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ABSTRACT

This report deals with the problem of prediction of earthquake resis­

tance of structures. Particular attention was paid to developing an upper

bound or critical ground excitation for a structure of major importance, so

that a high level of confidence in the prediction of structural resistance may

be achieved. The term critical excitation is defined here as the one among

a class of credible excitations at a given site that will produce the maximum

response peak for a given structural design variable in question. Both lin­

ear and nonlinear structures were considered. To verify its practicality

the method was applied to several nuclear reactor structures. The results

show that the method is conservative but not overly so. The responses ob­

tained from the critical excitation is in the range of 1.1 to 2 times those

produced by recorded earthquakes of the same intensity. To further enhance

the practical applications, response spectra for different soil conditions

were also produced.
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1. INTRODUCTION

1. 1 Background

The prediction of earthquake resistance of structures is an engineering

procedure of decision-making b~sed on uncertain or incomplete i.nformations.

Ideally, a person who is responsible for devising such a procedure is expected

to arrive at a decision on a high confidence level that a structure will survive

all credible ground motions which can occur at a particular location. For

structures of major importance such as nuclear power plants, hospitals,

school buildings, or strategic installations, even higher confidence level of

safety must be achieved in the design against seismic excitations than those

required for conventional structures. In the past, seismic assessment of

structures was based on either statistically constructed design spectra or

past ground motion records. Artificial time-histories generated from the de-

sign spectra were also used. However, it is not clear whether these ap-

proaches lead to designs that can be relied upon on the confidence levels that

are presumably desired for structures of major importance mentioned above.

In such cases it is not unrealistic to rely on the idea of the so called "worst-

case analysis".

The present investigation in the prediction of earthquake resistance of

structure is es sentially a modified version of the I'worst-case analysis lT which

greatly takes advantage of the past experience together with an intelligent

prediction of the future events. The method relies on the concept of the

critical excitation. The latter is defined as an excitation, am.ong a certain

class of excitations, which will produce the largest response peak for a

structural design variable of interest. The major difficulty in this ap­

proach is the determination of the das 5 of excitations that the critical one

must be extracted from. It is reasonable to as surne that a re alistic das s

-3-



should be chosen in such a way that it includes all ground motions that are

credible for the location under consideration, and includes as few others as

possible. According to this assumption one should first of all consider, for

a given site, all excitations that have already been recorded there or at some

other locations with si.m.Uar site conditions, focal distances, and mac-ro or

micro zoning. In addition one may also consider all linear combinations of

these ground motions as credible ones.

The second difficulty in connection with this approach is the specification

of a limiting intensity of the excitation. Many definitions have been propos ed

for the measurement of earthquake intensity [1] . A common definition used

by engineers is the peak acceleration. Other definitions are the spectral in­

tensity proposed by Housner [2], power spectral density [3] and square in­

tegral of the ground acceleration [ 4]. In the present investigation, partly

for the convenience of calculation and partly from comparison studies,

the square integral of ground acceleration was used as the intensity measure­

ment. The comparison study was carried out by constructing response

spectra using equal intensities defined first by the peak acceleration and then

by the square integral of the acceleration history. There were less disper­

sions of the spectra when the second definition of intensity was used. With

the class of excitations and the intensity measures defined, the critical ex­

citation thus produced will excite the highest response peak of a prescribed

design variable.

In case one wants to scale the design excitation to a lower level than

the critical one, it can easily be done b1' arranging the das s of excitations

together with the critical one in a statistical distribution so that desired pro­

babilistic level of a design excitation can be determined.
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1.2 Review of Past Works

This investigation under NSF Grant No. PFR 76-14893 is a continuation

of the effort initiated in a previous Grant No. AEN 72-00219 for developing

a method in the prediction of earthquake resistance of structures based on

the idea of rrminimax procedure ll • The method is relatively conservative and

thus has the potential of improving the design of socially or economically im­

portant structures such as nuclear power plants, hospital buildings or mili­

tary installations. It is als 0 bas ed on a well founded mathematical form.ula­

tion and thus will enhance the confidence on the part of the designers.

The original ideas of " criticalll excitation or llminimax" procedure was

developed on the basis that ground motions encompas s all pos sible excitations

with the intensity limited to a prescribed value E. The critical excitation is

defined as the one among these excitations that will produce the maximum

response peak for a design variable in question. The outcome from this as­

sumption leads to a critical excitation proportional to the time reversed

unit impulse response function of the design variable [4,5]. Previous in­

vestigations show that this approach, although simple in concept, generally

leads to assessments that are too conservative to be applicable to practical

design.

Subsequent modifications were then carried out to improve the applic­

ability of the method. The first attempt was done by way of least squares­

fitting of the linear combinations of a selected set of past ground records

(basis excitations) with the critical one previously defined. The new ex­

citation is then called the sub- critical excitation which will have the least­

squares difference from the critical one. The intensity constraint E is still

maintained. By this modification not only the shape of the time history of the

excitation appeared to be more realistic but also the over conservativene ss

of the response was reduced. Previous reports, [6, 7, ,8] show that the
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results are quite reasonable although inconsistency in the conservativenes s

may occur occasionally.

The present modification is aimed at improving the credibility of the

critical excitation and at the same time to elim.inate the occasional irregu=

larties in conservativeness. The basis excitations are selected with special

attention paid to the site conditions, epicentral distances, and other per-·

tinent characteristic of a particular site in question. Then the critical ex-

citation is obtained by the linear combination of these basis excitations in

such a way so that the design variable in question exhibits the maximum

response peak. The intensity limitation is posted as the constraint on the

maximization procedure. The excitation thus produced are conservative

but credible in all respects in comparison with recorded ground excitation

both in the time domain and in the frequency domain.

1
0

3 Scope of the Investigation
e

As mentioned in the review of the past work, since the reversed-unit-

impuls"e-response critical excitation and its least- squares fitted sub-critical

excitation have drawbacks when applied to the real design applications, the

first task in the present investigation is to search for an improved procedure

to produce the critical excitation. This was indeed successfully accom-

plished at the begining of the investigation. Detailed presentations are given

in several papers in the appendices, and a summary of the procedure is

given in chapter 2. The criterion of selecting basis excitations was then

studied in detail. A discussion of this is given also in chapter 2. Using the

improved method, critical design response spectra were then constructed.

This is presented in detail in Appendix A. Next, the critical excitation method

was applied to the evaluation of nuclear reactor structures and the detailed

presentation is given in Appendix B. Since inelastic behavior was inevitable in

structural responses to strong earthquakes, a detailed discussion of critical
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excitation for inelastic structures is given in Appendix C and a summary is

given in chapter 3. Theoretically, critical excitations can be different for

different design variables. However, it is impractical to design a structure

based on a great number of individual critical excitations for many design

variables in question. In Appendix C methods of producing critical excitation

based on the first few free vibration modes are discussed. In addition, Ap­

pendix C also presents a method of creating spectral conforming time­

history as a single design critical excitation for a particular site. Ap­

pendix D is a paper dealing with the effective duration of the critical excita­

tion. Appendix E includes other published papers and reports in connection

with this investigation. Finally,computer programs to generate critical ex­

citations are attached to form Appendix F.

2. METHOD OF GENERATING CRITICAL EXCITATION

2.1 Selection of the Basis Excitations

As mentioned in the introduction, critical excitation is created from a

specific clas s of excitations suitable for the design of a particular structure

at a particular site. These excitations then form the trbasis". The question

of how to select the basis excitations plays an important role in the final out­

come. It is not precisely known just what characteristics an excitation must,

or must not have in order to be considered a realistic (or credible) candidate

for the design of a particular structure at a particular site. It is customary

to assume that it is possible to set an upper bound E on the ground motion in

tensity at a given location which is so chosen that its exceedance is too un­

likely an event to be taken into account. Several other characteristics are

also widely accepted as distinguishing realistic candidates of ground motions

from their opposites. Vanmarcke [ 9], for instance, lists the following:

(a) Duration of strong ground motion

(b) Variation of motion intensity with time
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(c) Relative frequency content

(d) Effect of macro- zone, micro- zone, and site - soil

(e) Effect of focal distance

Some of these characteristics are clearly of a rather qualitative nature

and it is not obvious how they are best converted into quantitative form.

Discussions of this problem and a suggested method of selecting basis ex-

citations were presented in reference [ 6] . This report is based on a

modified and theoretically better founded version of the last. This stems

from the following line of reasoning.

First of all consider any excitation to be realistic, that has been re-

corded at a site or at some other locations with similar soil conditions, focal

distances, and marco or micro zoning. In addition, one should presumably

admit any other excitation which has the same or similar characteristics (i.e.

the sense of the above list) as the basis excitations. Despite the vagueness

of the list, it may be safe to say that these characteristics are shared by all

linear combinations of the basis excitations. with the proviso that their in-

tensities do not exceed the upper bound E appropriate for that location.

It is not known whether the class of excitations defined in this way com-

prises all that can be considered t!realistic ll or [!credible". However, at the

present state of knowledge regarding seismological disturbances, any further

expansion of it seems difficult to justify. In this report, at any rate, "the

class of ttrealistic!! basis excitations will be defined as just described.

2. 2 Effective Duration of Excitation..
The intensity measure I [ X" II adopted in this report is based on the

square integral of the ground acceleration.

1

Ilx 1/ = [ { ::':g 2
(tl dt J2

-8-
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The limits of the integration defines the effective duration of the excitation.

Real ground motions last a. few seconds .to a few minute s. However, the portion

of the shake that influences the response of a particular structure is limited

to a strong region of the shake, the duration of which depends on the rigidity

and dam.ping of the structure. A detailed discussion of this problem is given

in Appendix D. A simple rule of selecting the effective duration based on the

fundam.entar fr equenc y of vibration w (1'. p. s.) and dampi.o.g l'atio

f3 -1T=(-.enC)( (0)

(3 is

(2.2)

where C is the acceptable decay ratio (say 1/5) which indicates the fraction

of the maximum value of the unit impulse response peak that can be disre-

garded with no appreciable error. In practical application and based on com-

putational experience, the following rule was also used

4(sec) < T = ax T
l

< 8,0 (sec)

2rrwhere T1 is the fundamental period of the structure and is equal to (0)

2.3 Determination of the Critical Excitation

(2.3)

Although the detailed derivation of generating the critical excitation is

given in Appendices. A, Band C, it is not out of place to summarize it at

this point.

In mathematical terminology, the selected class from which the critical

excitation is generated lies in a linear manifold spanned by the basis ex-
_.. -

citations. In symbols, if xl(t), x
2

(t), ..... xn(t) are the ground accele-

rations that form the basis, the manifold which is spanned by them contains

all excitations
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x (t) = i~ a i

..
x .(t)

1
(2.4)

The class of allowable ones among these then includes all whose intensity

II ~ II does not exceed the given maximum E.

If the intensity is defined by (2.1), then the intensity constraint takes

the following form

.. [TIlxll= £ ]

1/2

: 2(t) dt < E (2.5)

with E being a prescribed value.

The response y(t) of a linear structural system to an excitation in the

manifold is

n

(I) h (t-I) d'T = i~ a.
1 t·:i ('T) h (t-'T) dT

n
= \'L

i=l
a. y. (t)

1 1
(2.6)

where h(t) is the impulse response function of the design variable under con-

sideration and y.(t) is its response to a basis excitation x.(t). The critical
1 1

excitation x (t) in the manifold is now defined as one which drives the
c

response y(t) to its maximum value and which at the same time obeys the in-

tensity constraint (2.5).

The problem of determining a critical excitation is the following. It

IS required to find an excitation x (t) of the form (2.4) which obeys the con­
e

straint (2.5) and which drives the response y(t) in (2.6) to its largest peak.,

If the time t* at which y(t) reaches its maximum were known, the problem
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would be that of deter rn.ining a set of coefficients ai' i = 1, 2, •.. n, which

achieves

rn.ax Iy(t*) I =rn.ax I f
a i a i i=l

subject to the constraint

a. y.(t*)[.
1 1

(2.7)

~
j=l

T.. .•
a. a. J x. (t) x .(t) dt

1 J 0 1 J

where

=
n n

L ~
i=l j =1

a. a.
1 J

x ij (2.8)

(2. 9 ,)

Ho wever, the tirn.e instant t* is not known. Thus the rn.axirn.ization y(t) rn.ust

be carried out with respect to tirn.e t also, i. e.,

a. y.(t) I
1 1

(2.10)

rn.ust be deterrn.ined. The rn.axirn.ization with respect to a. can be carried out
1

by sirn.ple linear algebra. However, the one with respect to t can be done

only by a nurn.erical evaluation. These two procedures will be described now.

One can, first of all, ignore the absolute value in Eq. (2.10). For, if

sorn.e set of a. achieves the positive rn.axirn.urn., the set of (-a.) yields the
1 1

negative one, and vice versa. Thus, y(t) is to be rn.axirn.ized for a fixed tirn.e

t and subject to Eq. (2.8). This can be done by setting

-11-



o
o = oa.

J

n

L
i=l

a. y.(t) + A
1 1

n n

1:: 1::
i=l j=l

a. a. X ..
1 J 1J

=y.(t) +2 A f ~ .. a.
J i=l J1 1

j = 1, 2, ... n (2.11)

where A is a Lagrangian multiplier. This equation can be rewritten as

x .. a. =-
J1 1

1
2A y.(t) ,

J
j = 1, 2, ... n, (2.12)

or, more comprehensively, in matrix form, namely

xa -- (2.13)

where a and Y(t) are n-dimensional column vectors with the components a.
1

and y.(t) , respectively, and x is an n x n-dimensional matrix with the com­
1

ponents x ...
1J

The solution is thus

a =- (2.14)

where invertibility of x can be shown in the following way. One assumes

to start with that the basis excitations are linearly independent. In practice

this is almost a matter of course and in theory it merely implies that none

of those excitations can be omitted irom the basis. Thus,

o < rTff a. ~ (J dt =
o t=l 1 J

n n T\''' JL L a. a.
i=l j =1 1 J 0

-12-

x. (t) x.(t) dt
1 J

n n
= L: L: a. a.

i=l j=l 1 J
x
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The expression on the right can be interpreted as a quadratic form in.the

variables a. , and in fact a positive definite form as the inequality shows.
1 ..

It follows that the matrix x is positive definite also, hence has only positive

eigenvalues. Since none of the eigenvalues vanish x is invertible.

The Lagrangian multiplier can now be determined from the constraint

equation Eq. (2.8) which, written in matrix form, is

T ..
a x (2.15 )

where aT is the transpose of the vector a. Substituting Eq. (2.13) into Eq.

(2. 15) give s

1

4A. 2
1

4A. 2
(2. 16)

. .. -1 T •• - 1 ..
in which use has been made of the fact that (x ) ::: X because x is

symmetric. Eq. (2.14) im:plies that the values of a i as well as y(t) grow

larger in magnitude as A. decreases. Thus, y(t) is maximized, for fixed t,

if equality prevails in (2.15), i. e., if

1
A. = 2E [ y T <t) ::0 -1 y(t)J1/2 (2.17)

This value, substituted into Eq. (2.14), gives the maximizing coefficients a.
1

It remains to carry out the maximization in Eq. (2.10) with respect to

the time t. This can be done numerically by subdividing the time period T

of interest into subintervals ~ t. In computational practice, to achieve a de-

sired accuracy in the results without excessive effort, consideration must be

-13-



given in the choice of A t to the natural periods and decay time of the impulse

response h(t) of the structural variable as well as to the frequency contents

of the basis excitations. In this study, the subinterval ~ t was taken as

T /200 (i. e., approximately Tl/20).

2.4 Practicality of the Critical Excitation

The critical excitation produced according to the method presented

above is a rlworst-casefl or upper bound approach. Its practicality certainly

needs verification and it is done by three comparison studies versus real

ground excitations:

(a) Comparison of the characteristics of time-histories.

(b) Comparison of the frequency contents of the Fourier
Spectra.

(c) Comparison of the response peaks of various design
variables.

These studies were carried out in reference [6], Appendix A, B and

C. When the time-history and Fourier Spectrum were plotted separately for

the critical excitation and for the real ground accelerations, there is no ob-

servable difference. The comparison of the peak responses of various design

variable s was also carried out in the same reference and appendices. The

ratios of the peak responses obtained from the critical excitation to that ob-

tained from the real ground accelerations were in the range of 1.1 to 2. O.

It can be concluded that the critical excitation is a realistic but somewhat

·conservative ground motion. When it is applied to structures of social or

economical importance it will enhance the confidence reliabity of the struc-

ture.
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3. CRITICAL EXCITATION OF INELASTIC STRUCTURES

3.1 General Discription

The basic advantages of the critical excitation method is that it produces

highly reliable assessments of structural earthquake resistance. Effective

computational procedures exist by which such assessments can be deriv.ed,pro-

vided however the structure under study responds elastically. Evidently,

this is unrealistic. Under severe ground shaking structures will exceed their

elastic limits, and many are in fact designed to do so. It is accordingly
\

highly desirable to develop computational procedures that are effective also

for inelastically vibrating structures but which do not compromise the high

reliability of the assessments to which they head.

Two studies exist which seek to achieve this goal. One was reported

previously [10], and another in Appendix C of this report. Both extend the

idea of the critical excitation into the inelastic domain and provide workable

procedures. The first study was aimed at producing a critical excitation

with intensity constraint only. The difficulty in regard to this approach is

discussed in section 3.2. The second study is based on the equivalent lin-

earlization of the nonlinear system. A brief summary is given in section 3.3

while a detailed description is given in Appendix C.

3.2 Discussion of Critical Excitation with Intensity Constraint only.

The first study follows the same path as that of the original idea for the

linear structure, that is to determine the critical excitation with intensity

constraint only. It did not achieve the desired assessment reliability on the

same level as that for the elastic one. The reason for their short fall is

fairly deep- seated. One can trace the trouble to the fact that the critical ex-

citation method is based on a fundamental inequality (the Schwarz inequality)

which can be exploited only when the structure is elastic. What would be

needed therefore is an analogous inequality which applies to inelastic struc-
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ture. No such inequality is known, to the writers' knowledge. It therefore

seemed desirable to explore the possibility of deriving one.

Two avenues were explored towards this objective. As of this writting

neither has completely produced results, but neither exploration seems ex­

haustive. Each can be stated as a conjectured theorem regarding certain

very general system properties. They can be 'described as follows.

1. A Theorem Regarding Random Connections of Systems.

Suppose two systems 51 and S2 (not necessarily linear) are connected

in series, as shown in the figure, and driven by an input X which is a unit

impulse

x .1__5

_

1

_

y z

applied at the time t = O. The problem. is as follows: for a given 52' how

should 51 be chosen (subject to a certain norm.alization constraint), in or.der

for the output Z to have the largest response peak at the time t = O? The

following conjecture arises: the system S1 must obey the same (differential)

equation as 52 except the t in all is replaced with ( - t).

This conjecture is valid for linear systems (i. e., elastic structures

and the critical excitation method) but its extension to non-linear (inelastic)

systems has not yet been proven.

2. A Representation Theorem for Random Processes

The second conjecture seeks to exploit a parallel between the critical

-16-



excitation method and the response characteristics of systems to white noise

inputs. This parallel was pointed out at one time for linear systems [4, ]

but never exploited. The exploitation in the direction of nonlinear systems

require the proof of a thenrem conjectured to be roughly as follows:

Every random process whose distribution functions F{xt I X
t

_e ), con­

ditioned on the past X
t

_e , are continuous in Xt for every e > 0, can be gene­

rated from white noise by a suitable nonlinear systems, unless the random

process has a perfectly predictable component. In that case, only its imper-

fectly predictable component can be so generated.

A proof of this theorem may have been obtaine~ recently for the simpler

case of discrete time. It is fairly abstract however and needs to be carefully

reviewed before publication is attempted.

3.3. Critical Excitation of Nonlinear System Replaced by Equivalent Linear
System

The critical excitation of nonlinear system replaced by equivalent lin-

ear system is presented in Appendix C. However a brief sum.m.ary is given

below.

The typical nonlinear equation of motion of a single degree of freedom

oscillator is

my + c y +ky +f =x (3.1)

The term f is a nonlinear function associated with the nonlinearity of the os-

cillator and its presence does not allow a straig~t forward evaluation of its

critical excitation for a given basis and reference intensity E. To overcome

this, a linearization technique based on the concept of equivalent lineariza-

tion [11] is employed. According to this approach the nonlinear oscillator is

-17-



replaced by a linear one in such a way that the difference d between the two

oscillators is minimized. The equivalent linear oscillator is:

€ €
m y + c y +k Y =.x; (3.2)

where c€ and k€ are equivalent damping and stiffness:

{:: =c +co

=k +ko

(3.3)

The new parameters cO' k
O

are time independent but they do depend on the

solution YL of the equivalent linear oscillator as will be domonstrated below.

The minimization of the difference d is expressed as:

(3.4)

where ¥ is an averaging operator.

By carrying out the minimization operation, the following equation is

obtained:

where'p and Q are 2-vectors as:

(3.5)

and

-18-
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and A is a 2 x 2 matrix:

(3. 7)

Eq. (3.5) assumes the equivalency of the two oscillators' (Eqs. 3.1 and· 3. 2).

The existence of the equivalency depends on the existence of the vector p ,

which in turn depends on the invertibility of A. t
It is clear, in general, the solutions from Eqs. (3.1) and (3.2) will dif­

fer. However, any trial value Co and k
O

result in trial solution YL and Y
L

from Eq. (3. 2). When they in turn are substituted into Eq. (3. 5) a new set

of values Co and k O can be found. Thus by successive computation an equi­

valent linear system will be obtained.

In order to apply the equivalent linear system for generating the crit-

ical excitations and then to construct the nonlinear response spectra, one

proceeds in the same way as in the linear case; first select a set of basis

excitations xi's. For a given initial set of Co and k O' equivalent linear crit­

ical excitation and l!: vector can be determined. With these prelininary

values of vector ~ the A matrix in Eq. (3. 7) is determined as follows:

N
= \'

L'i=l
a. a.

1 J
d ( ) =2- Trfl. y. y.

1 J
R

(3.8)

Q • s:, T
=a .W • .s:.

t The invertibility of A depends on the linear independence of y. ; i = 1, ... ,
N, which depends on the selection of linearly independent basls excitations
x.; i = 1, ... , N.

1
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where R, Q and Ware N x N matrices:

R .. = A(y. y.)
IJ 1 J

Q .. =d (-y. y.)
IJ 1 J

• •W .. = A(y. y.)
IJ 1 J

(3. 9)

Similarly, the b vector becomes

b = f a. A (fy.) T
= a e

1 1 1 - -i=l
(3.10)

N
T

b
2 = L a. A (fY.) = a g

i=l 1 1 --

and thus new values of Co and k O can be computed from Eq. (3.5). Successive

computations are carried out until two consecutive Co and k O values differ

ins ignificantly .

