pn ( K)
F42=TI':'VlII I )+TZ*Vf)IK)
Fl=F.1l-E12':'CCM-Cl~~VRII)
F2=FZI+FZ2*CCM+Cl*VL(I)
F3=E31+E32*CCM+Cl*VOI [)-C2
F4= E41-F42':'C Ol-C l':' VII I I ) +C2
F'i=THIL)-VHIL)*CM-C4*VVl(l)
F6=TH(I )+VHI I)*CM+C4*VVR( I)
F7=TVIM)-VVIMI*CM-C4*VVf)II)
FR=TV I I ) +VV ( I )'~CM+C4t,'VVlI ( I )
F9=1 PIl( [)+Pf)( r II*CF
FIO=( PR( I )+PLI I) )~~CE

()1=CE*(FI+F21
QZ=CF':' (F4+F3)
Glo=pnR*QI-02-pnR*FIO+F9
G20=pnR*o2-o1-pn~*F9+FIO

Rlo=(F?+FR-FI-F7)/cnc
R?O=(F3-F4+Fh-F5)/CnC
AIO=IGZ*GIO-GI*G20)/A5
A20=(GZ*G20-Gl*GIO)/A5
VLP(II=IAIO+RIOI/2.
VOP( I )=(AZO+R20)/Z.
VRP( II=(RIO-AIO)/2.
VI)P ( I I = I H20-A20) /?
VHnl [)=( VLPI I )+VRP( I) )/2.
VVF'I 1)=( vlIPI I )+VOP( I)) 12.
V\fOP ( I I =VHfl I I )
VVIJP ( I) =vvnp ( I)
VVLP( I )=VVEI I)
VVRPI I )=\lVLPI I)
PRP( r )::FI+CC~'VRP( I)
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PLPI 1 )=F2-CU~VLP( I)
PIWI I )=F1-CCt,'VOPI I)
PIIPI I )=F4+CCt,'VIIP( I)
TLP( 1 )=F5+Ct,'VVLPI I)
TRP( I )=Fb-Ct,'VVRP( I)
TrW I I ) =F-{+Ct"vvnp II)
TIIP( I )=FR-U"VVIIPI I I

1 02 CnNTI NUE
101 cnl\lTT NIlE

C SIIRFACE POINTS
J==O
nn 51 rn==2.N1N.2
r 1 == I S IIR I In)
r 2 == I SlJR I In+ 1 )
on 40 1=11. 12
,l==J+ 1
M==I-NJ
F 3 1 == T1 t" POI r ) + T2t" P II 1M)
Fi2=TP\lDI I )+T2~'VII(M)

Fi=F31+F32':'CCM+Cl':'VO( r )-C2
F7==T\I(M)-VV(M)*CM-C4*\lVOI II
vnp I I ) =F3/CC
\lvrw I I) ==-F7/C
IIHfl I I ) =VVDP I I )
VVFI I )=\lDPI I)
AH I ,J) = I IIVDP I I I-V\I[l1 I ) ) lOT
fl.VI J I =( \lrw I I )-V[ll I» Irn

40 1FIARSIASTIJ) ).LT.ARS(AHIJ»)ASTIJ)=ARS(AH(J))
51 cmlTT NlJE

C RFORflC K
on zos In=2,N4N,2
1 l==ILR( In)
I 2 =1 LRI 1(1+ 1 )
nn ZOo 1=11. 12
K=I+NJ
F41=T1t,'PIJ( I )+T2'~Pf)(K)

F42=T1':<\/1I ( I) +T 2* VOl K)
F4=F41-E4?t,'COI-C1~'VIJ(I )+C2
FA=TV( I )+\lV( I )*CM+C4*VVIJ( I)
TlIP( I )=FR-C*VVlIPI I)
PIIPI 1 )=F4+CC'~VlIPI I)
TOPI I )=0.0
POP( I )=0.0
\/Hn( I) =VVlJP I I)

