

The Research Reported Herein Was Supported by LeRoy Crandall and Associates

and the National Science Foundation under Grants No. G144056 and ATA73–0323 1A01

> UCLA-ENG-7965 OCTOBER 1979

CORRELATIONS OF SEISMIC VELOCITY WITH DEPTH IN SOUTHERN CALIFORNIA

Kenneth W. Campbell Robert Chieruzzi C. Martin Duke Marshall Lew

Principal Investigators C. Martin Duke Ajit K. Mal REPRODUCED BY NATIONAL TECHNICAL INFORMATION SERVICE U. S. DEPARTMENT OF COMMERCE SPRINGFIELD. VA. 22161

EAS INFORMATION RESOURCES

UCLA • SCHOOL OF ENGINEERING AND APPLIED SCIENCE

NOTICE

THIS DOCUMENT HAS BEEN REPRODUCED FROM THE BEST COPY FURNISHED US BY THE SPONSORING AGENCY. ALTHOUGH IT IS RECOGNIZED THAT CERTAIN PORTIONS ARE ILLEGIBLE, IT IS BEING RELEASED IN THE INTEREST OF MAKING AVAILABLE AS MUCH INFORMATION AS POSSIBLE.

 \mathbf{i} ł.

PAGE I NOT/K	A-790386	2.	S. Hec	ipient's Accession No. タローノム イノカのス
Title and Subtitle Correlations of Spicmic Val	Ocity with Denth	in Southern	5. Rep	ort Date
California	ocicy with Depth	Th Southern	6 .	.cober 1979
Author(c)	، مەرىپار بىر بىرى بىرى بىرى بىرى بىرى بىرى بىر	۵۲۰۰ - ۲۹۹۹ (۱۰۰۰ - ۲۰۰۰ -	8 Par	forming Organization Dank Na
K. W. Campbell, R. Chieruzz	i, C. M. Duke, M.	. Lew		CLA-ENG-7965
Performing Organization Name and Address			10. Pr	oject/Task/Work Unit No.
School of Engineering and A	pplied Science		11. Co	ntract(C) or Grant(G) No.
Earthquake Laboratory	024		(C)	
Los Angeles, California 90	024		(G)	ATA730323
2. Sponsoring Organization Name and Address	onco (EAS)		13. Ту	pe of Report & Period Covered
National Science Foundation				
1800 G Street, N.W.			14.	
Wasnington, D.U. 20550 5. Supplementary Notes				
5 Abstract (Limit: 200 words)				ىسىرىيىتى بىرىكىيىلىيى بىلىرىلىيى بالىرىكى بالىك ^ا لىدىن بىرىكىكى بىلىكى بىرىكى بىرىكى بىرىكىكى بالى
This report presents undete	d correlations re	lating cois	mic velocity a	and Paisson's
ratio with denth and variou	s dentechnical n	aramotors fo	in different so	nil and rock
classifications found in So	uthern California	Such cor	relations are	very useful in
earthquake engineering and	ications The c	irrent study	undates previ	ious work by
incorporating prior data wi	th 48 new velocit	tv measureme	nts Data we	re obtained
from borings drilled as a n	art of geotechnic	ral investio	ations In ac	dition to
establishing undated voloci	ty correlations	those new d	ata improvod a	and extended
escapitisting updated veroci				
a proviously developed gent	ochnical classif	ication evet	om The venou	thu extended
a previously developed geot	echnical classif	ication syst	em. The reporting	t presents
a previously developed geot new shear-wave and compress	echnical classif ed wave velocity	ication syst together wi	em. The reporting	t presents geotechnical
a previously developed geot new shear-wave and compress data. Statistics are compa	echnical classif ed wave velocity red for each clas	ication syst together wi ssification	em. The report th supporting for surface ar	rt presents geotechnical nd near surface
a previously developed geot new shear-wave and compress data. Statistics are compa velocities of both shear an	echnical classif ed wave velocity red for each clas d compressional v	ication syst together wi ssification vaves and fo	em. The report th supporting for surface ar r Poisson's ra	rt presents geotechnical nd near surface atios. Corre-
a previously developed geot new shear-wave and compress data. Statistics are compa velocities of both shear an lations to depth are presen	echnical classif ed wave velocity red for each clas d compressional w ted for a few of	ication syst together wi ssification vaves and fo the classif	em. The report th supporting for surface ar r Poisson's ra ications for w	rt presents geotechnical nd near surface atios. Corre- which sufficient
a previously developed geot new shear-wave and compress data. Statistics are compa velocities of both shear an lations to depth are presen data are available. The ge	echnical classif ed wave velocity red for each clas d compressional w ted for a few of otechnical parame	ication syst together wi ssification waves and fo the classif	em. The report th supporting for surface ar r Poisson's ra ications for w icant to seism	rt presents geotechnical nd near surface atios. Corre- which sufficient nic velocity
a previously developed geot new shear-wave and compress data. Statistics are compa velocities of both shear an lations to depth are presen data are available. The ge and Poisson's ratio include	echnical classif ed wave velocity red for each clas d compressional w ted for a few of otechnical parame geologic age, gi	ication syst together wi ssification vaves and fo the classif eters signif ravel conten	em. The report th supporting for surface ar r Poisson's ra ications for v icant to seism t, water table	rt presents geotechnical nd near surface atios. Corre- which sufficient nic velocity e depth, dry
a previously developed geot new shear-wave and compress data. Statistics are compa velocities of both shear an lations to depth are presen data are available. The ge and Poisson's ratio include density, and depth of overb	echnical classif ed wave velocity red for each clas d compressional v ted for a few of otechnical parame geologic age, gu urden.	ication syst together wi ssification vaves and fo the classif eters signif ravel conten	them. The report th supporting for surface ar or Poisson's ra- ications for w icant to seism t, water table	rt presents geotechnical nd near surface atios. Corre- which sufficient nic velocity e depth, dry
a previously developed geot new shear-wave and compress data. Statistics are compa velocities of both shear an lations to depth are presen data are available. The ge and Poisson's ratio include density, and depth of overb	echnical classif ed wave velocity red for each clas d compressional w ted for a few of otechnical parame geologic age, gu urden.	ication syst together wi ssification vaves and fo the classif eters signif ravel conten	em. The reporting th supporting for surface ar r Poisson's ra ications for v icant to seism t, water table	rt presents geotechnical nd near surface atios. Corre- which sufficient nic velocity e depth, dry
a previously developed geot new shear-wave and compress data. Statistics are compa velocities of both shear an lations to depth are presen data are available. The ge and Poisson's ratio include density, and depth of overb	echnical classif ed wave velocity red for each clas d compressional w ted for a few of otechnical parame geologic age, gu urden.	ication syst together wi ssification vaves and fo the classif eters signif ravel conten	em. The reporting th supporting for surface ar r Poisson's ra ications for v icant to seism t, water table	rt presents geotechnical nd near surface atios. Corre- which sufficient nic velocity e depth, dry
a previously developed geot new shear-wave and compress data. Statistics are compa velocities of both shear an lations to depth are presen data are available. The ge and Poisson's ratio include density, and depth of overb	echnical classif ed wave velocity red for each clas d compressional w ted for a few of otechnical parame geologic age, gu urden.	ication syst together wi ssification vaves and fo the classif eters signif ravel conten	em. The reporting th supporting for surface ar r Poisson's ra ications for v icant to seism t, water table	rt presents geotechnical nd near surface atios. Corre- which sufficient nic velocity e depth, dry
a previously developed geot new shear-wave and compress data. Statistics are compa velocities of both shear an lations to depth are presen data are available. The ge and Poisson's ratio include density, and depth of overb	echnical classif ed wave velocity red for each class d compressional w ted for a few of otechnical parame geologic age, gi urden.	ication syst together wi ssification vaves and fo the classif eters signif ravel conten	California	rt presents geotechnical nd near surface atios. Corre- which sufficient nic velocity e depth, dry
a previously developed geot new shear-wave and compress data. Statistics are compa velocities of both shear an lations to depth are presen data are available. The ge and Poisson's ratio include density, and depth of overb	echnical classif ed wave velocity red for each clas d compressional w ted for a few of otechnical parame geologic age, gi urden. Velocity measu Soil classific	ication syst together wi ssification vaves and fo the classif eters signif ravel conten urement cation	california Earthquakes	rt presents geotechnical nd near surface atios. Corre- which sufficient nic velocity e depth, dry
a previously developed geot new shear-wave and compress data. Statistics are compa velocities of both shear an lations to depth are presen data are available. The ge and Poisson's ratio include density, and depth of overb . Document Analysis a. Descriptors Seismic waves Seismic waves Seismology Poisson ratio	echnical classif ed wave velocity red for each clas d compressional w ted for a few of otechnical parame geologic age, gu urden. Velocity measu Soil classific	ication syst together wi ssification vaves and fo the classif eters signif ravel conten urement cation	California Earthquakes	rt presents geotechnical nd near surface atios. Corre- which sufficient nic velocity e depth, dry
a previously developed geot new shear-wave and compress data. Statistics are compa velocities of both shear an lations to depth are presen data are available. The ge and Poisson's ratio include density, and depth of overb . Document Analysis a. Descriptors Seismic waves Seismology Poisson ratio	echnical classif ed wave velocity red for each clas d compressional w ted for a few of otechnical parame geologic age, gi urden. Velocity measu Soil classific	ication syst together wi ssification vaves and fo the classif eters signif ravel conten urement cation	california Earthquakes	rt presents geotechnical nd near surface atios. Corre- which sufficient nic velocity e depth, dry
a previously developed geot new shear-wave and compress data. Statistics are compa velocities of both shear an lations to depth are presen data are available. The ge and Poisson's ratio include density, and depth of overb <u>v. Document Analysis a. Descriptors</u> Seismic waves Seismic waves Seismology Poisson ratio <u>b. Identifiers/Open-Ended Terms</u> Geotechnical parameters	echnical classif ed wave velocity red for each clas d compressional w ted for a few of otechnical parame geologic age, gu urden. Velocity measu Soil classific	ication syst together wi ssification vaves and fo the classif eters signif ravel conten	California Earthquakes	rt presents geotechnical nd near surface atios. Corre- which sufficient nic velocity e depth, dry
a previously developed geot new shear-wave and compress data. Statistics are compa velocities of both shear an lations to depth are presen data are available. The ge and Poisson's ratio include density, and depth of overb <u>r. Document Analysis a. Descriptors</u> Seismic waves Seismology Poisson ratio <u>b. Identifiers/Open-Ended Terms</u> Geotechnical parameters Rock classification	echnical classif ed wave velocity red for each clas d compressional w ted for a few of otechnical parame geologic age, gu urden. Velocity measu Soil classific	ication syst together wi ssification vaves and for the classif eters signif ravel conten	California Earthquakes	rt presents geotechnical nd near surface atios. Corre- which sufficient nic velocity e depth, dry
a previously developed geot new shear-wave and compress data. Statistics are compa velocities of both shear an lations to depth are presen data are available. The ge and Poisson's ratio include density, and depth of overb <u>r. Document Analysis a. Descriptors</u> Seismic waves Seismic waves Seismology Poisson ratio <u>b. Identifiers/Open-Ended Terms</u> Geotechnical parameters Rock classification Earthquake engineering	echnical classif ed wave velocity red for each clas d compressional w ted for a few of otechnical parame geologic age, gu urden. Velocity measu Soil classific	ication syst together wi ssification vaves and for the classif eters signif ravel conten	California Earthquakes	rt presents geotechnical nd near surface atios. Corre- which sufficient nic velocity e depth, dry
a previously developed geot new shear-wave and compress data. Statistics are compa velocities of both shear an lations to depth are presen data are available. The ge and Poisson's ratio include density, and depth of overb <u>N. Document Analysis a. Descriptors</u> Seismic waves Seismic waves Seismology Poisson ratio <u>b. Identifiers/Open-Ended Terms</u> Geotechnical parameters Rock classification Earthquake engineering c. COSATI Field/Group	echnical classif ed wave velocity red for each clas d compressional w ted for a few of otechnical parame geologic age, gu urden. Velocity measu Soil classific	ication syst together wi ssification vaves and for the classif eters signif ravel conten	California Earthquakes	rt presents geotechnical nd near surface atios. Corre- which sufficient nic velocity e depth, dry
a previously developed geot new shear-wave and compress data. Statistics are compa velocities of both shear an lations to depth are presen data are available. The ge and Poisson's ratio include density, and depth of overb	echnical classif ed wave velocity red for each clas d compressional w ted for a few of otechnical parame geologic age, gu urden. Velocity measu Soil classific	ication syst together wi ssification vaves and for the classif eters signif ravel conten urement cation	curity Class (This Report	t) 21. No. of Pages
a previously developed geot new shear-wave and compress data. Statistics are compa velocities of both shear an lations to depth are presen data are available. The ge and Poisson's ratio include density, and depth of overb 7. Document Analysis a. Descriptors Seismic waves Seismology Poisson ratio b. Identifiers/Open-Ended Terms Geotechnical parameters Rock classification Earthquake engineering c. COSATI Field/Group b. Availability Statement NTIS	echnical classif ed wave velocity red for each clas d compressional w ted for a few of otechnical parame geologic age, gw urden. Velocity measu Soil classific	ication syst together wi ssification vaves and for the classif eters signif ravel conten urement cation	curity Class (This Page)	t) 21. No. of Pages
a previously developed geot new shear-wave and compress data. Statistics are compa velocities of both shear an lations to depth are presen data are available. The ge and Poisson's ratio include density, and depth of overb	echnical classif ed wave velocity red for each clas d compressional w ted for a few of otechnical parame geologic age, gu urden. Velocity measu Soil classific	ication syst together wi ssification vaves and for the classif eters signif ravel conten urement cation	curity Class (This Page)	t) 21. No. of Pages 22. Price
a previously developed geot new shear-wave and compress data. Statistics are compa velocities of both shear an lations to depth are presen data are available. The ge and Poisson's ratio include density, and depth of overb 7. Document Analysis a. Descriptors Seismic waves Seismology Poisson ratio b. Identifiers/Open-Ended Terms Geotechnical parameters Rock classification Earthquake engineering c. COSATI Field/Group t. Availability Statement NTIS e ANSI-Z39.18)	echnical classif ed wave velocity red for each class d compressional w ted for a few of otechnical parame geologic age, gw urden. Velocity measu Soil classific	ication syst together wi ssification vaves and for the classif eters signif ravel conten urement cation	curity Class (This Page)	t) 21. No. of Pages 22. Price OPTIONAL FORM 272 (Formerly NTIS-35)

