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ABSTRACT
This report presents a formulation for earthquake-resistant des'ign of local-
ized nonlinear systems. Based upon the current design criterjia,.two levels of
performance constraints are imposed as follows. For small earthquakes which
occur frequently, the structure is constrained to remain elastic with no struc-
tural damage. For a large earthquake, the structure can undergo inelastic .

deformations at known locations of nonlinearities, with limited damage.

The problem is formulated as a min-max problem, and a general strategy to
transcribe it to the canonical form of a nonlinear programming problem is
given. An algorithm of the feasible directions type is given to solve the resulting

nonlinear programming problem.

The general techniques are applied to the design of nponlinear energy-
absorbing devices, which are part of an earthquake isclation system for many
types of buildings. Several design problems with different performance criteria
are considered and the results compared to see the effect of these different cri-
teria. Comparison is aiso made with results reported earlier with only one level
of constraints. The results clearly show the eflectiveness of the present
approach with dual performance criteria over the conventional single criterion

approach,.
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i. INTRODUCTION

A well-established philasophy [1] for design of earthquake-resistant strue-

tural systems is to:

(i} prevent any damage from minor earthquakes which may occur frequently

during the service life of the structure;

(ii} prevent damage to main structural compenents from moderate earth-

quakes;

(iii) prevent major structural damage and collapse of the structure from a

major earthquake which may rarely occur.

The present design practice is to proportion the structurs to resist minor
and moderate earthquakes without any significant structural damage. More-
over, the behavior is idealized_as linear elastic, and response spectra types of
analyses are used to compute the structural response. The safety of the struc-
ture from a rnajor earthquake is taken care of either implicitly through the use
of building codes or explicitly by performing an elaborate nonlinear dynamic
analysis of the structure. Several design cycles might be necessary before

achieving an acceptable design.

Several attempts have been made to automate the design of structural sys-
tems using optimization techniques. An exhaustive literature survey of the field
appears in references [2,3]. In most of the earlier work optimal design was
sought by satisfying only one of the design criteria. Recently, Walker [4]
attempted to automate the design of earthquake-resistant multi-story steel
building frames by considering explicitly the dual design criteria mentioned
above. The frame was designed to remain elastic when subjected to a moderate
earthquake, with a specified amount of ductility to withstand a major earth-
quake without collapse. The analysis was simplified by introducing a number of

assumptions which make generalization of the process difficult. In the present



study, a more general approach is followed, and both levels of constraints are
satisfied explicitly by monitoring the response to moderate and major earth-

quakes during the optimization process.
1.1 Objectives and Limitations of the Study

The main objective of the present study is to cbtain the optimal design of
earthquake-resistant structural systems satisfying two levels of design criteria.
At the first level, the structure is designed to remain elastic when subjecied to
minor and moderate earthquakes. The earthquake input is modeled using a
design response spectrum. The response is compuied using modal superposi-
tion. At the second level, the structure is expected to undergo inelastic defor-
mations within the prescribed limits when subjected to a major earthquake.
This requires a dynamic response analysis of a nonlinear system. Fortunately, in
many practical situations, the significant inelastic deformations induced in the
structure by an earthquake are confined to a relatively small portien of the
structure. Examples of such systems are buildings with a "soft" first story,
equipment mounted on flexible supports, and structures with earthquake isola-
tion devices. Such systems are characterized by the fact that the inelastic
behavior is confined to known locations in the system. Generally speaking, the
nonlinear behavior occurs in that portion of the system which is more flexible
than the rest, either by intentional design or by prevailing circumstances. The
dynamic response analysis of such localized nonlinear structures is considerably
simplified, as will be explained later. Therefore, the present study considers

only systems with localized nonlinearities.

An actual ground motion record is used as input for the nonlinear system.
In the absence of any suitable method for characterization of earthquake excita-
tions for nonlinear systems, the probabilistic nature of the design problem is

taken into account by carrying oul a series of analyses for different earthquake



inputs and comparing the structural response to these earthquakes for the
structure designed from a single record. This procedure gives at least an
indirect indication of the sensitivity of the optimal design to the selection of

input earthquake ground motion.

The optimization problem is solved by an algorithm of the feasible direc-
tions type which is capable of handling time-dependent constraints. In order to
achieve computational efficiency for the class of design problems associated
with earthquake-resistant design, a number of modifications to the basic algo-

rithm is required.
The objectives of the present research are summarized as follows:

{i) to formulate the problem of designing earthquake-resistant localized non-
linear structures, satisfying dual design criteria, as an optimization prob-

lem suitable for the application of nonlinear programming techniques;

(ii) to develop an efficient response analysis procedure for structures with

iocalized nonlinearities;

(iii} to apply the method of feasible directions to obtain the optimal design,
making use of the special nature of the design problem to achieve compu-
‘tational efficiency;

(iv) to apply the general techniques to the optimal design of an earthquake iso-
lation system, consisting of natural rubber bearings and mild steel

energy-absorbing devices, for a three-story steel frame.
1.2 Outline of the Report

A class of optimal design problems for structural systems with twa levels of
performance constraint under earthquake excitations is formulated in Section
2. A technique to transcribe the optimal design problem to the canonical form

of nonlinear programming problem is given and major computational tasks are



identified. Section 3 contains a brief description of the response analysis of a
linear system using an earthquake response spectrum. Equations for sensitivity
analysis of a linear system are derived in this section also. A mathematical
meodel for the hysteretic behavior of nonlinear elements is deseribed in Section
4 as well as an algorithm, based upon the Newmark and Runge-Kutta methods,
for the solution of equations of motion of the localized nonlinear system. A tech-
nigque for sensitivity analysis of a nonlinear system is introduéed. Section 5
presents an algorithm of the feasible directions type for the solution of the non-
linear programming problem with time-dependent constraints. Details about
the computational aspects of the algorithm are included. Section 6 describes
the application of the general techniques presented in Sections 2, 3, 4, and 5 to
the optimal design of an earthquake isolation system for a three-story steel
frame. Some general remarks about the present study are included in Section

7, which also gives some suggestions for future research in this area.



2. FORMULATION OF AN OPTIMAL DESIGN PROBLEM FOR STRUCTURAL

SYSTEMS SUBJECTED TO EARTHQUAKES

This section formulates a class of optimal design problems for structural
systems subjected to earthquake ground excitations. A general strategy to
transcribe the optimal design problem to the canonical form of a nonlinear pro-
gramming problem is presented. The section is concluded by identifying the
major computational tasks to be performed to achieve the optimal solution of

the problem.
2.1 Optimal Design Problem

As pointed out earlier, the current design philosophy for structural systems
to resist earthquakes is that the structure should be sufficieatly rigid to have
small deformations when subjected to small earthgquakes, but should be ductile
enough to withstand large inelastic deformations in order to resist large earth-
quakes. This design philosophy suggests at least two levels of performance con-
straints on the system; namely, one on the response to small earthquakes and
the other on the response to large earthgquakes. The objective of the design
probiem is to achisve the most "efficient” structural system which satisfies the
above criteria. A number of objective functions has been considered in the
literature. For example, Ray et al [5] considered weight of the structure as an
objective while Walker [4] considered life-time cost of the structure, which
includes the present construction cost plus future damage and repair costs, as
an objective. In this study, the objective function is simply taken to be some
function of the structural response. This approach includes previous work as
special cases and can easily be made explicit to treat particular design prob-
lems for which the manner in which the design objective depends on struvctural
response is specified. Thus, a class of optimal design problems for structural

systems subjected to earthquakes can be written in the form:



min max [F{R (zt), B (z.t )]

such that
max GH{R'(zt)) £ 6!
teT _
s 14 <« s
r?grxG (RE(z,t)) = 6 (2.1.1)
H(Z) < (52,
where

