OPTDYN - A GENERAL PURPOSE OPTIMIZATION PROGRAM FOR PROBLEMS WITH OR WITHOUT DYNAMIC CONSTRAINTS

by
M. A. BHATTI
E. POLAK
K. S. PISTER

A report on research sponsored by the National Science Foundation

REPRODUCED BY
NATIONAL TECHNICAL
INFORMATION SERVICE
U. S. DEPARTMENT OF COMMERCE SPRINGFIELD, VA. 22161
-

EIBLIOGSAPAIC DATA SHEET	1. Report Nu. NSE/RA-790396		3. Recipient's Accession No. PB 8016700
4. Title and Subcitle OPTDYN - A General Purpose Optimization Program for Problems With or Without Dynamic Constraints			5. Report Date July 1979
			6.
7. Author(s) M.A. Bhatti, E. Polak, K.S. Pister			8. Performing Organization Repr. ${ }^{\text {No }}$ UCB/EERC-79/16
9. Performing Organization Name and Address Earthquake Engineering Research Center University of California, Richmond Field Station 47 th and Hoffman Blvd. Richmond, California 94804			10. Project/Task/Work Unit No.
			11. Contraer/Grant No. ENV76-04264
12. Sponsoting Organization Name and Address National Science Foundation 1800 G Street, N.W. Washington, D.C. 20550			13. Type of Repors \& Period Covered
			14.
15. Supplementary Notes			
16. Abstracts This report presents a general purpose optimization program for problems with or without dynamic (also called functional) constraints, such as those arising in the design of dynamically loaded structures and in designing controllers for linear multivariable systems using frequency response techniques. The program is based on an algorithm of the feasible directions type; a short description is included. It is written in FORTRAN IV language and runs on a CDC 6400 computer. Detailed description of logic of the main program and instructions for writing the user-supplied subroutines to define a particular problem are included. Three sample problems chosen from different fields are given to clarify the use of the program. Listings of the main program and user-supplied subroutines for two of the sample problems are given in the appendices.			

17b. Identifiers/Open-Ended Terms

17c. COSATI Field'Group
18. Avalability Statement

Release unlimited

19.Security Class (This Report) UNClASSIFIED 20. Security Class (This Page UNCl. ASSIFIED	22. Price of Pages
92	

OPTDYN - A GENERAL PURPOSE OPTIMIZATION PROGRAM FOR PROBLEMS WITH OR WITHOUT DYNAMIC CONSTRAINTS

by
M. A. Bhatti
E. Polak
and
K. S. Pister

Prepared under the sponsorship of the National Science Foundation Grant ENV76.04264

Report No. UCB/EERC-79/16
Earthquake Engineering Research Center
College of Engineering
University of California
Berkeley, California 94720

July 1979

Abstract

This report presents a general purpose optimization program for problems with or without dynamic (also called functional) constraints, such as those arising in the design of dynamically loaded structures and in designing controllers for linear multivariable systems using frequency response techniques. The program is based on an algorithm of the feasible directions type; a short description is included. It is written in FORTRAN IV language and runs on a CDC 6400 computer.

Detailed description of logic of the main program and instructions for writing the user-supplied subroutines to define a particular problem are included. Three sample problems chosen from different fields are given to clarify the use of the program. Listings of the main program and user-supplied subroutines for two of the sample problems are given in the appendices.

ACKNOWLEDGMENT'S

This research was conducted under National Science Foundation Grant ENV 76-04264. Computing facilities were provided by the University of California, Berkeley. The authors are grateful for this support.

TABLE OF CONTENTS
ABSTRACT i
ACKNOWLEDGMENTS ii
TABLE OF CONTENTS iii

1. INTRODUCTION 1
1.1 Preliminary Remarks 1
1.2 Outline of the Report 2
2. OPTIMIZATION ALGORITHM 3
2.1 Definitions and Preliminaries 3
2.2 A Feasible Directions Algorithm 7
2.3 Explanation of the Algorithm 8
2.4 Computational Considerations 11
3. COMPUTER PROGRAM 14
3.1 Computer Program Logic 14
3.2 User-Supplied Subroutines 17
3.3 Explanation of Variables in Common Blocks 21
4. SAMPLE APPLICATIONS 26
4.1 A Constrained Minimization Test Problem 26
4.2 Design of a PID Controller 27
4.3 Design of an E'arthquake Isolation System 28
REFERENCES 32
NOTATION 34
FIGURES 36
APPENDIX A - OPTDYN User's Guide 45
APPENDIX B - Listing of the Program 50
APPENDIX C - User-Supplied Subroutines for Constrained Minimization Test
Problem 72
APPENDIX D - User-Supplied Subroutines for PID Controller Problem 74

1. INTRODUCTION

1.1 Preliminary Remarks

With recent developments in computer science, mathematical programming techniques have become an indispensable tool for solution of practical problems in a wide variety of fields. A number of algorithms and computer codes exist to solve linear and nonlinear programming problems. The nonlinear programming problem treated most often is of the form:

$$
\begin{equation*}
\min _{\mathbf{z}}\left\{f^{0}(\mathbf{z}) \mid g^{j}(\mathbf{z}) \leqq 0, j=1, \ldots, L\right\} \tag{1.1.1}
\end{equation*}
$$

where $\mathbf{z} \in \mathbb{R}^{P}$ is the variable vector to be optimized, $f^{0}: \mathbb{R}^{P} \rightarrow \mathbb{R}$ is the objective function and $g^{j}: \mathbb{R}^{P} \rightarrow \mathbb{R}, j=1, \ldots, L$ are inequality constraints. Strict equality constraints may also be included.

A class of problems, such as those arising in the design of dynamically loaded structures [1,2] and in designing controllers for linear multivariable systems using frequency response techniques [3], can be expressed as:

$$
\begin{equation*}
\min _{\mathbf{z}}\left\{f^{\circ}(\mathbf{z}) \mid \max _{t \in T}\left(\varphi^{j}(\mathbf{z}, t)\right) \leqq 0, j \in J_{m} ; g^{j}(\mathbf{z}) \leqq 0 j \in J_{l}\right\} \tag{1.1.2}
\end{equation*}
$$

where

$$
\begin{aligned}
& \varphi^{j}: \mathbb{R}^{P} \times \mathbb{R} \rightarrow \mathbb{R} \times \mathbb{R} \text { are known as functional or dynamic constraints; } \\
& T=\left[t_{0}, t_{f}\right] \in \mathbb{R} \text { is a compact interval; } \\
& J_{m}=\{1, \ldots, M\} ; \\
& J_{l}=\{1, \ldots, L\} .
\end{aligned}
$$

If (1.1.2) were to be solved by using algorithms for solving (1.1.1), the functional constraints would represent infinitely many constraints. Even if it is assumed that the interval T is discretized to utilize a digital computer, the discretization would have to be small enough to insure a reasonable accuracy, which again would imply a very large number of constraints.

Recently a number of algorithms has been proposed to solve the problem
(1.1.2) directly, see references [$3,4,5,6$]. This report presents an implementation of the algorithrn given in references [4,5].

1.2 Outline of the Report

The purpose of this report is to present a computer program implementing the algorithm presented in $[4,5]$. The computer program is written in FORTRAN IV language for a CDC 6400 computer. Section 2 presents the basic algorithm and necessary theoretical background. Section 3 describes the logic of the computer program, explains the function of different subroutines and gives detailed instructions for adding user's subroutines to define a particular problem. Section 4 gives some sample applications of the program. Problems from different fields are chosen to demonstrate the wide application of the program as well as to give the user a feel for the number of input parameters required by the program. Instructions on preparing input data for the program are included in Appendix A. A listing of the program is given in Appendix B. Appendices C and D give listings of the user-supplied subroutines for two of the sample problems to clarify the structure of these subroutines.

2. OPTIMIZATION ALGORITHM

This section presents an algorithm of the feasible directions type for the solution of nonlinear programming problems with functional inequality constraints (or dynamic constraints). The basic algorithm is due to Gonzaga, Polak and Trahan [5]. A short description of the algorithm is followed by detailed discussion of computational considerations. No convergence proof is given; readers interested in mathematical details and convergence proof are referred to the original paper.

2.1 Definitions and Preliminaries

The nonlinear programming problem with functional inequality constraints is defined as

$$
\min _{z} f^{\circ}(\mathbf{z})
$$

subject to

$$
\begin{align*}
\max _{t \in T} \varphi^{j}(\mathbf{z}, t) & \leqq 0, j \in J_{m} \tag{2.1.1}\\
g^{j}(\mathbf{z}) & \leqq 0, j \in J_{l}
\end{align*}
$$

where

$$
\begin{aligned}
& \mathrm{T}=\left[t_{0}, t_{f}\right], \text { specified time interval; } \\
& J_{l}=\{1,2, \ldots, \mathrm{~L}\} ; \\
& J_{m}=\{1,2, \ldots, \mathrm{M}\} ; \\
& \mathrm{L}=\text { total number of conventional inequality constraints; } \\
& \mathrm{M}=\text { total number of functional inequality constraints; } \\
& \mathbf{z} \in \mathbb{R}^{P}=\text { the vector of optimization variables; } \\
& \mathrm{P}=\text { total number of optimization variables; } \\
& f^{\mathbb{O}: \mathbb{R}^{P} \rightarrow \mathbb{R} \text { and } g^{j} ; \mathbb{R}^{P} \rightarrow \mathbb{R}, j \in J_{l} \text { are continuously differentiable functions in } \mathbf{z} .} \\
& \varphi^{j}: \mathbb{R}^{P} \times \mathbb{R} \rightarrow \mathbb{R} \times \mathbb{R}, j \in J_{m} \text { are continuously differentiable functions in } \mathbf{z} \text { and }
\end{aligned}
$$

continuous in t.

The feasible domain, F, is defined by:

$$
F=\left\{\mathbf{z} \in \mathbb{R}^{P} \mid \max _{t \in T} \varphi^{j}(\mathbf{z}, t) \leqq 0, j \in J_{m} ; g^{j}(\mathbf{z}) \leqq 0, j \in J_{t}\right\}
$$

The interval T is discretized into $q+1$ points and is denoted by T_{q}.

Define:

$$
\begin{align*}
& \psi_{q}(\mathbf{z})=\max \left\{\varphi^{j}(\mathbf{z}, t), j \in J_{m}, t \in T_{q} ; g^{j}(\mathbf{z}), j \in J_{l}\right\} \\
& \psi_{q}(\mathbf{z})=\max \left\{0, \widetilde{\psi}_{q}(\mathbf{z})\right\} \tag{2.1.2}
\end{align*}
$$

Note that, if $z \in F$, then $\psi_{q}(z)=0$.

The set of points at which a functional constraint is active is denoted by $\bar{T} \bar{q}_{q, \varepsilon}^{j}(\mathrm{z})$ and is defined as:

$$
\bar{T}_{q, \varepsilon}^{j}(\mathbf{z})=\left\{t \in T_{q} \mid \varphi^{j}(\mathbf{z}, t)-\psi_{q}(\mathbf{z}) \geqq-\varepsilon\right\}, j \in J_{m}
$$

Next, define the intervals $I_{q, \varepsilon, k}^{j}(\mathbf{z}) \subset \bar{T}_{q, \varepsilon}^{j}(\mathbf{z}) k=1,2, \ldots, k_{q, \varepsilon}^{j}(\mathbf{z}), j \in J_{m}$ recursively, as follows.

To define the first interval, $I_{q, \varepsilon, 1}^{j}(\mathbf{z})$, let t_{1} be the smallest number in $\bar{T}_{q, \varepsilon}^{j}(z)$ and let n_{1} be the largest integer such that $\left(t_{1}+n_{1} \Delta t\right) \in \bar{T}_{q, \varepsilon}^{j}(z)$, but $\left[t_{1}+\left(n_{1}+1\right) \Delta t\right] \notin T_{q, \varepsilon}^{j}(\mathbf{z})$, where $\Delta t=\left(t_{f}-t_{0}\right) / q$.

Then

$$
I_{q, \varepsilon, 1}^{j}(\mathrm{z})=\left\{t_{1}, t_{1}+\Delta t, t_{1}+2 \Delta t, \cdots, t_{1}+n_{1} \Delta t\right\} .
$$

Next suppose that $I_{q, \varepsilon, k}^{j}(\mathbf{z})$ have been defined for $\mathbf{k}=1,2, \ldots, k_{1}$, then $I_{q, \varepsilon,\left(k_{1}+1\right)}^{j}(\mathbf{z})$ is defined as follows:

Let $t_{k_{1}+1} \in \bar{T}_{q, \varepsilon}^{j}(\mathrm{z})$ be the smallest number such that $t_{k_{1}+1} \notin \bigcup_{k=1}^{k_{1}} I_{q, c, k}^{j}(\mathrm{z})$ and let $n_{k_{1}+1}$ be the smallest integer such that

$$
\left|t_{k_{1}+1}+n_{k_{1}+1} \Delta t\right| \in \bar{T}_{q, x}^{j}(\mathbf{z})
$$

but

$$
\left[t_{k_{1}+1}+\left(n_{k_{1}+1}+1\right) \Delta t\right] \notin \bar{T}_{q, c}^{j}(x) .
$$

Then

$$
I_{q, \varepsilon,\left(k_{1}+1\right)}^{j}(\mathbf{z})=\left\{t_{k_{1}+1}, t_{k_{1}+1}+\Delta t, t_{k_{1}+1}+2 \Delta t, \cdots, t_{k_{1}+1}+n_{k_{1}+1} \Delta t\right\} .
$$

For convenience, define

$$
K_{q, e}^{j}(\mathbf{z})=\left\{1,2, \ldots, k_{q, \varepsilon}^{j}(\mathbf{z})\right\} .
$$

Note that

$$
\bar{T}_{q, e}^{j}(\mathbf{z})=\bigcup_{k \in K \underset{q}{j}, c}(\mathbf{z}) \quad I_{q, \varepsilon, k}^{j}(\mathbf{z}) .
$$

The point at which a functional constraint is maximum in each of the above defined intervals is defined as:

$$
t_{q, \varepsilon, k}^{j}(\mathbf{z})=\left\{t^{*} \in I_{q, \varepsilon, k}^{j}(\mathbf{z}) \mid \varphi^{j}\left(\mathbf{z}, t^{*}\right) \geqq \varphi^{j}(\mathbf{z}, t), t \in I_{q, \varepsilon, k}^{j}(\mathbf{z})\right\} k \in K_{q, \varepsilon}^{j}(\mathbf{z})
$$

The set of points at which a functional constraint is a local maximum is defined as:

$$
\begin{equation*}
T_{q, \varepsilon}^{j}(\mathbf{z})=\underset{k \in K_{q, 8}^{j}(\mathbf{z})}{\cup} t_{q, \varepsilon, k}^{j}(\mathbf{z}) \tag{2.1.3}
\end{equation*}
$$

Figure 1 gives an illustration of these sets by taking a hypothetical example.
Now, the " ε-active constraint index " set for the functional constraints is defined as follows:

$$
\begin{equation*}
J_{\varepsilon, q}^{\varphi}(\mathbf{z})=\left\{(j, t) \mid j \in J_{m}, t \in T_{q, \varepsilon}^{j}(\mathbf{z})\right\} . \tag{2.1.4}
\end{equation*}
$$

The ε - active constraint index set for conventional inequality constraints is defined by:

$$
\begin{equation*}
J_{\varepsilon, q}^{g}(\mathbf{z})=\left\{j \mid g^{j}(\mathbf{z})-\psi_{q}(\mathbf{z}) \geqq-\varepsilon, j \in J_{l}\right\} . \tag{2.1.2}
\end{equation*}
$$

The optimality function $\mathcal{\vartheta}_{\varepsilon, q}(\mathbf{z}): \mathbb{R}^{P} \rightarrow \mathbb{R}$ for the nonlinear programming problem (2.1.1) is defined as follows:

$$
\begin{align*}
\vartheta_{\varepsilon, q}(\mathbf{z})=\min _{\mathbf{h} \in R^{P}}[& \frac{1}{2}||\mathbf{h}||_{2}^{2}+\max \left\{\left\langle\nabla f^{\circ}(\mathbf{z}), \mathbf{h}\right\rangle-\gamma \psi_{q}(\mathbf{z}) ;\right. \\
& \left.<\nabla g^{j}(\mathbf{z}), \mathbf{h}\right\rangle, j \in J_{\varepsilon, q}^{g}(\mathbf{z}) ; \\
& \left.\left.\left.<\nabla_{z} \varphi^{j}(\mathbf{z}, t), \mathbf{h}\right\rangle,(j, t) \in J_{\varepsilon, q}^{\varphi}(\mathbf{z})\right\}\right] \tag{2.1.6}
\end{align*}
$$

The dual form of (2.1.6), which is actually used in the following algorithm, is as follows:

$$
\begin{align*}
& \vartheta_{\varepsilon, q}(\mathbf{z})=\max _{\mu \geq 0}\left[-\frac{1}{2}| | \sum_{j \in J \in, g}(\mathbf{z})\right. \\
& \mu_{g}^{j} \nabla g^{j}(\mathbf{z})+\sum_{(j, t) \in J E_{i, q}(\mathbf{z})} \mu_{\varphi}^{j, t} \nabla_{z} \varphi^{j}(\mathbf{z}, t)+ \tag{2.1.7}\\
& \left.\left.\mu^{0} \nabla f^{0}(\mathbf{z})| | \frac{2}{2}-\gamma \mu^{0} \psi_{q}(\mathbf{z}) \right\rvert\, \sum_{j \in J J_{\varepsilon, q}^{g}(\mathbf{z})} \mu_{g}^{j}+\sum_{(j, t) \in J J_{\varepsilon, q}^{\varphi}(\mathbf{z})} \mu_{\varphi}^{j, t}+\mu^{0}=1\right](
\end{align*}
$$

and
where
$\nabla f(\mathbf{x}) \quad$ denotes the gradient of function $\mathrm{f}: \mathbb{R}^{P} \rightarrow \mathbb{R}$ at \mathbf{x}. The gradient vector is treated as a column vector.
<,., denotes the scalar product in \mathbb{R}^{P} and is defined by $\langle\mathbf{x}, \mathbf{y}\rangle=\sum_{i=1}^{P} x_{i} y_{i}$.
H. He denotes the Euclidean norm in \mathbb{R}^{P} and is defined by $\mid \mathbf{x} \|_{2}=\sqrt{\langle\mathbf{x}, \mathbf{x}\rangle}$.

Theorem [5]

If z is optimal for nonlinear programming problem (2.1.1), then the function $v_{0, q}(z)$ given by Equation (2.1.7) is equal to zero.

2.2 A Feasible Directions Algorithm

A feasible directions algorithm for the solution of the nonlinear programming problem (2.1.1) can now be presented.

Algorithm

DATA: $\quad \alpha \in(0,1), \beta \in(0,1), \gamma \geqq 1$
$\delta \in(0,1], \varepsilon_{0}>0$
$\mu_{1}>0, \mu_{2}>0, M>0$
$q_{0}, q_{\max } \geqq q_{0}, z_{0} \in \mathbb{R}^{P}$.

STEP 0: Set $i=0, q=q_{0}$.
$\operatorname{STEP} 1: \operatorname{Set} \varepsilon=\varepsilon_{0}$.
STEP 2: Compute $\left\{\vartheta_{\varepsilon, q}\left(z^{i}\right), \mathbf{h}_{\varepsilon, q}\left(z^{i}\right)\right\}$ by solving (2.1.7) and (2.1.8).
STEP 3: If $\vartheta_{\varepsilon, q}\left(\mathrm{z}^{i}\right) \leqq-2 \varepsilon \delta$, go to step 6 ; Else set $\varepsilon=\varepsilon / 2$ and go to step 4 .

STEP 4: If $\varepsilon<\varepsilon_{0} \frac{\mu_{1}}{q}$ and $\psi_{q}\left(z^{i}\right)<\frac{\mu_{2}}{q}$, set $q=2 q$ and go to step 5; Else go to step 2.

STEP 5: If $q>q_{\max }$, STOP; Else, go to step 1.
STEP 6: Compute the largest step size $\lambda\left(\mathrm{z}^{i}\right)=\beta^{k\left(z^{i}\right)} \in\left(0, M^{*}\right]$, where $M^{*}=\max \left\{1, \frac{M}{\left\|\mathbf{h}_{\in, q}\left(\mathbf{z}^{i}\right)\right\|_{\infty}}\right\}$ and $k\left(\mathbf{z}^{i}\right)$ is an integer, such that
(i) if $z^{i} \in F^{C}$ (the complement of F in \mathbb{R}^{P})

$$
\psi_{q}\left[\mathrm{z}^{i}+\lambda\left(\mathrm{z}^{i}\right) \mathbf{h}_{\varepsilon, q}\left(\mathrm{z}^{i}\right)\right]-\psi_{q}\left(\mathrm{z}^{i}\right) \leqq-\alpha \lambda\left(\mathrm{z}^{i}\right) \delta \varepsilon
$$

(ii) if $z^{i} \in F$

$$
\begin{aligned}
& f^{0}\left[\mathrm{z}^{i}+\lambda\left(\mathrm{z}^{i}\right) \mathbf{h}_{\varepsilon, q}\left(\mathrm{z}^{i}\right)\right]-f^{0}\left(\mathrm{z}^{i}\right) \leqq-\alpha \lambda\left(\mathrm{z}^{i}\right) \delta \varepsilon \\
& g^{j}\left[\mathrm{z}^{i}+\lambda\left(\mathrm{z}^{i}\right) \mathbf{h}_{\varepsilon, q}\left(\mathrm{z}^{i}\right)\right] \leqq 0 \quad j \in J_{l} \\
& \varphi^{j}\left[\mathrm{z}^{i}+\lambda\left(\mathrm{z}^{i}\right) \mathbf{h}_{\varepsilon, q}\left(\mathrm{z}^{i}\right), t\right] \leqq 0, j \in J_{m}, t \in T_{q} .
\end{aligned}
$$

STEP 7: Set $\mathbf{z}^{i+1}=\mathbf{z}^{i}+\lambda\left(\mathbf{z}^{i}\right) \mathbf{h}_{\varepsilon . q}\left(\mathrm{z}^{i}\right)$. Set $\mathrm{i}=\mathrm{i}+1$ and go to Step 2.

Remark

The algorithm as presented above does not require an initial feasible point. If $z_{0} G F$, then $\psi_{q}\left(z_{0}\right)$ is non-zero and the algorithm constructs a sequence of points which forces the point into the feasible domain. This aspect of the algorithm is very advantageous in the case of complicated problems where the choice of an initial feasible point is not obvious. For example, in earthquakeresistant design if the relative drift of a particular story in a framed structure is to be limited to a certain value, it is not easy to find an initial design that will satisfy that requirement. Of course, the algorithm is more efficient if one can start from an initial feasible point.

2.3 Explanation of the Algorithm

The algorithm has two distinct phases. First, a direction is computed by solving (2.1.7) and (2.1.8). A step is then taken in this direction in such a way that, if the current z is in the feasible domain, there is a maximum reduction in the objective function while still maintaining feasibility. When the current point is outside the feasible domain, the step length is chosen so as to move as close to the feasible domain as possible.