ł ł ł Ł I Ł ł I ł ł ł ł I ł ł L ł ł ł ł Т ł. ł Ł ł T ł ł I ł ł T

UCLA-ENG-7965 OCTOBER 1979

CORRELATIONS OF SEISMIC VELOCITY WITH DEPTH IN SOUTHERN CALIFORNIA

Kenneth W. Campbell Robert Chieruzzi C. Martin Duke Marshall Lew

The research reported herein was supported by LeRoy Crandall and Associates

and the National Science Foundation under Grants No. GI44056 and ATA73-0323 1A01.

Earthquake Laboratory School of Engineering and Applied Science University of California Los Angeles, California

Any opinions, findings, conclusions or recommendations expressed in this publication are those of the author(s) and do not necessarily reflect the views of the National Science Foundation.

Abstract

Updated correlations relating seismic velocity and Poisson's ratio with depth and various geotechnical parameters are presented for different soil and rock classifications found in Southern California. The geotechnical parameters found to be significant to seismic velocity and Poisson's ratio include geologic age, gravel content, water table depth, dry density and depth of overburden.

iİ

Table of Contents

	Page
List of Figures	iv
List of Tables	v
Introduction	1
Velocity Data	3
Measurement Techniques	3
Refraction Survey	7
Downhole Survey	8
Crosshole Survey	9
Velocity and Geotechnical Data	10
Updated Geotechnical Classification System	16
Velocity Correlations	20
Near Surface Velocities	20
Poisson's Ratio	20
Shear-Wave Velocity Versus Depth	28
Discussion and Conclusions	41
References	42
Appendix A	43
Appendix B	44

List of Figures

			Page
Fi	g. 1	Updated Geotechnical Classification System	17
Fi	g. 2	Shear-wave Velocity versus Depth for Soft Natural Soils	31
Fi	g. 3	Shear-wave Velocity versus Depth for Soft Natural Soils Including Data from El Centro and Cholame-Shandon No. 2 Accelerograph	
		Sites	32
F1	g. 4	Shear-wave Velocity versus Depth for Inter- mediate Natural Soils	33
Fi	g. 5	Shear-wave Velocity versus Depth for Saturated Firm Natural Soils	34
Fi	g. 6	Shear-wave Velocity versus Depth for Intermediate and Saturated Firm Natural Soils	35
Fi	g. 7	Shear-wave Velocity versus Depth for Unsaturated Firm Natural Soils	36
Fi	.g. 8	Shear-wave Velocity versus Depth for Intermediate Sedimentary Rock	37
F1	g. 9	Shear-wave Velocity versus Depth for Hard Sedimentary Rock	38
Fi	g . 10) Comparison of Mean Regression Relationships	40

iv

List of Tables

			Page
Table	1.	Site Information	4
Table	2.	Seismic Velocity and Geotechnical Data	11
Table	3.	Geotechnical Classification System	18
Table	4.	Statistical Summary of Shear-Wave Velocity	an a
		for Surficial Soil and Fill Deposits	
		Containing Less than 10% Gravel	21
Table	5.	Statistical Summary of Shear-Wave Velocity	
		for Near Surface Soils Containing More	
		than 10% Gravel	22
Table	6.	Statistical Summary of Shear-Wave Velocity	
•		for Near Surface Rock	23
Table	7.	Statistical Summary of Compressional-Wave	
		Velocity for Surface Deposits Containing	
		Less than 10% Gravel	24
Table	8.	Statistical Summary of Compressional-Wave	
		Velocity for Near Surface Deposits	25
Table	9.	Statistical Summary of Poisson's Ratio	
	1. ** 	for Near Surface Deposits (unsaturated)	26
Table	10.	Statistical Summary of Poisson's Ratio	
		for Near Surface Clay Soils (unsaturated)	27
Table	11.	Summary of Regression Analysis for V s	
		$\ln V_{g} = \ln K + n \ln (d + c)$	30

Ł ł 1 ł. ١ Ł

INTRODUCTION

This report presents updated correlations among seismic velocity, depth, and geotechnical parameters in Southern California. These correlations are based on a geotechnical classification system that defines ranges of seismic velocity according to soil or rock type, geologic age, gravel content, water table depth, dry density, and depth of overburden.

