ROCKING RESPONSE OF RIGID BLOCKS TO EARTHQUAKES

by

CHIK-SING YIM
ANIL K. CHOPRA
JOSEPH PENZIEN

Report to Sponsor:
National Science Foundation

COLLEGE OF ENGINEERING
UNIVERSITY OF CALIFORNIA · Berkeley, California
This investigation deals with the rocking response of rigid blocks subjected to earthquake ground motion. A numerical procedure and computer program are developed to solve the nonlinear equations of motion governing the rocking motion of rigid blocks on rigid base subjected to horizontal and vertical ground motions.

The response results presented show that the response of the block is very sensitive to small changes in its size and slenderness ratio, and to the details of ground motion. Systematic trends are not apparent: The stability of a block subjected to a particular ground motion does not necessarily increase monotonically with increasing size or decreasing slenderness ratio. Overturning of a block by a ground motion of particular intensity does not imply that the block will necessarily overturn under the action of more intense ground motion.

In contrast, systematic trends are observed when the problem is studied from a probabilistic point of view with the ground motion modelled as a random process. The probability of a block exceeding any response level, as well as the probability that a block overturns, increases with increase in ground motion intensity, increase in slenderness ratio of the block, and decrease in its size.

It is concluded that probabilistic estimates of the intensity of ground shaking may be obtained from its observed effects on monuments, minarets, tombstones and other similar objects provided suitable data in sufficient quantity is available, and the estimates are based on probabilistic analyses of the rocking response of rigid blocks, considering their nonlinear dynamic behavior.
ROCKING RESPONSE OF RIGID BLOCKS TO EARTHQUAKES

by

Chik-Sing Yim
Anil K. Chopra
Joseph Penzien

A Report on Research Conducted Under
Grants ENV-76-04264 and PFR-79-08261
from the National Science Foundation

Report No. UCB/EERC-80/02
Earthquake Engineering Research Center
University of California
Berkeley, California

January 1980
ABSTRACT

This investigation deals with the rocking response of rigid blocks subjected to earthquake ground motion. A numerical procedure and computer program are developed to solve the nonlinear equations of motion governing the rocking motion of rigid blocks on rigid base subjected to horizontal and vertical ground motions.

The response results presented show that the response of the block is very sensitive to small changes in its size and slenderness ratio, and to the details of ground motion. Systematic trends are not apparent: The stability of a block subjected to a particular ground motion does not necessarily increase monotonically with increasing size or decreasing slenderness ratio. Overturning of a block by a ground motion of particular intensity does not imply that the block will necessarily overturn under the action of more intense ground motion.

In contrast, systematic trends are observed when the problem is studied from a probabilistic point of view with the ground motion modelled as a random process. The probability of a block exceeding any response level, as well as the probability that a block overturns, increases with increase in ground motion intensity, increase in slenderness ratio of the block, and decrease in its size.

It is concluded that probabilistic estimates of the intensity of ground shaking may be obtained from its observed effects on monuments, minarets, tombstones and other similar objects provided suitable data in sufficient quantity is available, and the estimates are based on probabilistic analyses of the rocking response of rigid blocks, considering their nonlinear dynamic behavior.
TABLE OF CONTENTS

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>ABSTRACT</td>
<td>iii</td>
</tr>
<tr>
<td>TABLE OF CONTENTS</td>
<td>v</td>
</tr>
<tr>
<td>LIST OF FIGURES</td>
<td>vii</td>
</tr>
<tr>
<td>INTRODUCTION</td>
<td>1</td>
</tr>
<tr>
<td>APPROXIMATE ANALYSIS OF OVERTURNING</td>
<td>10</td>
</tr>
<tr>
<td>Free Vibrations</td>
<td>10</td>
</tr>
<tr>
<td>Overturning by Single-Pulse Excitations</td>
<td>11</td>
</tr>
<tr>
<td>Overturning by Earthquake Motion</td>
<td>15</td>
</tr>
<tr>
<td>RESPONSE BEHAVIOR</td>
<td>16</td>
</tr>
<tr>
<td>Analysis Procedure</td>
<td>16</td>
</tr>
<tr>
<td>Simulated Ground Motions</td>
<td>17</td>
</tr>
<tr>
<td>Influence of System Parameters</td>
<td>20</td>
</tr>
<tr>
<td>Influence of Ground Motion Properties</td>
<td>23</td>
</tr>
<tr>
<td>Response Sensitivity</td>
<td>28</td>
</tr>
<tr>
<td>RESPONSE EXCEEDANCE AND OVERTURNING PROBABILITIES</td>
<td>32</td>
</tr>
<tr>
<td>ESTIMATION OF GROUND MOTION INTENSITY</td>
<td>38</td>
</tr>
<tr>
<td>CONCLUSION</td>
<td>43</td>
</tr>
<tr>
<td>REFERENCES</td>
<td>45</td>
</tr>
<tr>
<td>APPENDIX I - NOTATION</td>
<td>47</td>
</tr>
<tr>
<td>APPENDIX II - GROUND MOTION SIMULATION PROCEDURE</td>
<td>49</td>
</tr>
</tbody>
</table>
LIST OF FIGURES

Figure	Description	Page
1 | Rocking Block | 5
2 | Moment-Rotation Relation for Slender Blocks (H/B > 3) | 5
3 | Variation of Coefficient of Restitution, Based on Conservation of Angular Momentum, with Slenderness Ratio | 9
4 | Free Vibration Period T of Block Rocking with Amplitude θ₀ (Housner, 1963) | 9
5 | Maximum Acceleration a₀ of Single Pulse Required for Overturning a Block | 13
6 | Maximum Acceleration a₀ of Single Pulse Required for Overturning of Blocks | 14
7 | Ground Accelerations Recorded During Four Earthquakes | 18
8 | Spectral Density and Intensity-Time Functions for Simulated (Horizontal and Vertical) Ground Accelerations | 19
9 | Simulated Horizontal Ground Accelerations with Ensemble Average of Peak Acceleration = 1 g | 21
10 | Simulated Vertical Ground Accelerations with Ensemble Average of Peak Acceleration = 0.6 g | 22
11 | Response of Several Blocks to the Same Simulated Motion. Parameters: Slenderness Ratio H/B, Size R, and Coefficient of Restitution are Varied One at a Time | 24
12 | Response of Blocks of Varying Slenderness Ratio H/B to the Simple Ground Acceleration Shown. Size Parameter R = 10 ft. and Coefficient of Restitution e = 0.925 for all Blocks | 25
13a | Response of a Block, R = 12 ft. and H/B = 5, to Several Simulated Motions from an Ensemble with Average Peak Acceleration = 0.4 g | 27
13b | Response of a Block, R = 10 ft. and H/B = 5, to Simulated Motion No. 17 (Fig. 9) Scaled by Factors as Shown | 27
14 | Response of a Block with R = 12 ft. and H/B = 5 to Simulated Ground Motions. The Response to (A) Horizontal Ground Motion and (B) Horizontal and Vertical Ground Motions is Presented for Each Situation | 29
15 | Response of a Block (R = 10 ft., H/B = 4) to a Rectangular Pulse of Acceleration = 0.26 g and Duration = 2.1 Sec. | 31
List of Figures (continued)

<table>
<thead>
<tr>
<th>Figures</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>16</td>
<td>Additional Energy $V(\theta)$ Required to Overturn (Under Static Conditions) a Block with Initial Rotation θ. The Graph Depends on θ_c but only Slightly.</td>
</tr>
<tr>
<td>17</td>
<td>Cumulative Probability Distribution Functions for Maximum Rotation of a Block, $R = 10$ ft. and $H/B = 5$, for Various Values of the Coefficient of Restitution e. Ensemble Average of Peak Horizontal Ground Acceleration $= 0.4$ g.</td>
</tr>
<tr>
<td>18</td>
<td>Cumulative Probability Distribution Functions for Maximum Rotation of a Block, $R = 10$ ft., and $H/B = 5$. Ensemble Average of Peak Acceleration is Varied: 0.3 g, 0.4 g, 0.5 g, and 0.6 g for Horizontal Ground Motion: 0.18 g, 0.24 g, 0.30 g, and 0.36 g for Vertical Ground Motion.</td>
</tr>
<tr>
<td>19</td>
<td>Cumulative Probability Distribution Functions for Maximum Rotation of Blocks Subjected to Ensembles of Horizontal and Vertical Ground Motions, with Average Values of Peak Acceleration $= 0.4$ g and 0.24 g, Respectively.</td>
</tr>
<tr>
<td>20</td>
<td>Overturning Probability for Blocks Subjected to Ensembles of Horizontal and Vertical Ground Motions, with Average Values of Peak Acceleration Varied as Shown.</td>
</tr>
<tr>
<td>21</td>
<td>Overturning Probability for Blocks Subjected to Ensembles of Horizontal and Vertical Ground Motions, with Average Values of Peak Acceleration $= 0.4$ g and 0.24 g, Respectively.</td>
</tr>
</tbody>
</table>
INTRODUCTION

Toward the latter part of the 19th century and in the early part of this century, before instruments had been developed to record strong ground motions, procedures were proposed to estimate the intensity of ground shaking from its observed effects on tombstones and monumental columns, whether they overturned or remained standing [1-4]. In these procedures, the free standing tombstone or column was idealized as a rigid block resting on a rigid horizontal base, and the ground motion was either idealized as an instantaneous impulse or its effects were represented by a static horizontal force acting on the block. Formulas were derived to calculate the ground acceleration necessary to overturn a block of given dimensions [1-4]. The great interest in this approach led to a proposal for its use in seismological observatories to determine the maximum ground acceleration during earthquakes. The idea was to erect a family of columns, all with rectangular sections but varying in slenderness ratio [1-4]. When subjected to ground motion some of these columns might overturn; others would remain standing. From such information, using the above mentioned formulas, the maximum ground acceleration could be estimated.