Direction Finding Subproblem

As noted, a feasible direction is found by solving the problem:

$$
\begin{aligned}
& \vartheta_{\varepsilon, q}(\mathbf{z})=\max _{\mu \geq 0}\left[-\frac{1}{2} \| \sum_{j \in J J_{\varepsilon, q}^{j}(\mathbf{z})} \mu_{g}^{j} \nabla g^{j}(\mathbf{z})+\sum_{(j, t) \in J_{\varepsilon, q}^{\varphi}(\mathbf{z})} \mu_{\varphi}^{j, t} \nabla_{z} \varphi^{j}(\mathbf{z}, t)+\right.
\end{aligned}
$$

and then computing the direction from

$$
\begin{equation*}
-\mathbf{h}_{\varepsilon . q}(\mathbf{z})=\sum_{j \in J J_{\varepsilon, q}^{g}(\mathbf{z})} \mu_{g}^{j} \nabla g^{j}(\mathbf{z})+\sum_{(j, t) \in J, J_{\varepsilon, q}(\mathbf{z})} \mu_{\varphi}^{j, t} \nabla_{\boldsymbol{z}} \varphi^{j}(\mathbf{z}, t)+\mu^{0} \nabla f^{o}(\mathbf{z}) \tag{2.3.2}
\end{equation*}
$$

Equation (2.3.1) can be transcribed into a standard quadratic programming problem as follows. Let k_{g} be the total number of points in $J_{\varepsilon, q}^{g}(\mathbf{z})$ and $\left(j_{\varphi}, l_{\varphi}\right)$ be the total number of points in $J_{\varepsilon, q}^{\varphi_{q}}(\mathrm{z})$. Define the vector $\mu \in \mathbb{R}^{1+k_{g}+j_{p^{2}}}$ as follows:

$$
\begin{equation*}
\mu^{T}=\left[\mu^{0}, \mu_{g}^{k_{1}}, \mu_{g}^{k_{2}}, \ldots, \mu_{g}^{k_{g}}, \mu_{\varphi}^{j_{1}, l_{1}}, \ldots, \mu_{\varphi}^{j_{\varphi} l_{\varphi}}\right] . \tag{2.3.3}
\end{equation*}
$$

where

$$
\begin{aligned}
& k_{i} \in J_{\varepsilon, q}^{g}(\mathbf{z}) \text { for } i=1, \ldots, k_{g} \\
& \left(j_{i}, l_{j}\right) \in J_{\varepsilon, q}^{\varphi}(\mathrm{z}) \text { for } i=1, \ldots, j_{\varphi} j=1, \ldots, l_{\varphi}
\end{aligned}
$$

Define the matrix $A \in \mathbb{R}^{1+k_{g}+j} \boldsymbol{\varphi}_{\varphi} \varphi \times \mathbb{R}^{P}$ as:

$$
\mathbf{A}=\left[\begin{array}{c}
{\left[\begin{array}{c}
\nabla f^{o}(\mathbf{z}) \\
{\left[\nabla g^{k_{1}}(\mathbf{z})\right.}
\end{array}\right]^{T}} \tag{2.3.4}\\
\vdots \\
\vdots \\
{\left[\nabla g^{k_{g}}(\mathbf{z})\right]^{T}} \\
{\left[\nabla_{z} \varphi^{j_{1}\left(\mathbf{z}, t_{q, e, l_{1}}^{j_{1}}\right)}\right]^{T}} \\
\vdots \\
{\left[\nabla_{z} \varphi^{j_{q}}\left(\mathbf{z}, t_{q}^{\left.j_{q, e, l_{m}}\right)}\right]^{T}\right.}
\end{array}\right] .
$$

Then Equation (2.3.1) can be written as:

$$
\max _{\mu \geq 0}\left[\left.-\frac{1}{2}\left(\mu^{T} \mathbf{A}\right)\left(\mu^{T} \mathbf{A}\right)^{T}-\gamma \mu^{0} \psi_{q}(\mathbf{z}) \right\rvert\, \sum_{j=0}^{1+k_{q}+j \varphi^{l} \varphi_{\varphi}} \mu^{j}=1\right]
$$

or

$$
\begin{equation*}
\min _{\mu \geq 0}\left[\left.\frac{1}{2} \mu^{T} \mathbf{A} \mathbf{A}^{T} \mu+\gamma \mu^{0} \psi_{q}(\mathbf{z}) \right\rvert\, \sum_{j=0}^{1+k_{g}+j_{q^{\prime}} q_{\varphi}} \mu^{j}=1\right] . \tag{2.3.5}
\end{equation*}
$$

Define a vector $\mathrm{D} \in \mathbb{R}^{1+k_{g}+j_{\varphi} l_{\varphi}}$ such that

$$
\begin{equation*}
\mathbf{D}^{T}=\left[\gamma \psi_{q}(\mathbf{z}), 0,0, \cdots\right] \tag{2.3.6}
\end{equation*}
$$

and a matrix $\mathbb{Q} \in \mathbb{R}^{1+k_{g}+j_{\varphi} \varphi_{\varphi}} \times \mathbb{R}^{1+k_{g}+j_{\varphi} l_{\varphi}}$ by

$$
\begin{equation*}
\mathbf{Q}=\mathbf{A} \mathbf{A}^{T} . \tag{2.3.7}
\end{equation*}
$$

Then Equation (2.3.5) can be written as:

$$
\begin{equation*}
\min _{\mu \geq 0}\left[\left.\frac{1}{2} \mu^{T} Q \mu+\mathrm{D}^{T} \mu \right\rvert\, \sum_{j=1}^{1+k_{p}+j_{p^{l}} \rho_{\varphi}} \mu^{j}=1\right] \tag{2.3.8}
\end{equation*}
$$

which is a standard quadratic programming problem. Once μ 's are obtained by solving (2.3.8), the direction is computed from

$$
\begin{equation*}
-\mathbf{h}_{\varepsilon, q}(\mathbf{z})^{T}=\mu^{T} \mathbf{A} . \tag{2.3.9}
\end{equation*}
$$

Step Length Computation

After a feasible direction is obtained, the next step is to compute the step length in that direction. If the current design is inside the feasible domain the step length should be chosen in such a way that there is a maximum reduction in the objective function, while still maintaining feasibility. When the current design is outside the feasible domain, the objective is to take a step such that the new design is as close to the feasible domain as possible. The step size calculations begin by minimizing the objective function along the feasible direction and then checking whether any of the constraints is violated. If any of the constraints is violated, the step length is reduced and the process repeated until the new design satisfies all of the constraints. A number of methods are available for this unidirectional search, the most popular among them being Fibonacei search, Newton's method, quadratic or cubic fit, etc. [7,8]. For general non-convex problems, these methods tend to be very expensive. Since computation of the exact minimurn along the feasible direction is not absolutely necessary, an approximate line search technique, known as the Armijo step size rule, is often used [7,9]. The method performs only an approximate line search and is quite efficient for general non-convex problems. The method is as follows.

Given the constants $\alpha, \delta, \varepsilon, \beta, M$, current design vector $\mathbf{z}^{i}, \mathbf{h}_{\varepsilon, q}\left(\mathbf{z}^{i}\right)$ and $\psi_{q}\left(\mathrm{z}^{i}\right)$, compute the largest step size $\lambda\left(\mathrm{z}^{i}\right)=\beta^{k\left(\mathbf{z}^{i}\right)} \in\left(0, M^{*}\right] \quad$ where $M^{*}=\max \left\{1, \frac{M}{\left\|\mathbf{h}_{\varepsilon, q}\left(\mathbf{z}^{i}\right)\right\|_{\infty}}\right\}$,
such that
(i) if $\psi_{q}\left(\mathbf{z}^{i}\right)>0$ (i.e. $\left.\mathbf{z}^{i} \notin F\right)$, then

$$
\psi_{q}\left[\mathbf{z}^{i}+\lambda\left(\mathbf{z}^{i}\right) \mathbf{h}_{\varepsilon, q}\left(\mathbf{z}^{i}\right)\right]-\psi_{q}\left(\mathbf{z}^{i}\right) \leqq-\alpha \lambda\left(\mathbf{z}^{i}\right) \delta \varepsilon ;
$$

(ii) if $\psi_{q}\left(\mathbf{z}^{i}\right)=0$, i.e. $\mathrm{z}^{i} \in F$, then

$$
\begin{gathered}
f^{\circ}\left[\mathbf{z}^{i}+\lambda\left(\mathbf{z}^{i}\right) \mathbf{h}_{\varepsilon, q}\left(\mathbf{z}^{i}\right)\right]-f^{o}\left(\mathbf{z}^{i}\right) \leqq-\alpha \lambda\left(\mathbf{z}^{i}\right) \delta \varepsilon \\
g^{j}\left[\mathbf{z}^{i}+\lambda\left(\mathbf{z}^{i}\right) \mathbf{h}_{\varepsilon, q}\left(\mathbf{z}^{i}\right)\right] \leqq 0 j \in J_{l} \\
\varphi^{j}\left[\mathbf{z}^{i}+\lambda\left(\mathbf{z}^{i}\right) \mathbf{h}_{\varepsilon, q}\left(\mathbf{z}^{i}\right), t\right] \leqq 0 j \in J_{m}, t \in T_{q}
\end{gathered}
$$

The algorithm to implement the above process is as follows.
STEP 1: Set $\lambda=\beta$. Compute $M^{*}=\max \left\{1, \frac{M}{\left\|\mathbf{h}_{\varepsilon, q}\left(\mathbf{z}^{i}\right) \mid\right\|_{\infty}}\right\}$. Set FLAG $=0$. Set n $=0$.

STEP 2: Compute $\mathbf{z}_{n}^{i+1}=\mathbf{z}^{i}+\lambda \mathbf{h}_{\varepsilon, q}\left(\mathbf{z}^{i}\right)$.
STEP 3: If $\psi_{q}\left(\mathrm{z}^{i}\right)>0$, go to step 5. Else, go to step 4.
STEP 4: Compute $f^{\circ}\left(\mathbf{z}_{n}^{i+1}\right)$. If $f^{\circ}\left(\mathbf{z}_{n}^{i+1}\right)+\alpha \lambda \delta \varepsilon \leqq-f^{\circ}\left(\mathbf{z}^{i}\right)$, go to step 6. Otherwise, go to step 8.

STEP 5: If $\psi_{q}\left(\mathrm{z}_{n}^{i+1}\right)+\alpha \lambda \delta \varepsilon \leqq \psi_{q}\left(\mathrm{z}^{i}\right)$, go to step 7. Otherwise, go to step 8 .
STEP 6: Compute $g^{j}\left(\mathrm{z}_{n}^{i+1}\right), j \in J_{l}$ and $\varphi^{j}\left(\mathbf{z}_{n}^{i+1}, t\right), j \in J_{m} t \in T_{q}$. If $g^{j}\left(\mathbf{z}_{n}^{i+1}\right) \leqq 0, j \in J_{l}$ and $\varphi^{j}\left(\mathbf{z}_{n}^{i+1}, t\right) \leqq 0 j \in J_{m}, t \in T_{q}$, go to step 7. Otherwise, go to step 8.

STEP 7: If $\lambda / \beta>M^{*}$ or FLAG $=-1$, go to step 9. Otherwise, set $\lambda=\lambda / \beta$, FLAG $=1, \mathrm{n}=\mathrm{n}+1$ and go to step 2.

STEP 8: Set $\lambda=\lambda \beta$. If FLAG $=1$, got to step 9. Otherwise, set FLAG $=-1, n=n$ +1 and go to step 2 .

STEP 9: $\operatorname{Set} \lambda=\lambda^{*}$ and the new design vector is $\mathbf{z}^{i+1}=\mathbf{z}^{i}+\lambda^{*} \mathbf{h}_{\varepsilon, q}\left(\mathbf{z}^{i}\right)$.

2.4 Computational Considerations

The quadratic programming problem as formulated in Equation (2.3.8) may
be computationally ill-posed because of different magnitudes of the gradients of different functions. Proper scaling is therefore essential to make the problem computationally efficient. In the present version the following scaling was used. Define

$$
\begin{align*}
s_{g}^{j} & =\left\|\nabla g^{j}(\mathbf{z})\right\|_{\infty}, j \in J_{\varepsilon, q}^{g}(\mathbf{z}) ; \\
s_{\varphi}^{j, t} & =\left\|\nabla_{\mathbf{z}} \varphi^{j}(\mathbf{z}, t)\right\|_{\infty},(j, t) \in J_{\varepsilon, q}^{\varphi_{, q}}(\mathbf{z}) ; \tag{2.4.1}\\
s_{o} & =\left\|\nabla f^{o}(\mathbf{z})\right\|_{\infty} .
\end{align*}
$$

where
$\|.\|_{\infty}$ is the maximum norm in \mathbb{R}^{P} defined by

$$
\|\mathbf{x}\|_{\infty}=\max _{i \in R^{P}}\left|x_{i}\right| .
$$

The matrix \mathbf{A} defined in (2.3.4) is scaled as follows.

$$
\mathbf{A}=\left[\begin{array}{c}
{\left[\nabla f^{0}(\mathbf{z})\right]_{T}^{T} / \mathrm{s}_{0}} \tag{2.4.2}\\
{\left[\nabla g^{k_{1}}(\mathbf{z})\right]^{T} / \mathrm{s}_{g}^{k_{1}}} \\
\vdots \\
\vdots \\
{\left[\nabla_{z} \varphi^{j_{1}}\left(\mathbf{z}_{,} t_{q,,, l_{1}}^{j_{1}}\right)\right]^{T} / s_{\varphi}^{j_{1} l_{1}}} \\
\vdots
\end{array}\right] .
$$

Define a vector $\mathrm{R} \in \mathbb{R}^{1+k_{g}+j_{\phi}{ }^{l} \varphi}$ as

$$
\begin{equation*}
\mathrm{R}=\left[\rho_{0}, \rho_{g}^{k_{1}}, \ldots, \rho_{g}^{k_{g}}, \rho_{\varphi}^{j_{1}, l_{1}}, \ldots, \rho_{\varphi}^{j_{\psi}, l_{\varphi}}\right]^{T} \tag{2.4.3}
\end{equation*}
$$

where ρ_{o}, ρ_{g}^{j} and $\rho_{\varphi}^{j, l}$ are called " push-off " factors and can be adjusted to force the direction vector toward or away from a constraint. If any of these factors is large as compared to the rest, then the constraint corresponding to that factor will dominate the direction finding problem. If the constraint functions are well scaled, all the push-off factors could be set equal to one, in which case all the active constraints will get equal importance. For a general case the following scheme of choosing the push-off factors seems to work well:

$$
\begin{equation*}
\rho_{o}=\xi_{0}\left(1 / s_{0}-1\right) \tag{2.4.4}
\end{equation*}
$$

$$
\begin{align*}
& \rho_{g}^{j}=\xi_{\dot{\theta}}^{j}+\eta\left[1+\frac{g^{j}(\mathbf{z})-\psi_{q}(\mathbf{z})}{\varepsilon}\right]^{2} j \in J_{l} \tag{2.4.5}\\
& \rho_{\varphi}^{j, t}=\xi_{\varphi}^{j}+\eta\left[1+\frac{\varphi^{j}(\mathbf{z}, t)-\psi_{q}(\mathbf{z})}{\varepsilon}\right]^{2} t \in T_{q, \varepsilon}^{j}(\mathbf{z}), j \in J_{m} \tag{2.4.6}
\end{align*}
$$

where $\xi_{0}, \xi_{g}^{j}, \xi_{\varphi}^{j}$ and η are input parameters.
An arbitrary upper limit of fifty was set for these push-off factors in the present study to prevent any instability in the direction finding process.

With these definitions, the scaled version of the quadratic programming problem (2.3.8) can be written as:

$$
\begin{equation*}
\min _{\mu \geq 0}\left\{\left.\frac{1}{2} \mu^{T} \mathbf{Q} \mu+\mathbf{D}^{T} \mu \right\rvert\, \mathbf{R}^{T} \mu=1\right\} \tag{2.4.7}
\end{equation*}
$$

where $\mathbf{Q}=\mathbf{A A}^{T}$ with \mathbf{A} defined by (2.4.2) and

$$
\mathbf{D}^{T}=\left[\gamma \psi \psi_{q}(\mathrm{z}) / s_{0}, 0,0, \cdots\right]
$$

The direction vector is still computed from Equation (2.4.9).

3. COMPUTER PROGRAM

A computer program called OPTDYN was written in FORTRAN IV language to implement the algorithm described in Section 2. The program runs in single precision on a CDC 6400 computer. This section describes the logic of the computer program and gives instructions for adding the user-supplied subroutines to solve a particular problem.

3.1 Computer Program Logic

The program flow diagram, giving the calling sequence of different subroutines is given in Figure 2. The program is divided into a base program and usersupplied section. The user-supplied section specifies the problem to be solved. The base program calls the user subroutines as needed. The program is structured in such a way that a user need not understand the base program thoroughly in order to solve his particular problem. However, enough information is given in the following pages to make the base program easier to understand and modify if desired.

A brief description of the functions of each subroutine in the base program is given below.

1. OPTDYN:

This is the main program. It calls the subroutines OPDATA and COPFED. The dimensions of arrays needed are set in this program and in QP. The minimum required dimensions of the arrays are given in the listing of the program in the form of comment cards.

2. OPDATA:

This subroutines reads and prints all input data needed in the program. The dimensions of the arrays set are checked with the input data and if they are not sufficient an error message is printed and execution is terminated.

3. COPFED:

This is the main optimization subroutine. Different steps of the algorithm presented in section 2 are identified by means of comment cards. The following subroutines are called, in order, by this subroutine: FUNCF, FUNCG, FUNCPH, QP and ARMINO. If there are no conventional inequality and/or functional inequality constraints, the respective calls are skipped. A concise flow chart for this subroutine is given in Figure 3.
4. QP:

This subroutine formulates and solves the quadratic programming problem to compute the optimality function, ϑ, and the descent direction, h. It calls subroutines GRADF, AROW, EACTIV, GRADG, GRADPH, WOLFE and ANGLE. A concise flow chart for this subroutine is given in Figure 4.

5. EACTIV:

This subroutine determines the ε - active constraints. For conventional inequality constraints it sets up a vector NEPTG, whose $i^{\text {th }}$ entry is zero if the $i^{\text {th }}$ constraint is not active, and one if it is active. For functional constraints, it determines the local maxima of the ε - active intervals and sets up a matrix NEPTF whose $i^{\text {th }}$ raw corresponds to the $i^{\text {th }}$ functional constraint and contains the discretization number of the local maxima of ε - active intervals. This information is used in subroutine QP, which makes calls to the gradient evaluation subroutines GRADG and GRADPH only if there is some constraint which is active. Information in array NEPTF can also be used to save storage space required for gradients of functional constraints, with these gradients being saved only at the ε-active points.
8. AROW:

This is a small subroutine which fills in the gradients scaled by their infinity
norms into the rows of " A " matrix. The gradients of the cost function is entered in the first row of this matrix. Gradients of active conventional constraints are entered starting from the second row. Gradients of active functional constraints are entered in after the conventional constraint gradients. This subroutine also determines the maximum of all the infinity norms of the gradients.

7. WOLFE:

This is a standard quadratic programming problem solver.

8. ANGLE:

This subroutine computes angles between the direction vector given by QP and the cost function and active constraint gradients. This information can be employed by the user to choose a proper value for the so-called "push-off" factors. By a proper choice of these factors the problem can be scaled in such a way that the user can emphasize any particular constraint or cost in the direction finding process.

9. ARMIJO:

This subroutine computes step length along the usable feasible direction given by QP. An Armijo step size rule is used, as explained in section 2. It calls subroutines FUNCF, FUNCG and FUNCPH. If there are no conventional and/or functional constraints, the corresponding calls are skipped. A concise flow chart of this subroutine is given in Figure 5.

10. ERROR:

Prints input data error messages.

11. TIMLOG:

Prints solution time log at the end of the computer run.

3.2 User-Supplied Subroutines

The subroutines which define a specific problem are separated from the base program and are grouped under user-supplied subroutines. The calling sequence and functions of these subroutines are given below. Note that all the variables identified as input are set in the base program and should not be changed in the user subroutines.

1. FUNCF:

This subroutine evaluates the cost function f°. It is called from the base program as follows:

> CALL FUNCF (N, Z, F, NFUNCF)
where the arguments have the following meaning:
N number of optimization variables, (input);
Z vector containing current values of optimization variables, (input);
F value of the objective function f°, (output);
NFUNCF a counter, which counts the number of times this subroutine is called, (input);

2. GRADF:

This subroutine evaluates the gradients of the objective function. The calling sequence for this subroutine is:

CALL GRADF ($\mathrm{N}, \mathrm{Z}, \mathrm{GRAD}$)
where the arguments have the following meaning:
N number of optimization variables, (input);
Z vector containing eurrent values of optimization variables, (input);
GRAD vector containing gradients of objective function, (output). The $i^{\text {th }}$ entry in this vector should contain the partial derivative of the objec-
tive function with respect to the $i^{\text {th }}$ optimization variable.

3. FUNCG:

This subroutine evaluates conventional inequality constraint functions (functions " g "). It is called from the base program as follows:

CALL FUNCG (N, JP, Z, G, PSI, NFUNCG)
where the arguments have the following meaning:
N number of optimization variables, (input);
JP number of constraints of this type, (input);
Z vector containing current values of optimization variables, (input);
G vector of functions " g ",having dimension "JP", (output). These functions could be arranged in any order, but the corresponding gradients must follow the same order in subroutine GRADG;

PSI function ψ. At input it is initialized to its proper value by the main program. The maximum of functions g is computed and PSI is set equal to the greater of its input value or the maximum g function value at output. This should be achieved by adding the following FORTRAN statements, just before RETURN.

$$
\begin{gathered}
\mathrm{DO} 100 \mathrm{I}=1, \mathrm{JP} \\
100 \mathrm{IF}(\mathrm{G}(\mathrm{I}) \cdot \mathrm{GT} \cdot \mathrm{PSI}) \mathrm{PSI}=\mathrm{G}(\mathrm{I})
\end{gathered}
$$

NFUNCG a counter which is set equal to the number of the current call to this subroutine, (input).

4. GRADG:

This subroutine evaluates the gradients of conventional inequality constraints (functions g). The calling sequence for this subroutine is:

CALL GRADG ($\mathrm{N}, \mathrm{J}, \mathrm{Z}, \mathrm{GRAD}$)
where the arguments have the following meaning:
N number of optimization variables, (input);
J serial number of the constraint function for which the gradient is to be evaluated. A separate call is made for evaluation of gradient of each function, (input);

Z vector containing current values of optimization variables, (input);
GRAD vector containing gradient of $J^{\text {th }}, \mathrm{g}$ constraint with respect to the optimization variables. The dimension of this vector is " N ". The $i^{\text {th }}$ entry in this vector should contain the partial derivative of the $J^{\text {th }}$ conventional constraint function with respect to the $i^{\text {th }}$ optimization variable, (output).

5. FUNCPH:

This subroutine evaluates dynamic inequality constraint functions (functions φ). It is called from the base program as follows:

CALL FUNCPH (N, NJQ, JQ, Z, WO, WC, DELTAW, NQ, PHI, PSI, NFUNCP)
where the arguments have the following meaning:
N number of optimization variables, (input);
NJQ row dimension of matrix PHI in the main program, (input);
JQ number of constraints of this type, (input);
Z vector containing current values of optimization variables, (input);
Wo initial value of the interval over which the functional constraint is to be evaluated, (input);

WC final value of the interval over which the functional constraint is to be evaluated, (input);
number of discretization points, (input);
DELTAW discretization interval, defined as:

$$
\text { DELTAW }=(W C-W 0) / N Q ;
$$

PHI matrix containing values of functions φ. The $i^{\text {th }}$ row of this matrix contains values of $i^{\text {th }}$ functional constraint at specified intervals, (output);

PSI function ψ. At input it is initialized to its proper value by the main program. The maximum of functions φ is computed and PSI is set equal to the greater of its input value or the maximum φ function value at output. This should be achieved by adding the following FORTRAN statements, just before RETURN.

DO $100 \mathrm{~L}=1, \mathrm{JQ}$
DO $100 \mathrm{~K}=1$, NQ
IF (PHI(L, K) .GT. PSI) PSI $=\operatorname{PHI}(\mathrm{L}, \mathrm{K})$
100 CONTINUE
NFUNCP a counter which is set equal to the number of the current call to this subroutine, (input).

6. GRADPH:

This subroutine evaluates gradients of dynamic inequality constraint functions (functions φ). It is called from the base program as follows:

CALLL GRADPH (N,NJQ,NACTIV,JQ,WO,WC,DELTAW,NQ,NEPTF,L,Z,K,K,GRAD,IGRAD)
where the arguments have the following meaning:
N number of optimization variables, (input);
NJQ row dimension of matrix NEPTF, (input);
NACTIV column dimension of matrix NEPTF, (input).
number of functional constraints, (input);

Wo initial value of the interval over which the functional constraint is to be evaluated, (input);

WC final value of the interval over which the functional constraint is to be evaluated, (input);

NQ number of discretization points, (input);

DELTAW discretization interval, defined as:

$$
\text { DELTAW }=(W C-W O) / N Q
$$

NEPTF matrix of points at which the ε - active intervals have local maxima, as explained earlier, (input);

L serial number of the current functional constraint. A separate call is made for evaluation of gradient of each ε - active point, (input);

Z vector containing current values of optimization variables, (input);

K current discretization point at, which the gradient is desired, (input);

GRAD vector containing gradient of $\varphi(\mathrm{L}, \mathrm{K})$. The $i^{\text {th }}$ entry in this vector should contain the partial derivative of the $L^{\text {th }}$ functional constraint at the $K^{\text {th }}$ discretization point with respect to the $i^{\text {th }}$ optimization variable, (output);

IGRAD a counter, which is equal to the number of calls to this subroutine in the current iteration. At the beginning of every iteration, this is set equal to one, (input).

3.3 Explanation of Variables in Common Blocks

Data are organized in a number of common blocks to be shared by different subroutines. Different common blocks and their constituents are listed below.

1. COMMON /TAPES/NIN, NOU

This block is initialized in the main program.
NIN input tape unit. Its value is initialized to 1.
NOU output tape unit. Its value is initialized to 2 .
2. COMMON /DIMNSN/NZ, NJQ, NJP, NQMAX, NACTIV

The data in this block are set in the main program. Change to appropriate values whenever the dimensions are changed.

NZ maximum number of optimization variables for which dimensions are set.

NJQ maximum number of functional constraints for which dimensions are set.

NJP maximum number of conventional inequality constraints for which the dimensions are set.

NQMAX maximum number of discretization points for which dimensions are set.

NACTIV maximum number of rows in the ε - active matrix " A " in QP. This is set to 10 . If this requirement is exceeded, the program will print the dimension needed. Any change in the value of NACTIV will require changing the dimensions in the main program and QP. Sometimes reducing ε - band width might drop some of the constraints and set dimensions might be enough.
3. COMMON /OPTDAT/ EO, MAXITN, NCUT, ITRSTP, ITER, SCALE

The data in this block are read from unit NIN in subroutine OPDATA.
EO initial ε - band width, ε_{0}.

MAXITN maximum number of iterations specified. Program will stop either when MAXITN is reached or an optimum is achieved.

