
Publication No. R79-31

13 880-164197

Order No. 654

Seismic Behavior and Design of Buildings

Report No.2

INELASTIC SEISMIC RESPONSE OF A TORSIONALLY
UNBALANCED SINGLE-STORY BUILDING MODEL

by

H.M. IRVINE

and

G.E. KOUNTOURIS

July 1979

REPRODUCED BY

NATIONAL TECHNICAL
INFORMATION SERVICE

u. S. DEPARTMENT OF COMMERCE
SPRINGfiELD, VA. 22161

Sponsored by the National Science foundation

Applied Science and Research Applications

Grant ENV77-14174

EAS INFORMATION RESOURCES
NATIONAL SCIENCE FOUNDATION

@(W

@IJ~Qll

[.Vll~@?LI£~miI@JIITf@: IJI®JULr\li'TIIJ iIJJ1]]]~lm:n(!®J

@U1GIi11!~ GII:tffiEllI~ ·CWlli~



Additional Copies May Be Obtained from:

National Technical Information Service

U.S. Department of Commerce

5285 Port Royal Road

Springfield, Virginia 22161



50272 -101

Publication No. R79-31

(C)

10. Project/Task/Work Unit No.

(G) ENV7714174

_~.o__nler No. 654
11. Contract(C) Or Grant(G) No.

9. Performing Organization Name and Address

Massachusetts Institute of Technology
School of Engineering
Department of Civil Engineering
Cambridge, Massachusetts 02139

4. Title and Subtitle

13. Recipient's Accession No.

___ __~?J3JO- /b <//0/7
5. Report Date

Inelastic Seismic Response of a Torsionally Unbalanced Single- July 1979
Story Building Model (Seismic Behavior and Design of Buildings, ~~-'~"'----=---:""':-_--------I

Report No.2)
r:-:~~~~-=---=..L._----------_.~,",",-~-----------~---~------ _

7. Author(s) 8. Performing Organization Rept. No.

H. M. Irvine, G. E. Kountouris

14.

13. Type of Report & Period C~~;;;d-

-----------_._----_._-------

12. Sponsoring Organization Name and Address

Engineering and Applied Science (EAS)
National Science Foundation
1800 GStreet, N.W.
Washington, D.C. 20550

I-__----=::..--=~-..:.--.::.-..::.....:.....::.....:...._-----------------~--.~-~=--=-=--~-=-~- ~--==--~-~-~~-l
15. Supplementary Notes

1------------.......-----------·-------------·----·--·--------------I-16. Abstract (limit: 200 wor-ds)

The dynamic effects of coupling between torsion and translocation using a simple
torsionally unbalanced single-story building model are described. The investigation
deals with a two-degree-of-freedom model in which two frames support a diaphragm
the center of mass of which may be offset from the center of stiffness. Frames are
assumed to behave as simple elastic-plastic springs and to have the same stiffness
and strength levels. A comprehensive parameter study was undertaken to identify
trends in the peak ductility demands of the worst situated frame. Results are
plotted and interpreted. A simple frequency domain analysis outlines why the peak
ductility demands occur in the frame farthest from the center of mass. The study
indicates that the most important parameter is one involving the product of diaphragm
mass and spectral acceleration normalized by a yield level in the frame. For wide
ranges of other parameters, the peak ductility demand is roughly linear in this
parameter, a characteristic of symmetric structures. Eccentricity does not appear
to be a significant parameter. A regression analysis of the data yielded simple
confidence levels for peak ductility demands.

Mathematical models
Earthquakes
Ductil ity

t--------------------~--------------------------~
17. Document Analysis a. Descriptors

Earthquake resistant structures
Dynamic structural analysis
Buildings

b. Identifiers/Open.Ended Terms

c. COSATI Field/Group

18. Availability Statement 19. Security Class (This Report) 21. No. of Pages

NTIS f---------------j---------
20. Security Class (This Page) 22. Price

(See ANSI-Z39.18) See Instructions on Reverse OPTIONAL FORM 272 (4-77)
(Formerly NTI5-35)
Department of Commerce





Massachusetts Institute of Technology
Department of Civil Engineering
Constructed Facilities Division
Cambridge, Massachusetts 02139

Seismic Behavior and Design of Buildings

Report No. 2

INELASTIC SEISMIC RESPONSE OF A TORSIONALLY UNBALANCED

SINGLE-STORY BUILDING MODEL

by

H. M. Irvine

and

G. E. Kountouris

Any opinions, findings, conclusions
or recommendations expressed in this
publication are those of the author(s)
and do not necessarily reflect the views
of the National Science Foundation.

July 1979

Sponsored by the National Science Foundation
Applied Science and Research Applications

Grant ENV77-14174

Publication No. R79-31 Order No. 654





-i-

ABSTRACT

An investigation of the inelastic seismic response of a simple
torsionally unbalanced building is reported. The studies undertaken
here concern a two-degree-of-freedom model in which two frames sup­
port a diaphragm the center of mass of which may be offset from the
center of stiffness. The frames are assumed to behave as simple
elastic-plastic springs and to have the same stiffness and strength
levels.

A comprehensive parameter study is undertaken in an attempt to
identify trends in the peak ductility demands of the worst situated
frame, which is frequently, but not always, the one nearest the cen­
ter of mass. The results are presented in an extensive series of plots
and the trends present are discussed. A simple frequency domain analy­
sis is outlined in an attempt to explain why, in some cases, the peak
ductility demands occur in the frame farthest from the center of mass.

From this work it is concluded that the most important parameter
is one involving the product of diaphragm mass and spectral accelera­
tion normalized by a yield level in the frame. For wide ranges of the
other parameters the peak ductility demand is roughly linear in this
parameter--a result well known for symmetric structures. Surprisingly,
eccentricity does not appear to be a particularly significant parameter.
A regression analysis of the data is performed to yield simple confidence
levels for the peak ductility demands.
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PREFACE

This is the second report prepared under the research project
entitled "Seismic Behavior and Design of Bui1dings~" supported by National
Science Foundation Grant ENV77-l4l74.

The purpose of the project is: To perform a more comprehensive
evaluation of various definitions of ductility used at present in dynamic
analysis programs~ assessing their physical meaning and their relation to
expected structural damage; to evaluate different design procedures~ par­
ticularly those recommended by present codes~ in terms of the behavior
of the resulting frames and the expected level of damage under various
earthquake motions; to develop if needed alternate design procedures or
recommendations to ensure the adequacy of the behavior; and to evaluate
further some of the complex models used at present for special structures
(such as nonlinear finite element models for reinforced concrete struc­
tures) .