Correlations were first introduced by Campbell and Duke⁽¹⁾ relating shear-wave velocities and various geotechnical characteristics. These correlations were based on 63 seismic velocity measurements conducted in the greater Los Angeles area since the 1971 San Fernando earthquake (see Duke et. al, $^{(2)}$; and Eguchi, et. al, $^{(3)}$).

This study updates the previous work by incorporating the previous data and 48 new velocity measurements. 37 of these measurements were obtained at sites in Los Angeles and Orange Counties; the other nine measurements included one in nearby Ventura County, one in Kern County, four in San Diego County, and three, although not from Southern California, were from the San Francisco Bay area. Most of these data were obtained from borings drilled as a part of geotechnical investigations. These new data were used to establish updated velocity correlations, and to improve and extend the geotechnical classification system developed by Campbell and Duke.

The previous correlations have proven to be very useful in earthquake engineering applications. Advanced technology in earthquake resistive design has increased the importance of the shear-wave velocity profile beneath the site of interest. Such profiles are required in

seismic site response analyses using wave propagation techniques, in the analysis and design of vibrating machine foundations, and in the evaluation of the characteristic site period. The soil-structure resonance coefficient, S, as defined in the Uniform Building Code, 1979 Edition⁽⁴⁾, requires the determination of the shear-wave velocity profile to depths where a velocity of 2,500 feet per second or greater are encountered. The shear-wave velocity profile is used in computing the characteristic site period, Ts. In many cases, economical considerations do not allow the measurement of velocities at the depths required for the determination of Ts. In many other situations only estimates of the site period are required. For these applications, available geotechnical data, together with seismic velocity correlations, may be used to estimate velocities with a reasonable degree of confidence.

The increased need for these correlations stimulated the authors to extend the data base with the 48 additional velocity measurements. In subsequent sections, these new shear-wave and compressional-wave velocity data, together with supporting geotechnical data, are presented and the revised geotechnical classification system is discussed. Statistical correlations are presented for each classification for surface and near surface velocities of both shear and compressional waves and for Poisson's ratios. Correlations with depth are presented for a few of the classifications for which sufficient data are available.

VELOCITY DATA

The site information for each of the new 48 velocity measurements is presented in Table 1. The site number for the first site listed in the table begins with number 64 so as to provide continuity with References (2) and (3). The location given by cross-streets is supplemented with the Thomas Brothers map designations for Los Angeles County, Orange County, and locations in other counties (if applicable) for easy reference. See Appendix A for the explanation of the Thomas Brothers map designations.

Table 1 also lists the type of geophysical survey conducted and either the length of the survey line for refraction surveys or the depth of the boring in the case of downhole or crosshole surveys. Ten of the sites were investigated using the refraction technique. Crosshole surveys were used for three of the investigations. The remaining 35 measurements were conducted by downhole surveys.

Refraction survey horizontal traverses ranged from about 150 to 360 feet in length. Depths penetrated by these surveys are on the order of 30 to 80 feet. Depths penetrated by the downhole surveys ranged from about 50 to 135 feet, with most being approximately 75 feet deep. Site 88 was investigated to a depth of 410 feet.

MEASUREMENT TECHNIQUES

The three types of seismic surveys used to determine the velocity profiles presented in this report are those commonly used in geotechnical engineering investigations. Detailed descriptions of these techniques,

SITE INFORMATION							
Site	No.	Location	Map Location	Survey	Length/Depth (Ft)		
64		Golden Shore Ave., near Shoreline Dr., Long Beach	LA 75B6	Refraction	240		
65		Wilshire Blvd. and Malcom Ave., Los Angeles	LA 41E2	Refraction	180		
66		Second and Los Angeles Sts., Los Angeles	LA 44D3	Downhole	80		
67		Artesia Blvd. near Woodruff, Bellflower	LA 66D5	Refraction	180		
68		Century Park East and Galaxy Way, Century City	LA 42B2	Refraction	360		
69		Hacienda Blvd. south of Valley Blvd., City of Indust	LA 85E1 ry	Crosshole Downhole	25 50		
70		Wilmington Ave. near Sepulveda Blvd., Carson	LA 74C1	Crosshole Refraction	20 180		
71		San Antonio and Market St., San Jose	anta dan dan	Refraction	180		
72		Oxnard St. near Canoga Ave., Canoga Park	LA 12C6	Refraction	165		
73		West end of El Mirador Dr. Pasadena	LA 26D2	Refraction (Six Surveys)	50-150		
74	· .	Mathilda Ave. and Lockheed Way, Sunnyvale		Crosshole	30		
75	, ¹ set 2	Azusa Blvd. near Temple Ave., City of Industry	LA 92C6	Refraction	110		
76		Erringer Rd. and Heywood St. Simi Valley, Ventura County	VE 66A1	Downhole	66		
77		North Brand Blvd. and Third St., San Fernando	LA 2E6	Refraction	110		
78		Ferndale Ranch, Sulphur Springs Area, Ventura County		Refraction (Four Surveys)	0-250		
79		San Fernando Rd. and Colorado Blvd., Los Angeles	LA 25B4	Downhole	75		

	TABLE 1		an th Contains A
SITE	INFORMATIO	N	

Site	No.	Location	Map Location	Survey	Length/Depth (Ft)
80		Riverside Dr. and Hazeltine Ave., Sherman Oaks	LA 22E3	Downhole	70
81		Truxton Ave. and "L" St., Bakersfield, Kern County	KE 23D5	Downhole	70
82		Wilshire Blvd. and Warner Ave., Los Angeles	LA 41F1	Downhole	72
83		Pier D, Port of Long Beach	LA 75A6	Downhole	85
84		Chandler Ave. north of Garvey Ave., Monterey Park	LA 46B1	Downhole	72
85		Third St. and Sherbourne Dr., Los Angeles	LA 33D6	Downhole	70
86		Chapman Ave. and Lewis St., Garden Grove	OR 16E3	Downhole	64
87		Tiverton Dr. and S. Circle Dr., Los Angeles	LA 41E1	Downhole	85
88	e Secondaria Secondaria	Visitor's Reception Building Jet Propulsion Laboratory Pasadena	LA 19D4	Downhole	410
89		MacArthur Blvd. and Campus Dr., Newport Beach	OR 28B5	Downhole	135
90		MacArthur Blvd. and Birch St., Newport Beach	OR 28B5	Downhole	75
91		Birch St. near Jamboree Blvd., Newport Beach	OR 28C5	Downhole	70
92		MacArthur Blvd. and Jamboree Blvd., Newport Beach	OR 28D6	Downhole	70
93		Normandie Ave. and Sunset Blvd., Hollywood District, Los Angeles	LA 34E3	Downhole	72
94		Van Nuys Blvd. and Osborne St., Panorama City	LA 8D6	Downhole	74
95		Winchester Blvd. near Hamilton Ave., Campbell,	SC 66B2	Downhole	75

TABLE 1 (Continued)

Site N		Map	Survoy	Length/Depth (Ft)
<u>96</u>	Third Ave. and H St., Chula Vista (San Diego Co.)	SD 69D4	Downhole	68
97	Ballantyne Ave. and E. Main St., El Cajon (San Diego Co.	SD 56C4)	Downhole	75
98	Lewis St. and Fifth Ave., San Diego	SD 60C3	Downhole	63
99	Miramar Naval Air Station, San Diego	SD 45E1	Downhole	30
100	Broadway and Third St., Santa Monica	LA 49A1	Downhole	50
101	Bristol St. and Anton Blvd., Costa Mesa	OR 28B2	Downhole	72
102	Westwood Plaza and Strathmore Pl., Los Angeles	LA 41E1	Downhole	95
103	Olive and Second Sts., Bunker Hill, Los Angeles	LA 44D3	Downhole	50
104	Imperial Hwy. near Nash St., El Segundo	LA 56C5	Downhole	73
105	Broadway and 21st St., Santa Monica	LA 41B5	Downhole	75
106	Olive and Eight Sts., Los Angeles	LA 44C3	Downhole	72
107	Kenwood and Harvard Sts., Glendale	LA 25D4	Downhole	73
108	Hazard Ave. and Fairmont St. City Terrace Dist. (L.A. Co.	, LA 45D3)	Downhole	73
109	Santa Cruz and Newport Cente Drs., Newport Beach	r OR 32A5	Downhole	74
110	Bristol St. and Town Center Center Dr., Costa Mesa	OR 28A2	Downhole	76
111	Vermont Ave. and DeLongpre Ave., Los Angeles	LA 34F3	Downhole	80

TABLE 1 (Continued)

together with their strengths and weaknesses, have been discussed extensively in the literature and will not be repeated here. However, a brief discussion of the methods used to obtain the data used in this study is presented below.