Modern strong-motion accelerographs have now been available for a few decades and have been deployed in seismic areas. Several hundred recordings have been obtained, most of them in the last ten years. However, because of the rarity of strong earthquakes, their seeming proclivity occur in uninstrumented areas, and the localized extent of the really strong shaking, there are wide gaps in the present day collection of strong ground motion accelerograms. For example, the shaking in the vicinity of the causative fault has been recorded only a few times during Richter Magnitude 7 earthquakes and never in a truly great (Magnitude 8) earthquake. Thus, estimates
of ground acceleration based on the approach mentioned earlier could provide useful supplements to the modern recorded data, which would be useful in specifying design earthquakes of very long return periods, suitable for nuclear power plants and major dams near population centers. Available for such calculations is a wealth of historical information from seismic areas of the world which were the centers of the ancient Roman, Greek, Chinese, and Indian civilizations. Some of the historical monuments in these areas were destroyed by earthquakes, others withstood many destructive earthquakes. Such an approach was recently employed to estimate the accelerations in the epicentral region of the 1975, Ohita earthquake in Japan [5].

In almost every destructive earthquake in the Eastern Mediterranean and Middle Eastern regions, free standing columns of Greek and Roman monuments and minarets have survived undamaged in earthquakes that have caused spectacular destruction around them. In some cities in India, free-standing stone columns that supported heavy statues remained standing although at the end of the earthquake they were surrounded by heaps of debris that had been seemingly more stable structures. Tall, slender stone pillars in graveyards have survived strong ground motion whereas boxlike electric power transformers have rocked and overturned. During the Chilean earthquakes of 1960, several golf-ball-on-a-tee type of elevated water tanks survived the ground shaking whereas much more stable-appearing reinforced concrete elevated water tanks were severely damaged. In order to explain such anomalous behavior, the above mentioned analyses of overturning of rigid blocks, proposed several decades ago, are inadequate, and it is necessary to consider the dynamics of the system.

Motivated by the observations of damage to water tanks in the 1960 Chilean earthquakes, Housner was the first to systematically investigate
the dynamics of a rigid block on a rigid horizontal base undergoing horizontal motion [6]. Representing the ground acceleration as a rectangular pulse and as a half-cycle sine-wave pulse, equations were derived for the minimum accelerations (which depend on the duration of the pulse) required to overturn a block. The approach employed in obtaining these equations is valid only for single pulse excitations which, if large enough, would overturn the block without rocking and the associated impacts. Smaller accelerations than specified by these equations may set the block to rocking but will not overturn it. It is, however, possible to overturn the block with smaller accelerations if a number of pulses act successively, a characteristic of ground accelerations during earthquakes. Using an energy approach and idealizing the ground motion as white noise, Housner presented an approximate analysis of the dynamics of rigid blocks subjected to such excitations. From these results he showed that there is an unexpected scale effect which makes the larger of two geometrically similar blocks more stable than the smaller block. Moreover, the stability of a tall, slender block subjected to earthquake motion is much greater than would be inferred from its stability against a static horizontal force, employed to represent earthquake effects in the very simple analysis mentioned above. Thus, Housner's work led to important results.

Motivated by the need to design concrete blocks to provide radiation shielding in particle accelerator laboratories, rigid blocks were tested on the Berkeley shaking table [7]. These experiments demonstrated that the rocking response of a rigid block is very sensitive to the boundary conditions, the impact coefficient of restitution, and the ground motion details.

In the first part of this report, the dynamics of rocking rigid blocks is studied with the aim of understanding the sensitivity of response to
system and ground motion properties. The problem is next examined from a probabilistic point of view to identify, if possible, any predictable behavioral trends in spite of the response sensitivity. Finally, the implications of the results for estimating the intensity of ground shaking from its observed effects on tombstones, monumental columns, and other similar objects are presented.

GOVERNING EQUATIONS

A rigid block subjected to horizontal and vertical ground accelerations of the rigid base is shown in rotated position in Fig. 1. The coefficient of friction is assumed to be sufficiently large so that there will be no sliding between the block and the base. Depending on the ground acceleration, the block may move rigidly with the ground or be set into rocking; in the latter case, it will oscillate about the centers of rotation O and O'. It is assumed that the block and base surfaces in contact are perfectly smooth so that the block will rock around the edges O and O' and no intermediate location.

When subjected to base accelerations \(\frac{a_x}{g} \) in the horizontal direction and \(\frac{a_y}{g} \) in the vertical direction, the block will be set into rocking when the overturning moment of the horizontal inertia force about one edge exceeds the restoring moment due to the weight of the block and vertical inertia force:

\[
\frac{W}{g} \frac{a_x}{g} H > \left(\frac{W}{g} + \frac{W}{g} \frac{a_y}{g} \right) \frac{B}{2}
\]

\[
a_x > \frac{B}{H} g \left(1 + \frac{a_y}{g} \right)
\]

(1)
FIG. 1 ROCKING BLOCK

FIG. 2 MOMENT-ROTATION RELATION FOR SLENDER BLOCKS (H/B ≥ 3)
where \(W \) is the weight of the block, \(g = \text{acceleration of gravity} \), and it is assumed that the geometric and gravity centers for the block coincide.

The rigid block will oscillate about the centers of rotation \(0 \) and \(0' \) when it is set to rocking. The equations of motion of the block, governing the angle \(\theta \) from the vertical (Fig. 1), subjected to horizontal and vertical ground accelerations \(a^x_g(t) \) and \(a^y_g(t) \) are derived by considering the equilibrium of moments about the centers of rotation. These equations may be expressed as

\[
I_o \ddot{\theta} + W \left(1 + \frac{a^y_g(t)}{g} \right) R \sin(\theta_c - \theta) = - \frac{W}{g} R \cos(\theta_c - \theta) a^x_g(t) \quad (2)
\]

when the block is rocking about \(0 \), and

\[
I_o \ddot{\theta} - W \left(1 + \frac{a^y_g(t)}{g} \right) R \sin(\theta_c + \theta) = - \frac{W}{g} R \cos(\theta_c + \theta) a^x_g(t) \quad (3)
\]

when it is rocking about \(0' \). In addition to the quantities defined earlier and in Fig. 1, \(I_o \) = mass moment of inertia of the block about \(0 \) or \(0' \); \(\theta_c = \cot^{-1}(H/B) \). Because of the trigonometric functions of \(\theta \), each of these equations is nonlinear. Another source of nonlinearity is the switching of equations back and forth between Eqs. 2 and 3 as the block rocks alternately about \(0 \) and \(0' \).

For slender blocks, \(\theta_c \) is small and it is reasonable to linearize the two equations of motion, individually, as follows:

\[
I_o \ddot{\theta} + WR \left(1 + \frac{a^y_g(t)}{g} \right) (\theta_c - \theta) = - \frac{W}{g} R a^x_g(t) \quad (4)
\]

for rocking about \(0 \), and
for rocking about O'.

The relation between a static moment applied about 0 and 0' and the resulting angle of rotation \(\theta \), identified from these linearized equations, is shown in Fig. 2. Interpreting this relationship in terms of the usual concepts of structural stiffness, the system has infinite stiffness until the magnitude of the applied moment reaches \(W e_c \); thereafter the stiffness is negative. When \(\theta \) exceeds \(\theta_c \), the critical angle, the block will overturn under static moment; but, as will be seen later, not necessarily under dynamic conditions. Obviously, the properties of the rocking block are much different than those of a linear single-degree-of-freedom system where the stiffness is positive and constant. The properties are reminiscent of a rigid-plastic system except that, for the rocking block, the second slope is negative and behavior is not hysteretic.

When the block is rotated through an angle \(\theta \), and released from rest with initial displacement, it will rotate about the point 0 as it falls back into the vertical position. If the impact is assumed to be such that there is no bouncing of the block, the rotation continues smoothly about the point 0' and the momentum about 0' is conserved. Thus,

\[
I_o \ddot{\theta}_1 - 2 \frac{W}{g} R B \dot{\theta}_1 \sin \theta_c = I_o \ddot{\theta}_2
\]

(6)

where \(\dot{\theta}_1 \) and \(\dot{\theta}_2 \) are the angular velocities before and after impact. The ratio of kinetic energy quantities after and before impact is

\[
r = \frac{1}{2} I_o \dot{\theta}_2^2 / \frac{1}{2} I_o \dot{\theta}_1^2 = (\dot{\theta}_2 / \dot{\theta}_1)^2
\]

(7)
Using Eq. 6, \(r \) can be expressed as

\[
\begin{align*}
 r &= \left[1 - \frac{W R^2}{g \frac{I_0}{g}} \left(1 - \cos 2\theta_c \right) \right]^2
\end{align*}
\]

(8)

Just before and just after impact, the angle of rotation \(\theta \) is zero, and the potential energy stored in the system is zero. At these two instants, the total energy in the system is therefore all in the form of kinetic energy. Thus, the energy loss due to impact = \(1 - r \).

Following the concepts of classical analytical dynamics, a coefficient of restitution is defined as

\[
 e = \frac{\dot{\theta}_2}{\dot{\theta}_1}
\]

(9a)

which from Eq. 8, after noting that \(I_0 = \frac{4}{3} W R^2 \), can be expressed as

\[
 e = 1 - \frac{3}{2} \sin^2 \theta_c
\]

(9b)

Thus, the energy loss due to impact = \(1 - e^2 \). The higher the coefficient of restitution, the smaller the energy loss due to impact.

As shown in Fig. 3, the coefficient of restitution, \(e \), varies from 1 for very slender blocks (\(\theta_c = 0 \), \(H/B = \infty \)) to zero for blocks with \(H/B = 1/\sqrt{2} \). For smaller values of \(H/B \), \(e \) is negative indicating that the angular velocity changes sign after impact, resulting in bouncing of the block about the point of rotation prior to impact.

The coefficient of restitution determined from conservation of angular momentum (Eq. 9b) depends only on the slenderness ratio \(H/B \) or \(\theta_c \); it is independent of both the angular velocity before impact and size of the block. This result is exactly valid for the idealized conditions of rigid
FIG. 3 VARIATION OF COEFFICIENT OF RESTITUTION, BASED ON CONSERVATION OF ANGULAR MOMENTUM, WITH SLENDERNESS RATIO

FIG. 4 FREE VIBRATION PERIOD T OF BLOCK ROCKING WITH AMPLITUDE θ_0 (HOUSNER, 1963)
block and rigid base, but only approximately valid if the idealized conditions do not exist, since the kinetic energy loss depends on the materials of the block and the base. The influence of such variations in the coefficient of restitution on the rocking response of the block is examined later.