NCUT maximum number of iterations in the solution of the quadratic programming problem.

ITRSTP maximum number of iterations allowed in step length calculations.

ITER iteration number at start of this run. This is used only for labeling the output. The iteration number printed with the output starts from ITER and is incremented by one in subsequent iterations.

SCALE a scaling factor for ε - active constraints. This is used in computing push-off factors. (η in section 2.4).
4. COMMON / ONE / JP: JQ, N

The data in this common block are read from unit NIN in subroutine OPDATA.

JP number of conventional inequality constraints.

JQ mumber of functional inequality constraints.
$\mathrm{N} \quad$ number of optimization variables.
5. COMMON /TWO/ ALPHA, BETA, STPMAX, OLDSTP, ICOUNT

This common block contains data which are used in subroutine ARMIJO for step length calculations.

ALPHA parameter α, input in OPDATA.

BETA parameter β, input in OPDATA

STPMAX maximum step length parameter M, input in OPDATA.

OLDSTP step length at the last iteration. Initially input in OPDATA, later on updated at the end of ARMIJO.

ICOUNT a counter used to monitor the size of the step length. If the step length is less than a certain specified tolerance (1.0E-10) for 10 iterations, the execution is terminated. It is initialized to zero in OPDATA and is updated in ARMIJO.
6. COMMON /THREE/ TOI, TOLER(4), DELTA, MU1, MUZ

These convergence tolerance parameters are set in OPDATA and used in ARMIJO and COPFED.

TOL tolerance parameter, set to 1.0E-10.
TOLER tolerance parameters set to 1.0E-10.
DELTA parameter δ.
MU1 real parameter μ_{1}.
MUZ real parameter μ_{2}.
7. COMMON /FIVE/ WO, WC, Q, DELTAW, QMAX

These values are read from unit NIN in subroutine OPDATA.
W0 initial value of the interval for functional constraints.
WC final value of the interval.
Q integer variable equal to the initial number of discretization points.
DELTAW discretization interval, defined as

$$
\text { DELTAW }=(W C-W 0) / Q .
$$

QMAX integer variable equal to the maximum number of discretization points.
8. COMMON /TIMES/ TCONST, TQPT, TARMJT, TTOT

Common block containing elapsed CPU times in different phases of the program. This is initialized and updated in COPFED. Final values are printed in TIMLOG.

TCONST CPU time used in constraint function evaluations.
TQPT CPU time used in direction finding subproblem. This includes time spent in gradient evaluations.

TARMJT CPU time used in step length calculations.
TTOT total time used in a particular run.
9. COMMON /NUMFUN/ NFUNCF, NFUNCG, NFUNCP

This common block contains the number of function evaluations. The variables are initialized in COPFED and are updated in COPFED and ARMIJO. Final values are printed in TIMLOG.

NFUNCF number of objective function evaluations.
NFUNCG number of g function evaluations.
NFUNCP number of φ function evaluations.
10. COMMON /NUMGRD/ NGRADF, NGRADG, NGRADP

This common block contains the number of gradient evaluations. The variables are initialized in COPFED and are updated in QP. Final values are printed in TIMLOG.

NGRADF number of gradient evaluations of objective function.
NGRADG number of gradient evaluations of g constraint functions.
NGRADP number of gradient evaluations of φ constraint functions.
11. COMMON /WORK/WORK(32)

This is a temporary storage area and can be used in any subroutine. Since it may be used to store some different quantities in another subroutine, it should not be used to transfer data between two subroutines.

4. SAMPLE APPLICATIONS

This section presents a number of example problems to introduce the user to some of the applications of the program. Problems from different fields are selected to show the wide range of applications of the program. Values of convergence parameters used for different problems are given. Although these may not represent the best choice for other applications, they may be a good starting point for problems in which no experience has been acquired.

4.1 A Constrained Minimization Test Problem

The following nonlinear programming problem is solved to test the algorithm and show the user the structure of the user-supplied subroutines. The problem is taken from reference [10].

$$
\min _{\mathbf{z}}\left\{f^{\circ}(\mathbf{z}) \mid g^{j}(\mathbf{z}) \leqq 0 j=1, \ldots, 3\right\}
$$

where

$$
\begin{aligned}
f^{0}(\mathbf{z}) & =z_{1}^{2}+z_{2}^{2}+2 z_{3}^{2}+z_{4}^{2}-5 z_{1}-5 z_{2}-21 z_{3}+7 z_{4} \\
g^{1}(\mathbf{z}) & =z_{1}^{2}+z_{2}^{2}+z_{3}^{2}+z_{4}^{2}+z_{1}-z_{2}+z_{3}-z_{4}-8 \\
g^{2}(\mathbf{z}) & =z_{1}^{2}+2 z_{2}^{2}+z_{3}^{2}+2 z_{4}^{2}-z_{1}-z_{4}-10 \\
g^{3}(\mathbf{z}) & =2 z_{1}^{2}+z_{2}^{2}+z_{3}^{2}+2 z_{1}-2 z_{2}-z_{4}-5
\end{aligned}
$$

The optimal solution given in the reference is

$$
\begin{aligned}
\mathbf{z}^{*} & =[0,1,2,-1]^{T} \\
f^{\circ}\left(\mathbf{z}^{*}\right) & =-44
\end{aligned}
$$

The gradients of the functions are:

$$
\begin{aligned}
\nabla f^{\circ}(\mathbf{z}) & =\left[\begin{array}{llll}
2 z_{1}-5 & 2 z_{2}-5 & 4 z_{3}-21 & 2 z_{4}+7
\end{array}\right]^{T} \\
\nabla g^{1}(\mathbf{z}) & =\left[\begin{array}{llll}
2 z_{1}+1 & 2 z_{2}-1 & 2 z_{3}+1 & 2 z_{4}-1
\end{array}\right]^{T} \\
\nabla g^{2}(\mathbf{z}) & =\left[\begin{array}{llll}
2 z_{1}-1 & 4 z_{2} & 2 z_{3} & 4 z_{4}-1
\end{array}\right]^{T} \\
\nabla g^{3}(\mathbf{z}) & =\left[\begin{array}{llll}
4 z_{1}+2 & 2 z_{2}-1 & 2 z_{3} & -1
\end{array}\right]^{T}
\end{aligned}
$$

A listing of the user-supplied subroutines for this problem is given in Appendix C. The following parameters values were used:

$$
\mu_{1}=1.0 \quad \mu_{2}=0.01 \quad \delta=0.001
$$

$$
\begin{gathered}
\varepsilon_{0}=0.02 \quad \gamma=2.0 \quad M=15.0 \\
\alpha=0.2 \beta=0.3 \text { push-off factor }=1.0
\end{gathered}
$$

Initial values of variables $=[0,0,0,0]^{T}$.

The results of the computations are tabulated in Table 1.

4.2 Design of a PID Controller

The control system is shown in Figure 6. The problem is to choose variables z_{1}, z_{2} and z_{3} such that the square of the error associated with a unit step input is minimized.

$$
f^{\circ}(\mathrm{z})=\int_{0}^{\infty} e^{2}(t, \mathrm{z}) d t
$$

The problem can be transformed into the following form, (see references $[3,11]$).

$$
f^{\circ}(\mathbf{z})=\frac{z_{2}\left(122+17 z_{1}-5 z_{2}+6 z_{3}+z_{1} z_{3}\right)-36 z_{1}+180 z_{3}+1224}{z_{2}\left(408+56 z_{1}-50 z_{2}+60 z_{3}+10 z_{1} z_{3}-2 z_{1}^{2}\right)}
$$

The following constraint is introduced to ensure closed-loop stability:

$$
\varphi(\mathbf{z}, \omega)=\operatorname{Im} T(\mathbf{z}, \omega)-3.33[\operatorname{Re} T(\mathbf{z}, \omega)]^{2}+1.0
$$

where

$$
\begin{gathered}
T(\mathbf{z}, \omega)=1+H(\mathbf{z}, j \omega) G(j \omega) \\
\omega \in \Omega=\left[10^{-6}, 30\right] \\
0 \leqq z_{1} \leqq 100.0 \\
0.1 \leqq z_{2} \leqq 100.0 \\
0 \leqq z_{3} \leqq 100.0
\end{gathered}
$$

A listing of the user-supplied subroutines for this problem is given in Appendix D. The following parameters values were used:

$$
\begin{gathered}
\mu_{1}=0.001 \quad \mu_{2}=0.01 \quad \delta=0.001 \\
\varepsilon_{0}=0.2 \quad \gamma=2.0 \quad M=15.0 \\
\alpha=0.2 \quad \beta=0.3 \quad \text { push }-0 f f \text { factor }=0.0 \\
q=128 \quad q_{\max }=256
\end{gathered}
$$

Initial values of variables $=[1,1,1]^{T}$.
The results of the computations are tabulated in Table 2.

4.3 Design of an Earthquake Isolation System

This problem is formulated and solved in detail in reference [1]. The problem consists of minimizing the sum of squares of story shears at the bottom floor level of the frame shown in Figure 7. The maximum displacement at the bottom floor is constrained to be less than 4.0 inches.

Following [1], the problem can be expressed as:

$$
\min _{\mathbf{z}} z_{4}
$$

subject to

$$
\begin{aligned}
\max _{t \in T}\left[\sum_{j=1}^{a}\left\{K_{j}\left[u_{j}(\mathbf{z}, t)-u_{j+1}(\mathbf{z}, t)\right]\right]^{2}\right] & \leqq z_{4} \\
\max _{t \in T}\left[u_{4}(\mathbf{z}, t)\right]^{2} & \leqq 16.0 \\
z_{j} & >0 \quad j=1,4
\end{aligned}
$$

where K_{1}, K_{2} and K_{3} are story stiffnesses and u_{1}, u_{2}, u_{3} and u_{4} are floor displacements. The displacements are computed by integrating the equations of motion for the frame. See reference [1] for details of derivation and solution of these equations of motion. The following parameter values were used:

$$
\begin{gathered}
\mu_{1}=1.0 \quad \mu_{2}=0.01 \quad \delta=0.001 \\
\varepsilon_{0}=0.025 \quad \gamma=2.0 \quad M=15.0 \\
\alpha=0.2 \quad \beta=0.3 \quad \text { push-off factor }=0.0 \\
q=1500 \quad q_{\max }=1500 \\
t_{0}=0 \quad t_{f}=15.0
\end{gathered}
$$

The initial values for the optimization variables were as follows

$$
\mathbf{z}=[5.0,0.11,0.064,35.0]^{T}
$$

The optimal values were:

$$
\mathbf{z}=[4.2773,1.7529,0.005768,9.1509]^{T}
$$

The results are tabulated in Table 3 and the objective function is plotted against the number of iterations in Figure 8.

Iteration	Z_{1}	Z_{2}	Z_{3}	Z_{4}	$\mathrm{~F}^{0}(Z)$
0	0	0	0	0	0.0
5	.4474	.4474	1.774	-.6264	-39.026
10	.2973	.5712	1.918	-.7213	-41.379
15	.1876	.6605	1.992	-.7950	-42.603
20	.0649	.7572	2.028	-.8862	-43.313
25	.0140	.8086	2.043	-.9479	-43.754
30	-.150	.8573	2.033	-.9885	-43.847
35	-.0127	.9043	2.022	-.9947	-43.896
40	.0069	.9262	2.018	-.9754	-43.912
45	.0101	.9423	2.014	-.9739	-43.927
50	.00114	.9554	2.011	-.9847	-43.94
55	-.0047	.9780	2.003	-.9985	-43.942
60	.00062	.9840	2.003	-.9922	-43.956
70	.0013	.9919	2.002	-.9954	-43.99
Optimal	0	1	2	-1	-44
Solution	0				

Table 1 Solution of the Constrained Minimization Test Problem

Iteration	Z_{1}	Z_{2}	Z_{3}	$F^{\circ}(Z)$
0	1.0	1.0	1.0	3.1307
5	21.0564	20.6782	27.2632	0.1951
10	16.7827	38.3781	34.4224	0.1755
15	17.1995	41.5172	34.4064	0.1748
20	17.1011	43.6862	34.5343	0.1747
25	16.9038	44.7145	34.6861	0.1746
30	16.7268	44.9996	34.8023	0.1746
35	16.7404	45.2958	34.8037	0.1746

Table 2 Solution of the PID Controller Problem

Iteration	Z_{1}	Z_{2}	Z_{3}	$Z_{4}=f^{\circ}(Z)$
0	5.0	0.11	.064	35.0
5	5.000032	0.1303	.0246	23.9471
10	4.9765	0.1841	.0524	21.9413
15	4.9146	0.3549	.0578	20.3408
20	4.5008	1.3299	.1714	18.0123
25	4.4059	1.5248	.1928	13.1106
30	4.3026	1.7248	.0412	9.804
35	4.2886	1.7409	.0155	9.2033
41	4.2773	1.7529	.00577	9.1509

Table 3 Solution of the Earthquake Isolation System Problem

REFERENCES

1. Bhatti, M. A., Pister, K. S. and Polak, E., "Optimal Design of an Earthquake Isolation System," Report No. UCB/EERC-78/22, Earthquake Engineering Research Center, University of California, Berkeley, October 1978.
2. Polak, E., Pister, K.S. and Ray, D. "Optimal Design of Framed Structures Subjected to Earthquakes," Engineering Optimization, Vol.2, 1976.
3. Polak, E. and Mayne, D. Q., "An Algorithm for Optimization Problems with Functional Inequality Constraints," IEEE Transactions on Automatic Control, Vol. AC-21, No. 2, April 1976.
4. Trahan, R. "Optimization Algorithms for Computer-Aided Design Problems", Ph.D. Dissertation, Department of Electrical Engineering and Computer Science, U. C. Berkeley, 1978.
5. Gonzaga, G., Polak, E. and Trahan, R., "An Improved Algorithm for Optimization Problems with Functional Inequality Constraints," Memorandum No. UCB/ERL M78/56, Electronics Research Laboratory, University of California, Berkeley, September 1977.
6. Blankenship, J.W. and Falk, J.E. "Infinitely Constrained Optimization Problems", Journal of Optimization Theory and Applications, Vol.19, No.2, June 1976.
7. Polak, E., Computational Methods in Optimization, Academic Press, New York, 1971.
8. Luenberger, D. G., Introduction to Linear and Nonlinear Programming, Addison-Wesley, 1973.
9. Armijo, L., "Minimization of Functions Having Continuous Partial Derivatives" Pacific Jr. Math. 16, 1-3 (1966).
10. Rosen, J.B. and Suzuki, S., "Construction of Nonlinear Programming Test Problems", Communications of Association for Computing Machinery, Vol.8, pp. 113, 1965.
11. Chen, C.T., Analysis and Synthesis of Linear Control Systems, Holt, Rinehart and Winston, New York, 1975.

NOTATION

$\mathbb{R}^{n} \quad$ Denotes the euclidean space of ordered n-tuples of real numbers. When an n-tuplet is a vector in \mathbb{R}^{n}, it is always treated as a column vector.
<.,.> Scalar Product in \mathbb{R}^{n} defined by $\langle\mathbf{x}, \mathbf{y}\rangle=\sum_{i=1}^{n} x_{i} y_{i}$.
$\|.\|_{2}$ Euclidean norm defined by $\|\mathbf{x}\|_{2}=\sqrt{\mathbf{x}^{T} \mathbf{x}}$.
$\|.\|_{\infty} \quad$ Maximum norm in \mathbb{R}^{n}, defined by $\| \mathbf{x}| |_{\infty}=\max _{i \in \mathbb{R}^{n}}\left|x_{i}\right|$.
z Bold letters signify a vector or matrix quantity.
$\mathbf{z}^{T} \quad$ Transpose of \mathbf{z}.
$z^{-1} \quad$ Inverse of matrix z.
$|x| \quad$ Absolute value of x.
$A \cup B \quad$ Union of two sets A and B.
$\{x \mid p\} \quad$ Set of points x having property p .
$x \in A \quad \mathrm{x}$ belongs to A .
$x \notin A \quad \mathrm{x}$ does not belong to A .
(a,b) Open interval.
[a,b] Closed interval.
(a,b] Semi-open or semi-closed interval.
$f($.$) or \mathrm{f}$ Denotes a function, with the dot standing for undesignated variable; $f(z)$ denotes the value of $f($.$) at point z$. Domain A and range B of function $\mathrm{f}($.$) is indicated by \mathrm{f}: \mathrm{A} \rightarrow \mathrm{B}$.
$\nabla f(\mathrm{z}) \quad$ Denotes the gradient of f at z . The gradient is treated as a column vector. If f is a function of more than one variable, the variable with respect to which the gradient is evaluated is shown as a subscript to
the gradient symbol, e.g. $\nabla_{z} f(\mathrm{z}, t)$ indicates gradient with respect to z of a function of z and t.

$$
\begin{array}{ll}
\bar{T}_{q, \varepsilon}(\mathbf{z})=\{2,8,9,10,11,12\} & ; \text { times at which } \varphi^{j} \text { is active. } \\
I_{\dot{q},,, 1}^{j}(\mathbf{z})=\{2\} & ; 1^{\text {st }} \text { active interval. } \\
I_{q}^{j}, \varepsilon, 2(\mathbf{z})=\{8,9,10,11,12\} & ; 2^{\text {nd }} \text { active interval. } \\
t_{q, \varepsilon, 1}^{j}(\mathbf{z})=\{2\} & ; \text { left local maxima in } 1^{\text {st }} \text { interval. } \\
t_{\dot{q},,, 2}^{j}(\mathbf{z})=\{10\} & ; \text { left local maxima in } 2^{\text {nd }} \text { interval. } \\
T_{q, \varepsilon}^{j}(\mathbf{z})=\{2,10\} & ; \varepsilon \text { - active points included in the direction } \\
& \text { finding process for } j^{t h} \text { dynamic constraint. }
\end{array}
$$

Figure 1 Illustration of ε - Active Points for Dynamic Constraints

Figure 2 Program Flow Diagram

Figure 3 Concise Flow Chart of Subroutine COPFED

Figure 4 Concise Flow Chart of Subroutine QP

Figure 5 Concise Flow Chart of Subroutine ARMIJO

Figure 5 (Continued)

Figure 6 Control System to be Optimized

Figure 7 Design of Device "E" for Structural System Shown

Figure 8 Cost Parameter Versus Number of Iterations

APPENDIX A - OPTDYN User's Guide

The base program requires the following input data.

1. Problem Heading (20 A 4) - one card

COLUMNS	NOTE	VARIABLE	DESCRIPTION OF DATA ENTRY
$1-80$		HED	Problem heading to be printed with output.

2. Control Information (4 15) - one card

| COLUMNS | NOTE | VARIABLE | DESCRIPTION OF DATA ENTRY |
| :---: | :---: | :---: | :--- | :--- |
| $1-5$ | (1) | MAXITN | Maximum number of iterations
 allowed. |
| $6-10$ | (2) | ITER | Iteration number at start of this run.
 Leave blank if this is the first run. |
| $11-15$ | NCUT | Maximum number of simplex itera-
 tions in solving the quadratic pro
 gramming problem for direction
 finding. | |
| $16-20$ | | ITRSTP | Maximum number of iterations
 allowed in step length calculations. |

3. Convergence Tolerance Parameters (8 F 10.0) - one card

COLUMNS	NOTE	VARIABLE	DESCRIPTION OF DATA ENTRY
$1-10$		MU1	Parameter μ_{1} used in tolerance test on ε.
$21-20$		MU2	Parameter μ_{2} used in step 4 of the algorithm.
$31-40$		EELTA	Parameter δ used in step 2 (conver- gence check) and step 6 (step length calculations).
$41-50$		ε_{0}, initial value of ε. GAMMA	Parameter γ, used in QP.

4. Problem size (3 I 5) - one card

COLUMNS	NOTE	VARIABLE	DESCRIPTION OF DATA ENTRY
$1-5$		JP	Number of conventional inequality constraints (functions ' g^{\prime}).
$6-10$	JQ	Number of dynamic constraints (func- tions φ).	
$11-15$		N	Number of optimization variables.

5. Armijo Parameters (8 F 10.0) - one card

COLUMNS	NOTE	VARIABLE	DESCRIPTION OF DATA ENTRY
$1-10$		STPMAX	Parameter controlling maximum value of step length at any iteration.
$11-20$		ALPHA	Parameter α.
$21-30$		BETA	Parameter β.
$31-40$	(3)	OLDSTP	Initial value for the step length.

6. Functional Constraint Parameters (2 I 5 , 2 F 10.0) - one card

COLUMNS	NOTE	VARIABLE	DESCRIPTION OF DATA ENTRY
$1-5$		NQ	Initial number of discretization points.
$6-10$		NQMAX	Maximum number of discretization points.
$11-20$	(4)	WQ	t_{0} defining the interval of interest, $\left[t_{0,} t_{f}\right]$
$21-30$	WC	t_{f} defining the interval of interest, $\left[t_{0}, t_{f}\right]$.	

7. Scaling Factors (2 F 10.0) - one card

COLUMNS	NOTE	VARIABLE	DESCRIPTION OF DATA ENTRY
$1-10$	(5)	SCALE	Scale factor, η, used in scaling QP.
$11-20$		PUSHF	Scale factor for cost func- tion.

8. Push-off Factors for Conventional Constraints (8 F 10.0)

As many cards as needed to specify push-off factors for all conventional inequality constraint functions
9. Push-off Factors for Dynamic Constraints (8 F 10.0)

As many cards as needed to specify push-off factors for all dynamic constraints.
10. Initial Values of Variables (8 F 10.0)

As many cards as needed to specify initial values for N optimization variables.

NOTES

(1) The program will stop normally if either the number of iterations reaches MAXITN or the optimal solution is achieved.
(2) ITER is used only to label the output. In a number of practical situations it is not possible to let the program run for too many iterations. The process can be restarted with the latest values of the optimization variables, ε and q with ITER equal to the number of the next iteration. the output will then be labeled starting from ITER and incrementing it by one, after each subsequent iteration.
(3) The step length calculations start by assuming an initial trial value equal to OLDSTP. If a good estimate is available, it will accelerate the step length computation process.
(4) If there are no functional constraints, supply a blank card.
(5) The "push-of" factors are used to force the direction vector away from or toward a constraint. Some experience is needed before arriving at suitable values. The angles between the direction vector and objective function gradient and active constraint gradients should be used as guidelines.