R, R:RP xR > R9 xR is some function of structural response. The super-
scripts 1 and s refer to response when subjected to a large and a small

earthquake respectively;

T = [£s.t;] is the interval in which significant earthquake ground motion

oceurs;

z € RP is the design parameter vector;

P is the total number of design parameters;

F:E9 xR >R is some function of structural response, which is to be
minimized;

Q is the number of structural response functions;

G:£? xE - RY are time-dependent inequality constraints {functional

constraints);

M is number of functional inequality constraints;
H:RP - B are conventional inequality constraints;
1. is nurnber of conventional inequality constraints:
(P} €RM,62, eRL are prescribed constraint bounds.

As an example, consider the following problem: a multi-story shear frame
is constrained to remain elastic when subjected to a small earthquake but the
bottom floor is permitted to sustain inelastic deformation when subjected to a

large earthquake. The design objective is to minimize the maximum



acceleration of the top floor with the bottem floor displacement less than a cer-
tain allowable value. The design variables are the story stiffnesses. In this case
the function # is chosen as the square of the top floor acceleration when sub-
jected to a large earthquake, while G! is equal to the square of the bottom floor
displacement, with &t being its maximum allowable value. The function Gf is the
shear in the bottom floor when subjected to a small earthquake and 8f is the
corresponding yield force. The function H represents positivity constraints on

the story stifinesses.

2.2 Transcription of the UOptimal Design Problem to the Canonical Form of a

Nonlinear Programming Problem

The optimal design problem formulated in Equation {2.1.1) is not directly
suitable for application of nonlinear programming technigques. An appropriate

canonical form of the nonlinear programming problem can be expressed as

[8,7]:
min {£° (=)}
such that
max el (z,t) £ 0 gj=1..M (2.2.1)
gi{(zy = 0 j=1,..L
where
o/ :RE xR - R = functional inequality consiraints;

z € RE = design parameter vector;
Fo:RP 5 R = objective function;

g R? 5 R = conventional inequality constraints.

The optimal design problem (2.1.1) can be transcribed to canonical form
(2.2.1) by augmenting the parameter vector z by a durnmy cost parameter zp,;.
The durnmy cost parameter is an upper bound to the objective function to be

minimized, that is,



zp+1 Z max [F (R (z,t), B*(zt)].
: €
Thus, the minimization of zp,, will imply the minimization of the actual objective

function. The optimal design problem can then be written as:
min 2p4,
z
such that

max [.F'{Rf(z,t_),RS(z,ipf);]-—;zp,,1 50
max G'iR (zt)} -8} =0 (2.2.2)
max GiR* (zt) - 6§ = 0O
H{z) - 6 = 0.

Fquation (2.2.2) is in canonical form with:

fo(z) =z2pu
oMz,t) = F{R(z,£),R°(z£)} - zpey
ol (zt) = C}R (z,t) - 8f; j=2,...J, (2.2.3)

¢l (zl) = CiiR (zt)} - &f; j=Jd;.. M
gj(z,t) EH,‘(Z)"‘ (52;,‘ j=1,2....,L.

2.3 vMajor Computational Tasks

The optimal design problem formulated in Equation (2.2.2) is suitable for
application of nonlinear programming techniques for its solution. These tech-
niques start ouf with a given point in the design space and make iterative
improvements on it until an eptimum is reached. At each design iteration, the
objeétive and constraint functions are evaluated at least once. Moreover, if a
gradient type of nonlinear programming technique, such as the method of feasi-
ble directions used in this study, is employed, it will require computation of the

gradients of objective and constraint functions at each iteration as well.

Since the functions F and G involve structural response quantities, their
evaluation requires dynamic response analysis of the structural system.
Separate dynamic analyses aré needed for large and small earthquakes. The

gradients of functions /' and G involve the gradients of the response quantities



with respect to the design parameters. Computation of these gradients is known

as sensitivity analysis.

In accordance with the assumed underlying earthgquake-resistant design
philosophy, the structure is to remain elastic when subjected toc a small earth-
quake but can go into the inelastie range when subjected‘to a 1argeb earthquake.
Thus, for a small earthquake linear response analysis methods can be employed,
while a large earthguake will require nonlinear response analysis. The major

computational tasks can now be summarized as follows.

1. Earthquake response analysis of a linear structure. A response spectrum

approach is used, an outline of which is found in Section 3.

2. Sensitivity analysis of a linear structure. The procedure ir given in Section

3.

3. TFarthquake response analysis of a nonlinear structure. In this study only
systerns with localized nonlinearities are considered. A step-by-step
numerical integration scheme is used for response computation, as

explained in Section 4.

4, Sensitivity analysis of a nonlinear system. This procedure is ocutlined in

Section 4.

5. Solution of the optimization problem with time-dependent constraints. Sec-

tion 5 describes an algorithm by which this is accomplished.
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3. EARTHQUAKE RESPONSE ANALYSIS OF LINEAR SYSTEMS

This section gives a brief description of the response analysis of a linear
system using an ecarthguake response spectrum. A design response spectrum
based upon analyses of thirty-three past earthquake aécelemgrams is
described. Equations for sensitivity analysis of a linear system are derived.
Further details about the response spectrum analysis procedure and sensitivity

analysis can be found in references [8,5].
3.1 Response Spectrum Analysis of Linear Systems

The equations of motion for an N degree-of-freedom linear system can be

written as (see reference [8]):

Mi(t)+Ccult)+Ku(t) = -Mri,(f) {3.1.1}
where
teT = {t,,t;] = time interval of interest;
M cRY xEY = mass matrix;
CeRY xRY = damping matrix;
KeRY xRY = stifiness matrix;
u, 4, 4 ¢ RY = displacement, velocity and acceleration vectors of

structural response,

r ¢ ¥ = earthquake influence coefficient vector. This vector
represents displacements at nodal degrees-of-freedom
resulting from a unil support displacement. For exam-
ple, rT = (1,1,...,1) for an N story shear frame (with one
degree-of-freedom at each story) subjected to horizon-

tal ground motion;

iy (t) €R = ground acceleration time history.
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Equation (3.1.1) can be uncoupled by introducing the transformation:

N
u{t) = ) ¢ it) (3.1.2)
i=1
where
@i eR¥ . -th .
is the i*® mode shape or eigenvector of the system
obtained from solving the eigenvalue problem;
Kgai = M M i izl,...,N (3.13)
where A; is the i™* eigenvalue.
Yz(t) R

is the i®® generalized coordinate.

