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ABSTRACT

The design of seismic-resistant reinforced concrete, moment-resisting
frame structures is discussed. After a review of seismic design procedures
proposed by the Uniform Building Code (UBC) and the Applied Technology Coun-
cil (ATC), an inelastic optimum design procedure is described. This proce-
dure is based on the philosophy of comprehensive design and employs a computer
aided iterative technique in a series of five steps. The five steps are
divided into preliminary and final phases. In both phases, a weak-girder,
strong—column design criterion is imposed. The discussion of the proposed
inelastic design procedure concentrates on the preliminary design phase which
comprises three steps-—-preliminary analysis, preliminary design, and analysis
of the preliminary design.

The objective of the preliminary analysis is to establish design criteria
and determine design forces. Seismic design story shears are found by a spec-
tral modal analysis technique which includes an approximation to the P-A effect.

The objective of the preliminary design step is to find member sizes and
reinforcement. A nonlinear optimization technique (the cutting-plane method)
is employed at each story to find the beam design moment capacities which
minimize a function proportional to the volume of flexural reinforcement. De-
sign constraints are imposed tc ensure that a safe, serviceable, and practical
design results. Actual member design is found employing computer design aids.

In the final step, the preliminary design is analyzed to evaluate its
acceptability. Acceptability is determined by comparing the results of a
series of linear elastic and nonlinear analyses with established design cri-
teria and assumptions made in formulating the design problem. TIf the design

is acceptable, the final design phase is entered, and final member detailing
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is carried out. If not, the steps of the preliminary design phase are
repeated until the design is deemed acceptable.

The proposed inelastic design procedure has been used to obtain a
series of designs of a ten-story, three-bay frame. The designs differ with
respect to the design constraints imposed in the formulation of the optimi-
zation problem and with respect to beam steel content. Different sets of
practical design constraints were formulated to study the effect on beam
moment redistribution of (a) the ratio of the positive and negative moment
design capacity at a given design section and (b) eliminating bar curtail-
ment at interior beam-column joints. 1In all, four complete designs have
been obtained.

Two additional designs were found following UBC seismic design force
provisions and considering code~allowed negative moment redistribution.

The proposed inelastic seismic design procedure is shown to be very
versatile, and it allows realistic consideration of complex design
excitations such as an earthquake ground motion. Automated features of the
procedure free the designer from much of the computational effort associated
with reinforced concrete frame design. Consequently, several alternative
designs can be formulated, analyzed, and evaluated in a relatively short time.

The design results obtained indicate that, in seismic-resistant design,
the volume of flexural reinforcement is virtually insensitive to different
distributions of beam design capacities. 1In addition, basing the optimum
design problem on an objective function proportional to the volume of
flexural reinforcement tends to maximize negative design'capacities and
ninimize positive capacities. In seismic-resistant construction, it is
desirable to have a negative moment redistribution that results in a decrease
of the negative moment in order to relieve steel congestioh at beam-column

joints.
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A comparison of designs based on spectral seismic design forces and
those based on the UBC forces indicates that required material volume does
increase in the case of spectral design forces. However, the resulting
increase in stiffness and strength improves .the overall performance of the

structure.
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1. INTRODUCTION

1.1 General

Seismic-resistant design confronts the structural designer with a number
qf challenging problems. For any given site, large uncertainties exist in
predicting the dynamic characteristics and frequency of occurrence of future
earthquake motions. Although the likelihood is small that a given structure
located in a region of high seismicity--for example, the West Coast of the
United States--will experience a severe ground motion, the structure will more
than likely experience frequent minor earthquake ground shakings during its
service life. These characteristics of seismic events complicate the de-
signer's task of defining design earthquake excitations at each possible de-
sign limit state and of selecting the limit state which controls the prelimin-
ary design.

At present, the general philosophy of seismic-resistant design for
other than essential facilities is based on the philosophy of comprehensive
design [1]. Different design limit states are considered for earthquake
ground motions of different severity and frequency of occurrence. However,
difficulties are encountered in selecting design excitations. An earthquake
ground‘motion may be considered the single realization of a set of random
parameters (magnitude, focal depth, attenuation characteristics, frequency
content, duration, etc.) [2]. Real ground motion records are limited in
number and, because of their random nature, recurrence is unlikely. As a re-~
sult, basing design on previously recorded real ground motions may be unsatis-
factory. TFor example, Jennings et al [3] have noted that current available
accelerograms lack definitive data of severe ground shaking in the vicinity

of the causative fault,.



The problem of defining design excitations is further complicated by
the fact that the inertial forces caused by an earthquake ground motion de-
pend on the dynamic characteristics of the whole soil-structure system as
well as on the characteristics of the ground motion. Consequently, the
selection of a design earthquake depends on the mass, damping, stiffness, and
strength of the structure being designe&.

A review of how current seismic-resistant design procedures deal with

the above problems is presented in the following section.

1.2 Current Seismic Design Procedures

In current practice, design earthquakes are typically defined by accel-
eration response spectra from which seismic design base shears are computed.
Such design specfra typically depend on the seismic activity of the site, soil
conditions, fundamental period of vibration, and the type of lateral force re-
sisting system. For example, the 1976 Uniform Building Code (UBC) [4]

seismic~-force provisions define the design base shear as

V = ZIKCSW (1.1)

where

N
1]

Numerical coefficient dependent on the seismic zone (seismic
activity)

I = Occupancy Importance Factor

K = Numerical coefficient dependent on type of lateral force-
resisting system

C = Numerical coefficient specified as 1/(15/T) < 0.12

T = Structure's fundamental period of vibration

S = Numerical coefficient for site~structure resonance
and

W = Total weight of the structure.



Recently, the Applied Technology Council (ATC) [5] has suggested the

following expression for the design base shear:

1.2 A S Aa
Ve iR -
where
AV = Seismic coefficient representing the Effective Peak Velocity-
Related Acceleration
Aa.= Seismic coefficient representing the Effective Peak Acceleration
R = Seismic response modification coefficient which is related to
the framing system
S = Seismic coefficient of the site soil profile characteristics
T = The fundamental period of the building
B = Coefficient which depends on site soil profile characteristics
and

W = Total gravity load of the building.
The above ATC proposal is recommended only for regular buildings, i.e.,

"Buildings which have an approximately symmetrical geometry con-
figuration and which have the building mass and seismic resist-
ing system nearly coincident. , .

For irregular buildings, a modal analysis technique is proposed in conjunc-
tion with design response spectra defined by equation (1.2).

The UBC and ATC design earthquakes will be compared by considering the
design of the ten-story, three-bay frame illustrated in Fig. 1. The first
step in the design process is to define the building site. For this example,
the building is to be constructed in Oakland, California. Based on seismic
maps, Z in equation (1.1) would be 1.0 (zone 4), and both Av and Aa in equa-

tion (1.2) would be 0.4 (area 1).



Next, it is supposed that an office building consisting of a reinforced
concrete ductile moment-resisting frame structural system is to be comstructed.
As a result, K in equation (1.1) is 0.67, R in equation (1.2) is 7, and I in
equation (1.1) is 1.

Using empirical relationships to define the structure's fundamental period,
it is found that: T in equation (1,1) is T = 0.1N = 1 sec (UBC 12-3B) where
N is the number of stories; and T in equation (1.2) is T = 0.025hn3/4 =

.91 sec (ATC 4~4) where hn is the total height of the structure.

Finally, it is assumed the soil conditions are such that the site

effects, as defined by the UBC or ATC, are negligible. Consequently, S in
both equations (1.1) and (1.2) is set to omne.

Substituting the above values into equatiom (1.1), we find that

- 1 = .
Vype = (1.0)(1.0)(0.67) % (1.0) W = .046 W;

and, substituting into (1.2), we find that

Ve = (0"’)5_}50) w< 2.5 %t w= 073w,

7(¢.901)

However, VUBC is at service level conditions and must be factored to make it

equivalent to VATC'
Y = =
VUBC 1.4 VUBC 063 W

: u . . .
A comparison of VATC and VUBC indicates that the UBC design base shear is

86 percent of that specified by the ATC.
Once the design base shear has been determined, it must be distributed

through the height of the structure. UBC suggests

(V-TF)wh
P o= t’ x x (1.3)




h.,h_ = Height above .the base to level i or x

w,,w_ = That portion of W which is assigned to level i or x
n = Number of stories
F_ = Lateral force at level x

F_ = That portion of V considered at the top of the structure
in addition to Fn defined by equation (1.3)

0.07 TV < .25V for T > 0.7 secs

0 if T < 0.7 secs.

Part of the base shear is concentrated at the top of the structure in
order to include higher mode effects on the force distribution. It should
be noted that, for highly irregular buildings, UBC recommends that the force
distribution be determined considering the dynamic characteristics of the
building (Section 2312[c]3).

The force distribution recommended by the ATC is

F = V . ————————— (1.4)

where

=
1]

A coefficient related to period

1if T < 0.5

]

2 4if T > 0.5 or

1+ (T -0.5)/2 1if 0.5 < T < 2.5

2 4 T > 2.5

The coefficient, k, approximates higher mode effects on seismic force

distribution.



Both the ATC and the UBC assume that, for other than essential facili-
ties, the ultimate limit state controls design; and they also recognize that
inelastic response may be significant. The effect of inelastic behavior is
included in the design base shear definitions by the factors K and C in equa-
tion (1.1) and by the factor R in equation (1.2). The factors R and K are
defined on the basis of the inelastic deformation characteristics of the
various lateral force resisting systems.* In addition, although only elastic
analysis is required in both seismic design procedures, the resulting deflec-
tions are increased by what can be referred to as a deflection amplification

factor, C,, to account for inelastic behavior. For a ductile moment-resisting

a
frame system, the UBC defines a Cd value of 1.5 (1/K) at service-level loads

and requires that the lateral story deflection or drift not exceed 0.005 hx'

In contrast, the ATC recommends a value of 6 for Cd at ultimate-load condi-
tions and requires that the story drift be smaller than 0.015 hx'

-The fact that the UBC and the ATC drift limitations are based on differ-
ent design limit states complicates a comparison of the two design requirements.
Suppose, however, that a valid comparison is possible at the ultimate-load level
without deflection amplification. 1If a characteristic structure displacement,
§, is defined as

§ = (1.5)

v
K

s
where V is the base shear level at which deflection is computed and KS is a

characteristic structure stiffness (assumed the same for UBC and ATC), the

. . u . ‘
UBC displacement, 6UBC’ at ultimate load (at VUBC) is 0.86 SATC (at ATC)'

"It should be noted that, while the UBC (1976) permits redistribution of nega-
tive moments, ATC does not.



' %
The UBC and ATC drift limitations, RUBC and RATC , respectively, are

modified to reflect the limit state chosen for comparison by the expression

R, = o= (LF) (1.6)
d
where LF is the design load factor (1.4 for UBC, 1.0 for ATC). Based on equa-
tion (1.6), REBC = .005(1.4)/1.5 = 0.0047 and RﬁTC = .015(1.0)/6 = 0.0025.

Accounting for the different force levels (dUBC = 0.86 GATC)’ the ATC
drift requirement is more than twice as stringent as the UBC requirement. Con-
sequently, either the ATC drift limitation is conservative or the UBC require-
ment is unconservative. It is felt that, for a severe earthquake ground motion,
the latter is true.

The increase in deflections associated with the P-A effect has not been
included in the above discussion. Consideration of this effect in the ATC de-
sign procedure is equivalent to an increase in Cd. Consequently, RﬁTC would
decrease. However, since UBC does not stipulate how to account for the P- A
effect, REBC remains the same; and the difference between the UBC and ATC
drift limitations would increase.

The fact that structural design is based on a fictitious linear elastic
limit state is a major shortcoming of the seismic design procedures reviewed
above. Although special provisions to enhance local inelastic deformation
capacity are stipulated by ATC and UBC in sections covering member design,

neither procedure requires an estimation of local inelastic deformation demands.

*The term, R, has been used previously in equation (1.2) as a seismic-response
modification factor. However, in previous work (6], R has been used to indi-
cate story drift index which is defined as the ratio of interstory displace-
ment to interstory height. Subsequent uses of R will indicate drift index.



The authors believe that such estimates are required in design for severe
earthquake ground motion. Known deformation capacities can be compared to
the estimated deformation demands to determine whether or not they are com-
patible. 1In addition, estimates of required inelastic deformations can be
used as guidelines for member detailing.

The authors have recently proposed an inelastic seismic-resistant de-
sign procedure for multistory frame buildings expected to experience a severe
earthquake ground motion during their service lives [6]. The procedure was
developed specifically for ductile reinforced concrete frame structures. In
the procedure, seismic design forces are obtained by a modal analysis tech-
nique from smooth inelastic design response spectra. The structural design
is based on an optimum limit state design and expected inelastic defor-
mation demands are determined from time history analyses. In the design
procedure, special emphasis is placed onm obtaining a preliminary design which
is as close as possible to the desired final design. The design procedure is

currently limited to planar behavior.

1.3 Objectives

The main objectives of this report are to present: (1) an evaluation and
an improvement of the seismic-resistant design procedure proposed in Ref. 6--
in particular, an improvement in the formulation and solution of the optimum
inelastic design problem; (2) an investigation into the effect of different
practical design constraints on the optimum design solution and on the seismic
response of the resulting designs; and (3) a comparison of designs based on

the proposed procedure with designs based on the UBC design procedure.