APPROXIMATE ANALYSIS OF OVERTURNING

Free Vibrations

When the block is rotated about 0 through an angle \(\theta \) and released, the resulting free vibration of slender blocks is governed by Eq. 4 with the base accelerations set to zero:

\[
I_0 \ddot{\theta} + W R (\theta_c - \theta) = 0
\]

or,

\[
\ddot{\theta} - p^2 \theta = - p^2 \theta_c
\]

(10)

where

\[
p^2 = \frac{W R}{I_0}
\]

For a homogeneous rectangular block

\[
p^2 = \frac{WR}{\frac{4}{3} g R^2} = \frac{3g}{4R}
\]

and Eq. 10 is then independent of the weight \(W \) of the block.

This equation, subject to the initial conditions \(\theta = \theta_0 \) and \(\dot{\theta} = \dot{\theta}_0 \) at \(t = 0 \), has the solution

\[
\theta = \theta_c - (\theta_c - \theta_0) \cosh pt + \frac{\dot{\theta}_0}{p} \sinh pt
\]

(11)
Equation 11 with $\theta_0 = 0$ describes the rotation of the block about the point 0 as it falls back into the vertical position after it is released from rest with initial displacement θ_0. The block will then rotate about 0', and if there is no energy loss during impact, the block will rotate through an angle $\theta = -\theta_0$. The block will then fall back again to the vertical position and will rise about point 0 until θ is again equal to θ_0. At this instant, one complete cycle of vibration will have been completed. The time T required to complete this cycle is the period of free vibration. It will be equal to the time required for the block to fall from $\theta = \theta_0$ to $\theta = 0$, determined from Eq. 12, multiplied by four:

$$T = \frac{4}{p} \cosh^{-1}\left(\frac{1}{1 - \theta_0/\theta_c}\right)$$ \hspace{1cm} (12)

The period of free vibration is strongly and nonlinearly dependent on the amplitude ratio θ_0/θ_c (Fig. 4) and increases from zero to infinity as the amplitude ratio increases from zero to one [6].

Overturning by Single-Pulse Excitations

Consider a rigid block resting on a base which is subjected to a single pulse of horizontal acceleration. This may be a rectangular pulse with constant acceleration ag_0 lasting for a time t_1 or acceleration varying as a half cycle sine-wave pulse of amplitude ag_0 and duration t_1. Motion of the block is initiated by base acceleration ag if (from Eq. 2) $ag_0/g > B/H$, or for slender blocks, $ag_0/g > \theta_c$. These inequalities specify the acceleration in fraction of g required to begin tilting the block.

Even if motion is initiated, the block may or may not overturn depending on the magnitude of ag_0 and the duration t_1. The duration t_1 of a rectangular pulse with acceleration ag_0 required to overturn the block
was determined [6] and given by the following equation:

\[
\cosh \sqrt{\frac{WR}{I_0}} t_1 = 1 + \frac{1}{2 \frac{a_{go}}{g\theta_c} \left(\frac{a_{go}}{g\theta_c} - 1 \right)} \]

(13)

Similarly, the conditions under which a half cycle sine-pulse of duration \(t_1 \) and maximum acceleration \(a_{go} \) will overturn the block are governed by

\[
\frac{a_{go}}{g\theta_c} = \sqrt{1 + \frac{1}{WR} \left(\frac{\pi}{t_1} \right)^2} \]

(14)

These results were derived starting with the linearized Eq. 4. Thus, they are valid only for slender blocks. Furthermore, the approach employed [6] in obtaining these results is valid only for single pulse excitations which, if large enough, would overturn the block without rocking back and forth and the associated impacts. Smaller accelerations than are specified by these equations may set the block to rocking but will not overturn it.

Graphs of Eqs. 13 and 14 are presented in Fig. 5. In each case, the graph represents the boundary between overturning and stable regions. The acceleration \(a_{go} \) required for overturning is plotted against \(pt_1 \) for selected values of the slenderness ratio \(H/B \), and against the critical angle \(\theta_c = \cot^{-1}(H/B) \) for selected values of \(pt_1 \) in Fig. 6. For a fixed duration \(t_1 \) and size parameter \(R \), \(a_{go} \) decreases as \(H/B \) increases. Similarly, for a fixed \(t_1 \) and \(H/B \), \(a_{go} \) increases with \(R \). Thus, larger accelerations are required to overturn larger blocks and smaller accelerations are required to overturn relatively slender blocks. The acceleration required to overturn a block depends on the shape of the acceleration pulse; smaller acceleration is required for a rectangular pulse than for a half-cycle sine pulse of the same duration \(t_1 \).
FIG. 5 MAXIMUM ACCELERATION a_{go} OF SINGLE PULSE REQUIRED FOR OVERTURNING A BLOCK
FIG. 6 MAXIMUM ACCELERATION a_{go} OF SINGLE PULSE REQUIRED FOR OVERTURNING OF BLOCKS
Overturning by Earthquake Motion

The minimum accelerations required to overturn a block by single acceleration pulses of two types, rectangular and half-sine, are given by Eqs. 13 and 14. Smaller accelerations than specified by these equations may set the block to rocking but will not overturn it. It is however possible that a block will overturn under the action of a sequence of pulses, characteristic of earthquake ground motion, each with accelerations smaller than specified by these equations.

Housner presented an ingenious, approximate analysis of overturning of blocks by earthquake ground motion. The ground motion was idealized as white noise, and linearized equations of motion were used. The approximate analysis, based on energy concepts, is too subtle to be summarized here, and the interested reader should refer to the original source [6]. One of the principal results was the following: For a given pseudo-velocity spectrum value S_v, a block having a critical angle θ_c given by

$$\theta_c = \frac{S_v}{v_{gR}} \sqrt{\frac{WR^2}{gI_o}} \quad (15a)$$

$$= 0.866 \frac{S_v}{v_{gR}} \quad \text{for rectangular blocks} \quad (15b)$$

will have approximately a 50% probability of being overturned. The dimensions of the structure enter only through the length R and the slenderness ratio H/B through the angle θ_c. The earthquake intensity necessary to overturn a block increases with size for a fixed slenderness ratio; increases with θ_c, or decreases with increasing slenderness ratio, for a fixed size R. For a block of fixed size and slenderness ratio, Eq. 15b suggests that the probability of overturning increases with intensity of ground motion.
Thus, these conclusions, derived earlier for single pulse excitations, are also valid for idealized earthquake motions but only in a probabilistic sense. Housner [6] also concluded that "the behavior of a rocking block could be quite variable in that relatively small ground motion may fortuitously build up the amplitude at the beginning of the ground motion and lead to overturning the block".

RESPONSE BEHAVIOR

Analysis Procedure

The rocking response of a rigid block to prescribed ground acceleration is determined by numerically solving Eqs. 2 and 3 with the condition for initiation of rocking defined by Eq. 1 and the impact condition by either the conservation of angular momentum (Eq. 6) or a specified coefficient of restitution (Eq. 9a). Typical values for the time-step used in the numerical integration of the governing equations were $\Delta t = 1/400$ sec. The sign of a_g^x at the time-instant when Eq. 1 is satisfied, i.e., motion is initiated, determines whether Eq. 2 or 3 is to be used for the next time-step.

Equation 3 is used for positive a_g^x and Eq. 2 for negative a_g^x. The same equation is used for subsequent time steps until the sign of rotation θ changes. When such a change in sign occurs, say during time step t_j to t_{j+1}, this time step is divided into two parts. Using the equation of motion valid at t_j, the exact time \bar{t}, $t_j < \bar{t} < t_{j+1}$, at which θ becomes zero is determined by an iterative procedure. Just before the impact, $\theta(\bar{t}-) = 0$ and velocity is $\dot{\theta}(\bar{t}-)$. Immediately after impact $\theta(\bar{t}+) = 0$ and $\dot{\theta}(\bar{t}+) = e\dot{\theta}(\bar{t}-)$ where e is the coefficient of restitution which either has a specified value (Eq. 9a) or is determined by conservation of angular momentum (Eq. 9b). With these initial conditions, the equation of
motion, other than the one valid at \(t = t_j \), is solved over the time interval \(t_j \) to \(t_{j+1} \) and subsequent time intervals until the rotation angle \(\theta \) again changes sign. The above mentioned process is then repeated.

Using a fourth order Runge-Kutta integration scheme, the numerical solution procedure summarized above was implemented in a computer program. The accuracy of the computer program has been checked by comparing its results with analytical results for single pulse excitations [6] and with experimental results from shaking table experiments using earthquake-type excitations [7]. It was observed that in order to obtain accurate results it is necessary to use a high-order integration scheme, such as the one employed here, along with a very short time-step; the typical value used = 1/400 sec. Some of the results of an earlier investigation [7] were found to be inaccurate because this requirement had not been satisfied by the numerical procedure used.

Simulated Ground Motions

Simulated motions were developed to model the properties of the following ground motions recorded on firm ground in the region of strong shaking during earthquakes of magnitude 6.5 to 7.5:

- El Centro, California; December 30, 1934
- El Centro, California; May 18, 1940
- Olympia, Washington; April 13, 1949
- Taft, California; July 21, 1952

These recorded accelerograms are presented in Fig. 7.

The simulation procedure adopted herein is essentially identical to earlier studies [8,9]. It consisted of generating samples of stationary Gaussian white noise; multiplying the white noise by an intensity function of time (Fig. 8) to represent a segment of strong shaking at constant intensity preceded by a quadratic build-up of intensity and followed by an
FIG. 7 GROUND ACCELERATIONS RECORDED DURING FOUR EARTHQUAKES
SPECTRAL DENSITY OF FILTERED WHITE NOISE ACCELERATION

\[S(\omega) = S_0 \frac{1 + 4 \xi_f^2 \left(\frac{\omega}{\omega_f} \right)^2}{\left[1 - \left(\frac{\omega}{\omega_f} \right)^2 \right]^2 + 4 \xi_f^2 \left(\frac{\omega}{\omega_f} \right)^2} \]

<table>
<thead>
<tr>
<th>COMPONENT</th>
<th>(\omega_f) RADS/SEC</th>
<th>(\xi_f)</th>
</tr>
</thead>
<tbody>
<tr>
<td>HORIZONTAL</td>
<td>5(\pi)</td>
<td>0.6</td>
</tr>
<tr>
<td>VERTICAL</td>
<td>7.5(\pi)</td>
<td>0.6</td>
</tr>
</tbody>
</table>

FIG. 8 SPECTRAL DENSITY AND INTENSITY-TIME FUNCTIONS FOR SIMULATED (HORIZONTAL AND VERTICAL) GROUND ACCELERATIONS
exponential decay in intensity; passing the resulting function through a
second order linear filter to impart the desired frequency content, as indi­
cated by the spectral density (Fig. 8); and finally performing a baseline
correction on the filtered function.