The equivalent linearization of nonlinear system approach were em-

ployed to produce the nonlinear critical design spectrum. These were pre-

sented in detail in Appendix C.
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1. Introduction

This paper deals with the problem of how to assess the seismic

resistance of important structures, particularly of nuclear reactor

structures. Ideally, a person who is responsible for such an assessment

is expected to certify on a high confidence level that a structure will

survive all credible ground motions which can occur at its location, and

perhaps also that it will do so on no more than a prescribed damage level.

Most of the design procedures presently in use or under investigation

are based on design response spectra [1, 2J obtained by statistical evalua­

tion of past ground excitations assuming certain probability distributions

(e. g. normal or lognormal) of response peaks. Artificial time histories

generated from these spectra are also used ( 4]. However, it is not clear

whether these approaches lead to designs that can be relied upon on the

confidence levels that are presumably desired for structures such as

nuclear reactors whose integrity during an earthquake is of considerable

importance. The trouble lies with the fact that the analysis of structural

integrity seems highly sensitive to the assumptions regarding the nature of

those probability distributions: sm.all variations, especially in the tails of

the distributions, can induce large changes in the desired results. This

greatly weakens the reliance that can be placed in m.any assessm.ents of

earthquake resistance.

In this paper, a new method is developed which has the potential of

avoiding those weaknesses. It is more specifically based on assumptions

that seem. well supported by seism.ological observations but side-steps

others, especially those regarding the probability distribution of ground

motions. which are more conjectural.
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The avoidance of such assumptions is usually purchased at the

expense of some conservatism in the results, and the new :method is no

exception. The assessments of earthquake resistance that are obtained

through it are some.what conservative. This makes its application most

attractive to structures or devices whose integrity during a strong earth­

quake is of special importance, and nuclear reactors are felt to be good

cases in point. The present paper therefore describes several such

applications.

The method relies on the concept of the critical excitation. It is

defined here as an excitation, among a certain class of excitations, that

will produce the largest response peak for a structural variable of interest.

The class in which critical one is determined should be chosen in such a

way that it includes all ground motions that are credible for the location

under consideration, and as few others as possible.

The definition of what does and does not constitute a credible excita­

tion proved to be one of the major difficulties in the development of the

method. This development is sketched in Sect. 2 below and the definition

that was ultimately adopted is described there. It appears to represent

a fairly realistic one in that it retains those features which are generally

accepted as being characteristic of credible ground :motion, while it excludes

others which are of a more doubtful nature. Sect. 3 then outlines the com­

putational procedure by which the critical excitations, and the response

peaks they generate, are determined. Sect. 4 finally describes the applica­

tion of the method to three reactor containment structures. The upshot or

the results reported there is that there exist many credible ground motions

that drive the stru.ctures to higher response peaks than any already
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recorded ground motions, and hence, that reliance on the latter may lead

to assessments of earthquake resistance that are lower in some cases

than that suggested by their importance.

2. Definition of Critical Excitations

A critical excitation has just been defined as one among a clas s of

allowable excitations which will produce the most severe response peak in

a structural variable. The nature of the critical excitation thus depends

on the class of allowable excitations on which it is based and on the

structural variable of interest. The choice of the latter is at the discretion

of the structural engineer. That of the former however is not. In fact,

the designer must in some way take into account all ground motions that

can realistically be expected at the site of the structure.

Unfortunately, it is not quite clear just what characteristics an

excitation must. or must not, have in order to be considered a realistic

(or credible) candidate for a ground motion during an earthquake. It is

customary to assume that it is possible to set an upper bound E on the

ground motion intensity at a given location which is so chosen that its

exceedance is too unlikely an event to be taken into account. Several other

characteristics are also widely accepted as distinguishing realistic can­

didates of ground motions from their opposites. Vanmarcke [5) , for

instance. lists the following:

(a) Duration of strong gound motion

(b) Variation of motion intensity with time

(c) Relative frequency content

(d) Effect of macro-zone, micro-zone, and site-soil

(e) Effect of focal distance
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Some of these characteristics are clearly of a rather qualitative

nature and it is not obvious how they are best converted into quantitative

form. Based on som.e early and inadequate ideas by one of the writers

[6] [7] , Shinozuka [8] accom.odated (c), and Iyengar (a) and (b). The

present authors proposed another approach intended to allow for all five

[ 10]. The one on which this paper is based is a modified and theoretically

better founded version of the last. One is led to it by the following line of

reasoning.

One should first of all consider any excitation to be realistic, for a

given site, that has already been recorded there or at some other location

with sim.ilar soil conditions, focal distances, and m.acro or m.icro zoning.

These are called "basis II excitations below. In addition to these, one

shou1,d presumably admit any other excitation which has the same or similar

cha.racteristics (in the sense of the above list) as the basis excitations.

Despite the vagueness of the list, it may be safe to say that these charac­

teristics are shared by all linear combinations of the basis _excitations,

with the proviso that their intensities do not exceed the upper bound E

appropriate for that location.

It is not known whether the class of excitations defined in this way

comprises all that can be considered "realistic II or "credible II. However J

at the present state of knowledge regarding seismological disturbances,

any further expansion of it seems difficult to justify. In this paper, at any

rate, the c1as s of II realistic :1 excitations will be defined as just described.

In mathematical terminology, the class lies in a linear manifold

spanned by the basis excitations, and it is a solid sphere within it nam.ely

the one with the maxirnum intensity E as radius. In symbols, if Xl (t) ,
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x
2

(t) , ••.. x
n

(t) are the ground accelerations that form the bas-is, the

manifold which is spanned by them contains all excitations

n ..
x (t) = L; a 1 xl (t)

i=l

(1)

The class of allowable ones among these then includes all whose intensity

~·~ft does not exceed the given maximum E.

Several i.ntensity measures have been employed for seismic excita-

tions in the past. Among them, the peak ground acceleration

1/ x II = maxt Ix (t)1 (2)

is probably the one used most often. The square integral of the ground

acceleration over the time period T of interest, 1. e.

IIxll
T·.. ll/2
J x

2
(t) dt l

o J
(3)

is another. The second is more easily utilized towards obtaining peak

responses of linear structural systems. Hence it is used in this study and

a class of allowable excitations is defined as a set of ground accelerations

of the form (1) whese intensities satisfy

.• ~ [ T ··2 ] 1/2II x II = £x (t) dt ~ E

with E being a prescribed value.

( 4)

The response y(t) of a linear structural system to an excitation in

y(t) =

the manifold is

t n
J x (7) h (t-T) dT = L
o i=l

t ..

a. Jx. l' (T) h (t-T) d T
1 0

n

= ~ a. y. (t)
i =1 1 1

(5)
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where h(t) is the impulse response function of the design variable under

consideration and y. (t) is its response to a basis excitation x. (t).
L 1.

The critical excitation x (t) in the manifold is now defined as one which
c

dri.ves the response y(t) to its maximum value and which at the same

time obeys the intensity constraint (4).

3. Determination of Critical Excitations

The problem of determining a critical excitation is the following.

It is required to find an excitation x (t) of the form (1) which obeys the
c

constraint (4) and which drives the response y(t) in (5) to its largest peak.

*If the time t at which y(t) reaches its maximum were known, the problem

would be that of determining a set of coefficients a., i =1,2, ... n, which
L

achieves

max Iy(t*) I = max I ~ a. y.(t*) I.
a i a i i=1 t 1.

subject to the constraint

(6)

T .• 2 n
E ~ f x (t) dt = ~

o i=l

n TOo ••
~ a. a. f x . (t) x. (t) dt
j=1 1. J 0 L J

where

=)' L a. a. x ..
.w 1 1 1..)' 1.J1.= j=

T .. .•
x .. = J x . (t) x' (t) dt

tJ 0 1. J

(7 )

(8 )

...
However, the time instant t"" is not known. Thus the maximiza.tion

y(t) must be carried out wi.th respect to time t also, i. e. ,

n
maxt ma.xa . /y(t) I = max

t
max , L a..y. (t) I (9)

L at i= 1 1. 1.
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must be determined. The maximization with respect to a. can be carried
L

out by simple linear algebra. However, the one with respect to t can be

done only by a numerical evaluation. These two procedures will be de-

scribed now.

One can, first of all, ignore the absolute value in Eq. (9). For, if

some set of a. achieves the positive maximum, the set of (-a.) yields the
1 L

negative one, and vice versa. Thus, y(t) is to be maximized for a fixed

time t and subject to Eq. (7). This can be done by setting

o = -aa(1 a. y. (t) + "- 1 L a. a. ;t ..)
a j i= 1 1 1 i= 1 j= 1 L J 1J

n •.
=y.(t)+2"- L:"x. a.

J t=l Ji 1
j=1,2, .•. n (10)

where "- is a Lagrangian multiplier. This equation can be rewritten as

nLx .. a. =
i= 1 J1 1

= 1, 2, ... n, (11)

or, more comprehensively, in matrix form, namely

X a = -

where a and Y(t)

Y(t)

are n-dimensional column vectors with the

(12)

components a. and y. (t), respectively, and X is an h x n-dimensional
1 1

matrix with the components x ..•
1J

The solution is thus

a = 1 "-1
2 "- X Y(t) (13 )

where invertibility of X can be shown in the following way. One assumes

to start with that the basis excitations are linearly independent. In practice

this is almost a matter of course and in theory it merely implies that none
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of those excitations can be omitted from the basis. Thus,

2

o < ?rLa. ~. (t~ dt
6 ~= 1 1 1 J

n n T.... n n
= 1 l: a. a. J X.(t)X.(t)dt =~ L a.a. ~ ..

i =1 j= 1 1 J 0 1 J i= 1 j=l 1 J 1J

The expression on the right can be interpreted as a quadratic form in the

variables a. , and in fact a positive definite form as the inequality shows.
1

It follows that the matrix X is positive definite also, hence has only

positive eigenvalues. Since none of the eigenvalues vanish X is

inverti.bIe.

The Lagrangian multiplier can now be determined from the constraint

equation Eq. (7) which, written in matrix form, is

T ••
a Xa < E (14)

where aT is the transpose of the vector a.' Substituting Eq. (13) into

Eq. (14) gives

(15 )

"-IT "-1in which use has been made of the fact that (X ) =X because X is

symmetric. Eq. (13) implies that the values of a. as well as Y (t) grow
1

larger in magnitude as A. decreases. Thus, Y(t) is maximized, for fixed t,

if equality prevails in (14), i. e., if

1
A. = 2E

1/2
(16)

This value, substituted into Eq. (12), gives the maximizing coefficients a.
1

It remains to carry out the maximization in Eq. (9) with respect to

the time t. This can be done numerically by subdividing the time period T

4\
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of interest into subintervals ~t. In computational practice, to achieve

a desired accuracy in the results without excessive effort, consideration

must be given in the choice of ~ t to the natural periods and decay time

of the impulse response h(t) of the structural variable as well as to the

frequency contents of the basis excitations. In this study, based on com­

putational experience, the time interval T in Eq. (4) is taken roughly as

4 < T =8 x T1 ~ 40 (sec) (I 7)

where T 1 is the fundamental period of the structure. The subinterval

~ t was taken as T 1200 (i. e., approximately T 1/20). Computation of

critical excitations for 6 structural variables consumed a computer time

of roughly 2 minutes on an IBM 360/65 machine, an effort which is con-

sidered quite modest.

4. Analysis of Nuclear Reactor Structures

In order to illustrate the critical excitation approach to the practical

design of structures, particularly of nuclear reactor structures, three

analyses of containment structures are presented below. The first two

example were drawn from the technical literature [6] [7] . The third

was obtained from a ci viI engineering consulting firm which specializes in

the design of such structures.

Effects of soil- structure interactions are represented in the analysis

by introducing equivalent soil springs. In order to allow consideration of

the geological properties of the construction sites, two sets of ground

accelerations which were recorded respectively on stiff soil sites and on

rock sites [11], are selected as basis excitations see Tables land 2.

Accordingly two classes of credible ground excitations are constructed
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from them in the way described in the previous section. The critical

excitations are, then, computed for several design variables of each struc-

ture. Finally, comparisons are made between response peaks due to

critical excitations and those produced by several actual ground motions.

The results obtained are as follows.

4. 1 Reactor Structure I

The first example is a relatively simple model of a nuclear reactor

building analyzed originally by Hamilton [ 12]. It consists of two sub-

structures, namely the containme'nt building and the auxiliary building. For

the structural analysis it is idealized as a 2 dimensional two-sticks model

with lumped masses, as shown in Fig. 1. The effects of soil-structure

interaction are introduced by two equivalent soil springs which are attached

to the foundation in horizontal and rotational directions.

For the dynamic analysis, the first six modes are used. The viscous

damping is taken as 7% of the critical for each mode. The first three

natural periods are. 342, . 132 and. 067 sec.

In order to illustrate the assessment of the earthquake resistance of

this structure, it is assumed that it is to be constructed on a stiff soil side in

California. Accordingly the twelve ground accelerations recorded on stiff

soil sites in that area are chosen as the basis excitations. They are listed

in Table 1. The maximum intensity E of Eq. 4 is taken to be that of the

NS-component of the Imperial Valley earthquake, as recorded at El Centro

on May 18, 1940. This intensity to E :: 7.90 ft/sec 3
/ 2 , with T:: 4 sec as

the relevant duration of strong ground motion. The maximizations described

in the preceding section are carried out at intervals of ~t :: . 02 sec.

Critical excitations are cornputed for six design variables, namely

top displacement, bottom moment and bottom shear for each substructure.

213
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The critical excitation for the bottom moment of the containment building

is shown in Fig. 2 along with the record of the San Francisco earthquake,

as recorded at the Alexander Building on March 22, 1957. By inspection,

at least, the former seems as realistic a sample of a possible ground

motion as the latter. This impression is confirmed by a comparison of

their Fourier spectra in Fig. 3.

Some of the results of the calculations are presented in Table 3.

The first column lists the response peaks generated in several design

variables by the critical excitations. Column 2 and 3 show the response

peaks produced by the ground motions recorder at El Centro and at the

Alexander building, normalized to the same intensity E 1 and column 4

the so-called tlresponse envelope ll
, i. e., the largest peaks due to the 12

basis excitations.

The comparison among these figures shows that there exist realistic

excitations, namely the critical ones as well as others with similar

characteristics, which produce response peaks that are higher by factors

of 1. 4 to 2 than those produced by recorded past earthquakes.

4. 2 Reactor Structure II

The second example is a containment structure to be built on a stiff

soil site in India, according to information presented by Arya, et al. [13].

This structure consists of three substructures, namely i) the outer

containment, consisting of an outer cylindrical shell with a spherical dome

at the top, ii) the inner containment consisting of an internal cylindrical

shell and a cellular grid at the top, and iii) the internal structure which

includes the reactor internal structural system and the raft. A vertical

cross section of the structure is shown in Fig. 4 a. For the structural
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analysis, this structure is represented as a three-sticks model with

lumped masses as shown in Fig. 4 b. The effect of soil stiffness on the

imbedment portion is included by introducing one rotational and 8 trans­

lational soil springs.

Dynamic analyses are performed by using the first 6 modes. Damp­

ing ratios are taken as 5% for each mode. The first three natural periods

are .699,.232 and .121 sec u Because no earthquake records in India

are available, to the authors the twelve ground accelerations in Table 2

recorded in the United States are used as the basis excitations. The

maximum intensity E is taken as that of El Centro earthquake as for the

preceeding structure but over a time interval T of 6 sec. Maximizations

are carried out at intervals of AT =.03 sec. The critical Excitations are

computed for several design variables, namely top displacement, bottom

moment and bottom shear face for each of two containment structures.

The critical excitation for the bottom moment of outer containment is shown

in Fig. 5, along with the El Centro ground motion. Fig. 6 displays their

Fourier spectra. All a.re normalized to the same intensity E. Again, no

characteristics are evident in either that are not present also in the other.

The response peaks due to the critical excitations are compared in

Table 4 with those generated by two recorded ground motions, namely at

El Centro on May 18, 1940. and at Castaic during the San Fernando earth­

quake on February 9, 1971. Also, the peaks from the response envelope

are listed. As it happens, they are all produced by the same ground motion

record, namely the one from El Centro.

As in the preceding example, the conclusion is that there are realistic

ground motions which induce response peaks in these structures that are

higher (in the prl;lsent case by factors up to 1. 77) than those considered in

previous assessments of earthquake resistance.
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4. 3 Reactor Structure III

The last example to be discussed here is a relatively complex

reactor structure for a nuclear power plant.which is to be constructed on

a rock site in the United States. It consists of three substructures,

namely the containment building, the internal structure and the annulus

building. A vertical cross section of this structure is shown in Fig. 7 a.

For the analysis, it is idealized into a 3-dimensional stick model with

lumped masses as shown in Fig. 7 b. Effects of soil-structure interaction

are included by equivalent soil springs in three translational and three

rotational directions.

The first fifteen modes are used and viscous damping is taken as 7%

of the critical one for each mode. The first three natural periods are

.275, .276 and. 138 sec.

As the basis excitations, twelve ground accelerations recorded on

rock sites are used. They are listed in Table 2. The intensity E assumed

to be that of the ground motion recorded at the Pacoima Dam during the

San Fernando earthquake over a period of T = 4 sec. i. e., E = 17.89 ft /

3/2
sec Maximizations are executed at intervals of ~t =.02 sec.

The critical excitations are computed for nine design variables,

namely top displacement, bottom moment, and bottom shear face for each

of the three substructures. The critical excitation for the bottom moment

of the containment building is shown in Fig. 5, along with the Pacoima

Dam ground motion.

The response peaks due to the critical excitations are compared in

Table 5 with those recorded at other rock sites, namely at the Pacoima

Dam during th~ San Fernando earthquake and at the Golden Gate Bridge
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during the San Francisco earthquake. All are of course normalized to

the same intensity E. The peaks of the response envelope are also shown

in the table.

The critical response peaks are seen to be higher than the other

table entries by factors ranging from 1. 10 to 1. 87. The conclusion here

is thus the same as in the preceding two examples: there are many

credible excitations that exert higher stres,ses on this structure than those

produced by recorded past earthquakes.

5. Conclusions

A new method has been described for the assessment of seismic

resistance of structures, particularly of nuclear reactor structures. The

method i.s based on the concepts of critical excitations and responses. It is

derived under well-specified assumptions and by a well-defined procedure.

The design ground excitations, namely the critical excitations, obtained

are found to be quite realistic samples of possible ground motions.

The effects of these excitations were analyzed on three designs of

reactor containment structures. It was found that the resulting response

peaks are higher by factors ranging from 1. 1 to 2.0, approximately, than

those that would have been produced in these structures by already

recorded ground motions. The conclusion therefore is that there exist

many excitations which are realistic candidates for seismic ground

motions a.t any location but which will drive a structure there to stronger

responses than is evident from the history of such responses in the past.

Experience with similar analyses of other structures by this method

indicates that competent strur.:tural engineering des igns are typically
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adequate to accommodate these higher response peaks in ways provided

for by the designers. It is considered very likely that the same is true of

the structures discussed above.
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Table 1. Basis Excitations on Stiff Soil Sites

File Inurn.ber Earthquake Dat~ Record Corn.p.
in

CIT Report

AOOI lrn.perial Valley 5/18/40 El Centro NS

AOO1 lrn.pedal Valley 5/18/40 El Centro S90W

A014 San Francisco 3/22/57 Alex. Bldg.,S.F. N09W

A016 San Francisco 3/22/57 State Bldg. , S. F. S09E

B024 Lower California 12/30/34 El Centro NS

D056 San Fernando 2/09/71 Castaire N69W

D058 San Fernando 2/09/71 Hollywood Storage NS
L. A.

DOS8 San Fernando 2/09/71 Hollywood Storage N90E
L.A.

E083 San Fernando 2/09/71 3407 6 St. L. A. NS

E083 San Fernando 2/09/71 3407 6th St. L. A. N90E

H1l5 San Fernando 2/09/71 15250 Ventura Blvd NllE
L. A.

Q233 San Fernando 2/09/71 14724 Ventura Blvd N78W
L.A.
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Table 2. Basis Excitations on Rock Sites

File
number Earthquake Date Record Compo

in
CIT Report

A015 San Francisco 3/22/57 Golden Gate, S. F. NIOE

B025 Helena 10/31/35 Federal Bldg. S. F. NS

B037 Parkfield 6/27/66 Temblor S25W

C041 San Fernando 2/09/71 Pacoima Dam S16E

CI06 San Fernando 2/09/71 C. I. T. , Seis. Lab. EW

J141 San Fernando 2/09/71 Lake Hughes Sta. 1 N21E

J142 San Fernando 2/09/71 Lake Hughes Sta. 4 S69E

J144 San Fernando 2/09/71 Lake Hughes Sta. 12 N21E

L166 San Fernando 2/09/71 3838 Lankershim NS
Blvd., L. A.

0198 San Fernando 2/09/71 Griffith Park Observ. SN

P22l San Fernando 2/09/71 Santa Anita Dam N87W
I

W334 Lythe Creek 9/12/70 Wrightwood S25W

I
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Table 3. Maximum Responses of Reactor Structure I

Structural Alex Bldg.
Variables Critical El Centro S. F. Envelope

3/22/57

Top Displ. (in)
"-

Containment Bldg. 1. 185 .525 .820 .820'"
...r... oJ..

Auxiliary Bldg. .049 .027 .018 . 037'" '"

Bottom Moment (10
7
Kip-it)

.,.
Containment Bldg. 1. 022 .439 . 719 .719

,,-

Auxiliary Bldg. .141 .078 .052 .107

BottomSbear (l05Kip )
.,.

Containment Bldg. .642 .300 .462 .462
.,-
..I......,...

Auxiliary Bldg. . 380 .207 • 138 . 289
....... ""I'"

Note:

*~
Response peaks due to ground motion at Alexander Building, S. F. 3/22/57

**Response peaks due to ground motion at Sixth Street, L. A. 2/9/71
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Table 4. Maximum Responses of Reactor Structure II

Structural El Centro Castair
Variables Critical 5/18/40 2/9/71 Envelope

Top Displacement (m)

I -"
at node 1 · 227 · 169 .132 .169

,,-

-"
at node 27 ! • 139 • 103 .082 · 103

','

Bottom Moment
(10 6 Ton-m)

-"
member 25 · 711 .546 · 386 · 546'"

member 47 · 471 • 357 · 264 · 357*

Bottom Shear
(10 4 Ton)

-"
1. 09 · 841 · 587 · 841

','
member 25

",
member 47 1. 39 1. 075 · 832 1. 075

",

Note:
~<

Response peaks due to ground motion at EI Centro, 5/18/40
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Table 5. Maximum Responses of Reactor Structure III

Structural
Response Peak

Variables
Critical Pacioma Golden Gate Envelope

Dam Bridge
9/2/71 3/22/57

Top Displacements (inch)
~.....f..

at node 6 I .749 .415 .499 . 636
4

""

-'.
at node 16 4. 183 2.351 3.955 3.955

-,'

II oJ.

at node 21 1. 769 3.059 3.059
4'I 3. 201 I

I
I i

Motnents (10 7 Kips-ft. ) I
I ..I.. oJ..

member 2, node 1

I
6.558 3.655 4.690 5.849 ... ···

I->-
member 6-, node 2 3.848 2. 140 3.605 3.605

4

'

I
...I.. w I

metnber 17, node 1 1. 570 .794 1. 004 1. 349
·'1" ......