1.4 Scope

The inelastic seismic-resistant design procedure proposed in Ref. 6 is
reviewed in Chapter 2. The optimization problem is reformulated as a non-
linear programming problem which is solved by the cutting plane method [7, 8].
The nonlinear programming technique is discussed in Chapter 3.

Several different designs of a ten-story, three-bay reinforced concrete
frame (Fig. 1) have been obtained using the new optimization technique. The

different designs were formulated to study:

(a) The effect of varying the lower bound on the positive
(bottom steel) moment capacity at a given section

]M+['Z p|M”|. The values of p considered were 0.50,
0.75, and 1.00.

(b) The effect of eliminating bar curtailment at interior
beam-column joints.

(c) The effect of varying the maximum flexural reinforcement
ratio, Prasx® allowed in beam design. Values of 0.5 pb

and 0.75 p, were used.*

In addition, two designs based on the UBC (1976) seismic design provi-
sions [4] are obtained. The two UBC designs differ in the value of Prax USed
in the beam design. The different designs are discussed and compared in Chap-
ters 3 and 4. The conclusions drawn from these results, and recommendations

for future research are presented in Chapter 5.

*pb is the balanced failure reinforcement ratio [ACI Section 10.2 (9)].

-9-






2. INELASTIC SEISMIC-RESISTANT DESIGN PROCEDURE

2.1 General Characteristics of the Design Procedure

Recently, the authors have proposed a computer—aided iterative pro-
cedure for the seismic-resistant design of multistory reinforced concrete
frame structures [6]. The procedure was developed for structures which are
expected to experience a severe earthquake ground motion during their service
lives. The objectives of this chapter are: (a) to review the essential fea-
tures of the design procedure and (b) to point out aspects of the procedure
which are explored in this report.. In the discussion of the design procedure,
reference is made to the design of the ten-story, three~-bay frame defined in
Fig. 1.

The design procedure consists of five basic steps which are divided into
preliminary and final design phases (Fig. 2). In both phases, an optimum
inelastic design which minimizes the volume of flexural reinforcement is
found for each story. In order to limit column inelastic deformation and
prevent formation of soft stories (partial sway mechanism), a weak-girder,
strong-column design philosophy is followed in both design phases. Addition-
ally, in order to prevent large concentrated inelastic deformations, transi-
tions in strength, stiffness, and mass are made as smooth as possible through

both the height and the plan area of the structure,

2.2 Preliminary Design Phase

Regardless of how sophisticated the analysis techniques employed in deter-
mining member design capacities, the final design will be only as good as the
preliminary design used to define seismic forces and to carry out the analysis.
In view of this fact, the objective of the preliminary design phase is to

obtain a preliminary design which is as close as possible to the desired final

-11-
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design. The preliminary phase entails three steps~--preliminary analysis,
preliminary design, and analysis of the preliminary design. To achieve the
stated objective, these steps are repeated until the preliminary design is
deemed acceptable with respect to established design criteria, which reflect
the desired characteristics of the final design, and with respect to dynamic
characteristics and ductility factors assumed in evaluating seismic design

story shears.

2.2.1 Preliminary Analysis

The objective of the first step of the design procedure is to establish
design loads and design criteria. On the basis of structural geometry and
building function, gravity and wind loads are determined, and story masses
are estimated. Design earthquakes, which are represented by smooth ground-
motion spectra, are established on the basis of available seismic and geo-
logical data and soil characteristics of the building site.

Ground-motion spectra are defined by selected values of effective peak
ground acceleration, velocity, and displacement. Figure 3 illustrates the
spectrum for a peak ground acceleration of 0.40g, velocity of 486 mm/secs,
and displacement of 366 mm [10].

Although in previous design examples [6, 11] and in the design examples
presented later in this report, only one design earthquake (corresponding to
a severe ground motion) has been considered, additional ground-motion spectra
corresponding to different design limit states (for example, the serviceability
limit state) are a possibility.

Once the design earthquakes have been established, dynamic characteris-
tics of the structure--defined by period ratios Tl/Ti and mode shapes @i——are

selected. T, is the fundamental period, and Ti is the period of the itk mode

1
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of vibration. The initial selection of Tl/Ti and ?i may be based on previous
experience with similar structures, tabulated results [12], and/or the results
of analyses of a starting design. After completing one iteration of the pre-
liminary design phase, Tl/Ti and 91 may be updated to reflect the characteris-
tics of the latest preliminary design.

The final task of the preliminary analysis is the determination of
seismic design story shears. Based on an assumed damping ratio, &, an
elastic response spectrum is constructed from the ground-motion spectrum
using amplification factors suggested by Newmark [10]. An inelastic re-
sponse spectrum is then constructed by dividing the elastic response spectrum
by appropriate functions of the assumed displacement ductility factor, y,

(Fig. 3). Assuming a value for T,, the design story shears are evaluated on

1’
the basis of the inelastic response spectrum employing a modal analysis tech-
nique. The various modal contributions are combined by taking the square
root of the sum of the squares of the modal maxima.

In determining seismic design forces, the final selection of £, U, and
T depends on an iterative process in which estimates of response based on a
given set of &, 1, and T are compared to the established yielding seismic
coefficient, Cy’ and the design drift index for ultimate-load conditioms,
Rult (values of C and R, service-level design c{iteria, are used for a
service-level earthquake). These design criteria (C, Cy’ R and Rult) should
be established on the basis of their relative effect on initial design cost
and the cost of expected damage during response to the design excitations.

The story shears obtained by the modal analysis are modified to account
for the P-A effect [6].

Although the use of a modal-analysis technique for an inelastic multi-

degree~of-freedom system is correct only in the rare case that all plastic

hinges associated with the assumed failure mechanism form simultaneously,
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such a technique is considered a significant improvement over current code

seismic-force specifications [13].

2,2.2 Preliminary Design

The problem in this step of the design procedure may be stated as
follows:
Given: Gravity, wind, and seismic-design loads; critical load
combinations; and mechanical characteristics of design

materials.

Find: Beam and column sizes and flexural reinforcement.

The solution to this problem is found by solving an optimization problem
for each story formulated on the'basis of the design subassemblage in Fig. 4.
The optimum design minimizes the volume of flexural reinforcement. The weak-
girder, strong-column design criterion reduces the problem to one of finding
the beam design moments.

The design problem may be summarized as follows:

M, >0 i=1,N

which minimize the objective function,

C(Mi) >0, (2.1)

and which satisfy the design constraints
G.(M >0 j = 1,NC 2.2
j ( o) b ( )

where N is the number of desired beam design moments and NC is the number

of design constraints.
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Design constraints are imposed to ensure that eguilibrium is satisfied
and that a serviceable and practical design results. The form of C(M.) and
i

Gj(Mi) are presented below. In previous work [6, 11], C(Mi) and Gj(Mi)

were assumed linear, and a linear programming technique was used to solve the

optimization problem.

(i) Objective function
The objective function is based on the following approximate relation-
ship between the beam design capacity at section i, Mi’ and the correspond-

ing steel area As [6]:
i

M, =A f_ iqd (2.3)

where fy is the nominal steel yield stress and jd is the lever arm between
the resultant internal tensile and compressive forces. Separating the con-
tributions of the beam and column reinforcements, the objective function may

be written as

C(Mi) = CC(Mi) + CB(Mi) (2.4)

where CC(M1> accounts for the column reinforcement and CB(Mi) accounts for
the beam reinforcement.
In the authors' previous work [6, 11], both components were considered

linear functions and C(Mi) was expressed as
cm) = v.M, = (Y5 + vy ) m (2.5)
) =M T Yy Yi)i .
where

Effective length of reinforcement corresponding to the
ith design moment

=<
I

y¥ = Beam contribution
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and

L

Yi = Column contribution.

The column term was determined on the basis of the weak-girder, strong-
column design criterion. The sum of the column moments at a beam-column
joint was expressed in terms of the beam moments by considering joint equi-
librium. Assuming that the column reinforcement does not vary through the

column height defined by the design subassemblage, Yj* may be expressed as

NJ
% _ o
k=1
where

L = hi—l/z + hi/2 (Fig. &)

f = A linear function derived from joint equilibrium which de-
pends on joint geometry and a safety factor imposed to
ensure a weak-girder, strong-column design. Details of
the form of f may be found in Ref. 6.

and
NJ = Total number of joints.

The beam term, Yi, was obtained from reinforcement detailing correspond-
ing to design moment envelopes. Effective reinforcement lengths were computed
by considering code-allowed bar curtailment and specified bar anchorage. 1In

) *
order to construct moment envelopes for evaluation of Yy an initial solution
o . . o . .
Mi’ is required. In previous work, Mi was defined by the results of elastic
analysis. The optimum solution of the linear programming problem formulated
. * 0 1, . . , .
on the basis of Yi (Mi)’ (Mi),ls strictly correct only if the solution of a

new problem formulated on the basis of Y: (Mi), Mi, is equal to Ml In other

1°
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words, this technique to evaluate Y; results in a function, CB(Mi), which
is nonlinear in the design variables, Mi'

In a recent study [14], it has been found that, typically,

2 4,1
My M _ o : N ¢2))

and the use of a linear programming technique to solve the optimization prob-
lem is questionable. In Chapter 3, a nonlinear programming technique is de-
scribed which enables this nonlinearity in the objective function to be

handled.

(ii) Design constraints
Three sets of linear design constraints are imposed. The constraints
considered follow.

1. Equilibrium constraints

8yq My 2 0, j = 1,NEQ (2.8)
where
8., = Coefficient of M, in the jth equilibrium
constraint
w, = External load term in the jth equilibrium
constraint
and

NEQ = Number of equilibrium constraints.

The equilibrium constraints are derived from the kinematic theorem of simple
plastic theory. A typical eji corresponds to the virtual plastic-hinge rota-
tion at design section 1 in the jt# subassemblage mechanism, and a typical

mj corresponds to the virtual work done by the external loads going through

the displacements associated with the jth mechanism.
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2. Serviceability constraints

> i = ‘ .
Mi-— m i=1,N (2.9)
where
oS
m, = A |M.E|
i o' i
Ao = A coefficient greater than 1.0 which protects
against yielding and excessive cracking and
deformation under service load conditions
and
SE . .
Mi = The ordinate of the elastic moment envelope

under service load conditions at design sec~
tion 1.

3. Practical constraints

- 4+, -
< <!
lei 1_1Mi|_lMil

> ,25 M
span — support
(2.10)

=
{v
=

=
fv
i
>
)
=

+ ‘above
where
p = A factor (0.5 is stipulated by the UBC) less
than or equal to 1.0
M;UE = The ordinate of the ultimate-load elastic
moment envelope at design section 1.
FAC = M Vb, ~UE
i i
above
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Mi = Mi for the story above the one being designed
above
M = The moment capacity corresponding to minimum rein-
Pain forcement requirements (p . = 1380/f for f_ in MPa)
min y y
and
M, = The solution at section i for the story above the one

*above being designed (the optimum design procedure is
started at the roof level).

It should be noted that in the optimum design problem all Mi are positive.
The notation M; and M; is used to indicate that, at a typical section,
two design capacities are considered, one corresponding to top steel (M;)
and the other corresponding to bottom steel (M:).

The last practical constraint defined in equation (2.10) is imposed to
attain a smooth transition in strength through the frame height and is
imposed only on the negative design capacity at each support section. The
constraints imposed on the positive design capacity at a given section in
terms of the corresponding negative capacity, combined with the smoothness
constraint imposed on the negative capacity, should ensure sufficient
smoothness in the variation of positive design capacities.

The practical design constraints allow a designer to incorporate his/her
practical experience into the design process. The above set of constraints may
be modified and/or new constraints added in order to obtain a solution with the
characteristics desired by the designer. In order to investigate the effect on
design behavior of (a) the ratio of positive and negative design capacities at
a given critical section, and (b) eliminating bar curtailment at interior beam-
column joints, several inelastic design problems have been formulated by modi-
fying and/or adding practical design constraints. The various practical design
constraints considered, and their effects on the optimization solution, are dis-
cussed in Chapter 3. The behavior of the resulting inelastic designs is

compared in Chapter 4.
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Since a number of design constraints are based on the results of elastic
analysis and since beam sizes are required to determine Mp > an initial
min
(starting) design is required to formulate the preliminary design problem.
Various methods to determine a starting design are presented in Ref. 6.
Typically, member sizes found on the basis of the optimization solution are
different than those used in.the formulation of the design problem. As a
result, the preliminary design step is repeated until the member sizes
before and after optimization are the same (Fig. 5).

Once the inelastic optimum design problem has been solved for the beam-
design moment capacities, beam and column sizes and flexural reinforcement
are found with the aid of a digital computer. The beam sizes and flexural
reinforcement required to resist the optimum beam-design moments, modified
to account for column-slenderness effects and code capacity-reduction factors,
are found first. Column design moments are then determined on the basis of
the weak-girder, strong-column design criterion considering computed moment
capacities of the designed beams. Column design axial forces are determined
on the basis of gravity load and gravity load combined with seismic loading.
Column cross-sections and reinforcement are then found on the basis of the
critical design force combination.