APPENDIX B-Listing of the Program

```
*DECK OPTDYN
    PROGRAM OPTDYN (INPUT,OUTPUT,TAPE1=INPUT,TAPE2=OUTPUT)
C *****************************************************************
    WITHOUT DYNAMIC CONSTRAINTS.
    THE PROGRAM SOLVES PROBLEMS OF THE TYPE
        MINIMIZE F\varnothing(Z) SUBJECT TO 1. F(Z) = MAX. PHI (Z,T) .LT. Ø
                                    (OVER T)
                    2. G(Z) .LT. \varnothing
    SOLUTION ALGORITHM IS GIVEN IN EARTHQUAKE ENGINEERING RESEARCH
    CENTER,S REPORT UCB/EERC-79/16....JULY 1979.
    NOTE ON THE DIMENSIONS OF THE ARRAYS
    THE MINIMUM REQUIRED DIMENSIONS OF THE ARRAYS ARE:
        Z(NZ), G(NJP), H(NZ), PHI(NJQ,NQMAX), ZNEW(NZ),
        GRAD(NZ), NEPTG(NACTIV), NEPTF(NJQ,NACTIV),
        AQP(NACTIV,NZ), PUSHG(NJP), PUSHPH(NJQ)
        WHERE
    NZ = MAX. NO. OF ELEMENTS IN VECTOR Z
    NJQ = MAX. NO. OF FUNCTIONAL CONSTRAINTS (FUNCTIONS PHI)
    NJP = MAX. NO. OF CONVENTIONAL INEQUALITY CONSTRAINTS.
    NQMAX = MAX. NO. OF DISCRETIZATION POINTS FOR FUNCTIONAL
                CONSTRAINTS.
    NACTIV= MAX. NO. OF ROWS IN THE "A" MATRIX FOR DIRECTION FINDING.
    THE DIMENSIONS ARE SET FOR
    NZ = 1\varnothing, NJQ = 5 , NJP = 1\varnothing, NQMAX = 1\varnothing\varnothing\varnothing, NACTIV = 1\varnothing
    TO CHANGE THE DIMENSION REQUIREMENTS, CHANGE DIMENSIONS
    OF ARRAYS IN THE MAIN PROGRAM AND IN THE SUBROUTINE QP.
    THE MINIMUM REQUIRED DIMENSIONS OF ARRAYS USED IN QP ARE GIVEN
    IN SUBROUTINE QP AND THEY NEED TO BE CHANGED ONLY IF
    "NACTIV" IS CHANGED.
    PROGRAMMED BY.....M. A. BHATTI MAY 10,1979
    ***********************************************************************
    COMMON /TAPES / NIN,NOU
    COMMON /DIMNSN/ NZ,NJQ,NJP,NQMAX,NACTIV
    COMMON /WORK / WORK(32)
C
    INTEGER Q,QMAX
    DATA NIN,NOU /1,2/
    DIMENSION Z(1\varnothing),G(1\varnothing),H(1\varnothing),PHI{5,1\varnothing\varnothing\varnothing),ZNEW(1\varnothing),GRAD(1\varnothing),
    1 NEPTG(1\varnothing),NEPTF{5,1\varnothing), AQP(1\varnothing,1\varnothing), PUSHG(1\varnothing), PUSHPH(5)
c
    NZ = 10
    NJQQ = 5
    NJP= = 1\varnothing
    NGMAX = 100\varnothing
    NACTIV = 10
C
C-----READ INPUT DATA FOR OPTIMIZATION PART
    CALL OPDATA (Z,PUSHF,PUSHG,PUSHPH)
c
C-----CALL MAIN OPTIMIZATION SUBROUTINE
    1\varnothingD CALL COPFED {NJQ,NACTIV,Z,ZNEW,G,H,PHI,GRAD,NEPTG,NEPTF,
C
    END
```

```
*DECK OPDATA
    SUBROUTINE OPDATA (Z,PUSHF,PUSHG,PUSHPH)
C *----RE*******************************************
C-----READ AND PRINT DAT
        MPRINT
        ERROR
    OUTPUT VARIABLES
        Z = VECTOR OF OPTIMIZATION VARIABLES.
        PUSHF = PUSH-OFF FACTOR FOR OBJECTIVE FUNCTION.
        PUSHG = VECTOR OF PUSH-OFF FACTORS FOR G FUNCTIONS.
        PUSHPH = VECTOR OF PUSH-OFF FACTORS FOR PHI FUNCTIONS.
    COMMON /TAPES / NIN,NOU
    COMMON /DIMNSN/ NZ,NJQ,NJP,NQMAX,NACTIV
    COMMON /OPTDAT/ ED,MAXITN,NCUT,ITRSTP,ITER,SCALE
    COMMON /ONE / JP,JQ,N
    COMMON /TWO / ALPHA,BETA,STPMAX,OLDSTP,ICOUNT
    COMMON /THREE / TOL,TOLER(4),DELTA,MU1,MU2,GAMMA
    COMMON /FIVE / W\varnothing,WC,Q,DELTAW,QMAX
    COMMON /WORK / HED(2\varnothing),WORK(12)
c
    DIMENSION Z(1), PUSHG(1), PUSHPH(1)
    INTEGER Q,QMAX
    REAL MU1,MU2
C
    READ (NIN,1\varnothing\varnothing\varnothing) HED
    READ (NIN,1\varnothingID) MAXITN,ITER,NCUT,ITRSTP
    IF (ITER .LE. &) ITER=1
    READ (NIN,1\varnothing2\varnothing) MU1 ,MU2 ,DELTA ,E\varnothing ,GAMMA
    READ (NIN,1\varnothing1\varnothing) JP ,JQ ,N
    READ (NIN,1\varnothing2\varnothing) STPMAX,ALPHA ,BETA ,OLDSTP
    READ (NIN,1\varnothing3\varnothing) Q ,QMAX ,WO ,WC
    READ (NIN,1\varnothing20) SCALE ,PUSHF
c
C-----DIMENSION CHECKS
    IF (N .GT. NZ) CALL ERROR(1)
    IF (JQ .GT. NJQ) CALL ERROR(2)
    IF (JP .GT. NJP) CALL ERROR(4)
    IF (Q.GT. NQMAX) CALL ERROR(3)
    IF (QMAX .GT. NQMAX) CALL ERROR(3)
C
    READ (NIN,1\varnothing2D) (PUSHG(I) , I=1,JP)
    READ (NIN,1\varnothing2\varnothing) (PUSHPH(I), I=1,JQ)
    READ (NIN,1\varnothing2\varnothing) (Z(I) , I=1,N)
C
C-----PRINT OUT DATA JUST READ
    WRITE (NOU,2\varnothing\varnothing\varnothing) HED
    WRITE (NOU,2\varnothing1\varnothing) MAXITN,ITER,NCUT,ITRSTP,
    1 MU1 ,MU2 ,DELTA ,E\varnothing ,GAMMA ,
    2 JP , JQ ,'N
    WRITE (NOU,2\varnothing2\varnothing) STPMAX,ALPHA ,BETA ,OLDSTP,
    4 WO ,WC ,Q , QCALE ,QMAX,
    5 ~ S C A L E ~ , P U S H F
    CALL MPRINT (PUSHG,1,JP,3\varnothingHPUSH FACTORS FOR G FUNCTIONS ()
    CALL MPRINT (PUSHPH,1,JQ, 3OHPUSH FACTORS FOR PHI FUNCTS., )
    CALL MPRINT (Z,1,N,3\varnothingH INITIAL VALUES OF PARAMETERS )
C
    MAXITN = MAXITN + ITER - 1
c
C SET TOLERANCES
C
    TOL=1.|E-1\varnothing
    TOLER(1)=TOL
    TOLER(2)=TOL
```

```
        TOLER(3)=TOL
        TOLER(4)=TOL
        ICOUNT = \varnothing
C
    50\varnothing RETURN
C
    1\varnothingD\varnothing FORMAT (20A4)
    1010 FORMAT (5I5)
    1\varnothing2\varnothing FORMAT (8F1\varnothing.0)
    1030 FORMAT (2I5,2F10.0)
    200\varnothing FORMAT {1H1/81(1H*)/1X,20A4/81(1H*))
201\varnothing FORMAT {//3\varnothingX,32HINPUT DATA FOR OPTIMIZATION PART
```



```
        5X,43HITERATION NUMBER AT START OF THIS RUN-----=,15
        5X,43HNO. OF SIMPLEX ITERATIONS IN QP--------------, I5
    5X,43HMAX.NO.OF ITERATIONS IN STEP LENGTH CALC.-=,I5 //
    5X,43HTHE TOLERANCE PARAMETERS ARE---------------
    5X,43H MU1-------------------------------------10.4/
    5X,43H MU2-------------------------------------E,E10.4 /
    5X,43H DELTA----------------------------------------E1\varnothing.4 
```



```
    5X,43H GAMMA-----------------------------------E,E1\varnothing.4//
    5X,43HNUMBER OF CONVENTIAL CONSTRAINTS-----------I5,
    5X,43HNUMBER OF FUNCTIONAL CONSTRAINTS-----------., I5 /
    5X,43HDIMENSION OF PARAMETER VECTOR ''Z''--------=,15 //
        Z )
    2020 FORMAT (
```



```
C
    END
*DECK COPFED
    SUBROUTINE COPFED (NJQ,NACTIV,Z,ZNEW,G,H,PHI,GRAD,NEPTG,NEPTF,
C * *********************
C MAIN STAINED OPTIMIZATION USING FEASIBLE DIRECTIONS METHOD.
C Subroutines needed:
            FUNCF
            FUNCG
            FUNCPH
            QP
            ARMIJO
            TIMLOG
            MPRINT
        VARIABLES IN THE ARGUMENT LIST HAVE THE FOLLOWING MEANING:
            NJQ = ROW DIMENSION OF FUNCTIONAL CONSTRAINT ARRAYS.
            NACTIV = ROW DIMENSION OF E-ACTIVE ARRAYS.
            Z = VECTOR OF OPTIMIZATION VARIABLES.
            ZNEW = TEMP. ARRAY USED TO STORE OPTIMIZATION VARIABLES
                DURING ARMIJO ITERATIONS.
            G = CONVENTIONAL INEQUALITY CONSTRAINT FUNCTIONS (G FUNCTIONS)
            PHI = FUNCTIONAL INEQUALITY CONSTARAINTS (FUNCTIONS PHI).
            GRAD = ARRAY STORING GRADIENTS OF FUNCTIONS. SAME ARRAY IS USED
                REPEATEDLY FOR ALL FUNCTIONS.
            NEPTG = ARRAY INDICATING E-ACTIVE G FUNCTINS. IF THE ITH. ENTRY
                IS 1 THEN THE ITH. CONSTRAINT IS ACTIVE.
            NEPTF = MATRIX INDICATING E-ACTIVE LOCAL MAXIMA FOR FUNCTIONAL
                CONSTRAINTS.
```

```
C AQP = MATRIX "A" IN THE DIRECTION FINDING PROCESS.
C l PUSHF = PUSH-OFF FACTOR FOR COST FUNCTION(FUNCTION F).
    PUSHPH = PUSH-OFF FACTORS FOR PHI FUNCTIONS.
    ************************************************************************
    COMMON /TAPES / NIN,NOU
    COMMON /OPTDAT/ EØ,MAXITN,NCUT,ITRSTP,ITER,SCALE
    COMMON /ONE / JP,JQ,N
    COMMON /THREE / TOL,TOLER(4),DELTA,MU1,MUZ,GAMMA
    COMMON /FIVE / W\varnothing,WC,Q,DELTAW,QMAX
    COMMON /TIMES / TCONST,TQPT,TARMJT,TTOT
    COMMON /NUMFUN/ NFUNCF,NFUNCG,NFUNCP
    COMMON /NUMGRD/ NGRADF,NGRADG,NGRADP
C
    INTEGER Q,QMAX
    REAL MU1,MU2
    DIMENSION Z(1),G(1),H(1),PHI(NJQ,1),ZNEW{1),GRAD(1),NEPTG(1),
    1 NEPTF(NJQ,1), AQP(NACTIV,1) ,PUSHG(1), PUSHPH(1)
    DATA NFUNCF,NFUNCG,NFUNCP /3*&/
    DATA NGRADF,NGRADG,NGRADP / 3* //
C
C-----INITIALIZATION.
    TCONST = 0.0
    TQPT = \varnothing.\varnothing
    TARMJT = \varnothing.\varnothing
    TTOT = \varnothing.\varnothing
C
C-----
C-----START OF THE MAIN ALGORITHM.
C-----
    EMU1Q = 1.0E-5
    AMU2Q = 1.8E-5
c
C-----FIRST STEP OF THE ALGORITHM
C
    100 E = ED
    IF (JQ .EQ. &) GO TO 11\varnothing
    EMU1Q = ED*MU1/FLOAT(Q)
    AMU2Q = MU2/FLOAT(Q)
    DELTAW = (WC-WD)/ FLOAT(Q)
C
    11\varnothing NFUNCF = NFUNCF + 1
    CALL FUNCF (N,Z,F,NFUNCF)
    WRITE (NOU,2\varnothing8\varnothing) F
C
    WRITE (NOU,2\varnothing30) ITER,E,Q
    CALL SECOND (T1)
C SET UP CONSTRAINTS FUNCTIONS
P PSI=\varnothing.\varnothing
    IF (JP.EQ. \varnothing) GO TO 120
    NFUNCG = NFUNCG + 1
    CALL FUNCG (N,JP,Z,G,PSI,NFUNCG)
C
    12\varnothing IF (JQ .EQ. ब) GO TO 140
    NFUNCP = NFUNCP + 1
    CALL FUNCPH (N,NJQ,JQ,Z,W\varnothing,WC,DELTAW,Q,PHI,PSI,NFUNCP)
    140 CALL SECOND (T2)
    150 WRITE (NOU,2040) PSI
C
    CALL QP (NJQ,NACTIV,G,E,PSI,Z,PHI,THETA,H,SCALE,NCUT,GAMMA,TOL,
    1 TOLER,GRAD,NEPTG,NEPTF, AQP,PUSHF,PUSHG,PUSHPH)
    CALL SECOND(T3)
C----THIRD STEP OF THE ALGORITHM
    IF (THETA .LE. (-2.|*DELTA*E)) GO TO 17\varnothing
```

```
C
C-----FOURTH STEP OF THE ALGORITHM
    E=E/2.0
    WRITE (NOU,211\varnothing) E
    IF ({E.GE.EMU1Q) .OR. (PSI.GT.AMUZQ)) GO TO 15\varnothing
C
C-----FIFTH STEP OF THE ALGORITHM(STOP RULE)
        IF (JQ .EQ. ©) GO TO'16\varnothing
        Q = Q*2
        IF (Q.LE.OMAX) GO TO ID\varnothing
C
    160 NFUNCF = NFUNCF + 1
        CALL FUNCF (N, Z, F, NFUNCF)
        WRITE (NOU,21ø0)
        WRITE (NOU,2050) F
        CALL MPRINT (Z,1,N,3\varnothingHOPTIMAL PARAMETERS )
        CALL TIMLOG
C
C-----SIXTH STEP OF THE ALGORITHM (STEP LENGTH CALCULATIONS)
C
    17\varnothing CALL SECOND (T4)
        CALL ARMIJO (E,PSI,H,Z,ZNEW,ITRSTP,F,DELTA,TOL,PHI,NJQ,G)
        CALL SECOND (T5)
C
        TARMJO = T5 - T4
        TQP= T3 - T2
        TCONSF = T2 - T1
        TTOTAL = T5 - T1
        TCONST = TCONST + TCONSF
        TQPT = TQPT + TQP
        TARMJT = TARMJT + TARMJO
        TTOT = TTOT + TTOTAL
C
        WRITE (NOU,2090)
        CALL MPRINT (Z,1,N,3@HNEW PARAMETERS )
        WRITE (NOU,207\varnothing) TTOTAL,TCONSF,TQP,TARMJO
C
        ITER=ITER+1
        IF {ITER .LE. MAXITN} GO TO 11.
C
        WRITE (NOU,2100)
        WRITE (NOU,2060)
        CALL TIMLOG
C
    203\varnothing FORMAT (/1\varnothing\varnothing(1H*)/5X,17HITERATION NUMBER=,I5/28(1H*)//
        1 5X,9HEPSILON =,E14.6,5\times3HQ =,I5)
204\varnothing FORMAT (/5X,4HPSI=,E14.6)
205\varnothing FORMAT (///5X,45HCONGRATULATIONS, HERE IS THE OPTIMAL SOLUTION //
    1 5X,25HOBJECTIVE FUNCTION VALUE=,E14.6)
2060 FORMAT (/5X,52HOPTIMUM NOT ACHIEVED WITHIN THE SPECIFIED NUMBER OF
    1 ,32HITERATIONS--EXECUTION TERMINATED //
207\varnothing% FORMAT (/5X,46HTOTAL CPU TIME TAKEN IN THIS ITERATION (SEC.)=,
    * Fiø.4/
    1 5X,33H(CONSTRAINT FUNCTION EVALUATION =,F10.4/
    2 5X,33H DIRECTION FINDING SUBPROBLEM =,F1\varnothing.4/
    3 5X,33H STEP LENGTH CALCULATIONS =,F1\varnothing.4,1H))
208.0 FORMAT (/5X,26HOBJECTIVE FUNCTION VALUE =,E14.6)
2090 FORMAT (//5X,36HRESULTS AT THE END OF THIS ITERATION/5X,36(1H-))
2100 FORMAT (/100(1H*))
2110 FORMAT (/5X,29HEPSILON IS REDUCED TO ....... E14.6)
    END
```

*DECK QP
SUBROUTINE QP (NJQ,NACTIV,G,E,PSI,Z,PHI,THETA,H,SCALE,NCUT,GAMMA, 1

TOL, TOLER, GRAD, NEPTG,NEPTF, A, PUSHF, PUSHG, PUSHPH)

THIS SUBROUTINE DETERMINES THE EPSILON ACTIVE CONSTRAINTS

THEN Fills in the matrices associated with the direction FINDING QP. THE $Q P$ IS SCALED BY NORMALIZING THE MATRIX OF gRADIENTS. THE OUTPUT QUANTITIES ARE THETA AND H.
the subroutines called by this one are:

1. GRADG
. AROW -- Fills in one row of the gradient matrix
2. GRADPH
3. GRADF
4. WOLFE -- STANDARD QP SOLVER
5. EACTIV
6. ANGLE

VARIABLES IN THE ARGUMENT LIST HAVE THE FOLLOWING MEANING: NJQ $=$ ROW DIMENSION OF FUNCTIONAL CONSTRAINT ARRAYS.
NACTIV = DIMENSION OF E-ACTIVE ARRAYS.
$\mathrm{G} \quad=\mathrm{ARRAY}$ CONTAINING G CONSTRAINT FUNCTIONS.
E = CURRENT VALUE OF EPSILON.
PSI = FUNCTION PSI.
$Z \quad=$ CURRENT VALUES OF OPTIMIZATION VARIABLES.
PHI = MATRIX OF FUNCTIONAL CONSTRAINTS.
THETA = FUNCTION THETA.
H = DIRECTION VECTOR.
SCALE = SCALE FACTOR FOR ACTIVE CONSTRAINTS (PARAMETER ETA).
NCUT = MAXIMUM NO. OF ITERATIONS ALLOWED IN QP.
GAMMA = PARAMETER GAMMA.
TOL = TOLERANCE PARAMETER.
TOLER = TOLERANCE PARAMETERS USED IN QP.
GRAD = ARRAY CONTAINING FUNCTION GRADIENTS.
NEPTG $=$ ARRAY CONTAING INFORMATION ON E-ACTIVE G FUNCTIONS.
ITH. ENTRY IS 1 IF THE ITH. CONSTRAINT IS ACTIVE.
NEPTF = MATRIX CONTAINING INFORMATION ON E-ACTIVE PHI FUNCTIONS. ITH. ROW CONTAINS MESH POINT NUMBERS AT WHICH ITH. FUNCTIONAL CONSTRAINT IS ACTIVE.
A = MATRIX "A" IN THE DIRECTION FINDING PROCESS. PUSHF = PUSH-OFF FACTOR FOR COST FUNCTION. PUSHG = PUSH-OFF FACTORS FOR G FUNCTIONS. PUSHPH $=$ PUSH-OFF FACTORS FOR PHI FUNCTIONS.

```
    COMMON IONE / JP,JQ,N
    COMMON /FIVE / W\varnothing,WC,QQ,DELTAW,QMAX
    COMMON /TAPES / NIN,NOU
    COMMON /NUMGRD/ NGRADF,NGRADG,NGRADP
```

 the minimum required dimensions of the arravs are:
 S(NACTIV), D(NACTIV), Q(NACTIV*NACTIV), R(NACTIV),
 MUBAR(NACTIV), KOUT(7), AA((NACTIV + 2)* (3*NACTIV +2)),
 \(B(N A C T I V+2), J H(N A C T I V+2), \quad X(N A C T I V+2), P P(N A C T I V+2)\),
 \(Y Y(N A C T I V+2), K B(3 * N A C T I V+2), E E((N A C T I V+2) *(N A C T I V+2))\),
 INFIX(8), ERR(8), PRODCT(NACTIV), ATHETA(NACTIV),
 ENORM(NACTIV)
 DIMENSION \(G(1), Z(1), G R A D(1), S(1 \varnothing), A(N A C T I V, 1), D(1 \varnothing), P H I(N J Q, 1)\),
 Q(1ø0), R(1ø), MUBAR(10),
 \(\operatorname{KOUT}(7), A A(384), B(12), J H(12), X(12), P P(12), Y Y(12)\),
 \(\operatorname{KB}(32), E E(144), \operatorname{INFIX}(8), H(1), E R R(8), N E P T F(N J Q, 1)\),
 NEPTG(1), TOLER(1), PRODCT(1ø), ATHETA(1ø), ENORM(1ø),
 PUSHG(1), PUSHPH(i)
    ```
REAL MU1,MUZ
REAL MUBAR
INTEGER QQ, QMAX
PUSHMX \(=5 \varnothing . \varnothing\)
```

```
        NR = 1
        SHAT =\varnothing.\varnothing
C SHAT = D.D - D
C COMPUTE THE GRADIENT OF THE COST FUNCTION AND FILL IN THE fIRST
    ROW OF A MATRIX WITH GRAD F / S(1).
    CALL GRADF (N,Z,GRAD)
    NGRADF = NGRADF + 1
    WRITE (NOU,2060) (GRAD(II),II=1,N)
    CALL AROW (S(1), SHAT,GRAD,N,TOL,A,NR,NACTIV)
    R(NR) = PUSHF * (1.\varnothing/ S(NR) - 1.\varnothing)
    IF ((JP.EQ.\varnothing) .AND. (JQ.EQ.\varnothing)) GO TO 15\varnothing
    dETERMINE E-ACTIVE CONSTRAINTS.
    CALL EACTIV (NJQ,NACTIV,NR,G,PHI,DIFF,NEPTF,NEPTG,IACTIV,
    1
                        NGACTV,Z)
    COMPUTE GRADIENTS OF THE E-ACTIVE CONVENTIONAL CONSTRAINTS AND
    FILL IN THE NR TH. ROW OF A MATRIX WITH GRAD G / S(NR)
    IF (JP .EQ. \varnothing) GO TO 11\varnothing
    IF (NGACTV .EQ. \varnothing) GO TO 11\varnothing
C
    DO 1\varnothing\varnothing I=1,JP
    IF (NEPTG(I).EQ. \varnothing) GO TO 1\varnothing\varnothing
    NR = NR + 1
    CALL GRADG (N,I,Z,GRAD)
    NGRADG = NGRADG + 1
    WRITE (NOU,2\varnothing20) I,(GRAD(II),II=1,N)
    CALL AROW (S(NR),SHAT,GRAD,N,TOL,A,NR,NACTIV)
    R(NR) = PUSHG(I) + (SCALE*((1. \varnothing+(G(I)-PSI)/E)**2))
    100 CONTINUE
    COMPUTE GRADIENTS OF E-ACTIVE FUNCTIONAL CONSTRAINTS AND FILL
    IN NR TH. ROW OF A MATRIX WITH GRAD PHI / S(NR)
    11\varnothing IF (JQ .EQ. \varnothing) GO TO 15\varnothing
        IF (IACTIV .EQ. &) GO TO 150
        IGRAD = 1
        DO 14\varnothing L=1,JQ
        NCC= 1
C
    130 NEPTFN = NEPTF(L,NCC)
        IF (NEPTFN .EQ. \varnothing) GO TO 14\varnothing
        K = NEPTFN
        CALL GRADPH (N,NJQ,NACTIV,JQ,W\varnothing,WC,DELTAW,QQ,NEPTF,L,Z,K,GRAD,
        I IGRAD )
            IGRAD = IGRAD + 1
            NGRADP = NGRADP + 1
            NR = NR + 1
            WRITE (NOU,2\varnothing3\varnothing) L,K,(GRAD(II),II=1,N)
            CALL AROW (S(NR),SHAT,GRAD,N,TOL,A,NR,NACTIV)
            R(NR) = PUSHPH(L) + SCALE*((1. }|+(PHI(L,K)-PSI)/E)**2
            NCC = NCC + 1
            GO TO 13&
    14% CONTINUE
    SET UP THE QUADRATIC PROGRAMMING PROBLEM AS
        MIN. (MU'*Q*MU + D'*MU)S.T. R'*MU = C , MU GE. \varnothing.
    FORM VECTOR Q = A*A'...STORED COLUMN WISE.
    150 DO 17\varnothing J=1,NR
    DO 17\varnothing I=1,NR
    M=I + (J-1)*NR
    Q(M) = \varnothing.\varnothing
    DO 16\varnothing K=1,N
    16\varnothingQ(M) = Q(M) + A(I,K)*A(J,K)
    178 CONTINUE
C
```

```
C FORM VECTOR D.
C
    180D(I) = व. 
        D(I) = GAMMA * PSI / S(I)
C
C
    190 IF (R(I) .GT. PUSHMX) R(I) = PUSHMX
    C=1.\varnothing
        WRITE (NOU,2050) SHAT
        CALL MPRINT (R,1,NR,3ØHR VECTOR
        CALL WOLFE (NR,Q,D,NCUT,TOLER,MUBAR,THETA,SY,KO,KOUT,AA,B,JH,X,
    *PP,YY,KB,EE,INFIX,ERR,R,C)
C
        THETA = -THETA
        WRITE (NOU,2\varnothing1D) THETA,KO,SY
        CALL MPRINT (MUBAR,1,NR,3\varnothingHMUBAR VECTOR
        IF (KO .GT. 1\varnothing) GO TO 22%
        DO 21\varnothing I=1,N
        H(I)=\varnothing.\varnothing
        DO 20\varnothing K=1,NR
    200 H(I) = H(I) - A(K,I)*MUBAR(K)
    210 CONTINUE
C
C
c
C
    220 WRITE (NOU,2040) KO,SY
    600 CALL TIMLOG
2000 FORMAT (/5X,28HDIRECTION FINDING SUBPROBLEM/5X,28(1H-)//)
2\varnothing1\varnothing FORMAT (/5X,11HQP SOLUTION/5X,6HTHETA=,E14.6,5K,3HKO=,I5,5X,3HSY=,
    1E14.6)
2020 FORMAT (/5X,8HGRAD. G(, I2,4H) = ,5(E14.6,5X))
2030 FORMAT (/5X,10HGRAD. PHI(,I2,1H,,I5,4H) = ,5(E14.6,5X))
204\varnothing FORMAT (//5X,21HTHE QP WAS NOT SOLVED/5X,3HKO=,I2,5X,3HSY=,E14.7)
2050 FORMAT (/5X,7HSHAT = ,E14.6)
2060 FORMAT (/5X,10HGRAD. F = ,5(E14.6,5X))
        END
*DECK EACTIV
        SUBROUTINE EACTIV (NJQ,NACTIV,NROW,G,PHI,DIFF,NEPTF,NEPTG,IACTIV,
    1 NGACTV,Z)
```