!
I

I
I !I

Shear Forces (10 5Kips)
I I

I
I

0,,1......4 I

tnetnber 2, node 1 5.736 3. 181 4.110 5.122
"'1"" "'I'"

I
oJ.

1tnetnber 6, node 2 2.444 1. 207 2.319 2. 319
4'

I
..f.. oJ..

Itnetnber 17, node 1 1. 993 1. 014 1. 280 1. 712
"I' .,..

I

Note:
-'-

.,. Response peaks due to ground tnotion at Golden Gate Bridge, 3/22/57

'~'~Response peaks due to ground tnotion at Santa Anita Datn, 2/9/71
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CHAPTER 1

THE CONCEPT OF EQUIVALENT LINEARIZATION

1.1 Introduction

The response of a nonlinear dynam.ical structural system. is as­

sociated generally with the solution of a set of second order nonlinear dif­

ferential .equations. Techniques for exact closed form. solutions are lim.it­

ed only for a few special cases of nonlinearity and types of inputs. A re­

view of available techniques for nonlinear analysis oriented toward earth­

quake engineering area is given by Iwan [10 J.

The idea of replacing a nonlinear structural system. by an II equiva­

lent" linear one seem.s very attractive, for the reason that by this replace­

ment the well-known results of linear analysis can be extended to nonlin­

ear problem.s. There are various criteria according to which the equiva­

lence of the two system.s is assured. As such a criterion in this thesis, .

the minim.ization of the tim.e average of the square of the difference be­

tween the two system.s will be employed [8 ]. This point of view has

the advantage of giving a very clear physical picture of the nature of the

approximation. Furtherm.ore it will be assum.ed that the equivalent linear

system. is tim.e-independent and therefore the equivalent dam.ping and stiff-

ness m.atrices are constant in tim.e.

Recently Spanos [11 ] and Mason r12 ] used this technique to

develope approxim.ate solutions for nonlinear system.s subjected to deter­

ministic and random. inputs .. In the present work, the equivalent lineariza­

tion technique is employed in a different direction of application, nam.ely to

generate critical inputs for nonlinear structural system.s. A brief sum.m.ary

of the linearization technique is presented in the first chapter. More de­

tailed discriptions can be found in reference [ 8 ].

'IIt I
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1,2 Formulation of the Problem

The response of a discrete n-degree-of-freedom nonlinear struc-

tural system subjected to dynamic inputs is described mathematically by

the following set of differential equations:

-2-

M· f+C
.
y + K • Y +f =x (1)

Where M is a n x n mass matrix, C is a n x n damping matrix and K is a

n x n linear stiffness matrix. y, rand rare n-vectors of the system ac­

celerations, velocities and displacements associated with its n-degrees-

of-freedon. f is a n-vector of general function of y and y expressing the

nonlinearity of the system. 2£ is a n-vector of the dynamic input.

The equivalent linear structural systems will be described mathe-

matically by the following auxiliary system:

-. €
M· Y +C Y·'.+K€ . y =x- - (2)

It is assumed that the equivalent linear system is tiIne invariant and there­

fore the parameters CE' and KE', which are called equivalent linear damping

and stiffness, are time independent. They can be. expressed as:

where CO and KO are n x n variable damping and stiffness matrices in con-

nection with the nonlinearity of the system.

By proper selection of Co, KO the auxiliary structural system of

Eq. (2) will become equivalent to the actual nonlinear one represented by

Eq. (1). According to this formulation the determination 'of the equivalent

linear structural system will be based on the evaluation of CO and KO. This



will be done by minimizing the time average of the square of the difference

o 0
between the two systems with respect to C ~nd K . 1£ d is an-vector

which represents this difference, i. e.

-3:

d = f - CO • .i-KO
• Y

~

(4)

By carrying out the minimization, matrices CO and KO will be de­

f:
termined in terms of som.e titne averages between the n-vectors y and

• f: .Y , whIch are solutions of Eq. (2) and the n-vector f. This can be ex-

pressed as:

f: • €
X y iJ

(5 )

€ • €
= ./:l (y ,y f)

where i, j, =1, 2, .•. , n

The determination of CO and K
O

is by first assuming their trial values and

then by solving Eq. (2) and Eq. (5) iteratively until the two succesive values

of CO and K
O

differ within allowable limits. The derivation of Eq. (5) will

follow.

1. 3 Eguivalent Linear Damping and Stiffness Matrices

The definition of the equivalent linear structural system is as soci-

ated with the determination of the equivalent damping and stiffness matrices

C€ and Kf: or, according to Eqs. (3), the determination of CO and K O
• This

is based on a minimization technique similar to that given in reference

[ 8 1.

The minimization criterion according to which the equivalency of

Eqs. (1) and (2) is defined can be expressed mathematically as:

73



min 0
c

ij ,

I Jl [ d T. d] I y(t) € Jf (6)

-4-

where: i, j =1, ... , n

where Jf is a class of solutions in which the solution of Eq. (2) is assumed

to be a member. A particular member of the class ;/fis identified by the

parameters CO and KO. The symbol Jl denotes an averaging operator

having the following properties:

I).

II) .

dill Jl [ z{t)] =0

m). Jl [ z2(t)] > 0; ¥ z(t) i- 0 and Jl [ 0] =0

IV). If

z =

z
m.m

then:

Jl( Zl = .

Jl [ zml] Jl ( Z ]mm

By using the property II and Eq. (4):

where:

(7)
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2 [n n J
D1 =,A I d £ J = /l (f - L CO • Y - L. k

O
• y ) 1

1. p=l 1 P P q= 1 lp q

From Eq. (8) and according to the property III it is concluded that:

(8)

-5-

¥ £ =1, 2, .... , n (9)

combining Eqs. (7) and (8) the minimization procedure can be expressed

as\follows:

for fixed value of i,

where:

min (D.) ¥
o 0 1

C ., k ..
1J, .1J

i, j =I, ... , n.

yet) € if (10)

Eq. (8) shows that Di ; i =1, ... , n is an explicit function of

o 0c ., and k '" According to differential calculus the mimimization proce-
l.J 1J

dure results to the following 2n simultaneous linear equations

¥ i =1, 2, ..•• n:

which can be simplified to

a D.
1

oa c ij

aD.
1

" k O
d .•

1J

=0

=0

j =I, 2, •.• , n (11)

B· p. =q .; i =I, 2, ..., n
- 1 - 1

where,

(12)



150
. r.
1 - 1

p. = q. =-1 1

0
c i

s .- - 1

and (13 )

B = (-~"+"-~),

W, Land Z are n x n submatrices with typical elements ./l [ y .• y. ] ,
1 J

./l [ Yi . Yj J and ./l [ Yi . Yj J respectively. The n~ectors !s°i and £0 i

are the i-th rows of the K O and CO matrices and the n-vectors .!i' ~i have

typical j- th elements .A"[ f .. y.] and.A" [f.. y. J respectively. From
. 1 J 1 J

the solution of Eqs. (12) the matrices CO and K O are obtained for a given

nonlinearity vector 1 and a set of re sponses X(t) and y (t).

The invertibility of matrix B is very important in the above formulation.

In reference [8 J it has been prooved that for linearly independent functions

Yl· (+), y. (+) ; i =1, ... , n the matrix B is positive definite.
1 ·



CHAPTER 2

CRITICAL EXCITATIONS FOR STRUCTURAL SYSTEMS

2.1 Introduction

The seismic as ses sm.ent of socially or economically important

structures requires high confidence level of reliability and consequently de-

mands carefully selected ground excitation input for computing responses.

These excitations must be on one hand credible ones and on the other hand

produce upper bound responses for the structure in question. As more re-,
cords of strong ground motions become available, the information concern-

ing the characteristics of credible earthquakes becomes more accessible.

Based on these statistical informations many investigators have proposed

artifical earthquake models which are stationary or nonstationary stochastic

processes. However these works in general do not consider specific site

conditions or particular structures in question. Consequently there is no

assurance that the ground motion thus produced can produce upper bound

responses. In this thesis a new type of generated ground motion which is

termed as 11 cr itical excitationfl is introduced. It is defined as an excitation

among a class of credible excitations recorded at a specific site condition

that will produce the highest re sponse of a specific structural de sign vari-

able. Furthermore the excitation is subjected to an intensity constraint.

The concept of a critical excitation is de scribed in section 2.2 and the in-

tensity constraint is analyzed in section 2.3. The generation of critical

excitations for linear structural systems is given in section 2.4. Finally the

re suIts obtained in section 2.4 are extented in section 2.5 for nonlinear

structural systems.

-7-



2.2 The Concept of A Critical Excitation

A stated before a critical excitation is defined as an excitation a..rn.ong

a class of "credible" excitations of the same characteristics that will pro-

duce the largest response peak for a given structural system.

For a given site condition, a number of earthquake records can be

selected from the available past recorded ground motions occurring at

similiar geological sites, focal distances and macro or micro zonations.

These selected records are called "basis" excitations:

-8-

x.(t)
1

i =1, 2, ... , N (14)

An excitation x (t) constructed by any linear combination of these
m

may be conside~ed as a member of the class of "credible!t excitations .E

if its intensity does not exceed an upper bound E appropriate for the given

x (t) € .E
m

site condition. This is expressed as:

N

x (t) = L a i · xi(t) =..E- T . x
m i=l

subjected to the constraint (15 )

where the symbol II II denotes intensity and will be defined in the next

section. In mathematical terminology the class .E lies in a linear manifold

spanned by the basis excitations x. (t) ; i =1, 2, ... , N and it is a solid
1

sphere which has as radius the intensity E.

A critical excitation symbolized as X(t) is a member of the class .E

which is identified by the property that when applied to a given structure, it

will produce its highest response. From this definition it is clear that a

critical excitation is site as well as structural system dependent. The site



I

depending is expressed by the vector 1£ and the system dependency by the

vector :2-. The latter is obtained by a maximization procedure as will be

discussed in section 2.4.

2.3 Intensity Constraint

According to Eq. (15) the intensity constraint is an important con-

sideration for the generation of the critical excitations. Several intensity

measures have been employed for seismic excitations. Housner I 13 ]

has suggested using the spectrum intensity (S I). In their work for genera-

tion of artificial earthquakes, Housner and Jennings [35 ] have alterately

used the root mean square (RMS) of the excitations over a duration of 30

sec. Peak ground acceleration has also been used as another definition of

intensity. In the present work the square integral or root- square (RS) of

an excitation over a duration t is considered as the intensity measure.e

Thus, so if x(t) is an excitation then its intensity is defined as follows:

The time t is the effective duration of the excitation [ 38 ].e

According to the above definition and Eq, (15) the intensity constraint

is expressed as:

t N 2
E 2 > I e [i~;l a. . xi(t}] . d t =

1

N N t

L: L a .. a .. J e x.(t) . x.(t) . d t
i=l j = 1

1 J 0 1 J

or:

E 2 > T
G (16 )~

. .§

79
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where G is a N x N matrix with typical element

t
g .. = Je x.(t} . x.(t) . dt

1J 0 1 J
i, j=l. . •.• N (17)

and ..2- is theN-vector of the weighing coefficients applied to the basis ex-

citations.

2.4 Critical Excitations and Responses of Linear Structural Systems

In this section the generation of critical excitations as sociated with

n-degree-of-freedom discrete linear structural systems is presented. The

results which are obtained here will be extented to nonlinear case in sec-

tion 2.5.

The differential equation which describes the system is:

M • y +C • y +K • Y =x- - (18)

where M, C and K are constant n x n matrices representing the its mass,

damping and stiffness. The n-vectors x and yare the input and the

response respectively. The individual re sponse s of this system due to a

j =1, ... , N ar e de scribed by. defini~g .twogiven basis of excitations x.(t)
J

matrices Y and Y. Both are n x N matrices with typical elements y i/t} and

y .. (t) defined as the response and the velocity associated with the i-th de-
IJ

gree-of-freedom of the linear structural system due to the j-th basis ex-

citation. A critical excitation of this linear structural system will be de-

fined with respect to its n - degrees-of-freedom i=l, ... , n. Let X. (t) to be
1

the critical excitation associated with the i-th degree-of-freedom of the

system. If a.. represents the weighing coefficient applied to j-th basis ex­
1J

citation to obtain the X. (t) then according to Eq. (15)
1



X. (t)
1.

N

= L
j=l

a ..• x.(t)
1J J

T= a.
- 1

(19)

-11-

where

subjected to the constraint

/I x·(t)1I < E
1 .

i =1, ... , n

Let t\J.(t) be the response of the system due to X.(t). This respQnse is ob-
1 1.

tained by convolution operation as follows:

YJ. (t) =t~ a .. . x/t)! * h. (t)
1 1J 1

N
T

= ~ a .. y . . (t) = a. . y.(t) (20)
j=l 1J 1) - 1 -1

where y. is the i-th row of the matrix Y. The symbol * stands for convolu­
- 1

tion and h. (t) is the unit impulse response of the i-th degree-of-freedom of
1

the system. The response YJ.(t) will be called the i-th critical response.
1.

By extending the above, then for a given basis of ground excitations

x.(t) j=l, ... , N, there are n critical excitations X.(t) ; bl, ...• n
J 1.

associated with the n degrees-of-freedom of Eq. (18) which are expressed

as:

x(t) =A . x (t) (21)

where ..~.Jt) is a n-vector of the n critical excitations and x(t) is a N-vector of

the N basis excitations. Matrix A is a n x N matrix with typical element

a .. , where index i indicates the degree-oi-freedom. and j the basis ex­
1J

citation.

&'/



In order to evaluate a critical excitation associated with the i-th

degree-of-freedom of the structural system of Eq. (18) the response ljJ.(t)
1

must be maximized under the constraint developed in section 2.3. When

i is fixed and for a particular time t the mathematical iormulation

becomes:

N

I .~
J?I

a ... y ..(t) I =max
IJ IJ

a ..
IJ

j=l. . ..• N

subjected to constraint:

Ta. . G • a. <
-1 -1

According to the above expression. the determination of the critical ex-

(22)

citation X.(t) requires a double maximization under a constraint. The
1

maximization with respect to ~ i for fixed time t is carriedoufby using a:

standard technique and that with re spect to t by using a numerical evaluation.

The first maxiInization operation is done by using a Lagrangian

multiplier A.. as follows:
1

For i fixed and k =I, ...• n

a [N N N
a~ ~ a 1·J• • Yl'J·(t) + A. 1· • L L

n J'=" 1 1x. p= q=

¥ 1. =I, •.. , N

(23)

The solution of which in matrix form can be written as:

(24)

The value of the Lagrangian multiplier A. i is determined by substituting the

value .s: i into (16) and observing the symmetry of matrix G:



1

4>...2
1

. y~ (t) . G-1 . y.(t) < E 2
- 1 -1

-13-

For a fixed value of time the response will be maximized when the equality

prevails in the above relationship:

1 ~ T-1>... = >.. . (t) = 2E' y. (t) . G . y. (t)
1 1 -1 -1

(25)

This value of >... is then substituted into Eq. (24) and the vector a. is evalu-
1 -1

ated for the time t.

The second maximization, that is with respect to t, is done numer-

ically by dividing the total duration into sufficiently representative steps and

by comparing and selecting the largest value of the response at these steps.

According to the above the critical excitation X. (t) is obtained by the
1

determination of the weighing coefficients or the vector ~i applied to the

basis excitations 2£. (t) so that the response ljl i(t) is a maximum. By repeat­

ing this procedure for i=l, ... , n, the matrix A of Eq. (21) is obtained.

2.5 Critical Excitations of Nonlinear Structural Systems.

For a given basis excitations the maximization of the response of a

nonlinear system described by Eq. (1) subjected to an excitation which be-

longs to the class .E is not a straightforward problem. This is because of

the presence of the nonlinear vector _L Therefore only approximated crit-

ical excitations can be generated. In this section an extension of the results

of section 2.4 is employed to obtain the critical excitation of an equivalent

linearized system.

A clas s of auxiliary linear structural systems in the form of Eq. (2)

is associated with a given nonlinear one of Eq. (1) based on the parameters

E eC and K. The equivalent linear one is selected from this clas s according



j=l. . •.• N and a reference

to the criterion that the values of C€ and K€ will minimize the time average

of the square difference between the two systems. This is expressed by

Eq. (12) of section 1. 3. To find the critical excitations of the linear auxil-

iary systems of a nonlinear one, the basis excitations x.(t) and the coef­
J

ficients a .. where i =1, ••. , nand j=l••.•• N have to be incorporated in the
1J

minimization criterion through Eqs. (12).

For a given basis of excitations x.(t)
J

intensity E the critical excitations Xi(t) and the critical responses and

~.(t) ; i=l•...• n of the auxiliary linear system of Eq. (2)
1

corresponding to the values C€ and K€ are obtained according to the m.ethod

developed in section 2.4. i. e.

N
L:

j=l
a ..

1J
x.(t)

J
T= a ~

-1
(26)

~. (t) = L a ..
1

j=l 1J

~.(t) = .f a ..
1

J=l
1J

y .. (t)
1J

.
y .. (t)

1J

T= a. . y.(t)
- 1 -1

T .= a. . y. (t)
- 1 _1

(27)

(28)

In the above Eqs. (26) and (27) the N-vectors y.(t) and Yet) are the i-th rows
-1 -

of the matrices Y and Y defined in section 2.4.

The criterion of equivalency between the actual nonlinear structural

system of Eq. (1) and the auxiliary linear one of Eq. (2) as expre ssed by

Eq. (12) can now be modified by including the weighing coefficients a .. ' s as
1J

follows:

The n x n subm.atrices W. L and Z of the m.atrix B of Eq. (12) will have typical



elements as:

-15-

a.
Jm

N N
= L L a ik · a

J
'm .J ,j[ [

k=l m=1

or in matrix form:

T °w .. = a. . W.. • a.
1) - 1 1J - J

YOk(t) • y. (t)]l
1 Jm . ~

(29)

where WO.. is a N x N matrix with typical wOk element,
1J , m

Similar1y,

(30)

The sub-vectors r. and s. of vector q. can be derived as follows:
-1 -]. _1

The J'-th element of the r.
-1

i=l, .•. , n vectors is:

N

L
k=l



or in matrix form:

T (i)a .. r.
- J -J

where r(i} is a N-vector with typical k-th element:
- J

Similarly the j-th element of the !i vector is:
~

T (i)a. . 5 •
- J - J

where s (.i) is a N-vector with k-th element as:
-J

(33 )

(34)

(35 )

(36 )

-16-

Further modification- of submatrice s W J L and Z leads to the following:

W =AT
o

L =A
T
o

Q • A
o

R

(37)

(38)

Z =A
T
o s A

o (39)

where A is a nN by n matrix
o

A =o

~l

o

o

o

o

o

o

a-n

(40)



N x N submatrices W~. ,
1J

(32) respectively.

and Q. Rand S are nN by nN square matrices with typical elements the

L ~j' and Z~j , given by Eqs, (30), {31) and

By introduction of W, L and Z from Eqs. (37), (38) and (39} into

matrix B it is obtained:

-17-

TB =H . B . Ho

where:

and

H; [:~-t---:J
I 0

(41)

(42)

(43)

The vectorsr. and s.
-1 -1

Eqs. (33) and (35) as:

i =1, ..• , n are further modified according to

r. =A
T . e. (44)

-1 0 -1

and

s. = AT . u (45 )
-1 0 -i

where A has been defined by Eq. (40) and e. and u. are nN-vectors with J'-tho -1 -1

elements the sub-vectors .Ej) and .§...~i), given by Eqs. (34) and (36). By com-

bining Eqs. (44) and (45) the vector q. takes the form.:_1

lJ7



(46)

__ "i

where

(47)

In summ.ary the criterion of the equivalency between the nonlinear

systezn and equivalent linear one, leads to the following equations:

B • p. = q.
_1 -1

where

B = HT . B H
0

and

k O
•

-1

p. =
_1

0c-i

i =1, ..•• n

b.
-1

(48)

It is noted that the znatrix B depends only on the individual responses of
o

the auxiliary systezn of Eq. (2) due to the basis excitations. On the other

hand the vectors b i depend, in addition, on the nonlinearity of the given non­

linear structural systezn (i. e. Ii). According to Eqs.. " (48) it can be seen

that the znatrix B and vector q. are in a transforznation forzn through the
_1

znatrix H which depends on the coefficients a.. of the critical excitations.
1J

Frozn a com.putationalpoint of view it is noted that for a specific auxiliary

structural systezn the matrix B is coznputed only once for all the values of

i in the derivation of the equations B . Pi = <Ii .



For a given basis of excitations and a reference intensity E, the

critical excitations associated with a given nonlinear structural system are

obtained by the following successive approximation procedure:

Any trial set of values C and K€" will define an auxiliary linear system.

By employing the method described in section 2.4 the associated critical

excitations as well as the individual responses due to the basis excitations

can be obtained. By introducing the weighing coefficients a.. and the in­
1J

dividual responses into Eqs. (48) a new set of values for C€" and K<: is ob-

tained and consequently a new auxiliary structrual system is defined. This

procedure will be carried out continously until the successive values of CE'

and KE' differ insignificantly. The last set of CE' and K€ will define the

equivalent linear system from which the critical excitations of the non-

linear system are obtained.

The magnitude of the nonlinearity involved in the above formulation is very

important. By comparison, it has been concluded that the· equivalent lin-

earization technique, when is employed for the determination of critical

excitations for elastoplastic systems, gives good results for values of

ductility factor smaller or equal to 3. O.

-19-
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2.6 Applications

2.6.1. Critical Excitations for a Single Degree-Of-Freedom System

In order to illustrate the concept of critical excitation for a single

degree-of-freedom system, the model of a one story frame structure

shown in Fig. l(a) is considered. The mass, damping and linear stiffness

are 5. 0 ~_sec2/ft, 20/0 and 8773 k /ft respectively. The linear elastic and

the elastoplastic behavior of this structure are analyzed.