Substituting Equation {3.1.2) in Equation (3.1.1) and using the orthogonality pro-

perty of the mode shapes, the uncoupled equations of motion are:

M Y(8) + CF Vi(t) + Kf V() = Pt (3.1.4)
where |
K = ¢l Ko
M = %TM Ps
Cl = ¢l Cy;
Pi(t) = —pf Mri(t)

Note that it is assumed that the mode shapes are orthogonal with respect to the
damping matrix, i.e. pf Cg; = Oforalli# j.
The solution of Equation {3.1.4) is given by:

*

Yi(t) = “E{f%jj Vit) (3.1.5)

L = @ M r is the modal participation factor;

of = w;/1-¢2 is the damped natural frequency of the i®* mode; where
w;, & are the natural frequency and the critical damping ratio in the i*f

mode, respectively.
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V(t) is the earthquake response integral defined as:

¢
V(t) = [ i () expl-¢& w,(t—7)] sin wP(t-T)dT. (3.1.8)
o
The pseudo-velocity response spectrum for 4, (¢) is defined as:

Syilfewy) = max [V(t)]. (3.1.7)
Therefore, the maximum value of the i*® generalized coordinate is given by:

Yimas = max |Vilt)] = Loop Sualfue), (3.1.8)

i Lth

The maximum displacement in the i** mode is then obtained from:

171’-,1710.:! = @™ Yi,max 7:=1....,N

The maximum displacement at the k** degree-of-freedom is approximated by

taking the square root of the sum of squares of modal displacements {see refer-

ence [8]):
1
wt = S(ELmux,k)a + (Ea,mn.m.k )2 + 0t (HN,mm:,k)aga
Thus,
max u(t) = [uPex, uf>, ..., wf>]’ (3.1.9)

The eomputational procedure is summarized in the following algerithm.

ALGORITHM

NATA: Structural property matrices M and K.
Numkber of modes to be used in response computations, NM.
Critical damping ratios in each mode.

STEP 1. Solve the generalized eigenvalue problem.

K@i = h’i M{ﬂ-t i=1,...,NM

STEP 2: Compute the generalized property matrices.

M = of Mg,
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Li = oIMr i=1,...NM
STEP 3: From the pseudo-velogity response spectrum, get

Sui (Ehwg)  i=1,. ,NM.

STEP 4: Compute the maximurn displacement in each mode as follows:

u; = & Yi,muz izl.-..,NM

where

L.i'
Yimaz = MrD Sua
i Wi

and
of = wVi1-
STEP 5 The maximum displacements at nodal degrees-of-freedom are
estimated by the square root of the sum of squares of modal displace-

ments. Thus,

N
Uimar = |2, (Ui )® i=1,..,N
0
where the matrix % € BY x#¥¥ is defined as

U o= [Ty, .., Ty )T
3.2 Earthquake Response Spectrum

The response analysis procedure given in Seetion 3.1 requires a pseudo-
velocity response spectrum defined in Equations (3.1.8) and (3.1.7) for a particu-
lar earthquake. A response spectrum can be generated from a specified earth-
quake ground moetion time history by following procedures given in reference
[8].

Since different earthguakes have different response spectra, a number of
attempts have been made to generate the so-called design response spectrum
by averaging past earthquake response spectra. Blume et al [2] have recom-

mended design response spectrum shapes based on the analyses of thirty-three
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different accelerograms of past earthquakes. The basic spectrum shape con-
sists of two straight lines followed by an exponential decay curve, as shown in
Figure 1. )Coordinates of transition points are giveﬁ for earthquakes with large
{50%), small (15.8%) and negligible {(2.3%) probabilities of being exceeded and for
damping ratios of 0.5, 1, 2, 5, 7 and 10 percent of critical. The design pseudo-
velocity response spectrum derived from these recommended shapes can be

expressed as:

S, = D(&T) % (3.2.1)
where
a = maximum absolule acceleration for which the structure is to be designed;
w = frequency of the system;
T = 2#n/w = period of the system;
¢ = damping ratio.

D is obtained from reeommended shape in Figure 1 for a prescribed probability

of being exceeded.
3.3 Sensitivity Analysis for Linear Systems

Sensitivity analysis (i.e., computation of the rate of change of response
quantities with respect to design parameters) is an integral part of optimization
processes that use gradient techniques. For a linear system the response equa-
tions cé.n be differentiated to obtain analytical expressions for sensitivity
analysis [4]. Expressions for the rate of change of maximum nodal displace-
ments in the structural model represented by Equation (3.1.1) with respect to

design parameters are derived below.
Maximum nodal displacements are obtained from the following eguation
derived in Section 3.1.

n
2 4=1,.N (3.3.1)

NY
wiz) = Lz (37 (2))?
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where
NM = number of medes to be considered in the analysis
N = total number of degrees of freedom.

4y is the (2 . ) element of the matrix TeR ¥ xR¥ whose n'* column consists of

Uy = ?n Ynmae n=1..NM (3.3.2)

@n €RY is the n** mode shape and

L‘
Ynmar = mﬁgsv,n(wnsgn)

where

of = /I8

= V)\n(l—é-r%)
Therefore,
L, S ,
Ynmaz = e =R (en.£n) {3.3.3)

My N ra(1=£5)
Differentiate Bquation (3.3.1) with respect to the design parameter z; to get

@ qlw . )b -
Zuln) —;—LEM @)2] L“ﬁ‘j’l 2y 2

aZl Py azl
or
W g
dui(z) _ =t T 8z (3.3.4)
8z Uy e

a'iij . . .

S in Fquation (3.3.4) is computed as follows.

2

For cenvenience, define a diagonal matrix Yimay € RV¥ xgN¥ whose diagonal ele-
tnents consist of ¥y mer n=1,...,NM defined by Equation {3.3.3). Then the matrix

W can be written as:

W= @ Youx (3.3.5)

where ® € BY xBM is the modal matrix whose nt* column consists of the n*
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mode shape of the system.

Differentiating Equation (3.3.5) with respect to z; gives

du ad 0 Y0z
- = +
625 a 4] max ? é‘zl

(3.3.8)

- ad o .
The guantities 3., 2r® the derivatives of the eigenvectors. The expressions for

)

ax . .
is a diagonal

computation of these derivatives are given in Appendix A.
)

matrix whose n** diagonal element is obtained by differentiating Equation

(3.3.3) as follows:

nmez _ 0 |Ln  Sum (3.3.7)
0z, Oz \ My /2 (1-¢8)
_ 1 8Lp Sun _ Ly, M, Syn
Ma/1=82 02 P P18 dm VA,
+ ______L_;‘__.__ (_i()\ )_::)i;\ls + Ln 1_ un
Min/1—-g2 - R 0z1 " MAN1-E2 VA. 02
where
3Ly, Ben
52 = an Mr (3.3.8)
oM., Bl
= 2 M 3.
o7, gz, N n (3.3.9)
and

0Syn _ OSyn g
gz;  dn, Oz

(3.3.10)

9
Computation of a—:'i is given in Appendix A
t

The derivatives of the pseudo-velocity response spectrum are obtained from the

design response spectrum shape given in Section 3.2. The expressions for these

derivatives are derived in Appendix B.
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Rearrangement of Equation {3.3.7) gives

3Yn maz 1 dpr Ly, dpt
0z, M (1D [ V" Bz, Mr =2 Svn 5, Mon
Ln My . OSy, OMg,
- e e e —— 3.3.11
2Mn von 9z, n oN, Oz ( )

Once Equation (3.3.11) is evaluated for all NM modes to be considered, Equation

(3.3.8) can be evaluated and, in turn, used in Equation (3.3.4) to compute the

required sensitivity matrix.
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4. EARTHQUAKE RESPONSE ANALYSIS OF LOCALIZED NONLINEAR SYSTEMS

In thid section a mathemalical model describing hysteretic behavior of non-
linear elements is introduced. Equations of motion for a structure with a type of
localized nonlinear element are given and an algorithm for numérical solution of
these equations is presented, together with a technique for computing sensi-
tivity‘ matrices.

