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ABSTRACT

This investigation deals with the rocking response of rigid blocks

subjected to earthquake ground motion. A numerical procedure and computer

program are developed to solve the nonlinear equations of motion governing

the rocking motion of rigid blocks on rigid base subjected to horizontal and

vertical ground motions.

The response results presented show that the response of the block is

very sensitive to small changes in its size and slenderness ratio, and to

the details of ground motion. Systematic trends are not apparent: The

stability of a block subjected to a particular ground motion does not

necessarily increase monotonically with increasing size or decreasing slender­

ness ratio. Overturning of a block by a ground motion of particular intensity

does not imply that the block will necessarily overturn under the action of

more intense ground motion.

In contrast, systematic trends are observed when the problem is studied

from a probabilistic point of view with the ground motion modelled as a ran­

dom process. The probability of a block exceeding any response level, as

well as the probability that a block overturns, increases with increase in

ground motion intensity, increase in slenderness ratio of the block, and

decrease in its size.

It is concluded that probabilistic estimates of the intensity of ground

shaking may be obtained from its observed effects on monuments, minarets,

tombstones and other similar objects provided suitable data in sufficient

quantity is available, and the estimates are based on probab-ilistic analyses

of the rocking response of rigid blocks, considering their nonlinear dynamic

behavior.
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INTRODUCTION

Toward the latter part of the 19th century and in the early part of

this century, before instruments had been developed to record strong ground

motions, procedures were proposed to estimate the intensity of ground shak­

ing from its observed effects on tombstones and monumental columns, whether

they overturned or remained standing [1-4J. In these procedures, the free

standing tombstone or column was idealized as a rigid block resting on a

rigid horizontal base, and the ground motion was either idealized as an

instantaneous impulse or its effects were represented by a static horizontal

force acting on the block. Formulas were derived to calculate the ground

acceleration necessary to overturn a block of given dimensions [1-4J. The

great interest in this approach led to a proposal for its use in seismolog­

ical observatories to determine the maximum ground acceleration during

earthquakes. The idea was to erect a family of columns, all with rectangu­

lar sections but varying in slenderness ratio [1-4J. When subjected to

ground motion some of these columns might overturn; others would remain

standing. From such information, using the above mentioned formulas, the

maximum ground acceleration could be estimated.

Modern strong-motion accelerographs have now been available for a few

decades and have been deployed in seismic areas. Several hundred recordings

have been obtained, most of them in the last ten years. However, because of

the rarity of strong earthquakes, their seeming proclivity occur in unin­

strumented areas, and the localized extent of the really strong shaking,

there are wide gaps in the present day collection of strong ground motion

accelerograms. For example. the shaking in the vicinHy of the causative

fault has been recorded only a few times during Richter Magnitude 7 earth­

quakes and never in a truly great (Magnitude 8) earthquake. Thus, estimates

- 1 -



of ground acceleration based on the approach mentioned earlier could provide

useful supplements to the modern recorded data, which would be useful in

specifying design earthquakes of very long return periods, suitable for

nuclear power plants and major dams near population centers. Available for

such calculations is a wealth of historical information from seismic areas

of the world which were the centers of the ancient Roman, Greek, Chinese,

and Indian civilizations. Some of the historical monuments in these areas

were destroyed by earthquakes, others withstood many destructive earthquakes.

Such an approach was recently employed to estimate the accelerations in the

epicentral region of the 1975, Ohita earthquake in Japan [5].

In almost every destructive earthquake in the Eastern Mediterranean and

Middle Eastern regions, free standing columns of Greek and Roman monuments

and minarets have survived undamaged in earthquakes that have caused spec­

tacular destruction around them. In some cities in India, free-standing

stone columns that supported heavy statues remained standing although at

the end of the earthquake they were surrounded by heaps of debris that had

been seemingly more stable structures. Tall, slender stone pillars in

graveyards have survived strong ground motion whereas boxlike electric

power transformers have rocked and overturned. During the Chilean earth­

quakes of 1960, several golf-ball-on-a-tee type of elevated water tanks sur­

vived the ground shaking whereas much more stable-appearing reinforced con­

crete elevated water tanks were severely damaged. In order to explain such

anomolous behavior, the above mentioned analyses of overturning of rigid

blocks, proposed several decades ago, are inadequate, and it is necessary to

consider the dynamics of the system.

Motivated by the observations of damage to water tanks in the 1960

Chilean earthquakes, Housner was the first to systematically investigate

- 2 -



the dynamics of a rigid block on a rigid horizontal base undergoing horizon­

tal motion [6]. Representing the ground acceleration as a rectangular pulse

and as a half-cycle sine-wave pulse, equations were derived for the minimum

accelerations (which depend on the duration of the pulse) required to over­

turn a block. The approach employed in obtaining these equations is valid

only for single pulse excitations which, if large enough. would overturn the

block without rocking and the associated impacts. Smaller accelerations

than specified by these equations may set the block to rocking but will not

overturn it. It is. however. possible to overturn the block with smaller

accelerations if a number of pulses act successively, a characteristic of

ground accelerations during earthquakes. Using an energy approach and ide­

alizing the ground motion as white noise, Hausner presented an approximate

analysis of the dynamics of rigid blocks subjected to such excitations.

From these results he showed that there is an unexpected scale effect which

makes the larger of two geometrically similar blocks more stable than the

smaller block. Moreover. the stability of a tall, slender block subjected

to earthquake motion is much greater than would be inferred from its stabil­

ity against a static horizontal force. employed to represent earthquake

effects in the very simple analysis mentioned above. Thus. Housner's work

led to important results.

Motivated by the need to design concrete blocks to provide radiation

shielding in particle accelerator laboratories. rigid blocks were tested on

the Berkeley shaking table [7]. These experiments demonstrated that the

rocking response of a rigid block is very sensitive to the boundary condi­

tions, the impact coefficient of restitution. and the ground motion details.

In the first part of this report. the dynamics of rocking rigid blocks

is studied with the aim of understanding the sensitivity of response to

- 3 -



system and ground motion properties. The problem is next examined from a

probabilistic point of view to identify, if possible, any predictable behav-

ioral trends in spite of the response sensitivity. Finally, the implica-

tions of the,r.esults for estimating the intensity of ground shaking from its

observed effects' on tombstones, monumental columns, and other similar

objects are presented.

GOVERNING EQUATIONS

A rigid block subjected to horizontal and vertical ground accelerations

of the rigid base is shown in rotated position in Fig. 1. The coefficient

of friction is assumed to be sufficiently large so that there will be no

sliding between the block and the base. Depending on the ground accelera-

tion, the block may move rigidly with the ground or be set into rocking; in

the latter case, it will oscillate about the centers of rotation 0 and 0'.

It is assumed that the block and base surfaces in contact are perfectly

smooth so that the block will rock around the edges 0 and O' and no

intermediate location.

When subjected to base accelerations a~ in the horizontal direction

and a~ in the vertical direction, the block will be set into rocking when

the overturning moment of the horizontal inertia force about one edge

exceeds the restoring moment due to the weight of the block and vertical

inertia force:
!i aX .!:!. > (w + WaY) .I!
g 9 2 g 9 2

~ Y)x B a
a >-91+--.9.