Refraction Survey

Two arrays of geophones, horizontal and vertical, are spread out on a line along the ground surface, usually spaced at equal intervals of 10 to 30 feet. The horizontal geophones are oriented to record motions transverse to the profile, primarily from shear-waves (S-waves). The vertical geophones record motions perpendicular to the surface of the ground, primarily from compressional-waves (P-waves). A long wooden plank, oriented perpendicular to the line of geophones, is placed at one end of the line and weighted down with the front wheels of a truck. Motions rich in horizontally-polarized shear waves (SH) are generated by horizontally striking one end of the plank with a large hammer or mallet. These motions are detected by the horizontal geophones and transmitted to the seismograph where they are amplified and recorded. To facilitate the identification of the shear wave on the record, the process is repeated by striking the opposite end of the plank. Motions rich in P-waves are generated by vertically striking the top of the board or the ground with the hammer. The entire process is then repeated with the plank placed at the opposite end of the line of geophones.

An advantage of the refraction survey is that it does not require the drilling of a borehole; however, it does require an unobstructed line on the order of several hundred feet for placement of geophones and

lateral homogeneity of the soil layers within the profile. Typical depths penetrated based on the procedures described above are about 30 to 80 feet.

Downhole Survey

A borehole is drilled to the desired depth and cased with PVC pipe. The annular space between the boring wall and the pipe is backfilled with pea gravel or grout to insure good coupling between the casing and the boring wall. A triaxial borehole seismometer is lowered to the bottom of the hole and clamped tightly to the sidewall of the casing by a spring. A wooden plank is placed on the surface approximately five to ten feet from the hole and weighted down with the front wheels of a truck. Motions rich in shear (SH) waves are generated by horizontally striking the ends of the plank as described in the refraction survey. These motions are primarily detected by two horizontal geophones in the seismometer and transmitted to the seismograph. Motions rich in P-waves are generated by vertically striking the top of the plank or the surface of the ground and are detected by the vertical geophone in the seismometer. The seismometer is then pulled up a distance of five or ten feet to the next desired depth, and a new set of recordings is obtained. This is repeated until the entire range of desired depths has been covered.

Although this survey requires a relatively expensive borehole, the results are more accurate than those obtained by the refraction technique. Very little space is required for this survey, just enough for access by drilling equipment. Great depths can be measured by this

technique. One survey that measured shear-wave velocities to a depth of 410 feet has been included in this report (Site 88).

Crosshole Survey

Three boreholes, usually separated by a distance of 10 to 20 feet are drilled to the desired depth. For shallow depths, the boreholes need not be cased. However, for greater depths or when caving is a problem, casing may be required. Borehole seismometers containing two horizontal geophones and one vertical geophone are lowered to the same depth near the bottom of two adjacent boreholes and clamped to the sidewalls with a spring. A hammer device is lowered in the third hole via a rigid pipe or rod to the same depth as the seismometers and it is clamped to the sidewalls with a hydraulic jack-plate assembly. Motions rich in vertically polarized shear (SV) waves and P-waves are generated by striking down on the pipe. The shear-waves are primarily detected by the vertical geophone in the borehole seismometers and the P-waves by the horizontal geophones. These signals are transmitted to the seismograph. To facilitate the detection of shear waves on the records, a second recording made by striking up on the pipe is obtained. The two seismometers and the hammer are then raised five to ten feet to the next desired depth and the next series of recordings is made. This process is repeated until all required depths have been completed.

Although more expensive than the downhole survey, the crosshole technique can be used to measure velocities at extremely great depths, since waves are required to travel only the short distance between boreholes. Since only low gains are required, this technique is valuable

even at relatively shallow depths when considerable vibrational background noise is present. Caution must be exercised against misinterpretation due to refractions when surveying near boundaries which have abrupt velocity increases. This is especially critical as the distances between boreholes are increased.

VELOCITY AND GEOTECHNICAL DATA

Techniques commonly used in practice were utilized to compute seismic velocites from the geophysical survey data. These velocity data, together with supporting geotechnical data, are presented in Table 2 for the 48 sites. Multiple surveys were conducted at a few sites, but velocity data were averaged where the results and site conditions were considered similar.

Water levels were established from exploration borings at the site when possible. Where such data were not available or where the water levels were below boring depths, nearby water well data were used to establish the depths. Levels represent the depth to the water table as measured from the ground surface.

S-wave and P-wave velocities represent the average velocities over the depth ranges given. At least two points within the layer were used to establish these velocities. Velocities were not generally computed for layers of less than about five feet in thickness. Exceptions to this were thin surface layers and low velocity layers at depth where the geophone spacing was reduced accordingly.

SEISMIC VELOCITY AND GEOTECHNICAL DATA

Site	Depth	S-Wave	P-Wave	Poisson's	Water		
No.	(Ft)	Velocity	Velocity	Ratio	Level	Soil Type	Geology
		(Ft/Sec)	(Ft/Sec)		(Ft)		.
					<i></i>		
64	0-10	380	780	0.34	10	Fine Sand with Shells	Rydraulic Fill
	10-60	560	5000	0.49		Fine Sand with Shells	Hydraulic Fill and Recent
					· · · · ·		Estaurine Deposits
	604	1160	5000	0.67		Fine Sand with Shalle	Recent Alluvium
	501	1100	3000	0.47		FINE Dama WILM UNELLD	ACCENE ATTUTION
45	0-5	630 ·	1410	0.25	60	641+	Alder Allingfum
. 0.2	5 22	730	TOTO	0.25	00		Olden Allundum
	3-20	1310				siit, tiay, and sand	Diger Alloyium
						(very dense)	AT 1 411 1
	20+	2520		~~		Sand, (very dense)	Ulder Alluvium
		• • • •			· · ·		
66	0-13	630	1070	0.23	25	Silty Sand	Engineered Fill
	13-25	1770	3170	0.27		Well Graded Sand with 40%	Recent Alluvium (Gaspur Aquifer)
						Gravel and Cobbles	
	25-35	1770	5000	0.43		Well Graded Sand with 40%	Recent Alluvium (Gaspur Aquifer)
				1		Gravel and Cobbles	
	35-80	2180	3600	0.22		Massive Dark Grey Siltstone	Fernando Formation (Pliocene)
	en a de la composition						
67	0-20	490	880	0.24	33	Fine Sand and Silt with	Recent Alluvium
						some Organics (grey)	
	20+	650	1130	0.25		Fine Sand and Silt with	Recent Alluvium
		4 - 1				some Organics (grey)	
						······································	
68	0-20	830	1370	0.21	70	Sandy Clay with Gravel	Engineered Fill
	20-70	1500	2060	0.33		Fine Sand and Silty Sand	Older Allunium
	704	3080	5020	0.33		Fine Cond and Silty Cand	Older Alluvium
	707	0000	3020	0.20		The Sand and Silly Sand	order KIIdvida
60		800			33	City Clay and Sand	Producened Pd11
03	0-4	690			34	Silt, Clay, and Sand	Engineered fill
1.1	4-12	480			1	Moderately Solt Silty Clay	Recent Alluvium
	12-22	1030				Fine Silty Sand	Recent Alluvium
	22-32	1580	2750	0.25		Fine Sand	Older Alluvium
	· · ·			1	1.1.2		
70	0-15	1050	1530	0.05	54	Fine Silty Sand (very dense)	Older Alluvium
	15+	1210	1940	0.18		Fine Sand	Older Allovium
		+ * * * *					
71	0-13	480			24	Fine Silty Sand and Silt	Recent Alluvium and Bay Deposits
						with Organics	
	13-24	670	1280	0.31		Clay, Silt, and Sand with	Recent Alluvium and Bay Deposits
						Organics	
	24-37	670	5000	0.49		Clay, Silt, and Sand with	Recent Alluvium and Bay Deposits
• •				a di kata		Organics	
	37+	900	5000	0.48		Clay, Silt, and Sand with	Recent Alluvium and Bay Deposits
						Organics	
72	0-15	480	1170	0.40	15	Moderately Soft Silty Clay	Recent Alluvium
	15-65	1460	 _ '			Weathered Brown Siltstone	Pico Formation (Pliocene)
÷.	65+	2670			1.0	Massive Grey Siltstone	Pico Formation (Pliocene)
-73	Bed of Ra	vine					
	0-10		1270	·	N/E	Silty Sand with Gravel	Recent Alluvium (Current Channel
							Deposits)
	10-30		1860			Silty Sand with Gravel	Recent Alluvium (Current Channel
	10 50		1000	· · · ·		billy band with therei	Donostto)
	201		7080			Northanad / Runsturad Connector	Bacament Complex
	307		1900			weathered/flactured Granice	Desement Complex
	61 (Baud		t i se se s			
	Stope or	Kavine	1000				Re
	0-8		1200			Silty Sand	Recent Alluvium
	8+		3260(+)	14001		vecomposed Granite	pasement Complex
	10			A 1A			.
74	10-15	850	5200	0.49	11	Silty Clay	Recent Alluvium
	15-30	950	5200	0.49	1.1.1	Siity Clay and Sand	Kecent Alluvium
1.12							
. 75	0-15	1480	2650	0.28	N/E	Conglomerate	Puente Formation (Upper Miocene)
	15+	2450	4540	0.29		Conglomerate	Puente Formation (Upper Miccene)
-			1. A		12		
76	0-11	940	1630	0.25	42	Clay and Sand with chunks	Engineered Fill
						of Concrete	
	11-60	780	1800	0.38		Silty Sand with some Peat	Recent Alluvium (River Wash)
	60-66	460	5000	0.50		Soft Silty Ciay with some	Recent Alluvium
				1		Organica	