4.1 A Model for Hysteretic Behavior of Nonlinear Elements

A number of models has been employed to specify the force-deformation
relationship for inelastic structural elements under cyclic loading. Two of the
most cornmon are the bilinear and the Ramberg-Osgood models. The bilinear
model exhibits sharp transition from elastic to inelastic states. Kinematic or
isotropic hardening rules are used for unloading and reloading. The model faiis
to represent actual material behavior under cyclic loading and is computation-
ally quite inefficient because it requires one to keep track of all stiﬁnéss transi-

tion points.

The Ramberg-Osgood model, coupled with Masing's rule for unloading and
reloading gives a continuous transition from elastic to inelastic states. Compu-
tationally, this is a very difficult model to use because of different equations for
different parts of the loop. Matzen and McNiven [10] have pointed out that the
model as presented originally is not suitable for random earthquake-type excita-
tions. At least thirteen new rules have been added Lo make it applicable to this

case, making the model even harder to use.

Recently a series of newly-proposed models for ecyclic behavior of structural
elements has been described [11]. These models are given in the form of
differential equations and are sufficiently general to include strain hardening,
stiffness degradation, etc. A single set of equalions governs initial loading,

unloading and reloading (facilitating computation) and the model behaves well in
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the case of arbitrary excitations.

» The particular rate-independent model to be used for nonlinear elements in

this study is given by the following equations:

F(t) = Kﬁ[d(t) ~ lis(t)[[%’ ~ 8]"] (4.1.1)
S(t) = « éﬁ?,ﬂpﬁl (4.1.2)

where
F{t) =generalized force in the nonlinear element;
6(t) =generalized deformation of the nonlinear element;
5(t) =deformation rate of the nonlinear element:
Ko =Fo/0¢;
Fy =generalized yield force;
dg =generalized yield deformation;

[+

= a constant which controls the slope after yielding, Ky =Ky 1-‘:0(
. = a material parameter, taken as an odd integer which controls the

sharpness of transition from the elastic to the inelastic region. As

n.—»o the model approaches a bilinear model.

The parameters Fg, dp, & and n are chosen so that predicted response from
the model closely matches experimental response. Typical loops generated by

this model under deformation varying sinusoidally in time are shown in Figure 2.

It should be pointed out that the above model is just one of a class of
models for inelastic behavior. This particular choice was made for the immedi-
ate application of the present work to optimal design of frames with energy-

absorbing devices described in Section 8. More complicated models, such as
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models exhibiting stifflness degradation, ete., can be obtained by introducing
more parameters into the basic model, as explained in reference [11]. These
models can be introduced into the present formulation without any difficulty.
4.2 Equations of Motion for the System

Equations of motion for a discrete, N degree-of-freedom structural system

subjected to earthquake ground motion can be written as follows:

Mi(t)+Cult) + F(£) = -Mriy(t) (4.2.1)
where
u(t) = [uyt), uelt)...., ux{t)]7 is the nodal point displacement vector,

weRY;
a{{) = nodal point velocity vector;
i(t) = noda!l point acceleration vector;
M = mass matrix of the system , M e RV xm¥ .
C = structural damping matrix, C € R¥ xRV ;
F = nodal force vector, F € Y ;

r = earthquake influence coefficient vector, r e RY. This vector"
represents displacements at nodal degrees of freedom resulting
from a unit support displacement. For example, r=(1,1,...,1)7 for
an N story shear frame {with one degree of freedom at each story)

subjected to horizontal ground motion;

ug(t) = ground acceleration time history
4.3 Numerical Scolution of the Differential Equations of Motion

The equations of motion {4.2.1) are solved numerically with the exact solu-
tion u(¢), 6(¢) and 4(f) approximated by w;, a; and u;, respectively, at discrete

time intervals. The step-by-step integration procedures start with the known
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initial conditions and march forward in time giving the solution at discrete
points in time. The process for a nonlinear system has two distinct phases. The
first phase is the linearization phase, in which the equations are linearized about
the current state by retaining only first order terms of a Taylor zeries expan-
sion. Estimates of the solution at the next step are then obtained by using these
linearized equations. The sccond phase is the state determination phase, in
which the internal forces in equilibrium with the new state of motion are calcu-
lated. If the discrepancy between these internal forces and the external applied
loads is within some tolerance level, the soluticen is accepted and the process
repeated for the next step. Otherwise, a Newton-Raphson type iteration is used

until the unbalanced forces are within acceptable limits.

In this study. estimates of the solution are obtained using Newmark's
method, and internal forces in Lhe nonlinear elements are computed using a

fourth-order Runge-Kutta scheme. Details of the process are given below.

The equations of motion (4.2.1) at time v = £ + Af can be written as

Mi,+Ca,+F, = P, {(4.3.1)

where

Define the increments in acceleration, velocity, displacement and force oceur-

ring in the time increment At by

sw

Aut

i, — i,
Ady = up -y

Aoy = up—wy
AF; = F‘r - Fg (43.2)
oF,
- ?ahl‘lt‘ Allt
- Kt Aut

Substituting these expressions in Equation {4.3.1), the incremental form of the
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equations of motion is obtained as follows:

MAg + CAg; + K Ay = Pt. (4— 33)

where

P; = P, - [Mﬁt + Cl.li + Ft]

Newmark’s Method

An implicit, single-step, two parameter family of integration operators
described by Newmark [12] is used for the numerical integration of the equa-
tions of motion. The method assumes that the increments in velocily and
acceleration are related to the increment in displacement and the state of

motion at time t, as follows:

T A Xy - AN I
Allt 6At A‘ﬂt 5 Uy At 26 1 u; (434)
. 1 1 . 1 .
A = —— Ay - ——a; — - 4 4.3.5
¢ B(AE ) 2 B ¢ 2F ¢ ( )
where
Af = time step of integration;

7,8 are integration parameters.

A "constant average acceleration’ operator, which is unconditionally stable

for linear problems, is obtained with § = 14 and y = 1/2.
A "linear acceleration” operator is obtained with § = 1/6 and 7 = 1/2.

Substituting {4.3.4) and (4.3.5) into the incremental equations of motion

(4.3.3) and simplifying gives

K:. Aug = R; (4.3.6)
where
o 1 7
K = BAL M+ BAL C+K
. . 1 . 1 .. - o
Rt = Pt+M~gzgut+?gut +C%ui+At%%—l U; |
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Solution of K Au; = R/

The rﬁost expensive part of the integration process is the solution of the
‘above set of linear equations. Fortunately, because of the localized nonlinearity
of the problem, it is not necessary to form and decompose the whole matrix K/
at each step. The substructuring technique is used toc separate effectively the

nonlinear part from the linear part of the problem as follows:

Partition the displacement vector such that displacements corresponding

to the nonlinear degrees of freedom are separated from the remaining displace-

ments:
Au”
fu, = Au®
where
Au¥ = incremental displacements corresponding to the nonlinear degrees
of freedom;
Auf = incremental displacements corresponding to the rest of the system.

