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ABSTRACT

This report presents aformulation for earthquake-resistant design of local

ized nonlinear systems. Based upon the current design criteria. two levels of

performance constraints are imposed as follows. For small earthquakes which

occur frequently, the structure is constrained to remain elastic with no struc

tural damage. For a large earthquake, the structure can undergo inelastic,

deformations at known locations of nonlinearities, with limited damage.

The problem is formulated as a min-max problem, and a general strategy to

transcribe it to the canonical form of a nonlinear programming problem is

given. An algorithm of the feasible directions type is given to solve the resulting

nonlinear programming problem.

The general techniques are applied to the design of nonlinear energy

absorbing devices, which are part of an earthquake isolation system for many

types of buildings. Several design problems with different performance criteria

are considered and the results compared to see the effect of these different cri

teria. Comparison is also made with results reported earlier with only one level

of constraints. The results clearly show the effectiveness of the present

approach with dual performance criteria over the conventional single criterion

approach.
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1. INTRODUCTION

A well-established philosophy [1] for design of earthquake-resistant struc

tural systems is to:

(i) prevent any damage from minor earthquakes which may occur frequently

during the service life of the structure;

(ii) prevent damage to main structural components from moderate earth

quakes;

(iii) prevent major structural damage and collapse of the structure from a

major earthquake which may rarely occur.

The present design practice is to proportion the structure to resist minor

and moderate earthquakes without any significant structural damage. More

over, the behavior is idealized_as linear elastic, and response spectra types of

analyses are used to compute the structural response. The safety of the struc

ture from a major earthquake is taken care of either implicitly through the use

of building codes or explicitly by performing an elaborate nonlinear dynamic

analysis of the structure. Several design cycles might be necessary before

achieving an acceptable design.

Several attempts have been made to automate the design of structural sys

tems using optimization techniques. An exhaustive literature survey of the field

appears in references [2,3]. In most of the earlier work optimal design was

sought by satisfying only one of the design criteria. Recently, Walker [4]

attempted to automate the design of earthquake-resistant multi-story steel

building frames by considering explicitly the dual design criteria mentioned

above. The frame was designed to remain elastic when subjected to a moderate

earthquake. with a specified amount of ductility to withstand a major earth

quake without collapse. The analysis was simplified by introducing a number of

assumptions which make generalization of the process difficult. In the present
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study, a more general approach is followed, and both levels of constraints are

satisfied e~plicitly by monitoring the response to moderate and major earth

quakes during the optimization process.

1.1 Objectives and Limitations of the Study

The main objective of the present study is to obtain the optimal design of

earthquake-resistant structural systems satisfying two levels of design criteria.

At the first level, the structure is designed to remain elastic when subjecled to

minor and moderate earthquakes. The earthquake input is modeled using a

design response spectrum. The response is computed using modal superposi

tion. At the second level, the structure is expected to undergo inelastic defor

mations within the prescribed limits when subjected to a major earthquake.

This requires a dynamic response analysis of a nonlinear system. Fortunately, in

many practical situations. the significant inelastic deformations induced in the

structure by an earthquake are confined to a relatively small portion of the

structure. Examples of such systems are buildings with a "soft" first story,

equipment mounted on flexible supports, and structures with earthquake isola

tion devices. Such systems are characterized by the fact that the inelastic

behavior is confined to known locations in the system. Generally speaking, the

nonlinear behavior occurs in that portion of the system which is more flexible

than the rest, either by intentional design or by prevailing circumstances. The

dynamic response analysis of such localized nonlinear structures is considerably

simplified, as will be explained later. Therefore. the present study considers

only systems with localized nonlinearities.

An actual ground motion record is used as input for the nonlinear system.

In the absence of any suitable method for characterization of earthquake excita

tions for nonlinear systems, the probabilistic nature of the design problem is

taken into account by carrying out a series of analyses for different earthquake
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inputs and comparing the structural response to these earthquakes for the

,structure designed from a single recor;d. This procedure gives at least an

indirect indication of the sensitivity of the optimal design to the selection of

input earthquake ground motion.

The optimization problem is solved by an algorithm of the feasible direc

tions type which is capable of handling time-dependent constraints. In order to

achieve computational efficiency for the class of design problems associated

with earthquake-resistant design, a number of modifications to the basic algo

rithm is required.

The objectives of the present research are summarized as follows:

(i) to formulate the problem of designing earthquake-resistant localized non

linear structures, satisfying dual design criteria, as an optimization prob

lem suitable for the application of nonlinear programming techniques;

(ii) to develop an efficient response analysis procedure for structures with

localized nonlinearities;

(iii) to apply the method of feasible directions to obtain the optimal design,

making use of the special nature of the design problem to achieve compu

.tational efficiency;

(iv) to apply the general techniques to the optimal design of an earthquake iso

lation system, consisting of natural rubber bearings and mild steel

energy-absorbing devices, for a three-story steel frame.

1.2 Outline of the Report

A class of optimal design problems for structural systems with two levels of

performance constraint under earthquake excitations is formulated in Section

2. A technique to transcribe the optimal design problem to the canonical form

of nonlinear programming problem is given and major computational tasks are
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identified. Section 3 contains a brief description of the response analysis of a

linear system using an earthquake response spectrum. Equations for sensitivity

analysis of a linear system are derived in this section also. A mathematical

model for the hysteretic behavior of nonlinear elements is described in Section

4 as well as an algorithm, based upon the Newmark and Runge-Kutta methods,

for the solution of equations of motion of the localized nonlinear system. A tech

nique for sensitivity analysis of a nonlinear system is introduced. Section 5

presents an algorithm of the feasible directions type for the solution of the non

linear programming problem with time-dependent constraints. Details about

the computational aspects of the algorithm are included. Section 6 describes

the application of the general techniques presented in Sections 2, 3, 4, and 5 to

the optimal design of an earthquake isolation system for a three-story steel

frame. Some general remarks about the present study are included in Section

7, which also gives some suggestions for future research in this area.
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2. FORMULATION OF AN OPTIMAL DESIGN PROBLEM FOR STRUCTURAL

SYSTEMS SUBJECTED TO EARTHQUAKES

This section formulates a class of optimal design problems for structural

systems subjected to earthquake ground excitations. A general strategy to

transcribe the optimal design problem to the canonical form of a nonlinear pro

gramming problem is presented. The section is concluded by identifying the

major computational tasks to be performed to achieve the optimal solution of

the problem.

2.1 Optimal Design Problem

As pointed out earlier, the current design philosophy for structural systems

to resist earthquakes is that the structure should be sufficie:1tly rigid to have

small deformations when subjected to small earthquakes. but should be ductile

enough to withstand large inelastic deformations in order to resist large earth

quakes. This design philosophy suggests at least two levels of performance con

straints on the system; namely, one on the response to small earthquakes and

the other on the response to large earthquakes. The objective of the design

problem is to achieve the most "efficient" structural system which satisfies the

above criteria. A number of objective functions has been considered in the

literature. For example, Ray et al [5] considered weight of the structure as an

objective while Walker [4] considered life-time cost of the structure, which

includes the present construction cost plus future damage and repair costs, as

an objective. In this study, the objective function is simply taken to be some

function of the structural response. This approach includes previous work as

special cases and can easily be made explicit to treat particular design prob

lems for which the manner in which the design objective depends on structural

response is specified. Thus, a class of optimal design problems for structural

systems subjected to earthquakes can be written in the form:
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such that

max GL(RL(z,t» ~ of
tET

max GS (RS (z, t )) ~ 6 f
tET

H(z) ~ 62,

where

(2.1.1)

RL,Rs : JRP x JR -t JR Q x JR is some function of structural response. The super-

scripts 1 and s refer to response when subjected to a large and a small

earthquake respectively;

T = [to,t!] is the interval in which significant earthquake ground motion

occurs;

z EJR P is the design parameter vector;

P is the total number of design parameters;

is some function of structural response, which is to be

minimized;

Q is the number of structural response functions;

are time-dependent inequality constraints (functional

constraints);

M is number of functional inequality constraints;

H: JRP -t JRL are conventional inequality constraints;

L is number of conventional inequality constraints;

01 EJR M,02' EJR L are prescribed constraint bounds.

As an example, consider the following problem: a multi-story shear frame

is constrained to remain elastic when subjected to a small earthquake but the

bottom floor is permitted to sustain inelastic deformation when subjected to a

large earthquake. The design objective is to minimize the maximum
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acceleration of the top floor with the bottom floor displacement less than a cer-

tain allowable value. The design variables are the story stiffnesses. In this case

the function F is chosen as the square of the top floor acceleration when sub-

jected to a large earthquake, while Gl is equal to the square of the bottom floor

displacement, with 0 f being its maximum allowable value. The function GS is the

shear in the bottom floor when subjected to a small earthquake and Of is the

corresponding yield force. The function H represents positivity constraints on

the story stiffnesses.

2.2 Transcription of the Optimal Design Problem to the Canonical Form of a

Nonlinear Programming Problem

The optimal design problem formulated in Equation (2.1.1) is not directly

suitable for application of nonlinear programming techniques. An appropriate

canonical form of the nonlinear programming problem can be expressed as

[6,7]:

such that

max rpi(z,t) ~ 0 j=l,. ..•M
lET

gi(z) ~ 0 j=1, ... ,L

where

rpi: JRP x JR ~ JR = functional inequality constraints;

z EJR P = design parameter vector;

fO:JR P ~JR = objective function;

gi: JRP ~ JR = conventional inequality constraints.