Automated member design is considered an attractive feature of the
design procedure. The computer relieves the designer of a tedious and
time-consuming computational chore, thus freeing him/her to act creatively
in the design process. In addition, this computational tool allows the

designer to generate, in a relatively short period of time, several alterna-

tive designs which can be used as guidelines for the final design.
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In the member design, the beam size (depth) is determined by the equa-

tion

M

o f
— =0 bd” f < - 0.59 —ma-]i‘—.—1> (2.11)
¢ y " .

N\

In previous work [6, 11], pmax was the minimum of 0.025 or 0.75 pb as reQuired
by UBC [4]. Tor the values of fé and fy, used in the design examples (27.8
and 414 MPa, respectively), pmax was controlled by 0.75 pb. However, in the

ACI Appendix A [9] concerning seismic design, it is recommended that

Prax < 0-° °y

In order to investigate the influence of Prax on the characteristics of the
design, as well as on the design's response, two designs based on the same
design constraints have been obtained. In one, pmax was equal to 0;5 pb
(1.4 percent) and, in the other, Ppax 72S equal to 0.75 < (2.1 percent).

Design results are presented and discussed in Chapters 3 and 4.

2.2.3 Analysis of the Preliminary Design

Once a preliminary design has been obtained, a series of elastic and
inelastic analyses are carried out in order to determine the acceéptability
of the design. Elastic analyses are carried out to determine dynamic charac-
teristics which are compared to those assumed in evaluating seismic design
forces. In addition, response under service-load conditions is evaluated.

Inelastic static analyses are carried out to determine the structure's
overstrength and to reveal apparent weaknesses in the design which would be
indicated by large localized inelastic deformations or significant column

yielding.
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Finally, a series of nonlinear time-history analyses are carried out to
evaluate the structure’s response to representative earthquake ground motions.
Response envelopes are examined to determine whether the indicated inelastic
deformations are acceptable with respect to established story drift limita-
tions and with respect to expected member deformation capacities.

On the basis of the data generated by these analyses, the designer de-
termines the acceptability of the preliminary design. If the design is con-
‘sidered acceptable, the final design phase is entered$ if not, the three

steps defining the preliminary design phase are repeated.

2.3 Final Design Phase

The objective of the final design phase is to arrive at the optimal solu-
tion to the seismic design problem. Seismic design forces are determined
utilizing characteristics of the structure found in the preliminary design
phase. These forces are then used in conjunction with a more sophisticated
design subassemblage to formulate the optimization problem from which the
final design is obtained. Onrce a design has been obtained, a series of
analyses is carried out to check the overall reliability of the design and
to provide guidelines for detailing to ensure fhe degree of ductility assumed
in design or indicated by analysis.

The subassemblage adopted for the final design phasg is shown in
Fig. 6. In this subassemblage, the column mid-height inflection point assumed
in the preliminary design (Fig. 4) has been eliminated. In addition, more
design parameters are involved than in the preliminary design subassemblage,

which should provide a more uniform distribution of moment capacities.
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3. SOLUTION OF OPTIMIZATION PROBLEM

3.1 Introduction
As discussed in the previous chapter, the preliminary design is found
by solving an optimization problem formulated for each story on the basis

of the subassemblage shown in Fig. 4. In summary, the design problem is:

Find the beam design moments

M, >0 i=1,N
i
which minimize the objective function
c(M) >0 (3.1)

and, which satisfy the design constraints,

> P =
G M) >0 i = 1,NC. (3.2)

The constraint functions, Gj(Mi), are linear and may be written as

>
B4 M, __bj (3.2a)

where 81 is the coefficient of ith design variable in the jth design con-
straint and bj is a constant defining the jtZ design constraint. The design
constraints were defined in detail in section 2.2.2 (ii).

The objective function C(Mi) is proportional to the volume of flexural
reinforcement. As discussed previously, if the effective length of rein-
forcement associated with a given design variable is determined on the basis
of realistic design detailing (considering bar curtailment based on moment
envelopes) the resulting objective function is nonlinear. As a result, a
nonlinear programming technique is required to solve the optimization prob-
lem defined by equations (3.1) and (3.2). The technique employed here is the

"cutting plane" method.
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3.2 The Cutting Plane Method

The cutting plane method applies linear programming through a sequence
of local linearizations to obtain the minimum of a convex function of real
variables subject to convex constraints. In the method, it is assumed that
the constraints confine the variables to a bounded set, S. The description
of the method presented below is based on Ref. 8 and is limited to the case

of linear constraints.

3.2.1 Description of the Cutting Plane Method

The cutting plane method is based on the observation that the optimiza-
tion problem defined by equations (3.1) and (3.2) is equivalent to the prob-

lem of minimizing a new variable, Z, subject to the constraints

Z > C(Mi) :
(3.3)
831 M1 2 P
The nonlinear constraint
z>cMmy)
is linearized by the Taylor series approximation
z > cof) + ve, () (1, - M5 (3.4)
2 ¢t 3 (M) (M = M .
where
ME = A known point belonging to S (how it is obtained will be
discussed later).¥®
and
VCi = The gradient of C(Mi)
3C(M,)  3Cc(M) ac(M.)>
= 1 i i
; s » *evcy
QMl BMZ BMN

*MF and MF indicate the same (M.) point. Both k and i go from 1 to N.
K i i
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Defining

c, = c(uﬁ) - VCi('Mlz) M’; (3.5)

we have

t S
Z - Ve, (M) M, >C (3.6)

The approximation for C(Mi) in equation (3.4) defines the plane tangent to

t
C(Mi) at Mi'

Based on this linearization, the following linear programming problem
results
Mimimize Z

subject to

t
Z - vci(Mk) M, > C (3.7)

‘The solution of the original nonlinear problem defined by equations

(3.1) and (3.2) is now found by solving the sequence of linear problems de-

scribed below.

(1) Select a starting point, Mi (t=1, i=1,N)

(2) Form the linear programming problem (equation [3.7]) and solve

for Mi which is denoted Mit+l1

t+1 . . .
Mk ) Mi_z Ct+l’- to the constraint

=t + 1.

(3) Add the constraint, Z - VCi(
set defined by equation (3.7) and set t
. . t t+
Steps 2 and 3 are repeated until the solution Mi and Mi are the same.

-+
Numerically, ME 1 and Mz are assumed the same when

XN < TOL (3.8)
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where

N
2
5 (Mti:-i—l - M’f)'
2 _ i=1
N

1
N |
A (MF+1>_2 L
N1/

TOL = a convergence tolerance.

XN

Figure 7 illustrates the process for a function of one variable. Start-

3

ing with Ml, points MZ, M™, and MA-—with minima Z Z.,, and Z

93 25 --are generated

4

by solving the sequence of linear programming problems defined by steps 1-3,

above. The constraints

Z - C(M) M > C, £=1,2,...,

simply require the point (Z, M) to lie above the line tangent to the graph
of C at the point Mt. A numerical example of the cutting plane algorithm is
presented in Appendix A.

In order to implement the above algorithm, it is necessary to define a
differentiable form for the objective function and to select a starting point
in the Set 8, defined by the design constraints. The form of the objective

function and the selection of Mi are discussed in the following sections.

3.2.2 Formulation of the Objective Function

The objective function~-which is proportional to the volume of flexural
reinforcement--is based on the following approximate relationship between
the beam design capacity at section i, Mi’ and the corresponding steel area

A
s,
i

M,.=A £ jd (3.9)

As discussed in Chapter 2, the objective function may be written as
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C(Mi) = CC (Mi) + CB(Mi) (3.10)

where CC(Mi) accounts for the column reinforcement and cB(Mi) accounts
for the beam reinforcement.

The column term CC(Mi) is determined on the basis of the weak-girder,
strong-column design criterion and is a linear function of M, [6]. The beam
term, CB(Mi), is based on equation (3.9). Since Mi is linearly related to
AS , the volume of flexural reinforcement in a given span is proportional to

i
the area under the design moment envelope (Fig. 8). For the kth span

B L

1 - L
[CB(Mi)]k = —/ Mo (=, M) dx —f M, (x, M) dx +/ M (=, M) dx
(3.11D)
. 134 B4
M2 (x, Mi) dx + M3 dx + XM - (B2 - Bl) + FA (Mi)
0 B, _
where
M, >0 i=1,5
i
M, + M
M. = -M. + WLx () * Mox L om’
1 1 2 L 2
- s ME (M2+M4)x_ 2
2 2 2 L 2
M3 = M3
W=1.2 b.L.+ 1.0 L.L.

2]

1/4 MAX(|M, |, n, |)*

*
Based on ACI, A.5.5 [9] which requires at least one-

: fourth of the negative
moment reinforcement to be continuous throughout the .

top of the member.
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@ Ml(X, Mi) = -XM

By, = x @My(x, M) = -X

B3 =x @ Ml(x, Mi) = M3
B4 =x @ MZ(X’ Mi) = M3
and
FA(Mi) = A linear function in M, which accounts for anchorage

of beam bars in the coiumns and, therefore, depends on
the development length and column width.

The term, CB(Mi), for the entire design subassemblage is found by summing

[CB(Mi)]k for each span.

It should be noted that the negative sign in the first two terms is re-

%
quired because the indicated integration yields a negative area.

3.2.3 Starting Point

In order to begin the cutting plane method, it is necessary to define
. . 1 . . e . .
a starting solution, Mi’ which satisfies the design constraints gji Mi Z'bj.
. 1 . c o
In the current application, the starting point, Mi’ is found by modifying

the results of an ultimate load elastic analysis to ensure that the prac-

tical design constraints are satisfied.

3.3 Inelastic Optimum Designs

Five inelastic optimum design problems were formulated and solved em~
ploying the cutting plane algorithm described above. The required beam de-
sign moment capacities are summarized in Tables 1-3. 1In order to illustrate
the degree and nature of moment redistribution obtained by the proposed in=-
elastic design technique, the optimum beam moment capacities have been

normalized with respect to beam moments obtained from elastic analysis for

*A detailed evaluation of the constraint defined by equation (3.6) is pre-
sented in Appendix A.
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each design. The different formulations of the optimization problem for

the designs indicated in Tables 1-3 are reviewed below.

Designs I-2.1 and I-1l.4 differed by the maximum reinforcement ratio,

. . %*
pmax’ used in beam design. In design I-2.1, pmax was equal to 0.75 pb

(approximately 2.1 percent for fé = 27.6 MPa and fy = 414 MPa) and pmax was
equal to 0.50 Py in design I-1.4 (approximately 1.4 percent). Although the
same basic design constraints were used to formulate the optimization prob-
lem for both designs I-~1.4 and I-2.1, the increase in beam size caused by
reducing Prax from 2.1 to 1.4 percent had an effect on the optimization solu-
tion. Details of this effect are presented below.

In the formulation of the optimization problem for designs II-1.4,
I1I-1.4, and IV-1.4, practical design constraints were modified or added
to study: (a) the effect of the ratio of positive (M;) to negative (Mz)
moment capacity at a given section and; (b) the effect of eliminating bar
curtailment at interior beam-column joints. In design I-1.4, which may

be considered as the basic design, the absolute value of MI was subjected to

the following constraint:

+ —_
> . .
M > 5] (3.12)
This reflects a design requirement stipulated in both UBC [4] and ACI [9].
In design IV~1.4, this constraint became
| +

Mi| > .75|Mi| (3.13)

and, in design II-1.4, the absolute values of MI and M; were constrained

to be equal.

*The value of Py used in this report is that for a singly reinforced beam.
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In order to eliminate bar curtailment at interior-beam joints, the
beam moment capacities on either side of an interior joint in design ITI-1.4
were constrained to be equal. For the design subassemblage in Fig. 4, the

following constraints result:
43 3 4 (3.14)

With the exception of the coﬁétraints indicated above, the design constraints
imposed in designs II-1.4 III-1.4, and IV-1l.4 were identical to those employed
in design I-1.4. 1In designs II-1.4 and III-1.4, equality of beam design
capacities was imposed prior to solution of the optimization problem.

Negative and positive design capacities for the various designs are
compared in Tables 1 and 2, respectively. 1In the following discussion, refer-
ence to a reduction or increase in design capacity is made with respect to
the results of elastic analysis. In either Table 1 or 2, a reduction is in-
dicated by a value less than one and, conversely, an increase is indicated
by a value greater than one.

An examination of the data in Tables 1 and 2 indicates that, in the
upper stories (roof fo level 9), there is a typical reduction in negative
design capacities M; and a significant increase in positive design capaci-
ties M;. This trend is attributed to the fact that gravity load controls
design (strength) in the upper stories. As a result, elastic analyses yield
positive moments at the beam ends which are much smaller than those required

by the practical design constraints

M| > |
1 Pmin (3.15)

- %
uF] > ol

%
p = 0.75 for design IV-1l.4, 1.00 for design II-1.4, and 0.50 for all other
designs.
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In fact, at the roof level, the elastic moments for sections 3 and 4 never
become positive.

