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ABSTRACT

A quasi-bifurcation theory of dynamic buckling and a simple flow theory

of plasticity are employed to analyze the axisymmetric, elastic-plastic

buckling behavior of buried pipelines subject to seismic excitations. Using

the seismic records of the 1971 San Fernando earthquake, a series of

numerical results have been obtained, which show that, at strain rates

prevalent in earthquakes, the dynamic buckling axial stress or strain of

a buried pipe is only slightly higher than that of static buckling.
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INTRODUCTION

It has been observed (1) that buried pipelines may buckle by earthquakes.

A buried pipe is not likely to buckle in a beam-column bending mode because

it is restrained by the surrounding soil, except where transverse ground

movement or faulting occurs. The available records of earthquake damage to

pipelines (1) show that a pipe may buckle locally in an essentially axi­

symmetric buckling mode of a thin shell. It is the purpose of this paper

to analyze such dynamic buckling.

The real physical environment of a buried pipeline may be very complex,

especially when undergoing seismic excitations. To simplify the problem,

it is assumed that the pipe is surrounded by a homogeneous and isotropic,

elastic soil medium which may develop only a radial pressure on the pipe.

The pipe itself is made of an elastic-plastic material having constitutive

relationships which may be predicted by the simple flow theory of plasticity.

The actual ground motion due to propagating seismic waves may also be complex

and vary with time in amplitude as well as in direction. The motions at

different points of the ground at a given time, are obviously not identical.

The difference between the ground motions at two points of a pipe segment

may produce stresses and strains in the pipe. A long pipe is laterally

flexible but stiff in the axial direction; hence it may develop a comparatively

high axial stress produced by the axial components of an average amplitude of

the ground motions. Therefore, only the effects of axial components of the

ground motions on the buckling of a pipe are considered.

It is also to be noted that seismic waves propagate in a soil medium

at a wave speed of an order of about 700 m/sec depending on the soil sU.ffness

and density (2). The longitudinal wave speed of a steel or iron pipe is about

5,000 m/sec. The higher wave speed allows the pipe to match the motion of
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the surrounding soil quickly. In other words, it is assumed that the axial

strain and strain rate in the pipe and that of the surrounding soil are

identical. The wavelength of ground motion at the Rayleigh - wave speed of

700 m/sec is about 140 meters (2). Away from an epicenter, the seismic waves

are generally continuous and do not have strong discontinuities typical in

shock waves. Therefore, it is further assumed that, in a relatively short

segment of pipe, the strain and strain rate

length but may vary with time.

Buried pipes used in natural gas, water and oil piping network systems are

usually made of steel or ductile iron and of dimensions having radius over

thickness ratios of less than 60. Such a cylindrical shell under axia]

compression may buckle statically in the plastic range, and predominately

in an axis~nmetric mode (3,4). Under a relatively low rate of loading, the

shell buckles dynamically also in an axisymmetric mode. The dynamic buckling

process is determined by a recently developed quasi-bifurcation theory (5,6),

which is briefly described in the paper. Numerical results for a number of

ductile iron pipes subject to the 1971 San Fernando earthquake are presented

and discussed.

KINEMATICS

Consider a cylindrical shell of uniform thickness h and length L. Let

x, z, g denote the axial, radial and circumferential coordinates of the unde­

formed middle surface of radius R. The uniform axial and radial motions of

the middle surface before buckling may be expressed in terms of the time­

dependent axial and circumferential strains ex(t) and eg(t) respectively.

The perturbed axisymmetric motion may be expressed in terms of the additional

axial and radial displacements of a point on the middle surface of the shell,

~(~,t) and ;(~, t), respectively. ~ and ware positive radially inward.
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The following assumptions usually considered in the theories of thin

shells are made:

(a) The displacements are small in comparison with the length or

radius of the cylinder, but may be of magnitudes comparable to the thickness;

(b) The stresses in the radial direction are negligible and lines

originally normal to the middle surface of the shell remain so after

deformation; and

(c) The effects of rotational inertia of the shell element on the

motion are negligible.

To simplify the subsequent analysis, the following dimensionless

quantities are introduced:

-
x =~ z =~ u - u w = ~R' h = -Rh , L =1

RR' R' -R'

The additional axial and circumferential strains may be shown to be:

EX = u'x - zw,xx

(1)

STRESS-STRAIN RELATIONSHIPS

The simple flow theory of plasticity (4) is employed to describe the

stress-strain relationships. The strain rate tensor, e
KL

, may be considered

as the sum of the elastic and plastic parts. For an istropic and homogeneous

material, the elastic strain rate tensor is given by

.e
e =KL (2)

where E and v are, respectively, Young's modulus and Poisson's ratio, SKL is

the stress tensor, 0KL is the Kronecker delta and repeated indices denote

summation over the range of values of the index. The plastic strain rate

tensor is given by
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and ET, a function of J 2 , is the tangent modulus obtained from the uniaxial

stress-strain curve.