(2.2.1)

The optimal design problem (2.1.1) can be transcribed to canonical form

(2.2.1) by augmenting the parameter vector z by a dummy cost parameter zp+1'

The dummy cost parameter is an upper bound to the objective function to be

minimized, that is.
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Thus, the minimization of Zp+l will imply the minimization of the actual objective

function. The optimal design problem can then be written as:

min Zp+l
z

such that

max [F~RZ(z,t),RS(z,tH]- zp+l ~ 0
tET

max GZ~RZ(z,tH - of ~ 0
t€T

max GS~RS (z,t)~ - of ~ 0
tET

H{z) - 02 ~ O.

Equation (2.2.2) is in canonical form with:

jO{z) =Zp+l

SOl{z,t) =F~RZ(z,t),RS(z,tH - Zp+l

SOi (z,t) =GHRl(z,t) - of; j=2, ... ,Jz
SOi{z,t) = Gj~RS{z,tH - of; j=Jl, ... ,M

gi{z,t) = H;(z) - 02i j=1,2, ... ,L.

2.3 Major Computational Tasks

(2.2.2)

(2.2.3)

The optimal design problem formulated in Equation (2.2.2) is suitable for

application of nonlinear programming techniques for its solution. These tech-

niques start out with a given point in the design space and make iterative

improvements on it until an optimum is reached. At each design iteration, the

objective and constraint functions are evaluated at least once. Moreover, if a

gradient type of nonlinear programming technique, such as the method of feasi-

ble directions used in this study, is employed, it will require computation of the

gradients of objective and constraint functions at each iteration as well.

Since the functions F and G involve structural response quantities, their

evaluation requires dynamic response analysis of the structural system.

Separate dynamic ahalyses a.:re needed for large and small earthquakes.' The

gradients of functions F and G involve the gradients of the response quantities
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with respect to the design parameters. Computation of these gradients is known

as sensitivity analysis.

In accordance with the assumed underlying earthquake-resistant design

philosophy, the structure is to remain elastic when subjected to a small earth

quake but can go into the inelastic range when subjected to a large earthquake.

Thus, for a small earthquake linear response analysis methods can be employed,

while a large earthquake will require nonlinear response analysis. The major

computational tasks can now be summarized as follows.

1. Earthquake response analysis of a linear structure. A response spectrum

approach is used, an outline of which is found in Section 3.

2. Sensitivity analysis of a linear structure. The procedure is given in Section

3.

3. Earthquake response analysis of a nonlinear structure. In this study only

systems with localized nonlinearities are considered. A step-by-step

numerical integration scheme is used for response computation, as

explained in Section 4.

4. Sensitivity analysis of a nonlinear system. This procedure is outlined in

Section 4.

5. Solution of the optimization problem with time-dependent constraints. Sec

tion 5 describes an algorithm by which this is accomplished.
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3. EARTHQUAKE RESPONSE ANALYSIS OF LINEAR SYSTEMS

This section gives a brief description of the reSpli}llSe analysis of a linear

system using an earthquake response spectrum. A design response spectrum

based upon analyses of thirty-three past earthquake accelerograms is

described. Equations for sensitivity analysis of a linear system are derived.

Further details about the response spectrum analysis procedure and sensitivity

analysis can be found in references [B,5].

3.1 Response Spectrum Analysis of Linear Systems

The equations of motion for an N degree-of-freedom linear system can be

written as (see reference IB]):

Mii(t)+Cu(t)+Ku(t) = -Mrug(t)

where

tET = [to,tf ] = time interval ofinterest;

(3.1.1)

mass matrix;

C E m. N x lR N = damping matrix;

rEIRN

stiffness matrix;

displacement, velocity and acceleration vectors of

structural response;

earthquake influence coefficient vector. This vector

represents displacements at nodal degrees-of-freedom

resulting from a unit support displacement. For exam

pIe, r T = (1,1, ... ,1) for an N story shear frame (with one

degree-of-freedom at each story) subjected to horizon

tal ground motion;

Ug (t) Em. = ground acceleration time history.
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Equation (3.1.1) can be uncoupled by introducing the transformation:

N
U(t) = ~ rpi Yi(t)

i=l

where

(3.1.2)

is the i th mode shape or eigenvector of the system

obtained from solving the eigenvalue problem;

i=1. ....N (3.1.3)

where Ai is the i th eigenvalue.

is the i th generalized coordinate.

Substituting Equation (3.1.2) in Equation (3.1.1) and using the orthogonality pro-

perty of the mode shapes. the uncoupled equations of motion are:

where

= rp[ K rpi

rp[ M rpi

C.- TC~ = rpi rpi

-rp[Mrug(t)

(3.1.4)

Note that it is assumed that the mode shapes are orthogonal with respect to the

damping matrix, i.e. rp[ C rpj = 0 for all i i j.

The solution of Equation (3.1.4) is given by:

V(t) (3.1.5)

where

L i- = rp[ M r is the modal participation factor;

c.;f = c.;n/1-a is the damped natural frequency of the i th mode; where

c.;i. ti are the natural frequency and the critical damping ratio in the i th

mode, respectively.
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V(t) is the earthquake response integral defined as:

t

Vet) = f Ug ('-) exp[-~i CJi(t-,-)] sin CJf(t-,-)d,-,
c

The pseudo-velocity response spectrum for ii.g (t) is defined as:

(3.1.6)

(3.1.7)

Therefore, the maximum value of the i th generalized coordinate is given by:

The maximum displacement in the i th mode is then obtained from:

(3.1.8)

i=l, ...•N

The maximum displacement at the k th degree-of-freedom is approximated by

taking the square root of the sum of squares of modal displacements (see refer-

ence [8]):

.1
Ukm8X = HU 1,max.I,:>2 + (U2.max.k)2 + ... + (UN.maz,k)2~ 2

Thus.

The computational procedure is summarized in the following algorithm.

ALGORITHM

(3.1.9)

DATA: Structural property matrices :M and K.

Number of modes to be used in response computations, NM.

Critical damping ratios in each mode.

STEP 1: Solve the generalized eigenvalue problem.

i=1. ....NM

STEP 2: Compute the generalized property matrices.
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STEP 3: From the pseudo-velocity response spectrum, get

STEP 4: Compute the maximum displacement in each mode as follows:

i=l, ....NM

where

and

STEP 5: The maximum displacements at nodal degrees-of-freedom are

estimated by the square root of the sum of squares of modal displace-

ments. Thus.

i=l, ....N

where the matrix u E JR N X JR NM. is define d as

- _ [- -]Tu - u 1, ... , V.NM

3.2 Earthquake Response Spectrum

The response analysis procedure given in Section 3.1 requires a pseudo-

velocity response spectrum defined in Equations (3.1.6) and (3.1.7) for a particu-

lar earthquake. A response spectrum can be generated from a specified earth-

quake ground motion time history by following procedures given in reference

[8].

Since different earthquakes have different response spectra. a number of

attempts have been made to generate the so-called design response spectrum

by averaging past earthquake response spectra. Blume et al [9] have re90m-

mended design response spectrum shapes based on the analyses of thirty-three
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different accelerograms of past earthquakes. The basic spectrum shape con-

sists of two straight lines followed by an exponential decay curve, as shown in

Figure 1. Coordinates of transition points are given for earthquakes with large

(50%). small (15.B%) and negligible (2.3%) probabilities of being exceeded and for

damping ratios of 0.5. 1, 2. 5. 7 and 10 percent of critical. The design pseudo-

velocity response spectrum derived from these recommended shapes can be

expressed as:

(3.2.1)

where

a - maximum absolute acceleration for which the structure is to be designed;

w frequency of the system;

T 27T/W = period of the system;

t damping ratio.

D is obtained from recommended shape in Figure 1 for a prescribed probability

of being exceeded.

3.3 Sensitivity Analysis for Linear Systems

Sensitivity analysis (i.e .. computation of the rate of change of response

quantities with respect to design parameters) is an integral part of optimization

processes that use gradient techniques. For a linear system the response equa-

tions can be differentiated to obtain analytical expressions for sensitivity

analysis [4]. Expressions for the rate of change of maximum nodal displace-

ments in the structural model represented by Equation (3.1.1) with respect to

design parameters are derived below.

Maximum nodal displacements are obtained from the following equation

derived in Section 3.1.

i=l .....N (3.3.1)
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where

NM = number of modes to be considered in the analysis

N = total number of degrees of freedom.

Ui; is the (i,j)th element of the matrix u8R N xJRNM whose nth column consists of

Un = rpn Yn •mlU

rpn 8R N is the nth mode shape and

n=l, ... ,NM (3.3.2)

where

CJ;;' = CJn~
= ",h\n (1- t~)

Therefore,

(3.3.3)

Differentiate Equation {3. 3.1} with respect to the design parameter Zl to get

or

aUi {z}
----

aZt
{3.3.4}

aUi"
__3_ in Equation (3.3.4) is computed as follows.
aZl

For convenience, define a diagonal matrix Ymax E JRNM xJRNM whose diagonal ele-

tnents consist of Yn •mlU n= 1, .... NM defined by Equation {3.3.3}. Then the matrix

u can be written as:

u = tP Ymax (3.3.5)

where tP E JRN xm,NM is the modal matrix whose nth column consists of the nth
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mode shape of the system.