9 H 9

- 4 -
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ja~~ a
a~ (t)

FIG. 1 ROCKING BLOCK

-WR8c

Rotation e

FIG. 2 MOMENT-ROTATION RELATION FOR SLENDER BLOCKS (H/B ~ 3)
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where W is the weight of the block, g = acceleration of gravity, and it

(2)- }i R cos(e - e) aX(t)
g c g

is assumed that the geometric and gravity centers for the block coincide.

The rigid block will oscillate about the centers of rotation 0 and 0'

when it is set to rocking. The equations of motion of the block, governing

the angle e from the vertical (Fig. 1 ), subjected to horizontal and verti­

cal ground accelerations a~(t) and a~(t) are derived by considering the

equilibrium of moments about the centers of rotation. These equations may

be expressed as

1
0

ii + W~ + a~~t)) R sin (ec - e) =

When the block is rocking about 0, and

I e- W~ + a~(t)) R sin(e + e) = - }i R cos(e + e) aX(t) (3)
o 9 c 9 c g

when it is rocking about O' . In addition to the quantities defined ear­

lier and in Fig. 1, 1
0

= mass moment of inertia of the block about 0 or
-10 1

; and ec = cot (H/B) . Because of the trigonometric functions of 8,

each of these equations is nonlinear. Another source of nonlinearity is

the switching of equations back and forth between Eqs. 2 and 3 as the block

rocks alternately about 0 and O' .

For slender blocks, Bc is small and it is reasonable to linearize the

two equations of motion, individually, as follows:

1
0

e+ WR(l + a~(t)) (8 _ e) = _ WR aX(t)
9 c g 9

(4)

for rocking about 0, and
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(5 )

for rocking about 0' .

The relation between a static moment applied about 0 and 0' and the

resulting angle of rotation e, identified from these linearized equations,

is shown in Fig. 2. Interpreting this relationship in terms of the usual

concepts of structural stiffness, the system has infinite stiffness until

the magnitude of the applied moment reaches WRe ; thereafter the stiffness
c

is negative. When e exceeds ec ' the critical angle, the block will overturn

under static moment; but, as will be seen later, not necessarily under dynamic

conditions. Obviously, the properties of the rocking block are much differ-

ent than those of a linear single-degree-of-freedom system where the stiff-

ness is positive and constant. The properties are reminiscent of a rigid­

plastic system except that, for the rocking block, the second slope is

negative and behavior is not hysteretic.

When the block is rotated through an angle e, and released from rest

with initial displacement, it will rotate about the point 0 as it falls

back into the vertical position. If the impact is assumed to be such that

there is no bouncing of the block, the rotation continues smoothly about the

point 0' and the momentum about 0' is conserved. Thus,

. .
where 61 and 82 are the angular velocities before and after impact.

ratio of kinetic energy quantities after and before impact is

- 7 -
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Using Eq. 6, r can be expressed as

[
WR

2
] 2r = 1 - - - (1 - cos 28 )

g 1
0

c

Just before and just after impact, the angle of rotation e is zero, and

(8)

the potential energy stored in the system is zero. At these two instants,

the total energy in the system is therefore all in the form of kinetic

energy. Thus, the energy loss due to impact = 1 - r .

Following the concepts of classical analytical dynamics, a coefficient

of restitution is defined as

4 W 2which from Eq. 8, after noting that 1
0

= 39 R, can be expressed as

e = 1 - 1 sin2 e (9b)2 c

Thus, the energy loss due to impact = 1 - e2 . The higher the coefficient

of restitution, the smaller the energy loss due to impact.

As shown in Fig. 3, the coefficient of restitution, e, varies from 1

for very slender blocks (e =0, HIS =00)
c to zero for blocks with HIS =

l/~. For smaller values of HIS, e is negative indicating that the

angular velocity changes sign after impact, resulting in bouncing of the

block about the point of rotation prior to impact.

The coefficient of restitution determined from conservation of angular

momentum (Eq. 9b) depends only on the slenderness ratio HIS or ec ; it is

independent of both the angular velocity before impact and size of the

block. This result is exactly valid for the idealized conditions of rigid

- 8 -



1.0

Q.)

z 0.8
0
i=
::::>
~

i= 0.6
(/)
w
a::
u..
0 0.4
~z
w
()

i:i: 0.2u..
w
0
u

l

15
0'---1...-------''-------------'--------'

o 5 10

SLENDERNESS RATIO HIS

FIG. 3 VARIATION OF COEFFICIENT OF RESTITUTION, BASED ON
CONSERVATION OF ANGULAR MOMENTUM, WITH SLENDERNESS RATIO

5.------------------.,.,

1.00.80.2

4

0.4 0.6

eolec
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block and rigid base, but only approximately valid if the idealized condi­

tions do not exist, since the kinetic energy loss depends on the materials

of the block and the base. The influence of such variations in the coeffi-

cient of restitution on the rocking response of the block is examined later.

APPROXIMATE ANALYSIS OF OVERTURNING

Free Vibrations

When the block is rotated about 0 through an angle e and released,

the resulting free vibration of slender blocks is governed by Eq. 4 with

the base accelerations set to zero:

or,

where

e = -

2 WRP =­1
0

(10)

For a homogeneous rectangular block

and Eq. 10 is then independent of the weight W of the block.

This equation, subject to the initial conditions e = 8
0

and e = eo

at t = 0, has the solution

e
e = e - (8 -8 ) cosh pt +.....Q. sinh ptceo p

- 10 -
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·Equation 11 with 8 = 0 describes the rotation of the block about theo
point 0 as it falls back into the vertical position after it is released

from rest with initial displacement 8o
The block will then rotate about

0·, and if there is no energy loss during impact. the block will rotate

through an angle 8 = -8 . The block will then fall back again to the ver-o
tical position and will rise about point 0 until 8 is again equal to

8
0

At this instant, one complete cycle of vibration will have been

completed. The time T required to complete this cycle is the period of

free vibration. It will be equal to the time required for the block to fall

from 8 = 8
0

to 8 = 0, determined from Eq. 12, multiplied by four:

4 -1 ( 1 )T =- cosh 1 - 8 18
P 0 c

(12)

The period of free vibration is strongly and nonlinearly dependent on the

amplitude ratio 8
0

/8
c

(Fig. 4) and increases from zero to infinity as the

amplitude ratio increases from zero to one [6J.

Overturning by Single-Pulse Excitations

Consider a rigid block resting on a base which is subjected to a single

pulse of horizontal acceleration. This may be a rectangular pulse with con­

stant acceleration ago lasting for a time t l or acceleration varying as

a half cycle sine-wave pulse of amplitude a and duration t, Motiongo
of the block is initiated by base acceleration a~ if (from Eq. 2)

ago/g > B/H, or for slender blocks, agO/g > 8c ' These inequalities specify

the acceleration in fraction of 9 required to begin tilting the block.

Even if motion is initiated, the block mayor may not overturn depend­

ing on the magnitude of ago and the duration t l . The duration t l of

a rectangular pulse with acceleration ago required to overturn the block

- 11 -



was determined [6] and given by the following equation:

(13)

Similarly, the conditions under which a half cycle sine-pulse of duration

and maximum acceleration a will overturn the block are governed bygo

(14)

These results were derived starting with the linearized Eq. 4. Thus, they

are valid only for slender blocks. Furthermore, the approach employed [6]

in obtaining these results is valid only for single pulse excitations which,

if large enough, would overturn the block without rocking back and forth

and the associated impacts. Smaller accelerations than are specified by

these equations may set the block to rocking but will not overturn it.