In an earlier study [8], the parameters for the intensity function and
the filter (frequency = 2.5 cps and damping ratio = 60%) were estimated from
the properties of the horizontal components of the recorded motions. Similar
parameter values (Fig. 8) were employed in simulating the horizontal ground
motions for this investigation. Parameter values for simulating vertical
ground motions have apparently not been reported in the literature. They
were therefore estimated from the properties of the vertical component of
recorded motions using the procedures of Reference 8 (see Appendix II).
Figure 8 shows the parameters for the intensity function and for the filter
(frequency = 3.75 cps and damping ratio = 60%).

Using the above mentioned random process model and parameter values,
two sets of twenty simulated ground motions were generated to model the pro­
properties of the horizontal and vertical components of the recorded motions,
respectively. The set of simulated horizontal motions were all scaled by
the same factor such that the ensemble average of the peak acceleration
would be \(1 \text{g} \). Similarly, the simulated vertical motions were all scaled
such that the ensemble average of the peak acceleration would be \(0.6 \text{ g} \). The
resulting motions are presented in Figs. 9 and 10.

Influence of System Parameters

Using the computer program mentioned earlier, the response of several
rigid blocks to the same simulated ground motion was determined. The time­
variation of the rotation of the block is presented in Fig. 11. In
those cases where the rotation \(\theta\) continues to increase significantly
FIG. 9 SIMULATED HORIZONTAL GROUND ACCELERATIONS WITH ENSEMBLE AVERAGE OF PEAK ACCELERATION = 1 g
FIG. 10 SIMULATED VERTICAL GROUND ACCELERATIONS WITH ENSEMBLE AVERAGE OF PEAK ACCELERATION = 0.6 g
beyond θ_c, the block overturns. It is seen from this figure that the rocking response of the block can be very sensitive to small changes in the system parameters. Small variations in the slenderness ratio H/B and size parameter R lead to large changes in the response. In contrast to the conclusions from single pulse excitations, stability of a block does not necessarily increase monotonically with increasing size or decreasing slenderness ratio. Similarly, contrary to what intuition would suggest, decrease in the value of the coefficient of restitution—which implies increase in energy dissipation—does not necessarily lead to smaller response of the block.

Influence of Ground Motion Properties

The ground motion assumed in Housner's approximate analysis consisting of a single pulse ground acceleration followed by a constant velocity of the ground, is unrealistic for earthquakes. The ground motion shown in Fig. 12, consisting of three acceleration pulses, although much simpler than earthquake ground motion, is useful for studies of structural response [10]. The response of several blocks, all having the same size parameter R but varying slenderness ratio H/B, to this simpler ground motion is determined by the computer program. From the results presented in Fig. 12, it is seen that response of two blocks with slightly different slenderness ratios can be considerably different. However, the response and overturning tendency of the block increase as the slenderness ratio increases. Thus a consistent trend in the change of response with the change of slenderness ratio is noticed.

The horizontal ground motions of Fig. 9 are all members of a random process, defined in the average sense by a power spectral density, and an intensity-time function. The variations from one simulated motion to the next are intended to represent the probabilistic variations expected in
FIG. 11 RESPONSE OF SEVERAL BLOCKS TO THE SAME SIMULATED MOTION. PARAMETERS: SLENDERNESS RATIO H/B, SIZE R, AND COEFFICIENT OF RESTITUTION ARE VARIED ONE AT A TIME
FIG. 12 RESPONSE OF BLOCKS OF VARYING SLENDERNESS RATIO H/B TO THE SIMPLE GROUND ACCELERATION SHOWN. SIZE PARAMETER R = 10 FT. AND COEFFICIENT OF RESTITUTION e = 0.925 FOR ALL BLOCKS
ground motions recorded under seemingly identical conditions. Using the computer program, the response of a single rigid block to several of the ground motions of Fig. 9, multiplied by 0.4 to represent an ensemble with average maximum acceleration = 0.4 g, was determined.

The rotation of the same block due to each earthquake is presented in Fig. 13a, and the maximum rotation due to earthquake j is $\theta_{j,\text{max}}$. It is seen that $\theta_{j,\text{max}}$ varies with j over the entire range of possible values, from a small fraction of the critical angle to values in excess of the critical angle indicating overturning of the block. Thus, the rocking response of the block is extremely sensitive to the detailed characteristics of the ground motion. Such sensitivity was observed in experiments on the Berkeley shaking table where repeated measurements of the response of a block subjected to a prescribed table acceleration differed significantly from one another. The differences were apparently because, even with the same prescribed horizontal accelerations, the table undergoes slightly different pitching motions [7].

Consider the simulated ground motion No. 17 (Fig. 9) but scaled by several factors 0.35, 0.40, 0.45, 0.50, 0.55, and 0.6. The result is a family of ground motions, with all properties identical, except the intensity. Using the computer program the response of a single rigid block to this family of ground motions was determined. The results presented in Fig. 13b indicate that overturning of a block by ground motion of a particular intensity does not imply the block will necessarily overturn under more intense ground motion. In contrast, if a single pulse excitation with some maximum acceleration a_{go} and duration t_1 is necessary to overturn a block of a particular size and slenderness ratio, the block will also overturn under a similar pulse but with larger acceleration.
FIG. 13a RESPONSE OF A BLOCK, \(R = 12 \text{ FT.} \) AND \(H/B = 5 \), TO SEVERAL SIMULATED MOTIONS FROM AN ENSEMBLE WITH AVERAGE PEAK ACCELERATION = 0.4 g

FIG. 13b RESPONSE OF A BLOCK, \(R = 10 \text{ FT.} \) AND \(H/B = 5 \), TO SIMULATED MOTION NO. 17 (FIG. 9) SCALED BY FACTORS AS SHOWN
Figure 14 shows the response of a single rigid block to four simulated ground motions in Fig. 9, all scaled by 0.4 to represent an ensemble with an average maximum acceleration = 0.4 g, acting in the horizontal direction. Figure 14 also shows the block response when in each case the excitation includes a simulated ground motion from Fig. 10, scaled by 0.4 to represent a member of an ensemble with average maximum acceleration = 0.24 g, acting in the vertical direction. The vertical ground motion may overturn a block which is stable under the action of horizontal ground motion alone (case 1), stabilize a block which overturns due to horizontal ground motion alone (case 2), delay the time of overturning of a block (case 3) or greatly reduce the rocking of a block (case 4). Thus, the influence of vertical ground motion is apparently not systematic.

Response Sensitivity

Experiments on the Berkeley shaking table indicated that the rocking response of a rigid block can be extremely sensitive to ground motion details. Repeated measurements of the response of a block subjected to prescribed table accelerations were not identical to one another [7]. These differences were apparently due to the fact that the table undergoes slightly different pitching motions, even with the same prescribed horizontal accelerations. Thus, the sensitivity of the response to small changes in the system parameters or ground motions, revealed by the analytical results presented earlier, may be surprising but it is real. It is relevant to note that lightly damped rigid-plastic systems also display considerable response sensitivity [11]; and the properties of a rocking block (Fig. 2) are reminiscent of these systems except that the behavior of a rocking block is not hysteretic and its second slope is negative. As the amplitude of rocking
FIG. 14 RESPONSE OF A BLOCK WITH $R = 12$ FT. AND $H/B = 5$ TO SIMULATED GROUND MOTIONS. THE RESPONSE TO (A) HORIZONTAL GROUND MOTION AND (B) HORIZONTAL AND VERTICAL GROUND MOTIONS IS PRESENTED FOR EACH SITUATION.
approaches incipient overturning the block is effectively undamped [6]. The
effective damping for a block rocking at large amplitudes is therefore small.

Although sensitivity of the rocking response of a rigid block is most
obvious when it is subjected to irregular earthquake ground motion, it is
present even in the case of single pulse excitations. In the range of small
values for the parameter pt_1, small changes in the pulse duration t_1 or
size parameter R could shift a block from stable to unstable region or vice
versa (Fig. 5). Similarly, in the range of large pt_1, small changes in
the acceleration a_{0j} or slenderness parameter θ_c could affect the stabil-
ity of a block (Fig. 5). Given especially favorable circumstances, a small
change in the initial conditions could produce a large change in the response
of the block. As seen in Fig. 15, by changing the initial value of normal-
ized rotation from 0 to 0.01, the maximum normalized rotation response
increases from approximately 0.5 to more than 1, resulting in overturning of
the block. Small changes in the displacement and velocity at a particular
time can grow exponentially (Eq. 11) provided the block continues to tip
in one direction for an extended duration (see Fig. 15).

The extreme sensitivity of the response of a rocking block to various
factors can best be explained by examining the change in potential energy of
a block as it rotates from an angle θ to incipient overturning, $\theta = \theta_c$:

$$V(\theta) = WR\left[1 - \cos(\theta_c - \theta)\right]$$

(16)

The plot of Eq. 16 in Fig. 16 shows how the additional energy required to
overturn a block varies with initial rotation θ. It is apparent that
very little additional energy is needed to overturn a block beyond the
larger values of θ. Small changes in the system parameters--size param-
eter R, slenderness ratio H/B, coefficient of restitution e -- may
FIG. 15 RESPONSE OF A BLOCK (R = 10 FT., H/B = 4) TO A RECTANGULAR PULSE OF ACCELERATION = 0.26 g AND DURATION = 2.1 SEC.

FIG. 16 ADDITIONAL ENERGY $V(\theta)$ REQUIRED TO OVERTURN (UNDER STATIC CONDITIONS) A BLOCK WITH INITIAL ROTATION θ. THE GRAPH DEPENDS ON θ_c BUT ONLY SLIGHTLY
influence the energy input to the system slightly, but sufficiently to over-
turn a block once it is rotated beyond a certain angle. Similarly, once sig-
nificant rocking of the block has developed during earthquake motion,
seemingly small differences in the details of subsequent ground motion could
greatly affect the response of the block. If the subsequent motion inputs
additional energy, although small, at the right time it could be sufficient
to overturn a block.