It is assumed that the cylindrical shell has simply-supported edges

and is surrounded by a homogeneous soil medium behaving as distributed radial

springs with a spring constant k N/m/m2 . The outer surface of the shell is

smooth and it is subjected to an internal pressure p. It is further assumed

that the shell is subjected to axial seismic excitations which may be expressed

in terms of the axial strain rate ex(t)

(4 )

where Vz and VI are the axial velocities of two points on the pipelines at

a distance d apart. The axial displacement DI (t) may be that from a seismic

record. If the travel time of an undistorted signal from point I to point 2

'1~
in the soil medium is denoted by t , we may have

(5)

(6)

Employing eqs. (2) and (3), the average axial and circumferential stress

rates, Sx(t) and Sg(t), accompanying the prebuckling, uniform axial and

radial motions of the shell caused by seismic excitations may be expressed as

• Cl2 P Cl2C21 h
S = + (C - ) e E

x K + he22 11 K + hC22 x
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(7)

where

kR
K =-

E

(A-l)(Z-!;)(Zt,;-I)}/D ·~C.21 (8)

Sg

S
x

E for J = f~ and J 2
> 0

~{:T
2 2

* J
Z

< 0for J
Z

< J
Z

or

Here, J Z*> 8//3 is the maxumum value of J Z previously attained and Sy is the

initial yield stress from the uniaxial stress-strain curve.

When the uniform motions of shell are perturbed, there may be additional,

nonuniform axisYmmetric motions, u(x,t) and w(x,t), which lead to additional

axial and circumferential stresses s (x,z,t) and Sg(x,z,t). If the additionalx .

motions are relatively small, the total stress path of a shell element

follows essentially the stress path of that of the uniform motion in either

the loading (JZ > 0) or unloading (j2 ~ 0) condition. In that case, the

additional stresses and strains in the shell have the following relationships:

(9)
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where Cll' C12 ' CZl and C22 are given by eqs. (8).

STABILITY CONCEPT

A certain motion of a system of n degrees of freedom is considered

stable, if after a sufficiently small disturbance, the system remains to

follow the undisturbed motion. In other words, the undisturbed motion is

stable, if the deviated motion, ~r(t), r=l, •.. ,n, the difference between

the disturbed and undisturbed motions in n generalized coordinates, remains

small. When the generalized forces, Pr , of the system are configuration-

dependent and when the deviated motion is relatively small, the deviated

motion is governed by the following variational equations.

~ = a ~ = l\P, r=l, ••• , n; s=l, .•. ,nr rs s r

where the coefficients a are known functions of time depending on thers

(10)

undisturbed motion only. The stability of such system may be determined by

analyzing the coefficients a (t) (5,6). It may be shown that the deviatedrs

motion is not bounded when a quadratic term

Q- l\P r -;: r - a r r > 0 for t > t- rSr - srsr - rssrss cr

is positive, after a critical time t ,for any possible deviated motion.
cr

Furthermore, the variation of Q yields the following relationship

oQ = Za 1:; 01:; = Z~ o~
rs S r r r

(11)

(lZ)

The quadratic form Q at a given time can always be reduced to a linear

combination of squares such as

Q= a n 2mm' m=l, ... ,n (13)

where am(t) are the time~dependent eigenvalues. nm are related to 1:;r by

an orthogonal transformation



L. H. N. Lee
8

where 9, are the directional numbers of n mutually orthogonal vectors inmr

the 1:;r space known as eigenvectors. Such transformation is called a trans-

formation to principal axes. If 1:; and 11 are normalized, Q assumes ther r

greatest value Ct1 in the 1;;r space by a theorem of Weierstrass. If a l > 0 for

t > t , then the part of the initial disturbance having the mode 11
1

growscr

unbounded. Such phenomenon is called a quasi-bifurcation phenomenon. The

above concept and approach are applied to the solution of the present problem.

Of an elastic-plastic solid of a volume V, let the undisturbed motion be

described by the displacement UK(XM,t) in the ~ spatial coordinate system.

The deviated (or additional) displacement is denoted by uK(~,t). The

corresponding Lagrangian strains are e
KL

and sKL and the corresponding

Piola-Kirchhoff stresses are SKL and·S respectively.KL

small, the additional strain sKI, is given by

and the deviated motion is governed by

When uK is relatively

(15)

(16)

where p is the initial mass density. The deviated motion satisf"e~ the

following boundary conditions: '1< (~, t) = 0 on that part of the boundary with

prescribed kinematic conditions and

{ eXL +sKL (8 +U )} 1\L=0
u uM;L ML M;L -K (17)

on that part of the boundary with prescribed surface forces, where Nl( is the

outward unit normal to the surface. The quadratic term for the elastic-

plastic continuum is given by

(18)
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For a body which has no interior discontinuities of the variables, the

quadratic term may be written as

(19)

The motion and its stability of the solid may be determined by analyzing the

functional Q(uK).