```
    SUBROUTINE TO DETERMINE THE CONSTRAINTS WHICH ARE E-ACTIVE.
    ARGUMENTS
```



```
    DIMENSION PHI(NJQ,1),NEPTF(NJQ,1),NEPTG(1),G(1),Z(1)
    INTEGER Q,QMAX
C
C
    NROWS = NROW
    IF (JQ .EQ. \varnothing) GO TO 200
    DO 10\varnothing L=1,JO
    DO 1\varnothingD N=1,NACTIV
    1\varnothing\varnothing NEPTF(L,N) = \varnothing
C
C-----DETERMINE E-ACTIVE FUNCTIONAL CONSTRAINTS (LOCAL MAXIMA'S)
C-----AND SET UP MATRIX NEPTF WHOSE ITH. ROW CONTAINS THE LOCATION
C-----OF E-ACTIVE(LOCAL MAX.) POINT FOR THE ITH. FUNCTIONAL CONSTRAINT.
C
    NQ1 = Q - 1
    IACTIV = 
    DO 14\varnothing L=1,JQ
C
    N = \varnothing
    K=1
    PHIK = PHI(L,K)
    PHIKP1 = PHI(L,K+1)
    IF ({PHIK.LT.DIFF) .OR. (PHIK.LT.PHIKPI)) GO TO 11\varnothing
    N=N+1
    NEPTF(L,N)=K
    IACTIV = 1
    WRITE (NOU,2\varnothing00) L,K,PHIK
C
    110 DO 120 K = 2,NQ1
            PHIKM1 = PHIK
            PHIK = PHIKPI
            PHIKP1 = PHI(L,K+1)
            IF ({PHIK.LT.DIFF) .OR. (PHIK.LE.PHIKMI) .OR. (PHIK.LT.PHIKPI))
            1 GO TO 12\varnothing
            N = N + 1
            NEPTF(L,N)=K
            IACTIV = 1
            WRITE (NOU,2000) L,K,PHIK
    12\varnothing CONTINUE
    PHIKMI = PHIK
    PHIK = PHIKP1
    IF ((PHIK.LT.DIFF) .OR. (PHIK.LE.PHIKM1)) GO TO 13\varnothing
            N = N + 1
            NEPTF(L,N)=0
            IACTIV =1
            WRITE <NOU,2\varnothing\varnothing\varnothing) L,Q,PHIK
    130 NROWS = NROWS + N
    14\varnothing CONTINUE
C
C-----CHECK DIMENSION OF ARRAYS USED IN QP
    IF (NROWS .GT. NACTIV) GO TO 250
c
C-----DETERMINE E-ACTIVE CONVENTIONAL CONSTRAINTS.
    2\varnothing\varnothing IF (JP .EQ. \varnothing) GO TO 5\varnothing\varnothing
C
    DO 21\varnothing I=1,JP
    21\varnothing NEPTG(I) = \varnothing
C
C
    DO 220 I=1,JP
            IF (G(I) .LT. DIFF) GO TO 22ø
            NGACTV = NGACTV + 1
            NEPTG(I) = 1
    220 CONTINUE
C
```

```
C-----DIMENSION CHECK FOR E-ACTIVE POINTS ARRAYS
C
        NROWS = NROWS + NGACTV
        IF (NROWS .GT. NACTIV) GO TO 25D
C
    5DD RETURN
C
    25% WRITE (NOU,2\varnothing3\varnothing) NROWS
        CALL TIMLOG
C
    200\varnothing FORMAT (/5X,4HPHI(,14,1H,,I4,2H)=,E14.6)
    2\varnothing3\varnothing FORMAT \/5X,47HERROR--DIMENSION OF ARRAYS REQUIRED BY WOLFE IS
        1,9HTOO SHORT/
        25X,33HEITHER INCREASE THE DIMENSION TO ,I5/
        35X,22HOR,REDUCE EPSILON BAND %
            END
*DECK AROW
        SUBROUTINE AROW {SL,SHAT,GRAD,N,TOL,A,LL,NACTIV)
C
        DIMENSION GRAD(1),A(NACTIV,1)
c
            SL=ABS(GRAD(1))
            DO 1\varnothingD J=2,N
            GRADJ = ABS(GRAD(J))
        1\varnothing\varnothing IF (GRADJ .GT. SL) SL = GRADJ
    C
    IF (SL.LT.TOL) SL=1.\varnothing
    DO 110 J=1,N
            GRADSL = GRAD(J) /SL
            IF (ABS(GRADSL).LT. TOL) GRADSL = \varnothing.\varnothing
        11\varnothing A(LL,J) = GRADSL
            IF (SL.GT.SHAT) SHAT=SL
C
    RETURN
    END
*DECK ANGLE
    SUBROUTINE ANGLE (A,S,NR,N,H,NACTIV, PRODCT, THETA, ENORM)
c
    THIS SUBROUTINE COMPUTES ANGLE BETWEEN ACTIVE CONSTRAINT GRADIENTS
    AND THE DIRECTION VECTOR GIVEN BY QP.
    INPUT VARIABLES:
        A = MATRIX OF SCALED GRADIENTS OF COST AND ACTIVE CONSTRAINTS
                                    FIRST ROW OF THIS MATRIX ALWAYS CONTAINS COST GRADIENT
        S = VECTOR CONTAINING SCALING FACTORS BY WHICH THE GRADIENTS
                        WERE DIVIDED IN MATRIX "A".
            NR = NUMBER OF NONZERO ROWS IN A MATRIX.
            N = NUMBER OF OPTIMIZATION VARIABLES.
            H = DIRECTION VECTOR.
            NACTIV = ROW DIMENSION OF A MATRIX.
    OUTPUT VARIABLES:
        PRODCT = ARRAY CONTAINIG INNER PRODUCT OF EACH ROW OF A MATRIX
                WITH THE DIRECTION VECTOR.
        THETA = VECTOR CONTAINIG ANGLES BETWEEN GRADIENTS AND DIRECTION
                    VECTOR.
```

```
C ENORM = ARRAY CONTAINING ROW NORM OF A MATRIX.
C
    DIMENSION A(NACTIV,1),S(1),H(1), PRODCT(1), THETA(1), ENORM(1)
    COMMON /TAPES / NIN,NOU
C
C----MULTIPLY ACTIVE CONSTRAINT GRADIENTS BY SCALING FACTOR BY WHICH
C-----THEY WERE DIVIDED WHILE SETTING UP QP
    DO 1\varnothingD I=1,NR
    DO 1\varnothingD J=1,N
    1\varnothing\varnothing A(I,J)=S(I)*A(I,J)
C---- COMPUTE NORM OF EACH ROW OF A MATRIX
    DO 11\varnothing I=1,NR
    ENORM(I)=\varnothing.\varnothing
    DO 12\emptyset J=1,N
    120 ENORM(I)=ENORM(I )+A(I,J)*A\I,J)
    ENORM(I)=SQRT(ENORM(I))
    11\varnothing CONTINUE
C-----COMPUTE NORM OF DIRECTION VECTOR
    HNORM=\varnothing. }
    DO 130 I=1,N
    130 HNORM=HNORM+H(I)*H(I)
    HNORM=SQRT(HNORM)
C----MMULTPLY NORM OF EACH ROW OF A MATRIX BY THE NORM OF DIRECTION
C-----VECTOR
    DO 140 I=1,NR
    ENORM(I)=ENORM(I)*HNORM
    IF (ENORM(I) .EQ. Ø.\varnothing ) GO TO 180
    140 CONTINUE
C-----COMPUTE INNER PRODUCT OF EACH ROW OF A MATRIX WITH H VECTOR
    DO 15\varnothing I=1,NR
    PRODCT(I)=\varnothing.\varnothing
    DO 16\varnothing J=1,N
    16\varnothing PRODCT(I)=PRODCT(I)+A(I,J)*H(J)
    150 CONTINUE
C-----DIVIDE THE INNER PRODUCT BY PRODUCT OF NORMS AND TAKE THE
C-----ARC COSINE TO GET THE DESIRED ANGLE
    PI = 4.\varnothing * ATAN(1. ()
    FACT=180. D/PI
    DO 170 I=1,NR
    FACTOR = PRODCT(I) / ENORM(I)
    SIGN = 1. 
    IF (FACTOR .LT. D.\varnothing) SIGN = -1.\varnothing
    TOL = ABS(FACTOR)
    IF ((TOL.GT.1.\varnothing) .AND. (TOL.LE.1.\varnothing\varnothing\varnothingI)) FACTOR = SIGN
    THETA(I) = ACOS(FACTOR)
    THETA(I)=THETA(I)*FACT
    170 CONTINUE
        WRITE (NOU,2,0\varnothing) THETA(1)
        IF (NR .EQ. 1) GO TO 500
        WRITE (NOU,2010)
        WRITE {NOU, 202\varnothing) (THETA(J),J=2,NR)
    500 RETURN
C
    18\varnothing CALL MPRINT {H,1,N,(30H H VECTOR ))
    CALL MPRINT (S,1,NR,(3OH S VECTOR ))
    WRITE (NOU,203\varnothing)
    CALL TIMLOG
C
20\varnothing\varnothing FORMAT (/5X,46HANGLE BETWEEN DIRECTION VECTOR AND COST GRAD.=
    1 ,E14.6)
2010 FORMAT (/5X,47HANGLES BETWEEN DIRECTION VECTOR AND CONSTRAINT
    1 ,4HGRAD)
2020 FORMAT {5X,8F1\varnothing.2/)
203\varnothing FORMAT (//5X, 47HABNORMAL STOP--ROW NORM OF A MATRIX OR NORM OF
    1 38HDIRECTION VECTOR \varnothing IN SUBROUTINE ANGLE,
            END
```

```
*DECK ARMIJO
    SUBROUTINE ARMIJO (E,PSI,H,Z,ZNEW,ITRMAX,F,DELTA,TOL,PHI,NJQ,
    l
                            G)
C
    COMMON /TWO / ALPHA,BETA,STPMAX,OLDSTP,ICOUNT
    COMMON /FIVE / W\varnothing,WC,Q,DELTAW,QMAX
    COMMON /TAPES / NIN,NOU
    COMMON /NUMFUN/ NFUNCF,NFUNCG,NFUNCP
C
C
    INTEGER Q,QMAX
    WRITE (NOU,2000)
    NITN=1
C
C
C
    HNORM = ABS(H(1))
    DO 100 I=2,N
    HI = ABS(H(I))
    IF {HI .GT. HNORM} HNORM = HI
    10% CONTINUE
    SMAX = STPMAX / HNORM
    SMAX = AMAX1 (1.#, SMAX)
    S = OLDSTP
    LFLAG=\varnothing
    ALEDT = ALPHA * E * DELTA
C
    110 DO 120 I=1,N
    12\varnothing ZNEW(I) = Z(I) + S*H(I)
C
    B = S * ALEDT
    A=PSI - B
C IF PSI GT. \varnothing, IGNORE COST FUNCTION.
    IF (PSI .GT. \varnothing.\varnothing) GO TO 13\varnothing
    A = \varnothing.\varnothing
    NFUNCF = NFUNCF + 1
    CALL FUNCF (N,ZNEW,FNEW,NFUNCF)
    IF ((FNEW+B).GT. F) GO TO 15\varnothing
C
13\varnothing IF (JP .EQ. \varnothing) GO TO 14\varnothing
    GNORM = A
    NFUNCG = NFUNCG + 1
    CALL FUNCG (N,JP,ZNEW,G,GNORM,NFUNCG)
    IF (GNORM.GT. A) GO TO 15%
C
        THIS SUBROUTINE CALCULATES A STEP LENGTH USING THE
        ARMIJO TEST.
    THE VARIABLES IN THE ARGUMENT LIST HAVE THE FOLLOWING MEANING:
        E = CURRENT VALUE OF EPSILON.
        PSI = FUNCTION PSI
        H = DIRECTION VECTOR.
        Z = CURRENT VALUES OF OPTIMIZATION VARIABLES.
        ZNEW = INTERMEDIATE VALUES OF OPTIMIZATION VARIABLES DURING
                ARMIJO ITERATIONS.
        ITRMAX = MAXIMUM NUMBER OF ITERATIONS ALLOWED IN ARMIJO.
        F = COST FUNCTION.
        DELTA = ARMIJO VARIABLE DELTA.
        TOL = TOLERANCE FOR CHANGE IN OPTIMIZATION VARIABLES BETWEEN
                ITERATIDNS.
        PHI = CONSTRAINT FUNCTION PHI.
        NJQ = ROW DIMENSION OF ARRAY PHI.
        G = G CONSTRAINT FUNCTIONS.
    *******w***********************************************************
    COMMON /ONE / JP,JQ,N
    DIMENSION ZNEW(1),Z(1),H(1),G(1),PHI(NJQ,1)
    CALCULATE THE INFINITY NORM OF H
C
```

```
    140 IF (JQ ,EQ. \varnothing) GO TO 145
    PHNORM = A
    NFUNCP = NFUNCP + 1
    CALL FUNCPH {N,NJQ,JQ,ZNEW,WD,WC,DELTAW,Q,PHI,PHNORM,NFUNCP}
    IF (PHNORM .GT. A) GO TO 15\varnothing
C
    145 IF (LFLAG .EQ. -1) GO TO 160
C
        IF ({S/BETA) .GT. SMAX) GO TO 16\varnothing
        S=S/BETA
        LFLAG=1
        NITN = NITN + 1
        IF (NITN .GT. ITRMAX) GO TO 180
C
C
    150 S = S * BETA
C
        IF (LFLAG .EQ. 1) GO TO 160
        LFLAG=-1
        NITN = NITN + 1
        IF (NITN .GT. ITRMAX) GO TO 18D
C
C
    160 IF (S .LT. TOL) S = TOL
    IF {S .GT, SMAX) S = SMAX
C
    170Z(I)=Z(I)+S*H(I)
C
        WRITE (NOU,2\varnothing1\varnothing) NITN,S
        IF ({S.EQ.TOL) .AND. (OLDSTP.EQ.TOL)) ICOUNT = ICOUNT + I
        IF (ICOUNT .GE. 1\varnothing) GO TO 190
        OLDSTP = S
        RETURN
C
    18\varnothing WRITE {NOU,2\varnothing20} ITRMAX
        GO TO 55\varnothing
        19\varnothing WRITE (NOU,2\varnothing30) ICOUNT
C
    550 CALL TIMLOG
C
    2\varnothing\varnothing\varnothing FORMAT (//5X, 24HSTEP LENGTH CALCULATIONS/5X, 24{IH-))
    2\varnothing1\varnothing FORMAT (/5X, 2\varnothingHNO. OF ITERATIONS = I2)
    1 5X,20HSTEP LENGTH = E14.6}
    2020 FORMAT (/5X,36HNO, OF ITERATIONS IN ARMIJO EXCEEDS, I2)
    203\varnothing FORMAT (//5X,48HPROGRAM STOP--STEP LENGTH TOO SMALL FOR THE LAST
        1 ,I5,10HITERATIONS )
C
        END
*DECK TIMLOG
    SUBROUTINE TIMLOG
C
C *******************************************************************
C PRINTS SOLUTION TIME LOG.
C *******************************************************************
C
    COMMON /TAPES / NIN,NOU
    COMMON /TIMES / TCONST,TQPT,TARMJT,TTOT
    COMMON /NUMFUN/ NFUNCF,NFUNCG,NFUNCP
    COMMON /NUMGRD/ NGRADF,NGRADG,NGRADP
C
    WRITE {NOU,2\varnothingD\varnothing\ TCONST,TQPT,TARMJT,TTOT
    WRITE (NOU,201\varnothing) NFUNCF,NFUNCG,NFUNCP
    WRITE (NOU,2020) NGRADF,NGRADG,NGRADP
    CALL EXIT
C
    2000 FORMAT (/5X,17HSOLUTION TIME LOG/5X,17(1H-)//
    1 5X,45HTIME SPENT IN CONSTRAINT FUNCTION EVALUATION=,F10.4/
    2 5X,45HTIME SPENT IN DIRECTION FINDING SUBPROBLEM.., =,F1\varnothing.4/
    3 5X,45HTIME SPENT IN STEP LENGTH CALCULATIONS.......,F10.4/
    4 5X,45H TOTAL TIME SPENT (SECONDS)........=,FI\varnothing.4)
```

```
2010 FORMAT (//5X,45HNUMBER OF COST FUNCTION EVALUATIONS.........=,I5/
    1 5X,45HNUMBER OF G FUNCTION EVALUATIONS............, I5;
    3 5X,45HNUMBER OF PHI FUNCTION EVALUATIONS......... =,I5)
2.20 FORMAT (//5X,45HNUMBER OF COST GRADIENT EVALUATIONS..........=,15/
    1 5X,45HNUMBER OF G
    GRADIENT EVALUATIONS.........=,I5/
    3 5X,45HNUMBER OF PHI GRADIENT EVALUATIONS............., I5,
C
        END
*DECK ERROR
    SUBROUTINE ERROR(I)
C ************************************************************************
C PRINTS ERROR MESSAGES
C ************************************************************************
    COMMON /TAPES/ NIN,NOU
C
    GO TO (1\varnothing\varnothing,11\varnothing,12\varnothing,13\varnothing) , I
    100 WRITE(NOU,2000)
    GO TO 500
    110 WRITE(NOU,2010)
    GO TO 500
    120 WRITE(NOU,2020)
    GO TO 500
    130 WRITE {NOU,2030)
C
    500 STOP
    2\varnothing\varnothing\varnothing FORMAT (/5X,4\varnothingHERROR--DIMENSION OF ARRAY Z IS TOO SHORT)
    201\varnothing FORMAT (/5X,49HERROR--NO. OF FUNCTIONAL CONSTRAINTS EXCEEDS MAX.)
    2\varnothing2\varnothing FORMAT (/5X,48HERROR--NO. OF DISCRETIZATION POINTS EXCEEDS MAX.)
    2030 FORMAT (/5X,48HERROR--NO.OF INEQUALITY CONSTRAINTS EXCEEDS MAX.)
        END
*DECK MPRINT
    SUBROUTINE MPRINT (A,NRA,NCA,TITLE)
C *************************************************************************
C PRINTS MATRICES AND ARRAYS
C ***********************************************************************
    DIMENSION A(NRA,1),TITLE (3)
    COMMON /TAPES / NIN,NOU
    WRITE (NOU,1\varnothing\varnothing) TITLE
    DO 11\varnothing NC=1,NCA,8
    NCC = NC+7
        IF (NCC.GT.NCA) NCC=NCA
        WRITE (NOU,12\varnothing) (N,N=NC,NCC)
        DO 130 NR=1,NRA
    13\varnothing WRITE (NOU,14\varnothing) NR,(A(NR,N),N=NC,NCC)
    110 CONTINUE
C
    100 FORMAT( /5X,3A1D)
    120 FORMAT( 8x,8I14)
    14Ø FORMAT(I4,4X,8E14.7)
C
        RETURN
    END
```

```
*DECK WOLFE
    SUBROUTINE WOLFE \N,Q,D,NCUT,TOL,Z,PHI,SY,KO,KOUT,A,B,JH,X,P,Y, WOLF
    * KB,E,INFIX,ERR,R,C)
C
    WOLFE SOLVES QUADRATIC MINIMIZATION PROBLEM
        PHI = MIN (ZQZ/2 + DZ) WOLF
            SUBJECT TO Z(I).GE.\varnothing.\varnothing FOR I=I,N WOLF
                AND R * Z = C
    REQUIRED ARRAYS Q(N*N),D(N),Z(N),A((N+2)*(3*N+2)),B(N+2), WOLF
        JH(N+2),X(N+2),P(N+2),Y(N+2),KB(3*N+2), WOLF
        E((N+2)* (N+2)),R(N)
            N = DIMENSION OF Z VECTOR WOLF
            Q = SECOND ORDER COEFFICIENT MATRIX WOLF
                    (STORE COLUMNWISE)
                            D = FIRST ORDER COEFFICIENT VECTOR
        NCUT= THE MAXIMUM NUMBER OF ITERATIONS NOLF
    TOL= TOLERANCES FOR SIMPLEX ALGORITHM
            Z = SOLUTION VECTOR
                    (THIS IS NOT THE Z OF THE MAIN PROGRAM)
        PHI= MINIMUM FUNCTION VALUE
            WOLF
        KO = OUTPUT CONOITION INDICATER FOR SIMPLEX WOLF
            FOR SIMPLEX ALGORITHM
                WOLF
                3 - FEASIbLE AND OPTIMAL
            WOLF
                    4 - NO FEASIBLE SOLUTION
                            WOLF
                                5 - NO PIVOT, INFINITE SOLUTION WOLF
                                6 - ITERATION LIMIT ( NCUT ) EXCEEDED WOLF
                    FOR WOLFE ALGORITHM WOLF
                    10 - INITIALIZATION FOR SIMPLEX FAILED WOLF
                    2\varnothing - SOLN DOES NOT SATISFY OPTIMAL COND'N WOLF
                    30 - BOTH OF 1\varnothing AND 2\varnothing HAPPENED WOLF
    IT WAS OUR EXPERIENCE THAT KO .GE. 1D IS CAUSED BY THE IMBALANCE WOLF
    OF THE ENTRIES OF MATRIX Q AND VECTOR D NOLF
                SY = SUM OF ABSOLUTE VALUE OF Y(I)
                    WOLF
                            WOLF
    THIS SY WILL BE A MEASURE FOR VIOLATION OF OPTIMALITY CONDITION WOLF
    NOTE ACCORDING TO WOLFE SY = \varnothing.\varnothing IS OPTIMALITY CONDITON WOLF
    WOLF
    WOLF
    DIMENSION Q(1),D(1),Z(1),A(1),B(1),INFIX(8),TOL(4),KOUT(7), WOLF
    * ERR(8),JH(1),X(1),P(1),Y(1),KB(1),E(1),R(1) WOLF
    SET INTEGERS FOR SIMPLEX ALGORITHM
    NS=3*N+2
    MS=N+2
    NMS=NS*MS
    NY=2*N+3
    INFIX{1}=1
    INFIX(2)=NS
    INFIX(3)=MS
    INFIX(4)=MS
    INFIX(5)=2
    INFIX(6)=1
    INFIX(7)=NCUT
    INFIX(8)=\varnothing
C SET MATRIX A
    DO 1\varnothing I=1,NMS
1\varnothing A(I)=\varnothing.\varnothing
    L=1
    DO 12 J=1,N
    I=(J-1)*MS +2
    DO 11 K=1,N
    A(I)=Q(L)
    I=I+1
11 L=L+1
12 A(I)=R(J)
    I=I+2 WOLF
    DO 13 K=1,N WOLF
    A(I)=-R(K)
13I=I+1
WOLF
    I =I +2
    DO 14 K=1,N
    A(I)=-1.\varnothing
14 I=I +MS +1
WOLF
WOLF
WOLF
    I=I-MS +2
WOLF
WOLF
```