Partition K; and R; accordingly, as follows:

Ker Kav {jan® RE
NIERM (4.3.7)

Kve Kwv

The first submatrix equation gives:

Kgr AU” + Kgy Au¥ = RF

or
Auf = Kpp |RE — Ky AV (4.3.8)
The second submatrix equation in Equation (4.3.7) gives:

Kyr AuF + Kyy AuY = RY, (4. 3.9)
Substitute Equation {4.3.8) into Equation {4.3.9):

Kyr Kip [RE — Key Au? | + Kyy Au¥ = RV,
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Define
Q = -Ki} Ken.
then
Q7 = —Kyr Kip.
Thus,
[KNE' Q+ KNN] AUN = RN + QT RE,
or

A - [KNE Q+ KNN]" [RN +qQf RE]. (4.3.10)
Once the Au” are known, Au are calculated from Equation (4.3.8).
The computational steps ean be surnmarized in the following algorithm.
Algorithm

In the beginning of the integration loop

{1 form Kgg, Ken. Kve = Ké,

(it) triangularize Kgg,

(iii) obtain @ by forward reduction and back substitution from
Ker @ = —Kgy,

(iv)  form Q' and the product Kyr Q.
At each time step of integration,
(i) form Kyy at the current step,

(ii) form load vectors R¥ and R¥,
(iii) solve Kyr Q + Kyy | AdY = RY + @7 RE for Au?,
(iv} obtain Auf by forward reduction and back substitution from

KEE‘ AuE = RE - KE‘N AuN.
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Computation of Internal Resisting Forces

After the increments in the displacements and velocities are obtained, the
next step is to compute the internal resisting forces in equilibrium with this new
state of motion. The internal forces in the linear elements are obtained simply
by muiltiplying the current displacements by the appropriate stifinesses of these
elements. Computation of forces in the nonlinear elements, however, is not so
simple, because of lack of an algebraic expression for their force-deformation
behavior, which is described by a set of first-order differential equations. These
differential equations must be integrated numerically to obtain the internal
forces in the nonlinear elements. An explicit fourth-order Runge-Kutta scheme,
with the option of using a smaller time step than the one used in Newmark’s
method, is used in thié study. An explicit schemes is favored over an implicit
scheme because of the added complexity of an implicit scheme, which would

involve an additional iteration cycle. The details of the process are given below.

To integrate force-deforrmation equations of nonlinear elements from time t
to time T ={ + At¢, some assumptions regarding the variation of acceleration,
velocity and displacement during the time interval (£,7) are needed. Since the
Newmark's linear acceleration method has been demonstrated to be quite
effective for solving nonlinear structural dynamic problems [13], it seems rea-
sonable to assume linear variation in the acceleration during the time interval.
This implies quadratic variation of velocity and cubic variation of displacement.

These variations are shown in Figure 3.

The force corresponding to the i nonlinear degree of freedom is given by

Fquations (4.1.1) and (4.1.2).

Filz) = Ka[ém.r)— Iém::)llF;f“ - Si(=) ] (4.5.11)
Si(z) = w lé"d(j) - F;Sj) z € [0,a¢], (4.3.12)
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where 6;(z) is the deformation corresponding to the i degree of freedom. The
deformations are related to nodal displacements by a transformation matrix
which depends upon the type of structural system. For example, for a shear
frame 6; = U; — U;.q, while more complicated expressions are required for other

types of frames. Cembining Equations (4.3.11) and (4.3.12) then

Fi(x) 6:(z) [
- a2

Fi(z) = K, 8i(z) ~ |8:(z)] {(a+1)

z € [0,A¢].

(4.3.13)

Fquation {4.3.13) is integrated by employing a fourth-order Runge-Kutta method

with time step Az, where Az < At, and initial condition F;(0) = F;(¢).

The following calculations advance the sclution from zx < Tgs = Tx + Ax .

Ky = Az Kol5i(zg) — |64(zg)] [(oz+l) Fﬁf:"’) o 6*5{’” r
Ky = bx Kol (xgp+¥ax) — |8;(zg+¥Az)] [(a+1) F_(”Ffﬁ?o"_% s 6t(xx+%ﬁr)l ]
Ka= Az Kolb, (ug+¥az) — |8, (zx+%Az) | [(a+1) Fi(x};):%Kz G (xg+}5m:)] ]
Ky =0z Ko [i(ag+hz) = | 6i(ax+az)| {(a+1) F"(x;zma —a (”"”‘z)} l
where
5ily) = 8:i(8) + 8 () y +%‘5;g2?
Sy = 8ele) + 5e(t) y + 3,(8) -‘f; + %&_ 1%_3.
then

F(fo+1) = F(.ZK)'f‘ (Fi +¢Kr+2K3+K4)
Algorithm for Integration of the Equations of Motion

The process of numerical integration of the equations of motion (4.2.1) can

now be sumnarized in the following algerithm.
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A. INITIAL CALCULATIONS

DATA: Integration:parameters, 8, 7.
Time steps, Af and Az.
Convergence tolerance parameter, TOL.
Structural property matrices, K¥ , M and C.

Parameters of hysteretic model for nonlinear elements, F,, §,, o, and

n.

STEP 1: Compute the constants

B(At)? Bt 2B
= L. ~ X - i A
[+ 7 ﬁAt Up g Qg At 26 1]

STEFP 2: Initialize the state of motion, i.e. specify U, fIg, and ﬁg.

STEP 3: Partition the stiffiness matrix as explained in Equation (4.3.7), triangu-

larize Xgp and form Q.
B. FOR EACH TIME STEP
STEP 4: Form K and R;

K, = aiM+ a,C+ K

R; P; + M [U.zﬁf_ + ﬂ.aﬁt] + C [G.5I-Jt + asﬁt]

1]

where P; = P, - [MU, + CU; + F;]
P, = —Mrﬁy(r).
STEP 5;: Solve

Kt’ AUt = Rt‘

for AU, using the algorithm given previously.

STEP 6: Update the state of motionat T=1¢ + At

ﬁ?’ = ijt + (’.1AU¢ - azﬁg - U.aﬁt
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I.JT = th + G4AUt - at-,th - asﬁt
UT = Ui + AUt
STEP 7: Compute the internal resisting forces, F. in equilibrium with the

current state, as explained previously.
STEP 8: Compute the unbalanced force at time r

t=P.-[MU,+CU, + F,]
STEP 9: Compute | |T||g, the Fuclidean norm of T. If | [f] |p & TOL, no iteration
is needed in this step. Go to Step 4 for the next step calculations, else

proceed to Step 10.

C. ITERATION WITEIN A TIME STEP

STEP 10: Compute X! a M+ a,C+ K.

STEP 11: Solve K; 86U, = T for 6U;.
STEP 12: Update the state of motion

new ﬁ., = ij.,+ a,0U,

new I'JT f],. + a,4d8U;

new U, = U, + 8U,.
STEP 13: Compute the unbalance as in Step 8. See if convergence criterion of

Step 9 is satisfied. If yes, go to Step 4 for next time step. Else go to

Step 10.
4.4 Sensitivily Analysis

The method of feasible directions for optimization requires gradients of the
constraint functions, which in turn require gradients of the response guantities
with respect to the system parameters. The computation of these gradients,
so-called sensitivity analysis, is intrinsically important because the information

produced can be used directly for design trade-off studies.