Graphs of Eqs. 13 and 14 are presented in Fig. 5. In each case, the

graph represents the boundary between overturning and stable regions. The

acceleration ago required for overturning is plotted against ptl for

selected values of the slenderness ratio HIS, and against the critical

angle 8c = cot-l(H/B) for selected values of ptl in Fig. 6. For a

fixed duration t l and size parameter R, ago decreases as HIS increases.

Similarly, for a fixed t l and H/B, ago increases with R. Thus, larger

accelerations are required to overturn larger blocks and smaller accelera-

tions are required to overturn relatively slender blocks. The acceleration

required to overturn a block depends on the shape of the acceleration pulse;

smaller acceleration is required for a rectangular pulse than for a half­

cycle sine pulse of the same duration t l

- 12 -
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Overturning by Earthguake Motion

The minimum accelerations required to overturn a block by single acce1-

eration pulses of two types, rectangular and half-sine, are given by Eqs. 13

and 14. Smaller accelerations than specified by these equations may set the

block to rocking but will not overturn it. It is however possible that a

block will overturn under the action of a sequence of pulses, characteris-

tic of earthquake ground motion. each with accelerations smaller than speci­

fied by these equations.

Housner presented an ingeneous, approximate analysis of overturning of

blocks by earthquake ground motion. The ground motion was idealized as

white noise, and linearized equations of motion were used. The approximate

analysis, based on energy concepts, is too subtle to be summarized here,

and the interested reader should refer to the original source [6J. One of

the principal results was the following: For a given pseudo-velocity spec­

trum value Sv' a block having a critical angle ec given by

S
= 0.866 ~ for rectangular blocks (15b)

vgR

will have approximately a 50% probability of being overturned. The dimen­

sions of the structure enter only through the length R and the slenderness

ratio HIS through the angle ec The earthquake intensity necessary to

overturn a block increases with size for a fixed slenderness ratio; increases

with ec' or decreases with increasing slenderness ratio, for a fixed size

R. For a block of fixed size and slenderness ratio, Eq. 15b suggests that

the probability of overturning increases with intensity of ground motion.

- 15 -



Thus, these conclusions, derived earlier for single pulse excitations~ are

also valid for idealized earthquake motions but only in a probabilistic

sense. Housner [6] also concluded that lithe behavior of a rocking block

could be quite variable in that relatively small ground motion may fortui­

tously build up the amplitude at the beginning of the ground motion and lead

to overturning the b1ock ll
•

RESPONSE BEHAVIOR

Analysis Procedure

The rocking response of a rigid block to prescribed ground acceleration

is determined by numerically solving Eqs. 2 and 3 with the condition for ini­

tiation of rocking defined by Eq. 1 and the impact condition by either the

conservation of angular momentum (Eq. 6) or a specified coefficient of

restitution (Eq. 9a). Typical values for the time-step used in the numeri­

cal integration of the governing equations were ~t = 1/400 sec. The sign

of a~ at the time-instant when Eq. 1 is satisfied, i.e., motion is ini­

tiated, determines whether Eq. 2 or 3 is to be used for the next time-step.

Equation 3 is used for positive a~ and Eq. 2 for negative a~. The same

equation is used for subsequent time steps until the sign of rotation e

changes. When such a change in sign occurs, say during time step t j to

t j +1, this time step is divided into two parts. Using the equation of

motion valid at t., the exact time t, t. < t < t'+l' at which e
J J J

becomes zero is determined by an iterative procedure. Just before the

impact, e(E-) = 0 and velocity is e(t-). Immediately after impact e(t+)

= 0 and e(E+) = ee(E-) where e is the coefficient of restitution which

either has a specified value (Eq. 9a) or is determined by conservation of

angular momentum (Eq. 9b). With these initial conditions, the equation of

- 16 -



motion, other than the one valid at t = t j , is solved over the time inter­

val t to t j +l and subsequent time intervals until the rotation angle e

again changes sign. The above mentioned process is then repeated.

Using a fourth order Runge-Kutta integration scheme, the numerical solu­

tion proced~re summarized above was implemented in a computer program. The

accuracy of the computer program has been checked by comparing its results

with analytical results for single pulse excitations [6] and with experi­

mental results from shaking table experiments using earthquake-type excita­

tions [7J. It was observed that in order to obtain accurate results it is

necessary to use a high-order integration scheme, such as the one employed

here, along with a very short time-step; the typical value used = 1/400 sec.

Some of the results of an earlier investigation [7] were found to be inac­

curate because this requirement had not been satisfied by the numerical

procedure used.

Simulated Ground Motions

Simulated motions were developed to model the properties of the follow­

ing ground motions recorded on firm ground in the region of strong shaking

during earthquakes of magnitude 6.5 to 7.5:

El Centro, California; December 30, 1934

El Centro, California; May 18, 1940

Olympia, Washington; April 13, 1949

Taft, California; July 21, 1952

These recorded accelerograms are presented in Fig. 7.

The simulation procedure adopted herein is essentially identical to

earlier studies [8,9]. It consisted of generating samples of stationary

Gaussian white noise; multiplying the white noise by an intensity function

of time (Fig. 8) to represent a segment of strong shaking at constant inten­

sity preceded by a quadratic build-up of intensity and followed by an

- 17 -
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exponential decay in intensity; passing the resulting function through a

second order linear filter to impart the desired frequency content, as indi­

cated by the spectral density (Fig. 8); and finally performing a baseline

correction on the filtered function.

In an earlier study [8], the parameters for the intensity function and

the filter (frequency = 2.5 cps and damping ratio = 60%) were estimated from

the properties of the horizontal components of the recorded motions. Similar

parameter values (Fig. 8) were employed in simulating the horizontal ground

motions for this investigation. Parameter values for simulating vertical

ground motions have apparently not been reported in the literature. They

were therefore estimated from the properties of the vertical component of

recorded motions using the procedures of Reference 8 (see Appendix II).

Figure 8 shows the parameters for the intensity function and for the filter

(frequency = 3.75 cps and damping ratio = 60%).

Using the above mentioned random process model and parameter values,

two sets of twenty simulated ground motions were generated to model the pro­

perties of the horizontal and vertical components of the recorded motions,

respectively. The set of simulated horizontal motions were all scaled by

the same factor such that the ensemble average of the peak acceleration

would be 19. Similarly, the simulated vertical motions were all scaled

such that the ensemble average of the peak acceleration would be 0.6 g. The

resulting motions are presented in Figs. 9 and 10.

Influence of System Parameters

Using the computer program mentioned earlier, the response of several

rigid blocks to the same simulated ground motion was determined. The time­

variation of the rotation of the block is presented in Fig. 11. In

those cases where the rotation e continues to increase significantly

- 20 -



N .....

I~
~

I
j

M
!.

L
~~

.I
I!

..
..

.
•

'
_

o
..~
~

~
~
'
~
~
r

'1
"'
~'
"

'n
..

-I

I~
2

O
.,
k
!
l
~
~
~
~

...
.I

I~
~n
~L
h"
"'
A.
"-
"\
iI
I'

,.
.
.

nl
Y

Iiv
(r

"
,
r

11"
1I
i
"

(,
.
r
v
~
v
.v

\'I
4

i
{
I

•
.,

..
."