The first report produced was:

Biggs~ John ~~.~ Lau. Wai K., and Persinko, Drew. "Seismic Design
Procedures for Reinforced Concrete Frames. 1I

The project is supervised by Professors J. M. Biggs and H. M. Irvine,
and Research Assistants who have contributed to the Project are Hooshang
Banon, George Kountouris~ Wai K. Lau and Drew Persinko.
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CHAPTER I - INTRODUCTION

1.1 Scope

In this report the dynamic effects of coupling between torsion and

translation are investigated using a simple eccentric single-story build­

ing model. Both elastic and inelastic responses to selected strong ground

motions are examined, with most attention being paid to endeavoring to

assess trends in inelastic response.

Many investigations into elastic response have been carried out in

the past, reviews of which may be found in Hoerner (1) and in Dempsey (2).

Most investigators have concluded that current torsional provisions in

loadings codes may be inadequate, but the means of remedying the situation

are unclear. Very little work has been done on inelastic response of tor­

sionally unbalanced buildings, at least in so far as systematic studies

are concerned. The object of the present work is, therefore, to attempt

to fill in some of the gaps in present knowledge.

In many respects the work is an extension of that reported by Dempsey

and Irvine (2), in which analytical solutions were obtained for peak elas­

tic response quantities. It is there too that, for the first time, a gen­

eral criterion was given for the occurrence of full modal coupling, in a

simple two-degree-of-freedom model. The inelastic case is obviously much

more complicated, and the use of a digital computer is essential since

step-by-step integration methods are required. It occasionally happens

that elastic analytical work can be used to predict and explain features

of inelastic response and this, it turns out, is true of the present work.

For the most part, however, one must rely on numerical methods and be able

to sift through the vast quantities of information that the process provides.
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Our main concern is with peak ductility demands in parts of an eccentric

model and the output has been tailored accordingly.

It is to be expected that inelastic response studies of a torsionally

unbalanced building, even in an idealized case such as this, involve sev­

eral parameters, many of which may be profoundly important. Our efforts

are aimed primarily at isolating those that appear to be of prime importance;

it is realized, of course, that results obtained in this manner for this

model are, at best, difficult to extrapolate to more realistic multistory

systems.

1.2 Organization of the Report

In Chapter 2 a review of the elastic analysis of a partially symmetric

building model is made. Modal analysis of the equations of motion is per­

formed, the eigenvalues and eigenmodes are extracted, and the total response

is decomposed into the response due to the lateral and torsional vibration

modes. Various cases of modal coupling are shown and full modal coupling

is investigated. The maximum seismic response of the model is expressed in

terms of two equivalent static actions--the horizontal shear and the torque.

Results are plotted continuing the maxima by addition, subtraction, SRSS

and modified SRSS.

Chapter 3 presents the formulation of the equations of motion for an

inelastic 2-DOF single-story building model. The modeling is discussed, for

this appears to be the simplest inelastic model for eccentricity studies.

Frequency domain analysis is performed on the equations in the elastic case

in order to show general trends and to predict (what was later confirmed)

various aspects of inelastic response to seismic excitation. The important
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parameters of the problem are pointed out and a commonly used non-dimension­

alization is performed in order to facilitate the parametric study.

In Chapter 4 the program used is briefly presented, and several fea­

tures of the program closely related to the parametric study are discussed.

The different parameters and their range are investigated. Then the results

of the parametric studies are presented in 108 plots for the four different

earthquake motions. The results represent a total of 3888 actual cases.

In Chapter 5 there is a detailed discussion of the results. The vari­

ous trends are explained and the influence of the different parameters, and

their significance, are evaluated. Since both real and artificial motions

are used, the importance of the specific earthquake motion in the ductility

requirements is pointed out and the variability to the response to a real

earthquake versus an artificial one is discussed. Finally, Chapter 5 con­

tains the conclusions of this study. The results are summarized and their

implications on design are discussed.
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CHAPTER II

REVIEW OF THE ELASTIC ANALYSIS OF A SIMPLE 2-DOF PARTIALLY
SYMMETRIC BUILDING MODEL

The inelastic seismic response of a torsionally unbalanced two-degree­

of-freedom system is much more complex than the elastic case. In the elas­

tic case analytical formulae can be used to evaluate the seismic response,

whereas this is impossible for the inelastic case. Dempsey and Irvine (2)

have derived analytical formulae for the peak response of the simplest form

of torsional unbalance, which is an idealized single-story shear building

subjected to horizontal ground shaking. The following is a brief review of

that work.

The model consists of a rigid floor diaphragm and resisting elements

that are limited to deform elastically in horizontal shear. Since the

ground shaking is purely translatory, any torsional response is attribut­

able solely to the torsional unbalance inherent in the asymmetric distribu­

tion of mass and stiffness.

The model is shown in Figure 2.1. The small circle (0) and star (*)

in this figure denote the center of mass and center of stiffness respec­

tively; e is the calculated eccentricity.

For massless resisting elements the undamped equations of motion with

respect to the center of mass are

where M= mass offloor diaphragm
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Figure 2.1 - Definition Diagrams for Model (2).
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J = polar moment of inertia of the diaphragm about the
o center of the mass

e =eccentricity

Vo(t) = displacement of center of mass relative to ground

e(t) = counterclockwise angle of rotation of the diaphragm

KV = translational stiffness in the direction of the
ground shaking

Ke = torsional stiffness for a stationary center of mass.o

The eigenvalue problem reduces to the equation

which has the two roots, A
V

' Ae, and where A
V

and Ae are the ratios of

the "coupled natural frequencies" to the balanced translational natural

frequency, respectively.

r = radius of gyration

o = e/r

The two eigenvalues are

1 + 2

~C
2 2

A2 =
]10 - ]1 )

2 + sgn (1 - ]10) 2 0 + iv

~C1 + 2 2 2

A2 =
]10 - ]1 )- sgn (1 - ]1 ) 2 0 + ie 2 0
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and the eigenmode matrix ~ is

cos ~

sgn (1 - ~o) sin ~

where

-sgn (l - ~o) sin ~

cos ~

cos ~ =

sin ~ =

The angle ~ is bounded by a ~ ~ ~ TI/4 and provides a measure of the

modal coupling. The modes are fully coupled at the center of mass when

~ = 45°. Then ~o = 1, and

~=~ ep=_l [1
121

If viscous damping is included in the model, then the normal coor­

dinate equations of motion can be written
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where ~v' ~e fractions of critical damping and a , a are modal partici­v e
pation factors, given by

a = cos 't/Jv

The solution of them' for zero initial conditions is

Vo :2 Dv cos2
't/J + De sin2

't/J

rS = sgn (l - llo)(Dv - De) sin 't/J cos 't/J

where ..
Dv(t) = -D(~v' wv' t, vg)

Ds(t)

The maximum seismic response is expressed in terms of the horizontal

shear $* and the torque T*, which act at the center of stiffness.