One way of computing such sensitivity matrices is to integrate nufnerically
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the sensitivily equations obtained by differentiating the system equations of
motion with respect to the system parameters [14,15]. In the present case,
because of the complicated nature of the hysteretic model for the nonlinear ele-
ments, the analytical expressions for sensitivity equations are very complex.
Numerical integration of these equations with the same time step as that used
for the system equations poses additional difficuliies. Because of these
difficulties, a straight-forward approach using finite difference approximations is

used. Partial derivatives are approximated by expressions of the type

0f (b) , (b +AbY - f(b)
2b Ab

where
F{*) is any response function and
b is an element of the parameter vector.

Some errors are introduced by the above approximation, but by proper selec-
tion of the step size they can be controlled. Moreover, since these gradients are
used only in the direction finding subproblem of the feasible directions method

(Section 5), the optimal solution is relatively insensitive to these errors.
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5. A METHOD OF FEASIBLE DIRECTIONS FOR PROBLEMS WITH

FUNCTIONAL INEQUALITY CONSTRAINTS

This section presents an algorithm of the feasible direction type for the
solution of nonlinear programming problems wi'cﬂ functional inequality con-
straints {or time-dependent constraints). The basic algorithm is due to Gon-
zaga, Polak, and Trahan [16]. A short description of the algorithm is followed by
details of actual implementation of the basic algorithm for the earthguake-
resistant frame design problem. No convergence proof is given; readers
interested in mathematical details and the convergence proof are referred to
[18].

5.1 Definitions and Preliminaries

The nonlinear programming problem with functional inequality constraints

is defined as

min f°(z)

subject to
miax o (z,t) £0,jed, {5.1.1)
€
g9/(z) 50 .5€J,
where

T = [tat,] . specified time interval;

L = tetal number of conventional inequality constraints;
M = total number of functicnal inequality constraints;

zeR? = the vector of optimization variables ;
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P = total nurmnber of optimization variables;

- fORPSE and gfRP-R.j€J, are continuously differentiable functions in z.
@ RE xR R , j&€J,, are continuously differentiable functions in z and

continuous in t.
The feasible domain, I, is defined by:
F o= {z eR? | max e {zt) L0, 5€d, ; gi(z) s O,jeJ;}.

The interval T is discretized into g+1 points and is denoted by 7 .

Define:
Yo(z) = maxl;aj(z,t) V€I, teTy 5 gi(z), je‘Jl}
V/q(z) = max{0, ;Wq (z}} {5.1.2)

Note that, if z€F , then ¢, {(z) = 0.

The set of points at which a functional constraint is active is denoted by

Fg.s (z) and is defined as:

Ti.(z) = {telyloi(zt) = v,(2) 2 ~¢), jE€/m .

Next, define the intervals 7] , .(z) C —’fg_s (z) & = 1.2,..k] . (2) , j&€Jp, recursively,

as follows.

To define the first interval, /], 1(z) . let ¢, be the smallest number in Fge (z)
and let m, be the largest integer such that (#,+ nAf) € Tg,s (z) . but

ty + (ny+1)At| & T) (). where At = (t;—t)./q .

Then

]g,s.l (Z) = {th t1+At, t1+2At, T, t1+n1At.

Next suppose that /], ;(z) have been defined for k = 1,2,.... ky , then I{ ;¢ +1)(2)

is defined as follows:
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—_ ky
Let f,+1€7 . (2) be the smallest number such that te+1 € U Tfex(z) and
k=1

let ny A be the smallest integer such that

beet + nki-t-lﬁt] € T3 :(2)
but

[t,,m1 + (g apt1) At] & 1, (z) .

Then

fg_,g,(klﬂ)(z) = [tk1+! s tk1+1+At . tk1+1+2At g ,tk1+1+'n,k1+1At].

For convenience, define

Kg.e () = [1-2- s vkg.c(z)}'

Note that

Tiel®) = U Jiex(®).
kekj  (2)

The point at which a functional constraint is maximum in each of the above

defined intervals is defined as:

tg.a.k(z) = ¢'c !g.e.k(z) | gpj(z,t') = ;pj(z,t) , tefg.s.k(z) kéKg,e (z)

The set of points at which a functional constraint is a local maximum is defined

as:

Ti:(@ = U tiea(D). (5.1.3)
kekj (2)

Now, the " £ - active constraint index " set for the functional constraints is

defined as follows:

JED) = (G, t) | jedm LT ()] (5.1.4)

The & - active constraint index set for conventional inequality constraints is
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defined by:

J1,(z) = {j | g7(z) =¥, (z) 2 ~¢.jed;|. (5.1.2)

The optimality function 19e,q(z) :R¥ SR for the nonlinear programming prob-

lem {5.1.1) is defined as follows:

Bug®) = min | L1in 1+ maX[<‘7f°(Z)-h> e 2)
<Vgi(z),h>, jedi(2z);

. (5.1.8)

<V,¢ (z,t),h> , (7.t )ngq(z)]

The dual form of {5.1.8), which is actually used in the following algorithm, is as

follows:

Veg(z) = maxi=>[1 2} wVgi(za)+ 3 pyV.¢'(zt) +
g jely (2 (G.1)e £, (@)

eV (z) | |8 = g (z) | Y wi+ Y pit+ pd = 1(5.1.7)

jedg (@) (7.2)eJf (=)

and

~heqo(z) = 3 wiVeiley+ Y wdVepi(zt) + poVri(z). (5.1.8)

jel () t)ed F,(2)
where
Vf{x) denctes the gradient of function f : R¥ »R at x . The gradient
vector 15 trealed as a column vector.

<> denotes the scalar product in R? and is defined by

P
<K, ¥> = Y Ty

i=]

[z denotes the Fuclidean norm in B? and is defined by

[l x [ip=vV<x, x>.
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Theorem [16]

If z is optimal for nonlinear programmir{g problem {5.1.1}, then the function

Vo4 {z) given by Fquation (5.1.7) is equal to zero.
5.2 A Feasible Directions Algorithm

A feasible directions algorithm for the solution of the nonlinear program-

raing problem {5.1.1) can now be presented.
Algorithm
DATA: a <{(0,1), 8 €(0,1), y=1
6€(0,1], £5>0
u1>0, ue>0 , M >0
Qo+ Imas20 . ZocR” .
STEPO: Seti=0,q=g,
STEP 1: Set £ = £¢.
STEP 2: Compute |9, ,(Z'), b, 4(z!){ by solving (5.1.7) and {5.1.8).

STEP 3: £ 9,4 (z}) £ —Z¢6, go to step B; Eise set £ = £,/2 and go to step 4.

STEP 4: Ife< Eg'l'ﬂ' and y, (z') < ﬂ set g = 2q and go to step 5; Else go to step
q q
2.
STEP 5: 1f g > gmex » STOP: Else, go to step 1. ‘

STEP 8: Compute the largest step size )\(zi)=6k(zi)€(0,M'] , where

M

M= L @) 1

] and k(z') is an integer, such that

(i) if Z2eFC (the complement of F in RF )

Vg [zi + Az )b, 4 (zi)] — Py (") £ ~aA(z*)de,
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(ii) if Z'eF

Ol + M@ ey ()] = £0(2) < —an(a)e

g?

z + A(zi)m,q(zi)] £0 jed;
;oi[zf + A(zi)hs,q(zi),t} £0.j€Jn, . teT,.
STEP 7: Set zi*! = z' + A(2')h, 4(z"). Seti=i+1andgo to Step 2.