Site	Depth	S-Wave	P-Wave	l'oisson's	Water	Card 1 Maria	0
NO.	(rt)	(Ft/See)	(Ft/Sec)	Kat 10	(Ft)	Solt type	Geology
77	0-9	1050	1870	0.27	N/E	Fine to Medium Silty Sand with Gravel and Cobbles	Recent Alluvium
	94	1690	2940	0.25	an thair An Stair	Well Graded Sand with 20-30%	Recent Alluvium
		i de se				Graver, coppies, and boulders	
78	Line 1			•	N		
	0-28		1960	مربعہ کا میں ا	28	Well Graded Gravel with 30%	Older Alluvium
	28+		5960			Sand and Silt Shale	Monterey Formation (Upper Mioce
	Linos 7-	4					
	0-11	·	1600			Silty Clay	Older Alluvium
	11-36		4230			Shale	Monterey Formation (Upper Miocer
- 1 ⁻¹ -	36+		6370			Shale	Monterey Formation (Upper Miocen
79	0-20	1050	1880	0.27	N/E	Fine to Medium Sand with	Recent Alluvium
					• •	30% Gravel	
	20-60	1320	2500	0.31		Well Graded Sand with 20-40%	Recent Alluvium
	60-75	1670	3000	0.28		Gravel Fine to Medium Sand with	Recent Alluvium
		2010	3000			0-30% Gravel	
•	8 <u>1</u> 8	1910 - 1914 - 19					
80	0-6	790	1750	 07	N/E	Clay and Silt	Engineered Fill
	30-70	1400	2880	0,35		Silty Sand with Silty Clay	Recent Alluvium
81	0-10	480	910	0.31	N/E	Silty Sand	Recent Alluvium
	10-45	940	1880	0.33		Fine Sand	Recent Alluvium
	43-70	1340	2,000	0.19		FIRE Sand WILL SOME GIAVEL	Recent Allorian
82	0-8	670			24	Silty Clay	Recent Alluvium
	8-48	1050				Silty Clay with Sand Layers	Older Alluvium (Terrace Deposits
	48-72	1450				SILLY CLAY WITH Sand Layers	vider Alluvium (Terrace Deposite
83	0-10	400	830	0.35	10	Fine Silty Sand	Non-Engineered Fill
	10-30	560	4750	0.49		Fine Silty Sand	Hydraulic Fill
	30-85	660	4750	0.49		Silty Sand and Silt	Hydraulic Fill and Recent River
			1. T				
84	08	750	1600	0.36	24	Silt, Clay, and Sand	Engineered Fill
1	8-30	1140	2330	0.34		Silt, Clay, and Sand	Engineered Fill
 	60-72	1250				Highly Weathered Shale	Fernando Formation (Pliocene)
85	0-25	560	4700	0.49	10	Grey Silty Clay	Recent Alluvium (Swamp Deposits)
	25-70	1140	4700	0,47		Silty Clay with some Organics	Uider Alluvium (Terrace Deposite
86	0-25		1090		64	Fine Silty Sand and Sand	Recent Alluvium
	25-64		2230			Fine Sand	Recent Alluvium
07	0_4	600	1000	A 22	N/P	Fine Stity Cond	Non-Engineered Eili
0/	4-25	1210	2000	0.21	M/B	Clayey Silt and Sand	Older Alluvium
	25-50	2310	4000	0.25		Well Graded Sand with Gravel	Older Alluvium
•	F.C. 7.			o o o o	· ·	and Silty Clay	01 Jan Allund
	20-74 76-85	1230	2080	0.23		Sandy Silt and Silty Sand	Older Alluvium
		-020					
88	0-5	760	1330	0.26	220	Sandy Silt	Engineered Fill
	32-120	1220	2000	0.20		Well Graded Sand with 10-20%	Older Alluvium
		-1.30				Gravel and Cobbles	
	120-220	2860	3770	-0.18		Well Graded Sand with 35%	Older Alluvium
1.5	220-270	2500	6200	0 41	an a	Gravel and Cubbles Silty Sand with some Gravel	Older Alluvium
	270-370	2970	0.000 	Q+ 41		Silty Sand and Well Graded	Older Alluvium
i Ali Ali					landar an	Sand with 10-20% Gravel and	
	1990 - 1990 1990 - 1990 - 1990 - 1990 - 1990 - 1990 - 1990 - 1990 - 1990 - 1990 - 1990 - 1990 - 1990 - 1990 - 1990 - 1990		$q_{\rm eff} = \frac{1}{2} q_{\rm eff} q_{\rm eff}$			Cobbles	
	370-410	3850				Silty Sand and Well Graded	Older Alluvium
						Cobbles	
		50 C					

TABLE 2 (Continued)

Site	Depth	S-Wave	P-Wave	Poisson's	Water	A 41 m	61
NO.	(FC)	(Ft/Sec)	(Ft/Sec)	Kat 10	(Ft)	Soll Type	Geology
• • • •							
89	0-4	560	· · · ·	-	27	Silt, Sand, and Clay	Engineered Fill
e e tracti	4-30	980				Sandy Silt, Fine Sand, and	Older Alluvium (Terrace Deposits)
	30-55	1040				Silty Clay and Fine Sand with	Older Alluvium (Terrace Doposits)
	55-108	690				Moderately Soft Clayey Silt	Older Alluvium (Terrace Deposits)
	108-135	1 320				and Silty Clay Sandy Silt and Fine Silty Sand	Older Alluvium (Terrace Deposits)
				and the second			
90	0-13	450	900	0.33	13	Silt, Clay, and Sand (Soft)	Recent Alluvium
	13-37	1250	5250	0.47		Silty Clay and Fine Sand	Older Alluvium (Terrace Deposits)
1	37-50	1100	5250	0.48		Silty Clay with Organics and Well Graded Sand	Older Alluvium (Terrace Deposits)
	50-75	540	5250	0.49	•	Blue Grey Soft Fat Clay with	Older Alluvium (Terrace Deposits)
						Organics	
91	0-14	500	1000	0.33	>22	Soft Silty Clay	Recent Alluvium
	14-22	1250	2220	0.27		Silty Clay with Sand	Older Alluvium (Terrace Deposits)
	22-52	900			a na h-a ta ta	Silty Clay and Fine Sand	Older Alluvium (Terrace Deposits)
	52-68	480	·		N	Blue Grey Soft Fat Clay with	Older Alluvium (Terrace Deposits)
						Organics	
		e tratie					
92	0-2	500	880	0.26	>40	Sandy Clay	Non-Engineered Fill
	2-40	930	1850	0.33		Fine Sand and Silty Clay, some Organics	Older Alluvium (Terrace Deposits)
1 - E	40-58	1070				Fine Silty Sand and Silt	Older Alluvium (Terrace Deposits)
	.58-70	1220				Fine Sand, Grey	Older Alluvium (Terrace Deposits)
0.9	0_4 **	440	1900	0.22	12	Caula 0114	Oldow Atlandow
33	4-13	000	1290	0.52	1.3	Sendy and Silty Clay	Older Alluvium
	13-35		6000			Sandy Silt and Fine Sand	Oldor Alluvium
	35-53	1100	6000	0.48		Fine Silty Sand	Older Alluvium
	53-72	1430	6000	0 / 7		Pine Silty Cand Sand and	Older Allurium
ta an	23-12	1430	0000	0.47		Silty Clay	order Aligvida
94	0-5	250	490	0.32	N/E	Dry Loose Well Graded Sand	Recent Alluvium
• •	5-15					Fine Silty Sand and Sand	Recent Alluvium
	15-40	860	1560	0.28		Fine Silty Sand and Sandy	Recent Alluvium
	40-66	1030	1820	0.26		Slif Sandy Silt	Recent Alluvium
• ,	66-74	1430	2750	0.31		Fine Silty Sand	Recent Alluvium
95	5-10	770			N/E	Sandy Silt	Recent Alluvium
	10-58	1140				Sandy Silt, Clayey Silt, and	Recent Alluvium
	58-75	1800		· · · · · · · · · · · · · · · · · · ·	an a	Well Graded Sand with 20%	Recent Alluvium
						Gravel	
96	05	480			11170	Sandy Clay and Clayout Sand	Fill on Coft Allowedren
	5-79	1110	2220	0.33	M/ L	Clovey and Silty Pice Sand	Alder Allumium (Ternane Departies)
	28-68	1540	2860	0.30		Clavey and Silty Fine to	Sweetwater Formation (Forena)
	20 00	1040	1000	0.50	an an Arainn An Arainn	Medium Sand	Sweetwater Formation (Lotensy
97	0-25	810	1430	0.26	>25	Clayey and Silty Fine Sand	Older Alluvium (River Terrace Deposits)
	25-52	1270				Silty Clay	Friars Formation (Eccene)
in the	52-75	1380				Silty Clay	Friars Formation (Eccene)
98	0-7	1320	· · · ·		N/E	Well Graded Sand with 40-50%	Older Alluvium (Terrace Deposits)
	7. 90					Gravel, Slightly Cemented	
	7-45	620				Fine Stity Sand	Ulder Alluvium (Terrace Deposits)
	40-62	1375				Fine to Medium Silty Sand	Older Alluvium (Terrace Deposits)
00	0-5	1750	· · · · ·		N/2	Clavou Food with ED 604	Productional Pd 11
77		<u>, , , , , , , , , , , , , , , , , , , </u>		-	M B	Gravel and Cobbles	TURTURELEG LITI
	5-12	930				Sandy Clay	Glder Alluvium (Terrace Deposite)
	12-30	1670	аланын Солонултан Солонултан			Fine to Medium Silty Sand with 30-50% Gravel and Cobbles	Stadium Formation (Eccene)

