NSF/RA-790371

P280-157589

THE HORSE CANYON EARTHQUAKE OF AUGUST 2, 1975-

TWO STAGE STRESS RELEASE PROCESS IN A STRIKE-SLIP EARTHQUAKE

by

Stephen Hartzell

Seismological Laboratory California Institute of Technology Pasadena, California 91125

and 🗧

James N. Brune

University of California, San Diego Institute of Geophysics and Planetary Physics Scripps Institution of Oceanography La Jolla, California 92093

Jan. 1979

REPRODUCED BY NATIONAL TECHNICAL INFORMATION SERVICE U. S. DEPARTMENT OF COMMERCE SPRINGFIELD, VA. 22161

EAS INFORMATION RESOURCES

Any opinions, findings, conclusions or recommendations expressed in this publication are those of the author(s) and do not necessarily reflect the views of the National Science Foundation.

.

 4. Title and Subtitle Horse Canyon Earthquake of August 2, 1975, Two Stage Stress Release Process in a Stri 7. Author(s) S. Hartzell, J. N. Brune 9. Performing Organization Name and Address California Institute of Technology Seismological Laboratory Pasadena, California 91125 12. Sponsoring Organization Name and Address Engineering and Applied Science (EAS) National Science Foundation 1800 G Street, N.W. Washington, D.C. 20550 15. Supplementary Notes Also performed by: Univ Inst Reproduced from best available copy. 16. Abstract (Limit: 200 words) The Horse Canyon earthquake which occurred to study the source mechanism of an eartho The earthquake was fairly well instrumente which to construct a model. Analysis of m stress release occurred in two stages: (1 area with a rapid dislocation rate; and (2 at a conclusion rate; and (2 at a	versity titute ipps Ir Jolla, d on Au quake i ed ther	p Eartho	juake ifornia, nysics an	5. Report Dat Janua 6. 8. Performing 10. Project/Tr 11. Contract(C (C) DES72 (G) 13. Type of R 14. San Diego	e ary 1979 ; Organization Rept. No. ask/Work Unit No. 2) or Grant(G) No. 103188 eport & Period Covered
Two Stage Stress Release Process in a Stri 7. Author(s) S. Hartzell, J. N. Brune 9. Performing Organization Name and Address California Institute of Technology Seismological Laboratory Pasadena, California 91125 12. Sponsoring Organization Name and Address Engineering and Applied Science (EAS) National Science Foundation 1800 G Street, N.W. Washington, D.C. 20550 15. Supplementary Notes Also performed by: Univ Reproduced from best available copy. 16. Abstract (Limit: 200 words) The Horse Canyon earthquake which occurred to study the source mechanism of an earthor The earthquake was fairly well instrumente which to construct a model. Analysis of m stress release occurred in two stages: (1 area with a rapid dislocation rate; and (2 area with a rapid dislocation rate; and (2 area with a rapid dislocation rate; and (2 basic available of the stages of	versity titute ipps Ir Jolla, d on Au quake i ed ther	p Eartho of Cal of Geoph stitutio Californ	ifornia, nysics an	 6. 8. Performing 10. Project/Tr 11. Contract(C (C) DES72 (G) 13. Type of R 14. San Diego d Planeta 	g Organization Rept. No. ask/Work Unit No. 2) or Grant(G) No. 103188 eport & Period Covered
 7. Author(s) S. Hartzell, J. N. Brune 9. Performing Organization Name and Address California Institute of Technology Seismological Laboratory Pasadena, California 91125 12. Sponsoring Organization Name and Address Engineering and Applied Science (EAS) National Science Foundation 1800 G Street, N.W. Washington, D.C. 20550 15. Supplementary Notes Also performed by: Univ Inst Reproduced from Scri best available copy. 16. Abstract (Limit: 200 words) The Horse Canyon earthquake which occurred to study the source mechanism of an earthor The earthquake was fairly well instrumente which to construct a model. Analysis of m stress release occurred in two stages: (1 area with a rapid dislocation rate; and (2 at a construct or construct a construct or construct or construct a construct a construct or construct a construct a construct or construct a construct	versity titute ipps Ir Jolla, d on Au quake i ed ther	of Cal of Geoph stitutic Californ	ifornia, nysics an	 8. Performing 10. Project/Ti 11. Contract(((C) DES74 (G) 13. Type of R 14. San Diego d Planeta 	; Organization Rept. No. ask/Work Unit No. 2) or Grant(G) No. 403188 eport & Period Covered
 S. Hartzell, J. N. Brune Performing Organization Name and Address California Institute of Technology Seismological Laboratory Pasadena, California 91125 12. Sponsoring Organization Name and Address Engineering and Applied Science (EAS) National Science Foundation 1800 G Street, N.W. Washington, D.C. 20550 15. Supplementary Notes Also performed by: Univ Inst Reproduced from Scri La J 16. Abstract (Limit: 200 words) The Horse Canyon earthquake which occurred to study the source mechanism of an earthor to construct a model. Analysis of m stress release occurred in two stages: (1) 	versity titute ipps Ir Jolla, d on Au quake i ed ther	of Cal of Geoph stitutic Californ	ifornia, nysics an on of Oce	10. Project/Tr 11. Contract(((C) DES72 (G) 13. Type of R 14. San Diego d Planeta	ask/Work Unit No. D) or Grant(G) No. 103188 eport & Period Covered)
 9. Performing Organization Name and Address California Institute of Technology Seismological Laboratory Pasadena, California 91125 12. Sponsoring Organization Name and Address Engineering and Applied Science (EAS) National Science Foundation 1800 G Street, N.W. Washington, D.C. 20550 15. Supplementary Notes Also performed by: Univ Inst Reproduced from best available copy. 16. Abstract (Limit: 200 words) The Horse Canyon earthquake which occurred to study the source mechanism of an earthquake was fairly well instrumente which to construct a model. Analysis of m stress release occurred in two stages: (1 area with a rapid dislocation rate; and (2 at a amaluae nate to a langen final course)	versity titute ipps Ir Jolla, d on Au quake i ed ther	of Cal of Geoph stitutic Californ	ifornia, nysics an	10. Project/Ti 11. Contract(((C) DES72 (G) 13. Type of R 14. San Diego d Planeta	ask/Work Unit No.) or Grant(G) No. 103188 eport & Period Covered)