RESPONSE EXCEEDANCE AND OVERTURNING PROBABILITIES

The influence of system parameters and ground motion properties in the
rocking response of rigid blocks is studied next from a probabilistic point
of view. Using the computer program mentioned earlier, the response of
several rigid blocks to earthquake ground motion was analyzed. Determined
for each block was the time-history of rotation \(\theta(t) \) and the maximum
normalized rotation \(\bar{\theta}_{\text{max}} = \theta_{\text{max}}/\theta_c \) due to each of the twenty horizontal
ground motions (Fig. 9), scaled by an appropriate factor \(\alpha \). Thus, for
each block, twenty values of \(\bar{\theta}_{\text{max}} \) were obtained corresponding to the
twenty excitations with average value of peak acceleration = \(\alpha g \). The twenty
values of \(\bar{\theta}_{\text{max}} \) were arranged in ascending order and plotted in the form
of a cumulative probability distribution function (CDF).

Such plots for a block with size parameter \(R = 10 \text{ ft.} \) and slen-
derness ratio \(H/B = 5 \) are presented in Fig. 17 for various values of the
coefficient of restitution \(e \). The influence of \(e \) on the response
appears only at each impact; hence the effect is small. Thus the CDF for
various values of \(e \) are clustered together with considerable overlapping
of curves. From a probabilistic point of view, the coefficient of resti-
tution influences the response in no obviously systematic way, and, as will
FIG. 17 CUMULATIVE PROBABILITY DISTRIBUTION FUNCTIONS FOR MAXIMUM ROTATION OF A BLOCK, R = 10 FT. AND H/B = 5, FOR VARIOUS VALUES OF THE COEFFICIENT OF RESTITUTION e. ENSEMBLE AVERAGE OF PEAK HORIZONTAL GROUND ACCELERATION = 0.4 g.

GROUND MOTION
--- HORIZONTAL
--- HORIZONTAL AND VERTICAL

FIG. 18 CUMULATIVE PROBABILITY DISTRIBUTION FUNCTIONS FOR MAXIMUM ROTATION OF A BLOCK, R = 10 FT., AND H/B = 5. ENSEMBLE AVERAGE OF PEAK ACCELERATION IS VARIED: 0.3g, 0.4 g, 0.5 g, and 0.6 g FOR HORIZONTAL GROUND MOTION: 0.18 g, 0.24 g, 0.30 g, and 0.36 g FOR VERTICAL GROUND MOTION
be seen later, to a much lesser degree than the other system parameters. Thus, the coefficient of restitution is not varied in the subsequent results. Its value is defined by Eq. 9b, based on conservation of angular momentum, depending only on the slenderness ratio.

The influence of intensity of ground motion on the cumulative distribution functions for the response is examined in Fig. 18. Four ensembles of ground motions with average peak acceleration = 0.3 g, 0.4 g, 0.5 g, and 0.6 g are derived by appropriately scaling the ensemble of Fig. 9. Presented in Fig. 18 are the CDF for the response of a block of fixed size and slenderness ratio corresponding to the four ground motion ensembles. It is apparent that the probability of the block exceeding any response level increases with ground motion intensity.

Presented in Fig. 19 are the cumulative probability distribution functions for several blocks subjected to the ensemble of horizontal ground motions with average peak acceleration = 0.4 g. In one case, all blocks have the same size parameter but varying slenderness ratio. In the other, the slenderness ratio is fixed but the size is varied. It is seen that the rotational response of a rigid block is extremely sensitive to the details of the ground motion as noted earlier from Fig. 13a. For example, \(\theta_{\text{max}} \) for a block with \(R = 10 \) ft. and \(H/B = 4.0 \), when subjected to the twenty simulated motions, varies from as little as 0.01 to more than 1, indicating overturning. It is seen that the CDF is influenced by the two parameters in a systematic manner, with the exceedance probability for any level of response increasing with increase in slenderness ratio and decrease in size.

It is seen from Figs. 18 and 19 that a block may overturn when subjected to some members of an ensemble of ground motions but remain stable under the action of other members of the same ensemble. The probability that a block will overturn when subjected to ground motion of specified intensity is
FIG. 19 CUMULATIVE PROBABILITY DISTRIBUTION FUNCTIONS FOR MAXIMUM ROTATION OF BLOCKS SUBJECTED TO ENSEMBLES OF HORIZONTAL AND VERTICAL GROUND MOTIONS, WITH AVERAGE VALUES OF PEAK ACCELERATION = 0.4g AND 0.24 g, RESPECTIVELY
roughly estimated as the fractional number of ground motions that overturn the block. The influence of the system parameters and ground motion intensity on the overturning probability is presented in Figs. 20-21. Each point on these plots is the result of analyzing the responses of a block to an ensemble of twenty ground motions. It is seen that the probability that a block overturns increases with increasing slenderness ratio for a fixed size parameter and ground motion intensity (Figs. 20 and 21); decreases with increase in size for a fixed slenderness ratio and ground motion intensity (Figs. 20 and 21); and increases with ground motion intensity for a fixed size parameter and slenderness ratio (Fig. 20).

The numerical results generally follow these trends but not without exception. Note, for example, the following cases which violate the general trends: The overturning probability is the same for blocks with R = 20' as H/B increases from 9 to 10, for blocks with R = 30' as H/B increases from 7 to 8, for blocks with R = 40' as H/B increases from 8 to 9, for blocks with R = 6' as ground motion intensity increases from 0.45 g to 0.50 g, for blocks with R = 20' as ground motion intensity increases from 0.40 g to 0.45 g; for blocks with H/B = 4 as ground motion increases from 0.40 g to 0.45 g. In one case, the overturning probability for a particular block decreases as the intensity increases (Fig. 20). Some of these apparent inconsistencies may be the consequence of the small sample size of 20, and are expected to disappear when a larger sample is used.

Thus, usually, the larger of two blocks having the same slenderness ratio is more stable in the sense that it is less likely to overturn; the more slender of two blocks having the same size parameters is less stable; and a block is more likely to overturn if it is subjected to more intense ground motion.

Results of analyses of several blocks subjected to ensembles of horizontal
FIG. 20 OVERTURNING PROBABILITY FOR BLOCKS SUBJECTED TO ENSEMBLES OF HORIZONTAL AND VERTICAL GROUND MOTIONS, WITH AVERAGE VALUES OF PEAK ACCELERATION VARIED AS SHOWN
ground motion with selected intensity were presented and interpreted above. These analyses were repeated with simultaneous application of horizontal and vertical ground motions, with similarly numbered members of the two ensembles paired together (Figs. 9 and 10). Both ensembles were scaled by the same factor \(\alpha \). Results of these analyses are superimposed on Figs. 17 to 21, summarizing the earlier results.

It is seen that the CDF for the maximum rotation of a block is influenced by vertical ground motion, but not in a systematic manner; the exceedance probability is decreased at some response levels but increased at other levels. Similarly, the probability that a block will overturn may increase or decrease by including vertical ground motions. The trends noted earlier regarding the influence of size and slenderness ratio of a block and of ground motion intensity on the stability of a block are still apparent when vertical ground motion is included. However, there are more exceptions to the trends and some of them are larger in magnitude when vertical ground motion is included.

ESTIMATION OF GROUND MOTION INTENSITY

As mentioned in the beginning of this paper, by idealizing the ground motion as an instantaneous impulse or representing its effects by a static horizontal force, formulas were derived to calculate the ground acceleration necessary to overturn a rigid block of given dimensions [1-4]. These formulas were employed to estimate the accelerations in the epicentral region of the 1975, Ohita earthquake in Japan [5]. However, they are unreliable because they do not consider rocking of the block and the associated impacts that would occur during an earthquake. More recently, response procedures which consider the rocking block to be a linear system have been proposed to estimate the intensity of ground shaking from its observed
Fig. 21 OVERTURNING PROBABILITY FOR BLOCKS SUBJECTED TO ENSEMBLES OF HORIZONTAL AND VERTICAL GROUND MOTIONS, WITH AVERAGE VALUES OF PEAK ACCELERATION = 0.4 g AND 0.24 g, RESPECTIVELY
effects on rigid objects [12]. This procedure is also not promising because the behavior of a rocking block (Fig. 2) has no resemblance to that of a linear system. The remaining question is: do the nonlinear analyses of system dynamics presented in this paper provide results that are useful in estimating ground motion intensity?

Consider first an idealized situation: A large number of tombstones, benches, monumental columns, and similar objects, which may be idealized as rigid blocks, are concentrated in a small area and it is assumed that they are subjected to identical ground motion during an earthquake. Several of these blocks have the same size parameter R and slenderness ratio H/B and the entire collection covers a wide range of R and H/B. Dynamic analysis of a rigid block - with specific R and H/B, on a rigid base, subjected to a specified ground motion - would predict that the block is either stable or that it overturns. This conclusion would apply to all blocks with the same R and H/B. Thus, dynamic analyses of an idealized block of a particular R and H/B provides the results for all blocks with the same parameters. However, the rocking response of the block can be very sensitive to small changes in the system parameters and stability of the block does not necessarily increase monotonically with increasing size or decreasing slenderness ratio (Fig. 11). Furthermore, overturning of a block by ground motion of a particular intensity does not imply that the block will necessarily overturn under more intense ground motion (Fig. 13b). Thus, reliable predictions of intensity of ground shaking would not be possible from analytical predictions of response of blocks to a ground motion specified deterministically. As a corollary, reliable estimates of the intensity of ground shaking would not be possible from its observed effects on the instrument proposed many years ago for seismological observatories, consisting of a family of columns, all with rectangular section, but varying in slenderness ratio.
Contrary to the analytical prediction that blocks with the same R and H/B either are all stable or all overturn when subjected to a specified ground motion, in reality some may overturn but others may remain standing during an earthquake. Identical sized blocks would perform differently because their response is sensitive to the contact conditions between the base of the block and the ground [7]. An overturning probability for a particular R and H/B could be calculated as the fractional number of blocks with the same R and H/B that overturned during the earthquake. However, this is not the same as the overturning probability, presented in the preceding section, which reflects probabilistic variations in ground motion of a specified intensity.