A comparison of the ratio of the positive-to-negative design capaci-
ties, which is presented in Table 3, indicates that, from the roof level to
floor level 9, the positive design capacity is controlled by one of the two
lower bound comstraints indicated above. Consequently, it may be concluded
that the positive design capacities have been minimized.

Although the positive capacities may be considered minimized, the value
of the minimum constraint is larger than the moment found from elastic
analyses. Consequently, the positiﬁe design sections are "overdesigned,"
and a reduction in negative design capacities results. Two exceptions to
the above general behavior require explanation.

First, in designs I-1.4, ITI-1.4, and IV-1.4, M; is equal to the
elastic moment throughout the height of the frame. This is attributed to

the interaction of the practical design constraints

M

1

| >
IMl‘-— FAC above

(3.16)

L ~UE
|M1|.§ IMl |

At the roof level in designs I-1.4, 1IT-1.4, and IV-1.4, lMEUE| is less than

Mp . Consequently, |M1| at the roof is equal to M . At story level 10,

min min
the combined effect of the two constraints in equation (3.16) is the equality

IME‘ - IMEUEI | (3.17)

This equality remains effective throughout the height of the frame.
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A second exception occurs in design III-1.4, in which M; is typically
greater or equal ta one in the upper stories. This is a result of the
combined effects of the geometry of the frame (larger central span) aﬁd of
the equality constraint unique to this design [equation (3.14)].

As the effect of lateral load becomes more predominant, the nature of
the-iﬁeiastic moment redistribution exhibits a different character. Ignor-
ing design II-1.4 for now, negative moment rediscribution in all designs is
concentrated at one design section, at M, in designs I-1.4, TII-1.4, and

4

IV~-1.4 and at MI in design I-2.1. 1In addition, the positive design capa-

cities at sections 1 and 4 are typically less than the corresponding elastic
moments (Tables 1 and 2). 1In fact, the positive capacities at sections 1

and 4 tend toward their lower bound (Table 3).

il M'l' . (3.18)

>
il Z P

Based on these observations, it may be concluded that the optimiza-
tion solution tends to maximize the negative design capacities and mini-
mize positive capacities.7 This conclusion is consistent with the form of
the beam contribution to the objective function. On examination of Fig. 8,
it is evident that positive design capacities make relatively larger contri-
butions to flexural steel volume than corresponding negative design capacities.
The tendency to maximize negative design capacities and minimize positive
capacities is a major shortcoming of the proposed optimization procedure. To
avoid congestion of steel at beam-column joints, a practical moment redistri-
bution Should reduce negative design capacities at beam ends and, thus, re-

duce the area of negative moment steel which must be passed through or devel-

oped in the beam~column joint.

* -
As will be discussed shortly, M. tends to decrease because of the contribu-
tion of exterior column reinfortement (design I-2.1, Table 1). Consequently,
in the case of long columns and short-beam spans, the exterior column steel
may affect this observation.
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As discussed previously, some negative moment redistribution does
occur in all inelastic designs. However, it is typically concentrated at
one design section. For example, negative redistribution occurs at section
1 in design I-2.1 and at section 4 in design I-1.4. TFollowing is an
explanation of why negative moment redistribution occurred at different
sections in these two designs.

Redistribution at section 1 in design I-2.,1 is attributed to the
relative contributions of the exterior and interior column steel to the
objective function. One factor which is used to evaluate the objective
function coefficients associated with column reinforcement is the ratio

h /hC, where h

b b is the beam depth at a given floor level and hC is the

column depth. This factor accounts for the effect of member depth on
moment capacity (equation [3.9]).

For the designs obtained in this study, the exterior columns are
smaller than the interior columns. Consequently, since hb at a given
floor level is constant, hb/hC was larger for exterior columns than for
interior columns. For example, in design I-2,1, hb/hC for the exterior
column varies from 1.38 at the roof to 1.17 at the second floor level.
The variation for the interior column was 1.06 to 1.05. As a result,
the column contribution at negative design section 1 is larger than that
at negative sections 3 and 4. Consequently, the optimum solution tends
to minimize M;.

The above statements are also true for Mi in design I-1.4. However,
as discussed previously,
-UE

£

M .
roof o min, roof

-33-



This fact, in combination with the interaction of the practical design

constraints of equation (3.16), imposes the equality

-1 _ | UE]
‘Ml I ] g

at the remaining floor levels. Consequently, redistribution could not occur

at M;. It occurs at MZ and not M; because M;, being associated with the

longer interior span, makes a relatively larger contribution to the volume

of flexural reinforcement than M;.

A comment concerning the column contribution to the objective function

s |
M M E

is warranted. As discussed in Ref. 6, the design constraint that 1

<

in combination with the condition of symmetric column steel placement, causes

the exterior column steel to be a function primarily of Ml

The designs
described here, however, are not based on this condition. In this study,
the exterior column steel was assumed a function of both the positive
and negative capacities at section 1*. The current design problems
were formulated on the basis of this condition (case 1) instead of the
condition that the exterior column steel is primarily a function of Mi
(case 2) because it was felt that the characteristics of moment redistri-
bution resulting from case 1 are more desirable than those resulting from
case 2. This may be illustrated by comparing designs which are identical
with the exception of how the contribution of the exterior column steel
is included in the objective function.

A comparison of design results based on case 2 with the results
described in this report (case 1) indicates that the general trends are the
same for both cases. 1In fact, the results are the same for design II-1.4.

; . +
The basic difference between cases 1 and 2 is found in design capacity Ml'

* The principal component of the exterior joint equilibrium equation was
divided equally between M{ and MI, This technique is employed because of
its simplicity.
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Typically, values of M: obtained in case 2 are larger than those obtained

+ - .
in case 1. In fact, lMl was in many cases equal to Ml . This character-
. X . + .
istic of the solution was expected, however. The influence of M. in the

1
objective function for case 2 is relatively small because the contribution
of column reinforcement is essentially independent of this design capacity.

+ -
" .

A difference between the two cases is also evident in the magnitude of

Consequently, tends toward its maximum value,

negative moment redistribution. 1In all designs, the section at which moment
redistribution occurred was the same for both case 1 and case 2. However, the
magnitude of redistribution was typically larger in case 2. For example, in
design I-1.4, a redistribution of six percent occurred at floor level 2 in
case 1 (section 4, Table 1). 1In case 2, this redistribution was 27 percent.
This increase in negative moment redistribution is related to the increase in
M} discussed above. The design solution (beam design capacities) is bounded

1

by equilibrium, serviceability, and practical design constraints. The increase
-+ - %
in Ml reduces the lower bound imposed on another capacity--in this case, Mﬁ.

Consequently, M; decreases,

3.4 Concluding Remarks

Although redistribution obtained by minimizing the volume of flexural
reinforcement does not, in general, cause significant reduction in negative
design capacities, the results for design II-1.4 demonstrate than an inelastic
optimum design exhibiting significant negative moment redistribution can be
obtained by imposing proper design constraints. One shortcoming of design
I1-1.4, however, is that moment redistribution is concentrated** at the interior

* . + .
The increase in My, in general, will affect all other variables. Consideration

of a single variable is to simplify illustration.

%
The magnitude of moment redistribution was typically 30 percent and 35 percent
at design sections 3 and 4, respectively, while it was only 10 percent at

design section 1 (Table 1).
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beam-column joint which, as will be discussed later, leads to large inelastic

deformation demands.

The basic problem is to find a redistribution that leads to a balance
between economy, magnitude of inelastic rotation demands, and ease of con-
struction. As discussed above, a basic feature of an optimum redistribution
in seismic-~resistant reinforced concrete frames is to reduce negative design
capacities. One possible technique to obtain such a redistribution within
the context of the proposed inelastic design procedure is to modify the

practical constraint

(3.19)

so that, instead,

. (3.20)

The factor, MR, is the magnitude of the desired negative moment redistribu-
tion.

Recently, two additional inelastic designs, A and B, have been obtained
in order to evaluate this technique. Both designs are based on the member

* £
sizes found for design I-1.4. 1In the formulation of design A, the constraint,

IM‘. > FAC IMT (3.21)
| 1 — 1

above

was not imposed. With this exception, the design problem was identical to
that for design I-1.4. |

The formulation of the optimization problem for design B is the same as
that for design A except that the upper bound constraint defined by equation
(3.20) was used instead of the constraint in equation (3.19). A value of 0.2

was used for MR. This is the maximum redistribution allowed by ACI [9].

%
In the objective function, the exterior column steel was a function of both

- o
Ml and hl.
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The required beam design capacities for designs A and B are compared
in Table 4. The results have again been normalized with respect to elastic
analysis. A comparison of the results for design A with those for design I-1.4
(Tables 1 and 2) countirms the observation that negative moment redistribution
did not occur at section 1 in design I-1.4 because of the interaction of the
constraints defined by equations (3.19) and (3.21}.

A comparison of the results for designs A and B presented in Table 4
indicates the following:

(a) Negative moment redistribution is concentrated at section 1 in design
A. In design B, however, the upper bound constraint defined by equation (3.20)
causes moment redistribution to be the same at all sections.

(b) Removing the smoothness constraint defined by equation (3.21) causes
rather sudden changes in negative moment redistribution at section 1 in design
A. TFor example, at floor level 4, the redistribution is approximately 13 per-
cent, increasing to 33 percent at level 3 and decreasing to 4 percent at level Z.

(c) Ignoring the roof and floor level 10 for now, the results for design B
indicate that the constraint defined by equation (3.20) is effective in ob-
taining a smooth transition in strength through the height of the structure in
design B. The beam-design capacities for design B have the same smoothness
characteristics as the results ot elastic analysis.

(d) The results for both designs are similar at the roof and floor level
10. With the exception of roof section 1, significant negative moment redis-
tribution occurs at all sections. This behavior is attributed to the

importance of gravity load at these floor levels (section 3.3). The design

. , . , -UE
capacity at roof section 1 is greater than the elastic value [M., E y
roof
because the lower bound constraint was defined by Mp (289 KN-m) which was
min
-UE
greater than M .
roof
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The large moment redistribution in both designs (44 percent) at floor level

10 is a cause of concern. As discussed previously, the optimization solution tends

M. because of the contribution of the exterior column steel.

to minimize ll

10

MI{ tends toward its lower bound. Since the service lateral
10

icad (due to wind) considered here is approximately one-fifth the seismic

Consequentliy,

design forces, the lower bound on

ficantly smaller than IMfUE .
AT

Excessive redistribution can be eliminated by imposing a new lower bound

M—I is defined by M which is signi-
1 e_.
10 min

constraint which would ensure that

IMT > (L - MRR) lmeEl (3.22)
1 - 1

where MRR is the maximum desired moment redistribution. However, since
required inelastic deformation demands in the upper stories are typically
small [section 4.3.3(ii)], it is felt that a 44 percent redistribution in
these stories should be acceptable. This conciusion should be confirmed by
evaluating the nonlinear static and dynamic response of designs A and B.

On the basis of the above comparison of moment redistribution in designs
A and B, it may be concluded that design B is preferable to design A. The
real test of any design, howeVer, is how well it performs in response to
earthquake ground motion excitations. A comparison of designs A and B, with

respect to nonlinear seismic response, is planned in a future study.
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4. DESIGN RESULTS AND ANALYSIS OF PRELIMINARY DESIGNS

4.1 Member Design

Once the required optimum beam design moment capacities have been ob-
tained, member design is found employing computer design aids developed by
the authors [6]. Beam sizes and reinforcement are found first. Actual de-
sign moment capacities are found from the required optimum design capacities
by considering slenderness amplification and capacity reduction factors.
Both beam and column design are based on the ACI strength method. Beam
design is based on the equation

Mu 2 \ Efz

'y = pbd fy(l - .59 f')' (4.1)

c

The beam size is assumed constant at a given floor and is found on the
basis of the largest required negative design capacity at the floor under
consideration, assuming that p is equal to Pnax" Once the beam size has
been determined, the required reinforcement for all critical sections in
that floor is found by solving equation (4.1) for p. In the beam size selec-
tion, a width-to-depth ratio of one half was used. In the design of posi-
tive moment steel areas, the effective compression flange width defined by
ACI was considered.

In column design, the capacity-reduction factor of 0.7 for tied columns
was used and specified mimimum eccentricities were checked.* Column design
moments were obtained on the basis of the weak-girder, strong-column design
criterion by considering beam-column joint equilibrium under all possible
beam plastic-hinge combinations. The as-designed beam moment capacities
were amplified by a factor of 1.2 to account for the uncertainties in beam

capacity computations, in particular, the variation in steel yield stress

*Design program based on ACI (318-71) [15].
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and the effect of strain hardening. The design axial forces were determined

by considering various combinations of gravity loading and gravity plus

lateral seismic loading. A bound on the axial force due to overturning ef-
fects for an exterior column at story i is easily established by summing the
maximum beam shears for stories i to NS where NS is the total number of stories
in the structure. However, such a bound cannot be obtained as easily for an
interior column. Therefore,»overturning moment axial forces obtained in the
ultimate-load elastic analysis used to formulate the optimum design problem
were considered in the interior column design.

One factor which is not accounted for in column design is the effect of
inelastic beam behavior and/or higher mode dynamic response on the distribu-
tion of beam moments to the columns at a given joint. The benefits of using
an additional design factor, such as the dynamic magnification factor suggested
by Paulay [16], to incorporate this aspect of seismic-resistant design in the pro-
cedure should be investigated.