$* = K
V V*(max)

T* = KSe (max) .

The positive directions of shear and torque are shown in Figure 2.2.

If we use the idealized design spectrum of Figure 2.3, where

then it is found that
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Figure 2.2 - Diagram Showing Positive Directions of
Shear and Torque (2)

flAT

T • 2rr/1ol

Figure 2.3 - Diagram Illustrating Spectra Used (2)
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1 \ (z; ,w) 2
S*v = - [cos 1jJ + sgn (l - J1 o) cS sin 1jJ cos 1jJ]'A2 S (Z;,P )

v a v

1 Sa (Z;,w ) 2
S*e = - [sin 1jJ - sgn (l - J1 o) cS sin 1jJ cos 1jJ]'A2 S (Z;,P )e a v

2 S (s,w )
T*v = sgn {l _J1)lL a v sin 1jJ cos 1jJo 'A 2 S (z;,Pe)

v a

T*e = sgn (l
J12 Sa(s ,w)

sin 1jJ cos 1jJ- J1 ) -
o A~ Sa(s,Pe)

vJhere

and

Now the question arises as to how to combine the modal maxima. As a

preliminary investigation one could algebraically add them or subtract

them in order to get a feeling of the response.

If the frequencies are well separated, then we can use the SRSS to

estimate the maximum response. The SRSS combination functions are

The computed results are shown in Figure 2.4.

A major disadvantage of the SRSS is that the sign is lost. However,

as we will see in the following chapter, the sign of the maximum response

has some interesting and particular implications for the response.

If the natural frequencies are close, then a modified SRSS can be used
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effectively. This approach has been derived by Rosenblueth and Elorduy.

According to them, the maximum earthquake response is

2 N 2 N-l
Q = I Q. + I

i=l 1 i=l

2Q.Q.
1 J

21 + e ij

th th Iw. - w. I
where Q. and Q. are the i and j modal maxima and e .. = ~~~J~_

1 J . lJ ( )1; .w.+ 1;.w.
1 1 J J

In Dempsey and Irvine's work the best estimates were:

The computed results are shown in Figure 2.5 for all frequency spac-

ings.

In Figures 2.4 and 2.5 it may be observed that there are regions

where the maximum torque is positive, which at first glance seems improbable.

We will see later that this happens at low values of the "rotational" to

"translational" periods, and we will attempt to give a mathematical justi-

fication and a physical explanation for it.

As a conclusion to the above analysis of the single-story shear build­

ing, it should be emphasized that only for an elastic analysis can analyt­

ical formulae be derived. Also, the results are plotted for the maximum
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response using the simplifying concept of the flat-hyperbolic design spec­

trum. The results of Figure 2.5 provide an insight into the problem of the

torsional imbalance in the elastic case as well as some information for the

studies of the inelastic case. Finally, it should be noted that these

analytical results are dependent on just two parameters; such simplicity

cannot be expected when inelastic demands are to be met.
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CHAPTER III - FORMULATION OF THE MODEL

3.1 Equations of Motion

In order to study the inelastic seismic response of a torsionally un­

balanced building, a single-story building model has been devised (see

Fi gure 3.1. 1).

The model consists of two identical one-bay frames parallel to each

other and supporting a diaphragm, which is assumed to be rigid and of mass M.

The two frames are assumed to be massless and to exhibit elasto-p1astic be­

havior. The diaphragm's center of mass is offset from the center of stiff­

ness so that there is an eccentricity and the model is torsionally unbalanced.

Consequently, for an earthquake motion which coincides with the direction of

the two identical frames, both translation in the direction of the earthquake

motion and rotation of the diaphragm will occur. Translation and rotation

are thus the two degrees of freedom in this single-story building model. If

the center of mass coincides with the center of stiffness, then the rotational

mode of the building will not be excited and this is the symmetric case, which

is a useful reference case. A schematical representation of the model is in

Figure 3.1.2.

The mass is offset distance X from the left frame. Each frame is desig­

nated a stiffness K. Taking the sum of forces and the sum of moments with

respect to the left-hand frame, we obtain the two equations

I M = a

.. ..
M(V

o
+ u

g
) + KVl + KV2 = a

Mx6i
1

+ ~g) + (J 0 + Mx2)e + KV2L = a
(3.1.1)

where J is the moment of inertia, V is the relative displacement, and eo 0

is the rotation of the center of the mass. So
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Figure 3.1.1 - Plan View of the Model.

Figure 3.1.2 - Schematic View of the Model
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Substituting eqn. (2) in eqn. (1), we obtain

x M!
..

-MuM(l - [) V1 K K V1L g

X Jo J
+ =

M!X+-..Q.
..

M(l - [)X - T V2 a KL V2 0L L

or by multiplying the first by X and subtracting

(3.1.2)

X M!
.. ..

M(l - [) V1 K K \/1 -Mu
L 9

+ = (3.1.3)J J ..
0 0

V? -KX K(L-X) V2 0-T [-

The same result can be obtained by substituting in eqn. (2.1.1)

Vo = V1 - xe

V1 -V2e = --=-..---=-L

Let KV be the total translational stiffness. Then

KV = 2K
Le = X - 2 . Hence eqn. (3.1.3) becomes

1 e l+~
..

·2 - [ V1 1 1 V1
..u

2 L
KV 9

+ 2M = (3.1.4)

r2 2 .. L Lr V2 - e V2 0-T T - 2';' e "2'
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where r is the radius of gyration with respect to the center of mass. In

the above equation KV is generally a function of Vl and V2 and can be out

of the parentheses for the linear problem and some other general cases.

In the general nonlinear problem, the equation of motion can be written:

1 e 1+~ Vl 1 1 f(Vl )2-[ - u2 l
+1

9
= (3.1.5)

r2 r2 M.. L L
-T T V2 - "2 - e --e f{V 2) 02

where f{V l ), f{V 2) are the forces due to the nonlinear stiffnesses.

3.2 Frequency Domain Analysis

Afrequency domain analysis is performed herein for the case when

K = KV/2 = constant. This analysis can show clearly the trends of the re-

sponse of each one of the two frames and enables an exploration to be made

as a function of the independent parameters.