Seismological Laboratory Pasadena, California 91125 12. Sponsoring Organization Name and Address Engineering and Applied Science (EAS) National Science Foundation 1800 G Street, N.W. Washington, D.C. 20550 15. Supplementary Notes Also performed by: Univ Reproduced from best available copy. 16. Abstract (Limit: 200 words) The Horse Canyon earthquake which occurred to study the source mechanism of an earthor The earthquake was fairly well instrumenter which to construct a model. Analysis of m stress release occurred in two stages: (1 area with a rapid dislocation rate; and (2 area construct a model and a counter to study the source mechanism of an earthor National Science (1) Stress release occurred in two stages: (1) Stress release occurred in two stages: (2) Stress release occurred	versity titute ipps Ir Jolla, d on Au quake i ed ther	of Cal of Geoph stitutic Califorr	ifornia, nysics an on of Oce	11. Contract(C (C) DES72 (G) 13. Type of R 14. San Diego d Planeta	C) or Grant(G) No. 103188 Report & Period Covered
Pasadena, California 91125 12. Sponsoring Organization Name and Address Engineering and Applied Science (EAS) National Science Foundation 1800 G Street, N.W. Washington, D.C. 20550 15. Supplementary Notes Also performed by: Univ Reproduced from best available copy. 16. Abstract (Limit: 200 words) The Horse Canyon earthquake which occurred to study the source mechanism of an eartho The earthquake was fairly well instrumente which to construct a model. Analysis of m stress release occurred in two stages: (1 area with a rapid dislocation rate; and (2 area millem mate to a langen final counce	versity titute ipps Ir Jolla, d on Au quake i ed ther	of Cal of Geoph stitutic Californ	ifornia, nysics an on of Oce	(C) DES74 (G) 13. Type of R 14. San Diego d Planeta	403188 Period Covered
 12. Sponsoring Organization Name and Address Engineering and Applied Science (EAS) National Science Foundation 1800 G Street, N.W. Washington, D.C. 20550 15. Supplementary Notes Also performed by: Univ Inst Reproduced from best available copy. 16. Abstract (Limit: 200 words) The Horse Canyon earthquake which occurred to study the source mechanism of an earthd The earthquake was fairly well instrumente which to construct a model. Analysis of m stress release occurred in two stages: (1 area with a rapid dislocation rate; and (2 area construct a model form) 	versity titute ipps Ir Jolla, d on Au quake i ed ther	of Cal of Geoph stitutic Califorr	ifornia, nysics an on of Oce	(G) 13. Type of R 14. San Diego d Planeta	eport & Period Covered
 12. Sponsoring Organization Name and Address Engineering and Applied Science (EAS) National Science Foundation 1800 G Street, N.W. Washington, D.C. 20550 15. Supplementary Notes Also performed by: Univ	versity titute ipps Ir Jolla, d on Au quake i ed ther	of Cal of Geoph stitutic Californ	ifornia, nysics an	13. Type of R 14. San Diego d Planeta	leport & Period Covered
 1800 G Street, N.W. Washington, D.C. 20550 15. Supplementary Notes Also performed by: Univentiate and the set available copy. 16. Abstract (Limit: 200 words) The Horse Canyon earthquake which occurred to study the source mechanism of an earthout to study the source mechanism of an earthout to construct a model. Analysis of m stress release occurred in two stages: (1) area with a rapid dislocation rate; and (2) and (3) and (3) and (4) and (4)	versity titute ipps Ir Jolla, d on Au quake i ed ther	of Cal of Geoph Stitutic Califorr	ifornia, nysics an on of Oce	14. San Diego d Planeta)
Washington, D.C. 20550 15. Supplementary Notes Also performed by: Univ Reproduced from Scri best available copy. 16. Abstract (Limit: 200 words) The Horse Canyon earthquake which occurred to study the source mechanism of an eartho The earthquake was fairly well instrumente which to construct a model. Analysis of m stress release occurred in two stages: (1 area with a rapid dislocation rate; and (2 area mailing math to a langen final county	versity titute ipps Ir Jolla, d on Au quake i ed ther	of Cal of Geoph stitutic Californ	ifornia, nysics an	San Diego d Planeta)
 Initial Supplementary Notes Also performed by: University Instant Reproduced from Scribest available copy. Is. Abstract (Limit: 200 words) The Horse Canyon earthquake which occurred to study the source mechanism of an earthquake was fairly well instrumente which to construct a model. Analysis of m stress release occurred in two stages: (1 area with a rapid dislocation rate; and (2 area construct a construct a construct for a construct a cons	versity titute ipps Ir Jolla, d on Au quake i ed ther	of Cal of Geoph Stitutic Califorr	itornia, nysics an on of Oce	San Diego d Planeta)
Reproduced from best available copy. 16. Abstract (Limit: 200 words) The Horse Canyon earthquake which occurred to study the source mechanism of an eartho The earthquake was fairly well instrumente which to construct a model. Analysis of m stress release occurred in two stages: (1 area with a rapid dislocation rate; and (2 area particular parts and a parts of m to stage a parts of a parts of a parts of m to stage a parts of a parts of a parts of m to stage a parts of a parts of a parts of a parts of m to stage a parts of a parts	ipps Ir Jolla, d on Au quake i ed ther	stitutic <u>Califorr</u>	on of Oce		ary Physics
16. Abstract (Limit: 200 words) The Horse Canyon earthquake which occurred to study the source mechanism of an eartho The earthquake was fairly well instrumente which to construct a model. Analysis of m stress release occurred in two stages: (1 area with a rapid dislocation rate; and (2	d on Au quake i ed ther		nia 9209	anography 3	/
at a smaller rate to a larger final source moment estimate based on 20 second surface wave estimates, and also the apparent incr allows for large stress drops over small o the stress drops were characterized. Obse those for other earthquakes with a wide ra rupture mechanism may be a fairly common o flect possible large variations in stress crust.	2) faul e radiu e waves rease i dimensi ervatic ange of occurre over a	ting dun s. The compare in source ions. Ru ons noted magnitu ence in s a length	ring whic model ex ed to sho e dimensi upture of d in this udes, sug shallow f scale of	h the rup plains th orter perion on with t the aspe study to gest that aulting a kilomete	oture grew le larger iod body time. It erity and ogether with t a two-stage and may re- ers within the
17. Document Analysis a. Descriptors			·····		n
Earthquakes	Mode	ls	- 1		
Seismology Seismographs	Geolo	ogic stri	uctures		-
b. Identifiers/Open-Ended Terms					
Source mechanisms Horse Canyon Earthquake Strike-slip earthquake					
c. COSATI Field/Group					
18. Availability Statement		19. Secu	urity Class (Thi	s Report)	21. No. of Pages
N112		20. Secu	urity Class (This	s Page)	22. Price
See ANSI-Z39.18) See Instru					