Consider a second situation: A large collection of objects, which may be idealized as rigid blocks, are distributed over an area small enough that the intensity of ground motion is essentially the same but large enough that the ground motions experienced by the various blocks are at most weakly correlated. The collection includes several objects having the same dimensions (R and H/B). A wide range of values for the parameters R and H/B are represented in the collection. The ensemble of ground motions experienced by the various objects may be interpreted as members of a random process. From a survey of the area after an earthquake, the fractional number of blocks, all with the same R and H/B, that overturned could be readily calculated. The ground motion intensity may be estimated from such information along with the results presented in Fig. 20, provided the random process model selected in this paper is appropriate for the particular earthquake. The estimates obtained from the above analysis would differ depending on the particular R and H/B considered. The average of the several estimates thus obtained may be considered as the best estimate for the intensity of the ground motion. Precise estimates should not be expected from this
approach because: the random process model selected in this paper may not be appropriate for the ground motion during the particular earthquake; the ground motions experienced by various blocks may not be statistically independent; and the behavior of the block is very sensitive to the conditions of the contact between its base and the ground. However, probabilistic descriptions of the ground motion intensity, e.g. $P[I_1 < \text{intensity} < I_2] = p$, should be possible.

Finally, consider the situation outlined in the beginning of this paper: monuments, minarets, tombstones, and other similar objects have experienced many earthquakes in seismic areas of the world which were the centers of the ancient Roman, Greek, Chinese, and Indian civilizations. Whether a particular object remained standing or overturned during a given earthquake would not provide sufficient information to make reliable estimates of the intensity of ground shaking during that earthquake, because the response of a rigid block to several ground motions, all of the same intensity but differing in details, could vary from essentially no rotation to large rotations, indicating overturning (Figs. 13a and 19). If an historical earthquake has affected several objects with the same geometry and dimensions, and it can be assumed that the various objects experienced ground motions of essentially the same intensity but differing in details, then the situation would be similar to the second situation considered above. The ground motion intensity could then be described on a probabilistic basis as outlined above. Special care is necessary in estimating an upper bound for the intensity of ground motion from the information that an ancient monument has survived several historical earthquakes, because the survival probability depends not only upon the most intense ground motion at the site during a single earthquake, but also on the unknown intensities of all earthquakes experienced by the monument.

Given suitable data in sufficient quantities regarding the effects of an earthquake on monuments, minarets, tombstones, and other similar objects
in an area, whether they overturned or remained standing, probabilistic estimates of the ground motion intensity in the area should be possible. Such estimates must be based on results of a probabilistic study of the type presented in this paper, which considers the nonlinear dynamic behavior of the rocking block system. Because the response of a rocking block is extremely sensitive to variations in system parameters and ground motion details, a high degree of precision or confidence would not be possible in these estimates. (A similar conclusion was obtained from an analytical study of the response of flexible structures [13].) For the same reasons, estimates of the intensity of ground shaking by deterministic methods, which have been used in the past and which consider observed effects on a single object, would be totally unreliable.

CONCLUSION

The principal conclusions of this study concerned with dynamics of rigid blocks rocking on a rigid base may be summarized as follows.

The rocking response of a block is very sensitive to small changes in its size and slenderness ratio, and to the details of the ground motion. The stability of a block subjected to a particular ground motion does not necessarily increase monotonically with increasing size or decreasing slenderness ratio. Overturning of a block by a ground motion of particular intensity does not imply that the block will necessarily overturn under the action of more intense ground motion. Vertical ground motion significantly affects the rocking response of a rigid block, although in no apparently systematic way.

In contrast, systematic trends are observed when the rocking response of rigid blocks is studied from a probabilistic point of view with the ground motion modeled as a random process. The probability of a block ex-
ceeding any response level, as well as the probability that a block overturns, increases with increase in ground motion intensity, with increase in slender-ness ratio of the block, and with decrease in its size.

Probabilistic estimates of the intensity of ground shaking may be obtained from its observed effects on monuments, minarets, tombstones, and other similar objects provided suitable data in sufficient quantity is available, and the estimates are based on probabilistic analyses of the rocking response of rigid blocks, considering their nonlinear dynamic behavior. These estimates will not be precise because the response of a rocking block is extremely sensitive to variations in system parameters, contact conditions between the base of the block and the ground, and ground motion details. For the same reasons, deterministic estimates of intensity of ground motion from its observed effects on a single object would be totally unreliable.
REFERENCES

APPENDIX I - NOTATION

The following symbols are used in this report:

\[a_{go} \] maximum acceleration of a single-pulse excitation

\[a_x^g \] ground acceleration in the horizontal (x) direction

\[a_y^g \] ground acceleration in the vertical (y) direction

\[B \] width of the block

\[e \] coefficient of restitution

\[g \] acceleration of gravity

\[H \] height of the block

\[I_0 \] mass moment of inertia of the block about centers of rotation

\[p = \sqrt{WR/I_0} \]

\[R \] size parameter = \(\sqrt{(B^2 + H^2)/4} \)

\[r \] ratio of kinetic energy quantities after and before impact

\[S_v \] constant ordinate of the undamped pseudo-velocity response spectrum for white noise

\[T \] period of free vibration of the block

\[t_1 \] duration of a single-pulse excitation

\[\theta \] angle of rotation measured from the vertical

\[\theta_c \] critical angle = \(\cot^{-1} (H/B) \)

\[\theta_0 \] initial angle of rotation

\[\dot{\theta}_0 \] initial rotational velocity

\[\dot{\theta}_1, \dot{\theta}_2 \] angular velocities before and after impact
\theta_{\text{max}} = \max_t \left| \dot{\theta}(t) \right|
\theta_c = \frac{\theta}{\theta_c}
\theta_{\text{max}}^c = \frac{\theta_{\text{max}}}{\theta_c}
V(\theta) = \text{change in potential energy of the block as it rotates from an angle } \theta \text{ to incipient overturning } \theta = \theta_c
W = \text{weight of the block}
Simulation Model

The simulation procedure adopted herein is essentially identical to earlier studies [8,9]. It consists of generating samples of stationary Gaussian white noise, multiplying the white noise by a variance intensity function of time, passing the resulting function through a second order linear filter to impart the desired frequency content, and finally performing base line correction on the filtered function.

The linear filter properties are described by two parameters: natural frequency \(\omega_f \) and viscous damping ratio \(\xi_f \). The variance intensity function is expected to be a smoothly varying function of time that has an initial build-up, followed by an almost stationary part and thereafter a steady decay. This smooth function is assumed to be of the following form:

\[
\phi(t) = \begin{cases}
\phi_0 \left(\frac{t}{t_1} \right)^2, & 0 \leq t \leq t_1 \\
\phi_0, & t_1 \leq t \leq t_2 \\
\phi_0 e^{-c(t-t_2)}, & t_2 \leq t
\end{cases} \quad (II.1)
\]

This function is described by the parameters \(\phi_0, t_1, t_2, \) and \(c \).

The parameters for the filter and for the variance intensity function are estimated using available earthquake ground motion records that are assumed to be sample wave forms generated by the simulation model. The ground motions used in the estimation process, shown in Fig. 7, were recorded at the following locations during the earthquakes on the indicated dates:

- El Centro, California; December 30, 1934
- El Centro, California; May 18, 1940
- Olympia, Washington; April 13, 1949
- Taft, California; July 21, 1952
The procedure developed in Ref. 8 is used for estimation of the parameters.

Horizontal Ground Motion

Assuming that the two horizontal components of each of the four ground motion records (Fig. 7) are sample wave forms generated by the simulation model, the filter parameters and the variance intensity function for white noise are estimated. The filter parameters that gave a best fit are $\xi_f = 0.62$ and $\omega_f = 4.9\pi$ but the fit was almost uniform in the neighborhood of these values; hence the set of values $\xi_f = 0.6$ and $\omega_f = 5\pi$ suggested by earlier researchers were chosen [8].

Figure II.1 shows the ensemble average of the squared modulus of the Fourier transform $X_j(\omega)$ of the eight sample wave forms compared with the square of the modulus of the complex frequency response (or transfer) function $H(\omega)$ for the filter with the estimated values of ξ_f and ω_f. Because the sample size is small, the ensemble average of the Fourier transform is irregular. The estimate of the variance intensity function $\phi(t)$ for the white noise obtained by the procedures of Ref. 8 is shown in Fig. II.1 after Fourier smoothing, in which all frequencies above 1/2 Hz were filtered out. The large fluctuations, even after smoothing the original, sharply irregular function, are mostly due to the small sample size. Some judgment has to be used to select the parameters for the function of Eq. II.1, so that the resulting function follows the trends of the computed function. The parameters t_1 and t_2 were first selected as 4 and 15 sec. respectively. The value of ϕ_0 is then obtained by averaging the values of $\hat{\phi}(t)$ over the (t_1,t_2) interval. Finally, the decay constant c is determined to achieve a best fit in the least squares sense between the decay portions of $\hat{\phi}(t)$ and $\phi(t)$. The resulting parameters and the corresponding $\phi(t)$ is presented in Figs. II.1 and 8.

Using these parameter values and the random process model mentioned above,
an ensemble of twenty simulated motions were generated to model the properties of the horizontal components of the recorded motions. The pseudo-velocity response spectrum was computed for each simulated motion. In Fig. II.2, the average of the response spectra for 8 of the 20 simulated motions is compared with the average of the response spectra for the 8 recorded motions, and the agreement is satisfactory. In order to minimize computation costs, the spectra presented are for only one value of damping, $\xi = 5\%$. Earlier studies [8] have indicated that the quality of the agreement is about the same for all damping values except that it is worse in the undamped case. The simulated motions were all scaled by the same factor such that the ensemble average of the peak acceleration is 1 g. The resulting motions are shown in Fig. 9.