For an earthquake excitation in the direction of the frames, the

equations of motion are:

1 1 Vl 1 1 Vl"2 + £ "2 - £ -u
KV g

(3.2.1)
+ 2M =

1 1
-~ V2 - "2 + £ -+£ V2 02

where we have now nondimensionalized rand e by writing ~ = r2/L2 and

£ = ell. Eqn. (3.2.1) is equivalent to eqn. (3.1.4), except for an unimpor-

taht-change in sign of the eccentricity.

Now, in attempting to find the steady state solution, let us assume

that
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~ = U eint
g 9

V = U etnt1 . 1

V = U eint
2 2

Substituting in eqn. {3.2.1} we obtain

1 1 'lJ -U
1 g

= {3.2.2}

The equations of motion have the form of a system of two simultaneous

equations with two unknowns. Setting Vl = U1 eint etc. is equivalent to

performing a Fourier transform on eqn. {3.2.1} with zero initial conditions.

Eqn. {3.2.2} can be written

8
1 II 1 1 Ul -u-8

n2 + A
9

= {3.2.3}
-~ 8

11
8

1 U2 0

I 1 KV
where 8 =2" + 8 A =2M

II =- } + E:

2
E: ~ =;

L

Solving the system in eqn. {3.2.3}, we obtain:

2 I

-gn + 8 A

and a similar expression for U2. Simplifying, we obtain
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(3.2.4)

The denominator has two positive roots corresponding to the two reson-

ant frequencies. For earthquake excitation with a power spectral density

function ofG(n) we can determine the standard deviation of the response

of the two frames as

2

I G(n) dn
I

(3.2.5.)
and

2

G({j) dn

I 2 A 2 A
- ~n + 2" + EAI > I~n - 2" + EA I

In eqns. (3.2.4) observe that if E is replaced by -E,then

Observing eqns. (3.2.4) we realize that, in absolute value, Ul is lar­

ger than U2 when

or

or

2 A 2. 2 A 2
(-~n + 2" + EA) - (~n - 2" + EA) > 0

2EA(-2~Q2 + A} > 0 (3.2.6)
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The above relation holds when

A
~ < 2n2 or

(3.2.7)

Obviously in the symmetric case E: = 0 and, from eqn. (3.2.6), we obtain

However, if

(3.2.8)

which implies that if the diaphragm's radius of gyration is large with re­

spect to the torsional stiffness, then the frame farthest from the center of

mass exhibits larger displacements. Since KV(t}2 is the torsional stiffness.

with respect to center of stiffness K~ and Mr2 is the polar moment of inertia
,

with respect to the center of mass, teen, when the forcing frequency~s such

that

a larger response is

n >~ K~/J·o '

observed in the frame farthest from the center of mass.

The above result holds for single frequency excitation. In the case

of an earthquake motion, the model will exhibit the "larger-offset" behavior

depending on the Fourier Amplitude Spectrum of the specific earthquake. Since

&the ratio K*/Jo is known, we can examine how much power lies below that

characteristic frequency. If there is sufficient power below this charac­

teristic frequency, then this behavior can and does occur. These considera­

tions are taken up again later.
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3.3 , Non-dimensionalization of the Equations of Motion

It is of particular advantage to non-dimensionalize the equations of

motion of the single-story building model. By doing this the parameters of

the problem become apparent and the parameter study will be based on these

parameters.

In the case of an earthquake excitation of a single-degree-of-freedom

system, the equation of motion can be written'

- mUg.

We can always define a new variable z = u/uy so that
_ mUg

mz + cz + Kz = uy

or

or

. 2 2 mUg
z + 2Swz + W Z = -w Ku

y

• 2 2.' mu
z + 2Swz + w z= -w (r)

y
, (3.3.1)

where Fy is the yielding force; uy is the yielding displacement.

Hence we see that in the earthquake excitation of a one-degree-of­

freedom system the important parameters are the natural frequency w, the
..

percentage of the critical damping 8, and the ratio mUg/Fy' which is called

parameter a.. ..
The value of u to use in a particular parameter study is not obvious.

9

One possibility is to use the maximum ground acceleration ug. Another is

to use the spectral acceleration for the particular natural frequency w.

Sometimes the latter tends to more rational results since the value of the

spectral acceleration, even if it is taken out of an elastic response spec­

trum, includes extra information about the earthquake, which the maximum

ground acceleration alone cannot.
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In the inelastic case the equation can be written

; + 2Sw~ + w2f{Z) = _w2(m:9)
y

where now for the elastoplastic case:

(3.3.2)

f{z) = z

f{z) = 1

for z < 1

for z > 1 .

Usually the above equation is solved using numerical methods (4).

For our model the equations of motion are (3, 2, 1).

1. +~l e2 . l 2 - r Vl 1 1 Vl -u
9

=
1 e l+~ V2

0
- 2 - r 2 l

I KV Mu
1 1 f{zl) -M (r)

y
=

1 e l+~ f{z ) a--+-2 l 2 l 2

(3.3.3)
where f{zl)' f{z2) are nonlinear functions of displacements ZI,z2

Hence we see that the parameters for our model are:

(l)

(2)

(3)

(4)

(5)

the eccentricity ell

the transla~iQnal IIfreqUenCyll~KV/M

the ratio M~ If ~r a (alpha)
9 y .

the radius of gyration r

the distance between the frames l.
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Observing that the torsional stiffness for the symmetric case is

and

then

Ke = KV (~}2

Jo = Mr2

K
e/ Jo _ K

V
(L/2)2~ =

KV/M . - KV

M

which indicates that L/2r is a parameter depending on the "frequency" ratio.

Since our purpose is to compare the response of the torsionally unbalanced

building model to the torsionally balanced one, we consider as a parameter

the translational "frequency" of the building model, and we vary the ratio

of the rotational to translational "frequency.1I

Thus the parameters in the study of the inelastic response of the build­

ing model include:

(i) the eccentricity ratio

(i i) the transl ational "frequency,"

(iii) the "frequency"rat i 0

Instead of the peak ground acceleration Ugmax in term (iv), the spec­

tral acceleration for the specific translational frequency has been used.

Damping in eqns. (3.3.3) will be introduced by Kuzak's method. This

method guarantees specified modal damping in each mode. A value of 5%

critical modal damping has been used, since this is a typical value for

buildings.
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CHAPTER 4 - STUDIES ON THE BUILDING MODEL

4.1 Program Used for Analysis

Computer program STAVROS was amended in order to be able to perform

parametric studies. The program is written in Fortran IV and uses 52DK

of primary memory on an IBM 370/155 computer. No secondary storage is re­

quired. The program is designed for buildings having a maximum of 30 stor­

ies, 30 different structural elements (in plan) and 3000 points of ground

acceleration in each direction.