.

.

ABSTRACT

A moderate strike-slip earthquake ($M_1 = 4.8$) occurred on the San Jacinto fault system about 60 km northwest of the Salton Sea on August 2, 1975. Analysis of main shock and aftershock data suggest that stress release during this earthquake took place in two stages. During one stage faulting occurred over a relatively small source area (source radius of ~ 0.5 km), with a rapid dislocation rate (rise time ~ 0.1 sec), possibly associated with an asperity on the fault. During the second stage of faulting, the rupture front grew, but at a much slower rate (rise time ~ 10 sec.), to a final source radius of ~ 1.0 km. The above model explains the larger moment estimate based on 20 second surface waves compared to shorter period body wave estimates, and also the apparent increase in source dimension with time. The model allows for large stress drops over small source dimensions, but when averaged over the final extent of the rupture plane, stress drops are much lower. The rupture of the asperity is characterized by a moment of 6.5×10^{22} dyne-cm and a stress drop of about 225 bars. The total moment is about 3.0 x 10^{23} dyne-cm with an averaged stress drop over the fault plane of approximately 90 bars and a dislocation of 25 cm. Observations similar to the ones reported on here have been noted for other earthquakes with a wide range of magnitudes, including: a few 'large earthquakes in Japan, the 1971 San Fernando earthquake and some of its aftershocks, the 1975 Oroville earthquake, and some swarm events in the Imperial Valley. These observations suggest that a two stage rupture mechanism may be a fairly common occurrence in shallow faulting and may reflect possible large variations in stress over a length scale of kilometers within the crust.

INTRODUCTION

The Horse Canyon earthquake ($M_L = 4.8$) occurred on the San Jacinto fault system on August 2, 1975 approximately 60 km northwest of the Salton Sea. This earthquake is noteworthy because it was fairly well instrumented, and affords an opportunity to study the source mechanism of an earthquake in a relatively simple geologic setting, predominantly hard, granitic rock. Such a location should reduce complications in the records due to scattering. Also, the Horse Canyon earthquake produced no obvious strain precursor at the Piñon Flat Geophysical Observatory (Berger and Wyatt, 1978), on the three component laser strain meter just 13 km northeast of the epicenter. The mechanism of this earthquake is therefore important from an earthquake prediction standpoint.