•

-I 0'
~

,
.•

.•
~I
~~
I~
kl
ff
lt
·l
tI
'.

JI.
,N

~~
'

"IN
l

rf
3

•
V

"
1

ft
I

yo
V

\Iy
Ir

rF
v'

'''
V

'M
i
"
'
~

V
i1

1
'

•
•

-I I~
.

4
•

I
..

.
~

Il
~

.!
hl

l.
.L

I.
..

..
_

.,
••

•
o

=
-
<r

~A
Jf

tA
MI

AJ
.I

W.
wJ

iA
Ih\

U
Al

A.
4...

.4
.

li
lY

""
""

"'
"

..
..

..
0

'
-I

Z
I~

..L
5

o
.fI

~
'
A

~J\
'l

"
a

A
.,.

,.
j,

+
Il

A
A

.
,~

~
ft

'
-

0
..

.~
!
1

1t
J.

N\
~"

.~
1l

:~
¥'

lJ
M..'1

M
r/l

<.
'Vi

,.
iI

I
<>

\tv
"

..
"

!;:(
-I

a:: W
I~

6
-
l

0
.
~
h
.
N
~
I
A

.1
.~
U~
·\
IH
'~
~\
Il
"/
·~
·

'''
\1

''
..

.
.

W
'''

IV
V

l
\

1
l
·
~
I
l
i
W
"

V
i

"
,
f

r
o

o
+

if
v
,
~

C
O

li'
"

~
-
I

<
l

I
7

OH
~
I
U
~
~
~
~
_
~
A
.

Ih
••

r.
•."

,,
~6
~

.
if

lV
,r

V
~

T
fr

tW
V

li'
Ilv

if
?

,
w
~
,

'"
..

-I I~
8

•
I

..
.~

A
"

,
I
~
.

I
,

.6
I.

10
...

,A
.,

.,
o

w.
JI
"r
lv
MA

A~
w~
~/
tt
v,
~

"I.
0A

If.
..

..
.-

..
"'

"•
-I 0' f

'"
I·

WI
I~

.~
Wt
~~
lJ
vl
',6

1')
P~~

">A
4"

-
.,

A
,9

.
if

'''f
'

tv
"'J

I
l'1

n
'iV

-IN
/(

•\
(\

h
i
"

'T
.
.
.

-I I~
~

10
.•

1
•

~
.1

.1
.

1
•

I
.1

.
.

_~
'OW

'?!
!
\
~
~
d
t
"
r
~

HI
;.
-t
.~

.;
o

10
2

0
3

0

T
IM

E
,

S
E

C
O

N
D

S

I O
~
I
~
t
\
.
A
~
!
~
h
.
j
r
1
.
~

II

I

rrm
'VI

~
i
j
(
l
n
t
t
o
~
(
~

...·"
·,,...

.I.
'....

_
4

i'
1

.,.
..
,
v
a

I ~[
~6
~Y
~1
~~
J'
Jr
tJ
Nl

il
tv

\'
fQ

A,
"~

~.,
1...

''.~
"h

I;...
I o
[

..J
Ni~

~~V
~¥r

l\i
iW~

~.,
~)"

IA~
I~4

1ff
~V)

lJl
'

....
~,

to
:3

.
_I

~
if

p
..

VV
it
jt
·V
~N
IJ
'l
''
'

\

I~ o
....

I
I

~/
l.

•
A'

_ll
I~A

.
14

I

~
\
N
~

~~
vv
tv
~'

q1
fJ
dW
t~
tJ
t~
O'
(,

iN
'~

Ji
"
•
•

_
IJ

W
...

...
-v

I o~
...

.~
I
~
~
!
.
!
I
~
A
A
A

15
_I

~
~V

'i
1

VV
fw

rrt
fir

Nt
'..."'

I\
r·
11
.~
.>
\,
."
.

....
v

.'
,

I o~
0
1
f
~
J
!
h
W
1
~

16
"i

~
'\I

VI
"
1
~
1
~
~
~
'
N
/
4
"

t
~"

•
.,

,.
-1

v'"
"J
.
.
0

~:
qi

f
en

....

I~o
~A

l
1

1
J
.u

'&
II

.~
17

_I
•
·
~
W

~V
rr
'~
~v

fN
#~

""
'o

J,
i"

",
~....

.,,,,
,'"

"

18
0
t

,I
~
~
~
A
I
~
W
'
i
~
"
"
'
I
.
!
l
\
I
P
A
I
'
k
r
~
'
~
'

.!<
vA

h
.
.

'VY
i¥U

{
I

,'ih
y

U"
r

V
".

w
I

,,
'v

N
V

'

·1 I
~
.

~
O

",
vu

~!
;,

~~
rf

't
1~

~
..~1

tf
j~

'~
A,
",

•
•

•
,ql

V
1)1

r
I

,
V
I
~
'
1
1

I
v

.
.
.

"
'..

..
..

-
...

.
-I It
~

~
2

0
o

M
'

!
~
.
I

•
J
L

A
....

._
_
.~
.

..
.

0
•

_~
•
v
~
~

~f
rt

~1
~
~

V
iI
~

Ir
'O

'JV
"7

"'
v

n
h

Q:
o

10
2

0
3

0

T
IM

E
,

S
E

C
O

N
D

S

FI
G

.
9

SI
M

UL
AT

ED
HO

RI
ZO

NT
AL

GR
OU

ND
AC

CE
LE

RA
TI

ON
S

W
IT

H
EN

SE
M

BL
E

AV
ER

AG
E

OF
PE

AK
AC

CE
LE

RA
TI

ON
=

1
9



18

N N

'
~

1
O

'l
JW
I~

MN
~

·~
!W
!M
t~
Il
""
"'
.

J.,
<..

.
·N

."
"

I'
'1.

'iiiY
l
~
h
f

1
(r

,.
..

h
l
'"

.-

-I '~
2

O
l~

_I
~~

~J
I,

.l
ol

t'
''

''
''

''
'4

<'
''

''
''

..
.

.
"

'
I
r
'

i
.,

"
,
~
,
.

r
'r

'
"

..
-I I

~
.

O
~l
~~
J4
!~
I~
~"
\I

o"
s,

</
,d

""
"~

'
"

I
,

.
.
.
.
.
~

q
Y"

.,.
,,;

4
I
'
~
'

i,
v·

"
-
~

-I I
~

4
O

~
·
W
~
~
M
l
.
~
~

'•..
d

l
w

"
'*1

Y
•

4
j

"
"
,

r,
h

v
b

.w
,·

,
,

0
>

_I

,
'
~

5
z

0
~
~
W
"
\
I
I
I
~
I
-
¥
<
!
.
,

..~
..

..
..

~
W

1""
,
,
"

••
"
"
,

,

~
:
~

6
~

0
r
w
w
"
!
W
I
~

..lr
f
~
'

·I
l.

j"
l4

"·
.·

·,
eo

•
-
-

w
1

"
,

I
"
.

r
,"

'n
"

•.
,

.,
,

~
-,

<1
'
~

7
O

~W
oW

JW
I~

~l
IM

lh
'J

~~
'1

1
'lI

"',
_,

eI
j,l

oo
.,

...
."

H
.
.

'
•

J
U

II
I

1
i
I
~
.
n
"

rl
l

".Ii
\!i

..
..

-
•

-I I
~

8
.~
n~

.j
~!

.1
io\

,
,
,
"
'.