DYNAMIC BUCKLING OF SHELL

Employing eqs. (1), (9) and (19), the quadratic functional Q for the

cylindrical shell in axisymmetric motion may be written as

3 JL S 2
Q= - 21TR E [h{ EX+Cn)u,x

o

S
2C + ~ w 2 2}

- l2u ,xw E ,x + C22 w

(20)

After integrating by parts and employing the boundary conditions, the variation

of Q is given by

- C12 h u, x} ow] dx (21)

From eqs. (12) and (21), the axial deviated motion of the shell is found to

be governed by

U ,TT
(22)

where T is a dimensionless time given by

(23)
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If the effects of non-uniform axial waves on the lateral motion of the

shell are negligible, the axial deviated acceleration may be very small and

taken as nil. Observing that Sx/E is small in comparing with Cll , the term

at the right side of eq. (22) leads to the expression

s = E(Cllu,x - C w) = 0 (24)x,x 12 ,x

In order to match the undisturbed motion at the boundaries, Sx = O. Thus,

eq. (24) yield the following relationship.

(25)

Substituting eq. (25) into eq. (20) and omitting second ordered terms, the

functional Q may be reduced to

3
J

L Sx
Q= -2'ITR E .. {-- h w

E ,x
o

2
w,xx

(26)

When the shell is in a state of uniform loading or unloading, i.e. Cll ,

C22 and Cl2 are constants along the length of the shell segment, the functional

Q may be further simplified by the following transformation:

00

\ (). mTrXw = L nm t sln-r-
m=l

Substitution of eq. (27) into eq. (26) yields

(27)

where

Q = 2
a. nmm

(28)

3
,.. = _ ~ Sx (t) h 2 Cllh
""m 1 E (~) + 12 (29)

The variation of the functional Q with respect to a particular n leads tom
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the following set of uncoupled equations of motion

m= 1,2,3, ... (30)

where the underscores are placed under the indices to suspend the summation.

Equation (30) as well as the functional Q in (28) shows when anyone of

the am becomes positive, that particular T1m mode of motion may grow and the

undisturbed motion may be unstable. In fact, eq. (30) shows that the radial

displacement will grow when a = 0, the axial stress corresponding to ex, =0m m

is a static eigenvalue given by

(31)

where the leading minus sign indicates a compressive stress.

Minimization of 8 in equation (31) with respect to (mn/L) yields
x

the static axial buckling stress

The corresponding length of half-waves into which the shell buckles is

(32)

L
m

C 2h3 1/4

• [ 12 [(elle::-e122)h +ellK ]

(33)

It is to be noted that the circumferential buckling stress (89 ) is implicit incr

the expressions C
ll

,C12 and e22 in eqs. (32) and (33), which are pertinent

qnly when 59 is in tension or a comparatively small compressive stress under

which the shell will not buckle by the lateral external pressure.

Under dynamic loadings, a particular mode of motion corresponding to the

algebraically largest value of ex, (t) grows instantaneously at the highest
m

rate. When the largest ex, changes from negative to positive, the corresponding
m
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mode of motion changes from an oscillatory to a divergent motion. The time,

t , at which the largest a = 0 indicates that the static buckling stress
cr m

or strain has been reached and a quasi-bifurcation of motion begins, i.e. the

critical mode of motion begins to be divergent. To determine the dynamic

behavior of a shell subjected to a complex loading history, it is necessary

to integrate eq. (30) by a numerical procedure. A computer program based on

the fourth order Runge-Kutta method has been prepared for this purpose. A

score of cases with various combinations of parameters have been numerically

analyzed and are described as follows.

NUMERICAL RESULTS

Numerical results have been obtained by the foregoing procedure for a

number of ductile iron pipes (7) having the following common properties;

- 11 8
L=12.l9 m, R=0.6096m, E=1.6547xlO pa, S =3.3095xlO Pa. The

y

uniaxial stress-strain curve of ductile iron may be idealized by a bi-linear

9
representation having a constant tangent modulus ET = 3.3095 x 10 Pa. The

mass density of the pipe together with an added mass density of the surround-

ing soil is taken as p = 10.629 g/cm3• All the pipes have a common thickness

of h = 1. 2954 cm, except for Case 7062, h = 1. 6510 cm. All the pipes are

3
buried in a common soil medium with an elastic constant k= 190.10 N/cm ,

3 3
except for Case 3064, k= 54.29 N/cm and for Case 4070, k= 271.45 N/cm •

All the pipes are subjected to no internal pressure, except for Case 5065,

5
p = 6.8948 x 10Pa, p= O. All the pipes are assumed to have the simply

supported edge conditions and they are subjected to identical seismic

excitations.