Differentiating Equation (3.3.5) with respect to zL gives

(3.3.6)

at!>
The quantities are the derivatives of the eigenvectors. The expressions for

aZL

computation of these derivatives are given in Appendix A.
aymax is a diagonal

aZL

matrix whose nth diagonal element is obtained by differentiating Equation

(3.3.3) as follows:

(3.3.7)

L~ 1 aSv .n

M~v\-t~ A a;;-
where

(3.3.8)

(3.3.9)

and

aSv .n aAn
aAn azL '

(3.3.10)

Computation of a~ is given in Appendix A.
OZL

The derivatives of the pseudo-velocity response spectrum are obtained from the

design response spectrum shape given in Section 3.2. The expressions for these

derivatives are derived in Appendix B.
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Rearrangement of Equation (3.3.7) gives

(3.3.11)

Once Equation (3.3.11) is evaluated for all NM modes to be considered, Equation

(3.3.6) can be evaluated and, in turn, used in Equation (3.3.4) to compute the

required sensitivity matrix.
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4. EARTHQUAKE RESPONSE ANALYSIS OF LOCALIZED NONLINEAR SYSTEMS

In this section a mathematical model describing hysteretic behavior of non

linear elements is introduced. Equations of motion for a structure with a type of

localized nonlinear element are given and an algorithm for numerical solution of

these equations is presented, together with a technique for computing sensi

tivity matrices.

4.1 A Model for Hysteretic Behavior of Nonlinear Elements

A number of models has been employed to specify the force-deformation

relationship for inelastic structural elements under cyclic loading. Two of the

most common are the bilinear and the Ramberg-Osgood models. The bilinear

model exhibits sharp transition from elastic to inelastic states. Kinematic or

isotropic hardening rules are used for unloading and reloading. The model fails

to represent actual material behavior under cyclic loading and is computation

ally quite inefficient because it requires one to keep track of all stiffness transi

tion points.

The Ramberg-Osgood model, coupled with Masing's rule for unloading and

reloading gives a continuous transition from elastic to inelastic states. Compu

tationally, this is a very difficult model to use because of different equations for

different parts of the loop. Matzen and McNiven [10] have pointed out that the

model as presented originally is not suitable for random earthquake-type excita

tions. At least thirteen new rules have been added to make it applicable to this

case, making the model even harder to use.

Recently a series of newly-proposed models for cyclic behavior of structural

elements has been described [11]. These models are given in the form of

differential equations and are sufficiently general to include strain hardening,

stiffness degradation, etc. A single set of equations governs initial loading,

unloading and reloading (facilitating computation) and the model behaves well in
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the case of arbitrary excitations.

, The particular rate-independent model to be used for nonlinear elements in

this study is given by the following equations:

F(t) = KO[O(t) - 16(t)1 [F;:) -srI
S(t) = ex [Mll_ Eilll

60 F o

where

F (t) =generalized force in the nonlinear element;

o(t) = generalized deformation of the nonlinear element;

6(t) = deformation rate· of the nonlinear element;

K o =F% o ;

F 0 =generalized yield force;

00 = generalized yield deformation;

(4.1.1)

(4.1.2)

a = a constant which controls the slope after yielding, K" R:l K o _cx_ ;
l+a

n = a material parameter. taken as an odd integer which controls the

sharpness of transition from the elastic to the inelastic region. As

n~oo the model approaches a bilinear model.

The parameters F o• 00, ex and n are chosen so that predicted response from

the model closely matches experimental response. Typical loops generated by

this model under deformation varying sinusoidally in time are shown in Figure 2.

It should be pointed out that the above model is just one of a class of

models for inelastic behavior. This particular choice was made for the immedi-

ate application of the present work to optimal design of frames with energy-

absorbing devices described in Section 6. More complicated models, such as
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models exhibiting stiffness degradation, etc., can be obtained by introducing

more parameters into the basic model. as explained in reference [11]. These

models can be introduced into the present formulation without any difficulty.

4.2 Equations of Motion for the System

Equations of motion for a discrete, N degree-of-freedom structural system

subjected to earthquake ground motion can be written as follows:

where

Mii{t}+Cu{t}+F{t} = -Mrilg{t} {4.2.1}

u(t) = [U1(t}, U2(t ) •... , UN(t)]T is the nodal point displacement vector,

uER N ;

u(t) = nodal point velocity vector;

li(t) =nodal point acceleration vector;

M = mass matrix of the system. M E lR N xRN ;

C = structural damping matrix. CERN xJRN ;

F =nodal force vector. F EIR N
;

r = earthquake influence coefficient vector. r E JRN. This vector

represents displacements at nodal degrees of freedom resulting

from a unit support displacement. For example, r={l,l •.... l)T for

an N story shear frame (with one degree of freedom at each story)

subjected to horizontal ground motion;

iig {t} = ground acceleration time history

4.3 Numerical Solution of the Differential Equations of Motion

The equations of motion (4.2.1) are solved numerically with the exact solu

tion u{t), u(t) and liCt) approximated by lit. Ut and lit. respectively. at discrete

time intervals. The step-by-step integration procedures start with the known
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initial conditions and march forward in time giving the solution at discrete

points in time. The process for a nonlinear system has two distinct phases. The

first phase is the linearization phase, in which the equations are linearized about

the current state by retaining only first order terms of a Taylor series expan-

sion. Estimates of the solution at the next step are then obtained by using these

linearized equations. The second phase is the slate determination phase, in

which the internal forces in equilibrium with the new state of motion are calcu-

lated. If the discrepancy between these internal forces and the external applied

loads is within some tolerance level, the solution is accepted and the process

repeated for the next step. Otherwise, a Newton-Raphson type iteration is used

until the unbalanced forces are within acceptable limits.

In this study, estimates of the solution are obtained using Newmark's

method, and internal forces in the nonlinear elements are computed using a

fourth-order Runge-Kutta scheme. Details· of the process are given below.

The equations of motion (4.2.1) at time T =t + f).t can be written as

(4.3.1)

where

Define the increments in acceleration, velocity, displacement and force occur-

ring in the time increment f).t by

... ..
Ur - Ut

Ur - Ut

(4.3.2)

f).Ut Ur - Ut

I:!:.Ft = FT - Ft

aFt
-- f).Ut
aUt

= Kt f).Ut

Substituting these expressions in Equation (4.3.1), the incremental form of the
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equations of motion is obtained as follows:

where

Newmark's Method

(4.3.3)

An implicit. single-step. two parameter family of integration operators

described by Newmark [12] is used for the numerical integration of the equa-

tions of motion. The method assumes that the increments in velocity and

acceleration are related to the increment in displacement and the state of

motion at time t. as follows:

= ~ ilUt - 2 Ut - ilt [L -1] lit
{3ilt {3 2{3

1 1. 1 ..= {3(ilt)2 ilUt - {3!J.t Ut - 2{3 Ut

where

ill = time step of integration;

"1.{3 are integration parameters.

(4.3.4)

(4.3.5)

A "constant average acceleration" operator. which is unconditionally stable

for linear problems. is obtained with {3 = 1/4 and "1 =1/2.

A "linear acceleration" operator is obtained w;ith {3 = 1/6 and "1 = 1/2.

Substituting (4.3.4) and (4.3.5) into the incremental equations of motion

(4.3.3) and simplifying gives

where

K; = {3~t M + ih C + Kt

Rt" Pt" + MI{3~t Ut + 2
1
{3 litI+ crt Ut + Ll+~ - 11 lit j.

(4.3.6)
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Solution of Kt ~Ut = Rt

The most expensive part of the integration: process is the solution of the

. above set of linear equations. Fortunately, because of the localized nonlinearity

of the problem, it is not necessary to form and decompose the whole ~atrix Kt

at each step. The substructuring technique is used to separate effectively the

nonlinear part from the linear part of the problem as follows:

Partition the displacement vector such that displacements corresponding

to the nonlinear degrees of freedom are separated from the remaining displace

ments:

where

~uN = incremental displacements corresponding to the nonlinear degrees

of freedom;

~uE = incremental displacements corresponding to the rest of the system.

Partition Kt and Rt accordingly, as follows:

(4.3.7)

The first submatrix equation gives:

or

~UE = Kif [~ - KEN tmN ]

The second submatrix equation in Equation (4.3.7) gives:

KNE ~uE + KNN ~uN = ~.

Substitute Equation (4.3.8) into Equation (4.3.9):

!<HE Kif [RE - KEN ~uN] + KNN ~uN ~.

(4.3.8)

(4.3.9)
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Define

Q = -KE} !<EN.

then

Thus,

or

tmN = [KNE Q + KNNt1
[WV + QT ~].

Once the t:.111 are known, t:.uE are calculated from Equation (4.3.8).

(4.3.10)

The computational steps can be summarized in the following algorithm.

Algorithm

In the beginning of the integration loop

(i) form KEE. KEN. KNE = KIN.

(ii) triangularize KEE.

(iii) obtain Q by forward reduction and back substitution from

~E Q = -KEN.

(iv) form QT and the product KNE Q.

At each time step of integration,

(i) form KNN at the current step,

(ii) form load vectors ~ and WV ,

(iii) solve [KNE Q + KNN] t:.uN = WV + QT ~ for t:.uN•

(iv) obtain t:.uE by forward reduction and back substitution from
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Computation of Internal Resisting Forces

After the increments in the displacements and velocities are obtained, the

next step is to compute the internal resisting forces in equilibrium with this new

state of motion. The internal forces in the linear elements are obtained simply

by multiplying the current displacements by the appropriate stiffnesses of these

elements. Computation of forces in the nonlinear elements, however, is not so

simple, because of lack of an algebraic expression for their force-deformation

behavior, which is described by a set of first-order differential equations. These

differential equations must be integrated numerically to obtain the internal

forces in the nonlinear elements. An explicit fourth-order Runge-Kutta scheme,

with the option of using a smaller time step than the one used in Newmark's

method. is used in this study. An explicit scheme is favored over an implicit

scheme because of the added complexity of an implicit scheme, which would

involve an additional iteration cycle. The details of the process are given below.