The first ten ground acceleratiolts listed in Table 1, are chosen as

the basis excitations occured at stiff soil sites. The reference intensity E

is chosen to correspond the N-S component of the Imperial Valley Earth-

quake, recorded at El Centro on May 18, 1940. The value of this intensity

is equal to 7.9 it/sec. 3 /2 A total duration of 4.0 sec with a time step

equal to 0.00571 sec has been considered for the analysis. The results are

suT.nmarized in Table 2.

The linear elastic response is based on the natural period of the

frame equal to 0.15 sec. The elastic critical excitation is shown in Fig.

3 (a). The elastoplastic response is characterized by the restoring force

shown in Fig. l(b) and the nonlinear function f shown in Fig. l(c). For a

fixed ductility factor f.l = 3. 0 the equivalent linear system has been found

after three iterations with natural period equal to 0.18 second and damping

ratio equal to 2.5%.

The envelope response is defined as the maximum response among

those produced by the basis excitations acting individually on the system.

The envelope response for the linear elastic case is due to the N-S component

of the Lower California Earthquake, as recorded at E1 Centro on December

30, 1934 and that for the elastoplastic case is due to the San Francisco

Earthquake recorded at the Alexander Building S. F. on March 22, 1957.



-21-

( b)

(c )

--~---t--~--+-y

f

----~~-----..y

ONE 810 RY f RAM E

(a)

FIGURE 1

k2

TWO STO RY fRAME

FIGURE 2



Table I.~ Basis Excitations for Stiff Soil Sites

_??---

I
File i~

Number
Earthquake Date Record Coxnp"

A001 Ixnperial Valley 5/18/40 El Centro SOOE

AOO1 Imperial Valley 5/18/40 El Centro S90W

AOl4 San Francisco 3/22/57 Alexander Bldg. S. F. N09W

AOl4 San Francisco 3/22/57 Alexander Bldg. S. F. N81E

A016 San Francisco 3/22/57 State Bldg. S. F. S09E

A016 San Francisco 3/22/57 State Bldg. S. F. S81W

B024 Lower Calif., 12/.30/34 El Centro SO OW

B024 Lower Calif. lZ/30/3~ El Centro S90W

B034 Parkfield 6/27/66 Cholaxne Shandon 5 N05W

B034 Parkfield 6/27/66 Cholaxne Shandon 5 N85E

D056 San Fernando 2/09/71 Castai N2lE

D056 San Fernando 2/09/71 Castaic N69W

D058 San Fernando 2/09/71 Hollywood Storage L. A. SOOW

D058 San Fernando 2/09/71 Hollywood Storage L. A. N90E

E083 San Fernando 2/09/71 3407 6th St•• L.A. SOOW

E083 San Fernando 2/09/71 3407 6th St•• L.A• N90E

2/09/71
. .

HIlS San Fernando 15250 Ventura
Blvd.. L. A. NIlE

HIlS San Fernando 2/09/71 15250 Ventura
Blvd. L.A., N79W

0233 San Fernando 2/09/71 14724 Ventura
Blvd. L. A. S12W

0233 San Fernando 2/09/71 14724 Ventura
Blvd. L. A. N78W



TABLE 2: Peak Responses (inches) of One Story Frame Structure

I Linear Non-Linear

Iterations 1 2 3

El Centro 0.18 0.27 0.28

Envelope 0.27(1) o 46 (2) o 47(3). .

Critical 0.36 0.62 0.63

Note for envelope responses

(1) Response peak due to Lower California Earthquake at El
Centro. (NS Component, December 30, 1934).

(2) Response peak due to San Fernando Earthquake at Castaire.
(N69W component, February 9, 1971)

(3) Response peak due to San Francis co Earthquake at Alex. Bldg.
(N09W component, March 22, 1957)

-23-
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From the peak responses listed in Table 2, it is concluded that the

ratio of critical to the envelope response for the elastic and elastoplastic

• case is equal to 1.33 and 1. 34 respectively. This ratio indicates a small

degree of conservatism associated with the critical excitation and appears

to be fully justified for important structures. The total displacement due

to the elastoplastic critical excitation is greater than that due to the elastic

critical excitation. This fact is consistent with the result obtained by other

investigators [ 17 J that for high frequency systems the elastoplastic sys-

tem produces greater total displacements than that produced by elastic

ones. By inspection of the time-histories shown in Figs. 3(a). 4(a). 5(a),

6(a) and the frequency contents given by Fourier amplitude spectra shown

in Figs. 3 (b), 4(b). 5 (b). 6(b) it can be stated that the generated critical

excitations appear to be realistic samples of possible ground motions.

Thus, they should not be excluded from the consideration for the design of

important structures.

2.6.2 Critical Excitations for a Two Degree-Of-Freedom System

Critical excitations for a two-story frame structure shown in Fig. 2

are generated here in order to demonstrate the application of the theory to

a two degrees-of-freedom structural system. It is assumed that this struc-

ture is located in an area characterized by stiff soil conditions. Accord-

ingly, the first ten earthquake' ground motio.l1s listed in Table 1 are used

to form the basis excitations. As the reference intensity the square in-

tegra1 of the ground acceleration of the N-S component of the El Centro 1940

Earthquake has been taken for the analysis and 'an effective duration equal

to 6.0 seconds with _a time step equal to 0.0086 seconds is used.

The structure is idealized by a stick model. It's mas ses are lumped

2 '
at the first and second floers equal to 5.0 k- sec 1ft and 2.0 k- se c 2lft re-

spective1y. The lateral stiffness of the first floor is 1600.0 k/ft and that of



the second floor is 900.0 k 1ft. The :oTs tem. is considered undamped. The

results of the analysis are summa=i;:~d in Table 3, where peak values of

the responses are given.

The first iteration respesents the linear elastic case based on the

mass and linear stiffness matrices. The elastic translations of the two

floors are governed by two modes with periods equal to 0.45 and 0.23

seconds. By comparison of the results, it is concluded that the ratios of

the critical to the envelope peak responses are 1.50 for the first floor

translation and 1.45 for the second floor translation. These values indi­

cate a slightly higher and justifiable conservatism. in connection with the

de sign of important structure s.

The critical elastoplastic re sponse analysis is done for a fixed

ductility factor /l =3.0, by employing an equivalent linear frame. The re­

sults are obtained at the fourth iteration. Two mode s with periods 0.68

seconds and 0.29 seconds have been found from the free vibration analysis

of the equivalent linear system. .The difference between these natural

periods with the ones obtained previously from the elastic analysis indicates

the well known result that yielding modifies completely the elastic vibration

mode characteristics.

Again by considering the ratios of the critical to the envelope peak

responses from the results of the fourth iteration listed in Table 3, they

are found to be equal to 1 .60 and 1.67 for the ductile translations of the

first and second floor respectively. Same justification for using critical

excitations for designing important structures appear to be valid.

Summarizing the results of the elastic and e1astop1astic critical

response analysis of the two story frame, it is concluded that in both cases

the critical response concept introduces an additional safety margin for its

-29-



seismic assessment. This additional safety margin is expressed by the

ratio of the response due to critical excitation to the envelope response

due to the basis excitations. These ratios ranging from 1.45 to 1.67 have

been found, which appear to be reasonable, especially when important

structures are considered.

An additional insight into the elastic and elastop1astic critical ex-

citations of the two- story frame structure the time histories and their

frequency contents were plotted and comparison with real earthquake
\

ground motions were made. Figures 7(a) and 8 (b) shows the time his-

tories of the elastic and elastoplastic critical excitations generated for the

translation of the top floor of the two- story frame structure. Their fre-

quency contents are shown in Figs 7·(b) and 8(b) respectively. Time his-

tories and frequency contents of the two basis excitations as sociated with

the elastic and elastoplastic envelope response of the top floor are shown

in Fig. 9 and 10. By comparison of the time histories and the frequency

contents of the critical excitations with those of the basis excitations it is

concluded that the critical excitations are realistic candidates of possible

ground motions.

\OD



TABLE 3: Peak Responses of the Two Story-Frame Structure
.-

Peak ITERATION
Responses , Linear ~on--:Linear

1 2 3 4

2nd Floor 5. 70 2.65 7.25 7.21Translation

El Centro 1st Floor
3.32 1.50 4~,87 4.66Translation

2nd Floor
6. 96 (1) 5.06(2) 7..-62 (3) 7 55(3)Translation

Envelope 1st Floor
3. 97(1) 2 .. 85(2) 5 14(3) s..o4 (3)Translation

2nd Floor 10.11 7.86 12.53 12.63Translation
--

Critical 1st Floor
5.98 4.43 8.33 8.09Translation

Note:

(1) Response Peaks due to San Fernando Earthquake.
(Castaire, Febru ary 9, 1971, component N69W).

(2) Re sponse Peaks due to San Fernando Earthquake.
(3407 6th St., L. A .• February 9. 1971, Component N90E).

(3) Response Peaks Due to San Fernando Earthquake.
(Hollywood Storage L. A. , February 9. 1971. Component NS).

\ () l

-:31-
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CHAPTER 3

CRITICAL RESPONSE SPECTRA FOR LINEAR AND

NONLINEAR STRUCTURAL SYSTEMS

3.1 Introduction

The concept of the response spectrum for seismic excitation of

structures was introduced by Housner and Biot in the early fourties. Since

then, response spectra have been increasingly used for the analysis of the

response of structural systems, due to seismic excitations.

One of the most significant studies in this area was done by Housner

[ 13 J who proposed in 1959 an average velocity spectrum. This spectrum

was constructed by simply averaging the spectra of four strong ground

motions using the two horizontal components of each of the se motions.

Later in 1969 Newmark and Hall [ 14 J proposed another method of produc­

ing average response spectra and most recent studies by Newmark, Blume

and Kapur [15 J in 1973 recommended a single set of design spectrum. In

these studies a large number of earthquakes were considered and normal

or log-normal probability distributions were adopted for the analysis of

spectral data.

In the area of inelastic response spectra the studies by Ve1etsos and

Newmark [ 17 J in 1960 and by Ve1etsos, Newmark and Chelepati [ 18 J in

1965 are significant. The site-dependency of the re sponse spectra was

studied first by Seed [16 J in 1974. Finally response spectra of artificial

earthquakes were proposed by Housner and Jennings [ 35 J in 1964. These

earthquakes were generated by using a stationary Gaussian random process

based on statistical data from known earthquake ground motions.

In this chapter a type of response spectra called rlcritical response

spectra" is formulated and propos ed for the seismic as se s sment of socially

loCo,
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or economically important structures, which require a high confidence of

reliability. Linear as well as nonlinear critical response spectra are con-

sidered.

Comparison of the critical response spectra with those previously

derived by other investigator s lead to the conclusion that they are con-

servative to a certain degree. When they are used for the seismic assess-

ment of important structures, higher confidence levels will be attained.

3.2 The Concept of the Critical Spectrum

The critical response spectra are contructed by generating critical

inputs according to the theory developed in chapter 2. In order to produce

these spectra, the procedure starts with the search and collection of a set

of representative ground accelerograms recorded at similiar geological

sites. These records form the "basis" excitations:

-""oJ,

x.(t)
1

i = 1, ...• N (49)

A potential future ground excitation is postulated as the linear combination

oi these:

x(t)
N

= ~a.. 1
1=

x. (t)
1

~(t) (50)

where a is the vector of the unknown weighing coefficients. The excitations

given by Eq. 50 are subjected to an intensity constraint.

The response of a single degree-oi-freedom oscillator due to this ex-

citation is maximized with respect to the weighing coefficients

a.
1

i =1, ...• N and with respect to the time. Thus it is clear that

for a given set of basis excitations corresponding to a specific site condition

the vector ~ must be determined for all the frequencies of the spectrum.



This determination implies that for each frequency of the spectrum there

is a critical excitation associated with a particular set of the weighing coef-

ficients ~. Damping and the type of nonlinearity of the single degree-of-

freedom oscillator also play an important role in constructing the critical

spectrum.

3.3 Linear Critical Response Spectra

Elastic critical response spectr'a are constructed by employing a

linear oscillator with frequency wand damping ratio l;. The critical ex-

citation of this single_degree-of-freedom oscillator is determined following

the procedure described in section 2.4:

-38-

T
X(t) =x(w,l;,t) =~ (w, S)· ~(t) (51)

where ~(w, z;, ) is the vector of its weighing coefficients, determined from

maximizing the response subject to the intensity constraint. cIi S (w, l;)
v

represents the critical pseudovelocity spectral value for frequency wand

d~mping l;, then:

where:

h (t) = h (w, l;, t) = exp (-l; w t) sin w ts s

(52)

The pseudovelocity curve for damping l; in discrete form is obtained by ex-

tending the above for a range of frequencies w
m

follows:

m = I, ••• , k as

Sc(w ,!;)=max
t
~X (t)* h(w ,s,t)l (53)

v m 1m sm ~

where Xm(t) is the critical excitation associated with the m-th spectral fre­

quency.



3. 4 Nonlinear Critical Response Spectra

Nonlinear critical re sponse spectra can be constructed by application

of the procedure discussed in chapter 2. The structural system will be a

single-degree-of-freedom nonlinear oscillator with damping coefficient c,

stiffness k and nonlinear restoring force f. For an elastoplastic system,

the above variables can be represented by the linear frequency w, damping

ratio t; and ductility factor 1-£.

By employing the equivalent linearization approach an equivalent lin-

ear single-degree-of-freedom oscillator can be determined by computing the

equivalent damping c € and stiffness k€ for a given excitation. According to

the procedure in chapter 1, this can be done by considering an auxiliary lin-

ear single-degree-of-freedom oscillator and by minimizing an average of the

square of the difference between this oscillator and the nonlinear one. For

the particular case of a critical excitation input this minimization results the

following two simultaneous linear equations:

-39-

where: (54)

.
The functions YJ€(t) and YJ€(t) are the response and velocity of the equivalent

linear oscillator due to the critical excitation X (t). The Eq. (54) forms the

basis of an iterative procedure for the determination of the equivalent linear

single-degree-of-freedom oscillator associated with a given nonlinear one.

\o~



Based on the above iormclation. for a given basis excitations and

a reference intensity E, the equivalent linear oscillator for prescribed

balues of spectral frequency, da....-nping and nonlinearity can be computed as

follows:

For a given initial set of CO and k O an auxiliary linear oscillator is defined.

By application of the procedure pre sented in section 2.4 the critical excita-

tion and the response and velocity due to it of this auxiliary linear oscillator

can be computed. These re sults are then substituted into Eq. (54) from

which a new set of values for CO and k O are obtained. Successive co:mputa­

tions are carried out until two consecutive cO and k
O

values differ insignifi-

cantly. The last co:mputed critical excitation defines the equivalent da:mping

c . cc and stiffness k. The spectral values are then co:mputed by considering

the above derived equivalent linear 0 scillator and its as sociated critical ex-

citation and e:mploying linear methods·.

By repeating this procedure, the equivalent linear oscillator can be

defined for all the spectral frequencies and consequently the corresponding

critical excitations can be generated. The critical pseudovelocity spectral

value SC (w, 1;) for frequency wand da:mping I; can be expressed as follows:
v

-40-

where:

c cc€ cc. c
h (t) = h (w , I; ,t) = exp (-I; w t) sm w t

s s

(55 )

In Eq. (55) the superscript c indicates that the corresponding values are the

ones of the equivalent linear single degree-of-freedo:m oscillator. The sym-

bol * stands for convolution operation. The pseudovelocity curve. for fixed

damping and type of nonlinearity is obtained for a range of frequencies



w
m

m = 1, ... k as follows:

(56 )
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where X~(t) is the critical excitation as sociated with the equivalent lin­

ear oscillator corresponding to the m-th spectral frequency.

3. 5 Applications

Critical response spectra have been constructed according' to the

procedure described in the previous sections. These spectra are developed

by using the twenty ground motions listed in Table 1, to form the basis ex-

citations representing stiff soil sites. The maximum intensity E appearing

in the constraint of Eq. (19) is taken to be the intensity of the El Centro

1940 Earthquake, which is the first ground motion listed in Table 1. The

time history and the frequency content of this Earthquake are shown in

Figs. 16(a) and 16(b). For a duration of 4.0 sec. it has been found that

E =7. 90 ft/sec
3

/ 2. For the computations, the participating time histories

have been taken over a duration which depends on the value of the spectral

period under consideration. For period T the duration of the records has
n

been taken roughly equal to 7 . Tn' but not less than 4.0 sec. or more than

40.0 sec. This definition for the duration of the time histories of the ground

motions has been found to give good results in regard to the response spec-

trum shape. Elastic and also elastoplastic critical response spectra have

been constructed for the above defined basis excitations and reference in-

tensity. Thus these spectra are proposed for the seismic assessment of

structures to be constructed in stiff soil site conditions. These results can

be easily extented to other site conditions by choosing proper basis excitations.

\\\



Elastic critical response spectra for damping 2, 5 and 10 % is shown

in Fig. 11. A comparison between the critical, envelope and El Centro

1940 Earthquake response spectra for damping 2% is illustrated in Fig. 12.

The envelope spectrum is constructed by considering the maximum spectral

value among those produced by the basis excitations. It is concluded that

the critical spectrum is a reasonable amplification of the envelope one. This

amplification provides an additional safety for the structures designed ac­

cording to the critical spectrum. In Fig. 13 the spectrum recommended by

Newmark, Blume and Kapur [ 15 ] is compared with a smooth critical for

damping 2%. Both these spectra have been normalized to 0.2 g.

Critical deformation spectra for elastoplastic systems are shown in

Fig. 14 fa r ductility facto r 1J. =I, 1. 5, 2 and 3• The value of damping has

been taken equal to 20/0. For the construction of these spectra an equivalent

linear single-degree-of-freedom oscillator has been define"d over the range

of spectral frequencies and the associated critical excitations have been

generated. Such a critical excitation for spectral frequency equal to 1 cps,

damping ~ = 2% and ductility IJ.= 1. 5 is shown in Figs 17(a) and (b). Finally

in Figs. 15 (a) and (b) a comparison between the critical, envelope and El

Centro spectra is shown for ductility factor I-t equal to 1.5 and 2 respectively

and damping equal to 2%. The spectral curves of El Centro in both of the

above cases have been computed by Newmark [ 20J.

From the above it is concluded that both linear and elastoplastic

critical response spectra are somewhat conservative compared with others

that have been used in practice. However, this conservatism can be justified

for the design of important structures.

-42-
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APPENDIX

SIMULATED CRITICAL EXCITATIONS

A.I The Simulation Problem

The seis:rnic assess:rnent of structures employed commonly in in­

dustry is based on the given response spectra. However, there are

special cases which require a time history approach for the determination

of the response. Such cases are the calculation of "floor response spectra"

and the analysis of the response of II soH-structure interaction" models, in

which there is a need to generate ti:rne histories consistent with the given

ground motion spectra. The generation of spectra consistent ground

motions is done usually by applying simulation techniques. A review of

the current methods is given by Vanmarcke [ 33 J

The critical excitation disc\1ssed in previous sections is associated

with a specific structural variable (displacement, shear, moment etc.) of

a structural system. It is generated by superposition of a selected number

of ground motions. The weighing coefficients of this superposition are the

coefficients expressed by the vector ~, which depends on the specific

structural variable under consideration. Thus many critical excitations

are required for many design variables of a single structure. To simplify

the method, a statistical evaluation of the vector ~ defined over a large

range of frequencies and different values of damping appears to be neces­

sary.

However, an approxi:rnate solution of this problem can be achieved

by synthesizing a time history consistent with the critical response spectra.

This time history will represent a " simulated critical excitation", which

may process the essential characteristics of such an excitation, defined for

the range of spectral frequencies.
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For the generation of such excitations the inverse problem of con-

structing response spectra for a given earthquake, must be solved. The

solution of this problem is not unique. It means that for a given spectrum

several time histories can be found which are consistent with it. Some of

the criteria for selecting a "suitable l' time history to represent the ground

motion associated with a given spectrum, were discussed in reference

[ 34] •

In order to generate a "simulated critical excitation" compatible

with the critical response spectra, the well-known simulation model of

superposition of sinusoidal waves with random phase angles is employed

here. "According to this model the lI s imulated critical excitation" has the

following form:

-49-

X (t) =Y (t) •s
T

r • w

where y (t) is an envelope function used to give a transient character in the

motion. The vector w represents N sinusoidal waves with random

phase angles and the vector.! their amplitudes. An iterative procedure

proposed by Scanlan and Sachs [36 ] was used for the simulation.

Next some applications were demonstrated.

A.2 Applications

In order to illustrate the concept of a II simulated critical excitation"

for stiff soil sites was generated from the critical response spectra con-

structed in chapter 3. The dynamic response s of nuclear reactor structures

were studied. First, a number of critical excitations associated with some

design variables of these structures were synthesized by using the theory

developed in chapter 2 and response peaks due to them were obtained.

Second, re sponse peaks of the same variables were determined from a

\ \L\



simulated critical excitation. These results were summarized in Tables

4 and 5. It can be seen that the simulated critical excitation gives very

similar results compared to those produced by the critical excitations

determined by the rigorous analysis. Accordingly this excitation is sug-

gested for the seismic assessment of structures to be constructed on stiff

soil sites. These results can be easily extended for other soil conditions.

The fir st structure is a reactor for a nuclear power plant. This

structure was originally studied by Hamilton and Hadjian [ 32 ]. The

dynamic model of the structure is shown in Fig. 15. According to this

model, the structure is idealized by two sticks with seven and four lumped

masses respectively. The first stick represents the containment and the

second the auxiliary building. The effect of soil- structure interaction is

idealized by one translational and one rotational soil spring .

•
The second structure is also a reactor for a nuclear power plant

which is shown in Fig. 18. The idealization of this structure consists of

a three- stick model, which represents the three substructures, namely,

the containment building, the internal structure and the annulus building.

The effects of soil- structure interaction are included in this idealization by

equivalent soil springs attached to the model in three translational and three

rotational directions. This structure is more complex than the previous

one.

To investigate the validity of the II simulated critical excitation!r, the

following procedures were carried out:

First a simulated critical excitation shown in Fig. 21. was constructed by

using critical response spectral values for frequencies between 0.1 and

10.0 cps and for values of damping 0, 2 and 5 percent. The time step was

taken equal to 0.1 sec and the frequency interval equal to 0.1 cps. These

(~O
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spectral curves were constructed from the twenty basis ground motions

listed in Table I, according to the theory described in chapter 3. A total

num.ber of four iterations was used for each value of damping in the simu­

lation procedure. These results are shown in Figs. 20(a), .(b) and (c). The

continuous curves represent the original critical response spectra and the

dotted ones, those produced by the simulated excitation. It is noted that

the fourth iteration gives a very good approximation for each value of the

damping.