Remark

The algorithm as presented above does not require an initial feasible point.
If zo ¢’ F , then ¥4{z) is non-zero and the algorithm constructs a sequence of
peints which forces the point into the feasible domain. This aspect of the algo-
rithm is very advantageous in the case of complicated problems where the
choice of an initial feasible point is not cobvious. For example, in earthquake-
resistant design if the relative drift of a particular story in a framed structure is
to be limited to a certain value, it is not easy to find an initial design that will
satisfy that requirement. Of course, the algorithm is more efficient if one can

start from an initial feasible point.
5.3 Explanation of the Algorithm

The algorithm has two distinet phases. First, a direction is computed by
solvihg (5.1.7) and (5.1.8). A step is then taken in this direction in such a way
that, if the current z is in the feasible domain, there is a maximum reduction in
the objective function while still maintaining feasibility. When the current point
is outside the feasible domain, the step length is chesen so as to move as close
to the feasible domain as possible.

Direction Finding Subproblem

As noted, a feasibie direction is found by selving the problem:

L o : ,
Bop(z) = maxl-—|| 3 wufVei@+ T piael(nt)+
He jedg,(z) {§.t)elfq(2)
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oV F -yt | Y wi+ Y pit+ut =1{5.3.1)

jedg  (z) (7.6)eS 2 (=)
and then computing the direction from
~h,(z) = X wiVgi@)+ ¥ ud'V.el(zt)+ u*Vr(z). (5.3.2)
jedfq (@) (.t)ed Fola)

Equation (5.3.1) can be transcribed into a standard quadratic programming

problem as follows. Let k; be the total number of points in JI,(z) and (j,.!,) be

the total number of points in J £,(z) . Define the vector u € R WE*ete o5 follows:

K, % kil Fb
ph o= g gt gt (5.3.3)
where
ki € J9,(2z) for i=1,... &,
(]‘L'EJ') [ ng,q(z) for 7::1, P ,jv j:l, PR ,lw

. 14k, +5 1
Define the matrix Ac R ¢ ¢*¢ x RF as:

T
vr°(z)
X T
Vg (z)
R
A= Vg 9(z) (6.3.4)
j i
[Vz ?Jl(z-tq,le,ll)
i T
[Vz 593?(2’ tq?e.iv )]
Then Equation (5.3.1) can be written as:
14k, +] 1
1 el
max |- —(uTA) WA~y (z) | 8 @ = 1}
uzg 2 e
or
1+k +jwl¢ )
min i;.éT AAT o+ 7 u® yu(z) | % wo=1]. (5.3.5)
. HEO 2 §=0

Define a vector D € RH"”H"LV such that
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D" = lyy,(z), 0.0, (5.3.6)
and a matrix @ € R Wkg*Tsle X R“k?*’jvzw by
Q = AAT. (5.3.7)

Then Equation (5.3.5) can be written as:

1k, +5 L

1 L
B p'Qu + D'y QZ W= 1] (5.3.8)
=1

min
1220

which is a standard quadratic programming preblem. Once w 's are obtained by

solving (56.3.8), the direction is computed from

~heg(2)" = ul A, (5.3.9)

Step Length Computation
After a feasible direction is obtained, the next step is tc compute the step
length in that direction. If the current design is inside the feasible design, the
step length should be chosen in such a way that there is a maximum reduction
in the objective function, while slill maintaining feasikility. When the current
design is outside the feasible domain, the objective is to take a step such that
the new design is as close to the feasible domain as possible. The step size calcu-
lations begin by minimizing the objective function along the feasible direction
and then checking whether any of the constraints is violated. If any of the con-
straints is violated, the step length is reduced and the process repeated until
the new design satisfies all of the constraints. A number of methods are avail-
able for this unidirectional search, the most popular among them being
Fibonacei search, Newton's method, quadratic or cubic fit, ete. [6,17]. For gen-
eral non-convex problems, these methods tend to be very expensive. Since com-
putation of the exact minimum along the feasible direction is not absolutely
necessary, an approximate line search technique, known as the Armijo step size
rule, is often used [6,18]. The method performs only an approximate line search

and is gquite efficient for general non-convex problems. The method is as follows.
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Given the constants o, d, &, g M, current design vector z* hsq(zi) and
¥o(2'), compute the largest step  size A(z') = gt ¢ {(O,M*]  where

M® = max {l M } .
such that
(i) if¢,(2) > 0 (ie. 2'&F ), then

Yo |7+ AT ()] - 4y (2) < - oo

(i) if 9, (') =0, iec. 2'€F , then

fﬂ[zi -+ A(Zi)hc.g (zi)] _ fa(zi) < - O(?\(Zr'-')és '
gj[z": + A(zi)hc,q (Zi)] S0 je le

;pf[zf + Mz b, , (21) t] S0 j€dm.tal,.

The algerithm to impiement the above process is as follows.

M

S T, ()11

STEP 1: Set A = 8. Compute M" = max } . Set FLAG=0. Setn

= 0.
STEP 2: Compute z;*' = 2 + Ah,  (2*) .
STEP 3: If 9,(2*) > 0, go to step 5. Else , go to step 4.

STEP 4: Compute f°{zi*!). 1f £°(zL*!) + ards £ —f°(2'), go to step 8. Other-

wise, go to step 8.

STEP &5: If ¢4(zi*!) + aXds S ¢4 (2') . go to step 7. Otherwise, go to step 8.
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STEP 8: Compute g7{z}*1),j€Jd, and ¢?(zi*lt).jeln t€T, . If g”zﬁ”) < 0,j€J;
and ¢ (zi*1t) S 0j€/,,.t€T,, go to step 7. Otherwise, go to step 8.

STEP 7: If A /B > M* or FLAG = -1, go to step 9. Otherwise, set A = A /8,
FLAG=1,n=n+ 1 and go to step 2.

STEP 8. Set A=Ag.If FLAG = 1, got to step 8. Otherwise, set FLAG=-1, n=n
+ 1 and go to step 2.

STEP 9: Set A = A® and the new design vector is zi*! = =z + A'hg o (7).

5.4 Computational Considerations

The quadratic programming problem as formulated in Equation (5.3.8) may
be computationally ill-posed because of different magnitudes of the gradients of

different functions. Proper scaling is therefore essential to make the problem

computationally efficient. In the present version the following scaling was used.

Define
si = 11997 (@) e, 5 €4(D):
sit = e @) |, (.)€ T (a): (5.4.1)
so = (@)1 |

where

|]. ||« is the maximum norm in ¥ defined by
I x||e = ?él?})}clxﬁl.
The matrix A defined in (5.3.4) is scaled as follows.

[ T

[‘Vf"(z) /S s°
T

[ngl(z) e s;l.