Vertical Ground Motions

Assuming that the vertical component of each of the four ground motion records is a sample wave form generated by the simulation model, the filter parameters and the variance intensity function for white noise are estimated. The filter parameters that gave a best fit are $\xi_f = 0.62$ and $\omega_f = 7.52\pi$ but the fit was almost uniform in the neighborhood of these values. Thus the parameters were rounded off to $\xi_f = 0.6$ -- same as selected above for simulation of horizontal accelerations -- and $\omega_f = 7.5\pi$. Figure II.3 shows the ensemble average of the squared modulus of the Fourier transform $X_y(\omega)$ of the four sample wave forms compared with the squared modulus of the transfer function $H(\omega)$ for the filter with the estimated values of ξ_f and ω_f. The estimate of the variance intensity function $\hat{\phi}(t)$ contains sharp irregularities because the sample size is very small. The sample size of 4 is only half of the already small size of 8 in the case of horizontal ground motions, resulting in sharper irregularities compared to the case of horizontal ground motions (Fig. II.1).
The parameters of the function of Eq. II.1 were selected as follows: \(t_1 \) and \(t_2 \) by judgment, \(\phi_0 \) by averaging the \(\hat{\phi}(t) \) over the \((t_1,t_2)\) interval, and \(c \), to achieve a best fit between the decay portions of \(\phi(t) \) and \(\hat{\phi}(t) \). Considerable judgment was required in this process. One selection of parameters started with \(t_1 = 0.5 \) and \(t_2 = 3.5 \) sec., resulting in the first estimate of \(\phi(t) \) shown in Fig. II.3. The resulting simulated motions are presented in Fig. II.4. Although the chosen \(\phi(t) \) appears to be a satisfactory fit to the estimated \(\hat{\phi}(t) \) (Fig. II.3), the resulting motions of Fig. II.4 are not satisfactory. This becomes apparent by comparing the simulated motions of Fig. II.4 with the recorded vertical motions of Fig. 7. The simulated motions decay much faster compared to recorded motions, becoming very small after 15 seconds whereas the recorded motions continue to have significant accelerations up to 20 seconds. Furthermore, the initial build-up of motion appears to be slower in the simulated motions than in the recorded motions.

After several trials, the \(\phi(t) \) was determined starting with \(t_1 = 0 \) and \(t_2 = 10 \) (second estimate in Fig. II.3). Although the resulting \(\phi(t) \) does not appear to be as good a fit as the one mentioned above -- both are presented in Fig. II.3 for comparison -- the latter leads to a set of simulated motions (Fig. 10) which, by visual comparison with recorded motions (Fig. 7) appear to be more appropriate. In Fig. II.5 the average of the pseudo-velocity response spectra for the 20 simulated motions is compared with the average of the response spectra for the 4 recorded motions. Except for the sharper irregularities in the latter case because of the small sample size, the agreement appears to be reasonable. The simulated motions were all scaled by the same factor such that the ensemble average of the peak accelerations is 0.6 g, resulting in the motions of Fig. 10.
AVERAGE $|X_j(\omega)|^2$

$$|H(\omega)|^2 = \frac{1 + 4 \xi_f^2 \left(\frac{\omega}{\omega_f}\right)^2}{\left[1 - \left(\frac{\omega}{\omega_f}\right)^2\right]^2 + 4 \xi_f^2 \left(\frac{\omega}{\omega_f}\right)^2}$$

$\omega_f = 5 \pi, \xi_f = 0.6$

(a) FILTER CHARACTERISTICS

(b) VARIANCE INTENSITY FUNCTION

II.1 FILTER CHARACTERISTICS AND VARIANCE INTENSITY FUNCTION FOR SIMULATION OF HORIZONTAL GROUND MOTIONS
II.2 AVERAGE RESPONSE SPECTRA OF HORIZONTAL GROUND MOTIONS: DAMPING RATIO = 5%
II.3 FILTER CHARACTERISTICS AND VARIANCE INTENSITY FUNCTION FOR SIMULATION OF VERTICAL GROUND MOTIONS
II.4 SIMULATED VERTICAL GROUND MOTIONS BASED ON THE FIRST ESTIMATE OF $\theta(t)$
II.5 AVERAGE RESPONSE SPECTRA OF VERTICAL GROUND MOTIONS. DAMPING RATIO = 5%
<table>
<thead>
<tr>
<th>Report Title</th>
<th>Authors</th>
<th>Accession Numbers</th>
<th>Date</th>
</tr>
</thead>
<tbody>
<tr>
<td>"Inelastic Behavior of Beam-to-Column Subassemblies Under Repeated Loading,"</td>
<td>V.V. Bertero</td>
<td>EERC 68-2</td>
<td>1968</td>
</tr>
<tr>
<td>"Earthquake Engineering Research at Berkeley,"</td>
<td></td>
<td>EERC 69-1</td>
<td>1969</td>
</tr>
<tr>
<td>"Rock Motion Accelerograms for High Magnitude Earthquakes,"</td>
<td>H.B. Seed and I.M. Idriss</td>
<td>EERC 69-7</td>
<td>1969</td>
</tr>
<tr>
<td>"Seismic Behavior of Multistory Frames Designed by Different Philosophies,"</td>
<td>J.C. Anderson and V. V. Bertero</td>
<td>EERC 69-11</td>
<td>1969</td>
</tr>
<tr>
<td>"Stiffness Degradation of Reinforcing Concrete Members Subjected to Cyclic Flexural Moments,"</td>
<td>V.V. Bertero, B. Bresler and H. Ming Liu</td>
<td>EERC 69-12</td>
<td>1969</td>
</tr>
<tr>
<td>"Response of Non-Uniform Soil Deposits to Travelling Seismic Waves,"</td>
<td>H. Dezfulian and H.B. Seed</td>
<td>EERC 69-13</td>
<td>1969</td>
</tr>
<tr>
<td>"Damping Capacity of a Model Steel Structure,"</td>
<td>D. Rea, R.W. Clough and J.G. Bouwkamp</td>
<td>EERC 69-14</td>
<td>1969</td>
</tr>
<tr>
<td>"Cyclic Loading of Full Size Steel Connections,"</td>
<td>E.P. Popov and R.M. Stephen</td>
<td>EERC 70-3</td>
<td>1970</td>
</tr>
<tr>
<td>"Seismic Analysis of the Charaima Building, Caraballeda, Venezuela,"</td>
<td>Subcommittee of the SEACNC Research Committee:</td>
<td>EERC 70-4</td>
<td>1970</td>
</tr>
<tr>
<td>Document ID</td>
<td>Title</td>
<td>Authors</td>
<td>Year</td>
</tr>
<tr>
<td>-------------</td>
<td>--</td>
<td>--------------------------------------</td>
<td>-------</td>
</tr>
<tr>
<td>EERC 70-7</td>
<td>"Influence of Base Rock Characteristics on Ground Response,"</td>
<td>J. Lysmer, H.B. Seed and P.B. Schnabel</td>
<td>1970</td>
</tr>
<tr>
<td>EERC 70-10</td>
<td>"Soil Moduli and Damping Factors for Dynamic Response Analysis,"</td>
<td>H.B. Seed and I.M. Idriss</td>
<td>1970</td>
</tr>
<tr>
<td>EERC 71-2</td>
<td>"Preliminary In-Situ Measurements of Ane1astic Absorption in Soils Using a Prototype Earthquake Simulator,"</td>
<td>R.D. Borcherdt and P.W. Rodgers</td>
<td>1971</td>
</tr>
<tr>
<td>EERC 71-3</td>
<td>"Static and Dynamic Analysis of Inelastic Frame Structures,"</td>
<td>F.L. Porter and G.H. Powell</td>
<td>1971</td>
</tr>
<tr>
<td>EERC 71-7</td>
<td>"Inelastic Behavior of Steel Beam-to-Column Subassemblies,"</td>
<td>H. Krawinkler, V.V. Bertero and E.P. Popov</td>
<td>1971</td>
</tr>
<tr>
<td>EERC 72-1</td>
<td>"Static and Earthquake Analysis of Three Dimensional Frame and Shear Wall Buildings,"</td>
<td>E.L. Wilson and H.H. Dovey</td>
<td>1972</td>
</tr>
<tr>
<td>EERC 72-2</td>
<td>"Accelerations in Rock for Earthquakes in the Western United States,"</td>
<td>P.B. Schnabel and H.B. Seed</td>
<td>1972</td>
</tr>
<tr>
<td>EERC 72-5</td>
<td>"Cyclic Behavior of Three Reinforced Concrete Flexural Members with High Shear,"</td>
<td>E.P. Popov, V.V. Bertero and H. Krawinkler</td>
<td>1972</td>
</tr>
<tr>
<td>EERC 72-8</td>
<td>"Three Dimensional Analysis of Building Systems,"</td>
<td>E.L. Wilson and H.H. Dovey</td>
<td>1972</td>
</tr>
<tr>
<td>EERC 72-9</td>
<td>"Rate of Loading Effects on Uncracked and Repaired Reinforced Concrete Members,"</td>
<td>S. Mahin, V.V. Bertero, D. Rea and N. Atalay</td>
<td>1972</td>
</tr>
<tr>
<td>EERC 72-10</td>
<td>"Computer Program for Static and Dynamic Analysis of Linear Structural Systems,"</td>
<td>E.L. Wilson, K.J. Bathe, J.E. Peterson and H.H. Dovey</td>
<td>1972</td>
</tr>
<tr>
<td>EERC 73-1</td>
<td>"Optimal Seismic Design of Multistory Frames,"</td>
<td>V.V. Bertero and H. Kamil</td>
<td>1973</td>
</tr>
</tbody>
</table>

"Experimental Investigation into the Seismic Behavior of Critical Regions of Reinforced Concrete Components as Influenced by Moment and Shear," by M. Celebi and J. Penzien - 1973 (PB 215 884)A09

"Earthquake Analysis of Multi-Story Buildings Including Foundation Interaction," by A.K. Chopra and J.A. Gutierrez - 1973 (PB 222 971)A03

"Effect of Different Types of Reinforcing on Seismic Behavior of Short Concrete Columns," by V.V. Bertero, J. Hollings, O. Küstü, R.M. Stephen and J.G. Bouwkamp - 1973

"Earthquake Medical Center Materials Studies, Phase I," by D. Bresler and V.V. Bertero - 1973 (PB 231 986)A06

"Linear and Nonlinear Seismic Analysis Computer Programs for Long Multiple-Span Highway Bridges," by W.S. Tseng and J. Penzien - 1973

"Earthquake Engineering at Berkeley - 1973," (PB 226 033)A01

Unassigned

"Investigation of the Failures of the Olive View Stairtowers During the San Fernando Earthquake and Their Implications on Seismic Design," by V.V. Bertero and R.S. Collins - 1973 (PB 235 156)A13

"Further Studies on Seismic Behavior of Steel Beam-Column Subassemblages," by V.V. Bertero, H. Krawinkler and E.F. Popov - 1973 (PB 234 172)A06

EERC - 3

EERC 74-7 Unassigned

EERC 74-9 "Hysteretic Behavior of Reinforced Concrete Flexural Members with Special Web Reinforcement," by V.V. Bertero, E.P. Popov and T.Y. Wong - 1974 (PB 236 797)A07

EERC 74-10 "Applications of Reliability-Based, Global Cost Optimization to Design of Earthquake Resistant Structures," by E. Vitelli and K.S. Pister - 1974 (PB 237 231)A06