```
        DO 15 K=1,N WOLF
        A(I)=R(K)
    15
    I=I+1
        I=I+1
        DO 16 K=1,N
        A(I)=1. }
    16 I=I +MS
        DO 19 K=1,N
        DELTA=-D(K)-Q(K)
        I=(2*N+K+1)*MS+K+1
    19 CONTINUE
C SET VECTORS WOLF
    B(1)=\varnothing.\varnothing WOLF
    DO 2\varnothing K=1,N WOLF
    2\varnothing B(K+1)=-D(K) WOLF
    B(MS )=C
    PRM = \varnothing.\varnothing WOLF
    DO 21 I=1,MS WOLF
    21 JH(I)=1 WOLF
    DO 22 J=1,NS WOLF
    22KB(J)=\varnothing
        KB(1)=1
    DO 23 J=NY,NS
    23KB(J)=1
    USE SIMPLEX ALGORITHM WITH ADDITIONAL REQUIREMENT
    CORRECTION IS MADE ONLY IN SUBROUTINE MIN WOLF
    CALL SMPLX (INFIX,A,B,TOL,PRM,KOUT,ERR,JH,X,P,Y,KB,E ) WOLF
    KO = KOUT(1)
    GET SUMY = SUM OF ( ABS(X(KB(J))),J=NY,NS ), WHICH SHOULD BE ZERO WOLF
    SUMY=\varnothing.\varnothing WOLF
    DO 25 J=NY,NS WOLF
    KBJ=KB(J) WOLF
    IF(KBJ) 25,25,24 WOLF
    24 SUMY=SUMY +ABS (X(KBJ))
    25 CONTINUE
    SY = SUMY
    CHECK IF SUMY = \varnothing.\varnothing, WHICH IS OPTIMAL CONDITION FOR WOLFE
        IF (ABS(SUMY).LE. TOL(1)) GO TO 2
        1 KO = KO + 2\varnothing
            GET Z VECTOR FROM X AND KB WOLF
        2 DO 28 J=1,N
            KBJ=KB(J)
            IF(KBJ) 26,26,27
        26 Z(J)=\varnothing.\varnothing
        GOTO 28
        27Z(J)=X(KBJ)
    28 CONTINUE
        GET PHI = MIN VALUE
        PHI = \varnothing.\varnothing
        L=\varnothing
        DO 31 J=1,N
        SUM=D(J)
        DO 3\varnothing I=1,N
        L=L+1
    3\varnothing SUM = SUM + Z(I)*Q(L)*\varnothing.5
    31 FHI = PHI + SUM*Z(J)
        RETURN
        END
C
        SUBROUTINE SMPLX (INFIX,A,B,TOL,PRM,KOUT,ERS,JH,X,P,Y,KB,E)
        MSUB2001
        MSUB200%2
CBOSS MASTER SUBROUTINE OF RS MSUB, VERSION 2.
MSUB20044
        DIMENSION INFIX(B),A(1),B(1),TOL(4),KOUT(7),ERS(8),JH(1),X(1), MSUB2ब\varnothing5
        1 P(1),Y(1),KB(1),E(1),ZZ(4), IOFIX(16), TERR(8)
    MSUB2006
C
    EQUIVALENCE (INFLG,IOFIX(1) ), (N, IOFIX(2)),
    1 (ME,IOFIX(3)), (M,IOFIX(4)), (MF,IOFIX(5)),
    MSUB2009
    2(MC, IOFIX(6)), (NCUT, IOFIX(7)), (NVER, IOFIX(8) ),
MSUB2010
    3 ( K, IOFIX(9) ), (ITER, IOFIX(10) ), {INVC , IOFIX(11))
    EQUIVALENCE (NUMVR, IOFIX(12) ), (NUMPV, IOFIX(13)),
    4 (INFS, IOFIX(14) ), {JT, IOFIX(15)},( LA , IOFIX(16) ), MSUB2013
    5 (ZZ(1),TPIV), (ZZ(2),TZERO),(ZZ(3),TCOST),(ZZ(4),TECOL) MSUB2014
C
```

C
MOVE INPUTS ... ZERO OUTPUTS
00 1340, I= 1, 8
TERR(I)=\varnothing.\varnothing
1340 IOFIX(I) = INFIX(I)
DO 1308 I = 1 , 4
1308 ZZ(I)=TOL(I)
PMIX = PRM
TCOST = - ABS (TCOST)
M2 = M**2
INFS =1
C
IF (N) 1304, 1304, 1371
1371 IF (M - MF; 1304, 1304, 1372
1372 IF (MF - MC) 1304, 1384, 1373
1373 IF (MC) 1304, 1304, 1374
1374 IF (ME - M) 1304, 1375, 1375
1304 K = 7
GO TO 1392
1375 IF(INFLG-(INFLG/4)* 4 -1) 14\varnothing\varnothing, 132\varnothing, 1\varnothing\varnothing
14\varnothing\varnothing CALL NEW (M,N, JH, KB, A, B, MF, ME,) MSUB2037
132\ell CALL VER (A, B, JH, X, E, KB, Y,N, ME, M, MF, INVC,
NUMVR, NUMPV, INFS, LA, TPIV, TECOL, M2)
PERFORM ONE ITERATION
I\varnothing\varnothing CALL XCK (M, MF, JH, X, TZERO, JIN)
C
CHECK CHANGE OF PHASE.. GO BACK TO INVERT IF GONE INFEAS.
IF (INFS - JIN) 132\varnothing, 5\varnothing\varnothing, 2\varnothing\varnothing
BECOME FEASIBLE
2\varnothing\varnothing INFS = \varnothing
2\varnothing1 PMIX = \varnothing. D
5\varnothingD CALL GET { M, MC, MF, JH, X, P, E, INFS, PMIX }
CALL MIN (JT, N,M,A, P, KB,ME, TCOST)
JM = JT
J = JM
IF (JM) 203, 203, 222
C ALL COSTS NON-NEGATIVE... K = 3 OR 4
203 K=3 + INFS
GO TO 257
C
222 CALL JMY (J,A,E,M, Y, ME J
CALL ROW (IR,M,MF,JH,X,Y, TPIV)
C
2076 IF(IR) 207, 207, 210
C
207 K = 5
257 IF (PMIX) 201, 40\varnothing, 201
C ITERATION LIMIT FOR CUT OFF
210 IF (ITER -NCUT) 208, 16\varnothing, 160
C PIVOT FOUND
208 CALL PIV (IR,Y,M,E, X,NUMPV,TECOL)
221 JOLD = JH(IR)
IF (JOLD) 213, 213, 214
214 KB(JOLD) = \varnothing
213 KB(JM)=IR
JH(IR) = JM
LA = D
ITER = ITER +1
C INVERSION FREQUENCY
IF (INVC - NVER) 1\varnothingD, 132\varnothing, 1\varnothing\varnothing
c
160 K=6
40@ CALL ERR (M, A, B, TERR, JH, X, P, Y, ME, LA)
IF (LA)
193, 191, 193
191LA=4
IF (INFLG - 4) 132\varnothing, 193, 193
193 IF (K-5) 1392, 194, 1392,
194 CALL JMY (J, A, E, M, Y, ME)
C
SET EXIT VALUES
1392 00 1309 I= 1,8
1309 ERS(I) = TERR(I)

```

MSUB2. 6
MSUB2017
MSUB2018
MSUB2019
MSUB2020
MSUB2021
MSUB2022
MSUB2D23
MSUB2025
MSUB2026
MSUB2027
MSUB2028
MSUB2029
MSUB2038
MSUB2031
MSUB2032
MSUB2033
MSUB2034
MSUB2035
MSUB2036
MSUB2037
MSUB2038
MSUB2039
MSUB2040
MSUB2041
MSUB2042
MSUB2043
MSUB2044
MSUB2045
MSUB2め46
MSUB2047
MSUB2048 MSUB2049
MSUB2050
MSUB2051
MSUB2052
MSUB2053
MSUB2054
MSUB2055
MSUB2056
MSUB2057
MSUB2058
MSUB2059
MSUB206ø
MSUB2061
MSUB2062
MSUB2063
MSUB2D64
MSUB2065
MSUB2066
MSUB2067
MSUB2068
MSUB2069
MSUB2070
MSUB2071
MSUB2072
MSUB2め73
MSUB20074
MSUB2075
MSUB2076
MSUB2077
MSUB2078
MSUB2079
MSUB208
MSUB2081
MSUB2ø82
MSUB2084
MSUB2085
MSUB2086
MSUB2087
MSUB2088
```

```
    DO 1329 I = 1, 7 MSUB2089
```

```
    DO 1329 I = 1, 7 MSUB2089
    1329 KOUT(I) = IOFIX(I+8)
    1329 KOUT(I) = IOFIX(I+8)
            RETURN
            RETURN
C
C
    END
    END
c
c
CDELS
CDELS
    SUBROUTINE DEL ( JM, DT, M, A, P, ME )
    SUBROUTINE DEL ( JM, DT, M, A, P, ME )
MSUB2090
MSUB2090
MSUB2091
MSUB2091
MSUB2092
MSUB2092
MSUB2093
MSUB2093
MSUB2096
MSUB2096
MSUB2095
MSUB2095
MSUB2097
MSUB2097
MSUB2098
MSUB2098
MSUB2099
MSUB2099
MSUB2100
MSUB2100
MSUB2101
MSUB2101
MSUB2102
MSUB2102
MSUB2103
MSUB2103
MSUB2104
MSUB2104
MSUB2105
MSUB2105
MSUB2106
MSUB2106
MSUB2107
MSUB2107
MSUB2108
MSUB2108
MSUB2109
MSUB2109
MSUB211.
MSUB211.
C
C
    DIMENSION JH(1), A(1), B(1), X(1), P(1), Y(1), TERR(8)
    DIMENSION JH(1), A(1), B(1), X(1), P(1), Y(1), TERR(8)
C
C
                            STORE AX-B AT Y
                            STORE AX-B AT Y
    DO 4D1 I = 1, M
    DO 4D1 I = 1, M
    401 Y(I) =-B(I)
    401 Y(I) =-B(I)
            DO 402 I = 1, M
            DO 402 I = 1, M
            JA = JH(I)
            JA = JH(I)
            IF (JA) 403, 402, 403
            IF (JA) 403, 402, 403
    4 0 3 ~ I A ~ = M E * ~ ( J A - 1 ) ,
    4 0 3 ~ I A ~ = M E * ~ ( J A - 1 ) ,
            DO 405 IT = 1, M
            DO 405 IT = 1, M
            IA = IA + I
            IA = IA + I
            IF(A(IA ) ) 415, 405, 415
            IF(A(IA ) ) 415, 405, 415
415Y(IT)=Y(IT) +X(I) * A(IA)
415Y(IT)=Y(IT) +X(I) * A(IA)
    405 CONTINUE
    405 CONTINUE
    4ø2 CONTINUE
    4ø2 CONTINUE
C
C
    DO 481 I = 1, M
    DO 481 I = 1, M
            YI = Y(I)
            YI = Y(I)
            IF(JH(I) ) 472, 471,472
            IF(JH(I) ) 472, 471,472
    471 YI = YI + X(I)
    471 YI = YI + X(I)
MSUB2113
MSUB2113
MSUB2112
MSUB2112
MSUB2114
MSUB2114
MSUB2115
MSUB2115
MSUB2116
MSUB2116
C
C
    3\varnothing\varnothing DT = \varnothing.
    3\varnothing\varnothing DT = \varnothing.
    KDEL = (JM - 1) * ME
    KDEL = (JM - 1) * ME
C
C
    301 DO 303 IDEL = 1, M
    301 DO 303 IDEL = 1, M
            KDEL = KDEL + 1
            KDEL = KDEL + 1
            IF (A(KDEL))3\varnothing4, 303, 304
            IF (A(KDEL))3\varnothing4, 303, 304
    304 IF ( P(IDEL), 3\varnothing2, 3\varnothing3, 302
    304 IF ( P(IDEL), 3\varnothing2, 3\varnothing3, 302
    3\varnothing2 DT = DT + P(IDEL) * A(KDEL)
    3\varnothing2 DT = DT + P(IDEL) * A(KDEL)
    303 CONTINUE
    303 CONTINUE
C
C
    399 RETURN
    399 RETURN
            END
            END
CERRS ERROR CHECK. COMPARES AX WITH B, PA WITH ZERO
CERRS ERROR CHECK. COMPARES AX WITH B, PA WITH ZERO
                            MSUB2117
                            MSUB2117
MSUB2118
MSUB2118
MSUB2119
MSUB2119
MSUB212\varnothing
MSUB212\varnothing
MSUB2121
MSUB2121
MSUB2122
MSUB2122
MSUB2123
MSUB2123
MSUB2123
MSUB2123
MSUB2125
MSUB2125
                            INO SUM AND MAXIMUM OF ERRORS
                            INO SUM AND MAXIMUM OF ERRORS
MSUB2126
MSUB2126
MSUB2127
MSUB2127
    DELTA-JAY, PRICES OUT'ONE MATRIX COLUMN
    DELTA-JAY, PRICES OUT'ONE MATRIX COLUMN
    DIMENSION A(1), P(1)
    DIMENSION A(1), P(1)
    NO
    NO
CERRS
```

CERRS

```
```

 C
    ```
```

 C
    ```


```

 DO 505 I = MF, M
 MMM = I
 IF (X(I)) 506, 507, 507
 506 DO 508 J = 1, M
 P(J) = P{J + E(MMM)
 508 MMM = MMM + M
 GO TO 5\varnothing5
 507 IF (JH(I)) 505, 509, 505
 509 DO 51\varnothing J = 1,M
 P(J) = P(J) - E(MMM)
 510 MMM = MMM +M
 505 CONTINUE
 C
599 RETURN
END
c
CJMYS SUBROUTINE JMY MULTIPLY, E, BASIS INVERSE * COLUMN J
DIMENSION A(1), E(1), Y(1)
C
600 DO 610 I= 1,M
610Y(I) =\varnothing.
LP = JT*ME - ME
LL = \varnothing
DO 6.05 I= 1,M
LP =LP + L
IF (A{LP)) 601,602,601
601 DO 606 J = 1,M
LL = LL + 1
606 Y(J) = Y(J) + A(LP) * E(LL)
GO TO 605
602 LL = LL + M
605 CONTINUE
699 RETURN
END
SUBROUTINE MIN \& JT, N, M, A, P, KB, ME, TCOST)
C THIS SUBROUTINE IS FOR THE MODIFIED (QP) PROGRAM
CMINS MIN D-J. SELECTS COLUMN TO ENTER BASIS
DIMENSION A(1), P(1), KB(1)
C
7\varnothing\varnothing JT = \varnothing
DA = TCOST
C
701 DO 702 JM = 1,N
C SKIP COLUMNS IN BASIS
703 IF (KB(JM)) 7\varnothing2, 3\varnothing\varnothing, 7\varnothing2
300 CALL DEL { JM, DT, M, A, P, ME)
705 IF (DT - DA) 708, 702, 702
C CHECK IF JM VIOLATES ADDITIONAL REQUIREMENT OF USABILITY,
708 NP=M-1
IF(JM-NP) 710,710,712
710 JMNP=JM+NP
GOTO }71
712 JMNP = JM-NP
714 IF(KB(JMNP)) 702,716,702
C JM MAYBE ADMITTED
716 DA=DT
JT=JM
C END OF CORRECTION FOR WOLFE
702 CONTINUE
RETURN
END
SUBROUTINE NEW (M,N, JH, KB, A, B, MF, ME)
CNEWS
STARTS PHASE ONE (1), B(1)
c INITIATE
1400 DO 1401 I = 1,M
1401 JH(I) = \varnothing
INSTALL SINGLETONS
KT = \varnothing
DO 14\otimes2 J = 1,N
KB(J)=\varnothing
KTA = KT + MF
KTB = KT + M

```

MSUB2163
MSUB2164
MSUB2165
MSUB2166
MSUB2167
MSUB2168
MSUB2169
MSUB2170
MSUB2171
MSUB2172
MSUB2173
MSUB2174
MSUB2175
MSUB2176
MSUB2177
MSUB2180
MSUB2179
MSUB2181
MSUB2182
MSUB2183
MSUB2184
MSUB2185
MSUB2186
MSUB2187
MSUB2188
MSUB2189
MSUB2190
MSUB2191
MSUB2192
MSUB2193
MSUB2194
MSUB2195
MSUB2196
MSUB2197
MSUB22øø
MSUB2199
MSUB2201
MSUB2202
MSUB2203
MSUB2204
MSUB22ø5
MSUB2206
MSUB2207
MSUB2208
MSUB2209
MSUB2210
WOLF
MSUB2213
MSUB2214
MSUB2215
MSUB2218
MSUB2217
MSUB2219
MSUB2220
MSUB2221
MSUB2222
MSUB2223
MSUB2224
MSUB2225
MSUB2226
MSUB2227
MSUB2228
```

C
TALLY ENTRIES IN CONSTRAINTS
MSUB2229
KQ = Ø
IF (A(L)) 1404, 1403, 1404
1404KQ = KQ+1
LQ = L
1403 CONTINUE
c
1405 10 = IF (KQ - KT - 1) 1402, 1405, 1402
1405 1Q = LQ-KT
IF (JH(IQ)) 1402, 1406, 1402
1406 IF (A(LQ)*B(IQ)) 1402, 1407, 1407
C
1407 JH(IQ) = J
KB(J)=IQ
1402 KT = KT + ME
RETURN
END
C
SUBROUTINE PIV (IR, Y, M, E, X, NUMPV, TECOL)
PIVOT. PIVOTS ON GIVEN ROW
DIMENSION Y(1), E(1), X(1)
C
90D NUMPV = NUMPV + 1
C
T2 = -Y{IR)
Y(IR) = -1.
LL = \#
C
903 DO 904 JP= 1,M
TRANSFORM INVERSE
J IS CANDIDATE. INSTALL
MSUB2230
CHECK WHETHER J IS CANDIDATE
MSUB2231
MSUB2232
140

```
```

 IF (IR)1099,1001,1099
 MSUB2303
 1001 AA = 1 OE+20
 C
FIND MIN. PIVOT AMONG POSITIVE EQUATIONS
IF (Y(IT) - TPIV) 1\varnothing1\varnothing, 1\varnothing1\varnothing, 1\varnothing\varnothing2
1002 IF { X(IT) > 101\varnothing, 1010, 1003
1003 XY = X(IT) / Y(IT)
IF (XY - AA) 1004, 1085, 1010
1005 IF (JH(IT)) 1010, 1004, 1010
1004 AA = XY
IR=IT
1010 CONTINUE
c FIND PIVOT AMONG NEGATIVE EQUATIONS, IN WHICH X/Y IS LESS THAN THE
C minImUM X/Y IN THE POSITIVE EQUATIONS, THAT HAS THE LARGEST ABSF(Y)
1016 BB = - TPIV
lol

```

```

 1024 BB = Y(I)
 IR = I
 1030 CONTINUE
 1099 RETURN
 END
 C
SUBROUTINE VER (A, B, JH, X, E, KB, Y, N, ME, M, MF, INVC,
1 NUMVR, NUMPV, INFS, LA, TPIV, TECOL, M2)
CVERS FORMS INVERSE FROM KB
DIMENSION A(1), B(1), JH(1), X(1), E(1), KB(1), Y(1)
C
INITIATE
IF (LA) 1121, 1121, 1122
1121 INVC= =
1122 NUMVR = NUMVR +1
DO 11\otimes1 I = 1, M2
1101 E(I)=\varnothing.
MM=1
DO 1113 I = 1, M
E(MM) =1.
X(I) = B(I)
1113 MM = MM + M + I
DO 111\varnothing I = MF.M
IF (JH(I)) 1111, 1110, 11111
1111 JH(I) = 12345
1110 CONTINUE
INFS = 1
C FORM INVERSE
DO 11D2 J = 1,N
IF (KB(J)) 6\varnothingD\varnothing, , 11\varnothing2,60\varnothing
600 CALL JMY (J, A, E,M, Y, ME)
C CHOOSEPIVOT
1114 TY = \varnothing.
DO 1104 I = MF,M
IF (JH(I) - 12345) 1104, 1105, 1104
1105 IF (ABS (Y(I)) - TV) 1104, 1104, 1186
1106 IR = I
TY = ABS (Y(I))
1104 CONTINUE
c
IF (TY ~ TPIV) 1107, 1108, 1108
C BAD PIVOT, ROWIR, COLUMN J
11\varnothing7 KB(J)=\varnothing
GO TO 1102
C
PIVOT
1108 JH(IR) = J
KB(J)=IR
900 CALL PIV (IR, Y, M, E, X, NUMPV, TECOL)
1102 CONTINUE
C RESET ARTIFICIALS
DO l109 I I = 124.M M, 1109, 1112, 1109
1112 JH(I) = \varnothing
11D9 CONTINUE
RETURN
END

```

\section*{MSUB2304}

MSUB2305
MSUB23.06
MSUB2307
MSUB2308
MSUB23.89
MSUB2310
MSUB2311
MSUB2312
MSUB2313
MSUB2314
MSUB2315
MSUB2316
MSUB2317
MSUB2318
MSUB2319
MSUB232ø
MSUB2321
MSUB2322
MSUB2323
MSUB2324
MSUB2325
MSUB2326
C
SUBROUTINE VER ( \(A, B, J H, X, E, K B, Y, N, M E, M, M F, ~ I N V C\),
CVERS FORMS INVERSE FROM KB \(\quad\) DIMENSION \(A(1), B(1), J H(1), X(1), E(1), K B(1), Y(1)\)
C
C
INITIATE
1122
1121 INVC \(=\varnothing\)
1122 NUMVR = NUMVR +1
\(1101 E(I)=\varnothing\).
\(M M=1\)
DO \(1113 \mathrm{I}=1, \mathrm{M}\)
\(X(I)=B(I)\)
\(1113 M M=M M+M+1\)
DO \(111 \varnothing\) I \(=M F . M\)
\(J H(I)=12345\)
1118 CONTINUE
INFS \(=1\)
C FORM INVERSE

c CHOOSE PIVOT
1114 TY \(=\varnothing\).
\(\operatorname{IF}(J H(I) \quad-12345) \quad 1104,11 \varnothing 5,1104\)
\(1105 \mathrm{IF}(\mathrm{ABS}(\mathrm{Y}(\mathrm{I}))-\mathrm{TY}) 1104,1104,1186\)
\(1106 \begin{aligned} & I R \\ & \text { TY }=A B S(Y(I))\end{aligned}\)
\(c^{1104}\) CONTINUE \(\quad\) IF (TY ~TPIV) TEST PIVOT \(1107,1108,1108\)
MSUB 2329
MSUB2338
MSUB2328
MSUB2331
MSUB2332
MSUB2333
MSUB2334
MSUB2335
MSUB2336
MSUB2337
MSUB2338
MSUB2339
MSUB2348
MSUB2341
MSUB2342
MSUB2343
MSUB2344
MSUB2345
MSIJB2346
MSUB2347
MSUB2348
MSUB2349
MSUB2350
MSUB2351
MSUB2352
MSUB2353
MSUB2354
MSUB2355
MSUB2356
MSUBで358
MSUB2360
MSUB2361
MSUB2362
MSUB2363
MSUB2364
MSUB2365
MSUB2366
MSUB2367
MSUB2368
MSUB2359
MSUB2378
MSUB2371
MSUB2372
MSUB2373
MSUB2374
MSUB 2375
MSUB2376
MSUB2377
```

C
SUBROUTINE XCK (M, MF, JH, X, TZERO, JIN) MSUB238见
CXCKS X CHECKER
MSUB2379
CXCKS XIMENSIONECKER JH(1), X(1)
C
C CI212 JIN = = Ø = A AND CHECK FOR INFEASIBILITIES
MSUB2381
1212 JIN = \varnothing
DO 1201 I = MF, M
IF (ABS (X(I)) - TZERO) 1202, 1203, 1203
12\varnothing2 X(I) = Ø. \varnothing
GO TO 1201, MS MSUR238
1203 IF (X(I)) 1206, 1201, 1205 MSUB23B9
1205 IF (JH(I)) 1201, 1206, 1201 MSUB2390
1206 3IN=1
12\varnothing1 CONTINUE
RETURN
END
MSUB238
MSUB2384
MSUB2385
MSUB23B7
MSUB2390
MSUB2391
MSUB2392
MSUB2393
END MSUB2394

```
APPENDIX C - User-Supplied Subroutines for Constrained Minimiza-
```tion Test Problem
 SUBROUTINE FUNCF (N, Z, F, NFUNCF)
```


## RETURN

END
SUBROUTINE GRADG ( $N, J, Z, G R A D$ )

EVALUATES GRADIENTS OF G FUNCTIONS

DIMENSION $Z(1), \operatorname{GRAD}(1)$
GO TO $(1,2,3)$, J
C
$1 \operatorname{GRAD}(1)=2 . \varnothing * Z(1)+1 . \varnothing$
GRAD (2) $=2 . \varnothing * Z(2)-1 . \varnothing$ $\operatorname{GRAD}(3)=2 . \varnothing * Z(3)+1 . \varnothing$ $\operatorname{GRAD}(4)=2 . \varnothing * Z(4)-1 . \varnothing$ RETURN

```
C
G GRAD(1) = 2.\varnothing * Z(1) - 1.
 GRAD(2)=4.0*Z(2)
 GRAD(3) = 2.0 * Z(3)
 GRAD (4) = 4.0 * Z(4)-1.\varnothing
 RETURN
C
 GRAD(1) = 4. }|*Z(1)+2.
 GRAD(2) = 2.\varnothing * Z(2) - 1.\varnothing
 GRAD(3)=2.0*Z(3)
 GRAD(4) = - 1. }
 RETURN
C
 END
 SUBROUTINE FUNCPH (N, NJQ, JQ, Z, W\varnothing, WC, DELTAW, NQ, PHI, PSI,
 1

 EvALUATES DYNAMIC CONSTRAINTS (FUNCTIONS PHI)
 **
 DIMENSION Z(1), PHI(NJQ,1)
C
 RETURN
 END
 SUBROUTINE GRADPH (N, NJQ, NACTIV, JQ, W\ell, WC, DELTAW, NQ, NEPTF,
 1 L, Z, K, GRAD, IGRAD)
 **
C EVALUATES GRADIENTS OF PHI CONSTRAINT FUNCTIONS
C
c
 DIMENSION Z(1), GRAD(1), NEPTF(NJQ,1)
RETURN
END
```