In addition to the inelastic designs described in Chapter 3, two designs
based on UBC seismic design story shears were obtained. The designs differed
in the value of pmax assumed in beam sizing--values of 0.750b and O.SOQb
being used. The beam design moment capacities were obtained from the results
of elastic analysis by considering code-allowed moment redistribution. The

magnitude of moment redistribution, MR, was controlled by the ACI expression

— ¥
MR=20(1-9———D> (4.2)
Pb
where
p = Tension reinforcement ratio As/bd
p' = Compression reinforcement ratio A;/bd
and
0 = Balanced reinforcement ratio [9].
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The moment redistribution defined by equation (4.2) was applied independently

to each span of the design subassemblage in Fig. 4. Equation (4.2) is

applicable to the design examples presented here because p - p' f_O.Spb.:
Strictly speaking, the redistribution allowed by ACI is intended for

the case of gravity loading in which negative moment redistribution is

accompanied by changes in span design moments. TIts application to lateral

load combined with gravity load is considered appropriate, however, for

seismic~resistant design in which a weak-girder, strong-column design

criterion is followed.

The relationship between moment distribution and steel content is
incorporated to ensure that member critical regions (plastic-hinge zones)
possess sufficient inelastic rotation capacity to attain the assumed redis-
tributions. In the case of seismic-resistant reinforced concrete frames,
such a limitation on the magnitude of moment redistribution is believed to
be conservative. Design in accordance with present seismic code requirements
results in plastic-hinge zones characterized by relatively low steel per-
centages, by the presence of significant compression reinforcement, and by
close spacing of transverse reinforcement. As a result, such structures
should possess sufficient ductility to accommodate the moment redistributions
necessary to form a mechanism. In seismic-resistant design, however, the
inelastic deformation capacify must be adequate not only to allow a mechanism
to form, but also to allow the displacement ductility (as a mechanism) assumed
in design to be attained. 1In view of this, an upper bound on the magnitude of
moment redistribution may be necessary. Paulay has suggested an upper bound

of 30 percent [16].

Member design for UBC designs followed the same procedure outlined

above for the inelastic designs. The UBC designs, following the convention

* A design constraint is

R .SlM—_I.
1 - 1
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established in Chapter 3, are designated UBC-1.4 and UBC-2.1, corresponding

to beam flexural steel percentages of 1.4 and 2.1, respectively.

4.2 Member Design Results

Preliminary design results obtained after two iterations of the preli-
minary design phase are summarized in Tables 5 and 6. Member design for in-
elastic design IV-1.4 was not obtained. It was felt that the essential fea-

tures of design IV-l.4~~in particular, its nonlinear response--would be

bounded by the features of design I-1.4, II-1.4, and III-1.4. On the basis
of previous results and, in view of the apparent bound on response, it was
concluded that the design and analysis of design IV-1.4 would yield little

additional information.

4.2,1 Member Sizes

Beam and column sizes are presented in Table 5. In determining member
sizes, the following design constraints were imposed:

(a) Beam and column sizes (except for the first-story columns)

were constrained to be the same for at least two stories.

(b) 1In order to achieve a smooth transition in stiffness through
the frame height, the increment in beam and column depth was

set at 40 mm.

(c) Selection of column size was constrained by the criterion that

the aXial load be less than the balanced ultimate axial load.

The above set of design constraints, in combination with the fact
that design gravity loads were essentially the same in all designs, resulted
in one set of column sizes (Table 5).

Four sets of beam sizes were obtained. The smaller beams obtained for
the UBC designs are attributed to the magnitude of seismic design forces.

Seismic design story shears for the various designs are presented in Fig. 9.
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A comparison of designs UBC-1.4 and I~2.l* indicates that inelastic spectral
design forces based on a displacement ductility of six exceed the UBC seismic
design forces factored for strength design by more than 50 percent.

As expected, increasing Prax from O'Spb to O.75pb results in a reduction
in beam size. A comparison of seismic story shears for designs I-1.4 and
I-2.1 indicates that the resulting increase in frame flexibility leads to a
reduction in seismic design forces (Fig. 9).

The smaller beam sizes for design II-1.4 (as compared to design I-1.4)
are attributed primarily to the different nature of moment redistribution in
these two designs. In design II-1.4, there was a reduction in required nega-
tive design capacities while, in design I-1.4, redistribution generally occurred
at positive moment sections (Table 1 and 2). Since beam size was controlled by
negative design capacities, the smaller negative capacities in design II-1.4

caused a reduction in required beam size.

4.2.2 Material Volume

Required concrete and flexural (longitudinal) steel volumes for the
various designs are summarized in Table 6. The steel volumes presented
were computed on the basis of equation (3.11) and provide only a qualita-
tive measure of the required longitudinal steel.

A comparison of the material volume data for designs I-1.4, Ii—l.4, and
ITI-1.4 indicates that moment redistribution has a minor effect on required
volumes of concrete and steel--the variation in material volume being less
than 5 percent. The relatively small variations in required steel volume
indicates that the volume of flexural reinforcement is not the best choice
for an optimization objective in reinforced concrete design. This conclusion
is confirmed by a comparison of the value of the objective function, C(Mi),
corresponding to the optimum solution in designs I-1.4, ITI-1.4, and IV-1.4

(Table 7).

These designs are compared because they have the same member sizes and are
dynamically equivalent if gross section propertiés are used.
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The data presented in Table 7 has been normalized with respect to
C(Mi) for design I-1.4. Except at story levels 9 and 10 in design IV-1.4,
the difference in C(Mi) among the various designs is less than-4 percenf and
gradually decreases to less than 1 percent in the lower stories. Tﬁe<rela—v

tively large values of C(Mi)/C(Mi) for design IV-1.4 in the upper stories

I-1.4
is attributed to the design constrainth?iz;JM;? In design IV-1.4, p was 0.75
and, in designs I-1.4 and III-1.4, p was 0.5.

Based on the above observations, it is apparent that the volume of
flexural reinforcement is insensitive to the final distribution of beam design
capacities. Consequently, if an optimum solution is desired,(further study is
required to formulate a new objective function which is based on a more sensi-
tive design parameter.

As expected, the increase in the upper bound on the percentage of beam
flexural reinforcement from 1.4 percent to 2.1 percent causes an increase in
required steel volume and a corresponding decrease in concrete volume (Table 6).
In the UBC designs, the increase in steel volume was approximately 10 percent,
and the decrease in concrete volume was approximately 7 percent. In the in-
elastic design procedure, the increase in steel volume was approximately 3 per-
cent, and the decrease in concrete volume was approximately 12 percent. The
relatively small increase in steel volume in design I-2.1 is attributed, in
part, to minimum reinforcement requirements. The design constraint,lMik:M s

min
controlled design at more locations in design I-1.4 than it did in design I-2.1
(Tables 1 and 2). 1In addition, M required more steel in design I-1.4 than
min
in design I-2.1 because of the larger béam sizes in design I-1.4,
A comparison of material requirements for designs I-1.4 and URC-1.4 indi-

cates that, although seismic design forces determined on the basis of a spec-~

tral analysis technique exceed those specified by UBC by more than 80 percent

(Fig. 9), the increase in steel volume is less than 20 percent and the increase
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in concrete volume less than 15 percent. The effect of these increases

in material volume on design performance will be discussed later.

4.3 Analysis of Preliminary Design

The final step of the preliminary design phase is to carry out a series
of elastic and nonlinear structural analyses in order to evaluate the
acceptability of the latest preliminary design with respect to established
design criteria and with respect to the assumptions made in formulating
the design problem.

Three separate computer programs are used to carry out the complete
series of analyses, ETABS* [17] for elastic analysis, a modified version
of ULARC [6] for nonlinear static analysis and SERF [18] for the non-
linear dynamic analysis. All three programs employ the same basic
analytical model. The floor slab is modeled as a rigid diaphragm which
constrains all the lateral displacements in a given story to be equal.

A structural frame is modeled by a series of beam elements which span
longitudinally between vertical column elements. It is also possible
to model elements spauning diagonally between stories.

The axial stiffness of a beam element is assumed infinite to impose
the rigid diaphragm constraint. However, axial deformations are allowed
in column elements. 1In all analyses, gravity loads as well as rigid
joint areas defined by actual member dimensions are considered. 1In
addition, the slab contribution to the frame stiffness is approximated

following a procedure suggested by Malik and Bertero [19].

*ETABS is used because of its eigenvalue analysis capabilities. If only
static load analyses were required, either ULARC or SERF could have
been used.
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Inelastic member behavior is idealized by the two-component model.
Basically, a flexural element is idealized as a perfectly elastic com-
ponent with stiffness Ep acting in parallel with an elasto-plastic
element with stiffness gq' In the elastic range the combined stiffness
of the two components is identical to that of the actual member.

K = + Kp (4.3)

Kq
In the inelastic range, yielding is idealized as concentrated plastic

hinges at the ends of the elasto-plastic component andg.p is the desired
rate of strain hardening.

In the analysis conducted in this study, strain hardening was taken
as zero in the nonlinear static analyses (a program limitation) and was
taken as 3 percent in the nonlinear dynamic analyses. The advantages and
disadvantages of such an inelastic beam model are discussed in Ref. 20.

Both nonlinear analysis programs employ a simplified geometric stiff-
ness based on axial loads due to gravity effects [18]. In this formula-
tion, only the column translational degrees of freedom are affected by

second~order effects.

In both programs, the effect of axial force level on reinforced con-
crete yield moments is considered. However, both programs ignore the ef-
fect of inelastic behavior on column axial stiffness. 1In the dynamic
analysis program, Rayleigh-type damping with a 5 percent damping ratio in
the first two modes is used.

The results of the analysis indicated above for the designs defined

in Table 5 are summarized in the following paragraphs.

4.3.1 Elastic Analysis

The effect of the different beam sizes on the dynamic characteristics
of the various designs is illustrated in Table 8. The first mode period,

Tl’ varies from 1.39 sec. in design UBC-2.1 to 1.08 sec. in design I-1.4.
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Although, as noted previously, the increase in frame flexibility (which
is associated with larger reinforcement ratios) decreases seismic design
forces, the increased flexibility leads to larger service-level deformations.
For example, a comparison of story drift indices, Ri’ due to service-level

wind loads, are presented in Fig. 10.

R, = = d7l (4.4)

where
Ai = Lateral displacement at floor level 1
Ai—l = Lateral displacement at floor level i-1
and
hi = story height

The smaller beam sizes associated with larger values of Ppax €0 increase
service-level deformations by as much as 40 percent. Although the drift in-
dices indicated in Fig. 10 are well within acceptable values (.002 is gener-
ally considered acceptable), the increased flexibility may be detrimental for
more severe service conditions such as a minor or moderate, but frequent,

earthquake ground motion.

4.3.2 Nonlinear Static Analysis

The results of the nonlinear static analyses for the various designs is
summarized in Fig. 11. The behavior of design III-1.4 has been omitted since
it is essentially the same as that indicated for design I-1.4. 1In the analysis,
the frame was subjected to design gravity loads and a monotonically increasing
base shear--which was distributed through the height of the frame according to

the UBC force distribution in designs UBC-1.4 and UBC-2.1 and according to
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lateral force pattern obtained from the spectral modal analysis in designs
I-1.4, 1.2.1, and II-1.4.

It is evident from Fig. 11 that all frames have significant overstrength
ranging from 45 percent for design I-1.4 to 106 percent for design UBC-2.1.
The overstrength is attributed in part to the fact that the beams were over-
designed with respect to design capacities required to resist the selected de-
sign loads. As noted previously, optimum beam design capacities were modified
by slenderness amplification and capacity reduction factors prior to member
design. 1In addition, the frame was transformed into a mechanism gradually,
not instantaneously, as assumed in design. The significantly larger over-
strength in the UBC designs is attributed, in part, to larger slenderness am-
plification factors. 1In addition, UBC seismic design forces were signifi-
cantly smaller than spectral design forces (by as much as 55 percent). The
smaller design base shear combined with the fact that the design gravity load
moments were essentially the same in all designs caused additional overdesign
of positive design sections in the UBC designs because of the design require-

ment

M| > 0.5 ). (4.5)

This was particularly true in the upper stories.

A comparison of base shear at initial hinge formation for the various
designs indicates that the design base shear was exceeded prior to initial
hinge formation in the UBC designs (by 65 percent in design UBC-2.1 and
33 percent in design UBC-1.4). 1In the optimum inelastic designs, however,
initiation of inelastic behavior occurred prior to reaching the design base
shear. For example, in design I-1.4, the first beam plastic hinge formed at

a base shear of 34 percent of the design value.
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The relatively early yielding in the optimum inelastic designs does
not indicate an unserviceable structure. First, it should be noted that
the seismic force level considered in these designs correspondsto an ex-
treme event. In addition, a serviceable structure is ensured within the
context of proposed inelastic design procedure by imposing serviceability
design constraints. Although the service level lateral load considered in
the examples presented in this report was due to relatively small wind
forces, a more severe service lateral load (for example, one corresponding
to a minor earthquake) could easily be considered.