The reported origin time is 0 hr. 14 min. 7.5 sec., with an epicenter of 33° 31.4'N, 116° 33.5'W and a depth of 12 km (Pasadena). The epicenter lies near the trifurcation of the San Jacinto fault, southeast of Anza, California (see Figure 1). The fault plane solution in Figure 1 is a lower hemisphere projection reported by Kanamori (1976). The shaded areas indicate compression. The strike and dip of the fault plane are 307.2° and 71.9°, respectively, and of the auxiliary plane, 42.2° and 75.0°, respectively. The solution is based on first motions from 28 Southern California stations and is fairly well constrained. Amplitudes from five stations in the Canadian network at distances greater than 20°, give an average body wave magnitude of 4.3 (Basham, personal communication, 1976). Using 12 second Rayleigh waves at eight Canadian stations and the procedure of Marshall and Easham (1972), an average

surface wave magnitude of 3.6 is obtained. Using the mb versus Ms
plot of Marshall and Basham (1972), the Horse Canyon earthquake
discriminates from explosions as expected. About a dozen aftershocks
in the magnitude range from 1.0 to 2.0 were recorded at Palomar (PLM)
38 km from the epicenter, within the first 12 hours following the
main shock.

The epicentral region is characterized by a high level of microearthquake activity, which occurs over a wide depth range from 3 to 15 km (Arabasz *et al.*, 1970). Hypocenters of the microearthquakes do not define any simple planar surfaces, but rather are distributed over the width of the Coyote-San Jacinto-Buck Ridge fault zones (Arabasz *et al.*, 1970). Larger historic earthquakes along the 50 km length of the San Jacinto Fault around the August 2, 1975 event, include one magnitude 6.0 earthquake, the March 25, 1937 "Terwilliger Valley" earthquake (Wood, 1937), and over a dozen magnitude 4 events.

EQUIPMENT AND DATA

Five strong motion accelerographs (standard SMA-1) were triggered by the main shock, within 25 km of the epicenter. None of the aftershocks triggered the strong motion instruments. The triangles in Figure] indicate the accelerograph locations. Epicentral distances are given in parentheses. Records from these stations consist of 70 mm film with three components of acceleration: longitudinal (N45°W), transverse (S45°W) and vertical. The vertical accelerations are small in amplitude and are not important to this study. The two horizontal components from each of the five stations were digitized at a sample interval of 0.01 sec. and corrected for the response of the instrument (Trifunac and Lee, 1973). The results are shown in Figure 2. The Pinyon Flat, Anza Post Office, and Rancho de Anza stations triggered on the P wave, which means the first motion is lost (~0.1 sec.), but the entire S wave is recorded. The Terwilliger and Herkey Creek stations triggered on the S wave, presumably near its onset. The largest acceleration of 130 cm/sec² occurred at the Anza Post Office station, 19 km from the hypocenter. The station with the next largest acceleration is Rancho de Anza, which is also the most distant of those in Figure 1. In addition, the period of maximum ground acceleration at Rancho de Anza is about a factor of two greater than the period of maximum acceleration at the other four stations. Both of the above observations are attributed to the amplification and high frequency attenuation of the alluvium at the northwest end of the Borrego Valley. on which the Rancho de Anza station is situated.

In addition to the accelerograms for the main shock, aftershocks were recorded on a portable, digital system with a five second natural period, horizontal seismometer. The frequency response of the combined seismometer-recorder system is given in Figure 3 for several gain settings. The digital recorder has a sample rate of 128 samples/sec and is similar to the system described by Prothero (1976). The digital system was operated in a triggered mode with a delay line and usually recorded the first motion. Two sites were occupied; Pinyon Flat from 09:26Z to 14:48Z on August 2, and the upper end of Coyote Canyon for a period of 20 hrs. starting at 19:38Z, August 2. The seismometer was aligned in a NS orientation at the Pinyon Flat site and approximately perpendicular to the trend of the Coyote Fault (S45°W) at the Coyote Canyon site. The Pinyon Flat station is located about 150 meters from the Pinyon strong motion accelerograph, which recorded the main shock. The Coyote Canyon station is 1.5 km NNW of the Terwilliger accelerograph.

Seven small aftershocks were recorded during the 5 hrs. of operation at the Pinyon Flat site. An additional nine aftershocks were recorded at the Coyote Canyon site. A few of the aftershock records (velocities) are shown in Figure 4. Also shown for comparison are the ground velocities for the main shock, obtained from the integrated acceleration records from the Pinyon Flat and Terwilliger stations (Figure 2). The main shock records have been rotated into the orientation of the aftershock data. The S-P times of 2.2 to 2.5 seconds at Pinyon Flat are consistent with a source depth of about 12 km, given the above epicentral location. The downward first motions at Pinyon are also consistent with the fault plane solution of Figure 1.