Each floor can have a maximum of three degrees of freedom: x-transla­

tion, y-translation and rotation. In each floor the total stiffness of the

various structural elements is calculated and becomes the equivalent stiff­

ness of the floor. This formulation is not accurate for tall buildings which

exhibit large bending deformations, but for up to 30 stories the Il shear

beam ll is considered sufficiently accurate. After the stiffnesses are calcu-

lated a standard IBM eigenvalue routine extracts the eigenvalues and eigen­

modes of the elastic system. Having already computed the dynamic properties

of the building in the elastic range, we proceed with the time-history analy-

sis.

If we are to include viscous damping, which is described by a damping

matrix, C, then these equations take the form

Mu + Cu + Ku - - = R '

where ug' vg are ground accelerations in x and y directions respectively.

These are the differential equations of motion in matrix form, for a

multi-D.D.F. system, excited by a ground acceleration in the x and y direc-
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tions. However, in the inelastic case, K is not constant, and it is more

appropriate to write:

Mu + C~ + f(u} = R , (4.1.1)

where f(u} is a vector of forces and a function of the displacement vector u.

The damping is introduced by Kuzak's method, which produces a C matrix

that gives any desired percentage of critical damping in any mode. This

matrix is given as the product

T
C = M<I>B<I> M

where M=mass matrix

(3. =
1

w· =1

Equation (4.1.1) is solved numerically using a step-by-step integra-

tion procedure. The procedure is called the "constant velocity method"

and assumes that velocities are constant within the time step. Under this

assumption the recurrence formulas for velocities and accelerations are:

.. 1 .
un = -:2 (un+l - 2un + un_l )

Lit

Replacing these two expressions in eqn. (4.1.1) we obtain
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The above equation can be used for the calculation of the displace­

ment vector at time step n+l in terms of the displacement vectors at steps

nand n-1 and the force vector F at n.

Step-by-step integration methods are very sensitive to the selected

time interval ~t. Instability of the system solution may occur for ~t

larger than a certain value. However, a ~t = 0.02 is adequate for the

stabil ity of the system (3 ), and this number has been used in the para­

metric study. In equation (4.1.2) the first parenthesis on the right-hand

The R
n

depends on the acceleration time history of the particular earthquake and

Fn on the inelastic model used. In the parametric study of the building

model the bilinear model has been used. The first slope of the bilinear

model OA accounts for the primary stiffness and the AB accounts for the

secondary stiffness, which is the stiffness in the inelastic range and is

3% of the primary stiffness (Figure A.2. l).

For the bilinear stiffness the subroutine "BIUN" was used. Having

the displacements at nand n-l known, as well as the force vector at n, one

can calculate the displacements u at n+1. Then using subroutine BrLIN we

specify F at n+l. An analysis of subroutine BILIN is given in Appendix II.

After the step-by step integration is completed, the maximum displace­

ment is stored and the maximum ductility of each structural element calculated.

The STAVROS program was amended in order to adjust to the parametric

study requirements. The new version of the program ;s able to handle 216

cases at the same time. IBM software routines have been modified and dupli­

cate the 370 system environment. The program plots in a desired way the

results of the parametric study.
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4.2 Parameters in the Nonlinear Analysis of the Inelastic Single-story
Building Model;

As mentioned in Section 3.1 ,the single-story building model consists

of two identical one-bay frames parallel to each other and supporting a

diaphragm of mass M. The frames are spaced at a distance L from each other,

are considered massless, and exhibit elastoplastic behavior. The diaphragm

has a radius gyration r. As was found before, the ratio Lover r is a

measure of the rotational to translational "frequencyll ratio, equal to the

parameter jJ in Dempsey and Irvine's paper, namely:

since K6 is equal to KVL2/2 for the symmetric elastic case.

By changing the position of the center of mass of the diaphragm with

respect to the center of stiffness, we alter the eccentricity of the single­

story building model ..

By increasing the peak acceleration, we change the value of the ratio

MS·a/Fy. Even if the mass of the diaphragm Mand the yield strength F of the

structural elements remains constant, Sa is affected not only by peak accel­

eration, but also by the shape of the time history of the input earthquake

accelerations. Of course, additionally, the translational frequency affects

results. As was mentioned earlier, by inspecting equation (3.3.3), we

realize that both the translational and rotational periods are essential in

the analysis. However, since our purpose is to compare non-symmetric with

symmetric response, the translational period is fixed and the ratio of tor-

sional to translational II period ll is varied.
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It is possible to tabulate the constructions among the parameters,

starting with the higher ranking ones and moving downwards to the lower

ranking ones.

Parameter 1.

Parameter 2.

Parameter 3.

Parameter 4

Parameter 5

Earthquake
{-

Translational period
{-

Ratio L/2r or parameter M'
on the plots

{-

Eccentricity e
{-

Rati 0 MS/FY ~ Ducti 1ity

or parameter ex.

The hierarchy of the above scheme can be illustrated as follows. A

parameter is called higher ranking if its parameter number is less than

some other parameter. A higher ranking parameter will not vary until all

the possible combinations of lower ranking parameters are performed. For

example, the value of eccentricity will be constant until all the differ­

ent values of the ratio MSa/Fy have been used in the calculations. Simi­

larly, for one translational period all the different frequency ratios,

eccentricities and ratios MSa/Fy should have been used already.

Values of Parameters

As far as was possible, realistic values of the different parameters

have been chosen for the parametric study.

For Parameter 1, four different earthquake motions have been used:

EL CENTRO

PACOIMA DAM

KERN COUNTY TAFT

ARTIFICIAL MOTION

N-S

S16E

N21E

1940

1971

1952
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The last is a motion generated artificially to meet the requirements

of a prescribed response spectrum. An artificial motion portrays less

variation than a real earthquake motion.

Considering Parameter 2, we allowed four different values of transla­

tional periods:

T, = 0.5 sec.

T2 = 1. 0 sec.

T3 = 1. 5 sec.

T4 =2.0 sec.

The translational period affects also the value of Parameter 5 (ratio

MSa/Fy) since the value of the response spectrum is taken for the above

specified periods.

As far as Parameter 3 is concerned, which is the ratio K8/J _:-KV/M, or
o

L/2r, we considered six values, with a minimum of 0.5 and a maximum of 1.75,

namely:
0.5 0.75 1.0 1.25 1.5 1.75.

Values outside the above range seem unrealistic for commonly encoun-

tered buildings. A common value of this ratio for framed buildings is close

to unity.