	TABLE :	2
((Continue	(be

•						(Come index)		
lite No.	Depth (Ft)	S-Wave Velocity (Ft/Sec)	P-Wave Velocity (Ft/Sec)	Foleson's Ratio	Water Level (Ft)	Soil Type	Geology	
100	0-3	600			50	Silty Sand with Pieces of Brick	Engineered Fill	
	3-20 20-50	900 1520	1840 2500	0.34 0.21		Silty Clay Fine Sand with Some Gravel and Cobbles	Older Alluvium (Terrace Deposits Older Alluvium (Terrace Deposits)	
101	0-5	360	830	0.38	25	Moderately Soft Silty Clay	Recent Alluvium (Floodplain	
	5-25	630	1330	0.36		Sandy Silt and Fine Silty Sand	Recent Alluvium (Floodplain	
	25-72	910	5710	0.49		Fine Silty Sand and Sand	Recent Alluvium (Floodplain Deposits)	
102	A 15	610			47	Candin Cille	Bassan Allundum	
102	15-47	920	1630	0.27	47	Sandy Silt Sandy Silt	Recent Alluvium	
	47-80	1140	5650	0.48		Clayey Silt with Sand	Recent Alluvium	
	80-95	2220	5650	0.41		Well Graded Sand with Some Gravel	Older Alluvium	
103	0-30	1090	1860	0.24		Weathered Siltstone, Greyish-Drown	Repetto Formation (Upper Pliocene)	
	30-50	1300				Weathered Siltstone, Some Cemented Layers	Repetto Formation (Upper Pliocene)	
104	08	400		-	N/E	Soft Silty Clay	Non-Engineered Fill and Recent Alluvium	
	8-22	720	1480	0.35		Silty Clay	Recent Alluvium	
	22-40 40-65	1070 1400	2020 2500	0.30 0.27		Fine Sand Fine to Coarse Sand, Some	Recent Dune Sand Recent Dune Sand	
	65-73	1670				Gravel Sand and Clay	Recent Dune Sand	
105	0-15	870	·		129	Clayey Silt, layers of Sand	Recent Alluvium	
	15-30	1180		~=		and Gravel Well Graded Sand with 20%	Recent Alluvium	
	30-52	1570	·			Clayey Silt	Older Alluvium	
	52-75	2290 ´	•••• •.			Fine Sand	Older Alluvium	
106	0-52	1300	2430	0.30	N/B	Gravelly Sand with 10-20% Cobbles	Recent Alluvium	
	52-72	2660				Sandy and Clayey Silt	Older Alluvium	
107	07 740	550 1150	900 2250	0.20 0.32	160	Silty Sand and Sand Well Graded Sand with 10-40%	Non-Engineered Fill Recent Alluvium	
	40-73	2000	4000	0.33		Gravel Well Graded Sand with 10-40% Gravel	Older Alluvium	
108	08	830			N/E	Sandy Silt and Clay	Older Alluvium	
	8-34	1430	·;=		·	Fine to Well Graded Sand with 10-20% Gravel	Older Alluvium	
	34-50 50-73	1670 2200				Fine Silty Sand and Sand Clay, Silt, and Sand	Older Alluvium Older Alluvium	
109	0-1	700	1400	0. 33	N/E	Fine Silty Sand	Engineered Fill	
-v7	3-45	1200	2100	0.26		Highly Weathered Siliceous Shale and Siltstone	Puente Formation (Upper Miocene)	
	45-74	1500	3300	0.37		Highly Weathered Siliceous Shale and Siltstone	Puente Formation (Upper Miocene)	
110	0-18	470	1000	0.36	18	Moderately Soft Silty Clay	Recent Alluvium	
	18-42	750	4660	0.49		Clayey Silt Well Graded Sand	Recent Alluvium Recent Alluvium	
	62-76	1400	4660	0.45		Silt and Sand	Recent Alluvium	
111	0-4	600			33	Fine to Medium Silty Sand with Brick Fragments	Engineered Fill	
	4-27	1180	· · ·			Clay and Silty Sand	Older Alluvium	
	27-70	1220		~- ·	•	-Weathered Brown and Grey Siltatone Uncomented	Pico Formation (Pliocene)	
	70-80	2050				Massive Dark Grey Siltstone	Pico Formation (Pliocene)	
						1 /		

Poisson's ratios (v) were computed from the ratio of the P-wave velocity (V_p) to the S-wave velocity (V_s) by the expression (Richart, et. al, ⁽⁵⁾):

$$v = 1/2 \frac{(v_p/v_s)^2 - 2}{(v_p/v_s)^2 - 1}$$
(1)

Equation (1) was developed assuming that near surface soils can be treated as an elastic medium for the low dynamic shear strains (on the order of 10^{-4} % or less) induced in shallow seismic surveys.

The predominant soil type listed for each layer was obtained from exploration borings at the site of the survey. In most cases, this information was available from the boring in which the survey was conducted in the case of downhole and crosshole surveys. Soils were classified using the Uniform Soil Classification System⁽⁶⁾. The approximate quantity of gravel, debris, and organic content are given when available. Where rock was encountered, a brief description of the rock is given. Materials classified as hydraulic fill, engineered fill, or non-engineered fill represent man-made deposits. The geology of each site was obtained from a geologic investigation which was part of the overall geotechnical investigation. Geologic descriptions and formation names are consistent with established local terminology. A description of the Geologic Time Scale, may be found in Appendix B.

UPDATED GEOTECHNICAL CLASSIFICATION SYSTEM

An increase in the seismic velocity data base to 111 sites and the addition of very detailed geotechnical descriptions permitted the Geotechnical Classification System developed by Campbell and Duke⁽¹⁾ to be updated. Components of this system are diagrammed in Figure 1. The major classifications of Soil, Fill, and Rock essentially remain unchanged.

A description of the components of this system is given in Table 3. Some of the important revisions included the effects of the water table, gravel content, dry density, rock hardness, and rock type. Clay soils became distinguishable from granular soils with respect to Poisson's ratios and the velocities of soft clays at depth.

GEOTECHNICAL CLASSIFICATION SYSTEM

TABLE 3

.

Dry Density Depth	(Lbs./Cu.Ft.) (Ft.) Geologic Age and Unit	rine, and <100 >0 Holocene nay con-	90-110 >10-15 Holocene	ined. < 90 >0 Holocene	<pre>ilts; < <100 0 Holocene and Pleistocene <80 >10 Holocene and Pleistocene</pre>	density; 90-110 >0 Holocene	ne age soils; 95-115 >10-15 Pleistocene and Eocene (San Dieg depths below Co. Sweetwater and Friars Forma- tions)	<pre>1s. 90-100 >0 Pleistocene and Eocene (San Dieg Co. Sweetwater and Friars Forma- tions)</pre>	>110 20 Holocene	cene age 100-115 >0 Pleistocene and Eocene (San Dieg erate Co. Sweetwater and Friars Forma- feet tions)	ensity. >117 >0 Pleistocene and Eocene (San Dieg Co. Friars Formation)	curring at or bounders;	. [115-130] 0 Holocene, Pleistocene and Eocene (San Diego Co. Stadium Formation	125-135 0 Holocene, Pleistocene, and Eocen (San Diego Co. Stadium Formation)	g gravel and grained:	. [115-130] 5-30 Holocene 115-130 5-10 Pleistocene and Eocene	125-135 5-50 Holocene 125-135 5-20 Pleistocene and Eocene
	Description	Very recent floodplain, lake, swamp, estuar delta deposits, and hydraulic fill soils; m tain organics.	Saturated Holocene age soils.	Very low density soils; primarily fine-grain	Soft to moderately soft clays and clayey sigenerally dark grey to black.	Unsaturated Holocene age soils of moderate (may contain moderate amounts of gravel at do below 30 to 50 feet.	Saturated, uncemented Pleistocene and Eocen may contain moderate amounts of gravel at do 10 to 20 feet.	Low density Pleistocene and Eocene age soil	High density Holocene age soils.	Unsaturated, uncemented Pleistocene and Eoco soils of moderate density; may contain moder amounts of gravel at depths below 10 to 20	Pleistocene and Eocene age soils of high der	Natural soils and engineered fill soils occ the surface containing gravel and cobbles of predominantly coarse grained:	10-50% gravel; some cobbles and boulders.	>50% gravel; some cobbles and boulders.	Natural soils occurring at depth containing cobbles or boulders; predominantly coarse g	10-50% gravel; some cobbles and boulders.	10-50% gravel, cobbles, and boulders.
	fication	Soft				Intermediate			Firm		Very Firm	Surficial			Subsurficial		
	technical Classi	<pre><10% Gravel and Cobbles</pre>										>10% Gravel and Cobbles					
	Geo	Natural Soils						18	-								