SURFACE WAVE ESTIMATE OF MOMENT

The Tucson, Arizona (TUC) WWSSN long period vertical record for the Horse Canyon earthquake has a clearly recorded Rayleigh wave (Figure 5). Surface wave synthetics were generated using the method of Harkrider (1964, 1970). The fault plane solution in Figure 1 and the average continental structure KHC2 (Table 1, Hiroo Kanamori, personal communication) were used. Figure 5 shows a comparison between the observed record and synthetics for a point source with a step source time function, a source depth of 12 km, and four different values of Q: 50, 100, 200, and 300. The leading, long period part of the Tucson record is predominantly 20-30 sec energy, whose amplitude is less sensitive to the choice of Q than the shorter period energy. The long period part of the synthetics yield moment estimates of 4.93, 4.05, 3.74, and 3.34 \times 10²³ dyne-cm, respectively, for the four values of Q. An alternative earth model was tried, model NTS-TUC from Bache et al. (1978). This structure is based on the inversion of surface wave data from Nevade Test Site explosions as recorded at Tucson. Model NTS-TUC gives moment estimates about 10% less than model KHC2, with no better fit to the general wave form. Kanamori (1976) has also estimated the surface wave moment of the Horse Canyon earthquake, using several different Q models for the TUC and BKS records. Kanamori's values yield and average moment of about 3.0 x 10^{23} dyne-cm, based on the longer period part of the records.

As a check on our calculations, the surface wave synthetics obtained from Harkrider's propram were compared with synthetics from the direct wave number integration program of Apsel and Luco (1978). Nearly identical results were obtained. The small differences are attributed to the different manner in which attenutaion is handled in the two programs.

BODY WAVE ESTIMATES OF SOURCE PARAMETERS

Using the shear waves from the strong motion records, the spectral theory of Brune (1970, 1971) may be applied to obtain body wave estimates of source parameters. We limit the analysis to the following three components: Anza Post Office, S45°W; Pinyon Flat, N45°W; and Terwilliger, N45°W. These components have been chosen because their orientation is such that the records should be primarily SH energy. Also, the epicentral distances are nearly the same as or less than the depth of the source, thus complications due to scattering and diffraction should be minimal. Figure 6 shows the associated displacement amplitude spectra (corrected for a Q of 250) and the chosen low and high frequency asymptotes. Table 2 summarizes the estimates of moment (M_o), source radius (r), and stress drop ($\Delta\sigma$), where the following expressions have been used (Thatcher and Hanks, 1973):

 $M = 4\pi\mu\beta\Omega_{0}R/0.85 ; r = 2.34\beta/2\pi f_{c} ; \Delta\sigma = (7/15) (M_{0}/r^{3})$

We have assumed a shear wave velocity (β) of 3.5 km/sec and a rigidity (μ) of 3.0 x 10¹³ dyne/cm². The moment estimate from the Anza Post Office record is probably an over estimate, since this station is situated near the center of a small alluvial basin. The valley sediments will introduce an amplification not accounted for in the above calculation. Below we use a layered model in an attempt to obtain a better estimate. The Pinyon Flat and Terwilliger stations are located on granitic rock and should not have this problem. Because of an S wave trigger, the Terwilliger record may under estimate the moment.

The displacement record, obtained by integrating the Anza Post Office accelerogram (Trifunac and Lee, 1973), was modeled with a

point shear dislocation in a layered earth structure using the generalized ray method. The response of individual generalized rays is calculated by the Cagniard de Hoop technique, and summed (Helmberger, 1974). Figure 7 compares the Anza Post Office horizontal records with the generalized ray synthetics, for the earth structure in Table 3 and the fault plane solution in Figure 1. The earth model used here is basically a sedimentary layer over a granitic half-space. The rise time on the fault is 0.15 seconds. Synthetics for a single and a double event source are shown. Both the data and the synthetics have been high pass filtered with an Ormsby filter with roll-off frequency of 1.0 Hz and roll-off interval of 0.2 Hz. In addition, the synthetics have been attenuated assuming a Q of 250. Oscillations arriving later in the data, and not explained by the synthetics, are attributed to reflections from the edges of the valley (i.e., oscillations of the sedimentary basin). The moment inferred from the above modeling is 6.6×10^{22} dyne-cm. If we discount the Terwilliger estimate, because of an S wave trigger, the preferred body wave estimate of moment is 6.5×10^{22} dyne-cm. In comparison, the moment obtained by averaging spectral estimates from the horizontal components for all the stations in Figure 1 is 8.0×10^{22} dyne-cm.

M

COMPARISON OF AFTERSHOCKS WITH MAIN SHOCK

From the above analysis, there is about a factor of 4 to 6 discrepancy between the moment estimated from 20 second surface waves and the body wave estimate of moment, at a period of less than a second. This difference seems too large to ascribe to errors due to scattering, or uncertainties in the earth structure.