## APPENDIX D - User-Supplied Subroutines for PID Controller Problem

```
 SUBROUTINE FUNCF (N, Z, F, NFUNCF)
C **
c COST FUNCTION EVALUATION.
 DIMENSION Z(1)
 Z1 = Z(1)
 z2 = Z(2)
 Z3 = Z(3)
 DENOM = Z2 * (408.\varnothing + 56.\varnothing* Z1 - 50.\varnothing * Z2 + 6\varnothing.\varnothing * Z3 +
 1 10.\varnothing* Z1**Z3-2.\varnothing* Z1 * Z1)
 ANUM = Z2* * 122.\varnothing + 17.\varnothing* Z1 - 5.\varnothing* Z2 + 6.\varnothing* Z3 + Z1 * Z3) +
 1 180.\varnothing*Z3-36.0 * Z1 + 1224.\varnothing
 F = ANUM / DENOM
C
 RETURN
 END
 SUBROUTINE GRADF (N, Z, GRAD)
 EVALUATES GRADIENT OF COST FUNCTION.

 DIMENSION Z(1), GRAD(1)
 Z1 = Z(1)
 Z2 = Z(2)
 Z3=Z(3)
 DENOM = Z2 * (408. | + 56. | * Z1 - 50. | * Z2 + 60.0 * Z3 +
 1 10.0 * Z1 * Z3-2.0 * Z1 * Z1)
 ANUM = Z2** (122. }0+17.\varnothing**Z1 - 5.0* * Z2 + 6. D* Z3 + Z1* Z3) +
 1 180.0* Z3-36.0* Z1 + 1224.0
 GRAD(1) = (17.8 * Z2 + Z2 * Z3 -36.\varnothing) / DENOM -
 1 (56.\varnothing* Z2 + 1\varnothing.\varnothing* Z2* Z3-4.\varnothing* Z1 * Z2)* ANUM /
 2 (DENOM * DENOM)
 GRAD(2) = (122. D + 17. | * Z1 - 10.0**Z2 + 6.\varnothing* Z3 + Z1**Z3)/ DENOM
```



```
 2 - 2.\varnothing * Z1 * Z1) * ANUM / (DENOM * DENOM)
 GRAD(3)={6.\varnothing* Z2 + Z1* *2 + 180.\varnothing}/DENOM -
 1 (60.\varnothing * Z2 + 10.\varnothing* Z1 * ZZ) * ANUM / (DENOM * DENOM)
 RETURN
 END
 SUBROUTINE FUNCG (N, JP, Z, G, PSI, NFUNCG)
 **
 EVALUATES CONVENTIONAL INEQUALITY CONSTRAINTS { FUNCTION G;
 **
 DIMENSION Z(1), G(1)
c
 G(1) = -Z(1)
 G(z)=-z(z)+\varnothing.1
 G(3)=-Z(3)
 G(4)=Z(1)-1\varnothing\varnothing.\varnothing
 G(5)=Z(2)-1\varnothing\varnothing.\varnothing
 G(6)=Z(3)-1\varnothing\varnothing.\varnothing
C
100 00 100 I=1,JP
c
 RETURN
 END
 SUBROUTINE GRADG (N, J, Z, GRAD)
 **
 EVALUATES GRADIENTS OF G FUNCTIONS
 DIMENSION Z(1), GRAD(1)
 GO TO (1, 2, 3, 4, 5, 6) , J
C
1 GRAD(1)=-1.\varnothing
 GRAD(2)=\varnothing.\varnothing
 GRAD(3)=\varnothing.\varnothing
 RETURN
```

```
C
3
 GRAD(1) = \varnothing.\varnothing
 GRAD(2) = 0.\varnothing
 GRAD(3) =-1.\varnothing
 RETURN
c
4 GRAD(1)=1.\varnothing
 GRAD(2) = \varnothing.\varnothing
 GRAD(3)=\varnothing.\varnothing
 RETURN
C
5
 GRAD(1)=\varnothing.\varnothing
 GRAD(2) = 1.\varnothing
 GRAD(3) = \varnothing.\varnothing
 RETURN
C
6
C
 GRAD(1) = \varnothing.\varnothing
 GRAD(2)=\varnothing.\varnothing
 GRAD(3) = 1.\varnothing
 RETURN
 END
 SUBROUTINE FUNCPH (N, NJQ, JQ, Z, WD, WC, DELTAW, NQ, PHI, PSI,
 I
 NFUNCP)
 **
 EVALUATES DYNAMIC CONSTRAINTS (FUNCTIONS PHI)

 DIMENSION Z(1), PHI(NJQ,1)
 W = W\varnothing
 W2 =W * W
 DO 1\varnothingD I=1,NQ
 B = ((W2 + 9. D) * W2 + 4.\varnothing) * W2 + 36.
 AR=(((W2 + 9.0 - Z(3))*W2 + 4.0 + 8.\varnothing* Z(3)-5.\varnothing* Z(1) +
 1 Z(2))*W2 + 36.\varnothing + 6.\varnothing* Z(1)-8.\varnothing * Z(2)) / B
 AI=(((Z(1))-5.\varnothing*ZZ(3))* W2 + 6. | * Z(3) + 5. | * Z(2) -8.\varnothing *
 1 Z(1))*W-(6.\varnothing*Z(2))/W)/B
 PHI(1,I)=AI - 3.33*AR*AR + 1.\varnothing
 W=W+DELTAW
100
C
 DO 11\varnothingL=1,JQ
 DO 110 K=1,NQ
 IF (PHI(L,K).GT. PSI) PSI = PHI(L,K)
 CONTINUE
C
 RETURN
 END
 SUBROUTINE GRADPH (N, NJQ, NACTIV, JQ, W\ell, WC, DELTAW, NQ, NEPTF,
 1
 L,, Z,K, K, GRAD, IGRAD)
C **
C EVALUATES GRADIENTS OF PHI CONSTRAINT FUNCTIONS
C
C
 W=(K-1) * DELTAW + W\varnothing
 W2 = W * W
 B}=((W2+9.\varnothing)*W2+4.\varnothing)*W2 + 36. D
 AR=(((W2 + 9. D - Z(3))*W2 + 4. }|+8.\varnothing*Z(3)-5.\varnothing * Z(1) +
 1 Z(2))*WZ + 36.\varnothing + 6.\varnothing* Z(1) -8.0* Z(2))/B
 GRAD(1)=(((W2-8.D)*W)/B)-6.66*AR* ((-5.\varnothing * W2 +
 1
 GRAD(2)=((5.0}*W2-6.0) / (W*B)) - 6.66 * AR * ((W2 -
 1 GRAD(3) = (() (-5.D*W2 + (
 1 W2)/B)
C
 RETURN
 END
```


## EARTHQUAKE ENGINEERING RESEARCH CENTER REPORTS

NOTE: Numbers in parenthesis are Accession Numbers assigned by the National Technical Information Service; these are followed by a price code. Copies of the reports may be ordered from the National Technical Information Service, 5285 Port Royal Road, Springfield, Virginia, 2216i. Accession Numbers should be quoted on orders for reports (PB --- ---) and remittance must accompany each order. Reports without this information were not available at time of printing. Upon request, EERC will mail inquirers this information when it becomes available.

EERC 67-1 "Feasibility Study Large-Scale Earthquake Simulator Facility," by J, Penzien, J.G. Bouwkamp, R. W. Clough and D. Rea - 1967 (PB 187 905)A07

EERC 68-1 Unassigned
EERC 68-2 "Inelastic Behaviox of Beam-to-Colum Subassemblages Under Repeated Loading," by V. V. Bertero - I968 (PB 184 888)A05

EERC 68-3 "A Graphical Method for Solving the Wave Reflection-Refraction Problem," by H.D. McNiven and Y. Mengi-1968 (PB 187 943)A03

EERC 68-4 "Dynamic Properties of McKinley School Buildings," by D. Rea, J.G. Bouwkamp and R.W. Clough - 1968 (PB 187 902)A07

EERC 68-5 "Characteristics of Rock Motions During Earthquakes," by H.B. Seed, I.M. Idriss and F.W. Kiefer - 1968 (PB 188 338)AO3

EERC 69-1 "Eaxthquake Enqineering Research at Berkeley," - 1969 (PB 187 906)Al1
EERC 69-2 "Nonlinear Seismic Response of Earth Structures," by M. Dibaj and J. Penzien - 1969 (PB 187904 )A08
EERC 69-3 "Probabilistic Study of the Behavior of Structures During Earthquakes," by R. Ruiz and J. Penzien - 1969 (PB 187 886) A06

EERC 69-4 "Numerical Solution of Boundary Value Problems in Structural Mechanics by Reduction to an Initial Value Formulation," by N. Distefano and J. Schujman-1969 (PB 287 942)A02

EERC 69-5 "Dynamic Programing and the Solution of the Biharmonic Equation," by N. Distefano-1969 (PB 187941 ) A03
EERC 69-6 "Stochastic Analysis of offshore Tower Structuros,"by A.K. Malhotra and J. Penzien - l969 (PB l87 903)A0g

EERC 69-7 "Rock Motion Accelerograms for High Magnitude Earthquakes," by H. B. Seed and I.M. Idriss - 1969 (PB 187 940 ) A02
EERC 69-8 "Structural Dynamics Testing Facilities at the University of California, Berkeley," by R.M. Stephen, J.G. Bouwkamp, R.W. Clough and J. Penzien-1969 (PB 189 111)A04

EERC 69-9 "Seismic Response of Soil Deposits Undcrlain by Sloping Rock Boundaries," by H. Dezfulian and H. B. Seed 1969 (PB 189 114)A03

EERC 69-10 "Dynamic Stress Analysis of Axisymmetric Structures Under Arbitrary Loading," by S. Ghosh and E.L. Wilson 1969 (PB 189 026) A10

EERC 69-11 "Seismic Behavior of Multistory Frames Designed by Different Philosophies," by J.C. Anderson and v. V. Bertero - 1969 (PB 190 662) Al0

EERC 69-12 "Stiffness Degradation of Reinforcing Concrete Members Subjected to Cyclic Flexural Moments," by V.V. Bertero, B. Bresler and H. Ming Liao-1969 (PB 202 942)A07

EERC 69-13 "Response of Non-Uniform Soil Deposits to Traveliing Seismic Waves," by H. Dezfulian and H.B. Seed - 1969 (PB 191 023)A03

EERC 69-14 "Damping Capacity of a Model Steel Structure," by D. Rea, R.W. Clough and J. G. Bouwkamp-1969 (PB l90663)A06

EERC 69-15 "Influence of Local Soil Conditions on Building Damage Potential during Earthquakes," by H. B. Seed and I.M. Idriss - 1969 (PB 191 036)A03

EERC 69-16 "The Behavior of Sands Under Seismic toading Conditions," by M. L. Silver and H. B. Seed - 1969 (AD 714 982 ) AO7

EERC 70-1 "Earthquake Response of Gravity Dams," by A.K. Chopra-1970 (AD 709 640)A03
EERC 70-2 "Relationships between Soil Conditions and Building Damage in the Caracas Earthquake of July 29 , 1967 , by H.B. Seed, I.M. Idriss and H. Dezfulian - 1970 (PB 195 762)A05

EERC 70-3 "Cyclic Loading of Full Size Steel Connections," by E.P. Popov and R.M. Stephen - 1970 (FB 213 545)A04
EERC 70-4 "Seismic Analysis of the Chaxaima Building, Caraballeda, Venezuela," by Subcommittee of the SEAONC Research Committee: V.V. Bertero, P.F. Fratessa, S.A. Mahin, J.H. Sexton, A.C. Scordelis, E.L. Wilson, L.A. Wyllie, H. B. Seed and J. Penzien, Chairman-1970 (PB 201 455)A06

EERC 70-5 "A Computer Program for Earthquake Analysis of Dams," by A.K. Chopra and P. Chakrabarti - 1970 (AD 723994 ) A05

EERC 70-6	"The Propagation of Love Waves Across Non-Horizontally Layered Structures," by J. Lysmer and L.A. Drake 1970 (PB 197 896) A03
EERC 70-7	"Influence of Base Rock Characteristics on Ground Response," by J. Lysmer, H.B. Seed and P.B. Schnabel 1970 ( PB 197 897) A03
EERC 70-8	"Applicability of Laboratory Test Procedures for Measuring Soil Liquefaction Characteristics under Cyclic Loading," by H.B. Seed and W.H. Peacock - 1970 (PB 198 015)A03
EERC 70-9	"A Simplified Procedure for Evaluating Soil Liquefaction Potential," by H.B. Seed and I.M. Idriss - 1970 (PB 198 009)A03
EERC 70-10	"Soil Moduli and Damping Factors for Dynamic Response Analysis," by H.B. Seed and I.M. Idriss - 1970 (PB 197 869)A03

EPPC 71-1 "Koyna Earthquake of December 11, 1967 and the Performance of Koyna Dam," by A.K. Chopra and P. Chakrabarti 1971 (AD 731495 ) AO\&

EERC 71-2 "Preliminary In-Situ Measurements of Anelastic Absorption in Soils Using a Prototype Earthquake Simulator," by R.D. Borcherdt and P.W. Rodgers - 1971 (PB 201 454)A03

EERC 71-3 "Static and Dynamic Analysis of Inelastic Frame Structures," by F. T. Porter and G. H. Powell - 1971 (PB 210 135) A06

EERC 71-4 "Research Needs in Limit Design of Reinfoxced Concrete Structures," by V.V. Bertero-1971 (PB 202 943)A04
EERC 71-5 "Dynamic Behavior of a High-Rise Diagonally Braced Steel Building," by D. Rea, A.A. Shah and J.G. Bouwl:anp 1971 (PB 203 584)AOG

EERC 71-6 "Dynamic Stress Analysis of Porous Elastic Solids Saturated with Compressible Fluids," by J. Ghaboussi and E. L. Wilson - 1971 (PB 211 396) AD6

EERC 71-7 "Inelastic Behavior of Steel Beam-to-Column Subassemblages," by H. Krawinkler, V.V. Bertero and E.P. Popov 1971 (PB 211 335)A14

EERC 71-8 "Modification of Seismograph Records for Effects of Local Soil Conditions," by P. Schnabel, H. B. Seed and J. Lysmer - 1971 (PB 214 450)A03

EERC 72-1 "Static and Earthquake Analysis of Three Dimensional Frame and Shear Wall Buildings," by E.L. Wilson and H.H. Dovey - 1972 (PB 212 904)A05

EERC 72-2 "Accelerations in Rock for Earthquakes in the western United States," by P. B. Schnabel and f. B. Seed-1972 (PB 213 100)A03

EERC 72-3 "Elastic-Plastic Earthquake Response of Soil-Building Systems," by T. Minami - I972 (PB 214 868)A08
EERC 72-4 "Stochastic Inelastic Response of offshore Towers to Strong Motion Earthquakes," by M. K. Kaul - 1972 (PB 215 713)A05

EERC 72-5 "Cyclic Behavior of Three Reinforced Concrete Flexural Members with High Shear," by E.P. Popov, V.V. Bertero and H. Krawinkler-1972 (PB 214 555) 105

EERC 72-6 "Earthquake Response of Gravity Dams Including Reservoir Interaction Fiffects," by P. Chakrabarti and A.K. Chopra - 1972 (AD 762 330)A08

EERC 72-7 "Dynamic Properties of Pine Flat Dam," by D. Rea, C.Y. Liaw and A.K. Chopra-1972 (AD 763 928)A05
EERC 72-8 "Three Dimensional Analysis of Building Systems," by E.L. Wilson and H.H. Dovey - 1972 (PB 222438 )AO6
EERC 72-9 "Rate of Loading Effects on Uncracked and Repaired Reinforced Concrete Members," by $S$. Mahin, V.V. Bertero, D. Rea and M. Atalay - 1972 (PB 224 520)A08

EERC 72-10 "Computer Program for Static and Dynamic Analysis of Linear Structural Systems," by E.L. Wilson, K,-J. Bathe, J,E. Peterson and H. H. Dovey - 1972 (PB 220 437)A04

EERC 72-11. "Literature Survey - Seismic Effects on Highway Bridges," by T. Iwasaki, J. Penzien and R.W. Clough - 1972 (PB 215613 )A19

EERC 72-12 "SHAKE-A Computer Program for Earthquake Response Analysis of Horizontally Layered Sites," by P. B. Schnabel and J. Lysmer-1972 (PB 220 207) A06

EERC 73-1 "Optimal Seismic Design of Multistory Frames," by v.v. Bertero and H. Kamil - 1973
EERC 73-2 "Analysis of the slides in the San Fernando Dams During the Earthquake of February 9 , 1971 ," by $H$. $B$. Seed, K.L. Lee, I.M. Idriss and F. Makdisi-1973 (PB 223 402)Al4

EERC 73-3 "Computer Aided Ultimate Load Design of Unbraced Multistory Steel Frames," by M.B. El-Hafez and G.H. Powell 1973 ( PB 248 315)A09

EERC 73-4 "Experimental Investigation into the Seismic Behaviar of Critical Regions of Reinforced Concrete Components as Influenced by Moment and Shear," by M. Celebi and J. Penzien - 1973 (PB 215 884)A09

EERC 73-5 "Hysteretic Behavior of Epoxy-Repaired Reinforced Concrete Beams," by M. Celebi and J. Penzien - 1973 (PB 239 568)A03

EERC 73-6 "General Purpose Computer Program for Inelastic Dynamic Response of Plane Structures," by A. Kanaan and G. H. Powell-1973 (PB 221 260)A0B

EERC 73-7 "A Computer Program for Earthquake Analysis of Gravity Dams Including Reservoir Interaction," by P. Chakrabarti and A.K. Chopra - 1973 (AD 766 271)A04

EERC 73-8 "Behavior of Reinforced Concrete Deep Beam-Column Subassemblages Under Cyclic Loads," by O. Küstï and J.G. Bouwkamp-1973 (PB 246 11.7)A12

EERC 73-9 "Earthquake Analysis of Structure-Foundation Systems," by A.K. Vaish and A. K. Chopra-1973 (AD 766272 )A07
EERC 73-10 "Deconvolution of Seismic Response for Linear Systems," by R.B. Reimer - 1973 (RB 227 179)A08
EERC 73-11 "SAP IV: A Structural Analysis Program for Static and Dynamic Response of Linear Systems," by K.-J, Bathe, E.L. Wilson and F.E. Peterson-1973 (PB 221 967)A09

EERC 73-12 "Analytical Investigations of the Seismic Response of Long, Multiple Span Highway Bridges," by W. S. Tseng and J. Penzien - 1973 (PB 227 816)A10

EERC 73-13 "Earthquake Analysis of Multi-Story Buildings Including Foundation Interaction," by A.K. Chopra and J.A. Gutierrez - 1973 (PB 222 970)A03

EERC 73-14 "ADAP: A Computer Program for Static and Dynamic Analysis of Arch Dams," by R.W. Clough, J.M. Raphael and S. Mojtahedi - 1973 (PB 223 763) A09

EERC 73-15 "Cyclic Plastic Analysis of Structural Steel Joints." by R.B. Pinkney and R.W. Clough - 1973 (PB 226 843)A08
EERC 73-16 "QIAD-4: A Computer Program for Evaluating the Seismic Response of Soil Structures by variable Damping Finite Element Procedures," by I.M. Idriss, J. Lysmer, R. Hwang and H.B. Seed-1973 (Pb 229 424)A05

EERC 73-17 "Dynamic tihavior of a Multi-Story Pyramid Shaped Building," by R.M. Stephen, J.P. Hollings and J.G. Bouwkamp - 1973 (PB 240 718)A06

EERC 73-18 "Effect of Different Types of Reinforcing on Seismic Behavior of Short Concrete Column," by V. Bertero, J. Hollings, O. Küstü, R.M. Stephen and J.G. Bouwkamp-1973

EERC 73-19 "Olive View Medical Center Materials Studies, Phase I," by B. Breslex and V.v. Bertero-1973 (PB 235 986)A06
EERC 73-20 "Linear and Nonlinear Seismic Analysis Computer Programs for Long Multiple-Span Highway Bridges," by W.S. Tseng and J. Penzien-1973

EERC 73-21 "Constitutive Mocels for Cyclic Plastic Deformation of Engineering Materials," by J.M. Kelly and P. F. Gillis 1973 (PB 226 024)A03

EERC 73-22 "DRAIN - 2D User's Guide," by G.H. Powell-1973 (PB 227 016)AO5
EERC 73-23 "Earthquake Engineering at Eerkeley - 1973," (FB 226 033)All
EERC 73-24 Unassigned
EERC 73-25 "Earthquake Response of Axisymmetric Tower Structures Surrounded by Water," by C.Y. Liaw and A.K. Chopra 1973 (AD 773 052)A09

EERC 73-26 "Investigation of the Failures of the Olive View Stairtowers During the San Fernando Earthquake and Their Implications on Seismic Design," by V.V. Bertero and R.G. Collins-1973 (PB 235 106)A13

EERC 73-27 "Further Studies on Seismic Behavior of Steel Beam-Column Subassemblages," by V.V. Bertero, H. Krawinkler and E.P. Popov-1973 (PB 234 172)A06

EERC 74-1 "Seismic Risk Analysis," by C.S. Oliveira-1974 (PB 235 920)A06
EERC 74-2 "Settlement and Liquefaction of Sands Under Multi-Directional Shaking," by R. Pyke, C.K. Chan and H. B. Seed 1974

EERC 74-3 "Optimum Design of Earthquake Resistant Shear Buildings," by D. Ray, K.S. Pister and A. K. Chopra - 1974 (PB 231 172) A06

EERC 74-4 "LUSH - A Computer Program for Complex Response Analysis of Soil-Structure Systems," by J. Lysmer, T. Udaka, H.B. Seed and R, Hwang - 1974 (PB 236 796)A05

EERC 74-5	"Sensitivity Analysis for Hysteretic Dynamic Systems: Applications to Earthquake Engineering," by D. Ray 1974 (PB 233 213)A06
EERC 74-6	"Soil Structure Interaction Analyses for Evaluating Seismic Response," by H.B. Seed, J. Lysmer and R. Hwang 1974 (PB 236 519)A04
EERC 74-7	Unassigned
EFRC 74-8	"Shaking Table Tests of a Steel Frame - A Progress Report," by R.w. Clough and D. Tang - 1974 (PB 240 869)A03
EERC 74-9	"Hysteretic Behavior of Reinforced Concrete Flexural Members with Special Web Reinforcement," by V.V. Bertero, E.P. Popov and T.Y. Wang - 1974 (PB 236 797)A07
EERC 74-10	"Applications of Reliability-Based, Global Cost Optimization to Design of Earthquake Resistant Structures," by E. Vitiello and K.S. Pister - 1974 (PB 237 231)A06
EERC 74-11	"Liquefaction of Gravelly Soils Under Cyclic Loading Conditions," by R.T. Wong, H.B. Seed and C.K. Chan 1974 (PB 242 042)A03
EERC 74-12	"Site-Dependent Spectra for Earthquake-Resistant Design," by H.B. Seed, C. Ugas and J. Lysmer - 1974 (PB 240 953) A03
EERC 74-13	"Earthquake Simulator Study of a Reinforced Concrete Frame," by P. Hidalgo and R.W. Clough - 1974 (PB 241 944)A13
EERC 74-14	"Nonlinear Earthquake Response of Concrete Gravity Dams," by N. Pal-1974 (AD/A 005 583) A06
EERC 74-15	"Modeling and Identification in Nonlinear Structural Dynamics - I. One Degree of Freedom Models," by N. Distefano and A. Rath - 1974 (PB 241 548)A06

EERC 75-1 "Determination of Seismic Design Criteria for the Dumbarton Bridge Replacement Structure, Vol. I: Description, Theory and Analytical Modeling of Bridge and Parameters," by F. Baron and S. m . Pang - 1975 (PB 259407 )A15

EERC 75-2 "Determination of Seismic Design Criteria for the Dumbarton Bridge Replacement Structure, Vol. II: Numerical Studies and Establishment of Seismic Design Criteria," by F. Baron and S. -H. Pang-1975 (PB 259408$) A 11$ (Far set of EERC 75-1 and 75-2 (PB 259 406))

EERC 75-3 "Seismic Risk Analysis for a Site and a Metropolitan Area," by C.S. Oliveira-1975 (PB 248134 )A09
EERC 75-4 "Analytical. Investigations of Seismic Response of Short, Single or Multiple-Span Highway Bridges," by M.-C. Chen and J. Penzien-1975 (PB 241 454)A09

EERC 75-5 "An Evaluation of Some Methods for Predicting Seismic Behavior of Reinforced Concrete Buildings," by S.A. Mahin and V.V. Bertero-1975 (PB 246 306)A16

EERC 75-6 "Earthquake Simulator Study of a Steel Frame Structure, Vol. I: Experimental Results," by R.W. Clough and D.T. Tanc-1975 (PB 243 981)A13

EERC 75-7 "Dynamic Properties of San Bernardino Intake Tower," by D. Rea, C.-Y. Liaw and A.K. Chopra-1975 (AD/A008 406) A05

EERC 75-8 "Seismic Studies of the Articulation for the Dumbarton Bridge Replacement Structure, Vol. I: Description, Theory and Analytical Modeling of Bridge Components," by F. Baron and R.E. Hamati - 1975 (PB 251 539)A07

EERC 75-9 "Seismic Studies of the Articulation for the Dumbarton Bridge Replacement Structure, Vol. 2: Numerical Studies of Steel and Concrote Girder Alternates," by F. Baron and R.E. Hamati-1975 (PB 251.540)A10

EERC 75-10 "Static and Dynamic Analysis of Nonlinear Structures," by D.P. Mondkar and G.H. Powell - 1975 (PB 242434 )A08
EERC 75-11 "Hysteretic Behavior of Steel Columns," by E.P. Popov, V.V. Bertero and s. Chandramouli - 1975 (PB 252 365)Al1
EERC 75-12 "Earthquake Engineering Research Center Library Printed Catalog," - 1975 (PB 243711 A26
EERC 75-13 "Three Dimensional Analysis of Building Systems (Extended Version)," by E.L. Wilson, J.p. Hollings and H.H. Dovey - 1975 (PB 243 989)A07

EERC 75-14 "Determination of Soil Liquefaction Characteristics by Large-Scale Laboratory Tests," by P. De Alba, C.K. Chan and H.B. Seed- 1975 (NUREG 0027)A08

EERC 75-15 "A Literature Survey - Compressive, Tensile, Bond and Shear Strength of Masonry," by R.L. Mayes and R. W. Clough - 1975 (PB 246 292)A10