.
.
.

_
I
I
.

,

0,
r'
~'
1f
k~
~f
1"
41
Y\

l\
'J
'W
''
''
''
''

""
u

-I '~
9

O
!~
V«
Jr
~I
~A
~I
",
,*
!I
JI
A'
"

l\W
w~
.,
·

"
~

..
,f

,
V

"
64,

w
#

f
~

•p
'"

If
~"

'"
r

u;
w

-I 1
!

10
_
~
~
~
~
:
i
.
"
¥
:
'
~
~
~
~
'

~'
I

o
10

20
30

T
IM

E
,

S
E

C
O

N
D

S

II
.
"
,
d

.
'
"

...
...

1
~

1I
4j

,"
~I

""
IM

!-
..~

.
\W
J~
'l
'

1
I

o
~,

12

-I
~I

""
''

''
.'

''
JW

_'
'.

.'
I

,
~.
1

1
-H

o
~

'~
:~

~
~'

iW
Wi

""
"_

w"
",

·
1
1
l
~
~
y
f
J

r
o

'''
~

14

:~
I'
'i
I'
~~
''
'~
'

_
_

''
.

o
'1'1

\.,.
1

"
15

-I
I

..
..

..
.I

I!
'•

•'
"

,
"
,

I
~

J
.~

A~
;M

,W
+~

"(
lv

'W
l

o
fff

l'V
16

•

-I
•

"
1

'"
'/

It
,'

'"
"

1
~
.
,

/tt
l~

••_
,

o
",

""
J,

,n
17

:
~
I
~
'
~
"
'
'
'
'
.
'

o
~
~"
nw

I
-I I o
~
~
~
P
N
-
~
A
f
W
i
N
~
~
f
"
i
/
N
~
"
,
,
"
"
"
"
'
-
-
-
­

-I 1
~

Iq
o
~
~
v
;
~
I
~
V
~
M
'
A
l
~
~
~
\
'
w
.
,
,
,
,
,
,
,

,-
-I I
~

2
0

O
W

o\
jI.

!M
'J.

I.J
Ill

!A
J!

!l
u~
"

.M
Io

II
•.

..
.'

...
_

.
•

-,l
i'V

(l1
I'lw

;rw
Q

'ut
'''''

,"
"'

1"
..

..
_I

_
\
!

I

o
10

2
0

3
0

T
IM

E
,

S
E

C
O

N
D

S

FI
G

.
10

SI
M

UL
AT

ED
VE

RT
IC

AL
GR

OU
ND

AC
CE

LE
RA

TI
ON

S
W

IT
H

EN
SE

M
BL

E
AV

ER
AG

E
OF

PE
AK

AC
CE

LE
RA

TI
ON

=
0.

6
9



beyond e •c the block overturns. It is seen from this figure that the

rocking response of the block can be very sensitive to small changes in the

system parameters. Small variations in the slenderness ratio HIS and size

parameter R lead to large changes in the response. In contrast to the con­

clusions from single pulse excitations, stability of a block does not neces-

sarily increase monotonically with increasing size or decreasing slenderness

ratio. Similarly, contrary to what intuition would suggest, decrease in the

value of the coefficient of restitution--which implies increase in energy

dissipation--does not necessarily lead to smaller response of the block.

Influence of Ground Motion Properties

The ground motion assumed in Housner's approximate analysis consisting

of a single pulse ground acceleration followed by a constant velocity of the

ground. is unrealistic for earthquakes. The ground motion shown in Fig. 12,

consisting of three acceleration pulses, although much simpler than earth-

quake ground motion, is useful for studies of structural response [10]. The

response of several blocks, all having the same size parameter R but vary-

ing slenderness ratio HIS, to this simpler ground motion is determined by

the computer program. From the results presented in Fig. 12. it is seen

that response of two blocks with slightly different slenderness ratios can

be considerably different. However, the response and overturning tendency

of the block increase as the slenderness ratio increases. Thus a consistent

trend in the change of response with the change of slenderness ratio is

noticed.

The horizontal ground motions of Fig. 9 are all members of a random

process, defined in the average sense by a power spectral density, and an

intensity-time function. The variations from one simulated motion tc the

next are intended to represent the probabilistic variations expected in

- 23 -
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ground motions recorded under seemingly identical conditions. Using the

computer program, the response of a single rigid block to several of the

ground motions of Fig. 9, multiplied by 0.4 to represent an ensemble with

average maximum acceleration = 0.4 g, was determined.

The rotation of the same block due to each earthquake is presented in

Fig. 13a, and the maximum rotation due to earthquake j is 8j ,max It is

seen that 8. ax varies with j over the entire range of possible values,
J ,m

from a small fraction of the critical angle to values in excess of the criti-

cal angle indicating overturning of the block. Thus, the rocking response

of the block is extremely sensitive to the detailed characteristics of the

ground motion. Such sensitivity was observed in experiments on the Berkeley

shaking table where repeated measurements of the response of a block sub­

jected to a prescribed table acceleration differed significantly from one

another. The differences were apparently because, even with the same pre-

scribed horizontal accelerations, the table undergoes slightly different

pitching motions [7].

Consider the simulated ground motion No. 17 (Fig. 9) but scaled by sev.,.,

eral factors 0.35, 0.40, 0.45, 0.50, 0.55, and 0.6. The result is a family

of ground motions, with all properties identical, except the intensity.

Using the computer program the response of a single rigid block to this family

of ground motions was determined. The results presented in Fig. 13b indicate

that overturning of a block by ground motion of a particular intensity does

not imply the block will necessarily overturn under more intense ground

motion. In contrast, if a single pulse excitation with some maximum accel-

eration ago and duration t l is necessary to overturn a block of a particu­

lar size and slenderness ratio, the block will also overturn under a similar

pulse but with larger acceleration.
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Figure 14 shows the response of a single rigid block to four simulated

ground motions in Fig. 9, all scaled by 0.4 to represent an ensemble with an

average maximum acceleration = 0.4 g, acting in the horizontal direction.

Figure 14 also shows the block response when in each case the excitation

includes a simulated ground motion from Fig. 10, scaled by 0.4 to represent

a member of an ensemble with average maximum acceleration = 0.24 g, acting

in the vertical direction. The vertical ground motion may overturn a block

which is stable under the action of horizontal ground motion alone (case 1),

stabilize a block which overturns due to horizontal ground motion alone

(case 2), delay the time of overturning of a block (case 3) or greatly

reduce the rocking of a block (case 4). Thus, the influence of vertical

ground motion is apparently not systematic.

Response Sensitivity

Experiments on the Berkeley shaking table indicated that the rocking

response of a rigid block can be extremely sensitive to ground motion

details. Repeated measurements of the response of a block subjected to

prescribed table accelerations were not identical to one another [7J. These

differences were apparently due to the fact that the table undergoes

slightly different pitching motions, even with the same prescribed horizon­

tal accelerations. Thus, the sensitivity of the response to small changes

in the system parameters or ground motions, revealed by the analytical

results presented earlier, may be surprising but it is real. It is relevant

to note that lightly damped rigid-plastic systems also display considerable

response sensitivity [llJ; and the properties of a rocking block (Fig. 2) are

are reminiscent of these systems except that the behavior of a rocking block is

not hysteretic and its second slope is negative. As the amplitude of rocking

- 28 -
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approaches incipient overturning the block is effectively undamped [6]. The

effective damping for a block rocking at large amplitudes is therefore small.