To integrate force-deformation equations of nonlinear elements from time t

to time T = t + at, some assumptions regarding the variation of acceleration.

velocity and displacement during the time interval (t,T) are needed. Since the

Newmark's linear acceleration method has been demonstrated to be quite

effective for solving nonlinear structural dynamic problems [13], it seems rea-

sonable to assume linear variation in the acceleration during the time interval.

This implies quadratic variation of velocity and cubic variation of displacement.

These variations are shown in j<""igure 3.

The force corresponding to the i th nonlinear degree of freedom is given by

Equations (4.1.1) and (4.1.2).

(4.3.11)

(4.3.12)
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where 0i (x) is the deformation corresponding to the i th degree of freedom. The

deformations are related to nodal displacements by a transformation matrix

which depends upon the type of structural system. For example, for a shear

frame 0i =Ui - Ui- b while more complicated expressions are required for other

types of frames. Combining Equations (4.3.11) and (4.3.12) then

. [. . ! Fi(x) Oi(X)jnjFi(x) = Ko Oi(X) - IOi(X) I (Ot+l)~ - Ot~

X E [O,~t].

(4.3.13)

Equation (4.3.13) is integrated by employing a fourth-order Runge-Kutta method

with time step ~x, where ~x ~ M, and initial condition Fi (0) = Fi (t).

The following calculations advance the solution from Xx ~ xX+l = Xx + I:ix .

where

then

Algorithm for Integration of the Equations of Motion

The process of numerical integration of the equations of motion (4.2.1) can

now be summarized in the following algorithm.
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A. INITIAL CALCULATIONS

DATA: Integration'parameters. (:J. 7·

Time steps. 6.t and fix.

Convergence tolerance parameter. TOL.

Structural property matrices. KE • M and C.

Parameters of hysteretic model for nonlinear elements. Fo • 60 , ex, and

n.

STEP 1: Compute the constants

1 1
(:Jf:.t aa = 2(:J

a6 = 6.t[~ - 11
. ..

STEP 2: Initialize the state of motion. i.e. specify Uo. Uo. and Uo.

STEP 3: Partition the stiffness matrix as explained in Equation (4.3.7). triangu-

larize KEE and form Q.

B. FOR EACH TIME STEP

STEP 4: Form K; and R;

where P; = P,. - [MUt + CUt + Ftl

STEP 5: Solve

for f:.Ut • using the algorithm given previously.

STEP 6: Update the state of motion at T =t + f:.t

.... .. ..
U,. = Ut + atf:.Ut - a2Ut - aaUt
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UT Ut + a4~Ut - a5 Ut - a6Ut

UT = U t + ~Ut·

STEP 7: Compute the internal resisting forces, FT , in equilibrium with the

current state, as explained previously.

STEP B: Compute the unbalanced force at time T

t = PT- [M UT + CUT + FT].

STEP 9: Compute II tl1 2 , the Euclidean norm of t. If II tl1 2 ~ TOL. no iteration

is needed in this step. Go to Step 4 for the next step calculations, else

proceed to Step 10.

C. ITERATION WITHIN A TIME STEP

STEP 10: Compute K; = aiM + a4 C + l{,..

STEP 11: Solve K; OUT = t for OUT'

STEP 12: Update the state of motion

STEP 13: Compute the unbalance as in Step B. See if convergence criterion of

Step 9 is satisfied. If yes, go to Step 4 for next time step. Else go to

Step 10.

4.4 Sensitivity Analysis

The method of feasible directions for optimization requires gradients of the

constraint functions, which in turn require gradients of the response quantities

with respect to the system parameters. The computation of these gradients,

so-called sensitivity analysis, is intrinsically important because the information

produced can be used directly for design trade-off studies.

One way of computing such sensitivity matrices is to integrate numerically
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the sensitivity equations obtained by differentiating the system equations of

motion with respect to the system parameters [14,15]. In the present case,

because of the complicated nature of the hysteretic model for the nonlinear ele-

ments, the analytical expressions for sensitivity equations a~e very complex.

Numerical integration of these equations with the same time step as that used

for the system equations poses additional difficulties. Because of these

difficulties, a straight-forward approach using finite difference approximations is

used. Partial derivatives are approximated by expressions of the type

where

at (b)
ab

Ri f (b + ab) - t (b)
M

t (-) is any response function and

b is an element of the parameter vector.

Some errors are introduced by the above approximation, but by proper selec-

tion of the step size they can be controlled. Moreover, since these gradients are

used only in the direction finding subproblem of the feasible directions method

(Section 5), the optimal solution is relatively insensitive to these errors.
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5. A METHOD OF FEASIBLE DIRECTIONS FOR PROBLEMS WITH

FUNCTIONAL INEQUALITY CONSTRAINTS

This sectio'n presents an algorithm of the feasible direction type for the

solution of nonlinear programming problems with functional inequality con-

straints (or time-dependent constraints). The basic algorithm is due to Gon-

zaga. Polak. and Trahan [16]. A short description of the algorithm is followed by

details of actual implementation of the basic algorithm for the earthquake-

resistant frame design problem. No convergence proof is given; readers

interested in mathematical details and the convergence proof are referred to

[16].

5.1 Definitions and Preliminaries

The nonlinear programming problem with functional inequality constraints

is defined as

min f O(z)
z

subject to

max rpi (z.t) ~ 0, jEJm
tET

gi(z) ~ O.jEJl

where

T = [to.tJ ] • specified time interval;

J l = t1,2, ...• Lj;

Jm = ~1,2....•Ml;

L = total number of conventional inequality constraints;

M = total number of functional inequality constraints;

zdR P = the vector of optimization variables;

(5.1.1)
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P = total number of optimization variables;

f o:JRP -'>JR and gj ;JR.P -'>JR ,} EJt are continuously differentiable functions in z.

, } EJm are continuously differentiable functions in z and

continuous in t.

The feasible domain, F, is defined by:

F = (z ElR P I max r.pj(z.t);£ 0, }EJm ; gj(z);£ 0, }EJtj.
tET

The interval T is discretized into q+ 1 points and is denoted by Tq •

Define:

~q(z) = max(r.pi(z,t)'}EJm , tETq

1f;q(z) maxtO,Wq(z)l

Note that, if zEF , then 1f;q (z) = 0 .

(5.1.2)

The set of points at which a functional constraint is active is dEmoted by

Tl.l: (z) and is defined as:

Tl,I:(Z) = (tETq Ir.pi(z,t) -1f;q(z) ~ -t;j, }EJm ·

Next, define the intervals I{I:,k(z) C TL (z) k = l,2, ... ,kl.l: (z) ,}EJm recursively,

as follows.

To define the first interval, It,1:.1 (z) , let t 1 be the smallest number in Tl,l: (z)

and let n 1 be the largest integer such that (t 1 + n 1M) E Tl.l: (z) , but

(t 1 + (nt+1)t1t]? Tl,l:(z), where M =(tJ-to)/q

Then

IJ.I:,t(z) = (t lo tt+ M , tt+ 2M , ... ,t1+ntMj.

Next suppose that II.I:,k(z) have been defined for k = 1,2, ... , k 1 , then Ig,I:,(k
1
+1)(Z)

is defined as follows:
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__ . k 1

Let tk1+1ET~.e(z) be the smallest number such that t1: +1 $it U ll.e,k(z) and
1 1:=1

let 1tt
1
+1 be the smallest integer such that

but

Then

For convenience. define

Kte (z) = \1,2..... kte (z)I.
Note that

Tl. t (z) = U ltd (z) .
1:€K4.e(z)

The point at which a functional constraint is maximum in each of the above

defined intervals is defined as:

The set. of points at which a functional constraint is a local maximum is defined

as:

T4.t (z) = U t/.e.k(z) .
k€K~.e("')

(5.1.3)

Now, the " E - active constraint index" set for the functional constraints is

defined as follows:

(5.1.4)

The E - active constraint index set for conventional inequality constraints is
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defined by:

(5.1.2)

The optimality function 1g e,q (z) : JRP --)JR for the nonlinear programming prob-

lem (5.1.1) is defined as follows:

<I/gi (z),h> , j EJtq(z) ;

<l/zlOi(z,t),h>, (j,t)EJf.q(z)II, (5,1.6)

The dual form of (5.1.6), which is actually used in the following algorithm, is as

follows:

fLOl/fD(z)f!ff - ffL°1f;q(Z) L: fLj + L: fLt,t + fLo = 1 (5.1.7)
jE.Jl,q(z) (j,t)E.Jf.q{z)

and

where

L: fLJIIgj (z) + L: fLt,tll z rpj (z,t) + fLollf 0 (z), (5.1.8)
.i E.Jl,q (z) (j ,t )EJ f,q (z)

IIf(x) denotes the gradient of function f : JRP --)JR at x. The gradient

vector is treated as a column vector.

<", > denotes the scalar product in JRP and is defined by

P

<x , y> =~ Xi Yi
i=l

I !. 112 denotes the Euclidean norm in JRP and is defined by
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Theorem [16]

If z is optimal for nonlinear programmin:g problem (5.1.1), then the function

190,q (z) given by Equation (5.1. 7) is equal to zero.

5.2 A Feasible Directions Algorithm

A feasible directions algorithm for the solution of the nonlinear program-

ming problem (5.1.1) can now be presented.

Algorithm

DATA: 0: E(O, 1) , f5 E(O, 1) , 7~ 1

c5E(O,l] • 80>0

STEP 0: Set i = a , q = q o.

STEP 1: Set 8 = 80'

STEP 2: Compute [19&,q(Zi) , he.q(zi)] by solving (5.1.7) and (5.1.8).