The relatively early yielding in design I-1.4 requires additional com-
ment. Initial yielding occurred in the interior roof beam at the right end.
The next hinge to form was at a base shear equal to 55 percent of the design
value and the third hinge did not form until a base shear equal to 86 percent
of the design value. The effect of the first two hinge formations on the
lateral stiffness is small as is evidenced by how closely the base-shear, roof-
displacement relationship follows the elastic slope. In addition, the plastic
rotation at the section of first yielding remains small (less than 0.005 ra-
dians) because a plastic hinge never forms on the left side of the roof beam.

On the basis of the data in Table 1, it would appear that first yielding
should occur at essentially the same load in designs I-2.1 and II-1.4 as it
does in design I-1.4 because negative moment redistribution is essentially
the same in all three designs. Different slenderness amplification fac-
tors and the discrete nature of member design can alter the trends expected
from examination of this data alone. For example, the as-designed negative
design capacity for the roof interior beam was 447 kN-m in design I-1.4 and

520 kN-m in design T-2.1. Although the values differ by less than 20 percent,

gravity load causes a negative moment of approximately 360 kN-m in both designs,
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and the flexure strength remaining to resist lateral load in design I-2.1 is
approximately twice that in design I-1.4.

Another factor which contributes to the larger beam overstrength in
designs UBC-1.4 and UBC-2.1 is the nature of the inelastic design procedure
used to obtain the beam design moment capacities. In designs UBC~1.4 and
UBC-2.1, moment redistribution was based on the ACI recommendations. In
implementing the code recommendations, elastic moment envelopes are first
constructed considering the effects of partial and/or pattern loading. The
redistribution defined by equation (4.2) is then applied to each span

separately, after which practical code requirements that
+ -
.} > 0.5 |M'
it — i

Mi§<i M6 min (4.6)

are imposed.

This is in contrast to the proposed inelastic design procedure which
was used to obtain the beam design capacities in designs I-1.4, II-1.4,
I11-1.4, and I-2.1. In this procedure, moment redistribution is based on
an optimization technique in which the volume of flexural reinforcement
is minimized. Member flexural strength is based on equilibrium constraints
which are found by considering all possible failure mechanisms of the
selected design subassemblage. As a result, all beam design capacities in
a given story are coupled.

In addition to equilibrium constraints, the optimum beam-moment capacities
must satisfy a set of practical constraints, two of which are defined by
equation (4.6) and a set of serviceability constraints.

It is felt that because of the coupling of strength and practical design

requirements, and the interdependence of all design capacities in a given
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story, the proposed inelastic design procedure yields a more efficient moment
redistribution than the ACI procedure. In other words, the ACI inelastic
design procedure, at least as it was applied in this study, typically results
in 1arger beam §Verstrength than the optimum inelastic design procedure
described in this report.

A comparison of designs I-1.4 and TII-1.4 indicates that there is a more
gradual departure from the elastic loading curve in design IT-1.4 than in
design I-1.4. This is attributed to the reduction in negative design
capacities associated with inelastic moment redistribution which occured
in design II-1.4. Although initial yielding occurred much earlier in
design I~1.4 than it did in design I1-1.4, the yielding was isolated and
had little effect on behavior. The reduced negative design capacities
in design II-1.4 caused early yielding (as compared to design I-1.4)
at negative sections over a relatively large region of the frame. Con-

sequently, a gradual reduction in the frame lateral stiffness occurred.

4.3.3 Time History Analysis

The nonlinear dynamic response of the designed frames to the El
Centro N-S (EC) component and the Derived Pacoima Dam (DPD) ground motions
was assessed using SERF, a program developed by Mahin and Bertero [18].
The accelerations of both ground motions were scaled to have a peak value
of 0.4 g. The behavior of the various designs are discussed and compared

below.

(i) Global response

Examination of story displacement envelopes in response to the EC ground

motion for designs UBC-2.1, UBC~1.4, I-1.4, and I-2.1 (Fig. 12[b]) indicates
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‘ﬁhét response is proportional to the initial frame flexibility. Maximum roof
displacements increase from 109 mm in design I-1.4--which has an initial
first-mode period, Tl’ of 1.08 sec.—-to 180 mm in design UBC-2.1 which has

an initial Tl of 1.39 sec.

A comparison of UBC-1.4 and I-2.1 indicates that frame strength also
affects global response. Altﬁough these two designs have the same initial
stiffness characteristics, the maximum roof displacements are 145 mm and
129 mm in designs UBC-1.4 and I-2.1, respectively. The smaller displacement
in design I-2.1 is attributed to the fact that this design is approximately
133 percent as strong as design UBC-1.4 (Fig. 11).

The displacement envelopes for the DPD ground motion indicates that
response to this particular accelerogram is primarily a function of strength.
For example, designs UBC-2.1 and UBC-l.4--which have essentially the same
static strength (1851 kN vs. 1931 kN)--have essentially the same displacement
response in spite of the fact that design UBC-2.1 is 12 percent more flexible
than design UBC—1.4*.

Observations similar to those made above concerning the effect of
initial flexibility and strength on global response may be made by
analyzing the story drift index envelopes in Fig. 13.

It should be emphasized that the above discussion is based on initial
dynamic characteristics. During the response, however, inelastic member
behavior (plastic-hinge formation at member ends)--which is a function of
strength and the forces generated by the ground motion--increases the frame

flexibiltiy which, in turn, affects the magnitude of earthquake-induced

*
As measured by the first-mode period.

-52-



forces and the level of response. Member inelastic behavior is discussed
in a subsequent presentation of beam inelastic rotation demands.

A comparison of the displacement and story drift index envelopes for
the DPD and EC ground motions indicates a significant difference in response
in spite of the fact that the maximum acceleration was the same for both
ground motion records. Story displacements and story drifts for the DPD
ground motion are approximately three times those for the EC motion. This
demonstrates the need to consider all possible ground motions at a given
site and also all characteristics of these ground motions (not just the peak
ground acceleration) when selecting a design earthquake [21].

The magnitude of the story drift indices recorded during the DPD ground
motion (as high as 0.021) indicates the possibility of significant non-
structural damage. A comparison of designs UBC-~1l.4 and I-1.4 demonstrates
one advantage of using spectral design forces in seismic design for severe
earthquake ground motions. Although spectral design forces were about
80 percent larger than the UBC forces, the required steel and concrete volume
increased by less than 20 percent and 15 percent, respectively. These
increases must be weighed against the resulting reduction in response
(maximum story drift indices for design I-1.4 are approximately 25 percent
smaller than those for design UBC-1.4) which can lead to significant savings
in repair costs for nonstructural damage suffered during moderate and major
earthquake ground motion.

A comparison of designs I-2.1 and I-1.4 indicates that the increase in
frame stiffness and also strength associated with smaller steel content
reduces drift indices and consequently nonstructural damage.

The story displacement and story drift index envelopes for designs
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I-1.4, I1-1.4, and III-1.4 are presented in Figs. 14 and 15. A comparison
of responses for designs I-1.4 and III-1.4, which have the sam: beam sizes®
but different beam design capacities at the interior beam-column joint
(Tables 1 and 2), indicates that local variations in beam design capacities
have little effect on global response parameters such as story displacement
and story drift.

On the basis of the global response for designs I-1.4 and II-1l.4,
which have essentially the same static strength (Fig. 11) but different
initial flexibilities, and in view of the previous discussion of behavior
of designs UBC~2.1, UBC-1.4, I-1.4, and I-2.1, it may be concluded that
initial frame flexibility (at least within the range considered here)
has a significant influence on response to ground motions with character-
isitics similar to the EC ground motion and that strength has a significant
influence on response to ground motions with characteristics similar to
the DPD ground motion. For example, consider the maximum roof displacement
recorded for designs I-1.4 and II-1.4. 1In response to the EC ground
motion, the roof displacement was 109 mm for design I-1.4 and 129 mm
for design II-1.4, an increase of approximately 18 percent. In response to the
DPD ground motion, the roof displacements were 369 mm for design I-1.4
and 379 mm for design II-l.4, an increase of less than 3 percent. This con-
clusion appears consistent with the different characteristics of the two
ground motions (Fig. 16), in particular the long duration acceleration
pulses contained in the initial phase of the DPD motion. The response
of a structure to this type of ground motion is like the response to

impulsive loading, at least with respect to maximum response quantities.

In such a situation, and in case of nonlinear behavior, strength is a

* The beam size was controlled by the negative capacity at Section 1,
which was the same in both designs.
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more important parameter than flexibility., Furthermore, damping will have

little effect on maximum response.

(ii) Local inelastic behavior, beams

Accumulated beam plastic rotation, 82¢¢  defined by the expression
b
ace NIN
= L .
8, I, Iep[ 5 (4.7)

where NIN is the total number of inelastic excursions at the beam end andb
lep!i is the absolute value of the plastic rotation in excursion i, is used
as a measure of cyclic inelastic deformation demand. Values of Gzcc for
the various designs in both the exterior and interior spans are summarized
in Figs. 17-20. A comparison of response to the two ground motions indi-
cates, as expected from the global response, that inelastic rotation demands
increase significantly in response to the DPD ground motion.

A comparison of behavior for designs UBC-1.4, UBC-2.1, I-1.4, and

I-2.1 (Figs. 17 and 18) indicates the following:

a. Inelastic rotation demands for the UBC designs are typically
smaller in the upper stories than those corresponding to designs
I-1.4 and I-2.1, This is attributed primarily to the larger
overdesign of positive moment sections in the UBC designs dis-
cussed in Section 4.3.2.

b. A comparison of inelastic deformation demands for designs I-1.4
and I-2.1 indicate that demands in the exterior span are typically
larger for design I-2.1 than for design I-1.4 and that the
deformation demands reflect the opposite trend in the interior
spans. This is attributed to the different nature of moment

redistribution in the two designs. As noted previously
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(Section 3.3), redistribution caused a reduction in negative
design capacities in the exterior span in design I-2.1 and in
the interior span in design I-1.4. This concentration of negative
moment redistribution at a single section tends to amplify the
inelastic rotation demands at that section. This is particularly
evident in design I-2.1. In the interior span, where the negative
design capacity is equal to the elastic value, the maximum ea;C
was 0.020 radians during the EC ground motion and 0.040 during the
DPD ground motion. The respective values for the exterior span
(where the redistribution was concentrated) were 0.030 and 0.055.
This observation indicates that an optimum moment redistribution
should attempt to balance the reduction in elastic design moments
in order to prevent excessive deformation demands at a particular
region (critical section).
c. The maximum inelastic deformation demands in response to the El
Centro ground motion occurred in designs based on spectral design
forces. For example, the maximum value of chc for design I-2.1
in the exterior span was 0.030 radians while the corresponding
value for design UBC-1.4 was 0.022 radians. This again reflects
the effect of concentrating the negative moment redistribution at
a particular section.
The inelastic deformation behavior observed for designs I-1.4, II-1.4,
and ITI-1.4 (Figs. 19 and 20) indicate the following:
a. The moment redistribution associated with elimination of bar cur-
tailment at the interior beam-column joint has only a minor effect

on inelastic rotation demands except at floor level 7. A peak in
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the chc envelope is evident at this level in design ITI-1.4

and is attributed to the reduction of the positive moment capacity
at section 3 from a value of 581 kN-m in design I-1.4 to 401 kN-m
in design II1I-1.4.

b. Inelastic deformation demands in the exterior span for design
II-1.4 are significantly larger than those for design I-1.4.
Maximum ezcc values are more than 70 percent larger in response to
the EC ground motion and more than 20 percent larger in response to
the DPD motion. The larger deformation demands in design II-1.4
is attributed to the degree of negative moment redistribution
associated with this design (Table 1).

¢. The relatively larger increase in inelastic deformation demand for

design II-1l.4 in response to the EC ground motion corresponds to
the observed increase in global response parameters discussed
earlier [Section 4.3.3(i)].

An important consideration in evaluating seismic inelastic deformations
is whether or not the indicated demands are compatible with expected capacities
of reinforced concrete beams. Based on the experimental results of several
investigators [22,23], the required inelastic deformations in response to the
EC ground motion are compatible with expected capacities. However, the
magnitude of deformations recorded in response to the DPD ground motion may
lead to severe structural damage and may result in structural failure if high
nominal shear stresses (Vu/bwd) are also present unless the transverse
reinforcement is specifically designed and detailed to develop these deforma-
tions. This is especially true for UBC designs in which maximum plastic

rotations of 0.02 radians and egcc values larger than 0.06 radians are required.
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(iii) TLocal inelastic behavior, columns.

A final concern in evaluating nonlinear dynamic response is the
adequacy of the imposed weak girder--strong column design criterion. The
analytical results indicate that column yielding does not occur during
response to the EC ground motion. However, the column curvature ductility
data presented in Figs. 21-24 illustrates that column yielding (indicated
by a curvature ductility lérger than one) does occur at various locations
through the height of the frame and at the foundation during response to
the DPD motion. Column yielding is attributed in part to the increase in
beam capacities due to strain hardening (a post yield slope of 3 percent was
assumed in the moment —curvature relationship.) In addition, the distri-
bution of beam moments between the column sections above and below a
given joint was typically different from that assumed in design.