As stated above, the Pinyon Flat and Terwilliger accelerographs are located very close to the sites occupied by the digital system used to record aftershocks. The comparison in Figure 4 between aftershock and main shock records points out a striking similarity. The duration and frequency content are similar, suggesting that the main shock was a simple event with a source dimension not a great deal larger than the small aftershocks. Spectral analysis of the aftershock records yields the indicated values of moment, source radius, and stress drop in Figure 4. The moment of the main shock is four to five orders of magnitude larger than the aftershock moments, yet the main shock source radius, as inferred from body wave analysis, is only ~3 times larger than the aftershock source radii.

The distribution of aftershocks should give a long period estimate of the source dimension. Locations of aftershocks by Kanamori (1976) imply a source area of about 4.0 square kilometers (over an approximately 2 km by 2 km square area), significantly larger than the estimates in Table 2. The above data indicate larger estimates of source dimension at longer periods.

DISCUSSION

In summary, the Horse Canyon earthquake is characterized by a local body wave estimate of moment 4 to 6 times less than the surface wave estimate of moment. The frequency content and duration of the strong motion records for the main shock are very similar to that of the small aftershock records. Local body wave analysis suggests that main shock and aftershock source dimensions are not greatly different. However, the distribution of aftershocks indicates a significantly larger source dimension.

Observations similar to the ones above have been reported for other earthquakes. Kanamori (1973) attributed larger moment estimates at longer periods, for major earthquakes in Japan, to afterslip or foreslip on the fault plane with a relatively slow dislocation velocity. Tucker and Brune (1977) found two spectral corner frequencies, with an intermediate spectral slope of ω^{-1} , for about half of the larger (M_L \approx 3.5-4) San Fernando aftershocks. This spectral shape was attributed to either afterslip or foreslip, a growing rupture in time or space, or a partial stress drop model (Brune, 1970, 1971). Similar results were obtained for a swarm of earthquakes in the Imperial Valley (Hartzell and Brune, 1977) and the August 1, 1975 Oroville earthquake (Hart et al., 1977).

In the case of the Horse Canyon earthquake, the data suggest a particular stress release process diagramatically shown in Figure 8. Faulting initiates with a rupture over a relatively small area (source radius ~ 0.5 km) with a rapid dislocation rate (rise time ~ 0.1 sec). This first phase of the rupture accounts for the simple form of the main shock records and the smaller body wave estimate of source radius and moment.

If the rupture from then continues to expand, but at a much slower dislocation rate (rise time ~10 sec.), most of the energy radiated will be at surface wave periods. This phase of the rupture accounts for the larger surface wave estimate of the moment and the larger source dimension based on the distribution of aftershocks.

In the above rupture model we have reasoned that there was an initial sharp break, followed by slip over a larger area. Actually we have not determined at what stage of the rupture process the sharp break occurred. Sliding might have first taken place over much of the four square kilometer fault surface, followed by the breaking of an asperity. However, the Pinyon Flat strain meter record suggests that faulting initiated with the breaking of the asperity. With a sample interval of 2 seconds and an instrumental noise level of 78 counts (one fringe), all three strain components (NS, NW, and EW) show variations of less than 19 counts (1/4 fringe) for at least 60 seconds prior to the arrival of the initial earthquake phase. Only the NS component remained on scale during the earthquake. The first sample on the NS component different from the pre-earthquake level shows a jump of 12 counts. The next sample, 2 seconds later, is 917 counts above the pre-earthquake level. For an average P-wave velocity of 6.1 km/sec and the above quoted values for the hypocenter and the origin time, the calculated arrival time of the direct P-wave from the source is 1.5 seconds before the 12 count sample. The absolute time of the strain data is good to ±0.5 seconds. The origin time given above is based largely on the trigger and S times at the strong motion stations in Figure 1, making it probably a good estimate of the time of failure of the asperity. Therefore, the arrival ime of the first signal on the strain record is consistent with the

arrival time of the direct P-wave from the breaking of the asperity. If the long period motion on the fault had taken place first, one would expect to see a clear signal about 10 seconds earlier in the strain record. Thus we conclude that this earthquake was not preceded by a long period precursor like that suggested for some deep earthquakes (Gilbert & Dziewonski, 1975).

In the above model large stress drops, several hundred bars or even kilobars, may occur over relatively small source dimensions (< 1 km), while the stress drop averaged over the final extent of the fault plane will be much less. This may be the case for the high stress drop event of 636 bars ($M_L = 4.3$) reported by Hartzell and Brune (1977) from the January 1975 Brawley earthquake swarm. Evidence of a similar faulting mechanism for the 1971 San Fernando earthquake is given by Hanks (1974), in which rupture begins with massive but localized failure accompanied by a high stress drop. For the Horse Canyon earthquake, a moment of 6.5 x 10^{22} dyne-cm and source radius of 0.5 km gives a stress drop of 225 bars for the rupture of the asperity. Continued expansion of the rupture plane increases the moment and source radius to 3.0 x 10^{23} dyne-cm and 1.13 km (=4 km² source area), respectively, and decreases the average stress drop over the fault plane to about 90 bars. The final average dislocation is about 25 cm.