TABLE 3 (Continued)

				bry Density	Depth		
55	cotechnical Classi	fication	Description	bs./Cu.Ft.)	(Ft.)	Geologic Age and Unit	
Fill Soils	Non-Engineered		Loose or slightly compacted man-made fill solls (ex- cluding hydraulic fill); containing <10% gravel and cobbles.	100-115	0		
	Engineered		Mechanically compacted man-made fill and natural soils containing <10% gravel and cobbles.	; 110-125	0		
Rock	Sedimentary	Soft	Highly weathered, low density siltstones and shales; usually light brown to light grey; Miocene shales are highly siliceous and diatomaceous.	65-90	15-50	Pliocene (Fernando, Pico, and Repetto Formations) - Miocene (Modelo, Puente, and Monterey Formations)	
		Intermediate	Moderately weathered, moderate density siltstones and shales; Pliocene siltstones are primarily massive and dark grey. Miocene shales are highly siliceous and diatomaceous.	90-105	∞ ₁	Fliocene (Fernando, Pico, and Repetto Formations) - Miocene (Modelo, Puente, and Monterey Formations)	
	-	Hard	Moderately weathered, moderate to high density Miocene siltstones, shales, sandstones, and conglomerates.	>95	۰×۵ ۱	Miocene (Modelo, Puente, and Monterey Formations)	
	Basement Complex	Highly Weathered	Igneous and Metamorphic rock; highly weathered.		0 ₁	Mesozoic	
		Moderately Weathered	Moderately weathered and fractured Igneous and Metamorphic rock.	[⊼ι	Mesozoic	
		Slightly Weathered	Unweathered or slightly weathered and fractured Igenous and Metamorphic rock.	1	×.	Mesozoic	

See Appendix B for a description of the geologic time scale. Naturally occurring Holocene age soils are generally referred to as Recent Alluvium. Pleistocene age soils of continental origin are generally referred to as Older Alluvium and those of marine origin as Terrace Deposits.

VELOCITY CORRELATIONS

Statistical correlations of seismic velocity have been updated with the addition of the velocity and geotechnical data presented in the first part of this report. Deposits were classified in accordance with the Geotechnical Classification System presented in the previous section. NEAR SURFACE VELOCITIES

Statistical correlations for surface deposits and a few near surface deposits were performed on both S-wave and P-wave velocities, Tables 4 through 8. Results of the analyses are given in terms of the sample size, the velocity range, the mean velocity, the standard deviation, and the coefficient of variation. The dimensionless coefficient of variation, defined as the ratio of the standard deviation to the mean, represents a convenient means of expressing the statistical uncertainty in the analyses. These coefficients are relatively constant for all classifications, falling generally in the range of 0.08 to 0.14, indicating relative consistency in the measurement and analysis of these data.

POISSON'S RATIO

The results of the statistical analysis of Poisson's ratios is summarized in Tables 9 and 10. Velocity data at all depths were used in establishing these correlations.

New to this study are the significant differences found in Poisson's ratio between clays, silty clays, and clayey silts and the other deposits. For each geotechnical group, these clay soils exhibited Poisson's ratios approximately 20% higher than for deposits containing

STATISTICAL SUMMARY OF SHEAR-WAVE VELOCITY FOR SURFICIAL SOIL AND FILL DEPOSITS EL CON

ы
2
R
C
~0
0
0
Ч
7
7
1
Ē
S
ŝ
1-3
5
-
5
÷.
6
A
4
H
z
~

					•
		Shear-Wa	ve Velocity	(Ft/Sec)	Coefficient
	No. of			Standard	of
Geotechnical Description	Data	Range	Mean	Deviation	Variation
Soft Natural Soil	12	360 - 560	460	60	0.13
Soft Clay (>10 feet deep)	e C	460 - 690	550	I	I
Intermediate Natural Soil	23	520 - 790	620	80	0.13
Firm Natural Soil	31	735 - 1180	076	100	0.11
Non-Engineered Fill	12	400 - 550	490	50	0.10
Engineered Fill	18	560 - 940	710	110	0.16

STATISTICAL SUMMARY OF SHEAR-WAVE VELOCITY FOR NEAR SURFACE SOILS CONTAINING MORE THAN 10% GRAVEL

			Shear-Wave	· Velocity	(Ft/Sec)	Coefficient
		No. of			Standard	of
Gravel Content	Depth (Ft)	Data	Range	Mean	Deviation	Variation
			•			
10 - 50%	0	7	805 - 1150	980	130	0.13
>50%	0	9	1220 - 1430	1320	80	0.06
10 - 50%	5 to 10-30	m	1180 - 1430	1310	I	
10 - 50% with Cobbles	5 to 20-50	œ	1670 - 1980	1780	115	0.06

STATISTICAL SUMMARY OF SHEAR-WAVE VELOCITY FOR NEAR SURFACE ROCK

			Shear-Wave	Velocity	(Ft/Sec)	Coefficient
		No. of			Standard	of
Rock Description	Depth (Ft)	Data	Range	Mean	Deviation	Variation
Soft and Intermediate						
Sedimentary Rock	0	ŝ	1040 - 1260	1160	06	0.08
Hard Sedimentary Rock	0	9	1280 - 1480	1360	110	0.08
Soft Sedimentary Rock	15 - 50	00	1220 - 1500	1380	110	0.08
Moderately Weathered Basement Complex	0 - 100	Q	3300 - 4610	4040	430	0.11

THE CO	TTOO	GRAVEL
1.111		10%
	-wave	THAN
	TONAL	LESS
	COMPRESS	VTAINING
Ę	Ğ	g
	SUMMAKY	DEPOSITS
	VLTST ICA	SURFACE
Ē	SIL	FOR

		Compressional	L-Wave Veloci	ity (Ft/Sec)	Coefficient
	No. of			Standard	of
Geotechnical Description	Data	Range	Mean	Deviation	Variation
Soft Natural Soil and					
Non-Engineered Fill	13	780 - 1170	930	105	0.11
Intermediate Natural Soil	80	910 - 1750	1290	245	0.19
Firm Natural Soil	6	1250 - 1850	1560	210	0.14
Engineered Fill	6	1070 - 1630	1340	180	0.13
Soft and Intermediate Sedimentary Rock	4	1860 - 2440	2070	270	0.13

STATISTICAL SUMMARY OF COMPRESSONAL-WAVE VELOCITY FOR NEAR SURFACE DEPOSITS

		Compressiona]	L-Wave Veloc:	ity (Ft/Sec)	Coefficient
	No. of			Standard	of
Geotechnical Description	Data	Range	Mean	Deviation	Variation
Soils Containing >10% Gravel.					· .
0 feet (Unsaturated)	9	1870 - 2430	2070	225	0.11
Soils Containing >10% Gravel,					
5 to 10-50 feet	c.	2500 - 3170	2870		
Saturated Soil	15	460 - 6300	5330	545	0.10
>0 feet					

TABLE 8

STATISTICAL SUMMARY OF POISSON'S RATIO FOR NEAR SURFACE DEPOSITS (UNSATURATED)

		Å	oisson's Rat	tio	
	No. of			Standard	Coefficient of
Geotechnical Description	Data	Range	Mean	Deviation	Variation
Soft Natural Soil and					
Non-Engineered Fill	17	0.24 - 0.40	0.32	0.052	0.16
Intermediate Natural Soil	17	0.26 - 0.37	0.31	0.036	0.12
Firm Natural Soil	20	0.18 - 0.43	0.28	0.074	0.26
Soils Containing >10% Gravel	11	0.19 - 0.33	0.27	0.045	0.17
Engineered Fill	6	0.20 - 0.35	0.24	0.045	0.19
Sedimentary Rock	13	0.18 - 0.32	0.25	0.046	0.18

STATISTICAL SUMMARY OF POISSON'S RATIO FOR NEAR SURFACE CLAY SOILS (UNSATURATED)

		Po	isson'S Rati	lo	
	No. of			Standard	Coefficient of
Geotechnical Description	Data	Range	Mean	Deviation	Variation
Soft Clays	ς Γ	0.36 - 0.40	0.38	1	. 1
Intermediate Clays	ŝ	0.35 - 0.37	0.36	t	I
Firm Clays	7	0.33 - 0.34	0.34	ı	11 1 - 1 - 1 1 - 1 2
All Clays	Ø	0.33 - 0.40	0.36	0.023	0.06

mixtures of sands, gravels, silts, and clays. From the limited amount of data available, it was found that this difference is primarily due to increased P-wave velocities in the clay soils.

The results in Table 9 indicate a trend of decreasing Poisson's ratio with increasing consolidation, age, and density of the deposits. Although based on a limited amount of data, this trend is also observed for the clay soils listed in Table 10.