Although sensitivity of the rocking response of a rigid block is most

obvious when it is subjected to irregular earthquake ground motion, it is

present even in the case of single pulse excitations. In the range of small

values for the parameter ptl , small changes in the pulse duration t l or

size parameter R could shift a block from stable to unstable region or vice

versa (Fig. 5). Similarly, in the range of large pt l , small changes in

the acceleration a or slenderness parameter e could affect the stabil-go c
ity of a block (Fig. 5). Given especially favorable circumstances, a small

change in the initial conditions could produce a large change in the response

of the block. As seen in Fig. 15, by changing the initial value of normal-

ized rotation from a to 0.01, the maximum normalized rotation response

increases from approximately 0.5 to more than 1, resulting in overturning of

the block. Small changes in the displacement and velocity at a particular

time can grow exponentially (Eq. 11) provided the block continues to tip

in one direction for an extended duration (see Fig. 15).

The extreme sensitivity of the response of a rocking block to various

factors can best be explained by examining the change in potential energy of

a block as it rotates from an angle e to incipient overturning, e = e :c

(16 )

The plot of Eq. 16 in Fig. 16 shows how the additional energy required to

overturn a block varies with initial rotation e. It is apparent that

very little additional energy is needed to overturn a block beyond the

larger values of e. Small changes in the system parameters--s;ze param-

eter R, slenderness ratio HIS, coefficient of restitution e --may

- 30 -
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influence the energy input to the system slightly, but sufficiently to over-

turn a block once it is rotated beyond a certain angle. Similarly, once sig­

nificant rocking of the block has developed during earthquake motion,

seemingly small differences in the details of subsequent ground motion could

greatly affect the response of the block. If the subsequent motion inputs

additional energy, although small, at the right time it could be sufficient

to overturn a block.

RESPONSE EXCEEDANCE AND OVERTURNING PROBABILITIES

The influence of system parameters and ground motion properties in the

rocking response of rigid blocks is studied next from a probabilistic point

of view. Using the computer program mentioned earlier, the response of

several rigid blocks to earthquake ground motion was analyzed. Determined

for each block was the time-history of rotation e(t} and the maximum

normalized rotation e = e Ie due to each of the twenty horizontalmax max c
ground motions (Fig. 9), scaled by an appropriate factor a. Thus, for

each block, twenty values of e were obtained corresponding to themax
twenty excitations with average value of peak acceleration = ago The twenty

values of 8max were arranged in ascending order and plotted in the form

of a cumulative probability distribution function (CDF).

Such plots for a block with size parameter R = 10 ft. and slender­

ness ratio HIB = 5 are presented in Fig. 17 for various values of the

coefficient of restitution e. The influence of e on the response

appears only at each impact; hence the effect is small. Thus the CDF for

various values of e are clustered together with considerable overlapping

of curves. From a probabilistic point of view, the coefficient of resti­

tution influences the response in no obviously systematic way, and, as will

- 32 -
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be seen later, to a much lesser degree than the other system parameters.

Thus, the coefficient of restitution is not varied in the subsequent results.

Its value is defined by Eq. 9b, based on conservation of angular momentum,

depending only on the slenderness ratio.

The influence of intensity of ground motion on the cumulative distri­

bution functions for the response is examined in Figo 18. Four ensembles

of ground motions with average peak acceleration = 0.3 g, 0.4 g, 0.5 g, and

0.6 9 are derived by appropriately scaling the ensemble of Fig. 9. Presented

in Fig. 18 are the CDF for the response of a block of fixed size and slen­

derness ratio corresponding to the four ground motion ensembles. It is

apparent that the probability of the block exceeding any response level

increases with ground motion intensity.

Presented in Fig. 19 are the cumulative probability distribution func­

tions for several blocks subjected to the ensemble of horizontal ground

motions with average peak acceleration = 0.4 g. In one case, all blocks

have the same size parameter but varying slenderness ratio. In the other,

the slenderness ratio is fixed but the size is varied. It is seen that the

rotational response of a rigid block is extremely sensitive to the details

of the ground motion as noted earlier from Fig. 13a. For example, e~ax for

a block with R = 10 ft. and HIS = 4.0, when subjected to the twenty simulated

motions, varies from as little as 0.01 to more than 1, indicating overturning.

It is seen that the COF is influenced by the two parameters in a systematic

manner, with the exceedance probability for any level of response increasing

with increase in slenderness ratio and decrease in size.

It is seen from Figs. 18 and 19 that a block may overturn when subjected

to some members of an ensemble of ground motions but remain stable under the

action of other members of the same ensemble. The probability that a block

will overturn when subJected to ground motion of specified intensity is
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roughly estimated as the fractional number of ground motions that overturn

the block. The influence of the system parameters and ground motion intensity

on the overturning probability is presented in Figs. 20-21. Each point on

these plots is the result of analyzing the responses of a block to an ensemble

of twenty ground motions. It is seen that the probability that a block over­

turns increases with increasing slenderness ratio for a fixed size parameter and

ground motion intensity (Figs. 20 and 21); decreases with increase in size

for a fixed slenderness ratio and ground motion intensity (Figs. 20 and 21);

and increases with ground motion intensity for a fixed size parameter and

slenderness ratio (Fig. 20).

The numerical results generally follow these trends but not without

exception. Note, for example, the following cases which violate the general

trends: The overturning probability is the same for blocks with R = 20' as

H/B increases from 9 to 10. for blocks with R = 30 1 as H/B increases from

7 to 8. for blocks with R = 40 1 as H/B increases from 8 to 9, for blocks

with R = 6' as ground motion intensity increases from 0.45 9 to 0.50 g, for

blocks with R = 20' as ground motion intensity increases from 0.40 g to

0.45 g; for blocks with HIS = 4 as ground motion increases from 0.40 g to

0.45 g. In one case, the overturning probability for a particular block

decreases as the intensity increases (Fig. 20). Some of these apparent

inconsistencies may be the consequence of the small sample size of 20, and

are expected to disappear when a larger sample is used.

Thus, usually, the larger of two blocks having the same slenderness ratio

is more stable in the sense that it is less likely to overturn; the more

slender of two blocks having the same size parameters is less stable; and a

block is more likely to overturn if it is subjected to more intense ground

motion.

Results of analyses of several blocks subjected to ensembles of horizontal
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ground motion with selected intensity were presented and interpreted above.

These analyses were repeated with simultaneous application of horizontal and

vertical ground motions, with similarly numbered members of the two ensembles

paired together (Figs. 9 and 10). Both ensembles were scaled by the same

factor a. Results of these analyses are superimposed on Figs. 17 to 21,

summarizing the earlier results.

It is seen that the COF for the maximum rotation of a block is influ­

enced by vertical ground motion, but not in a systematic manner; the exceed­

ance probability is decreased at some response levels but increased at other

levels. Similarly, the probability that a block will overturn may increase

or decrease by including vertical ground motions. The trends noted earlier

regarding the influence of size and slenderness ratio of a block and of

ground motion intensity on the stability of a block are still apparent when

vertical ground motion is included. However, there are more exceptions to

the trends and some of them are larger in magnitude when vertical ground

motion is included.