A = I (5.4.2)

, . T A
J } Jpt
[vz?’ l(zvtq.le.ll)] /Spl !
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Bk, +i 0

Define a vector R€ R 7 "7 as:
. . T
R = 1/sﬁ,$k‘,§kz, . ,$k9,p‘“’“,pjz'iz, .. ,pj“"l” (5.4.3)
where ¢, j=1,...,ky and p¥* ,j=1,...,4, I=1,...,1, are called " push-off "

factors and can be adjusted to force the direction vector toward or away from a
constraint. If any of these factors is large as compared to the rest, then the
constraint corresponding to that factor will dominate the direction finding prob-
lern. If the constraint functions are well scaled, all the push-off factors could be
set equal to one in which case all the active constraints will get equal impor-
tance. For a general case the following scheme of choosing the push-off factors

seems to work well.

2
1+ J=L ... kg (5.4.4)

97(z) = ¥4(2)
£

€ =147

o (zt) = ¥, (2) |

€

1+

pit = 147 teT§e(z) j€Im (5.4.5)

where 7 is an input parameter.

An arbitrary upper limit of fifty was set for these push-off faclors in the

present study to prevent any instability in the direction finding process.

With these definitions, the scaled version of the guadralic programming

problem {5.3.8) can be written as:

—é—,u?‘ Qu+Dl i RTu= 1] (5.4.8)

min
FrEd]
where Q = AA” with A defined by (5.4.2) and
DT = Ey%(z)/s,,,o,o, ce }
The direction vector is still computed from Equation (5.4.9).

5.5 Evaluation of Constraint Funtions and their Gradients

As is clear from the previous sections, the feasible directions algorithm
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requires computation of constraint functions and gradients of "active" con-
straint functions at each iteration. The computation of conventional inequality
constraints (functions g’ in the previous section) and their gradients presents
no great difficulty. The funtional constraints {(funetions’ ¢’ in the previous sec-
tion) , however, are very expensive to compute because they require the compu-
tation of the time history of response of the structure, which for a nonlinear sys-
tem is not a trivial matter. The problem becomes even more complicated
because the algorithm requires computation of the gradients of the functional
constraints, which in turn require sensitivity analysis, i.e., computation of gra-
dients of the response quantities with respect to design parameters, using the
chain rule, to obtain differential equations for senstivity analysis [14,15].
Numerical integration of the sensitivity equations then gives the required gra-
dients of the response quantities. For a nonlinear system of the type considered
here the analytical form of the sensitivity equations becomes quite complicated,
so that the direct finite difference scheme of computing these derivatives seems
to be more appropriate. The finite difference scheme requires an additional p
time history analyses, where p is the total number of design parameters. Thus,
computation of functional constraints and their gradients requires p + 1 time
history analyses of an "N" degree of freedom nonlinear system, clearly a major
computational task, Therefore, any reduction in the number of times that these

calculations are execulted will significantly reduce the total computational cost.

In the actual implementation of the algorithm for the type problem under
consideration a number of things can be done to reduce the computational coest.
The most obvious is to make the integration of response equations as efficient as
possible. This is done by exploiting the localized nonlinear nature of the prob-
lem, using sub-structuring techniques. An eflicient Newmark's me thod with

optional Newton-Raphson iteration is used to carry out numerical integration of
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the equations of motion. Provision is made in the program to do the structural
and/or sensitivity analysis only if the design parameters are changed "appreci-
ably". Thus, if at & particular iteration, design parameters are changed very lit-
tle, so that the maximum difference between the new and old design parameters
is less than a certain prescribed value, the program does not compute the new

time history analysis; instead, it uses the previous values.

A closer look at the algorithm shows that, when none of the functional con-
straints is active, gradients of the response quantities are not needed. In the
program, therefore, constraint functions are first computed and then checked
to determine if any of the constraints is active. If none of the constraints is
active, the sensitivity analysis part is skipped, resulting in a significant saving in
cormputation. Another source of considerable savings is the observation that
gradients of response quantities are required only at those times included in the
g - acltive constraint set defined in the previous section. In earthquake prob-
iems, structural response typically builds up slowly and then dies down, whence
the £ - active times are for the most part much smaller than the total duration
of the response time history. Therefore, when performing sensitivity analysis, it
is not necessary to compute the response time history beyond the maximum
time included in the ¢ - active set. This feature has been incorporated into the

prograrmt.
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6. APPLICATIONS

The general techniques described in the previous sections are applied to a
three-story steel test frame supported on an earthquake isolation system con-
sisting of rubber bearings and a mild steel energy-absorbing deﬁce. The same
frame was used as an example in reference [19] but with only one level of perfor-
mance constraint. This section describes the formulation of a mathematical
model for the test structure and presents numerical results for two design prob-

lems.
6.1 Steel Test Frame with an Earthquake Isolation System

A half-scale model of a three-story steel-framed structure with an isolation
system consisting of rubber bearings and energy—_absorbing devices was tested
on the earthquake simulator at the University of California. This section gives a
brief description of the test frame and the isolation systemm used. Further

details of design and fabrication are given in references [ 20-24 ],
Steel Test Frame

The test structure consisted of two identical, three-story, single-bay steel
frames interconnected by floor diaphragm systems which were essentially rigid
in their planes, as shown in Figure 4. The model weighed 39.5 kips, was 20 ft.
high and 12 ft. by 8 ft. in plan. The columns and beams were W5 x 12 and W6 x 12
rolled scctions, respectively, and were welded together by typical moment-
resistant connections. A heavy W10 x 49 girder was used at the base to ensure
that the rubber bearings would have little tendency to undergo bending defor-
mations. Concrete blocks weighing 8 kips were added to each floor to simulate
the dead weight of the building. The model was supported on rubber bearings
and energy-absorbing devices were attached to the base floor through a horizon-

tal link.
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Natural Rubber Bearings

A typical natural rubber bearing used in the test is shown in Figure 5. Each
layer of a multi-layer hearing was hand-fabricated from sheets of rubber vulcan-
ization bonded to aluminum foil. The aluminum foil was in turn bonded to thé
mild steel interleaves using adhesive tape over two-thirds of the surface area

and epoxy resin, for greater shear strength, over the remaining one-third area.

The vertical stifiness characteristics of the rubber bearings are shown in
Figure 8. After an initial soft cycle, the bearings showed little hysteresis. The

vertical stifiness under the working load is of the order of 150 kips/in.

Horizontal stiffness characteristics are shown in Figure 7. The initial
tangent stiffness at zero deflection is 320 lb./in., reducing to about 250 1b/in. at
2.5 in. deflection. The hysteresis loops represent approximately 10% critical
damping.

Torsional Energy-Absorbing Devices

A typical energy-absorbing device is shown in Figure 8. The key element in
the device is the mild steel torsion bar of rectangular cross section to which
four clamps are welded. The outer clamping arms are used to attach the device
to structural and foundation elements, with the inner arms linked to the active
structural element. When this element is displaced, it pushes the inner arms

introducing torsion in the mild steel bar.

In this steel frame test, devices were attached to the base floor in such a
way that they applied a horizontal force to the model structure. The devices
were tested under sinusoidal and random loadings to establish their capability of
withstanding many cycles of large plastic deformation withoul appreciable
deterioration in their energy absorption capacity. Under small excitations, the
devices are elastic and the system behaves as a rigid foundation system, while

under strong excitations the devices yield and produce large hysteresis loops,
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thus absorbing a considerable amount of energy.
6.2 Equations of Motion for the Test Frame

The 