Parameter 4 is the eccentricity ratio which is the ratio of the distance

between the center of mass and center of stiffness to the distance L between

the frames of the building model. Values of eccentricity ratio greater

than 0.25 are unusual for buildings. By the same token, an eccentricity

ratio of zero would mean that the building model is symmetric: an unobtain-

able situation in practice. Six different Values of eccentricity have been

IlS!ed, and these are
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el = 0.00 e3 =0.10 e5 = 0.20

e2 = 0.05 e4 = 0.15 e6 = 0.25

Finally, for the last Parameter 6, which is the ratio of mass times

the spectral acceleration to the yield strength of the structural elements,

six values of the last parameter are used:

MSa- = 2, 4, 6, 8, 10, 12Fy

The way the parametric study was undertaken is as follows. First the

two frames were proportioned and the diaphragm mass was adjusted in order

to yield a period of 0.5 seconds. Then, for subsequent values of transla­

tional periods, the mass was increased in order to account for the new

periods. Simultaneously the peak acceleration was adjusted--or, equivalently,

the earthquake was scaled--in order to retain the values 2, 4, 6, 8, 10,

and 12 in the parametric study.

The ratio L/2r was adjusted by varying the radius of gyration r or

equivalently the moment of inertia Jo'

The eccentricity e was changed by keeping the coordinates of the center

of stiffness constant and varying the coorqinates of the center of mass.

The ratio MSa/Fy was adjusted by varying the mass M, yield strength Fy
and spectral acceleration for reference earthquake magnitude and scaling the

peak acceleration. Scaling the peak acceleration may not be valid or

appropri ate ( 9), but thi s scheme has been used for conveni ence and is

accurate enough for the purpose of this parameter study.
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4.3 Parametric Studies on the Nonlinear Response of theSing1e';'Story
Building Model.

In the following pages the results of the parametric studies are dis­

played. Each graph represents 36 cases, since it is the combination of

six values of eccentricity with the six values of the parameter a. for a

certa in val ue of L/2r. The absci ssarepresents val ues of the parameter(~

and the ordinate values of the ductility 11 of the frame closest to the

center of mass. Whenever the ductility of the frame farthest from thecen­

ter of mass is· recorded in the ordinate,this will be emphasized.

The· motions are

El Centro 1940 N-S

Pacoima Dam 1971 S16E

Kern County - Taft 1952 N21E

Artificial Motion

and the results will be displayed in this order. For each motion the re­

sults will start being displayed fora period of 0.5 sec. and for the closest

frame to the center of mass. Then for a period of 0.5 sec. (the same) the

ductility of the other frame will be displayed. Subsequently the ductility

demands of the closest frame will be displayed for periods of 1.0 sec., 1.5

sec., and 2.0 sec. This scheme is repeated for the other three motions.

The above results are displayed, starting from the next page, and their

order can be schematized as follows:
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Period Frame Plots
El Centro Earthquake 0.5 Closest

Farthest
1.0 Closest 1-30
1.5 Closest
2.0 Closest

Pacoima Dam 0.5 Closest
1.0 Closest 31-54
1.5 Closest
2.0 Closest

Kern County 0.5 Closest
1.0 Closest 55-78
1.5 Closest
2.0 Closest

Artificial Motion 0.5 Closest
Farthest

1.0 Closest 79-108
1.5 Closest
2.0 Closest
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EL CENTRO N-S 1940

PLOTS 1 - 30
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CHAPTER V - DISCUSSION AND CONCLUSIONS

In plots 1 through 108 peak ductility demands (P.D.D.) are plotted

against the parameter a (ratio of mass times spectral acceleration divided

by yield strength), for eccentricities ranging from zero (symmetric case)

to 0.25. Each plot accounts for a specific value of the parameter L/2r.

Every six plots account for one specific translational period (ranging from

0.5 to 2 sees.). Four representative periods of 0.5,1.,1.5 and 2.0 sees.

are used in each earthquake motion, El-Centro, Pacoima Dam, Kern-County Taft,

and an artificial motion.

Plot 59 is typical. The value of P.D.D. increases with parameter a

in an essentially linear fashion. The line for zero eccentricity (marked

with squares) is the bottom line. The first line above is the line corre­

sponding to an 0.05 eccentricity, the next line above that is almost solely

the line with 0.1 eccentricity, except at a = 12. An eccentricity of 0.25

yields a lower ductility than the lines with eccentricities of 0.10,0.15,

or 0.20. The line of the zero eccentricity case doesn't depend on L/2r, so

it is unchanged for specified translational periods. See, for example, the

curves marked with squares from plots 55 to 60.

It should be noted that if the structure behaved elastically, then the

lines in the plot should be perfectly straight, due to the fact that in the

elastic analysis the response is linear to the magnitude of the input accel­

eration.

Going through the plots, we observe that the curves for small values

of the parameter L/2r lie almost one on the other (see plot 31), but as L/2r

increases, they tend to diverge (see plots 32, 33, 34, 35, and 36). The

same trend is noticeable also in plots 55 through 60, 61 through 66, etc.
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This observation leads us to believe that eccentricity is largely unimport­

ant for small values of L/2r, although it becomes more important for larger

values of L/2r. The trend can be shown in an analytical manner.

Expressing formulae (3.2.4) as a function of our parametric study, we

obtain

or
2 2

Q + 2TI (£ + 1)
4(L/2r)2 7 2 ..

ul - - -4..----.2~:....=.....!...----:...----------;j4 . U
Q _ 2TI n 2(1 + 2£2 + 1 1 ) + 4TI g

4(L/2r)2 T2 2 2 (L/2r)2 T4

Q2 2TI2 1
• + - (£ - -)

4(L/2r)2 T2 2 . U··
u2 = - ----;;4---..:....\.~2~.L.--~------~2 g

Q _ 2TI Q2(1 + 2£2 + 1 1 ) + 4TI
4(L/2r)2 T2 2 2 (L/2r)2 T4

From this we observe that the first term of the numerqtQr

in both equations is the dominant one for small values of L/2r. This implies
2

that for small values of L/2r the term . Q 2 will dominate the term
4(L/2r)
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2

2~ (8 + 1) until it becomes important (for small translational periods).
T2 - 2

Of course, the equations are valid only for the elastic case. Neverthe-

less, they can always give us useful information for the behavior even in

the inelastic case. The basic difference is that transfer functions assume

constant stiffness matrix and steady-state response, whereas the earthquake

motion is short and strong, so that the structural elements enter the inelas­

tic range. The transfer function relates input amplitudes with output ampli­

tudes at a specific driving frequency, so we can at least obtain some infor­

mation about the amplification that takes place. However, it should not be

overlooked that the P.D.D. don't give any information about the details of

the response, cumulative ductilities, etc.