ESTIMATION OF GROUND MOTION INTENSITY

As mentioned in the beginning of this paper, by idealizing the ground

motion as an instantaneous impulse or representing its effects by a static

horizontal force, formulas were derived to calculate the ground acceleration

necessary to overturn a rigid block of given dimensions [1-4J. These formulas

were employed to estimate the accelerations in the epicentral region of

the 1975, Ohita earthquake in Japan [5J. However, they are unreliable

because they do not consider rocking of the block and the associated

impacts that would occur during an earthquake. More recently, response

procedures which consider the rocking block to be a linear system have

been proposed to estimate the intensity of ground shaking from its observed
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effects on rigid objects [12J. This procedure is also not promising because

the behavior of a rocking block (Fig. 2) has no resemblance to that of a

linear system. The remaining question is: do the nonlinear analyses of

system dynamics presented in this paper provide results that are useful in

estimating ground motion intensity?

Consider first an idealized situation: A large number of tombstones,

benches, monumental columns, and similar objects, which may be idealized as

rigid blocks, are concentrated in a small area and it is assumed that they

are subjected to identical ground motion during an earthquake. Several of

these blocks have the same size parameter R and slenderness ratio HIS and

the entire collection covers a wide range of R and HIS. Dynamic analysis

of a rigid block - with specific Rand H/B, on a rigid base, subjected to a

specified ground motion - would predict that the block is either stable or

that it Overturns. This conclusion would apply to all blocks with the same

R and HIS. Thus, dynamic analyses of an idealized block of a particular R

and HIS provides the results for all blocks with the same parameters. How­

ever, the rocking response of the block can be very sensitive to small changes

in the system parameters and stability of the block does not necessarily

increase monotonically with increasing size or decreasing slenderness ratio

(Fig. 11). Furthermore, overturning of a block by ground motion of a par­

ticular intensity does not imply that the block will necessarily overturn

under more intense ground motion (Fig. l3b). Thus, reliable predictions

of intensity of ground shaking would not be possible from analytical pre­

dictions of response of blocks to a ground motion specified deterministically.

As a corollary, re'liable estimates of the intensity of ground shaking would

not be possible from its observed effects on the instrument proposed many

years ago for seismological observatories, consisting of a family of columns,

all with rectangular section, but varying in slenderness ratio.
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Contrary to the analytical prediction that blocks with the same Rand

H/B either are all stable or all overturn when subjected to a specified

ground motion, in reality some may overturn but others may remain standing

during an earthquake. Identical sized blocks would perform differently

because their response is sensitive to the contact conditions between the

base of the block and the ground [7J. An overturning probability for a

particular Rand H/B could be calculated as the fractional number of blocks

with the same Rand H/B that overturned during the earthquake. However,

this is not the same as the overturning probability, presented in the pre­

ceding section, which reflects probabilistic variations in ground motion of

a specified intensity.

Consider a second situation: A large collection of objects, which may

be idealized as rigid blocks, are distributed over an area small enough that

the intensity of ground motion is essential'ly the same but large enough that

the ground motions experienced by the various blocks are at most weakly

correlated. The collection includes several objects having the same dimen­

sions (R and HIS). A wide range of values for the parameters R and HIS are

represented in the collection. The ensemble of ground motions experienced

by the various objects may be interpreted as members of a random process.

From a survey of the area after an earthquake, the fractional number of

blocks, all with the same Rand H/B, that overturned could be readily cal­

culated. The ground motion intensity may be estimated from such information

along with the results presented in Fig. 20, provided the random process

mode-' selected in this paper is appropriate for the particular earthquake.

The estimates obtained from the above analysis would differ depending on

the particular R and HIS considered. The average of the several estimates

thus obtained may be considered as the best estimate for the intensity of

the ground motion. Precise estimates should not be expected from this
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approach because: the random process model selected in this paper may not

be appropriate for the ground motion during the particular earthquake; the

ground motions experienced by various blocks may not be statistically inde­

pendent; and the behavior of the block is very sensitive to the conditions of

the contact between its base and the ground. However, probabilistic des­

criptions of the ground motion intenstiy, e.g. P[I l < intensity < I2J = p,

should be possible.

Finally, consider the situation outlined in the beginning of this paper:

monuments, minarets, tombstones, and other similar objects have experienced

many earthquakes in seismic areas of the world which were the centers of the

ancient Roman, Greek, Chinese, and Indian civilizations. Whether a parti­

cular object remained standing or overturned during a given earthquake would

not provide sufficient information to make reliable estimates of the intensity

of ground shaking during that earthquake, because the response of a rigid

block to several ground motions, all of the same intensity but differing in

details, could vary from essentially no rotation to large rotations, indicating

overturning (Figs. 13a and 19). If an historical earthquake has affected

several objects with the same geometry and dimensions, and it can be assumed

that the various objects experienced ground motions of essentially the same

intensity but differing in details, then the situation would be similar to

the second situation considered above. The ground motion intensity could

then be described on a probabilistic basis as outlined above. Special care

is necessary in estimating an upper bound for the intensity of ground motion

from the information that an ancient monument has survived several historical

earthquakes, because the survival probability depends not only upon the most

intense ground motion at the site during a single earthquake, but also on

the unkown intensities of all earthquakes experienced by the monument.

Given suitable data in sufficient quantities regarding the effects of

an earthquake on monuments, minarets, tombstones, and other similar objects
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in an area, whether they overturned or remained standing, probabilistic

estimates of the ground motion intensity in the area should be possible.

Such estimates must be based on results of a probabilistic study of the

type presented in this paper, which considers the nonlinear dynamic behavior

of the rocking block system. Because the respons~ of a rocking block is

extremely sensitive to variations in system parameters and ground motion

details, a high degree of precision or confidence would not be possible

in these estimates. (A similar conclusion was obtained from an analytical

study of the response of flexible structures [13J.) For the same reasons,

estimates of the intensity of ground shaking by deterministic methods. which

have been used in the past and which consider observed effects on a single

object, would be totally unreliable.

CONCLUSION

The principal conclusions of this study concerned with dynamics of

rigid blocks rocking on a rigid base may be summarized as follows.

The rocking response of a block is very sensitive to small changes in

its size and slenderness ratio, and to the details of the ground motion.

The stability of a block subjected to a particular ground motion does not

necessarily increase monotonically with increasing size or decreasing

slenderness ratio. Overturning of a block by a ground motion of particular

intensity does not imply that the block will necessarily overturn under

the action of more intense ground motion. Vertical ground motion signifi­

cantly affects the rocking response of a rigid block. although in no appar­

ently systematic way.

In contrast, systematic trends are observed when the rocking response

of rigid blocks is studied from a probabilistic point of view with the

ground motion modeled as a random process. The probablity of a block ex-
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ceeding any response level~ as well as the probability that a block overturns~

increases with increase in ground motion intensity~ with increase in slender­

ness ratio of the block, and with decrease in its size.

Probabilistic estimates of the intensity of ground shaking may be

obtained from its observed effects on monuments~ minarets, tombstones, and

other similar objects provided suitable data in sufficient quantity is avail­

able~ and the estimates are based on probabilistic analyses of the rocking

response of rigid blocks, considering their nonlinear dynamic behavior.