Next the individual critical excitations associated with the top dis­

placement, bottom shear and moment of both containment and auxiliary

buildings have been generated for the first reactor structure according to

the theory of the second chapter. In this computation a viscous damping

equal to 7% has been used for each mode and a total number of the first six

modes was used. The responses due to these individual critical excitations

were recorded in column 4 of Table 4. The responses of the above structur­

al variables due to the simulated critical excitation shown in Fig. 21 were

also computed and recorded in column 5 of Table 4. Together with the re­

sponses due to the EI Centro 1940 earthquake and the envelope response,

Table 4 presents the comprehensive comparison.

Similar computations for the second structural system shown in Fig.

19 were summarized in Table 5.

By com-parison of the peak responses listed in Table 4, it can be

seen that the critical response is higher than the envelope one by an aver­

age factor of 1. 41. Furthermore, the responses due to the simulated crit­

ical excitations are very close to those of the critical excitations. In Table

5, the average ratio of critical response to the envelope response is 1. 57.

From. the application results the following conclusions can be drawn:



For the critical seismic assessment of linear structural systems a rigor-

ous analysis based on individual critical excitation for each design variable

can be performed without excessive computational effort. Ho wever in the

case of critical assessment of nonlinear structural systems the computa-

tional effort based on rigorous individual critical excitations pertaining to

each design variable becomes many folds higher than that employed to

produce critical response spectra and then the simulated critical excitation

for all the design variables. Thus the later appears to be the only feasible

approach.

Table 4: Peak Responses of Nuclear Power Plant I

Simulated

Structural E1 Centro Critical Critical
Variables Earthquake Envelope Excitation Excitation

. Top
OIl Displ. 0.534 1.075 (11) 1.608 1.824

'"C (inch)......
a:l
....

Bottomc:
Q)

Shear 0.304 0.596 (9) 0.840 0.942S
c: (105 kips)....
III....
c:

Bottom0
U Moment 0.442 0.929 (11) 1.380 1.560

pO7kips-ft)

Top
Displ. 0.027 0.039 (16) 0.057 0.059
(inch)

OIl'
'i:l...... Bottoma:l
>. Shear 0.208 0.305 (16) 0.444 0.455
~

(105kips)III................
3 Bottom
~ Moment 0.078 0.144 (16) 0.165 0.169

(107kips-ft)
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Table 5: Peak Re sponse s of Nuclear Power Plant II
,

Simulated
Structural El Centro Critical Critical
Variables Earthquake Envelope Excitation Excitation

Top Displ. 0.887 1.548 (3) 2.172 2.136(inch)

Bottom Shear 1.020 1. 650 (16) 2.740 2.760
(105 kips)

Bottom
Moment 1.180 1. 890 (16) 3.140 3.160

(10 7kips-it)
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APPENDIX E.l

SYSTEM REUABIUTY ASSESSMENTS USING CRITICAL EXCITATIONS

R.F. Drenick and p.e. Wang-

"

Abstract - Critical and certain related excitations are
applied to mechanical and structural reliability
problems involving the assessment of the resistance
of systems to dynamic loads whose characteristics
are partly or largely unknown. The experience
gained thus far in practical situations and possible
extensions of the use of the technique are described.
Dependable, but somewhat conservative, reliability
assessments have been achieved that might be appli­
cable to various systems.

A recurrent problem in many fields of engineering
is that of assessing whether or not a system that has
been designed to survive. perhaps with some tolerable
level of damage, any of a large class of possible
excitations can indeed survive. This problem arises
in civil engineering with regard to the effects of
earthquakes, wind forces, and wave motion; in aero­
nautical engineering with regard to the effects of
wind gusts and air or jet turbulence; and in mechani­
cal engineering in the study of engine vibrations
and vibration effects on delicate instruments. The
common factors in all cases are 1) the uncertain
nature of the characteristics of the excitations to
which the system might be subjected, and 2) the
probabilities with which such excitations are likely
to occur. These factors are of greatest significance
in systems of great economic, social, or military

.value. In such cases, any statement regarding system
integrity should be made with a high level of con·
fidence and ought to be compared only with informa­
tion known to be at a comparable level of confidence.
Unfortunately, such information is often unreliable,
particularly statistical data pertinent to a reliability
assessment, as has been previously noted [1 J.

Critical and certain related- excitations were first
applied to the problem of assessing system reliability
almost a decade ago [2J. Since then, the variations
that have been developed and the practical applica­
tions that have been explored [3-7] indicate that
the concept has considerable theoretical and practical
potential. It is therefore of interest to report on the
·PolYtechnic Institute of New York, 333 Jay St., Brooklyn,

New York 11201

work thus far in this area and on some possible
extensions.

The technique is based on the assumption that it
is possible to characterize, at a desired level of con­
fidence, a certain class of excitations that a system
should be able to Withstand. The critical excitations
within that class are used to drive the dynamical
variables of the system to their highest response
peaks. If those peaks are compatible with the damage
level that can be tolerated in the system, the design
is judged satisfactory.

The intuitive appeal of the technique lies in the fact
that only reliable data regarding excitations of
concern are used. In practical applications, however,
problems are often encountered. It is frequently
difficult to define the class of excitations that the
sYstem should be able to withstand. Design engineers
usually have fairly definite notions of the excitations
they consider realistic or credible and what their
designs should be prepared to accommodate. It
is ano.ther matter, however, to convert design con­
cepts into mathematically manageable definitions.
The compromise has been to define so-called sub­
critical excitations of a system.

Subcritical excitations have for the most part applied
to earthquake engineering. This review describes
both critical and subcritical excitations and some
of the results that have been obtained in earthquake
engineering. Partially solved and potential problems
are surveYed.

The general conclusion is that the use of criticai and
subcritical excitations results in realistic, if somewhat
conservative, reliabilitY assessments, but that they
can be used with greater assurance than those derived
from others now in use or under consideration. The
technique might eventually be used, either in its
present or in some modified form, with systems
whose survival and· integrity is of considerable im­
portance.
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CRITICAL EXCITATIONS

In order to derive the critical excitations of a system,
information available regarding the system under
consideration must be collected, including the ex­
citations the system should be capable of with­
standing; the reliability of the information must
also be established. The various structures studied
thus far in earthquake engineering have included
some already built. some in the process of design,
and one after it collapsed. The analyses were based
on the assumptio.n that the equations of motion,
established from engineering drawings and restricted
to the elastic domain, did in fact adequately describe
the structure. In other words. no allowances were
made for uncertainties regarding system dynamics.

With regard to the excitations, it was initially as­
sumed that only an upper bound on the intensities
of the ground motions was known at the desired
level of confidence. The idea was that a designer
of a structure in. say. San Diego would be able to
establish that earthquakes with intensities beyond a
certain level could not be disregarded in his design.
It was further assumed that he could establish this
level with confidence because pertinent statistics
are sufficiently reliable, and it was also assumed that
no other ground motion statistics are reliable enough
to be utilized. A class of admissible excitations was
thus defined.

It was necessary to determine the critical excitations
of the structure in that class. The critical excitations
have intensities not exceeding an assumed maxi­
mum. and they drive selected structural variables
to their highest response peaks. Such excitations are
not very difficult to determine. The precise form of
an excitation depends on the definition of its in­
tensitY. Table 1 shows three examples (3]. The
symbol 0 denotes the unit impulse and h the im­
pulse response function of the variable under con·
sideration. The first example shows a critical excita­
tion that is, except for a constant factor. the time­
reversed impulse response. The second example
is a squared-off version of the first. (In undamped
systems, this version is a combination of sine waves,
as is sometimes expected.)

One disadvantage of examples such as those shown
is that they can lead to preposterously large response
peaks, especially for structures with relatively large
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,fundamental periods.. That is. the response induced
in the structure by one of its. critical excitations
would be larger than could occur as a result of any
realistic ground motion. Information regarding
ground motions other than their intensitY also lead
to disqualification. -Unfortunately, critical excitations
derived without the benefit of information regarding
ground motions are often disqualified.

Table 1. Examples of Critical Excitations

Intensity Critical Response Notation
Definition (I) Excitation Peak

~~It)m}
OCI

(I/N}h(-t) IN N2=fh2 (t}dt<co
0

00

maxtlx(t}l Ih{-t}/Ih(-t)l IN. . N·1Ih (tlldt<co

00

flx(t)J dt IO(t+tm) IN2 N2=maxtlh{t)l
0

= Ih(tmll<co

It has not yet been possible to establish unequivocally
the additional information required and how to
utilize it to determine critical excitations in earth­
quake engineering. A variation of the basic idea
that has been somewhat successful is described in
the next section.

SUBCRITICAL EXCITATIONS

Subcritical excitations are derived from critical
ones. Although the characteristics of realistic ground
motions have not been established, motions that
have already been recorded are real - although some
might be more typical than others for a particular
geographical site or geological environment. It might
be surmised that any linear combination of recorded
ground motions could be· considered realistic, pro·



vided the intensity does not exceed the maximum
assumed for a given location. These linear combina­
tions thus define a manifold of all possible excita­
tions. Consider those excitations that lie within
this manifold - and hence are realistic - but differ
least from the critical ones described above to be
thesubcritical excitations of the structure. (The
least difference is taken as the least squares.)

. RELIABILITY ASSESSMENTS

The earthquake resistance of various structures has
been assessed' by using many of their subcritical
excitations. Twelve ground motion records. obtained
in California during the past 40 years. were used as
basis excitations to establish linear manifolds. All
were recorded within 30 km from epicenters.

Some of these assessments are shown in Table 2.
They are typical of others [6-81. All have been

. normalized to the intensity of the ground motion
of the NS component of the Imperial Valleyearth­
quake. as recorded at EI Centro on May 18. '940.
The subcritical excitations were derived from the
critical ones shown in Table 1. The structural anal­
yses were executed with modified versions of the
STRUDL [9] and XTABS programs [10].

The response peaks listed in Table are from 2.5
to 3.5 times greater than those calculated for the
EJ Centro ground motion. This implies that some
realistic excitations - namely. subcritical ones ­
have the same intensity as the EI Centro ground
motion but induce response peaks in the structures
that are higher by the factors cited. One such excita·
tion, shown in Figure 1. drives the top floor of Office
Building 1 (Table 2)' to its highest peak. (Other
peaks for the same building are similar.) On inspec­
tion. the excitation can pass for a realistic ground
motion in the sense that no conspicuous traits dis­
tinguish it from recorded motions. (Nor does a
Fourier amplitude spectrum reveal such traits.)

It is of interest whether or not the structures were
designed with a ductility margin sufficient to absorb
the motion described by the large peaks (see Table
21. The two office buildings are considered satis­
factory. (Both were in fact designed by a consulting
firm with broad experience in earthquake engineer­
ing.) The Laboratory Building and the Hospital are

\44

Table 2. Reliability Assessments

Response-Peaks Ductility Ratios

Due to Due to Due to Due to
EI Sub- EI Sub-

Centro critical Centro critical
Excita- Excita-

tions tions

Office Building 1
Top floor dispJ. 1.36 3.41

(ft)

Col. moment 972 27B5
(ft-k) 1.09 2.50

Col. axial force 952 2500
(k)

Laboratory Building
Top floor displ. '0.53 1.87

(ft)
-Col. moment 1021 3334

(ft-k) 1.83 4.98
Col. axial force 369 1144

(k)

Office Building 2
Top floordispl. 0.46 1.20

(ft)
.Col. moment 721 1123

(ft-k) 0.84 1.34
Col. axial force 1096 2073

(k)

Hospital
2nd floor displ. 0.218 0.307

(ft)
Ext. Col.
Moment (ft-k) 1922 2680

===12 ===18
Shear tk) 307 428

judged to fall short of what might be desired. In
the case of the Laboratory Building, the same con­
clusion was independently reached by its owners.
and a reinforcement program is underway.. The
collapse of the Hospital during the San Fernando
earthquake of February 9. 1971. confirms the con­
clusion for this building.
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Figure 1. Example of a Subcritical Excitation
with EI Centro Intensity

DISCUSSION AND CRITIQUE

The results reported above, and others not reported
in this review, support the conclusion that reliable,
though somewhat conservative, assessments of
structural earthquake resistance are possible by t~e

method described. There is every reason to believe
that similar assessments can be expected in other
fields. These remarks should not be interpreted,
however, to mean that modifications in the present
method or variations on the original idea are not
worthwhile. On the contrary, improvements and
extensions are desirable in several directions.

First, the transition from a critical to a subcritical
excitation contributes to the realism of the method,
but at a price: the neat extremal properties of the
critical excitation are lost. There is no guarantee that
a subcritical excitation generates the highest response
peak among all of those in the manifold of realistic
ones. Computations have shown excitations that
lie in the manifold but produce somewhat higher
response peaks than the subcritical ones. This is
not desirable. It would be better to determine the
critical excitation in the manifold. but, although it
can be done, no computational experience yet
exists.

6

It would be even better to have a clear definition of
what constitutes a realistic excitation. In earthquake
engineering, several studies have been published
{4, 51. but none has been practically applied. Success
in this direction might eliminate a further disadvan·
tage of assessments based on subcritical excitation:
the sensitivity to the choice of the basis excitations.
The elimination and/or addition of one such excita­
tion can apparently bring about a non-negligible
change in the response peaks that can be generated
by the subcritical excitation. This is not desirable.

The nature of the geological overburden is an im·
portant factor in the assessment of earthquake
resistance. Perhaps its importance would decrease
if assessments were made using the critical excita·
tions of a structure.

The computations in all case studies thus far have
been comparable. perhaps slightly less than, those
required for the reliability assessment of dynamical

systems by other methods. Possible computational
shortcuts are now being explored in an effort to
'economize, and additional study is desirable.

Evidently any mechanical system becomes nonlinear
as it approaches failure. It is therefore desirable to
extend the method to nonlinear systems. One theore­
tical extension has thus fal' been made [11 J. but
no appreciable computation has been done. It is thus
not clear that this particular extension will be suited
to practical applications.
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APPENDIX F

COMPUTER PROGRAMS

FOR\'IARD
********* r

\.

These programs have been developed for the solution of prob~ems

related to the seismic response analysis of structural systems.
They are written in FORTRAN IV language and used on the
IBM 360/65 computer at Polytechnic. Institute of New York.

. .

A data set with DSN~~E=USER.PCWANG.BASISincluding 60 records ..
of earthquake time histori~s has been created and stored on the
disk USER01.The first 20 of these records are selected to represent
rock soil. sites c.ondi tion, the next 20 to represent stiff and the
last 20 cohesionless soil site conditions.The subroutines used py'
the programs have been compiled and stored on the disk USER01 with
DSNANE=USER.PC'IIA;NG. PHILIP.

In this. text the description of input data and the listings of the
subroutines and main programs are given.For each program the output.
of the results of the solution of some sample problems can be found.

-Fl-



Program: SP(1)

This program computes linear an~ nonlinear regular response spectra•.
records are limited to 701 points and a maximum number of 20 periods

can be computed.

to 0).

to 0).

computation.

(8F10.5)
: Ductility factor. for INL=2.
: Ratio K2/K1 for INL=3. ~

: Coefficient a for INL=1.(f=y±ay3).

: Assumed value for. Co. ,(Usually equal
: Assumed value for Ko.(Usually equal

: Accurancy for damping computation.

: Accurancy for stiffness computation.

: Damping ratio for the spectrum
:DUCT,BSK,SHCtGC,GK,ACRC,ACRK

Card 1 :IANAL,NA,NF,INL,IFILE (8I10)
IANAL=O : Linear spectrum computation.
IANAL=1 : Nonlinear spectrum computation.
NA : NO. of points of therecords.Must be less than 701.

NF : NO. of periods to be computed.Must be less than' 20.

INL : Type of nonlinearity.
=1 : Softening-Hardening spring case.
=2 : Elastoplastic case. •
=3 : Bilinear case.

IFILE : NO. of the file of earthquake considered.Must be equal
to 1 up to 60.

: GE'fA ( F 10 • 5 )Card 2

GETA

Card 3
DUCT
BSK
SHC
GC
GK

ACRC

ACRK
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Card(~) 4 :The values of the neriods ~re given with format SF10.2

Examples:Two ca§es of spectrum computation are listed here.First
linear elastic response spectra are computed for the El Centro
earthquake. Second elastoplastic spectra are also computed for
the same earthquake with ductility factor equal to '.0.

Program : SP(21

This program computes linear critical response spectra.

Card 1 :DAMP,ISOIL,NPRS' (F10.5,2110l
DM~P :Damping ratio. for the spectrum.
ISOIL' :Type of soil condition.

=1 is for rock
=2 is for stiff
=3" is for cohea.

NPRS:No. of periods to be considered.Must be less than 20.
Card(s) 2 :Values of neriods.{SF10.5}
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Prop;ram : SF(3)

•This program computes elastoplastic critical response spectra.

Card 1 :ISOIL,NITER (8110)

IS01L :Same as in program SP(2).
NITER :No. of iterations to be done.
Card 2 :DAMP,DUCT (SF10.5)
DAMP :Damping ratio to be con~idered•

•
DUCT :Ductility factor.
Card 3 :PERD (P10.5l
Value of the spectral period.

Program : SP(4)

This program computes critical excitations for linear structural
systems. ,.

Card 1

DTHT
SFHT
IS01L
lPUNCH

:DTHT,SFHT,ISOIL,IPUNCH (2F10.5,2110)
:T~me step for unit impulse response record:~(t).

:Scalar factor to be applied for h(t) record.
:Soil condition type.Same as program SP(2).
:1f =1~the time history of the critical excitation is punched
out.
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Card's) 2 :The h(t)""record with format (4(F13.8,7X)).

Program : SP(5)

This program computes critical excitations for elastoplastic
S.D.O.~ structural systems.

Card 1

NE

ISOIL
NP

NITER
IPUNCH
Card 2

TDUR
DUCT
Card 3
SM
DAMP
SK

: NE,ISOIL,NP,NITER,IPUNCH (SI10)
:No. of basis excitations.Max.=10.
:Same as in program SP(2).
:No. of points of the records.Max.=701~

:No. of iterations to be considered.
:Punch out case(=1).,
:TDUR,DUCT (8F10.5)
:Duration of the analysis.
:Ductility factor.
:SM,DAMP~SK (SF10.5)
:Mass.
:Damping ratio.
:Stiffness.

-FS-



Program : SP(6)

This program computes simulated earthquakes from given response
•

spectra~~Velocity spectra Sv).

(8Fl0.S)

Card 1

NITR
IPLT
IPUNCH

Card 2

:NITR,IPLT,IPUNCH (SI10)

:No. of iterat·ions for each given spectrum.

:Plotting caae ...

:Punch out case.lf =1 the 'simulatedearthquake will

be punched out. ..

:DF,FBUILD,FDECAY,RAKDA,SCLF

FDECAY

DF
FBUILD

:Frequency step in cps of the input spectrum.

:Percent of the period of the S.E used to build up

its time history.

~Percent of the .period 0.£ the S.E used in ord'er to

decay its time history.o

RMIDA :Coefficient of the exponetial decay. , .

SCLF :Scala~ factor to be applied for the input Sy spectra.

Card 3 :DHP(I),I=1,3 (SF10.5).

Three values of damping ratio for the given input Sy spectra.

Card(s) 4:Three sets of velocity spectra are to be given. (5(7X,F8.3))
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Program : SP(?)
• .

This program computes critical excitations of nonlinear M.D.O.F
structural systems.

Card 1
NDOF
NE

ISOIL
NP

IPUNCH

Card 2
TDUR
DUCT
Card(s)

:NDOF,NE,ISOIL,NP,IPUNCH (8110)
:No. of the degrees of freedom of the system.
:No. of basis excitations.
:Same as program SP(2).·
:No. of points in each record for the analysis.
:If =1 then linear and nonlinear critical excitations
are punched out.
:TDUR,DUCT (8F10.5)
:Duration to be considered for the analysis.
:Ductility factor. •

3:Mass matrix.(8F10.5~

Card(s) 4:Stiffnesos matrix. (8F10.5)
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iJAr~ SET UTILITY - :;EN~F,ArE

PROCESSING ENDED AT ECD

e e
ecccceeeceeccccceccccccecccccc'cc,ccccccccccccccccccccccccce
c C
c PROGRli'l" SPill It e
c c
e THIS I S TO CCMPU TE LINEAR AND NONL INEAR C
e REGULAR RE5PCNSE SPECTRA FOR A S.D.O.F. S'fSTE"I. e
e c
C lANAL :0 •••••••• LINEAR SPECTRA e
c IANAL ~ •••••••• NONLrNEAR SPECTRA C
e C
c BY : A.J.PHLL!PPACO,POULGS.- C
C C
~cccceccccccccccccccccccccccccccecceccccccccceeccccceeeeccec

e c

seLF:32.114*lZ.OO
C

c

C
C

DIMENsro~

oH~ENSICN

~EAOI5.l,)1

REAOI'5.Z/JI
?EAD(S.ZOI
RaD I 5. 20 I
'ilRI rEI 6,301

. wR[ TElo',4C I
1

WRITE(o.lOCI
"RIT,,16,201

Xl 7011 ,'f( 101 I, '('f( 1011,F( 70U
PERO IZ81 ,eNL (51

,IANAL,Nl.NF,INL,IFILE
GEH
Due T,B SK, SHe ,.;C, :iK,ACRC ,ACrtK
IP:ROIII,I=L,NFI

IANAL,NA,NF,[F[L~,INLtOUCT,8SK,SHe,

Ge,GK.Ae~c,ACRK.GcTA

(PERDI fl ,i:l ,NFl

c
c

c
c

08 1 IP:l.NF
PRD= PER D{ r P I
WF"l.OO/PRD
.. N=Z.OO*3.14lS9/PRO
r OUR .. 7.00*1'1<0
IF I reUR.1. T..... 1 TOUR=4.00
IF ITOUR.GT.40.1 ,TDUR=40.00
~Ul=NA-l

DT=TOURINAI

C~Ll.. "INPUT (X(11,raUR,SCLF,NA,IFILE,DT,,'15p,rsp,
1 S!.XM&x.rXMX~IXMXI

5[.:51/SCLF
~M4X"X~UX/SCl.F

wRITE16.501 I??RO,WF,wN,rD~R,or,sr,XM4X

IF (!ANAL.NE.OI GO re Z
C~LL ?RSi'~ (X( 1) ,f( II ,PRD,GETA,V','."NA,JTI
')D.:A6S( '('41
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GC Te 7
2 CONTINUE

C
C

AM=1.00
AK:a"N*WN* AM
~c=z.JO*A~*GETA*WN

CN!.( 1)= AK
CNl.IZI .. AK*BSK
CNL( 31= SHe
CNLl41 =DUC T
CNU 51=0.00
5CI=GC _
5I<I=GK
[NOEX=O

C
C

4 CONTINUE
C
C

CAl.l. UHENS
1

SO"ABS(V!oI)
SlJ=SO/OUC T
Ol=5CC-SCI
DZ=SKC-SK I
Dl=4BSI 01!
D2=ABS( OZ-I
OCi!=Ol-<\CRC
DDZ=D2-ACl<K
IF IDOll 5,5".6

5 IF (OOZI 3,3.6
/) COiH lNUE

5C1=SCO
SKl=SKO
5KKK=AKfo5Kl
5CCC=ACfo5CI
IF ( INDEX .EO .30 I
INOEX=INOEX+l

(X ( 1 ) • Y{ 11 • H ( II , FIll .C NUll, Ai'" , ~ C, AK ,
sca.5KD,5CI,5Kl.VM,INl.NA.OTI

GO TO 1

O.Cl~ •• O.