SHEAR-WAVE VELOCITY VERSUS DEPTH

In the previous study, Reference⁽¹⁾, it was found that the correlation of shear-wave velocity with depth for each of the four classifications considered at that time could be adequately given by the following expression:

 $V_{s} = Kd^{n}$ (2)

where V_s is shear-wave velocity, d is depth, and K and n are constants dependent upon the geotechnical classification.

With the addition of more accurate data, equation (2) has been slightly modified to account for the asymptotic behavior of shear-wave velocity at the ground surface. This new expression is given by:

 $V_{s} = K(d + c)^{n}$ (3)

where the term c accounts for non-zero values of V at the ground surface. Thus, as d approaches zero, shear-wave velocity takes on the value $V_s = Kc^n$.

In order that a regression analysis could be used to estimate the constants K, d, and n for each of eight geotechnical classifications for which sufficient data were available, Equation (3) was linearized by taking the natural logarithm of both sides, giving

$$\operatorname{Ln} V_{c} = \operatorname{Ln} K + n \operatorname{Ln} (d + c)$$
(4)

A summary of the regression analysis is given in Table 11, with shear-wave velocity in units of feet per second and depth in units of feet. For this purpose, the depth was taken as the vertical distance from the ground surface to the top of the layer, not to the midpoint of the layer as some investigators have used. For the surface layer, the depth was taken as one-third the thickness of the layer. From the statistical summary presented in Table 11, the average correlation coefficient was found to be 0.94 and the average standard deviation to be 0.13. These values suggest that Equation (4) represents the data rather well. The value of 0.13 for the standard deviation of Ln V_s corresponds to a multiplicative factor in V_s of 1.14.

Plots of the data, the regression equations, and the one standard deviation limits for the eight geotechnical classifications are found in Figures 2 through 9. The squares represent data obtained at depth and plotted as the distance to the top of the respective layers. The octagons represent surface shear wave velocity data plotted at one-third the thickness of the layer. In Figure 3, Soft Natural Soils, the triangles represent downhole seismic velocity data from El Centro in Imperial Valley and from Cholame (near Parkfield) as obtained in a study

SUMMARY OF REGRESSION ANALYSIS FOR V Ln V = Ln K + n Ln (d + c) S

					Standard	
Geotechnical Description	Regres Ln K	sion Coeffic n	cients c	Correlation Coefficient	Deviation of Ln V _S	No. of Data
Soft Natural Soils	5.134	0.456	3.9	0.97	0.11	29
Soft Natural Soils including El Centro and Cholame	5.665	0.296	0.30	0.93	0.16	41
Intermediate Natural Soils	5.674	0.408	1.8	0.95	0.12	59
Saturated Firm Natural Soils	5.432	0.460	0.0	0.95	0.14	18
Intermediate and Saturated Firm Natural Soils	5.628	0.413	2.4	0.95	0.13	76
Firm Natural Soils (Unsaturated)	6.251	0.349	2.0	0.93	0.13	50
Intermediate Sedimentary Rock	5.862	0.472	0.0	0.95	0.13	6
Hard Sedimentary Rock	6.607	0.405	0.0	0.87	0.15	13

SHEAR WAVE VELOCITY IN FT/SEC

Figure 2. Shear-wave velocity versus depth for soft natural soils.

Key to Figures 2 through 9

- Surface layer velocity data plotted at one-third the thickness of the layer.
- Non-surface layer velocity data plotted at the depth corresponding to the top of the layer.

SHEAR WAVE VELOCITY IN FT/SEC

Figure 3. Shear-wave velocity versus depth for soft natural soils including data from El Centro and Cholame-Shandon No. 2 accelerograph sites.

Figure 4. Shear-wave velocity versus depth for intermediate natural soils.

.

SHEAR WAVE VELOCITY IN FT/SEC

Figure 5. Shear-wave velocity versus depth for saturated firm natural soils.

SHEAR WAVE VELOCITY IN FT/SEC

Figure 6. Shear-wave velocity versus depth for intermediate and saturated firm natural soils.

SHEAR WAVE VELOCITY IN FT/SEC

Figure 7. Shear-wave velocity versus depth for unsaturated firm natural soils.

Figure 9. Shear-wave velocity versus depth for hard sedimentary rock.

prepared for the Nuclear Regulatory Commission⁽⁷⁾. These velocities are somewhat lower than those obtained in the greater Los Angeles area. The triangles in Figures 4, 5 and 7 represent velocities obtained in gravelly soils. In Figure 6, the triangles represent saturated Firm Natural Soils. Figure 10 presents comparisons of the mean regression relationships for six of the geotechnical classifications.

SHEAR WAVE VELOCITY IN FT/SEC

Key

1.	Soft natural soils (dashed
	where El Centro and Cholame
	have been included.)
2.	Intermediate natural solls

- 3. Saturated firm natural soils
- 4. Firm natural solls
- 5. Intermediate sedimentary rock

.-

6. Hard sedimentary rock

DISCUSSION AND CONCLUSIONS

The statistical correlations among shear-wave velocity, Poisson's ratio, depth, and the type of soil or rock developed in the previous sections may be used to estimate seismic velocity from only a limited amount of geotechnical data. Geotechnical data considered important for this application are geologic age, rock type, soil type, water table depth, gravel content, dry density, and depth of overburden. Minimum required information includes the geology and depth to the water table. A description of the procedure for generating synthetic velocity profiles illustrated with examples may be found in References (1) and (3).

It should be emphasized that the velocity profiles generated using these correlations are for low shear strains (less than 10^{-4} %). Due to strain softening, the velocities estimated from these correlations should be reduced for strong shaking depending upon the level of shaking. The Uniform Building Code suggests multiplying low-strain seismic velocities by a factor of 0.67 to account for earthquake shaking effects in seismic Zones 3 and 4. A more sophisticated approach taking into account computed stresses and stress-strain behavior of soils is outlined in Reference (1).

The velocity correlations presented here should be used with engineering judgment since they are based on a limited amount of velocity and geotechnical data. The bulk of the data were obtained at depths less than about 100 to 150 feet. Extrapolation of regression equations beyond this depth should be done with extreme caution.

REFERENCES

- Campbell, K.W. and C.M. Duke, "Correlations Among Seismic Velocity, Depth and Geology in the Los Angeles Area", School of Engineering and Applied Science Report No. UCLA-ENG-7662, University of California, Los Angeles, June 1976.
- Duke, C.M., J.A. Johnson, Y. Kharraz, K.W. Campbell, and N.A. Malpiede, "Subsurface Site Conditions and Geology in the San Fernando Earthquake Area", School of Engineering and Applied Science Report No. UCLA-ENG-7206, University of California, Los Angeles, December 1971.
- 3. Eguchi, R.T., K.W. Campbell, C.M. Duke, A.W. Chow, and J. Paternina, "Shear Velocities and Near-Surface Geologies at Accelerograph Sites that Recorded the San Fernando Earthquake", School of Engineering and Applied Science Report No. UCLA-ENG-7653, University of California, Los Angeles, June 1976.
- 4. International Conference of Building Officials, Uniform Building Code, 1979 Edition. The Conference, Whittier, California, 1979.
- Richart, F.E., J.R. Hall, and R.D. Woods, <u>Vibrations of Soils and</u> <u>Foundations</u>. Prentice-Hall, Inc., Englewood Cliffs, New Jersey, 1970.
- Corps of Engineers, "The Unified Soil Classification System", U.S. Army Technical Memorandum No. 3-357, Vol. 1, March 1953 (Revised April 1960).
- 7. Shannon & Wilson, Inc., and Agbabian Associates, "Geotechnical and Strong Motion Data from U.S. Accelerograph Stations, Volume 1, Ferndale, Cholame, and El Centro, California," Report No. NUREG-0029 prepared for the U.S. Nuclear Regulatory Commission, 1975.
- Campbell, K.W., "Empirical Synthesis of Seismic Velocity Profiles from Geotechnical Data", Proceedings of the Second International Conference on Microzonation, Vol. II, San Francisco, California, 1978, pp. 1063-1076.

APPENDIX A

THOMAS BROTHERS MAP LOCATIONS

The Thomas Brothers map designations were used in Table 1 to provide a means of easy reference to locate the sites of the new velocity measurements. The map designations are keyed to the Thomas Brothers Popular Street Atlases which are widely used by governmental and commercial interests in California. An explanation of the map designation is given below:

> LA 25 F6 — grid coordinates map book page number County

Key to County Codes -

- KE Kern County
- LA Los Angeles County
- OR Orange County
- SC Santa Clara County
- SD San Diego County
- VE Ventura County

Era	Period	Epoch	Approximate Duration* in Millions of Years	Millions of* Years Ago
Cenozoic	Quaternary	Holocene	0.01	0
		Pleistocene	2.5	2.5
	Tertiary	Pliocene	4.5	7
		Miocene	19.0	26
		Oligocene	12.0	38
		Eocene	16.0	54
		Paleocene	11.0	65

APPENDIX B ABRIDGED GEOLOGIC TIME SCALE

*After Bolt et. al, Geologic Hazards, Springer-Verlag, New York, 1975.