2()f, VVF ( 1 ) =VlIP I I )
20') CmH I NilE

C SIDES
IF(NbN.r(.).O)GD Tn 151
Oil qn 1(1=2,N6N
I == I NR ( 1 n)
-11=1+1
Fh=THI I )+VHI I )t,'CM+C4)~VVR II)
TRP( 1 )=Fh-C;~VVRPI I)
TLPII)=O.O
Fll=Tl o PRII)+T2oPLIJI)
F 1 2 =Tl *'I R ( 1 ) + T2* VLl J I )
Fl=Fl1-F12t,'CCM-Cl*VR( I)
PRPI 1 )=Fl+CC*VRPI I)
PLPI I )=0.0
VH(1( 1 )==VRP( I)
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90 VVFII)=VVRPII>
151 IF(N5N.EO.O)GO Tn 152

no 9') 10=2,N5N
I=INll [01
L=1-l
F5==TH(L I-VHIL)*CM-C4*VVL([ I
TLPI I )==F5+C*VVLP( I)
TRPII)==O.O
E71=TI*PL([)+T?*PR(L)
F? ? == T1 ~'V LI I ) + T2'~ VR I L )
F?=f21+F?2*CCM+Cl*VL(11
PLP( 1 )=F?-r.r.';'VIY( I)
VHn( 1 )=VLP( I I
VVF ( 1 ) ==VVLP II I

95 PRP( I )=0.0
C CflRNER SIIRFACF pnINTS

152 IF(N9N.EO.0IGn Tn 153
n(1 9h 10=2,N9N
1=It\ISRI1nl
L=1-l
F5=TH(LI-VH(LI*CM-C4*VVL(II
F21=Tl':'PLC1 )+T?*PR(L)
E22=Tl*VLIII+TZ*VR(LI
F2=Fll+E2?*CCM+Cl*VLI II
VVLP( 11=-F5/C
vt p ( II =F2/CC

9h VVE ( I I =VVLP I 1 I
153 IFINI0N.FO.O)GO TO 154

nn 97 10=2,NI0N
I=INSLC!n)
,)1 = I + 1
FA=TH( I )+VH( I )':'CM+C4"~VVR( I I
F 11 =11'~ PR ( I ) +T ?,,~ PL ( J I )
Fl?=T1"~VR(I )+T2~'VLlJI)

Fl=FII-Ell*CCM-Cl*VR( I)
\/VRPI I )=FhIC
\fR P ( I ) =-Fl/CC

97 IIVEI I 1=\lVRPI I I
C MIonLF pnINTS

154 on 190 1n=1,NRN,2
I I=INTV( Inl
I2=INT\lIIO+l1
no 19 1 I = I 1 , 12
K::::I+NJ
cnN=VVI 1 I
VV( I )=(T{)(K I-TII( I 1+1 VVII( I I+VVnl K11'~CM+Cl1*VVI 1 I )/CO

191 T\I ( 1 ) =TlJ ( I I + \IV ( I )*C-Cnt\I':'C4-VVIJ ( I I *CM
1 90 Cn1\1 TI N lJ E

nn lRO In=2,N7N,2
II =INTH( WI
1?=INTH(ln+ll
nn lRI 1=11,12
J= 1+1
cnN::::VH II I
VH I I 1=( T Ll ,I 1-TR ( I 1+( VVR ( I I +VVL I J I ) ,~C M+C 11*VH ( I I lIe 0

1 R1 TH I I ) =TR ( 1 ) +VH I 1 I*C-CON~'C4-VVR ( I I~'CM

lRO cnl'IT I f\ltlF
nn 9R In=2,Nl1N,2
Il::IPRINTllnl
12::::IPRINTIIO+11
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00 94 1=11, 12
Till I )=TlJPI I)
Tr)1 I) =Tf)PI I)

TRII)=TRPII)
TLII)=TLPII)
PIlI I I=PllPI I)
Pr)l Il =pnp I I)
PRl I )=PRP(I)
PLII)=PLPll)
Vlil I )=VllP (I)
lIne T) =vnPl I)

VLII)=VLPIT)
IIR I I ) :::: VR P I I )
VVlJ ( I) =VVUP I I )
Vvn l I ) =vvnp I I)
VVLII)=VVLPII)

94I1VRlI)=VVRPII)
9R CONTINlJE

GO TO 30
441 nn 44? I=I,NSlJRF
44? ASTII)=tlSTII)/ACI

I,J R I TF If" ~ 4 0 ) I tI S T I I ) , I =1 , NS lJR F )
~4n FORMATIRIFIO.3»

GO Tn 10
99 STOP

FNO
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