In order to make a realistic application, the horizontal displacement

records shownin Fig. 1 of the San Fernando earthquake of February 9, 1971 in

the east-west direction in the 6400th block of Sunset Boulevard, Los Angeles
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were utilized. The distance between Station 6464 and Station 6430 is

about 50 meters. Within the 20-second duration of the records the notable

axial strains obtained by eq. (4) occur in the time interval between 9 and

13 seconds. It has been found that the maximum strain is less than 2 x 10-4

and the maximum strain rate less than 2 x 10-3/ sec which agree with that of

other records in the literature (2). It has also been found that, under

such excitation, the radial oscillatory motion of anyone of the pipes con-

sidered remains small in the entire duration and of an amplitude of an order

of the given initial disturbance: n (0) = 1x10-6 and n (0) = 0 for any mode m.m m

This agrees with the fact that no pipe was damaged in the Sunset Boulevard

region, about 15 km from the epicenter, during the San Fernando earthquake.

However, near the epicenter, there were many damages to pipes which would be

subjected to higher strain and strain rates. The magnitude of the San

Fernando earthquake was 6.6 in Richter scale. The largest known earthquake

in the world had a magnitude of 8.8. It is conceivable that buried pipes

may be subjected to seismic excitations 100 times stronger than that shown

in Fig. 1. Therefore, the records shown in Fig. 1 were magnified 100 times

in displacement amplitude and used as input excitation. The corresponding

typical results are shown in Figs. 2, 3 and 4.

Figure 2 shows the time variation of the amplitude of the critical mode

of radial motion of Case 1068 and that of Case 7062. For a case, such as

Case 1068, the critical mode, m=68 , is identified by the last two digits.

t indicates the time when the static buckling stress is reached. The results
cr

show when the axial stress is approaching to the static buckling stress, the

frequency of oscillation is decreasing and when the axial stress exceeds the

static buckling stress, the motion becomes divergent. The dynamic buckling

stress is somewhat higher than the static buckling stress depending on the
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strain rate and other factors. Figure 2 shows that the thicker shell,

Case 7062 has a higher buckling stress and longer spatially buckling

wave length.

Figure 3 shows that the pipe denoted by Case 5065 and subjected to an

5internal pressure of p = 6.948 x 10 Pa has a higher static as well as

dynamic buckling stress in comparing with that of Case 1068 haVing p=O.

Figure 4 shows that a soil medium having a larger value of elastic constant

k tends to stiffen a pipe and increase its buckling stress. Each of the

pipes considered is subjected to an average axial strain rate of about

.l/sec and buckled under an axial strain within a range of 0.002 to 0.02 in

the plastic range. The initial uniaxial yield strain is 0.002. The dynamic

axial compressive stress at ~ = 8xlO-4 and the static buckling stress at

t of each case are given respectively in 1 x 108 Pa in the parenthesescr

as follows: Case 1068 (3.568, 3.500), Case 3064 (3.346, 3.310), Case 4070

(3.725, 3.650), Case 5065 (3.718, 3.562) and Case 7062 (4.433, 4.215). The

average ratio of the two stresses is 1.029. The results show that at a

strain rate prevalent in earthquakes; a buried pipe buckles dynamically under

an axial compressive stress or strain practically identicai to the static

buckling stress or strain.

CONCLUDING REMARKS

Figures 2, 3 and 4 show only the growth of a critical mode of radial

motion of each pipe. In reality, there may be a number of modes of motion

which may be excited by the initial disturbances, growing at rates less than

that of the critical. Furthermore, a pipe may have local imperfections and

surrounded locally by softer soil which allow the pipe to develop a local

bulge. If the variations in the various parameters caused by the imperfections

are small, the bulge would develop at an axial stress close to that predicted
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byeq. (32) and with a half-wave length by eq. (33). In using the stress-

strain relationships based on the simple flow theory of plasticity, a some-

what higher predicted buckling stress (4) in comparing with that of the de-

formation theory or experimental results is usually obtained. However, of

a material having a large A value, the difference can be shown not significant.

Therefore, the axisymmetric, elastic-plastic buckling behavior of buried

pipes subject to seismic excitations can be reasonably predicted by the

analytical approach presented in this paper.

It is to be noted that a number of papers appeared recently on the behavior

of a buried pipe undergoing seismic excitation (9). Most of the papers have

modelled the system as a beam on a visco-elastic foundation. However, it is

known that two of the observed failure modes in buried pipelines under seismic

excitations are buckling and fracture (10). Therefore it is also the intent

of this paper to extend the model of a buried pipe as a thin circular

cylindrical shell in a resisting soil medium (9) to the buckling analysis.
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