The lack of a strain precursor at the Piñon Flat Observatory prior to the Horse Canyon earthquake may be due to the small area of the asperity. Strain could be continually relieved in the area by creep and microearthquakes, except for a few isolated asperities, which "hang up" and form points of stress concentration. An asperity will eventually break through, with a high stress drop over a small source dimension. The rupture may continue to expand outward, but subsequently will die out in the surrounding region of lower effective stress. Major

earthquakes, such as the 1940 Imperial Valley earthquake (Trifunac and Brune, 1970), often appear as multiple events, which could be a cascading rupture of several such asperities.

ACKNOWLEDGEMENTS

Jerry King and William Prothero assisted in the field work. The strong motion records were supplied by the Engineering Department of the California Institute of Technology. Hiroo Kanamori kindly supplied results prior to publication. This work was supported in part by National Science Foundation grant DES74-03188 and National Aeronautics and Space Administration grant NGR 05-009-246, and is a contribution of Scripps Institution of Oceanography.

- Apsel, R. J. and J. E. Luco (1978). Dynamic Green Functions for a layered half-space, UCSD report, Dept: of Applied Mech. and Eng. Sc., Univ. of Ca. at San Diego.
- Arabasz, W. J., James N. Brune, and Gladys R. Engen (1970). Locations of small earthquakes near the trifurcation of the San Jacinto fault southeast of Anza, California, Bull. Seismo. Soc. Amer., <u>60</u>, 617-627.
- Bache, T. C., W. L. Rodi, and D. G. Harkrider (1978). Crustal structure inferred from Rayleigh-wave signatures of NTS explosions, Bull. Seismo. Soc. Amer., 68, 1399-1413.
- Berger, J. and F. Wyatt (1978). Some remarks on the base length of tilt and strain measurements, in proceedings from conference on Measurement of Ground Strain Phenomena Related to Earthquake Prediction, Sept.7-9, 1978, U.S. Geol. Survey Pub.
- Brune, J. N. (1970). Tectonic stress and the spectra of seismic shear waves from earthquakes, J. Geophys. Res., <u>75</u>, 4997-5009.
- Brune, J. N. (1971). (Correction) Tectonic stress and the spectra of seismic shear waves from earthquakes, J. Geophys. Res., <u>76</u>, 5002.
- Gilbert, F. and A. M. Dziewonski (1975). An application of normal mode theory to the retrieval of structural parameters and source mechanisms from seismic spectra, Phil. Trans. R. Soc. London, Series A, 278, 187-269.
- Hanks, T. C. (1974). The faulting mechanism of the San Fernando earthquake, J. Geophys. Res., <u>79</u>, 1215-1229.
- Harkrider, D. G. (1964). Surface waves in multilayered elastic media.
 Part I. Rayleigh and Love waves from buried sources in a multilayered
 elastic halfspace, Bull. Seismo: Soc. Amer., <u>54</u>, 627-679.

Harkrider, D. G. (1970). Surface waves in multilayered elastic media.

Part II. Higher mode spectra and spectral ratios from point sources in plane Tayered earth models, Bull. Seismo. Soc. Amer., <u>60</u>, 1937-1987.

REFERENCES

Apsel, R. J. and J. E. Luco (1978). Dynamic Green Functions for a layered half-space, UCSD report, Dept. of Applied Mech. and Eng. Sc., Univ. of Ca. at San Diego.

- Arabasz, W. J., James N. Brune, and Gladys R. Engen (1970). Locations of small earthquakes near the trifurcation of the San Jacinto fault southeast of Anza, California, Bull. Seismo. Soc. Amer., <u>60</u>, 617-627.
- Bache, T. C., W. L. Rodi, and D. G. Harkrider (1978). Crustal structure inferred from Rayleigh-wave signatures of NTS explosions, Bull. Seismo. Soc. Amer., <u>68</u>, 1399-1413.
- Berger, J. and F. Wyatt (1978). Some remarks on the base length of tilt and strain measurements, in proceedings from conference on Measurement of Ground Strain Phenomena Related to Earthquake Prediction, Sept.7-9, 1978, U.S. Geol. Survey Pub.
- Brune, J. N. (1970). Tectonic stress and the spectra of seismic shear waves from earthquakes, J. Geophys. Res., 75, 4997-5009.
- Brune, J. N. (1971). (Correction) Tectonic stress and the spectra of seismic shear waves from earthquakes, J. Geophys. Res., 76, 5002.
- Gilbert, F. and A. M. Dziewonski (1975). An application of normal mode theory to the retrieval of structural parameters and source mechanisms from seismic spectra, Phil. Trans. R. Soc. London, Series A, 278, 187-269.
- Hanks, T. C. (1974). The faulting mechanism of the San Fernando earthquake, J. Geophys. Res., 79, 1215-1229.

Harkrider, D. G. (1964). Surface waves in multilayered elastic media.

Part I. Rayleigh and Love waves from buried sources in a multilayered **elastic** halfspace, Bull. Seismo. Soc. Amer., <u>54</u>, 627-679.

Harkrider, D. G. (1970). Surface waves in multilayered elastic media.

Part II. Higher mode spectra and spectral ratios from point sources in plane Tayered earth models, Bull. Seismo. Soc. Amer., <u>60</u>, 1937-1987.