STEP 3: If 19&.q (zi) ~ -2Ec5. go to step 6; Else set 8 = E/2 and go to step 4.

ILl ( .) IL2STEP 4: If 8 < 80- and 1/Iq zt < --, set q = 2q and go to step 5; Else go to step
q q

2.

STEP 5: If q > qmax , STOP; Else, go to step 1.

STEP 6: Compute the largest step size A(zi) = f5k{zi) E (O,M t
] • where

MO=ma)l, . ~. Iand k(Zi) is an integer, such that1 \IhE:,q zt) I I..,

(i) if ziEFc (the complement of F in mP )
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(ii) if ziEF

fO[Zi +A(Zi)ht:,q(Zi)] - fO(Zi);£ -aA(zi)6E:

gj [zi + A(Zi )h.:,q (Zi)] ;£ 0 j EJ1

~j[Zi + A(Zi)he,q(Zi),t] ;£ O. jEJm ' tETq .

STEP 7: Set zi+l = zi + A(zi )he,q (zi). Set i = i+ 1 and go to Step 2.

Remark

The algorithm as presented above does not require an initial feasible point.

If zo 5?' F . then 1J;q (zo) is non-zero and the algorithm constructs a sequence of

points which forces the point into the feasible domain. This aspect of the algo-

rithm is very advantageous in the case of complicated problems where the

choice of an initial feasible point is not obvious. For example. in earthquake-

resistant design if the relative drift of a particular story in a framed structure is

to be limited to a certain value, it is not easy to find an initial design that will

satisfy that requirement. Of course, the algorithm is more efficient if one can

start from an initial feasible point.

5.3 Explanation of the Algorithm

The algorithm has two distinct phases. First. a direction is computed by

solving (5.1. 7) and (5.1.8). A step is then taken in this direction in such a way

that, if the current z is in the feasible domaln. there is a maximum reduction in

the objective function while still maintaining feasibility. When the current point

is outside the feasible domain, the step length is chosen so as to move as close

to the feasible domain as possible.

Direction Finding Subproblem

As noted, a feasible direction is found by solving the problem:
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JLOVfO{z)ll~ - 'lJLo1/lq{z) I ~ JLJ + ~ f..Lt·t + f..L0 = 1]{5.3.1)
iE:J~.q(z) (i .t)E:Jr,q(z)

and then computing the direction from

-hq (z) = ~ JLJ'ilgi(Z) + ~ JL$.tvzrpi(z,t) + JLoVfO(z).
iE:J~.q(Z) (j .t)E:J l,q(z)

(5.3.2)

Equation (5.3.1) can be transcribed into a standard quadratic programming

problem as follows. Let kg be the total number of points in J~.q(z) and (jrp,lrp) be

the total number of points in Jf.q(z) . Define the vector f..L EJR 1+kg +i,t, as follows:

where

k i E J~.q(z) for i=l, ... , kg

<ii,li) E Jf.q(z) for i=l, ... ,j" j=l, ... , lrp

. l+k +; I PDefine the matnx A E JR g , rp x JR as:

(5.3.3)

A = (5.3.4)

[vz rpi '(z~ t: ~t.trp)r
Then Equation (5.3.1) can be written as:

or

1+k +i l
Define a vector D E JR. 11 rp, such that

(5.3.5)
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l+k +' . l+k +. 1
and a matrix Q EJR g '~L", xIR g '", '" by

Q = AAT
.

Then Equation (5.3.5) can be written as:

[
1 l+k~jl"l'l'. I

min - JLT QJL + DT JL I 2.J JL' = 1
J.l~O 2 j=l

(5.3.6)

(5.3.7)

(5.3.8)

which is a standard quadratic programming problem. Once JL 's are obtained by

solving (5.3.8), the direction is computed from

(5.3.9)

Step Length Computation

After a feasible direction is obtained, the next step is to compute the step

length in that direction. If the current design is inside the feasible design, the

step length should be chosen in such a way that there is a maximum reduction

in the objective function, while still maintaining feasibility. When the current

design is outside the feasible domain, the objective is to take a step such that

the new design is as close to the feasible domain as possible. The step size calcu-

lations begin by minimizing the objective function along the feasible direction

and then checking whether any of the constraints is violated. If any of the con-

straints is violated, the step length is reduced and the process repeated until

the new design satisfies all of the constraints. A number of methods are avail-

able for this unidirectional search, the most popular among them being

Fibonacci search, Newton's method, quadratic or cubic fit, etc. [6,17]. F'or gen-

eral non-convex problems, these methods tend to be very expensive. Since com-

putation of the exact minimum along the feasible direction is not absolutely

necessary, an approximate line search technique, known as the Armijo step size

rule, is often used [6,18]. The method performs only an approximate line search

and is quite efficient for general non-convex problems. The method is as follows.
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Given the constants a, 0, t:, (J, M, current design vector Zi , hq(zi) and

1/Jq(zi), compute the largest step size A(zi) = (Jk(zi) E (a,M·] where

M· = max (1 , 1v1 )
II he,q(zi) II 00 '

such that

(ii) if 1fq (zi) = a , i. e. zi EF , then

fO[Zi + A(zi)he,q(zi)J - fO(Zi)::£ - aA(zi)6t:,

gj [Zi + A(Zi )he,q (Zi) J ::£ 0 j E J l ,

\o?ik + A(zi)he,q(zi) , t] ::£ 0 j E J m , t E: Tq .

The algorithm to imp] ement the above process is as follows.

STEP 1: Set A = (J . Compute M· = max(1, I Ihe,q~Zi) II coI.Set FLAG = O. Set n

=O.

STEP 3: If 1/Jq (zi) > 0 , go to step 5. Else. go to step 4.

wise. go to step 8.

STEP 5: If 1/Jq(z.A+l) + aA6r ::£ 1/Jq (zi) , go to step 7. Otherwise, go to step 8.
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STEP 6: Compute gj(z1i+ 1),jEJt and rpi(z1;,+l,t),jEJm t ETq • If gj(z1;,+l) ~ O,jEJt

and rpj (zA+l,t) :?: 0 j EJm ,t ETq , go to step 7. Otherwise, go to step 8.

STEP 7: If;\ / f1 > MO or FLAG = -1, go to step 9. Otherwise, set ;\= ;\ / f1 ,

FLAG = 1, n = n + 1 and go to step 2.

STEP 8: Set;\ = ;\ f1 . If FLAG = 1, got to step 9. Otherwise, set FLAG = -1, n = n

+ 1 and go to step 2.

STEP 9: Set;\ = ;\0 and the new design vector is zi+l = Zi + I\O
ht,q(Zi) .

5.4 Computational Considerations

The quadratic programming problem as formulated in Equation (5.3.8) may

be computationally ill-posed because of different magnitudes of the gradients of

different functions. Proper scaling is therefore essential to make the problem

computationally efficient. In the present version the following scaling was used.

Define

S§ = Ilvgj(z)II"", j E J~.q(z);

s~·t = Ilvzrpj(z,t)II"", (j,t) E Jl.q(z);

So = IlvfO(z)lloo.

where

II II"" is the maximum norm inJR P defined by

The matrix A defined in (5.3.4) is scaled as follows.

(5.4.1)

A = (5.4.2)
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l+k +j l
Define a vector R E JR g rp 'P as:

(5.4.3)

where ti • j= L ... ,kg and pi,l ,j=L ... J jrp l= 1, .... lrp are called" push-off "

factors and can be adjusted to force the direction vector toward or away from a

constraint. If any of these factors is large as compared to the rest, then the

constraint corresponding to that factor will dominate the direction finding prob-

lem. If the constraint functions are well scaled, all the push-off factors could be

set equal to one in which case all the active constraints will get equal impor-

tance. For a general case the following scheme of choosing the push-off factors

seems to work well.

. [gi{Z)-1/Iq(Z)12 .e = 1 + 7J 1 + ---£--- J = 1, ... , kg

. l [rpi (z, t) - 1/1q ( z) 1
2

.)
p" = 1 + 7J 1 + tETd,f:(z iEJm

£

where 7J is an input parameter.

(5.4.4)

(5.4.5)

An arbitrary upper limit of fifty was set for these push-off factors in the

present study to prevent any instability in the direction finding process.

With these definitions, the scaled version of the quadratic programming

problem (5.3.8) can be written as:

(5.4.6)

where Q = AAT with A defined by {5.4.2} and

DT = [71/1q (z}/so ,0,0, ... ] .

The direction vector is still computed from Equation {5.4.9}.

5.5 Evaluation of Constraint Funtions and their Gradients

As is clear from the previous sections, the feasible directions algorithm'
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requires computation of constraint functions and gradients of "active" con

straint functions at each iteration. The computation of conventional inequality

constraints (functions 'g' in the previous section) and their gradients presents

no great difficulty. The funtional constraints (functions' rp , iq the previous sec

tion) , however, are very expensive to compute because they require the compu

tation of the time history of response of the structure, which for a nonlinear sys

tem is not a trivial matter. The problem becomes even more complicated

because the algorithm requires computation of the gradients of the functional

constraints, which in turn require sensitivity analysis, i.e., computation of gra

dients of the response quantities with respect to design parameters, using the

chain rule, to obtain differential equations for senstivity analysis [14,15].

Numerical integration of the sensitivity equations then gives the required gra

dients of the response quantities. For a nonlinear system of the type considered

here the analytical form of the sensitivity equations becomes quite complicated,

so that the direct finite difference scheme of computing these derivatives seems

to be more appropriate. The finite difference scheme requires an additional p

time history analyses, where p is the total number of design parameters. Thus,

computation of functional constraints and their gradients requires p + 1 time

history analyses of an "N" degree of freedom nonlinear system, clearly a major

computational task. Therefore, any reduction in the number of times that these

calculations are executed will significantly reduce the total computational cost.