Plots 1-6, 13-84, 91 i..108 show the peak ductility demand of the frame

closest to the center of mass, which as mentioned in Chapter 3 is expected

to exhibit the maximum ductil ity. Hm'lever, as has been pointed out in the

elastic study of Dempsey and Irvine, this was not always the case. In cer-

tain instances the situation reverses and the frame farthest from the center

of mass can exhibit larger ductilities than the frame closest to the center

of mass. The analytical studies performed in Chapter 3 determined the con­

ditions under which such a phenomenon can occur, and it was shown that this

should be expected for small values of L/2r, and under a specific Fourier

amplitude spectrum of the input motion, which is characterized byaccumula­

tion of power at lower frequencies. So if something like this does happen,

it would be evident in the plots with the lowest values of L/2r, namely,

plots 1, 31, 55, 79.

Plot 1 illustrates clearly the point. In this plot the curve for zero

eccentricity lies on the top of all the curves with eccentricity showing



-149:"

that. as the eccentricity increases. the P.D.D. for the frame closest to

the center of mass become smaller and smaller which. in simple words, means

that as the center of mass moves towards the one frame. the other frame is

excited more strongly. In Plot 31 this phenomenon doesn't appear; however.

the curves are bunched close together. In Plot 58 the phenomenon appears

again. but Plot 79 does not show the above trend. Instead it exhibits a

regular increase of P.D.D. with eccentricity. Artificial motions do not

exhibit the above property because the Fourier amplitude spectra are arti­

ficially even.

Coming back to Plot 1. we observe a nearly perfect negative correlation

with eccentricity. This property is observed in Plot 2. In Plot 3 it is

less ap·parent and. from Plot 4 to Plot 6. the curves have their natural order.

In Plots 7 to 12 the P.D.D. of the offset frame are pictured. Indeed, we

observe in Plot 7 that the curves for the eccentric cases lie on (and some­

times above) the curve for the symmetric case, showing that the frame offset

from the center of mass exhibits larger P.D.D. Slowly this property van­

ishes, mixing with the other curves in Plot 8 and finally ordering in physi­

cal order in Plots 9 through 12. However. as can be seen from these results.

half the sum of the P.D.D. of the closest frame plus the P.D.O. of the

farthest frame is almost equal to the P.O.O. of the sYmmetric cases, or

III + ll2
2 = 1.1 symm. '

a result which has an intuitive appeal.

We also observe that the P.D.D. is very much dependent on the earth­

quake motion and. more specifically, on the value of the spectral accelera­

tion associated with a specific translational natural frequency. However,
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during the motion the translational period increases, and this tends to mask

cause and effect. In addition to this, the P.D.D. depend very much on the

shape of the input motion, and this could not be quantified in the present

parametric study.

The conclusions to be drawn from this study appear to be as follows.

In almost all cases there appears to be a broadly linear trend between

peak ductility demands and the parameter a(= MS IF). For the period rangea y
considered here, which was chosen to reflect a wide range of typical multi-

story structures, this trend is well known, at least for symmetric struc-

tures.

There is considerable scatter in results for large values of the ratio

of frame spacing to the radius of gyration of the floor diaphragm. In analog-

ous multistory structures this scatter would perhaps be associated with build­

ings with a peripheral frame.

By and large, peak ductility demands are more severe for frames closest

to the center of mass than for frames further away. However, this is not

always the case when the ratio of frame spacing to radius of gyration of the

diaphragm is small, as might arise with buildings arranged around a central

core. This behavior has been predicted in other elastic studies (2) and was

found to be present in the present elastic response studies. It would appear

that a simple frequency domain analysis, such as that presented here, suf­

fices to explain this phenomenon. Even though this changeover occurs, the

results nevertheless support a conclusion with some intuitive appeal--namely,

that the mean ductility demand when eccentricity is present is little differ­

ent from the ductility demand of the symmetric structure.
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However, the most interesting conclusion that may be drawn from the

present work is that there does not appear to be a strong correlation be­

tween peak ductility and eccentricity, Provided that the eccentricity ratio

is limited to about 0.25, which more than covers most cases of practical

interest, the differences in ductility demand between eccentric and symme­

tric buildings remain small, at least for small to moderate values of a

(=MSa/Fy)' In this range the ratio of frame spacing to radius of gyration

of the floor diaphragm does not significantly affect the results either.

Because this conclusion is seen to be of interest to those charged

with the responsibility of drafting codes of practice for seismic loading,

and because such activity in relation to torsional effects in buildings is

widespread at present, it was decided to do a regression analysis of the

data generated for the ductility demand of the most heavily loaded frame.

The range of values of a was restricted to an upper limit of six, since.

ductility demands much greater than 10, say, are difficult to generate in

normal structure elements. For all such data points 50% were found to lie

below
~50 ~ - 0.2 + 1.2 a

while 90% of the data lay below

~90 ~2.1 + 1.2 a.

In the case of the data for zero eccentricity

and

~50 ~ 0.1 + 0.9 a

~90 ~ 1.7 + 0.9 a.
£ ~ 0.25, a < 6

On comparing respective pairs of lines one sees that the ductility demand

in eccentric buildings is rarely more than about 30% higher than in sym­

metric structures experiencing realistic ductility demands.
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We may close by reiterating that our simple model derives its eccen­

tricity from variations in the location of the center of mass of the dia­

phragm and not, as is more common, by variations in stiffness of the frames.

Strictly speaking, therefore, our results apply to that case and to no other.

Nevertheless, our feeling is that the conclusions may be applied more gen­

erally, even though we have not proved it. The extent to which the conclu­

sions drawn may be applied to multistory structures is obviously a matter

for individual judgement. It is, however, rather unlikely that sufficiently

comprehensive parameter studies can be done to resolve that question and, as

in the past, reliance will have to be placed on the extrapolation of results

from simplified building models.

As they stand at present, torsional provisions in some loading codes,

which provide a dynamic increment to the existing eccentricity, in addition

to an inclusion for accidental eccentricity, may be somewhat conservative

(5, 6). It seems that, if in the equivalent static approach the seismic

forces are required to act through the respective centers of mass and if

some allowance is made for accidental eccentricity,. a reasonable provision

will have been made for the seismic elastic and inelastic effects of torsion

in most buildings. It is interesting to note that the recent provisions of

ATe are in accordance with this view.
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APPENDIX I

EQUATIONS OF COUPLED MOTION WITH RESPECT TO THE CENTER OF MASS AND

CENTER OF STIFFNESS

1. Equations of coupled motion with respect to the center of mass.

In Figure A.1.1 our model is sketched in the undeformed and deformed

configuration.