- Hart, R. S., R. Butler, and H. Kanamori (1977). Surface-wave constraints on the August 1, 1975, Oroville earthquake, Bull. Seismo. Soc. Am., <u>67</u>, 1-7.
- Hartzell, S. H. and James N. Brune (1977). Source parameters for the January, 1975 Brawley-Imperial Valley earthquake swarm, Pageoph <u>115</u>, 333-355.
- Helmberger, D. V. (1974). Generalized ray theory for shear dislocations, Bull. Seismo. Soc. Amer., <u>64</u>, 45-64.
- Kanamori, H. (1973). Mode of strain release associated with major earthquakes in Japan, Ann. Rev. Earth Planet Sci., <u>1</u>, 213-239.
- Kanamori, H. (1976). August 2, 1975 Horse Canyon earthquake, in U.S. Geol. Survey Open File Report on Earthquake Prediction Studies in Southern California, Oct. 1975-Sept. 1976.
- Marshall, P. D. and P. W. Basham (1972). Discrimination between earthquakes and underground explosions employing an improved M_s scale, Geophys. J. 28, 431-458.
- Prothero, W. A. (1975). A portable digital seismic recorder with event recording capacity, Bull. Seismo. Soc. Amer., <u>65</u>, 979-985.
- Thatcher, W. and T. C. Hanks (1973). Source parameters of southern California earthquakes, J. Geophys. Res., <u>78</u>, 8547-8576.
- Trifunac, M. D. and J. N. Brune (1970). Complexity of energy release during the Imperial Valley, California, earthquake of 1940, Bull. Seisma Soc. Am., 60, 137-160.
- Trifunac, M. D. and V. Lee (1973). Routine computer processing of strongmotion accelerograms, Earthquake Eng. Res. Dept., Calif. Inst. of Tech.

- Tucker, B. E. and James N. Brune (1977). Source mechanism and m_b-M_s analysis of aftershocks of the San Fernando earthquake, Geophys. J. <u>49</u>, 371-426.
- Wood, Harry O. (1937). The Terwilliger Valley earthquake of March 25, 1937, Bull. Seismo. Soc. Amer., <u>27</u>, 305-312.

FIGURE CAPTIONS

Figure 1:	Area map showing epicenter of Horse Canyon earthquake,
	strike-slip focal mechanism, and location of strong motion
	instruments within 25 km of epicenter which triggered.
Figure 2:	Accelerograms for the strong motion sites shown in Figure
	1. All records have been corrected for the response of
	the instrument.
Figure 3:	Combined seismometer (period = 5 sec) and portable digital
	recorder response for four amplifier settings.
Figure 4:	Comparison of main shock velocity records from the Pinyon

- Flat and Terwilliger strong motion instruments with selected aftershock records (velocities) from the Pinyon Flat and Coyote Canyon portable digital recorder sites.
- Figure 5: TUC long period vertical record and Rayleigh wave synthetics for the earth structure in Table 1 and the fault plane solution in Figure 1.
- Figure 6: Main shock displacement amplitude spectra from the three close in strong motion stations: Anza Post Office, Terwilliger, and Pinyon Flat.
- Figure 7: Comparison of Anza Post Office main shock, horizontal displacements and generalized ray synthetics for the structure in Table 3 and the fault plane solution in Figure 1. The far-field source-time function is shown to the right of each synthetic.

Figure 8: Diagramatic illustration of a possible mechanism for the Horse Canyon earthquake.

MODEL KHC2

Layer	Thickness (km)	α(km/sec)	β(km/sec)	p(gr/cm ³)
1	1.0	2.50	1.44	2. 50
2	3.0	5.50	3.14	2.60
3	23.4	6.30	3.63	2.70
4	5.0	6.80	3.92	2.90
5	8.6	8.37	4.73	3. 50
6	20.0	8.37	4.71	3.52
7	. 20.0	8.08	4.62	3.47
8.	20.0	7.93	4.35	3.43
9	20.0	7.78	4.18	3.40
10	25.0	7.75	4.22	3.38
11 .	25.0	7.78	4.30	3. 36
12	25.0	7.97	4.44	3.35
13	25.0	8.19	4.56	3.34
. 14	25.0	8.39	4.61	3.34
15	25.0	8.52	4.58	3.37
16	25.0	8.55	4.57	3.41
17	25.0	8.57	4.57	3.47
18	25.0	8.59	4.59	3.53
.19	25.0	8.64	4.64	3.59

Body Wave Estimates of Source Parameters

Component	Moment (dyne-cm)	Source Radius (m)	Stress Drop (bars)
Anza Post Office, S45°W	1.8 x 10 ²³	650	280
Pinyon Flat, N45°W	6.2 x 10 ²²	590	130
Terwilliger, N45°W	3.3 x 10 ²²	330	420

Anza Post Office Structure

ţ

Thickness (km)	a(km/sec)	β(km/sec)	p(gm/cm ³)
0.1	2.50	1.44	2.50
0.4	5.50	3.14	2,60
•	6.30	3.63	2.70

20