EERC 74-14 "Nonlinear Earthquake Response of Concrete Gravity Dams," by N. Pal - 1974 (AD/A 006 583)A06

EERC 75-3 "Seismic Risk Analysis for a Site and a Metropolitan Area," by C.S. Oliveira - 1975 (PB 248 134)A09

EERC 75-4 "Analytical Investigations of Seismic Response of Short, Single or Multiple-Span Highway Bridges," by M.-C. Chen and J. Penzien - 1975 (PB 254 454)A09

EERC 75-10 "Static and Dynamic Analysis of Nonlinear Structures," by D.P. Mouskar and S.H. Powell - 1975 (PB 242 434)A08

EERC 75-11 "Hysteretic Behavior of Steel Columns," by E.P. Popov, V.V. Bertero and S. Chandramouli - 1975 (PB 252 365)A11

EERC 75-12 "Earthquake Engineering Research Center Library Printed Catalog," - 1975 (PB 243 711)A36

EERC 75-13 "Three Dimensional Analysis of Building Systems (Extended Version)," by P.L. Wilson, J.P. Hollings and H.H. Dovey - 1975 (PB 243 969)A07

EERC 75-14 "Determination of Soil Liquefaction Characteristics by Large-Scale Laboratory Tests," by P. De Alba, C.K. Chan and R.B. Seed - 1975 (NUREG 0027)A08

EERC 75-16 "Hysteretic Behavior of Ductile Moment Resisting Reinforced Concrete Frame Components," by V.V. Bertero and E.P. Popov - 1975 (PB 246 380)A05

EERC 75-17 "Relationships Between Maximum Acceleration, Maximum Velocity, Distance from Source, Local Site Conditions for Moderately Strong Earthquakes," by H.B. Seed, R. Murarka, J. Lysmer and I.M. Idriss - 1975 (PB 248 172)A03

EERC 75-18 "The Effects of Method of Sample Preparation on the Cyclic Stress-Strain Behavior of Sands," by J. Mulilis, C.K. Chan and N.B. Seed - 1975 (Summarized in EERC 75-28)

EERC 75-23 "Hysteretic Behavior of Reinforced Concrete Framed Walls," by T.Y. Wong, V.V. Bertero and E.P. Popov - 1975

EERC 75-25 "Influence of Seismic History on the Liquefaction Characteristics of Sands," by H.B. Seed, K. Mori and C.F. Chan - 1975 (Summarized in EERC 75-28)

EERC 75-27 "Identification of Research Needs for Improving Aseismic Design of Building Structures," by V.V. Bertero - 1975 (PB 249 130)A05

EERC 75-29 "Representation of Irregular Stress Time Histories by Equivalent Uniform Stress Series in Liquefaction Analyses," by H.B. Seed, I.M. Idriss, F. Makdisi and H. Banerjee - 1975 (PB 252 635)A12

EERC 75-32 "TRIP and TRAVEL - Computer Programs for Soil-Structure Interaction Analysis with Horizontally Travelling Waves," by T. Udaka, J. Lysmer and H.B. Seed - 1975

EERC 75-33 "Predicting the Performance of Structures in Regions of High Seismicity," by J. Penzien - 1975 (PB 246 130)A05

EERC 75-41 "Effect of Multi-Directional Shaking on Liquefaction of Sands," by H.B. Seed, R. Pyke and G.R. Martin - 1975 (PB 258 781)A03

EERC 76-4 "Earthquake Induced Deformations of Earth Dams," by N. Serff, H.B. Seed, F.I. Makdisi & C.-Y. Chang - 1976 (PB 292 063)A08

EERC 76-6 "Time and Frequency Domain Analysis of Three-Dimensional Ground Motions, San Fernando Earthquake," by T. Kubo and J. Penzien (PB 260 556) A11

EERC 76-8 "Cyclic Shear Tests of Masonry Piers, Volume 1 - Test Results," by R.L. Mayes, Y. Omote, R.W. Clough - 1976 (PB 264 424) A06

EERC 76-11 "Influence of Design and Analysis Assumptions on Computed Inelastic Response of Moderately Tall Frames," by G.H. Powell and D.G. How - 1976 (PB 271 409) A06

EERC 76-14 "Seismic Analyses of the Banco de America," by V.V. Bertero, S.A. Mahin and J.A. Hollings - 1976

EERC 76-16 "Cyclic Shear Tests of Masonry Piers, Volume 2 - Analysis of Test Results," by R.L. Mayes, Y. Omote and R.W. Clough - 1976

EERC 76-18 "Experimental Model Studies on Seismic Response of High Curved Overcrossings," by D. Williams and W.G. Godden - 1976 (PB 269 548) A08

EERC 76-32 "Infilled Frames in Earthquake Resistant Construction," by R.E. Klinger and V.V. Bertero - 1976 (PB 265 892) A13

UCB/EERC-77/04 "Seismological Studies of Strong Motion Records," by J. Shoja-Taheri - 1977 (PB 269 655)A10

UCB/EERC-77/05 "Testing Facility for Coupled-Shear Walls," by I. Li-Hyang, V.V. Bertero and E.P. Popov - 1977

UCB/EERC-77/06 "Developing Methodologies for Evaluating the Earthquake Safety of Existing Buildings," by No. 1 - B. Frellas; No. 2 - B. Frellas, T. Okada and D. Zinling; No. 3 - T. Okada and B. Frellas; No. 4 - V.V. Bertero and B. Frellas - 1977 (PB 267 354)A08

UCB/EERC-77/10 "Experimental Evaluation of Seismic Design Methods for Broad Cylindrical Tanks," by D.F. Clough (PB 272 280)A11

UCB/EERC-77/13 "Concrete Confined by Rectangular Hoops Subjected to Axial Loads," by J. Vallenas, V.V. Bertero and E.P. Popov - 1977 (PB 275 165)A06

UCB/EERC-77/14 "Seismic Strain Induced in the Ground During Earthquakes," by Y. Sugimura - 1977 (PB 284 201)A04

UCB/EERC-77/15 "Bond Deterioration under Generalized Loading," by V.V. Bertero, E.P. Popov and S. Wivathamayapan - 1977

UCB/EERC-77/18 "Inelastic Behavior of Eccentrically Brace Steel Frames under Cyclic Loadings," by C.W. Roeder and E.P. Popov - 1977 (PB 275 526)A15

UCB/EERC-77/22 "Preliminary Experimental Study of Seismic Uplift of a Steel Frame," by R.W. Clough and A.A. Huckelbridge - 1977 (PB 278 369)A08

UCB/EERC-77/23 "Earthquake Simulator Tests of a Nine-Story Steel Frame with Columns Allowed to Uplift," by A.A. Huckelbridge - 1977 (PB 277 944)A09

UCB/EERC-77/30 "An Approach for Improving Seismic - Resistant Behavior of Reinforced Concrete Interior Joints," by B. Galunic, V.V. Bertero and E.P. Popov - 1977 (PB 290 870)A06

"Seismic Behavior of Tall Liquid Storage Tanks," by A. Niwa - 1978 (PB 284 071) A14

"Damageability in Existing Buildings," by T. Blejwas and B. Bresler - 1978

"Seismic Risk Studies for San Francisco and for the Greater San Francisco Bay Area," by C.S. Oliveira - 1978

"Studies of Strong Ground Motion in Taiwan," by Y.M. Hsiung, B.A. Bolt and J. Penzien - 1978

UCB/EERC-79/01 "Hysteretic Behavior of Lightweight Reinforced Concrete Beam-Column Subassemblages," by B. Forzani, E.P. Popov, and V.V. Bertero - 1979

UCB/EERC-79/02 "The Development of a Mathematical Model to Predict the Flexural Response of Reinforced Concrete Beams to Cyclic Loads, Using System Identification," by J.F. Stanton and H.D. McNiven - 1979

UCB/EERC-79/05 "Mechanical Behavior of Lightweight Concrete Confined by Different Types of Lateral Reinforcement," by M.A. Manrique, V.V. Bertero, and E.P. Popov - 1979

UCB/EERC-79/14 "Seismic Behavior of Reinforced Concrete Interior Beam Column Subassemblages," by S. Viwathanatepa, E.P. Popov, and V.V. Bertero - 1979

UCB/EERC-79/16 "OPTDYN - A General Purpose Optimization Program for Problems with or without Dynamic Constraints," by M.A. Bhatti, E. Polak, and K.S. Pister - 1979

UCB/EERC-79/20 "Hysteretic Behavior of Reinforced Concrete Structural Walls," by J.M. Vallenas, V.V. Bertero, and E.P. Popov - 1979

UCB/EERC-79/22 "Effects of Generalized Loadings on Bond Reinforcing Bars Embedded in Confined Concrete Blocks," by S. Viwathanatepa, E.P. Popov, and V.V. Bertero - 1979

<table>
<thead>
<tr>
<th>Document ID</th>
<th>Title</th>
<th>Authors</th>
<th>Year</th>
</tr>
</thead>
<tbody>
<tr>
<td>UCB/EERC-79/29</td>
<td>"3D Truss Bar Element (Type 1) for the ANSR-II Program," by D.P. Mondkar and G.H. Powell</td>
<td>1979</td>
<td></td>
</tr>
<tr>
<td>UCB/EERC-79/30</td>
<td>"2D Beam-Column Element (Type 5 - Parallel Element Theory) for the ANSR-II Program," by D.G. Row, G.H. Powell, and D.P. Mondkar</td>
<td>1979</td>
<td></td>
</tr>
<tr>
<td>UCB/EERC-79/31</td>
<td>"3D Beam-Column Element (Type 2 - Parallel Element Theory) for the ANSR-II Program," by A. Riahi, G.H. Powell, and D.P. Mondkar</td>
<td>1979</td>
<td></td>
</tr>
<tr>
<td>UCB/EERC-79/34</td>
<td>"Interaction Effects of Simultaneous Torsional and Compressional Cyclic Loading of Sand," by P.M. Griffin and W.N. Houston</td>
<td>1979</td>
<td></td>
</tr>
<tr>
<td>UCB/EERC-80/02</td>
<td>"Rocking Response of Rigid Blocks to Earthquakes," by C.S. Yim, A.K. Chopra, and J. Penzien</td>
<td>1980</td>
<td></td>
</tr>
</tbody>
</table>