EERC 75-16 "Hysteretic Behavior of Ductile Moment Resisting Reinforced Concrete Frame Components," by V.V. Bertero and E.P. Popov-1975 (PB 246 388)A05

EERC 75-17 "Relationships Between Maximum Acceleration, Maximum Velocity, Distance from Source, Local Site Conditions for Moderately Strong Earthquakes," by H.B. Seed, R. Murarka, J. Lysmer and I.M. Idriss - 1975 (PB 248 172)A03

EERC 75-18 "The Effects of Method of Sample Preparation on the Cyclic Stress-Strain Behavior of Sands," by J. Mulilis, C.K. Chan and H.B. Seed-1975 (Summarized in EERC 75-28)

EERC 75-19 "The Seismic Behavior of Critical Regions of Reinforced Concrete Components as Influenced by Moment, Shear and Axial Force," by M.B. Atalay and J. Penzien-1975 (PB 258 842)AII

EERC 75-20 "Dynamic Properties of an Eleven Story Masonry Building," by R.M. Stephen, J.P. Hollings, J.G. Bouwkamp and D. Jurukovski - 1975 (PB 246 945)A04

EERC 75-21 "State-of-the-Art in Seismic Strength of Masonry - An Evaluation and Review," by R.L. Mayes and R. W. Clough 1975 (PB 249 040)A07

EERC 75-22 "Frequency Dependent Stiffness Matrices for Viscoelastic Half-Plane Foundations," by A. K. Chopra, P. Chakrabarti and G. Dasgupta - 1975 (PB 248 121)A07

EERC 75-23 "Hysteretic Behavior of Reinforced Concrete Framed Walls," by T.Y. Wong, V.V. Bertero and E.P. Popov - 1975

EERC 75-24 "Testing Facility for Subassemblages of Frame-Wall Structural Systems," by V.V. Bertero, E.P. Popov and T. Endo - 1975

EERC 75-25 "Influence of Seismic History on the Liquefaction Characteristics of Sands," by H.B. Seed, K. Mori and C.K. Chan-1975 (Summarized in EERC 75-28)

EERC 75-26 "The Generation and Dissipation of Pore Water Pressures during Soil Liquefaction," by H.B. Seed, P. P. Martin and J. Lysmer - 1975 (PB 252 648) AO3

EERC 75-27 "Identification of Research Needs for Improving Aseismic Design of Building Structures," by V.V. Bertero 1975 (PB 248 136)AO5

EERC 75-28 "Evaluation of Soil Liquefaction Potential during Earthquakes," by H.B. Seed, I. Arango and C.K. Chan - 1975 (NUREG 0026)A13

EERC 75-29 "Representation of Irregular Stress Time Histories by Equivalent Uniform Stress Series in Liquefaction Analyses," by H.B. Seed, I.M. Idriss, F. Makdisi and N. Banerjee - 1975 (PB 252 635)A03

EERC 75-30 "ELUSH - A Computer Program for Approximate 3-D Analysis of Soil-Structure Interaction Problems," by J. Lysmer, T. Udaka, C. F. Tsai and H.B. Seed-1975 (PB 259 332)A07

EERC 75-31 "ALUSH - A Computer Program for Seismic Response Analysis of Axisymmetric Soil-Structure Systems," by E. Berger, J. Lysmer and H.B. Seed-1975

EERC 75-32 "TRIP and TRAVEL - Computer Programs for Soil-Structure Interaction Analysis with Horizontally Travelling Waves," by T. Udaka, J. Ivsmer and H.B. Seed-1975

EERC 75-33 "Predicting the Performance of Structures in Regions of High Seismicity," by J. Penzien - 1975 (PB 248 130)A03
EERC 75-34 "Efficient Finite Element Analysis of Seismic Structure - Soil-Direction," by J. Lysmer, H.B. Seed, T. Udaka, R.N. Hwang and C.-F. Tsai-1975 (PB 253 570)A03

EERC 75-35 "The Dynamic Behavior of a First Story Girder of a Three-Story Steel Frame Subjected to Earthquake Loading," by R.W. Clough and L.-Y. Li - 1975 (PB 248 841)A05

EERC 75-36 "Earthquake Simulator Study of a Steel Frame Structure, Volume II - Analytical Results," by D.T. Tang - 1975 (PB 252 925)A10

EERC 75-37 "ANSR-I General Purpose Computer Program for Analysis of Non-Linear Structural Response," by D. F. Mondkar and G.H. Powell-1975 (PB 252 386)A08

EERC 75-38 "Nonlinear Response Spectra for Probabilistic Seismic Design and Damage Assessment of Reinforced Concrete Structures," by M, Murakami and J. Penzien - 1975 (PB 259 530)A05

EERC 75-39 "Study of a Method of Feasible Directions for Optimal Elastic Design of Frame Structures Subjected to Earthquake Loading," by N.D. Walker and K.S. Pister-1975 (PB 257 781)A06

EERC 75-40 "An Alternative Representation of the Elastic-Viscoelastic Analogy," by G. Dasgupta and J. Is. Sackman - 1975 (PB 252 173)A03

EERC 75-41 "Effect of Multi-Directional Shaking on Liquefaction of Sands," by H.B. Seed, R. Pyke and G.R. Martin - 1975 (PB 258 781) AO3

EERC 76-1 "Strength and Ductility Evaluation of Existing Low-Rise Reinforced Concrete Buildings-Screening Method," by T. Okada and B. Bresler - 1976 (PB 257 906)AIl

EERC 76-2 "Experimental and Analytical Studies on the Hysteretic Behavior of Reinforced Concrete Rectangular and T-Beams," by S.-Y.M. Ma, E.P. Popov and V.V. Bertero-1976 (PB 260 843)A12

EERC 76-3 "Dynamic Behavior of a Multistory Triangular-Shaped Building," by J. Petrovski, R,M. Stephen, E. Gartenbaum and J.G. Bouwkamp - 1976 (PB 273 279) A07

EERC 76-4 "Earthquake Induced Deformations of Earth Dams," by N. Serff, H.B. Seed, F.I. Makdisi \& C.-Y. Chang - I976 (PB 292 065)A08

EERC 76-5 "Analysis and Design of Tube-Type Tall Building Structures," by it de clercq and G.H. Powe11-1976 (PB 252220 ) A10

EERC 76-6 "Time and Frequency Domain Analysis of Three-Dimensional Ground Motions, San Fernando Earthquake," by T. Kubo and J. Penzien (PB 260 556)All

EERC 76-7 "Expected Performance of Uniform Building Code Design Masonry Structures," by R.I. Mayes, Y. Omote, S. W. Chen and R.W. Clough - 1976 (PB 270 098)A05

EERC 76-8 "Cyclic Shear Tests of Masonry Piexs, Volume l-mest Results," by R.L. Mayes, Y. Omote, R. W. Clough - 1976 (PB 264 424)A06

E'RC 76-9 "A Substructure Method for Earthquake Analysis of Structure - Soil Interaction, " by J.A. Gutierrez and A.K. Chopra-1976 (PB 257 783)A08

EERC 76-10 "Stabilization of Potentially Liquefiable Sand Deposits using Gravel Drain Systems," by H. B. Seed and J.R. Booker-1976 (PB 258 820)A04

EERC 76-11 "Influence of Design and Analysis Assumptions on Computed Inelastic Response of Moderately Tall Frames," by G.H. Powell and D.G. Row- 1976 (PB 271 409)A06

EERC 76-12 "Sensitivity Analysis for Hysteretic Dynamic Systems: Theory and Applications," by D. Ray, K.S. Pister and E. Polak-1976 (PB 262 859)A04

EERC 76-13 "Coupled Lateral Torsional Response of Buildings to Ground Shaking," by C.L. Kan and A.K. Chopra 1976 (PB 257 907)A09

EERC 76-14 "Seismic Analyses of the Banco de America," by V.V. Bertero, S.A. Mahin and J.A. Hollings - 1976
EERC 76-15 "Reinforced Concrete Frame 2: Seismic Testing and Analytical Correlation," by R.W. Clough and J. Gidwani - 1976 (PB 261 323) A08

EERC 76-16 "Cyclic Shear Tests of Masonry Piers, Volume 2 - Analysis of Test Recults," by R.L. Mayes, Y. Omote and R.W. clough - 1976

EERC 76-17 "Structural Steel Bracing Systems: Behavior Under Cyclic Loading," by E.P. Popov, K. Takanashi and C.W. Roeder - 1976 (PB 260 715)A05

EERC 76-18 "Experimental Model studies on Seismic Response of High Curved Overcrossings," by D. Williams and W.G. Godden - 1976 (PB 269 548)A08

EERC 76-19 "Effects of Non-Uniform Seismic Disturbances on the Dumbarton Bridge Replacement Structure," by F. Baron and R.E. Hamati - 1976 (PB 282 981)Al6

EERC 76-20 "Investigation of the Inelastic Characteristics of a single Story Steel Structure Using system Identification and Shaking Table Experiments," by V.C. Matzen and H.D. McNiven - 1976 (PB 258453 )A07

EERC 76-21 "Capacity of Colums with Splice Imperfections," by E.P. Popov, R.M. Stephen and R. Philbrick - 1976 (PB 260 378) A04

EERC 76-22 "Response of the Olive View Hospital Main Building during the San Fernando Earthquake," by S. A. Mahin, V.V. Bertero, A.K. Chopra and R. Collins - 1976 (PB 271 425)A14

EERC 76-23 "A Study on the Major Factors Influencing the Strength of Masonry Prisms," by N.M. Mostaghel, R.L. Mayes, R. W. Clough and S.W. Chen - 1976 (Not published)

EERC 76-24 "GADFLEA - A COMputer Program for the Analysis of Pore Pressure Generation and Dissipation during Cyclic or Earthquake Loading," by J.R. Booker, M.S. Rahman and H.B. Seed - 1976 (PB 263947 )A04

EERC 76-25 "Seismic Safety Evaluation of a $\mathrm{R} / \mathrm{C}$ School Building," by B. Bresler and J, Axley - 1976
EERC 76-26 "Correlative Investigations on Theoretical and Experimental Dynamic Behavior of a Model Bridge Structure," by K. Kawashima and J. Penzien - 1976 (PB 263 388)All

EERC 76-27 "Earthquake Response of Coupled Shear wall Buildings," by T. Srichatrapimuk - 1976 (PB 265157 ) A07
EERC 76-28 "Tensile Capacity of Partial Penetration Welds," by E.P. Popov and R.M. Stephen -1976 (PB 262899 A03
EERC 76-29 "Analysis and Design of Numerical Integration Methods in Structural Dynamics," by H.M. Hilber - 1976 (PB 264 4IO)A06

EERC 76-30 "Contribution of a Floor System to the Dynamic Characteristics of Reinforced concrete Buildings," by L.E. Malik and V.V. Bertero - 1976 (PB 272 247)Al3

EERC 76-31 "The Effects of Seismic Disturbances on the Golden Gate Bridge," by F. Baron, M. Arikan and R. E. Hamati 1976 (PB 272 279)A09

EERC 76-32 "Infilled Frames in Earthquake Resistant Construction," by R.E. Klingner and v.V. Bertero - 1976 (PB 265 892)A13

UCB/EERC-77/01	"PLuSH - A Computer Program for Probabilistic Finite Element Analysis of Seismic Soil-Structure In action," by M.P. Romo Organista, J, Lysmer and H.B. Seed - 1977
UCB/EERC-77/02	"Soil-Structure Interaction Effects at the Humboldt Bay Power Plant in the Ferndale Earthquake of June 7. 1975," by J.E. Valera, H.B. Seed, C.F. Tsai and J. Lysmer - 1977 (PB 265 795)A04
UCB/EERC-77/03	"Influence of Sample Disturbance on Sand Response to Cyclic Loading," by K. Mori, H.B. Seed and C.K. Chan - 1977 (PB 267 352) AO4
UCB/EERC-77/04	"Seismological Studies of Strong Motion Records," by J. Shoja-Taheri - 1977 (PB 269 655) Al0
UCB/EERC-77/05	"Testing Facility for Coupled-Shear Walls," by L. Li-Hyung, V.V. Bertero and E.P. Popov - 1977
UCB/EERC-77/06	"Developing Methodologies for Evaluating the Earthquake Safety of Existing Buildings," by No. 1 B. Bresler; No. 2 - B. Breslex, T. Okada and D. Zisling; No. 3 - T. Okada and B. Bresler; No. $4-\mathrm{V} . \mathrm{V}$. Bertero and B. Bresler - 1977 (PB 267 354) A08
UCB/EERC-77/07	"A Literature Survey - Transverse Strength of Masonry Walls," by Y. Omote, R.L. Mayes, S.W. Chen and R.W. Clough -- 1977 (PB 277 933)A07
UCB/EERC-77/08	"DRAIN-TABS: A Computer Program for Inelastic Earthquake Response of Three Dimensional Buildings," by R. Guendelman-Israel and G.H. Powell - 1977 (PB 270 693)A07
UCB/EERC-77/09	"SUBWALL: A Special Purpose Finite Element Computer Program for Practical Elastic Analysis and Design of Structural Walls with Substructure Option," by D.Q. Le, H. Peterson and E.P. Popov - 1977 (PB 270 567)A05
UCB/EERC-77/10	"Experimentã Evaluation of Seismic Design Methods fox Broad Cylindrical Tanks," by D.F. Clough (PB 272 280)Al3
UCB/EERC-77/11	"Earthquake Engineering Research at Berkeley - 1976," - 1977 (PB 273 507)A09
UCB/EERC-77/12	"Automated Design of Earthquake Resistant Multistory Steel Building Frames," by N.D. Walker, Jr. - 1977 (PB 276 526)A09
UCB/EERC-77/13	"Concrete Confined by Rectangular Hoops Subjected to Axial Loads," by J. Vallenas, V.V. Bertero and E.F. Popov - 1977 (PB 275 165) A06
UCB/EERC-77/14	"Seismic Strain Induced in the Ground During Earthquakes, " by y. Sugimura - 1977 (PB 284 201)A04
UCB/EERC-77/15	"Bond Deterioration under Generalized Loading," by V.v. Bertero, E.P. Popov and s. Viwathanatepa - 1977
UCB/EERC-77/16	"Computer Aided Optimum Design of Ductile Reinforced Concrete Moment Resisting Frames," by S.W. Zagajeski and V.V. Bertero - 1977 (PB 280 137)A07
UCB/EERC-77/17	"Earthquake Simulation Testing of a Stepping Frame with Energy-Absorbing Devices," by J.M. Kelly and D.F. Tsztoo - 1977 (PB 273 506) AO4
UCB/EERC-77/18	"Inelastic Behavior of Eccentrically Braced Steel Frames under Cyclic Loadings," by C.W. Roeder and E.P. Popov - 1977 (PB 275 526)A15
UCB/EERC-77/19	"A simplified Procedure for Estimating Earthquake-Induced Deformations in Dams and Embankments," by F.I. Makdisi and H.B. Seed - 1977 (PB 276 820) AO4
UCB/EERC-77/20	"The Performance of Earth Dams during Earthquakes," by H.B. Seed, F.I. Makdisi and P. de Alba - 1977 (PB 276 821)A04
UCB/EERC-77/21	"Dynamic Plastic Analysis Using Stress Resultant Finite Element Formulation," by P. Lukkunapvasit and J.M. Kelly - 1977 (PB 275 453)A04
UCB/EERC-77/22	"Preliminary Experimental Study of Seismic Upiff of a Steel Frame," by R.w. Clough and A.A. Huckelbridge 1977 (PB 278 769)A08
UCB/EERC-77/23	"Earthquake Simulator Tests of a Nine-Story Steel Frame with Columns Allowed to Uplift," by A.A. Huckelbridge - 1977 (PB 277 944)A09
UCB/EERC-77/24	"Nonlinear Soil-Structure Interaction of Skew Highway Bridges," by M.-C. Chen and J. Penzien - 1977 (PB 276 176)A07
UCB/EERC-77/25	"Seismic Analysis of an Offshore Structure Supported on Pile Foundations," by D.D.-N. Liou and J. Penzien 1977 (PB 283 180) A06
UCB/EERC-77/26	"Dynamic stiffness Matrices for Homogeneous Viscoelastic Half-planes," by G. Dasgupta and A.K. Chopra 1977 (PB 279 654)A06
UCB/EERC-77/27	"A Practical Soft Story Earthquake Isolation System," by J.M. Kelly, J.M. Eidinger and C.J, Derham 1977 (PB 276 814)A07
UCB/EERC-77/28	"Seismic Safety of Existing Buildings and Incentives for Hazard Mitigation in San Francisco: An Exploratory Study," by A.J. Meltsner - 1977 (PB 281 970)A05
UCB/EERC-77/29	"Dynamic Analysis of Electrohydraulic Shaking Tables," by D. Rea, S. Abedi-Hayati and Y. Takahashi 1977 (PB 282 569)A04
UCB/EERC-77/30	"An Approach for Improving Seismic - Resistant Behavior of Reinforced Concrete Interior Joints," by B. Galunic, V.V. Bertero and E.P. Popov - 1977 (PB 290 870)A06


WCB/FERC-78/01	"The Development of Energy-Absorbing Devices for Aseismic Base Isolation Systems," by J.M. Kelly and D.F. 'rsztoo - 1978 (PB 284 978)A04
UCB/EERC-78/02	"Effect of Tensile Prestrain on the Cyclic Response of Structural Steel Connections, by J.G. Bouwkamp and A. Mukhopadhyay - 1978
UCB/EERC-78/03	"Experimental Results of an Earthquake Isolation System using Natural Rubber Bearings," by J.M. Eidinger and J.M. Kelly - 1978 (PB 281 686) A04
UCB/EERC-78/04	"Seismic Behavior of Tall Liquid Storage Tanks," by A. Niwa - 1978 (PB 284 0l7)Al4
UCB/EERC-78/05	"Hysteretic Behavior of Reinforced Concrete Columns Subjected to High Axial and Cyclic Shear Forces," by S.W. Zagajeski, V.V. Bertero and J.G. Bouwkamp - 1978 (PB 283 858)Al3
UCB/EERC-78/06	"Inelastic Beam-Column Elements for the ANSR-J Program," by A. Riahi, D.G. Row and G.H. Powell - 1978
UCB/EERC-78/07	"Studies of Structural Response to Earthquake Ground Motion," by O.A. Lopez and A.K. Chopra - 1978 (PB 282 790)AOS
UCB/EERC-78/08	"A Laboratory Study of the Fluid-Structure Interaction of Submerged Tanks and Caissons in Earthquakes," by R.C. Byrd - 1978 (PB 284 957) A08
UCB/EERC-78/09	"Model for Evaluating Damageability of Structures," by I. Sakamoto and B. Bresler - 1978
UCB/EERC-78/10	"Seismic Performance of Nonstructural and Secondary Structural Elements," by I. Sakamoto - 1978
UCB/EERC-78/11	"Mathematical Modelling of Hysteresis Loops for Reinforced Concrete Columns," by $S$. Nakata, T. Sproul and J. Penzien - 1978
UCB/EERC-78/12	"Damageability in Existing Buildings," by T. Blejwas and B. Bresler - 1978
UCR/EERC-78/13	"Dynamic Behavior of a Pedestal Base Multistory Building," by R.M. Stephen, E.L. Wilson, J.G. Bouwkamp and M. Button - 1978 (PB 286 650) A08
UCB/EERC-78/14	"Seismic Response of Bridges - Case Studies," by R.A. Imbsen, V. Nutt and J. Penzien - 1978 (PB 286 503)A10
UCB/EERC-78/15	"A Substructure Technique for Nonlinear Static and Dynamic Analysis," by D.G. Row and G.H. Powell 1978 (PB 288 077)A10
UCB/EERC-78/16	"Seismic Risk Studies for San Francisco and for the Greater San Francisco Bay Area," by C.S. Oliveira 1978
UCR/EERC-78/17	"Strength of Timber Roof Connections Subjected to Cyclic Loads," by P. Gülkan, R.L. Mayes and R.W. Clough - 1978
UCB/EERC-78/18	"Response of'K-Braced Steel Frame Models to Lateral Loads," by J.G. Bouwkamp, R.M. Stephen and E.F. Popov - 1978
UCB/EERC-78/19	"Rational Design Methods for Light Equipment in Structures Subjected to Ground Motion," by J.L. Sackman and J.M. Kelly - 1978 (PB 292 357) A04
UCB/EERC-78/20	"Testing of a Wind Restraint for Aseismic Base Isolation," by J.M. Kelly and D.E. Chitty - 1978 (PB 292 833)A03
UCB/EERC-78/21	"APOLLO - A Computer Program for the Analysis of Pore Pressure Generation and Dissipation in Hoxizontal Sand Layers During Cyclic or Earthquake Loading," by P.P. Martin and H.B. Seed - 1978 (PB 292 835) A04
UCB/EERC-78/22	```"Optimal Design of an Earthquake Isolation System," by M.A. Bhatti, K.S. Pister and E. Polak - l978 (PB 294 735)A06```
UCB/EERC-78/23	"MASH - A Computer Program for the Non-Linear Analysis of Vertically Propagating Shear Waves in Horizontally Layered Deposits," by P.P. Martin and H.B. Seed - 1978 (PB 293 101)A05
UCB/EERC-78/24	"Investigation of the Elastic Characteristics of a Three Story Steel Frame Using System Identification," by I. Kaya and H.D. MCNiven - 1978
UCB/EERC-78/25	"Investigation of the Nonlinear Characteristics of a Three-Story Steel Frame Using System Identification," by I. Kaya and H.D. McNiven - 1978
UCB/EERC-78/26	"Studies of Strong Ground Motion in Taiwan," by Y.M. Hsiung, B.A. Bolt and J. Penzien - 1978
UCB/EERC-78/27	"Cyclic Loading Tests of Masonry Single Piers: Volume 1 - Height to Width Ratio of 2," by P.A. Hidalgo, R.L. Mayes, H.D. McNiven and R.W. Clough - 1978
UCB/EERC-78/28	"Cyclic Loading Tests of Masonry Single Piers: Volume 2 - Height to Width Ratio of l," by S.-W.J. Chen, P.A. Hidalgo, R.L. Mayes, R.W. Clough and H.D. McNiven - 1978
UCB/EERC-78/29	"Analytical Procedures in Soil Dynamics," by J. Lysmer - 1978


UCB/EERC-79/01	"Hysteretic Behavior of Lightweight Reinforced Concrete BeammColumn Subassemblages," by B. Forzani, E.P. Popov, and V.V. Bertero - 1979
UCB/EERC-79/02	"The Development of a Mathematical Model to Predict the Flexural Response of Reinforced Concrete Beams to Cyclic Loads, Using System Identification," by J.F. Stanton and H.D. McNiven - 1979
UCB/EERC-79/03	"Linear and Nonlinear Earthquake Response of Simple Torsionally Coupled Systems," by C.L. Kan and A.K. Chopra - 1979
UCB/EERC-79/04	"A Mathematical Model of Masonry for Predicting Its Linear Seismic Response Characteristics," by Y. Mengi and H.D. McNiven - 1979
UCB/EERC-79/05	```"Mechanical Behavior of Light Weight Concrete Confined by Different Types of Lateral Reinforcement," by M.A. Manrique, V.V. Bertero and E.P. Popov - }197```
UCB/EERC-79/06	"Static Tilt Tests of a Tall Cylindrical Liquid Storage Tank," by R.W. Clough and A. Niwa - 1979
UCB/EERC-79/07	"The Design of Steel Energy Absorbing Restrainers and Their Incorporation Into Nuclear Power Plants for Enhanced Safety: Volume 1 - Summary Report," by P.N. Spencer, V.F. Zackay, and E.R. Parker - 1979
UCB/EERC-79/08	"The Design of Steel Energy Absorbing Restrainers and Their Incorporation Into Nuclear Power plants for Enhanced Safety: Volume 2 - The Development of Analyses for Reactor System Piping," "Simple Systems" by M.C. Lee, J. Penzien, A.K. Chopra, and K. Suzuki "Complex Systems" by G.H. Powell, E.L. Wilson,R.W. Clough and D.G. Rou - 1979
UCB/EERC-79/09	"The Design of Steel Energy Absorbing Restrainers and Their Incorporation Into Nuclear Power Plants for Enhanced Safety: Volume 3 - Evaluation of Commerical Steels," by W.S. Owen, R.M.N. Pelloux, R.O. Ritchie, M. Faral, T. Ohhashi, J. Toplosky, S.J. Hartman, V.F. Zackay, and E.R. Parker - 1979
UCB/EERC-79/10	"The Design of Steel Energy Absorbing Restrainers and Their Incorporation Into Nuclear Power Plants for Enhanced Safety: Volume 4-A Review of Energy-Absorbing Devices," by J.M. Kelly and M.s. Skinner - 1979
UCB/EERC-79/11	"Conservatism In Summation Rules for Closely Spaced Modes," by J.M. Kelly and J.L. Sackman - 1979


UCB/EERC-79/12	"Cyclic Loading Tests of Masonry Single Piers Volume
	3 - Height to Width Ratio of 0.5," by P.A. Hidalgo,
	R.L. Mayes, H.D. MCNiven and R.W. Clough - 1979