In the actual implementation of the algorithm for the type problem under

consideration a number of things can be done to reduce the computational cost.

The most obvious is to make the integration of response equations as efficient as

possible. This is done by exploiting the localized nonlinear nature of the prob

lem, using sub-structuring techniques. An efficient Newmark's method with

optional Newton-Raphson iteration is used to carry out numerical integration of
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the equations of motion. Provision is made in the program to do the structural

and/or sensitivity analysis only if the design parameters are changed "appreci

ably". Thus, if at a particular iteration, design parameters are changed very lit

tle, so that the maximum difference between the new and old design parameters

is less than a certain prescribed value, the program does not compute the new

time history analysis; instead, it uses the previous values.

A closer look at the algorithm shows that, when none of the functional con

straints is active, gradients of the response quantities are not needed. In the

program, therefore, constraint functions are first computed and then checked

to determine if any of the constraints is active. If none of the constraints is

active, the sensitivity analysis part is skipped, resulting in a significant saving in

computation. Another source of considerable savings is the observation that

gradients of response quantities are required only at tho',;e times included in the

E - active constraint set defined in the previous section, In earthquake prob

lems, structural response typically builds up slowly and Lhen dies down, whence

the E - active times are for the most part much smaller t.han the total duration

of the response time history. Therefore, when performin~ sensitivity analysis, it

is not necessary to compute the response time history beyond the maximum

time included in the E - active set. This feature has been incorporated into the

program.
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6. APPLICATIONS

The general techniques described in the previous sections are applied to a

three-story steel test frame supported on an earthquake isolation system con

sisting of rubber bearings and a mild steel energy-absorbing device. The same

frame was used as an example in reference [19] but with only one level of perfor

mance constraint. This section describes the formulation of a mathematical

model for the test structure and presents numerical results for two design prob

lems.

6.1 Steel Test Frame with an Earthquake Isolation System

A half-scale model of a three-story steel-framed structure with an isolation

system consisting of rubber bearings and energy-absorbing devices was tested

on the earthquake simulator at the University of California. This section gives a

brief description of the test frame and the isolation system used. Further

details of design and fabrication are given in references [ 20-24).

Steel Test Frame

The test structure consisted of two identical, three-story, single-bay steel

frames interconnected by floor diaphragm systems which were essentially rigid

in their planes, as shown in Figure 4. The model weighed 39.5 kips, was 20 ft.

high and 12 ft. by 6 ft. in plan. The columns and beams were W5 x 12 and W6 x 12

rolled sections, respectively, and were welded together by typical momerit

resistant connections. A heavy W10 x 49 girder was used at the base to ensure

that the rubber bearings would have little tendency to undergo bending defor

mations. Concrete blocks weighing 8 kips were added to each floor to simulate

the dead weight of the building. The model was supported on rubber bearings

and energy-absorbing devices were attached to the base floor through a horizon

tal link.
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Natural Rubber Bearings

A typical natural rubber bearing used in the test is shown in Figure 5. Each

layer of a multi-layer bearing was hand-fabricated from sheets of rubber vulcan

ization bonded to aluminum foil. The aluminum foil was in turn bonded to the

mild steel interleaves using adhesive tape over two-thirds of the surface area

and epoxy resin, for greater shear strength, over the remaining one-third area.

The vertical stiffness characteristics of the rubber bearings are shown in

Figure 6. After an initial soft cycle, the bearings showed little hysteresis. The

vertical stiffness under the working load is of the order of 150 kips/in.

Horizontal stiffness characteristics are shown in Figure 7. The initial

tangent stiffness at zero deflection is 320 lb./in., reducing to about 250 lb/in. at

2.5 in. deflection. The hysteresis loops represent approximately 10% critical

damping.

Torsional Energy-Absorbing Devices

A typical energy-absorbing device is shown in Figure 8. The key element in

the device is the mild steel torsion bar of rectangular cross section to which

four clamps are welded. The outer clamping arms are used to attach the device

to structural and foundation elements, with the inner arms linked to the active

structural element. When this element is displaced, it pushes the inner arms

introducing torsion in the mild steel bar.

In this steel frame test, devices were attached to the base floor in such a

way that they applied a horizontal force to the model structure. The devices

were tested under sinusoidal and random loadings to establish their capability of

V\ri.thstanding many cycles of large plastic deformation without appreciable

deterioration in their energy absorption capacity. Under small excitations, the

devices are elastic and the system behaves as a rigid foundation system, while

under strong excitations the devices yield and produce large hysteresis loops,
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thus absorbing a considerable amount of energy.

6.2 Equations of Motion for the Test Frame

The test frame geometry is shown in Figure 9. Masses are assumed to be

lumped at the floor levels and rotary inertia is neglected. If the axial deforma-

tions in beams and columns are neglected, the frame has 12 degrees of freedom

as shown in Figure 10.

The equations of motion for the frame can be written as:

Mu(t) + Cu(t) + KE u{t) + F(t) = -Mrug(t)

where

(6.2.1)

a:- .:...:..
U ,u ,u = displacement, velocity and acceleration vectors of the 12

degrees of freedom;

M 12 x 12 diagonal mass matrix, whose diagonal elements

are [0.02438 0.02438 0.02514 0.02832 0 ... 0];

C 12 x 12 damping matrix;

KE 12 x 12 stiffness matrix of the frame including the rubber

bearings but not the energy-absorbing device. This

matrix is given in Table 1;

F force in the energy-absorbing device. The only nonzero

entry in this vector corresponds to the degree of freedom

at which the energy-absorbing device is connected. In

this case, only fi\ will be nonzero;

[1 1 1 1 0 0 ... 0];

ground acceleration time history.

In order to eliminate rotational degrees of freedom from the system, the

matrices M, C, and KE are partitioned corresponding to the rotational and
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translational degrees of freedom. The system of equations than has the form

(6.2.2)

where

u = [Ut. U2. Ua. U4JT

U19 = [U5 • . , .• U12JT

e = [l,l,l,lY·

The second sub-matrix equation gives:

The first sub-matrix equation gives:

Mii+Cu+Kfiu+[Kftfu'19 +F = -Meug(t);

Substituting for u19 from Equation (6.2.3) into Equation (6.2.4) yields

Mii(t) + Cu(t) + KEu(t) + F = -Meug(t)

where

(6.2.3)

(6.2.4)

(6.2.5)

(6.2.6)

The 4 x 4- condensed stiffness matrix for the frame can be evaluated by carrying

out the matrix operations in Equation (6.2.6). which gives (in kip-inch units):

46.38 -66.64 23.04
144.40 -96.50

SYMMETRIC 122.43

- 2.78
18.74

-48.97 .
34.21

(6.2.7)

The mass matrix of the structure corresponding to the lateral degrees of free-

dom is, from Equation (6.2.1) (in kip-inch units):

M =
0.02438

0.02438
0.02514

0.02832

Rayleigh damping is assumed in constructing the damping matrix:
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The coefficients ex and f.J are computed from:

1,

"'1
1 :: ~I = I~:I,

where "'1 and "'2 are first and second mode frequencies, and f1 and f2 are the

respective critical damping ratios in these modes. The damping matrix for the

present structures, assuming f1 =3% and f2 = 1%, is given below.

c = r 0.0279

l5'YMMETRIC

-0.0332
0.0768

0.0115
-0.0481
0.0660

-0.0014
0.0093

-0.0244 .
0.0226

The force in the energy absorber is computed from Equations (4.1.1) and

(4.2.2):

where

F 0, Do' ex and n are device parameters.

(6.2.8)

For linear analysis, the stiffness matrix for the complete structure is obtained

by adding K o to Kf4' Thus, the following K matrix is used in Equation (3.1.!).

K =
46.38 -66.64 23.04

144.40 -96.50
SYMMETRIC 122.43

- 2.78
18.74

-48.97
34.21+Ko

For nonlinear analysis, the tangent stiffness matrix Kt at any time is

aFit)
obtained by adding --- to KL as follows:

aU4

Equation (6.2.8) gives
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S (t)

where

sign = 1 if U4(t) > a
= -1 if U4(t) < o.

Thus.

or

= (X fU4(t) _ F 4(t)]
[00 F o

[ [
F4(t) In]K o 1- sign~ - Set)

aF4(t) [ [Fit) In]
aU4 = K o 1- sign~ - Set) .

Thus, Kt for Equation (4.3.3) is:

46.38 -66.64 23.04
144.40 -96.50

SYMMETRIC 122.43

2.78
18.74

-48.97

34.21+ aF4(t)
aU4

6.3 Design Parameters

It is assumed here that the characteristics of the rubber bearings are fixed.

Therefore. only the parameters of the energy-absorbing device will be adjusted

to obtain the optimal design. The two basic variables in the design of energy

absorbers are the elastic stiffness and the post-yield stiffness. These variables

are controlled by the parameters Fa • 00. and (X in the hysteretic model of the

energy absorbers. The elastic stiffness is approximately equal to F 0/00 and the

F
post-yield stiffness is approximately equal to s 0 (-1(X ). Thus. the design vari-

Uo +(X

abIes are F o, 15 0 , and (x. Another parameter which may influence the design is

the exponent "n" in the hysteretic model, but it is not considered as a variable

in the present study.