In design, the beam moments at a given joint were distributed to
the columns at the joint on the basis of an elastic stiffness distribu-
tion factor [6]. However, higher mode response and formation of beam
plastic hinges can alter the moment distribution at a joint to the extent
that the sum of the beam capacities is resisted by only one of the columns
at the joint.

Column ductilities presented in Fig. 21-24 indicate that column
yielding occurs primarily at the top of interior columns. In most cases,
columns experienced only one yield excursion and the maximum eicc values,
excluding the column sections at the foundation level, varied from
0.001 radians in design ULC-2.1 to 0.003 radians in design III-1.4.

At no time during the response of any design did the same column yield simul-
taneously at top and bottom. The recorded inelastic deformation demands are

well within expected deformation capacities of ductile R/C columns [24].
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Significant inelastic column response does occur in the column

. : . . acc .
sections at the foundation level in all designs. Values of Gp varied
from 0.004 radians in design I-2.1 to 0.017 radians in design UBC-1.4.
These values reflect one major inelastic excursion and, at most, four
minor excursions. For example, in design UBC-1.4, the maximum plastic

: . . . acc
rotation due to a positive excursion was 0.013 radians, and the 6p
value of 0.017 radians was due to two negative.excursions and one additional
positive excursion. On the basis of recent experimental results [24], the
indicated inelastic rotation demands may be attained if proper reinforce-

ment details are provided.

4.4 Concluding Remarks

The nonlinear dynamic results discussed above do not include the
effect of cyclic stiffness degradation~-a common characteristic of the
inelastic cyclic behavior of reinforced concrete members. It is hoped
that the future development of accurate and relatively simple analytical
models will enable the effect of this phenomenon on inelastic rotation

demands and global-response parameters to be evaluated.
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5. CONCLUSIONS AND RECOMMENDATIONS

In this chapter, conclusions are drawn from results presented in
the body of the report. Recommendations are made for future investiga-
tions designed to clarify some of the questions raised by this study.

The inelastic seismic design procedure which formed the basis of
this report enablés the designer to consider essential features of the
comprehensive design philosophy in a consistent manner. The design
idealizations used to evaluate performance at serviceability, damage-
ability, and ultimate limit design states reflect the expected behavior
at these respective limit states.

For example, it is generally accepted that design for a severe
earthquake ground motion is controlled by the ultimate limit state and
significant inelastic behavior is expected. Current design practice,
however, is typically based on minimum seismic design forces and the
results of linear elastic analysis. Consequently, actual behavior
and the behavior assumed in design are inconsistent.

In the proposed design procedure, actual and assumed behavior are
based on the same limit state. Member design forces are determined by an
inelastic design procedure which includes moment redistribution and which
consequently takes advantage of the structure's capacity to dissipate
energy through controlled inelastic deformations.

Some beam moment redistribution is possible following current ACI [9]
and UBC [4] stipulations. Code-allowed redistribution is strictly intended
for gravity load acting alone. It is felt, however, that its use is
appropriate for seismic-resistant design in which a weak girder-strong

column philosophy is followed.
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It is felt that the inelastic design method proposed in this report
provides a more realistic approach to moment redistribution in seismic-
resistant design than the method defined in ACI. The coupling of practical
and strength design requirements and the fact that all design capacities
in a given story depend on each other--characteristics of the proposed
method--typically result in a more efficient moment redistribution than
that obtained employing the ACI method.

Previously it was concluded that the ACI limitation on magnitude
of moment redistribution (MR) is conservative. The intent of this con-
clusion requires an explanation. The feature thought conservative is
the dependency of MR on steel content. The reason for the dependency is
to ensure sufficient inelastic deformation capacity to attain the expected
redistribution. However, design of ductile moment resisting frames in
accordance with present seismic code requirements should result in plastic
hinge zones with sufficient deformation capacity to obtain most practical
moment redistributions. Consequently, it is felt that in seismic-resistant

design, MR need not depend on steel content.

It should be emphasized, however, that the upper bound of 20 percent
imposed by ACI may not be conservative. The required deformation capacities
for design II-1.4, in which MR values of 35 percent were typical, were signifi-
cantly larger than those for design I-1.4 in which MR was typically less than
20 percent (except in the upper stories). A study is required to
evaluate a practical upper bound on MR. Based on preliminary results

for design B, it appears that because of the upper bound constraint
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imposed on the positive capacity at a given section

Mto< Mo
i — 1

a moment redistribution greater than 20 percent (the maximum allowed by ACI)

may result in an impractical design, particularly in the lower stories.

Although the current automated features of the proposed design
procedure relieve the designer of a time consuming computational chore,
further program development is warranted. The central feature of this develop-
ment would be a design/analysis'control language which would interface a
series of design and analysis operations. The overall structure of the
proposed program would maximize interaction between the designer and
computer and minimize the data preparation necessary for this interaction.

The inelastic design results (designs II-1.4 through IV~1.4, and
I-2.1) clearly demonstrate that consideration of realistic steel detailing
results in an objective function which tends to maximize negative design
capacities and minimize positive capacities. The resulting distribution
of design capacities is contrary to what may be considered an optimum.
Typically, in seismic-resistant design, it is desirable to reduce negative
capacities in order to alleviate congestion of reinforcement at beam—
column joints.

The results for design II-1.4 illustrate that by imposing proper
design constraints a reduction in negative capacities can be achieved
within the context of the proposed design procedure. Although significant
negative moment redistribution was achieved in design II-1.4, the fact
that the redistribution was concentrated at the interior beam~column
joint resulted in relatively large inelastic deformation demands. This
is undesirable.

An important conclusion with respect to the proposed optimum design

model is that minimizing the volume of flexural reinforcement is not the
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best criterion for selecting flexural steel distribution in a seismic-
resistant reinforced concrete frame. The results for the various

designs obtained in this study indicate that the volume of reinforcement
is insensitive to variations in the distribution of beam design capa-
cities. The design solution (required beam capacities) is bounded by
equilibrium requirements and serviceability and practical constraints.
Consequently, if one design capacity changes,an opposing change typically
occurs at another section. The net result is that the total volume of
reinforcement remains essentially the same.

In view of the above conclusions, it is apparent that the optimum
design problem should be modified. As suggested earlier, one possible
modification is to force a reduction in negative design capacities by
decreasing the upper bound constraint on negative capacities to a value
less than M;UE . Except in the upper stories, such a constraint results
in a uniform moment redistribution at each floor and throughout the
height of the structure (Table 4). The consequence of this design
modification on nonlinear dynamic response-—in particular, on inelastic
deformation demands--should be evaluated in the future.

Another possible modification is to formulate a new objective
function. The results obtained in this study indicate that, although
material quantities are relatively insensitive to beam design moment
capacities, response parameters such as local inelastic deformation
are sensitive to these capacities. However, it is difficult to formu-
late a function which relates inelastic rotations to beam design capacities.

One possibility is to formulate an objective function which would
assign an equal weight to each beam design capacity. The appropriate
form of the design solution would be achieved by imposing proper design

constraints. Such a formulation has two advantages over the current
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objective function. First, it would result in a linear programming problem.
Consequently, the computational effort (by the computer) required to obtain
beam design capacities would be reduced. 1In addition, the characteristics
of the resulting design will be those which the designer deems appropriate

for the given situation.

Another possible form for a new objective function is to assume that
the positive and negative steel in a given span is constant. This assumption
reduces the number of required beam design capacitiées (for the three-bay
frame considered here from 8 to 4) and, also, results in a linear objective
function which is easily evaluated. Consequently, the computational effort
required to solve the optimization problem is reduced. With respect to prac-
ticality, this design assumption simplifies beam construction by eliminating
bar curtailment.

One shortcoming of the constant steel assumption is that the required
volume of flexural reinforcement increases. However, this increase must be
weighed against the resulting benefits. Elimination of bar curtailment will
reduce fabrication costs which may offset the increase in volume. In addi-
tion, as discussed in Ref. 25, inelastic deformation demands during severe
earthquake excitations are reduced in a design found by assuming constant
positive and negative beam steel.

A future study is required to investigate the relative merits of the
objective functions described above with respect to required material vol-
umes and inelastic behavior during earthquake excitation.

A comparison of the designs based on different seismic~force levels in-
dicated that, although UBC design forces were approximately 50 percent

smaller than the spectral design forces, the required material volumes

differ by less than 20 percent. The increased material volumes for designs
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based on spectral design forces must be weighed against the resulting bene-
fits. Larger seismic design forces increase strength and stiffness. The
increased stiffness will reduce response under both service and ultimate-
load conditions. The increase in strength will provide greater safety and
also reduce nonlinear response during extreme events such as severe earth-
quake ground shaking.

A comparison of global and local behavior in response to the two
ground motions considered in this study demonstrates the difficult task con-
fronting the structural engineer in selecting design earthquakes. The signi-
ficantly larger response to the DPD ground motion indicates that all
characteristics of possible ground motions at a given site must be defined,
not just the peak ground acceleration.

A comparison of the behavior of the various designs considered here
indicates that frame flexibility is an important system parameter affecting
response to earthquake ground motions with characteristics similar to the EC
motion. Frame strength, however, has a significant effect on response to
ground motions with characteristics similar to the DPD (in particular, long-
duration acceleration pulses). On the basis of this observation, it is
evident that selection of appropriate seismic design criteria depends on
proper characterization of possible ground motion excitations ;t the selected
building site.

A comparison of designs I-1.4 and I-2.1 and designs UBC-1.4 and UBC-2.1
indicates that changes in required concrete and steel volume--which occur as
a result of decreasing O nax from 2.1 percent to 1.4 percent--offset each
other. However, the resulting increase in stiffness improves performance

under service load conditions (by as much as 40 percent) as well as under

severe seismic excitations with characteristics similar to the EC ground
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motion. In addition, the larger seismic design forces associated with the
stiffer frames increase strength and, consequently, improve response to
ground motions with characteristics similar to the DPD motion.

The various design criteria imposed during member sizing caused the
column sizes to be the same in all designs considered in this study.
Basically, in order to satisfy the criterion that the design axial load be
less than the balanced failure axial load, relatively large columns were
required at ground level. 1In subsequent column sizing, this fact, in
conjunction with the constraint on the increment in column depth (40 mm)
and the constraint that the column size be the same for at least two stories,
resulted in oversized columns. In other words, the column size was con-
trolled by the design constraints enumerated above, and minimum steel
requirements typically controlled reinforcement selection. Consequently,

a factor of safety against column yielding (column overstrength factor) is
built into the design.

This overstrength is in addition to an imposed factor of 1.2 and the
fact that a capacity reduction factor of 0.7 is used in column design.
Since unfactored beam and column capacities were used in subsequent non-
linear analyses, the columns have been overdesigned with respect to the
beams by a factor of at least 1.7. This factor is typically larger because
of oversized columns.

The results of nonlinear dynamic analysis indicate that the column
overdesign discussed above may be excessive. Column yielding did not occur
during response to the EC ground motion, and yielding in response to the
DPD motion was limited.

It is felt that the current column design operation should be re-

evaluated with the intent cf optimizing column overstrength. In particular,
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the current limitation on the level of axial force may be too stringent,
and the consequences of relaxing this limitation should be explored.
Park [26] has indicated that significant inelastic deformation can be
developed in tied columns with axial force levels as high as 0.6 fé Ag

provided that the column transverse reinforcement is sufficient and

properly detailed.
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TABLE 4

COMPARISON OF NORMALIZED BEAM DESIGN CAPACITIES FOR

DESIGNS BASED ON DIFFERENT UPPER BOUND CONSTRAINTS

ON NEGATIVE DESIGN CAPACITIES

Floor | Negative Section Positive Section
Level | Design| 1 ° 2 3 11 2 | 3
Roof A '1.10 | .81 | .63 222 - -
B 1.10 | .81 .63 | 7.22 - ~
10 A .56 | .62 | .76 | 1.83 | 1.48 .61
B .56 | .79 | .66 | 1.83 . 1.48 .61
: T ; f
| | | ! |
9 A .75 | 1.00 | .78 | 1.09 | .98 .05
B (80| .80 | .80 .09 | 1.16 | 1.08
} ;
N S R e T -
8 A .74 | 1.00 | 1.00 | .87 | .82 .21
.80 .| .80 .80 15 1 1.32 14
7 .67 | 1.00 | 1.00 89, .81 .03
B | .80 . .80 | .80 | 1.03 ; 1.22 .05
T ‘; )
6 A .81 | 1.00 | 1.00 .85 | .95 .05
B .80 | .80 .80 13 1 1.19 .27
5 A~ | .71 0 1.000 |°1.00 | .73 1.09 | .97
B .80 .80 .80 .06 1 1.14 14
4 A .87 . 1.00. | 1.00 | .75 = 1.13 | .96
B .80, .80 | .80 140 1.13 .36
3 A .67 | 1.00 | 1.00 | .64  1.36 . .91
B | .80 .80 | .80 | 1.07 LIl & 1.19
i 2
2 .96 ¢ 1.00 | 1.00 .76 .06 .88
B | | .05 .14 .39

.80 | .80 : .80

fooec
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3

TABLE 6 MATERIAL VOLUMES, m

1

Flexural
Design Steel Concrete
UBC-2.1 2.09 126
UBC-1.4 1.91 136
I-2.1 2.31 136
I-1.4 2.26 153
I1-1.4 2.31 146
I11-1.4 2.27 153

TABLE 7 COMPARISON OF OBJECTIVE FUNCTION VALUES

CMg) /CM) 7 g 4
Floor Level Design I-1.4 Design III-1.4 | Design IV-1.4

Roof 1.000 1.022 1.000
10 1.000 1.018 1.080
9 1.000 1.020 1.092

8 1.000 1.013 1.033

7 1.000 1.012 1.039

6 1.000 1.008 1.021

5 1.000 1.007 1.020

4 1.000 1.008 1.015

3 1.000 1.005 1.015

2 1.000 1.003 1.007
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TABLE 8 FRAME PERIODS FOR FIRST FIVE MODES (IN SECONDS)

Mode
Design 1 2 3 ' 4 5
UBC-2.1 1.386 .492 .276 .184 132
UBC-1.4% 1.241 441 .252 .170 .123
1-2.1% 1.241 L441 .252 .170 .123
T-1. 4%% 1.076 .385 .222 .152 112
11-1.4 1.134 .406 234 .159 117
ITI-1.4%% 1.076 .385 .222 .152 .112

*These designs have the same beam-column sizes.
*#%These designs have the same beam-column sizes.
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DESIGN LOADS (kN/m?)