The motion of the center of mass and center of stiffness are portrayed

in Figure A.1.2. If V is the displacement of the center of mass, then

V - ES is the displacement of the center of stiffness, where E is the dis-

tance between center of mass and center of stiffness and S is the angle of

the deformed to the undeformed configuration.

Apply force F and Moment T at the center of mass and sketch spring

resistances and inertia of the center of mass in Figure A.1.2. Then take

the two equations of equilibrium equating the sum of forces equal to F and

the sum of moments equal to T:

MV + KV(V - ES) = F

J e+ KSs - KV(V - ES)E = T
o

or M

o

o V

e
+

V

S
=

F

T

In our case

Hence

F

T
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Figure A.'.l - Model in Undeformed and
Deformed Configuration
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Figure A.'.2 - Forces and Resistances on Center of Mass
and Centers of Stiffness
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KV
K
V

E
..

V V fvlu
9

+ - -
e v Ke + K

V
c
2 I e 0 (A.1.3)-K c

Since the eccentricity, c, and angle, e, are algebraic quantities according

to the sign convention, we obtain the corresponding equation.

2. Equations of motion with respect to the center of stiffness.

Now we apply the force F and moment T at the center of stiffness. The

displacement of the center of stiffness is designated as V and hence the

displacement of the center of mass is V + c8. We sketch on Figuure A.l.3

the spring and inertia resistances and equate forces with F and moments

with T.

M(V + ed + K" V = F

J e+ K8e + M(V + 8s)s= T
o

or
M Mc

2J + ~1co

V

e
+

a

a V

e
= ~

F

T

if

Then

F - Mu
= 9

T a

M f4c V KV a V Mu
9

Mc 2 .. +
Ke - -

Mc J + 8 a e a
0
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__~ Joe I
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Fiqure A. 1. 3 - Model in Undeformed and Deformed Configuration.
Forces and Resistances on Center of Mass and Center of Stiffness.
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APPENDIX II - SUBROUTINE BILIN

In subroutine BILIN the force vector at n is calculated from a given

force vector at n-l, and from given displacements both at nand n-l. The

1isting of subroutine BILIN is on Figure A.. 2.1.

The symbols used in the subroutine are:

FY = yield force

RK1 = primary stiffness

RK2 = secondary stiffness

FO = force at n-l

YO = displacement at n-1

FN = force at n (to be calculated)

YN = displacement at n

IFLAG = a flag used to calculate the INDEX

INDEX = an index of whether we ascend, descend, or are on
the second branch.

Looking at Figure A.2.2, let BC be equal to a known value X. Also let

the angle between OC and OA, OB and OA be S and a respectively.

Then OA = (AB + X) cot S

but AB = OA tan a

Hence OA = (OA tan a + X) cot S

or XOA = -;------:..:--:--
tan S - tan a

But in our case tan 8 equals RKl and tan a, RK2. So

X
OA = RKl - RK2 (A.2.l)



SUBROUTINE BILIN(FY,RK1 ,RK2,FO,YO,FN,YN,JFLAG,JNDEX)
INTEGER*2 JFLAG,JNDEX,MCYCL

C---JNDEX=l WE ASCEND JNDEX=2 WE DESCEND,JNDEX=3 WE ARE ON THE SECOND SLOPE
GO TO (10,20,30),JNDEX

10 TEMP= (RK1 *YO-FO) / (RK1-RK2)
FN=FO+(YN-YO)*RK1
F~~AX=FY+RK2*TEMP

C---
IF(FN-FMAX) 40,50,50

40 JNDEX=l+JFLAG
GO TO 100

50 YMAX=FY/RK1+TEMP
FN=FMAX+(YN-YMAX)*RK2
JNDEX=3-JFLAG
GO TO 100

20 TEMP=(RK1*Y~·FO)/(RK1-RK2)
FN=FO+(YN-YO )*RK1
FMAX=-F~+RK2*TEMP

IF(FN-F~~X)60,60,70

70 JNDEX=2-JFLAG
GO TO 100

60 YMAX=-FY/RK1+TEMP
FN+FMAX+(YN-YMAX)*RK2
JNDEX=3-2*JFLAG
GO TO 100

30 FN=FO+(YN-YO)*RK2
IF(FN)80,80,90

80 JNDEX=3-2*JFLAG
GO TO 100

90 JNDEX=3-JFLAG
100 RETURN

END

Figure A.2.1 - Subroutine BILIN

I.......
U1
t.O
I
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A

Figure A.2.2 - Calculation of X

Let us analyze the ascending case. (The descent is exactly analogous).

In the ascent three cases are possible:

(1) Fa is in the elastic range and FN cannot attain the value of FY.
In this case FN will be located on the primary slope between Fa
and FY (Figure A.2.3a).

(2) Fa is in the elastic range and FN exceeds the value of FY. In
this case FN will be located on the secondary slope, and will be
on the right of FY (Figure A.2.3b).

(3) Fa is in the inelastic range (on the secondary slope) and is of
course larger than FY. FN will be also on the secondary slope
to the right of Fa (Figure A.2.3c).

In the first case the new force will be:

PN = FO + (YN - YO) . RKl

In the second case the new force will be

FN - FMAX + (YN - Y~~X) . RK2

where FMAX and YMAX are the yield force and displacement in the new

position where the origin is shifted due to permanent displacements.
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FY

FN

second~ry stiffness

(a)

----

secondary stiffness

(b)
FN------
FO --- - - - --==-:::::-=--:--~
FY -.-._ secondary stiffness

FN - ---- - --:-:=..::=----­

FY

I

primary
stiffness

(c)

Figure A.2.3 - Position of the New Force Vector on the
Bilinear Model
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In order to illustrate the above, the ordinate of point A is the

yield force FY. Now imagine that the motion starts from rest (point 0).

For a displacement u1 we come on point C on the curve. Then if the new

displacement is u2 we descend to E. Now ascending, the yield point is

at B. The force at this point is designated FMAX and the displacement

YMAX.

This is implemented in the program in the following way. First a

value TEMP is calculated:

TEMP = (RKl . YO - FO)/(RKl - RK2)

Comparing with equation (A.2.l, we realize that TEMP is the horizon-,

tal distance between Band Y in Figure A.2.4. Then

FMAX = FY + TEMP . RK2

which is the ordinate of point B. The coordinates of point B are very

important, because they define the yielding point. Having obtained the

FMAX:
_ FY

YMAX - RKl + TEMP ,

and
FN = FMAX + (YN - YMAX) . RK2

In the third case we move entirely on the second slope. So:

FN = FO + (YN - YO) . RK2
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Figure A.2.4 - The Bilinear Model