49

6.4 Optimal Design Problems

The purpose of an earthquake isolation system is to minimize some meas-

ure of the response of the structure. There is a number of response quantities

which could be minimized. e.g., the maximum acceleration in the structure,

maximum base shear, maximum story shear, maximum interstory drift, etc. In

order to get meaningful results, response constraints are also needed. Some of

the constraints are dictated by the problem itself, e.g., the design parameters

F 0. 00, and 0: are not allowed to attain negative values. Such constraints consti-

tute conventional inequality constraints. Constraints on the response quantities

are also needed; e.g., when accelerations in the frame are minimized, the dis-

placement at the base must not be arbitrarily large. These restrictions give rise

to functional inequality constraints. Thus, a number of design problems could

be formulated depending upon the objective function and the type of constraints

placed on the response. In what follows, two design problems of interest are

considered.

6.4.1 Design Problem 1

In this problem, the base shear in the frame subjected to a large earth-

quake (El Centro span 750 test shaking table motion) is minimized while main-

taining the bottom floor displacement within a prescribed limit under that

earthquake. Since large deformations are not desirable under small earth-

quakes which occur frequently, an additional constraint to limit the bottom floor

displacement due to a small earthquake is incorporated.

Mathematically, the problem can be expressed as:

min max [V~(t)]2
z tET

subject to

max [uHt )]2 ~ 0
tET

F~ax ~ F o

Fo,oo,O: > 0
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where

v~ = base shear from a large earthquake., The base shear is computed

by first computing the story shears from

f~(t) = KE ut(t).

and then adding the story shears

where

e T = [1.1.1.1],

KE is given in Equation (6.2.7). u t (t) is the displacement vector

from a large earthquake;

Z = [Ztoz2.zaF = [Fo.60 .aF is the design parameter vector;

T = [to .tt ]. given time interval;

6 prescribed limit on U4 (specified as 4 inches in the example);

F~e.x maximum force in the energy-absorbing device subjected to a

small earthquake.

As explained in Section 2.2. the design problem can be transcribed into a

mathematical programming problem. as follows.

The parameter vector z is augmented by a dummy cost parameter Z4 and

the above problem is then equivalent to the problem:

min Z4
z

subject to

max [V~(z.t)]2 ~ 24
t

max [uHz,t)]2 ~ 6
t

(F~e.x (Z})2 ~ (F O}2

Fo,oo,a > 0
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In terms of the canonical form of nonlinear programming problem, Section

2.2, the above.problem is expressed as:

1Q1(Z,t) = _1 [V~ (z,t)]2 - 1.0
Z4

1Q2(z,t) = ~ [ui(z,t)]2 - 1.0

9 l(Z) = [F71 (Z) r-1.0

g2(z) = -z 1 + 1.0E - 5

g3(z) = -z2 + 1.0E - 10

g4(z) = -z3 + l.OE - 10

fO (z) = z4

Z = [Z1o Z2,Z3,Z4]

= [Fo, c5o,a,z4]

The gradients of objective and constraint functions are:

Since

Therefore,

avb (Z,t)
aZ j

au1(z,t )/azj
= eT KE au~(z,t )/aZj . 123

au~(z,t)/aZj J=".

aui(z,t )/aZj

aui(z,t)/az 1

= .£ u l (z t) aui(z,t)/az 2
c5 4 ' aui(z,t )/aZa

o
aF~x(Z)/aZl - F~ax(Z)/Zl

aFfnax (z)/az 2

aFfnax (z)/az a
o

Vg 2(Z) = [-LO,O,oF

Vg 3(z) = [O,-l,O,oF
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Vg 4(z) = [O,O,-LOY.

Vi 0 (z) [o,o,o,lF

Num.erical Results

A computer program based on the algorithms presented in Sections 3, 4,

and 5 was used t.o solve the above design problem. EI Centro span 750 ground

mot.ion, as used in the experimental investigation in reference [20], was used to

represent a large earthquake. This ground motion is the same as the EI Centro

1940 NS component with modified time scale and amplitude and is shown in Fig-

ure 10. For the small earthquake, a response spectrum approach is used, as

indicated in Section 3. The response spectrum chosen corresponds to an earth-

quake wit.h 50% probability of being exceeded, along with the assumption that

the critical damping is 5%. The maximum absolute acceleration for the small

earthquake was set at 0.15 g. 0, the upper limit on the bottom floor displace-

ment, was set equal to four inches.

Initial values of the design parameters were obtained from experimental

data on the energy-absorbing devices [20,22]. The following numerical values

were used:

F o = 5.0 60 = 0.11 0: = 0.064 n = 1.

Initial value for the dummy cost parameter was 24 = 8.75, which was an upper

bound for the square of the maximum base shear for a large earthquake.

The optimal values obtained for these parameters were:

Fo 5.011661 00 = 0.054741 0: = 0.0102178

24 4.538479.

Figure 11 shows the decrease in the cost parameter, which is the same as

the decrease in the square of maximum base shear, versus the number of design

iterations. Story shears, bottom floor displacement and hysteresis loops for

both optimal and initial parameters are plotted in Figures 12 - 17. The plots of
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the story shears show that the peaks are reduced in the large acceleration

range. Since the optimal design is stiffer than the initial design, the stiffness

being increased from 45.5 to 91.55, the displacements at the floor levels are

reduced too.

6.4.2 Design Problem 2

It has been observed that the inter-story drift is one of the important

parameters which controls damage to the structural and non-structural com-

ponents. Since story shears are proportional to the inter-story drift. the objec-

tive function for this problem is chosen as the sum of squares of story shears

due to a large earthquake. Constraints are placed on the bottom floor displace-

ment due to both a large and a small earthquake and on the force in the

energy-absorber when subjected to a small earthquake. Mathematically, the

problem can be expressed as:

subject to

max [ui(t)]2 ~ 62
t€T

~tm8I]2 ~ 6f

~~ax]2 ~ F5
F o.60' cx > 0

where

Uj; j= 1,4 = story displacements ( top down ). Superscripts 1 and s refer

to a large and a small earthquake respectively;

Kj ; j= 1.4 = story stiffnesses, (top down);

F~8I = maximum force in the energy-absorbing device when sub-

jected to a small earthquake;
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T = [to.tJ], given time interval;

6 = prescribed limit on ui (taken as 4 inches in the example);

01 = prescribed limit on u~ (taken as 0.25 inches).

The corresponding nonlinear programming problem can be written as:

min z4
z

subject to

max l~}; ~(z.t) - uJ+1(Z,t)J!'] ~ z4
t£.T

max [ui(z,t)]2 ~ 02

t€T

[utma.z(z)]2 ~ of
[F~ax(z)]2 ~ F~

Fo.oo,a > 0

In terms of the canonical form of nonlinear programming problem. Section

2.2, the above problem is expressed as:

cp1(z.t) = z14l~J(j [uJ(z.t) - UJ+l (z,t)1rl - 1.0

cp2(z.t) = 012 [uHz.t )]2 - 1.0

gl(z) = !ut~a:(z)r-1.0

g2(z) !Ffnax(Z)r= - 1.0
zl

g3(Z) = -z 1 + 1.0E - 5

g4(Z) = -z2 + 1.0E - 10

g5(Z) = -Z3 + 1.0E - 10

fO(z) = z4

Z = [Zl,Z2,Z3,Z4]

= [F o.oO.a,z4]

The gradients of objective and constraint functions are:

ouj(z,t )/oz 1 - ouj+l (z.t )/oz 1

ouJ(z,t )/OZ2 - ouj+l (ZIt )/OZ2
ouJ(z,t )/ozs - aUJ+l (z.t )/ozs

1--- Vo2z 4
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where

Va = i~JKj [Uj{Z,t) - Uj+l (Z,t )l!
J •

au~ (z.t)/h~
Vz \p2(Z,t) = :2 ui(z,t)

aui(z,t )/8z
aui(z,t )/aZ8

a
autma.z(Z)/iJz,

Vg l(Z)
2utma.z(z) au1.ma.z(Z)/dz21= of aul,ma.z (z)/oz 3

a
aF~ax(Z)/aZl - F~ax(z)/z 1

Vg 2(z)
2F~ax(z) aF~x(Z)/aZ2

=
aF~(Z)/aZ3(z 1)2

°Vg 3(z) = [-l,o,o,oF
Vg 4(z) [O,-l,o,oF
Vg 5(z) = [O,o,-l,oF~

Vfo (z) = [O,o,o,lF

Numerical Results

Initial values of the design parameters for this problem were the same as

those for the first. problem. The dummy cost parameter was z 4 = 30.0, which

was an upper bound on the sum of squares of story shears. The optimal values

obtained for these parameters were:

F o = 4.337126 60 = 0.25028 ex = 0.0583057

z4 = 16.89978.

Figure 18 shows the decrease in the cost parameter, which is the same as

the decrease in the sum of square of story shears, versus the number of design

iterations. Story shears, bottom floor displacement time history and hysteresis

loops for both optimal and initial parameters are plotted in Figures 19 - 23. The

optimal design is softer than the initial design; the stiffness being reduced from

45.5 to 17.33.

It is interesting to compare the results of this problem with the one solved
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in reference [19], which was essentially the same except that there were no con

straints under small earthquake excitation. In that c~se the stiffness of the

optimal energya.bsorber W'as 2.4,' which is considerably lower than that obtained

here. Thus, the present design shows that the previous design was not satisfac

tory since it will have excessive deformations under small excitations.

6.4.3 Discussion

As is evident from the solution of two design problems presented in sections

6.4.1 and 6.4.2, the optimal solution depends upon the objective function and the

constraints imposed on the system. Two completely different solutions were

obtained for the same physical problem by choosing different objective and con

straint functions. In the first problem, the optimal design was stiffer than the

initial one while in the second problem it was softer. Thus, there is no unique

way of defining an optimal problem. Different objective and/or constraint func

tions should be tried and the results compared. The solution exhibiting best

overall behavior should be chosen.