WIND LOAD: 1.20
GRAVITY LOADS: oL* L.L.
ROOF 7.22 .96
TYPICAL FLOOR 6.73 2.39
COLUMN FLOOR
LINE | 2 3 4 STORY
ROOF
T}
9
9
8
8
2@366m 7
=32.94m 7
6
6
5
5
4
4
3
3
2
2
4.88m |
R o L 7 FRAMES SPACED
l— | | ! at 8.23m
762m  9l4m  762m

*DOES NOT INCLUDE BEAM DEAD WEIGHT

FIG. 1 DESIGN EXAMPLE

=|rI;’F€EL_H\/lINARY DESIGN PHASE]

I. PRELIMINARY ANALYSIS

2. PRELIMINARY
DESIGN

3.ANALYSIS OF PRELIM~

OBJECTIVE:
ESTABLISH DESIGN CRITERIA &
DETERMINE DESIGN FORCES

OBJECTIVE:

DETERMINE MEMBER SIZES
AND REINFORCEMENT

INARY DESIGN
OBJECTIVE:
DETERMINE ACCEPTABILITY
OF DESIGN

—

IF UNACCEPTABLE

ACCEPTABILITY
CHECK D

IF ACCEPTABLE

¥
@AL DESIGN PHASE]

(4. FINAL DESIGN

5. RELIABILITY CHECK

OBJECTIVE:
DETERMINE FINAL REINFORCE-
MENT DISTRIBUTION

OBJECTIVE:

EVALUATE RELIABILITY OF
FINAL DESIGN AND OBTAIN
GUIDELINES FOR MEMBER
DETAILING TO ENSURE A
DUCTILE STRUCTURE AND
BUILDING

FIG. 2 FLOW CHART OF DESIGN PROCEDURE
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FIG. 8 TYPICAL DESIGN MOMENT ENVELOPE
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Design
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Initial Hinge Formation Design Overstrength%
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FIG. 12 STORY DISPLACEMENT ENVELOPES FOR DESIGNS
UBC-1.4, UBC-2.1, I-1.4 AND I-2.1
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ROOF ! i Design
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FIG. 13 STORY DRIFT ENVELOPES FOR DESIGNS UBC-1.4, UBC~2.1,
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,’ Design
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ROOFT [ Design
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ROOF Design
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Y —~———-—UBC-2.|
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FIG., 17 ACCUMULATED BFAM PLASTIC ROTATIONS IN EXTERIOR
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(@) PACOIMA
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Design .
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0
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FIG. 18 ACCUMULATED BEAM PLASTIC ROTATIONS IN INTERIOR
SPAN FOR DESIGNS UBC-1.4, UBC-2.1, I-1.4 AND I-2.1
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{a) PACOIMA (b) EL CENTRO

1 i § 1 i i]
0 02 04 .06 0 .02 04 .. 06
ACCUMULATED BEAM PLASTIC ROTATION(@p )

FIG. 19 ACCUMULATED BEAM PLASTIC ROTATIONS IN EXTERIOR
SPAN FOR DESIGNS I~1.4, II-1.4 AND ITI-1.4
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5
4
3
2
(a) PACOIMA (b)EL CENTRO
0 .012 0’4 56 0] .(1)2 (1)4 .016

ACCUMULATED BEAM PLASTIC ROTATION (G5

FIG, 20 ACCUMULATED BEAM PLASTIC ROTATIONS IN INTERIOR
SPAN FOR DESIGNS I-1.4, II-1.4 AND ITI-1.4
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3 Design
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3 ———1-14
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-\(b)BOTTOM
=
LR
L |\ \.§1‘
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FIG. 21 EXTERIOR COLUMN CURVATURE
DUCTILITIES DURING RESPONSE TO THE
DERIVED PACOIMA DAM GROUND MOTION
FOR DESIGNS UBC-1.4, UBC-2.1, I-1l.4
AND I-2.1

Design
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— — — UBC-2.|
——— I-14
————— 1=2]
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J
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FIG. 22 INTERIOR COLUMN CURVATURE DUCTILITIES
DURING RESPONSE TO THE DERIVED PACOIMA DAM
GROUND MOTION FOR DESIGNS UBC-1.4, UBC-2.1,
I-1.4 AND I-2.1
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A.1 Numerical Example of Cutting Plane Algorithm

APPENDIX A

In order to illustrate the cutting plane algorithm described in

Section 3.2, the following problem is solved here in detail.

Find M., M, > O

1> 72

which minimize C(M,) = 4M 2 4 3M,.2

1

2

and which satisfy the constraints

M1 + 3M2 > 5 (A.1)
2Ml + O.SM2 > 2
In terms of the notation in equation (3.7):
811 = 1.0 81y = 3.0 b1 = 5.0
8y1 = 2.0 Byy = 0.5 b2 = 2.0
1y = 1 1y o 1
vcl(Mk ) = 8M; VCZ(Mk ) 6M2
Assuming an initial solution, Mi1 = [3.0, 4.0],%
the constraint
1
Z - vci(Mk ) > ¢, (A.2)
can be evaluated. First
1 = = 24
Cl(Mk ) 8(3)
and
ly = = 24
CZ(Mk ) 6(4)
Then
= 1y - M1 = 2 4 3(4)2 - 24(3) - 24(4)
c, = car ) - ve, (g Hml = 4(3)2 + 3 (3)
= -84

The constraints for the first iteration (step

1.0 3.0 0
2.0 0.5 0
-24, -24, 1.0

This is an arbitrary choice.

~

=
-

Iv

5

[
o)

1

are.:

(A.3)

However, it does satisfy the constraints.

A~-1



By employing a standard simplex algorithm, the solution to this linear

problem is found to be

2 - 2 = =
Ml 2.75 M2 0.75 Z 0

Evaluating a new inequality constraint based on the latest solution, Miz,

we have
vcl(Mkz) = 8(2.75) = 22
and VCZ(MkZ) = 6(0.75) = 4.5
c, = 4(2.75)% + 3(.75)2 - 22(2.75) - 4.5(.75)
= -31.94
and

-2M - 4.5M, +Z > -31.94

This constraint is added to the three constraints defined by equation (A.3)

and the resulting linear programming problem is solved. The solution is

3 = 3 = =
Ml 1.192 M2 1.269 Z=0

The process described above is repeated for the new solution (Mi3) and the
following constraint is added:
-9.54M, - 7.61M, +Z > -10.52

The solution of the resulting linear programming problem is

b T =
M1 = 0.636 MZ = 1.45 Z = 6.63

After forming a new constraint, the solution of the resulting linear pro-
gramming problem is the same as in the previous iteration, except that Z
becomes 7.97, the minimum value of C(Mi)' Therefore, the optimum solution

is:

i

M 0.636

1
M

it

9 1.45

A.2 Evaluation of the Gradient of C(Mil

The cutting plane method is employed to solve the nonlinear optimization
problem described in this report. 1In this method, the original problem of

finding a vector of beam design capacities, Mi (i = 1, N) which minimizes

C(Mi) > 0 (A.4)

A-2



and which satisfies the linear constraints

g.. M >b, (j =1, NC) (A.5)

is replaced by the equivalent problem of minimizing a new variable, Z, such

that

(A.6)

The nonlinear constraint in equation (A.6) is linearized by the Taylor

series approximation
t t t
Z > c) + vea)ay - M) (A.7)

t, . . R .
where ME(Mk) is the current solution. In order to evaluate this constraint,
the gradient of the objective function, C(Mi) is required.

The objective function can be separated into two parts:
M = . + °
C(di) CC(Ml) CB(Mi) (A.8)

The term, CC(Mi), accounts for the column reinforcement. Since it is a linear

function in Mi [6], a typical VCC (Mk) is a constant equal to the coefficient
i

of Mi in CC(Mi). The term, CB(Mi) accounts for the beam reinforcement. For

the kth span, CB(Mi) is given by

By L L
e, ], = *J M (x, M) dx -£ My (x, M) ax +J My (=, M) dx
0 2 B
(A.9)
(34 B,
+J M, (x, M,) dx + J M3 dx + xM ¢ (B, - By) + F, (M)
0 B,



where

Moo= - -

T B L 2
R P i T
2 S Myt L 2

4 =
My =M,

W=1.2D.L.+ 1.0 L.L.

XM = 1/4 Max(|ay |, |, )

Bl =x @ Ahﬁx, Mi) = —XM
B, = x @ Mz(x, Mi) = -XM
B, = x @ Ml(x, M) = M,
B4 =x @ sz(x, Mi) = M3

and

FA(Mi) = A linear function in Mi which depends on the develop-

ment length and column width.

As noted the function, FA(Mi)’ in equation (A.9) is linear
Consequently, as for CC(Mi)’ the gradient of FA(Mi) is a vector
stants and is ignored in the subsequent discussion. In addition,
function XM is considered a constant in order to prevent possible

, . %
oscillation.

in M,.

i
of con-
the

solution

*The function, XM, may be written as 1/4 (]Mllélj + {M4|64j) where

it

8,

13 1if i = j, and

i

0 if i # j.

If [Mll_g IM, |, i =15 if not, j = 4. 1In this form, XM is obviously dis-

continuous.
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In expressing B, through B4 in terms of Mi’ it is convenient

1

to define

(M1 + M) M, + M)
_WLo, 1 57 WL 2 4T
81 =+ - and B, 5 i (A.10)
Then
- 22 -
WB, = —-Bli /Bl + 2W (XM Ml)
‘2
WB, = —th ‘/Bz + zw(M2 + XM)
(A.11)
- 2 _
WB3 = Bli /Bl ZW(M1 + M3)
and
_ (2 _
WB, = -B,* /82 +20(M, - M),

To facilitate differentiation of the integral terms of Cﬂ}%),

Leibnitz's rule for differentiating a definite integral is employed. If

L, ()
I(M,x) = F(M,x)dx (A.12)
L,
then
L. (M)
2 oL oL
diM,x) _ 9F (M, x) -2 1
e o dx F FOMLL,) o - FML,L)) =5 (A.13)
Ll(M)

For a typical span, five coefficients are required to define the gradi-

ent vector

aCc_ (M )
=__Bri{_k~ i=1,5. (A.14)

Ve
Bi 3Mi



Applying Leibnitz's rule to the first six terms in equation (A.9),

the following coefficients result:

3, (1) By oM, 38, L oM
Ve, = ———t— = - J - dx - Ml(Bl) — ( o dx
By M) ! oy ] 1
3
3B 9B
3 1
- M,(B,) - XM —
1537 S, oM,
3c, (,) B, i, 3B, L a,,
= — ._1. - = —
ey T T am J o, x5y j o, &
2 2 ] 2 2 4 2
2
3B, 3B,
oGy g, M,
3C. (M.) 5B 3B 9B
_ _BY4i 4 3., _ B 4
VCB3 = T M (34) aM i (33) aM (B3 134) M3(B4) 3M3
3B,
+ My(B3) Ens
Since, by definition
My, = Hy(B,)
M (By) = M3(33)
VC, =3B, - B
B, T P37 %
3C_ (M. ) By oM 3, /& aM 9B
_ BV 2 Ty [ T2 2
Ve T Tam 'J a3 oy j i, 9x + My(By) M,
4 4 4 4 My
0 B,

+ XM

3B

2

M,

4



B L
_ ey ( LaMy 9B [ oB4

S 1 1 ‘aM ] "'B—M—S— dx - Ml(B3) gﬁs— + XM
B

The differentiation and integration indicated in equation (A.15) have been

carried out explicitly prior to coding. For example,

BMJ_(X,M:-L) - _l + __).Ii.._..
BMl
and
o 5
e

The value of Bl is that found for the current solution, M;. In evaluating

8B, /aM, (i =1, 4; k = 1, 5), the sign of the radical in equation (A.11) is

taken to be the same as that used to find the values of B. through B, corre-

1 4

sponding to the current solution Mi.
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