These estimates will not be precise because the response of a rocking block

is extremely sensitive to variations in system parameters, contact conditions

between the base of the block and the ground~ and ground motion details. For

the same reasons~ deterministic estimates of intensity of ground motion from

its observed effects on a single object would be totally unreliable.
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APPENDIX I - NOTATION

The following symbols are used in this report:

ago maximum acceleration of a single-pulse excitati on

aX ground acceleration in the horizontal (x) directiong

aY ground acceleration in the vertical (y) directiong

B width of the block

e coefficient of restitution

g acceleration of gravity

H height of the block

1
0

mass moment of inertia of the block about centers of rotation

R size parameter = I(B2 + H2)/4

r

T

8

ratio of kinetic energy quantities after and before impact

constant ordinate of the undamped pseudo-velocity response
spectrum for white noise

period of free vibration of the block

duration of a single-pulse excitation

angle of rotation measured from the vertical

critical angle = cot- l (H/B)

initial angle of rotation

initial rotational velocity

angular velocities before and after impact
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v(e)

emax

emax

::: max Ie (t) I
t

::: e/e
c

::: emax lee

::: change in potential energy of the block as it rotates from an

angle e to incipient overturning e ::: ee

W ::: weight of the block
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APPENDIX II GROUND MOTION SIMULATION PROCEDURE

Simulation Model

The simulation procedure adopted herein is essentially identical to

earlier studies [8,9J. It consists of generating samples of stationary

Gaussian white noise, multiplying the white noise by a variance intensity

function of time, passing the resulting function through a second order

linear filter to impart the desired frequency content, and finally per­

forming base line correction on the filtered function.

The linear filter properties are described by two parameters; natural

frequency wf and viscous damping ratio ~f' The variance intensity function

is expected to be a smoothly varying function of time that has an initial

build-up, followed by an almost stationary part and thereafter a steady

decay. This smooth function is assumed to be of the following form:

(ILl)

This function is described by the parameters ~o' tl~ t 2, and c.

The parameters for the filter and for the variance intensity function

are estimated using available earthquake ground motion records that are

assumed to be sample wave forms generated by the simulation model. The

ground motions used in the estimation process, shown in Fig. 7~ were recorded

at the following locations during the earthquakes on the indicated dates:

El Centro, California; December 30, 1934

El Centro, California; May 18. 1940

Olympia, Washington; April 13, 1949

Taft, California; July 21. 1952
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The procedure developed in Ref. 8 is used for estimation of the parameters.

Horizontal Ground Motion

Assuming that the two horizontal components of each of the four ground

motion records (Fig. 7) are sample wave forms generated by the simulation

model, the filter parameters and the variance intensity function for white

noise are estimated. The filter paramters that gave a best fit are ~f = 0.62

and wf = 4.91T but the fit was almost uniform in the neighborhood of these

values; hence the set of values ~f = 0.6 and wf = 51T suggested by earlier

researchers were chosen [8].

Figure 11.1 shows the ensemble average of the squared modulus of the

Fourier transform Xj(w) of the eight sample wave forms compared with the

square of the modulus of the complex frequency response (or transfer) func­

tion H(w) for the filter with. the estimated values of ~f and wf. Because the

sample size is small, the ensemble average of the Fourier transform is ir­

regular. The estimate of the variance intensity function ~(t) for the white

noi se obta i ned by the procedures of Ref. 8 is shown in Fi g. 11.1 after Fourier

smoothing, in which all frequencies above 1/2 Hz were filtered out. The

large fluctuations, even after smoothing the original, sharply irregular

function, are mostly due to the small sample size. Some judgment has to be

used to select the parameters for the function of Eq. 11.1, so that the

resulting function follows the trends of the computed function. The para­

meters t 1 and t 2 were first selected as 4 and 15 sec. respectively. The
"-

value of ~o is then obtained by averaging the values of ¢(t) over the

(t"t2) interval. Finally, the decay constant c is determined to achieve
A

a best fit in the least squares sense between the decay portions of ~(t)

and ~(t). The resulting parameters and the corresponding ~(t) is presented

in Figs. 11.1 and 8.

Using these parameter values and the random process model mentioned above,
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an ensemble of twenty simulated motions were generated to model the properties

of the horizontal components of the recorded motions. The pseudo-velocity

response spectrum was computed for each simulated motion. In Fig. 11.2,

the average of the response spectra for 8 of the 20 simulated motions is

compared with the average of the response spectra for the 8 recorded motions,

and the agreement is satisfactory. In order to minimize computation costs,

the spectra presented are for only one value of damping, ~ = 5%. Earlier

studies [8J have indicated that the quality of the agreement is about the

same for all damping values except that it is worse in the undamped case.

The simulated motions were all scaled by the same factor such that the

ensemble average of the peak acceleration is 1 g. The resulting motions are

shown in Fig. 9.

Vertical Ground Motions

Assuming that the vertical component of each of the four ground motion

records is a sample wave form generated by the simulation model, the filter

parameters and the variance intensity function for white noise are estimated.

The filter parameters that gave a best fit are ~f = 0.62 and wf = 7.52n but

the fit was almost uniform in the neighborhood of these values. Thus the

parameters were rounded off to ~f = 0.6 -- same as selected above for simu­

lation of horizontal acclerations -- and wf = 7.5 n. Figure 11.3 shows the

ensemble average of the squared modulus of the Fourier transform Xj(w) of

the four sample wave forms compared with the squared modulus of the transfer

function H(w) for the filter with the estimated values of ~f and wf . The
A

estimate of the variance intensity function ¢(t) contains sharp irregularities

because the sample size is very small. The sample size of 4 is only half of

the already small size of 8 in the case of horizontal ground motions, result­

ing in sharper irregularities compared to the case of horizontal ground

motions (Fig. 11.1).
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The parameters of the function of Eq. 11.1 were selected as follows:
A

t, and t 2 by judgment, ¢o by averaging the ¢(t) over the (t, ,t2) interval,
A

c, to achieve a best fit between the decay portions of ¢(t) and ¢(t). Con-

siderable judgment was required in this process. One selection of parameters

started with t l = 0.5 and t 2 = 3.5 sec., resulting in the first estimate of

¢(t) shown in Fig. 11.3. The resulting simulated motions are presented in

Fig. 11.4. Although the chosen ¢(t) appears to be a satisfactory fit to
A

the estimated ¢(t) (Fig. 11.3), the resulting motions of Fig. 11.4 are not

satisfactory. This becomes apparent by comparing the simulated motions of

Fig. 11.4 with the recorded vertical motions of Fig. 7. The simulated motions

decay much faster compared to recorded motions, becoming very small after 15

seconds whereas the recorded motions continue to have significant accelera­

tions up to 20 seconds. Furthermore, the initial build-up of motion appears

to be slower in the simulated motions than in the recorded motions.

After several trials, the ¢(t) was determined starting with t, = 0

and t 2 = 10 (second estimate in Fig. 11.3). Although the resulting ¢(t)

does not appear to be as good a fit as the one mentioned above -- both are

presented in Fig. 11.3 for comparison -- the latter leads to a set of simu­

lated motions (Fig. 10) which, by visual comparison with recorded motions

(Fig. 7) appear to be more appropriate. In Fig. 11.5 the average of the

pseudo-velocity response spectra for the 20 simulated motions is compared

with the average of the response spectra for the 4 recorded motions. Except

for the sharper irregularities in the latter case because of the small sample

size, the agreement appears to be reasonable. The simulated motions were

all scaled by the same factor such that the ensemble average of the peak

accelerations is 0.6 g, resulting in the motions of Fig. 10.
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