•
***"'****

C
C

GO Ta 4
C
C

3 CONTlNUE
IF (11'W2X.EQ.O I GO Te 7
'~RITE{6.60J

WRITE{6.701 [NOE~.AC.AK,5CCC.5KKK

7 COIIIT1NUE
5V=wN*5D
SA=wN*wN*SC/5CLF
~'RITE(6t301 SOtS.V, SA

C WRrTEI7,~OI_ PRD.wF.5D.5v.5A
CONTINUE

c
C

10 FGRMU
20 FCRMU
30 FCRMU
'tG FGRMAT

(a no I
(aFlO.5)
(lHl.115X.LZHlt'PUT DATA: .11)
(/SX.33HTYPC::;F ANALY5IS ••••••••••••••••••••• :.rlC,
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1 15X •. 3BHNC'•. OF PC INTS IN THE RECORDS :,[ La,
2 15X.38HNO. OF PERIODS ••••••••••••••••••••••• :,ILO,
3 15X,3BHFllE NO. OF QUAKE RECCRO ••••••••••••• :,IlO,
4 15X.39HNONLINEARlfY TyPE ••••••••.•••.••••••••• :, 1,lO',
5· 15X,33HNONlINE"RITY PARAMETERS •••••••••••••• :,
6 31/43X,FlO.51.
7 15X,38HACCURANCY CONTROL QATA •••••••••• ~ •••• :,
8 4(/43X,FIO.51,
9 15X,38HOAMPING RATIO •••••••••••••••••••••••• :,FI0.5J

50 FORMAT llHl,/5X,lHTA6LE :,.15.,/5X.121'='I,II,
1 15X,38HPERIOD••••••••••• lSECl :,FlO.5,
2 15X. 38HFREQUE~~CY'1""" (CPS l :, FlO.S,
3 15X.38HFREQUENCY •••••••• lRAD/SECl ••••••••••• :,FI0.5,
4 15X,38HOURArICN OF ANALY5lS •••••••• 1 5E'CI •••• : .FIO.5,
S 15X~38HTIME INCREMENT •••••••••••••• 15Eel •••• :,FIO.5,
6 15X,38HINTENS1TY OF QUAKE RECORO~ •• IGJ •••••• :,FIO.5,
7 15X,38HMAX. VALUE OF I;lUAKE REeORO •• lGI ...... :,FlO.5l

cO FORMAT ISlIl,5X.lOHCYCi,.E ••·•• :tl2Xti3HNCNLINEAR SYSTEM :,
1 llX,l9HEQUIV~LENT ~INEAR :,
2 IL5X,21oXdHOAMP[MG :,4X,UHsTrFFNESS :1/1

70 FGRMAT (5X,IIO,4flS.~)

8C FORMAT 15(.0 ,5X,l7H5PECTRAL VALUeS:,
1 I t~X.33HSQ ••• •-••••••••••• (·INCH) e· ••••••••••••• :, FlO.S,
2 115X.38HSV.·•••••••••••••• 1 [NeH/SeCI •••••••••• : ,FIO.5,
3 1/5X,38HSA ••••••••••••••• (Gt •• · :,FIO.5,)

C' 90 FORMA T( 2F 10",5 ,3 F15.5)
LOO FORMAT 1/5X,3dHTHE PERIODS ARE GIVEN BELOw •••• •••••• :,11)

c
C

HOP
Ccc eeececeeee cc eeee.eeecceeccceccccceeeccececcecceeccccc cc ccce eeec eccce
c c
C PROGR~M SPCZ) C
C C
C THIS I S TO COMPUTE: C
C \. I :'-I. E b, R C R I TIC b, l REi· p 0 N' S ESP E C T R A C
C C
C OAMP- :PERCENT OF THE CR I HCAL tlAMP ING C
C [SOIL :SOIL CONDITION e
c lSOlL =l ROCK 'lRE~4 IPACOI:-1Al C
C [SCIL =2 STIFF '1RE..1 (EL CENTROI C
e rSOIL =~ COHES. 'lRE=~ IEURE~A) e
e' NPRS :/110 •. OF PERIODS FOR THE RESPONSE SPECTRUM C
e NA :NeJ. OF PO'INTS FOR THE ANAL'I'S1S
C NE :/110. OF EARTHQUAKE RECORDS C
C NRE . :NO. FILE FOR" THE REFERENC=' EARTHQUAKE RECORD C
C C
C SUBROUTINES USED HERE ARE : e
e PINPUT ,PCP ,PRSP1., PCR n. ,;HNV C
e c
C BY: A.J.PHIl.1PPACOPOULOS t
C C
CC( cececee eeece ccceeceec!: eeec eececcecceceece.eeeccecceceeeq:ececcecccec
c e
C

C

DIMENSICN
DIMENSION
D1MEN5IO~

Xl 701,20 I, 'f[ 701 ,20) ,at 20 ,20)
. Al30001.ALPHAI20l,ALFA(2CI ,550[201

BY(20I,I.BI20I,,'16(20) .51120 ),PERDI20l

DEFINE FILE IJ(60,3COO,U,KVI
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\

e

fNPUT CAT~

NTOT=10L
MTOT=20

e
c
e

c

RE~O [5;l1
READ [5.2 I

CAMP, I SO IL ,NPR S
(P ER 0 ( I I , 12L ,N PR 5 I .

e
c
e

NA=NTor
IIIE=MTO.T
5Cl.F=32.174
IF (IS0fl.EO.ll
IF {ISOIL.EQ.21
I F ( IS 011. .EQ.3 I
IF (ISOIL.EO.l)
IF (.ISOIL.EO.21
IF ([SOIL .EQ.3 I

PRINT 0414

r STRF=O
I ST·RF=20
[ iTRF=40
IIIRE=4
~RE=L

NIlE=4

i,ojRlTE (6.4)
"RIT E (0,51
I1RtrE (6,,71

D'~P,ISOIL,NRE.N~.NE,NPRS

lPERa(CI,C=l.NPRSI
c
e
ececceeecc

00 d CP;'l.NPRS
ecceeececc

wR HE (6.41
~RO.• PERDI I.PI
'~F=L".JO/PRO

WN=2.00*3.L4L5~3/PRD

rOUR =1. 00 *PRO
IF (raUR .L[ .4. CO) fDUR=4.DO
IF crOUR.GT.40.01 [QUR=40.00
fIlA12N4-1
oT=TOUR IN 41
WRiTE (6.22) IP,PRO,wF,WN,TOUR,OT
WRITE (6.41

c
e
e

INPUT THE 3ASIS EXCIT4TI0NS

(X.( 1. [F I, TOUR, Sel.F .N4,fFILE ,DT ,N5 P" TS?
SSI.EXMAX,TEXM~,NPEMXl .

[F, IF ll.:: ,N SP, r 5P ,SSI ,EXMAX, TEXMX, NPE!'IX

NORMAL r-ZE Exen4 nONS

e"'=511I11R1:'>
DO L2 J=L.NE
[F (J. EQ.NRE I :;0 ro 12
A~J=EM/S.[ (J I
DO 13 'I=I,NA
X(I,JI=X( [,JI*AMJ

WaITE (6,.231
DO ') IF=L',NE
[FILE=[ STRFHF
CALL. P LNPUT

L
WRnE 16.101
5 {( [ F1-- SS 1

9 CONTiNUE
c
e
c
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c
c
C

13 CONTINUE
12 CaNT INUE

COMPUTE M4TClIX

00 14 [=l.NE
00 15 J=[ ,.NE
C~LL PCP (Xll.rI.Xll.JI.a{I.J}.N~.DTI

IF II.NE.JI BIJ,[)=611,JI
15 CONTINUE
14 CONT lNUE

C~LL ~[NV la.NE,DB,La.~B)

C
C
C

COMPU[ E RE SPONSE S
•

:. fl [. J), [=1.N4.J=1,NE

C
C
C

DC 16 J=l,NE
C~ll ?RSP~ IXll.JI,'(ll,J),?RD,D4MP,SO,N4,DTl
5SDI J ) =~a 5 I SD)
5SD(J)=SSO(J)·12.00

16 CONTINUE

COMPUTE THE COEFFICIENTS OF [HE CRITIC4L EXCrT~T[ON

CALL PCRTl IY,B.&LPH&~aY,4LF"YCR,TYCR,IVCR,EM,DT,NA,NE)

YCR=YCR*12.00
SOCR=YCR
SVCR=SOCR*\oIN
SACRsSVCR*WN/132.174*12.00)
TYCRCL= TY c.R
I YCRCL= IV CR ..

C
C PRINT RESULTS
C

WRIrE t 6.24)
DO 17 I=l.NE
RO=S SO( I I
RV=RO*WN
RA=RO'llWN* wNI 132. U4*12.JO I
\/~ITE. 16,25) I.~LPH~tr),RD,RV,R&

IT cmu INUE
WRITE (6.271
\/RITE (6,2S) SOCR.SVCR,5ACR,rVCRCL,{VCRCL

ecccccceec
a CONTINUE'

C(eceeccec
C
C

1 FORM~T (FIO.5,21101
2 FeRMAT (SFlcr.51
4 FORMAT (lHl1
5 FORMAT llCIII,5X.'C0101PUTATlON· OF THE RESPCNSE SPECTRUM :',

1 1l,5X,381'''''ltlOI/),
2 ftOX t • DA.MP [NG • ......-••••• ~.- .: I ,FlO .. 5,
3 11CX,'SO!l CONOrTlON RO.CKtU,STlFF(2),CCH.(3) •••• ::·,[10.
4 IlOX, "REFERENCE EARTHQUAKE ••••••••••••••••••••••••.:' .110,
5 110X,·NO. OF POINTS FeR ~NA!.Y:ilS •••••••••••••••••• :',I10.
6 IlOX,'NO. OF BASIS ExCrTAfrONS ••••••·•••••••••••••• :' •. [10,
7 IlOX,'Ne. OF ~ERICDS FOR THE RESPONSE SPECTRUM •••• :· ,IIOI

7 FORMdf U/IOx.'fH!: FQLLOW1N~ PERreD5 ~REUSEu:·.

l l,lOFIC.5,1.10Flu.5,1.10FI0.5f
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10 FORMH 13rlO.4FlO.3tlI01
22 FeRMAT (2Clll,10X.'HBl·e NO. :',cS./IOX,l61'='l.5U),

1 /1 ox. ' PER I co .• 08. II> ••• I> ••• Cl 1>.0 ••• ..., .' roo ~ •• 0 : ' ,F 10 t:1 5,
'2 IIOX,'N4TUIULFREQUE:'ICY ICPSI •••••••••• :'.FIO.5,
3 IIOX.'CIRCUI.AR FREQUENCY lR4D/SECI ..... :',FI0.5.
4 IIOX,IDUR~JlON OF THE REeCRDS ••••••••••• :',Fl:l.5,
S IIO'X,'TlME lNCRE4MENT USED :',FIO.51

23 FORMAT U/5X,IQU4KE',6J(,'FILE',5X,'ST4,RT',5X,'ST4,RT',
1 3X,' SORT OF', 7X,· ~AX' ,.8X, 'AP ,ax,· '4, T' ,/7X, 'NO:',
2 1X., 'NO: I ,4X,' POINT: ' ,5X, I TI'~E: I ,2 X, I SQ. INTEG',
3 4x,'~eCEL:' ,5X,'fIME:' ,4X,'POlNT: 'III

24 FORMAT 11115X.·QUAK~',bX~ICQEFF. A';
lOX. ,********* INDIVIDUAL RESPONSES *********'.

2 '44X,'* 50 *',9X,'. SV *'~9X,'. SA *',/1
25 FORMAT 110X,110,4F15.5)
27 FORMAT (//I0X,'M4X. OF THE CRITICAL RESPONSE',11
28 FORMAT 1115X,'SO=',FIO.5,5X,ISV:',F10.5,5X,'SA=',FIO.5,5X,

1 'T:',FIO.S.3X,'I'tl5,'l'l
e
e

STOP
END

C C
cccceccccceceecccccccccceecccccecccccccccccceeeeceCGCCe~cecc

e c
c PRC~R4M : iP( 3) C
C C
C Cll-lTre-Al EL4STOP'..ASTIC C
eRE 5 paN S e S p' E ~ T R A.-. C
C C
C NP ••••••••••••• :NO.OF POfNTS IN EACH RECORD C
C NE.; :NO. OF BASES EXCITATIONS C
C IRE •••••••••••• :FllE NO.· OF THE REFERENCE EXClT:\TlON C
C SCI..F ••· :£Cl\LAR FACTOR FOR THE ExerUTIONS C
C DAMP ••••••••••• :OAMPING C
C PERO ••••••••••• :PERICD C
C Due T ............ • :Due TILL TV F ACSOR C
C C
C BV A.J..PHILIPPACOPCULOS. C
c c
ccecccceceecceeeceececeeccecceccecceceecceeeceeecceceee cc eee

- e C

RE4,D (S.10UISCIL,NI'T!:R
READ (501031 D.o.r~P,DUCT

c
C

c
c
c
c

c

DIMENSION
DL"lENSION
OI~ENSlCN

OIMENSI.ON

[PTOT: 70l:
[ETor=20
NOL=14
5CLF=32.174

INPUT DAU

XGt701.20I,RESP{70f,201
a(20.20I,~{2,21

yeRrL(701I,VCRTL[7011~FUNCI7011

51 (201.LS (20 I ,.MB( 201 .BBf 201, ALPI1A~20 I, AlF <\ {20 I •
RMAX(lCI ,L 5( 21 .MS(21.
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IF (ISiJIL .EO.ll
[F ([SO II. .E~.21
IF (rso IL .EQ.3!
IF (150 I:" .,EQ.ll
IF (ISOIL.EO.Z)
IF (·150 II. .EQ.3)

[ STRF=O
[ ir:RF=2C
I.5TRF=40
[ RoE =4
(RE=l
IR!:a4

e
NP=I PTOT
NE=[ETOT

• e
C- . PIHNT CAn.
e

IIR rTE (6tl'05)
wRITE (6, lC6)
WRrTE (6.107) o ~P, ISorl., IRE,N? ,NE, cueT

c
DO LOOO [OL=l,NOL

INPUT THE BlloSES EXC rrUIONS

REAO (5 tl 021 PERD

******

I X(;.( 1,1 F). TD~ .SCLF ,NP' r..lFI l..E ,DT ,NSP, rSI?, 55'{,
XGIo4AX. TXGMX.IXG,"1X)
IF,. IFILE .NS? T51' .. SiI , XGM4X. TXGMX. IXGMX

. DO 2IF=L ,NE·
IFII.E=[ STPF+IF
C!ILl- P tNPUT

L
WRITE (6~U3!
Sll IF)=SSI

2 CaNT. tNUE

NCRMAL r le [HE BASES. Exe lTH [01'f5 ra THE REFERENCE IN·rENSny

PERO=l.OO IPERO
PRD=PERD
liF=l..vO/PRO
f1N=2 .00*3 •.1415~ IPRD
TDUR =7. aO*PRO'
[F ITDUR.I..T.4.aOO) TOUR=4.00
IF (TDUR.GT.40 •.JO) TDUR=40.0
NP1=NP-l
J T= TDUR INP 1
WRITE (6tl05)
"'RITE 16.ll0) PPD.WF,wl'hTOUR,or
\-IRnE (6,llU
WRITE (6.112)

CC~PUTE THE DURATION FeR THE ANALYSIS

c
c
c

c
c

e

e
c
c

c
c
c

SIRE=SI (tRE)
DO '+, J=l.IIIE
IF IJ.EQ.IREI GD TO ~

SIJ=SIRE/SIlJ)
00 :; [=1,1111'
XG(I,J)=XG(I.JI*S[~

5 caNT [NUe
4 C:JNT[NUE

COMPure ,'UTRI,X Bl'I,J),[=l,NE,J=l,NE
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00 7 J=[,NE
CALl.. "CP (XG(l,II,XG(l,JI.a(I.JI,NP,OTI
CF (I.NE.JI iHJdj::8U,J1

7 CONTINUE
b CONTINUE

c
CALL '~ [NV

c
C .COMPUr E THE SPEC TRUM V~I..UES

C
SM:1.00
5C=2.00*iM*OA~P*WN

5K=WN*WN* 5104
C

c
C

C
C

C

C

C
C
C

GCO=O.O
GKO=O.O
5l<O=GKO
SCQ=GCO
[NOEX::l
WRITE {6,1l01

11 CONTINUE

5I<1=SI<"SKO
5C1" 5e .. sce

OMEGA-SKI/S:-t
OMEGA=5QRT{C~EGAI

EQDMP::5Cl/(2.00·SM*OMEG~1

EOPRO"2.vO*3.1~15~/SMEG4

WIHTE (0,1051
ioiRITE 1&,1151 INDEX.':ODMP,OMEGA·

l.NOl VIl:UAL RESPONSES

DO 21 [=l,NE
CALL PRSP~ {XGI1,1I,RE5P{1.[I,EQPRO,EQDMP,VMAX,NP,DTI
YM&.X=AB 5:( VM&.X I
YMAX=l2.JO*VM.Q,X
IF llNOEx .EO.l1 GO TO· '+l
YM4X=VMAX loue r

41 CONJ; [NUl:
RMAX{ I I =tt>+&.X

21 CONHNUE

.................
..

CRITIC~L. RESPONSES

50=YCRT*12.00
[F {[NDEX.EO ..11
5D=SD/OUC T

42 CONT[NUE

C
C
C

CALL P.CRTL (RE5P,B,AL?HA,3a.ALF4,tCRr.rVCR,IVCR,
5lRE.OT.NP,NEI

GO TO 42

C
DO 31 K=l, NP
'I'C::O.O
DC 32 1::1 .NE
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C
C
C

32 YC:YC~AlPHAIII*RE5PIK.II

YCRTLIKI=YC
31 caNT INUE

RESTeR ING FORCE

DO 22 I=L.NP
veRT U [) =SK*vCR TLl I I

22 CONT INUE
C
C. NON-U NEAR FANCT ION.
C

CRITICAL vELCCIT1Ei
C
C
C

CALL
CAl.l..

PAMAX
PFNL2

(VCRTL'll .RF~x.r~X.(Mx.OT,NPI
IVCRTI.(ll,RFMX,F~NC[lI,DUCT,NPI

Npl=NP-1
DO 23 I=l.,NPl
VCRTI.III=VCRTLII~ll-YC~TL(II

veRTlI I I:VCRTLI Illor
23 CCNTINUE

VCRTl.lNP' :VCRTUNPll

NEW VUUES FOR SCO,SKU

SKO=SI1,ll*Pl+511,ZI*P2
SCO=SIZ.LJ*Pl+S(2,21*PZ

550=50
SSV=WN*550
SS4=WN*WN*SSD
SSA=5SA/{3Z.17~*t2.00J

MATRIX 5

'VCRTLI1I .VCRTLlll, 522,NP ,DTI

I FUNCC II , YCRTl. I 11 ,1'1, NP ,Of)
(FUNtl 11 .. IICRT!.! 11 , PZ ,.NP,O fl

I YCRTL ( 11 , '(CRrULl .51 l,NP.DT I
lYCRTLlll,VCRTLllJ.S12.NP,OTI

( ~,2,OS,lS.,MS)

PCP
?CP

CALL
CALL

CALL PCP'
CALl. pcP
521"i12
CALL pcP
ill,lI=Sll
5(1.21=512
512,1):521
512,21=5Z2
CALL" INV

C

c

C
C
C

C
C
C

C
C
C

PR IN r RESULT 5

WRITE 16.1Z11
WRITE I 6,1l'7 J
00"15I=L,NE
RD"RM~X! I I
RV=RMAX I I I *WN
RA=RMAXI! I*WN*WN
~A=KA/(32.174=12.001

"R1TE 16,1131 !,<l.LPHAI!I.RD,RV,RA
15' CONT H:UE
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C

WRITE '! 0.119)
WRITE (6,120) SSD,SSV,SSA'

C
C

C
C

IF IINDEX.GE.NITER) GO TO 10
INDEX.. INDEXH

GO TO 11

10 CONTINUE
c
C

1000 CONTINUE
C

101 FORMAT 'SIIOI
laz FORMAT (SFIO.5)
103 FORMAT (4FI0.51
le5 FORI·UT IIHll
106 FCRMU 1III,5X,'RES?QNSE SPECTRU;'1 DArA:' ,/SX.23( ''''II
le7 FORMAT (1115X, 'DAMPING •••••••••••••••••••••••••••• :' ,FI·J.5,

1 15X.'SCIL CONDITICN •••••••••••••••••••·•• :',IIO.
2 15X,'REFERENCE EARTHQUAKE ••••••• oe •••••• :'.II0.
3 15X.'NO. OF PCINT5 FOR. ALl. RECJROS~ •••••..:'.rlO,
4 15X.'NO. OF BASIS ::XCIT'I\TIONS ••••·••••••• :',IIO,
5 I 5 X. '0 uC TIL I TY· F AC 'T CR ••••••••••••••••••• : I ,F 10 .5 I

110 FORMAT !
111115X.'PER<fOO I SEC). • :' .FIO .5.
2 15X.'FREQUENCY !CPSI · •••••••· :'.FIO.S.
3 15X,'FAEQUENCY (R~D/SECI ••••••••••••• ;'.FIO~S.

4 15X,'OURATION !SECI ••••.•••••••••••••• :'.FI0.5.
5 15X,'TIME INCREMENT 'SEC) •••••••••••• :',FIO.5.1

III FORMAT (1115X,'AI. 34SES EXCITATIONS QATA :'i
112 FORMAT (/·/5X. 'QUAKE' .6X,' FILE ". 5X.' STAR T' ,5X, 'START',

1 3X. 'SORT CF". 7X , ' '14 X· , a x·, •Af' ,8 X. '1\ T' ,17x, ' NO: ' •
2 7X. 'NO:·' ,4X,,' POINT:' ,5X,' TI~E:' ,2X, 'SQ. INTEG',
3 4X, 'Ace a : ' • 5X ,. , TIME: ' .4X , , PO I NT: " I)

113 FeRMAT 13IIO.4FI0.3.ILO~

115 FORMATlI15X,'IfER.;'.I4.·
115x r 'ea. DAM9.&·,FIO.3.5X.'EQ. FREQ.&'.FI0.3,

115X.45( ,,,:tIl.
110 FORMAT (11I5X. 'B1 .. I TERUIQN : '.In
111 FORMAT (1IIIOX,'QU4KE'.4X.'CCEF. 4LPH4. J ,5X.