From the study of two design problems considered here. it seems that the

solution given by the second problem is better since in this case the story

shears are reduced considerably. Although the bottom floor displacements are

larger in this case , they are still within the acceptable limits defined for the

problem.

6.5 Sensitivity of the Optimal Design to Different Earthquake Ground Motions

As is clear from the preceding development, only one earthquake ground

motion is used in the optimal design process. Since earthquakes are random in

nature, it is unlikely that the same earthquake ground motion will be repeated

at some future time. Therefore, it becomes necessary to see the effectiveness of

the optimal design process for different earthquakes. To get meaningful results,

these additional earthquakes should have characteristics similar to the one used
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in the design process. This requirement prohibits the use of actual past earth

quake records, inasmuch as for a given site there is typically an insufficient

number of past records. An alterna.tive is the use of artificially generated earth

quakes of the same class.

For the present study a family of five earthquakes having characteristics

similar to the El Centro 1940 NS earthquake was generated using the computer

program PSEQGN developed by P. Ruiz and J. Penzien [25J and later modified by

M. Murakami [26]. The earthquake accelerograms were generated by passing

nonstationary shot noise through two second-order linear filters and applying a

base line correction. Each accelerogram was of thirty seconds duration with

four seconds of parabolic built up, eleven seconds of constant intensity followed

by fifteen seconds of exponential decay. The maximum acceleration in each

record was about 0.30g.

The structure was analyzed twice. first with initial parameters and then with

optimal parameters obtained from problem 2, subjected to these five earth

quakes. Story shears and bottom floor displacements are compared for the ini

tial and optimal parameters and are shown in Figures 24-33.



58

7. CONCLUDING REMARKS

The main objective of the current study was to formulate and solve a prob

lem of design of earthquake-resistant structural systems with dual design cri

teria. The techniques were applied to the design of an earthquake isolation sys

tem for a three-story frame. The same frame was used as an example in refer

ence [19] with constraints only on the nonlinear response. Comparison of the

optimal solution obtained here with the one obtained in reference [19] clearly

shows that the current strategy gives a much more practical design, since both

the limit states could be explicitly satisfied. Although. numerical results

obtained so far are encouraging, further research is needed with more practical

design problems to establish the superiority of the designs obtained with the

dual design criteria approach.

Since the earthquake ground motions are probabilistic in nature, the

optimal design obtained using one ground motion may not be optimal for some

other ground motion. Better methods for characterization of ground motion are

urgently needed. It should be pointed out that the techniques presented here

can be extended to obtain an optimal design with constraints on response under

a number of earthquakes without any difficulty. The only drawback is the exces

sive amount of computer time used in this approach.

The limited numerical experience with the feasible directions algorithm

used here indicates that the effectiveness of the algorithm depends, among

other things, on a number of tolerance parameters. Some experience with these

parameters is needed before arriving at the most suitable set of parameters for

a particular problem. An interactive computer system, where the user can

change these parameters during the optimization process, seems to be a more

efficient way of handling this situation. Work on the interactive implementation

of this algorithm is underway.
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Another factor which apparently affects the computational efficiency of the

algorithm is the number of design parameters. As the number of design param

eters increases, the computational efficiency decreases. One way of decreasing

the number of design parameters at a particular stage of design process is to

use the so-called "multi-level optimization techniques" which break down the

problem into a number of sub-problems. At the moment, it is not clear whether

this approach will increase the overall computational efficiency, but more

research is being done on this approach.
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APPENDIX A - Derivatives of Eigenvalues and Eigenvectors

Computation of derivatives of eigenvalues and eigenvectors has been the

subject of a number of recent publications. Current state-of-the-art is reviewed

in reference [5]. The particular formulation used in the present study is sum-

marized below for completeness.

The generalized eigenvalue problem is written as:

or

Derivatives of Eigenvalues

(A. 1)

(A.2)

Premultiply (A.2) by rp[(z) and differentiate with respect to design parame-

ter Zl;

or

Therefore.

aAi(Z)
--- _.

aZI

where

(A.3)

M/ == rp[(z) M rpi (z)

(A.3) gives the required eigenvalue derivatives.

Derivatives of Eigenvectors

Differentiate (A.2) with respect to Zl;
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Premultiply by rpJ(z) j:;;t'i to get:

- rpJ(z) aaK@rpi(Z)
Zt

(A.4)

From (A. 1):

rpJ(z) K(z) = Aj(Z) rpl(z) M

Therefore, (A.4) gives:

or

(A.5)j :;;t'iT() arpi (z) 1 T( ) aK(z) ()
rpj z M aZt = ~(Z)-Aj(Z) rpj Z aZ

t
rpi Z

Equation (A.5) represents (n-1) equations in n unknowns. To make the set com-

plete an additional equation is needed. The orthogonality of mode shapes with

respect to the mass matrix is used for this purpose.

(A.6)

Differentiation of (A.6) with respect to zl gives

(A.7)

Define a matrix XElR N xJRN such that:

(A.B)

where

_[0 ifi:;;t'j
Oij - 1 if 'i =j'

With the matrix X defined in (A.B). (A.5) and (A.7) can be combined as:

or

(A.9)



(A. 10)
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But from (A.6) [4>T Mr 1
= 4>. Therefore.

~ = 4>X
8z!

(A.l0) gives the required derivatives of eigenvectors with respect to design

parameter Zt •
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APPENDIX B - Derivatives of Pseudo-Velocity Response Spectrum

In the sensitivity analysis of 'a linear system using the response spectrum

approach, derivatives of the pseudo-velocity response spectrum with respect to

the system eigenvalues are needed. This appendix derives the expressions for

these derivatives.

The response spectrum shape is defined as follows:

( D a
Sv,n f,A,J = A

where

a = maxlug(t)1
t

and D is defined for different time periods T=2 'IT /(jJ as:

(ii) For TB < T ~ Tc

(iii) For T > Tc

D = b T-TJ

TA ,DA etc, are defined in Figures 1 and 2.

Differentiating (B.l) with respect to An ' we get:

(B.l)

(B.2)

(B.3)

(B.4)

oD a D a
OAn A - 2 A~/2

(B.5)

aD is computed by differentiating (B.2), (B.3) and (B.4) as follows:
oAn

(i) For Til < T ~ TB

(B.6)
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(ii) For TB < T ~ Tc

(iii) For T > Tc

aD
(JAn

aD
aAn

= 1 b 'l9 An 0.5'17-1
2 (211")'17

(B.7)
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TABLE 1

58.81 -58.81 0 0 -940.90 -940.90 -940.90 -940.90 0 0 0 0

117.61 -58.81 0 940.90 940.90 0 0 -940.90 -940.90 0 0

81.82 -23.01 0 0 940.90 940.90 437.53 437.53 -503.37 -503.37

23.01 0 0 0 0 503.37 503.37 503.37 503.37

57658.3 8756.67 20072.5 0 0 0 0 0

57658.3 0 20072.5 0 0 0 0

97803.3 8756.67 20072.5 0 0 0
,

SYMMETRIC 97803.3 0 20072.5 0 0

87021.5 8756.67 14681. 6 0

87021.5 0 14681.6

253748.0 112192.0

253748.0

-J
o

[Units are kip-inches] Stiffness Matrix of the Test Frame



DAF,D

PERIOD, T SEC

71

Probabil i ty Damping Point A Point B Point C Curve
of Being RatioExceeded T OAF T OAF T OAF b e

0.005 0.03 1.0 0.12 3.2 0.35 4.0 1.20 1.46
0.01 0.032 1.0 0.12 3.8 0.35 3.5 1.08 1.16

Large 0.02 0.034 1.0 0.12 2.5 0.35 2.9 0.93 1. 075
(50%) 0.05 0.036 1.0 0.12 2.0 0.35 2.3 0.76 1.053

0.07 0.038 1.0 0.12 1.85 0.35 2.0 0.67 1.038

0.10 0.040 1.0 0.12 1.7 0.35 1. 75 0.59 1.032

0.005 0.028 1.0 0.11 5.1 0.35 6.2 2.34 0.928

0.01 0.029 1.0 0.11 4.1 0.35 5.0 2.00 0.872

Small 0.02 0.030 1.0 0.11 3.5 0.35 4.2 1. 73 0.843

(15.8%) 0.05 0.031 1.0 0.11 2.6 0.35 3.1 1.35 0.794

0.07 0.032 1.0 0.11 2.2 0.35 2.6 1.13 0.790

0.10 0.033 1.0 0.11 2.0 0.35 2.3 1.02 0.776

0.005 0.025 1.0 0.09 8.1 0.35 9.6 4.32 0.761

0.01 0.026 1.0 0.09 6.2 0.35 7.6 3.68 0.692

Negligible 0.02 0.027 1.0 0.09 4.8 0.35 5.9 3.12 0.604

(2.3%) 0.05 0.028 1.0 0.09 3.2 0.35 4.1 2.40 0.511

0.07 0.029 1.0 0.09 2.6 0.35 3.4 2.03 0.489

0.10 0.030 1.0 0.09 2.3 0.35 2.9 1.77 0.470 I

FigurE:.l Recommended Design Response Spectrum Shapes
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LINEAR

T
tlu

U(x) = U(t) + t x
tit

QUADRATIC

U(T)
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. .
u(x) = U(t) + oCt)

U(t1.L.-.. ..J_L

t

~X
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Figure 3 Variations in Acceleration, Velocity and Displacement During Time

Interval [t , T = t + M ]
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