. '._.***' INDIVIDUAL. RESPONSES ••••••• ··,1130X,
6X.'. SO .·,9X,'. SV .·.=3X,·* SA .",11 '

118 FORMAT (5X.IlO,4.f15 •. 41
119· FORMAT (/I/U5X,"III. CRItICAL S?ECTRI\l VALUES: '.1/1
120 FORM o.r (5X,,' SO&', F lO .4, 5X,' SV:',r:lO. ,+-, 5X.' SA:' , F [0 .41
121 FORMiH U11I/5X.' II. INDIVIDUAL SPECTRAL VALUES :',111

C
C

STOP
END

C e
ece CCc(eeccec ec ceeeec eecceccceeceeecccecccce.cccecccecc'Cecccee ceceeccee
c C'
C PROGR411: SP}41 C
C C
C THIS [5 ro CCMPUTE C
C CRITlCAl.. 2xCIT4TrC"lS C
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C FeR L [ N E 4 ~ 5 y 5· T E ,'1 5 • C·
C C
C ISOIL :501l CONDIT [ew c
C 150ll =1 ROCK NRE=-4 IPAC01MAI C
C 15011. =2 . 5TIFP ~RE"I· lEI. CENTROI C
C I sell =-3 COHES. NRE=4 IEUREI<!oJ C
C NA :MO. OF POINTS FOR THE ANALYSIS
C ME :NO. OF EARTHQUAKE RECORDS C
C NRE :NO. F[LE FaR THE REFERENCE EARrHQUAI<~ RECORD C
C C
C BY: 4.J.PHILIPp~cc:paULCS C
C e
ececceeeee eec ce cee eeceeecececceeeeeceeecceeecceceecceecceecec eeeeceece
C C
C

NTOT=70 I
NTOT=301
,I1TOT=20

INPUT DAH \.

C
C

C
c
e

C

C

DI:04i:NS10N
o [,'1ENSICN
DHIENSION

RfAD 15.11
R. fAD (5,2)

NA=NTCT
~E=MTOT

5CLF:32.I74
5CLF=9.8067

oT=orHT
NoH:NA-!.
TOUR=NAl'*OT

XI 701, ZOb H70 I ,·ZOI,Hf( 7011
B(ZO,201,I.6120I,,'161201
ALPHA(21) I, o.lF41Z0 I ,51(ZO I, SYlZOI

DrHT,SRiT ,ISCIL, lPUNCli
IHn I I ,I =1 ,N TO Tl

C
IF
IF
IF
rF
IF
IF

[ [SOIL.EQ.1.1 .
( 1501 L.EO.l I
I lSOlL .EO.3 I
(iSorl.EO.!.)
I ISOU••Eo..2 I
I [SOIl.EO.3)

[ 5TRF=O
I·STRF=ZO
L STRF=40
NRE=4
NRc=I
NRE=4-

WR[TE 16.41
;~RITE 16,51· DTHT,[ SQ[l,NRE,NA,NE,TCURtSFHT
wR[T~ 16,41
WRITE [6,.371
'.. RITE 16.2) (Hf{ U ,r =I,NAI
DC 32 [=I,NA

32 HTIII=HTfll*5FHT
... 1<1 TE 16,.41

C
e
C

c
C
C

PRINT DAU

INPUT THE aASIS 2XCIT4TICN5

WRITE 16,231
JQ9 [F=i,NE

-F18-

X[ I, JI ,r =1 ,N~, J= l,NE



f

(X ( 1. I F I , TOUR .·SC1.F, NA, I FILE .ilT, "lS?, TS?
SSl,EXMAX.TeX~~,NPEMXI

IF, IF [I.E .NSP. T SP, SSI .EXMAX. Tex;~x,NPE /oIX

1F1LE=ISTRF+1F
CAll.. PINPUT

1
WRITE (60101
SiC IFlaSSl

:; CONT INUE
C
C
C

C
C
C

EM=SIINRE)
)0 12 J=l.NE
IF IJ.EO.NRE GO Tn 12
U'JaEMI SI lJ I
DO 13 [=1 ,NA
XI [, JI=XI I,JI*AMJ

13 CONTINUE
12 CaNT lNUE

COMPUT E 'lA Tll. [X

C
C
C

DO 14 1=1 ,NE
JO 15 J=I.NE
CALL PCP (Xll,U,Xll,JI,d{I.JI,NA,DTI
IF II.NE.JI 3lJtIl.. all,JI .

15 CONT INUE
14 CON.T [NUE

CALL ~INV (a.NE.Ds.L8,M8l

COMPUTE RESPONSES

WRITE 16.221
DO 16 J=I,NE
CALL PrDTR IXll,JI,HTlU.'fn.JI,.YMU.T1MX, [YMX,DT,NAI
WRrrE (0,·251 JtYMAX,TYMX,.['(M'X

16 CONTINUE
C
C
C

C.CMPUTcTH~ COEFfiCIENTS DF THE CRITICAL EXCITATION

c
c
C

CALL peRT!. I Y', B, AL.PH~,BY ,Al.FA,. 'fCR. TYCR tI YC R, EM. Dr ,NA ,NE)
\'tRITE (6,,271
WRITE (6.281 ((I,ALPHAII)hl=l.NE)
~RITE (6.30) YCR,rVCR,.[YCR
IF { IPUNCH~NEo-ll GO TO 53
DO 50 [=I,Nfl

5Q HTl [)=O.o

CR[T[CAl EXCHU,lON

c

0054K:I,NA
;(c=o .0
DO 5.5 I:I,NE

55 XC=XC~U?HA([l*XIK, II
HTlKI=XC

54· CONTINUE
wRITE (60351
'''RITE (6,71 IHT(Il,l=l,NAI
WRITE (7,341 (HT(!l ,i"'l,N~1

c
53' CONT INUE
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C
c

1 FORMAT 12FI0.5,2110)
2 FORMAT(9FI0.11·
4 FORMl\r 11Hll
5 FORMAT I1QIIl.5X.J[NPUT 0O\T4.',II,5X,10('*·).I.

2 11 OX, , TI ,'IE .I tlCRE MEN T• • • •••• •.• • • • • ••• •• ..... •• • • •••• '. FLO. 5.
3 110X.'SOILCONOITlON ROCK{11.5TIFF(21.CQH.131 ••••• ·'.IlO.
4 IIOX.'REFERENCE E~RTHQUAKE ',rl0,
5 110X,'NO. OF PCINrS.FClR ~N4~Y5{5••••••••.•••••••••• '.IIO,
6 ILOX.'NO. OF B4S[s ExcITO\TrON5 ••.•••••••••••••••••• :·.I10.
7 IIOX.' OURo\nON FOR ANAlfSIS :' .Fl::l.5.
9' 110X.'SCAlAR FACroR FOR Hlr! RECQRO-••••••••••••.••• :··,FI0.51

7 FORHATISE13.51
10 FORM4T 13110,4flO.3.1101
23 FORM 4 T (/ 15X, •0 UA KE ' , 6X , ' F ll.E ' • 5 X • ' 5T AR r • • 5 X, '5T4 R fI ,

1 3 X, • SOR T CF', 7X , "~AX' , 3 X. • AT' , 9 X. 'A T' , I 7 X. '~o:r •
2 7X. ,~O'~, ,4X 0' PO[NT:' ,5X.' f[ ME:' ,2 X, • SQ. r~TEG'.
3 4X. ·ACCEl.:' ,5X,'f[ME:' ,4X,'porNT: ',II

22 FORMaT IIlII0X,'INDIVIDUAl RESPONSES',
1 115X,' QUAKE' ,12X,' RESPONSE' ,16X. q lME' .10X,' PO [NT' ,III

25 FORM4.T (5x.r5.10X,EI0.~,10X,FIC.3.10X,[5)

27 FORMH (/III0X,'COEF. OF THE ClUTICAL ExcrrurON',/1
29 FORMH 110X,IlO,FI0.41·
~o FORM4.T IIIIOX, 'CRITICAL RESPONSE·'/IOX.'~AX. VALUE:·.EIO.4.

1 5x,'rl~E:',F6.3.5x,'PorNT,,·.r51

34 FORMA-T (5El"O.41
. 35 FORMAT 1I/110X, 'C,UTICAL EXCIT.HION RECORD' ,111
37 FORMAT (1IILOx.'UNlf [~PUL5E RESPONSE RECORD~.111

STO?
E"lO

***********************.***************************
* '"* PRGGR'AM II 5P (5) II '"

* '"•. THIS IS TO COMPUTe *
* CRr HC At EXC ru TrONS OF *
'" S.o.O.F·:LASTOPLASTIC SYSTEMS *'
'" *,.. ,NE :NO. OF· 34S£5 :xcrUTrONS *
'" IselL: TYPE OF SOIL CJNO[T{CN '"
* NP :NO. OF POINTS FOR ANALl'SI5 *
*' HI TER>: NO. OF I fERA f IONS '"
•. TOUR :CUR4TION FOR ANALYSCS ..
•. RF~X :'l'l aorNG. FORCE *
• 514 :MA55 OF THE SYSTEM *
'" O"-MP : D"-i~P ING RUIO (UNEO\iU *
'" SK :·STrFFNE55 (LINEAR) *
* lPLCT= 1 [S FOR PLOTT ING CASE '"
'" IPUNCH=L ! 5 FeR PUNCHING OUT C"SE '"

'" *'" BY : A.J.PHILIPPACOPOUlOS '"

'" ~
********"'******************************************

C
c
C
3
C
C
C
C.
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C

DIMENSIon
DL'IENS [ON

D I:~EN5 leN

XG(701,lC),RE5PI701~101

'(CRTL I 7011 ,VCR fl', 7011, ERr (701) ,FNl ( 7011, TRF I 7011
,Hf(7Q1I,XCRT1l701I,CRTI7011

::;( 10,101 ,AAI 2, 21'
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INPUT O~U

PRINT CAH

REl\O ioo, NE. ISO II.,N P.,N ITER. I PUNca. I PlOt
RHO 101, roUR,RFMX,pLr'M
R~l\O 101,5M.Ol\MF,SK
SCI.F:32.174

c
c
c

C
C
C

DPIENSIGN At PH~ ( 10 1• ~O I 10 I , Bella 1 , l Gila I ,.'1G ( 1 () I ,I.AA I 2 ) , ~ u ( 2 )
, S-I (101 .

INPUT THE 6ASIS EXCITATIONS
C
C
C

C

IF 115011..2Q.1I
[F (150II..2Q.21
[F (ISOIL.EQ.3)
IF (ISOIL.cO.l J
IF IISOIL.cO.2)
[F IISOIL.EQ,31

I5TRF:O
! 5TRF:20
15TRF::40
IRE=4
I RE= I
[RE:4

c
C
C

C
C
C

C
C
C

PRINT 103
DO 1 If::1,NE
[FILE:! STRF+!F
C4LI. PINPUT IXGll,IF.I.ToUR,5CLF.NP,IFfLE,DT,

1 NSP,TSP,SII.,X,'1X,rMX,I,,",Xl
PRINT l04.IF,IFILE,rSP.NSP,SIL,XMX,rMX,1MX
511 I FI= 511. .
CCNT INUE :

NCRM4L I ZE rHE 6A 51 5 OF E4R THQUl\KE5

SIRE=SIIIRE)
DC 2 J::I,NE
IF IJ.EQ.IREI GO TO 2
SIJ:SIREI S11 Jl
DO 3 [=I,N?
XG'I,Jj=XG(r,JI~rJ

3 CaNT INue
2 CCNT INUE

CCMPUTe .~ ArR IX" G.

DC 4 I=I.NE
DO 5 J~l,NE

C~I.L. PCP (XGll, 11,XGl1,J) ,lOl I .JI ,NP,DTJ
!F (I.Nc.JI li(JrIl=G(l.JI

5 ceNT rNUE
4 CONTrNUE

C4lL 'HNV .! G, NE, OG,LG. MG I
PRINT I05,OT

ITERHICN PROCEDURE

SCO=O.O
5 KO=(1.0
CMEG4=SK/SM
8~EG4=5QR TlC~~E~A.1
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C

SC=2.00*OAMP*CMEG4*SM
YIElO=RF1>IX/SK
PRiNT 12~..YI2l0
PRiNT 125.CMEG4-
IDal

7. CONT INUE

UNLT I~PULSE RESPONSE

PR INT 107,10
SCO=SCOfo5C
SKO=SKC'foSK
FRI,J=SKO/SM
F RCa SCR T( FRO I
DMP=SCO/(2.00*SM*FRCI
PRINT lO~.CMP.FRQ

C

C
C
C

C~LL PHI (HT ( 11 dM .OMP ,FRQ ,NP, OT I
C
C
C

~
C
C

C
C
C

J',NOIVlCUAL RESPONSES-

PRINT 10'1
DO 9 I=l,.NE
00 8S Jal,NP

as X(;.IJ,1J=-XGIJd I*SM
CAll ?TOTR IXGU,II,HTl1',RESPII.Il,'t'M,TY,IY,Or,N?1
PR [NT 110 ..'(MdY.r 'f
DO 96 J=l.NP

86 XGI J.r I =XG( J, [I /l-SMI
a CONT INUE

CR n ICAl ReSPONSE

CALL PCRTL I RESP ,G.A.LPHA .BO, ""0, 'fCR, TCR,I CR ,S IRE, or ,N? ,NE I
PRINT 106
PRINT 121
PRINT 111.CII.4LPHl{III .. l=l.NE)
DO 20 K=l,NP .
Vc=o.O
DO 21 l=l.NE·

21 '(C=VCfo4LPH4tIl*RESPIK.11
YCRTLCK laVC

20 CONTINUE
CALL PAMAX IYCRTLlil,YCRMX.TCRMX.ICRMX,oT,NPI
PRINT 112,'t'CRMX,rCRMX,ICRMX
IF {.YCR~~X.Lr.,(IElOI GO TO 69-
DUCT =VC RM XIV [aO
?!UNT 123. cue T
IF IIPlOT.NE.l} GO TO 67
PRIM r 121
OLI. ?PlT (VCRT~,NP_,I,Pl'fM.U

CRITICAL vElCeITY

67 NPl=NP-1 ..
DO 70 1=1 ,NPl
VCRTL([I=VCRTl([foll-fCRTlIII

70 VCRTLI [1=\lCRTLl IIIOT
VCRTUNPI.::VC'HL 'NPII
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c
C
C

ELASTIC RESTOR[NG FORCES

DO 30 [:t.N?
ERFI lI=YCRTL( O*SK

30 CONTINUe
C
C NCNLINEAR FUNC TION
C

DO 66 I=l,NP
[F IABS(ERFIllI.I.E.RFMXI GO TO 61
IF (ERFIIII 62.63.64

62 FNLI Il:-RF~X-YCRTU 11*SK
GO TO 65

63 FNL( 11=0.0
GO Ta 65

64 FNL( 1 1:+RFMX-YC~TLl [1*SK
GG TO 65

61 FNLI II=O.C
65 CCNTINUE
66 CONT lNUE

C
C
C

C
C
C

TCTAL RESTORING FORCE

DO 33 [=l ,N?
33 TRFIII=ERFIII+FNL(l)

IF IIPLOT.NE.11 GO TO 68'
PR1NT 122
PLRF=l. 5* RF"IX
CALL PPlT ~TRF.NP,L.PLRF,ll

CRIT[CAl EXC1r'TION

lF IID.NE.ll GO Ta 30
IF IIPUNCh.NE.ll GO TO 80
PUNCH \120 , {( [ ,XCRTL (II I. 1:1 ,£liP I
PUNCH 120.n [ ,TRF 1111 or :I,N? I

80 CONTINUE

DO 40 K=1,NP
XCR=O.O
0041 [:l,NE

4L XCR:XCR.AlPHAIII*XGI«,ll
XCRTUK I :XCR

40 CONTlNUE
c

e
e
C

M4TR [X AA

.68 IF nD.EC.N1TERI
CALL PCP
CALL PCP
A21=412
CALL PCP
Ul 1..11 =A 11
U(1.21:A12 '
44(2.11 :A21
4412,21:422
CALL'! INV

GO TO 17
(YCRTLLll,YCRTL(ll,All.N?,DT)
I ye/HLlll ,VCRTL Ill, Al2,NP,,)T I

I VCR TL Ill. VCRTL III ,11,22, NP,JTI

C
C
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C
CALL PCp' IFNLlll,fCRTLlll,Pl.NP,OTI
~ALL PCP IFNLlll.VCRTLlll,P2,NP,DT)
Sl<Q=l\Al1.11*Plt-Ull.21*P2...
SCOaU(2.11*Pl+UI2.21*P2

C
10-rO+1
GO TO 7

C c'
C

17 CONTINUE
C
C OUTPUT RESl.LT5
C

c
c

PRINT 113'
PRINT 114'
00131=I,N?
T=l 1-11 *0 T

• PRINT 115.1, T,YCRTl (! I.VCRTL( Il.XCRTLI I ),FNL( I I,TRF (I I
18 CONT INUE

IF,IIPUNCH.NE.l1 GO T:J 81
PUNC H 120. I It, XCR Tl I I 1 1-; t =LoNP \
PUNCH 120;11I.fflFII II.l=l.N?1

81 CONT INUE
GO Te 91

(:9 PRINT 120.
;1 CONTINUE

100 FCRIolATl3IIOI
101 FCRMATI3FIC.31
102 FORMATlIHl,I13Xd2HINPur DUA :,

13X.3~HNO. OF ~ARTHQUAKE5••••••••~ ••••••:.II0,
13X. 3~HSO'IL TYPE~ •••• ·•••·•••••••••••••••• :.110.
13X. 3~HNO., OF PO lNTS .' : ,l10.
13X. 34t1YI ELD ING FORC E••••••••••••••'•••.•• :.F10.3,
13X .-34--H"4, 5 S• • '.,- ••••• •--•• eo••••- -•• ..... • -. : , FlO. 3, ..-
13X,3.HDAMPtN~ RATIO ••••••••••••••• ~ •••• :.FIO.3.

_/3X.34HSTIFFNESS ••••••• ~ :.F10.3111)
L03 FORMATL/3X.19H6ASIS !ARTHQUAKES :,

117X. 3HNO.oX, 4HFI U: ,oX.;lH STAR TS .1X .9HI NTENSI TY , oX.
4HMAX •• 5X.7HAT TIME/\

lO. FORMAfl.5X'.15.II0,FI0.3.'I'.I3','J.:".3FIO.3 •. 'I'.l3.,'\'J
105' FOR/UT[ 1113Xti7HTIME INCREr.MENT : ,F9 ..5 .. 2X.3HSEC,/ II
lOb FORM All 1/11
107' FORM4TC lH 1.

113X..251 '*'1 tl'3X,17H* lliER-tHCN CAsEtl5,3H *'"
13X.25I'·'1/1l

108 FORM'ATlIl3X.
12HEO. DIlMP[NG=,FLO.3,5X,14HEQ. FREQUENCY=,F10.3,11)

109 FO~M4r[/3X,22H[NDlV[DUALRESPONSES :,/J
tl0 FC~MATI3X.2FIO.3,2X"lHI.I4.1.Hl.

III FORr-I4T13X,IlO,FlO.31
112 FaRMATrI13X,l;HCRITICA~RESPCNSE :,

113X.2F10.3.2X,lHI.I4.lHI I
113 FORMAf(1113X.15~F[N4LRESULTS :,111
114 FGRMATII15X.5HPCINT,6X.'HTIME,5x,5HRES~•• 5X.5HVELT.,

lXdHCi\. ::xcr.,lX,~HNL FUNCT.,3X,7HTCI. RF,III
115 FQRMATII10,6FIO.31
119 FORMATIII0,5FIO.31
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c

120 FORMaTI6( 14,F9.311
121 FORMATIII13X,27HPLOT OF·CPITICA~ RESPONSE: I
i22 FORMATllff3X,25HPlOT OF RESTORING FORCE: I
123 FORMAT(ff3X,17HCUCTILITY fACTCR~,F9.2.ffl

124 FOPMATIII13X,22HVIELDING DEFORMATION :.FI0.3.lfl
125 FORMATtfl13X,13HLINEAR FREQUENCY :,FI0.3.111
126 FORMAT{ 1113X.30HTHE OSCILLATOR REMAiNS EL.ASTIC.1I3X .3C!'SiJ I
127 FQRMATI3X,34HC~EF. CF THE CRITICAL EXCI~ArICN til

STOP
END

***************************************************
* ** PROGRAM ~ SPC61 n *
* ** TO GENERATE SIMULATED EARTHQUAKES *
* ** BY : A.J.PHILIPPACOPOULOS *
* *
~*********************.***•••******************.***

C
C
C
C
C
C
C
C
C
C
C

c
c

DIMENSION
iJ I:4ENS I ON

DIMENSION

ACC 1200L 1.1'1: SF (200 11. Ae? (1024) .4FOUR (L0241
AMPLTl 1011 .5 VINPTlIQll ,SVOUTP( 10 11 ,a MEG'" ( 1011

• RANDF /1011 ,FREQY 11011 • DMP ( 31
GAMA! 1 00 I

c
c

C

C

C

C
C

READ 3,NITR,IPlT,IPUNCl'1
READ 1.DF,F8UILD.FDECAV,RAMOA,SCLF
READ L,'JMP(II,I~L,31~

.OW*2.00*3.l4159*OF

sew=ow
SEpal .00* 3 .l4l5 9/SE\oI
SEF=L.OO/SEP

OT=SEP/NFT

:iF=DT
TBULLD=SEP*FBUILD
TDECAY=T3UILO+SEp·
rT=TDECAY +FDECAV*SEP

N;:rr fOT +l.OOl
NBUID:T3UILDIDT+l.OOI
NDECAY=TOECAY/OT+L.OOl
NPE=NDE CAy-4IB·Ur 0 +L
IF (NPE. GT.NFT 1 NPE=NFT
M=NfrCr
PRINT 2.~.rr,N8UID, TBUIL.J,NDECAf.TDeCA.V,OT,:icP,3EF,3E\oI
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PRINT 5.~.QW.DF,l?UNCH,IPLT,SClF

IF tN.GT.NTOTI GO fO 4000
C

~. C
C

DO ;50 1=1,1'1
SVINPTC I I =0.00
SVOUTP( I) =0.00
OMEGA( I 1=0.00
F~EQYtI )=0.0

950 AMPLT!( )=0.00
('MEGAll )=0101
00'2030 (=2,M
O:-lEGU I ):lOMEGA! I-I 1 ~IJW

2030 CONTINUE
DO 350 1"101'1
FREQY!II=CMEGA1II/12.00*3.141591

350 CONTINUE
C
C lNPUT SP~CTRUM

C
IoMP=l
DA,I4PG=OMP I IOMPI
PRINT 41. CAMPG
PRINT 4Z

C RE4D 1t.ISVINPTllI.I=l,MI
READ 4. IGAf.l41 n,z=-l:.lOOJ
DO 5551 1=1,.'1
L=2* I

5551 5VINPTl II =GAM4ILI
DO 105 I=l,M
SVINPTI rl=SVIMPT'~l*SCLF'

105 CONT INUE
DO 150 I"l,:~

6.MR T{ I I=SVtNPTt U
150 CONTINUE

PRINT 30
PRINT 36
PRINT 37.IIFREQYIII.5VINPTIIII,I=l,MI
PRINT 39
CAL.L PPt.T (SVINPT (11 ,M.l.PLTMX,OI

G
C GENERHE THE R4NOO/ot ~G1.E

C
J.=lOOOOOOO L

. 00 2053. I .. 1.....
CALL. ~AN360 IJ.JIJ,IU
RANDFI I I .. Z.OO*3.14159*R
J"JO

2Q':3 CONT lNUE
·C
C :ACH ITERATION STARTS HERE
C.

I TER=l
COEF=2.00/SEP

2000 CON r INUE
PRINT. 35. ITER

C
C INITIALIZE 5.=. RECORD
C
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..

DO 5000 [:: 1.N
~CCI 11::0.00

50eo CONTINUE,
C
C GENER~TE THE R4NDOM ~A.VE

C
DO 2057 I :l.N
r::iI-i)·OT
C=O·.
DO 2059 II::l,M
WWoaOMEGA( II I.r
~NGLE=I;W.. "~NDF( l I I
;; IN1 =5l N( 4NGl.EJ
C=C .. SIN1*4MPl TIll I

2Q 59 CONT INUE
4CCI I I=CtoACC III

20'37 CONT IHUE
C
C GENERHE THE 5. E. RECORLl
C

40=1.0/T3UILO**2
DO 550 l::l,N
T=D·T .... t I-II
[FII-NBUIOI 60,60.70

60 ~"'UlT=·AC*T**2

GO Te 550
70 IFII-NOEC4YI 3Q,80,90
80 ~ ."Ul r::1 .J

GO fa 550.
90 414Ul T:EXP (lTDEC4Y-T 1*~.AMOA.1

S50 ~CCI U=ACC( [I.A.MULT
DO 5001 I =1 , N

5001 ~CCIII=ACC(II:4'COEF

CALL ? A/'IAX I Ace III .4CCMX. <H IME.r A,.OT ,N I
CALL P5QIL (ACClll.A5I.OJ,NI

C
C
C

PfHNCI?-AL ?A.RT OF THE' S.E: RECORD

K=·l
DO 201b I =N6U ro',n
~CP(Kl=~CClI I
[F I K. EQ.•NPE.I GO TO 2021
1<;:l<;fo1

20tb CONTINUE
C
C CALCULHE OuTPUT' RESPONSe SPECTRUM
C

2021 GETA=CAMPG
. PR [NT 29. GEH

DO 2001 l:: 1 , :-I
°RDO=2.00*3.14159/C1EGAlII
CALL PRS?A IACClll.RESPlll.PRDO.GETA.;;O,N.OTI
50:ABSl 50) -
PSV=SD*CMEG4.1! I
5VOUT?1 I) =P5V

2001 ceNT lNUE
C
C em-,pARE f NPUT :: OUTPur VELOCITY 5PECTRA
C

PRIN!' 32
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DO 2003 [l =1,;'1
PRINT 33,FREQYI I[I,SV[NPT([[1,5VOUTPI [11,11

2003 C:J~T INUl:
IF I IPLT .NE.ll GO TO 2005
C~LL ?PlT ISVCUTP,M,l,PLTMX,OI

2005 CONTINUE
IF IITER.GE.NITRI GO TO 302

C
C FOURIER SPECTRUM
C

CALL PFTXT IACPll),~FOURlll.0T,DW,NPEI

C PRINT 2~

C PRINT 31'(II,C"lEGA([I,AFOURlllltl=I,,'4)
C
C NEXT ITERATION
C

FACT=[
DO 2014 1"1,'4
SIO=SVOUrp(II/SV[~PTI[1

5IO=I.00/SIO '
SIC=SIO*FACr
-~MPlf(I I=SI:::*AFCURl ItU

2J"14 CONT INUE
ITER=ITERtl
GO TO 2000

C
C NEXT OAMP[NG RAT 10
C

302 CCtHINUE
[ a,'1p =ID MP"'I
I F I IDMP .GT .31 GO TO !tOOL
~AMPG=DMP I IOMPI
PRINT 401, CA,"lPG
PRINT !t2
[ TER =1

C READ 4, ISVINPTl II,I=I,MI
READ 4, (~AMA{ lJ ,[=1,1001
DO 5552 I =I"It
L=2·!

5552 SV[NPTl [) =GAMAl!.1
DO ,,002 I ~ 1, M

40e2 SV[NPTlII=5VINPTlII*SCLF
PRINr 36
PRINT B
PR[N T 3 7, ( lFR EQ YI I I ,5 \I I NP Tl U I , I =1. M1
PPINT 39
CALL PPLT (SVINPTllhM.I,PlTMX,OI
GO ro 2021

4001 CCNTINUE
C
C OUTPUT THE ~ESULTS

C
IF lIPUNCH.NE.II GO TO 360
PUNCH "I1,OT,TT,N
PUNCH 12, (ACen I ,[=1,,'11

3eO PR[NT I5,ACC~X,ATIME,I~,ASI

PRINT 24
P RI NT 23. l l I , AC C( I I I, 1=1, NI
C~ll ?PU l ~C:lll ,N, 1.ACC~~X,II

4,"00 CONT It-IUE
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c
c

1 FORMAT(3FIO.51
2 FORMATtlHl,5X,l4HCONTRCL DATA :.1.

15X.4-1H NO. OF POINTS FO~ 5.E. RECORD : ,[10
15X,41H DURATION QF THE S.E. RE:CCRD •••••••••••• : ,FIO.5,
15X,41H PIJI~:r TO aUILD :.£lO,
15X,41H TIME TO BUILD •••••••••••••••••••••••••• : .FIO.5.
15X.41H POINT ra DECA'I' ••••••••,••••••••••••••••• : ,flO.
15X,41H TI~E Te DECAy •••••••••••••••••••••••••• : .FIO.5.
15X. 41 H OT FeR 5.E. '<ECQRO •.••••••••••••••••••••: ,FLO .5.
15X,ltlH P=ilIGD OF THE 5.E••••• 15ECI ••••••••••••:,FIO.5,
15X.41H FREQUENCf JF THE ~.<:. (CPSI : ,FIO.5.
l5X,4lH FREIJUENCY CF THE 5.E. (iUD/SEC) : .FIO.51

3 FORMAT( al 101
4 FORMAT[ 5( 1X.F8.311
5 FORMAT (

5X.41H'lO. CF FRE;)U~NCtE5 TO BE COMPUTE':> ••••.•• : .tto.
15X.4IH F~E'JUENCY (NCRE.\MENT •• (RAO/5ECl •••••••• : .FLO.5,
ISX.41H FREQUENCY I!llCRE:AMENT •• IC?51 •••••••••••• :.FIO.S.
15X,4lH PUNCH t:Jur CASEtI •••• llltl ,;o ••• o•••••• :,I10 f

1-5X.41H PlCTTING C~SE o •• ct ••• :,IlJ,
15X.41H' 5CALAR FACTOR ••••••••••••••••••••••••• : ,F10.51

11 FORMATl25H ACCELERHIDN rlME [NT. =F5.3,4X,tlHT'JTAL Tli'lE=F5.1rl3HT
lOTAL NUMBEl'=!41 .

12 FCRMArtBFIC.41
15 FORMAT 1IIISX.22HS(MUl~rED QUAKE DAT4 :,1,

15X,41H ;~~x. V~LUE •••••• ~ •• ·••••••••• •• Cl~ ••••••• : ,Fio.s,
15X.4LH TOlE 'ilT f!1E PEAK •••••••.••••••••••••••.•• :,F10.5,
ISX.4IH POINT AT THE PEAK •••••••••••••••••••••• :,ILO.
15X,41H ·~O. ROOT OF THE iQ. I'liEGRAL ••••••••••• :.FIO.SI

16 FORMATllOFlO.51
17 FGRMilTllOFIC.51
1a FORMAT( 10F10.5)
19 FORMArIF1.3,4IF12.~.2F9.4)1

23 FORMAT ISII5,Fl1.411
2~ FORMAT 111115X,30H 5(~ULATED EARTHQUAKE RECORD :,11.

9X.6H~OI~i:,19X.6HTIME:.7X,13HACCELERATION:.1111

Z7 FGRMArc Fa .2.3HHZ., IX.lOFIO. 51
29 FORMH (.llI/5X.37HQUTPUT VEI-DCrTY 5PECTRUM FOR DAMPlNG: .F5.3.11
29 FORMAT 111l15X.19HFOURIER 5PECTRUt-l:,/ n
~l FORM4T 14115,2X,'I',F6.2,·l·,2X,F10.3)1
32 FORMAT 111115X,17HTl\BLE TO CC~PARE:,

12BX.27HS PEe r R U ~ SV,
loX,9HFIlEQUENCY. 20X. SHINPur, 9X,6HOUTPUTIII

33 FORMl\T (SX.F10.S.LOX.Z(5X.FIO.4),tOX.I5)
34 FORMUIIII.19HINTEN5lTY 'JF i.E. :.F10.51,
35 FJRMATIIHl,1130X'.llHlfEPATION :.IS';/5x,IO('='I.//l
36 FORMAT (1115x.2~HrNFur VELCCITY 5PECTRU~:,111

37 FCRMAT(4lZX.F9.4.3X,F12.411
33 FQRMHI4( 5X,5HFl'EQ.,4X.llH5V-5PECTRUMI/I)
39 FORMaT(/115X,25HPLor OF INPUT SV-5PECTRUM,//)
41 FCRMAfllHl,24(!l,5x.15HD4MPING RUle :.F5.3,1I5X,ZO(·*'11
42 FORMATllHU

c
C

S TlJP
END

C " ..
C ******************.************.*******************

Reproduced from
best available copy.
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c • •
C • PRCGRAM " S?17l " *
C * •
C * fHlS [5 fO C~MPUTE CRITICAL EXC lurIONS '"
C * OF AN uNDAMPED NONLINEAR 'MOOF SYSTEM '"
C * I N FORM OF A Sf ICK MODEL. *
C * •
C '" NDOF :NO. OF O.C.f. OF THE SYSTEM *
C * ~E :NO. tJF BASIS EXCrrArlONS •
C * [SOIL :fYPEOFSOILSITE *
C * NP :NO. OF POINTS FOR AN~l'SIS •
C * fOUR : OURU[ON FOR ANALYSI S '"
C '" RFMX : Yl ELO FORCE *
C * I PUNCH :t THEN LINEAR AND NONlINE~R CRIT. *
C * EXCIUHONS ARE, PUNCHED OUT. '"
C * *
C * av A.J.PHIllPPACOPOULOS. '"

C '" *C •••********.**.***.******* **.********
C * •

Ol:-1ENSlON XGI701,lOI,~ESP(701,101,HI701,2I,HSI701,21

D[I-1ENS [ON Gl 10 tl 01, S11101, AC I 10 1 ,,,-0 I 101, BYII 01 ,L G1101 ,,'1G ( 101
DIMENSION SMIZ,21,5K(Z.ZI,SKOIZ,ZI,SKEI2,2Ir5SIZ,2I,AlPHA(10,21

,G~ 12,21. GO (2.2/ • EI Gil 121. PF (2/ , SHP ( 2/ ,S MM( 21 ,
LGRI21.~GR(2I,PP(21

c
C INPU T DAU
C

5C1.F=32.111+
'H TER=3
READ lOO,NDOF,NE.ISOlL,NP,IPUNCH
READ 101,TDUR.RF~X

READ 102, (I SM( I ,J I ,J=l ,NDOFI. I=I,NOOF J
RHO 102t!ISKII,JI',J::1.NOOF1,[=1,,'lDCFI

C
C
C

c
C
C

PRINT DATA.

PRINT B
PRINT ~4

?R IN T 95, NCOF ,NE. 15011. ,NP ,TOUR .RFMX
?RINT 96
DO 41 l=l,NDGF
PRINT 99,ISM(I,JI,J=1,NOOF1,

41 CONTINUE
PR[NT 99 •
DO 43, -I a1 ,NDOF
PRINT =j9, (SK( I, J I ,Jal ,NOOFI

43 CONT INUE

[NPUT THE.. 64S[S EXCIfUIGNS

C
C

IF
IF
IF
IF
[ F
IF

(!SOIL.EO.ll
(ISO[L .:;Q.2I,
t ISOll..EQ.31
I ISorl.EO.l)
I [SGIL.::O.21
IISOIL.EO.3)

I STRF=O
[STRF=20
I STRF=40
IRE=4
11<==1
I RE=4

PR [NT 103 '
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C
C
C

C
C
C

C
C
C

c
C
C

C
C

C
C
C

DC 1 IF:1,NE ­
IF 1LE= [ Sf RF+l.F
CALL PINPUT IXGll,IFI,TDUR.SCLF,N?,lFILE.OT,

1 N5P. TS? ,sII. .XI-U, n.,x, IMXI
PRINT 10~.LF,IFILE,TiP,NSP,SIL.X~X.T~X.IMX

S 1( IFI=SlL
1 CONTINUE

NORMAL I ZE THE BA 51 i crF EAR THQUAKES

:; IRE-51 nREI
DO 2 Jal,NE
IF (J.EQ.IREI GO TO 2
SIJ .. 5IREI SI (J I
iJO 3 I:L,N?
XGII.JI-XGII,JI*51J

3 CaNT INUE
2 CONT INUE

COMPUTE ~ATR1X G

00 ~ 1=1. NE
00 5 J=1,NE
CALL PCP IXG-ll.ll,XGll,J),GII-,J),NP,DTI
IF II.NE.JI GIJ,IlaGll,JI

5 CONTINUE
4 CaNT I.NUE
C~ll MINV IG,NE.OG,LG.MGI
PRINT L05,OT

ASSUMED VALUES FeR iKO

00 (, I: 1. NDCF
DO (, J-1,NDOF
5KO I I , J 1-0.0

6 CONTINUE

ITERATION PRCCEDURE

ID=I.
7 CONT [NUE

DO '3 [=1,NDOF
DO 3 J=1,NDOF
SKEI [,J)=SK{{.J)'~SKQ'I,J)

a CONTINUE
PRINT 106 .. 10
PR (NT 109
DO 46 -I-1,NOCF
PRINT lOB,liKE! I,JI,J=l,NDCFI

46 CONT {NUE

MODAL SHAPES ~ FREQUENCIES

PRINT 1'10
0070 [=I.NOCF
DO 71 J=l,NOOF
GRII tJl=:;I'{ (,JI
:;~ { I • J I - 5 i< E' ( [ ,J I
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c
c
c

C
C
C

71. CONTINUE
70 CaNT rNUE

C"-I.I. :-lRGOT (NOCF.GR.GQ.EIGV,S51
00511"1.NOCF
EV=E IGV ( I I
EV=1 .00 II: v
EV= SOR T ( EV)
EIGV(II=EV

51 CONT HIllE
DO 47 l=l.NOOF
P!lINT 125,I.EIGV( I)
PR[NT 111.(SS(J.[I.J=1.NOOFI

47 CONT INUE

P~RT[C[p~rION F~CTORS

DC 53 L:l.NOCF
DO 54 I=l,NOOF
SHP( II=S5U,L1

54 ceNT INUE
FlO=O .0
00 55 K=1,NOQF
HO:O.O
DC 56 J:l.NOOF
HC=HQ+SM ( K,J I

56· ceNT (NUE
RC=RQ+-HO*SHP( KI

S-S caNT [NUE
PFIll "-RO

00=0.0
DC 57 M=1,NOCF
lC=O .0
DO 59 JMs 1.:-l0CF
zOala+SM (I". JM I*SHP tJI")

58 CONT INUE
00=00 +-le* SHP (M)

57 CONTINUE
5,,",'" ( LI =00·

•

MODol1. UNIT IMPULSE RE5PQNSES

~Ml\a SMI4H.)
~FR=EIGV( 1I
I\O~=O.OO

DO 5-3 {J.=l.NP
H( U•• 1.1 =?FiLl *H I IL, Ll

59 CGNTrNUE
53 CONTINUE

PR IN r 122
PRINT 12~.ISMM(L).I=l,NDOFI

PRINT 12~

PRINT 123, (PFlll. [=l,NOOF J

C
C
C

c
C
C

EQUIVALENT SYSTEM

DO 65 I~=I.NDCF

DC 66 I=l,NDCF

:UNIT IMPULSE RESPONSES
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SHP Cr 1= S5 CL'1o f I
66 CDNT!NUE

00 67 K=1, ,NP
Q=O.O
00 63 J-=1.NOOF
C=Q+SHP«JI*HIK,~~

tiS- CaNT INue
HSIK.IMI=C

67 CONTINUE
65 CONTINUE.

DO 33 J=1,.NOOF
DO }4 [=1,NP

34 H« I • J J=0 • 0
33 CONT tNUE

C
C
C

EQUIV~LENT SYSTEM :INqIVIDU~L RESPCNSES

11 CONT INUE

Of:! 12. J:1 • NE
DO 73 (:[,NP
RESPII,JI=C.O

73 CaNT l~,fUE

72 eOl'ir INUE

DO 17 II=l,NDCF
PRINT 113.rr
?RtN r 114
DC 13 J=l,rtE .
C~LL PTDTR (XGl1.JI.Hsn.tthRESP(1,JI,v1'l, r~d\hOT,:'iPI

PRtNT 115,J,fM.TM,[M
18 CONTINUE

:CRtTICAL RESPCNSES

:CRITICAL EXCIT'~ION5

EQU[V~LENT SvSTEM

C~lL PCRrL I RES? ,10, ~C, BY',AO. vCR, TCR, [CR, SI RE ,DT, NP ,ME I
DO 20 K=[,NP
Vc=o.o
DO 21 1:1. ,NE

21 VC-=VC+4Clll.RESPIK,ll
HIK,rtl=YC

20 CONT INUE
CALL ilAMAX I HI r,II 1, AM, Tlolo, IM.D r ,NP I
PRIN r 110
?RHn 117,llf,ACCIlld=L.NEJ
PRINT 113,AM.r~.!M

DO 701 KK=1,NE
701 o,l?H ~ I KI(.-[ {I =4C. (I(K I

C
C
C

c
c
C

C

C

DO 36. J=1,NOOF
DO 37 1=1 ,N?

.37 HSI 1, J 1=1)'.0
36 CONT INUE

ao 704 KF=l,NDCF
DC 702 K= i,NP .
xc=o.o '
00 703 J= l,NE

703 xC~XC~~L?HAIJ,KFI*XGIK,J)
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HS( K ,KF 1= xC
702 CJNT [NUE
704 CONT [NUE

C
C PUNCH OUT THE LlNEo1R CloSE
C

IF lIO.NE.11 ~O TO 706
[F I [PUNCH. NE.ll GO TO 706
DO' 707 J=1.NDGF
PUNCH 139,J
PUNCH 139,(HSII.JI,-I:-l.NPI

707 CONT INUE
70b CONTINUE

310

330

340

350
15
74

C
C
C

C

C
C
C

C
C
C

c

[F I IO • .:ir.NtrERI GO TO' 700

ELASTIC ~E5TORING FORCES

DO 29 l=l.NOCF
DO 29 L:l.N?
l=O.O
DO 30 J=l.NDCF

30 Z=Z"SKI [.JI*H1L.JI
PESPlL.1}=Z

29 CONTINUE
C~lL Po1Mo1)( t RE5PU.I' .EO, fE, IE.OT.NP I.
PRINT 143.[.EO

28 CONTINUE

NON LINEo1R FUNCTIONS

RFLM=RF!4l(
00 7 .. I=L.NOOF
DO 75 J=l.NP
R l=RES? t J,I I
IF tABStR1'.GT.RFL~1 GO TO 310
RESP'IJ. I I =0.0
GO TO 15
CONTINUE
IF (Rli 330.340.350
RES? I J. Il·=-RI-RFLM
GO TO 75
RESP (J.I I =0.0
GO TO 75 ,.-
RESP'IJ. II =-Rl+RF'-M
COfULNUE
CONTINUE

CCMPUTUICN GF\4ArRIX 014

DO 210 [=l,NDOP
DO 76 J=l.NDOF

16 GRII.JI=O.O
210 CONT [NUE

DO 77 [= 1 • NDe F
DO 79 J=l,NOOF
CALL PCP IHll.I~.H(l.JI~GR(I.JI.NP,DTI

IF II.NE.JI ';RIJtll"GRI[,JI
78 C:::NT INUE
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c
C
c

c

77 CONT lNUE
Ch.t.1.. '-1INV (GR. NDClF, OGR, LGR',MGR I·
00 ZOO IK:l.NDOF
oOZOl r=l,NOOF.
Ch.LL PCP 1~ESP(l ,[K),H(l. II .?P tr I,NP,OTl

201 CONT INUE
DO 202 l=r,NOCF

·lZ=O .0
DO Z03 J=-l,NOOF
lZ=llfoGR( I,JI*PP(JI

20.3 CONT rNUE
SKO( lK. I) =ll

202 CONT INUE
2eo CONTINUE

PP1NT. DERIVED D~MP1NG :. S.TlFFNESS M~TR[CES

PRINT 135
DO 211 I:l,I~OOF

PRINT 131.1
PRINT 13Zol5KCl I,JI,J=I,NOOPI

211 CONT INUE

{O={D+l
GO TO 1

c
C PRINT RESULTS OF rHE LATEST ITeR4rICN
c

7COCCNT INUE
PRWT 93
00 709 J=l,NOCF ~

PRINT 113,J
PRlN r 141
DO 710 1= 1 ,N?
r=(I-Ll*OT
PRINT 142 ,1.T.HS<I".J) ~H<I'.JI

710 CONTINUE
709 CONT INUE

r F ( IPUNC.H.NE.11 GO TO 715
DO 11 0 J= I.NDCF
PUNCH 140,J
PUNCH 139.(H5lI,J),I=t,NPI

71b CONTINUE .
715 CONTINUE·

93 FORMAT (IHi./1
94 FQR~ATI3X.11H{NPUT OATA:.III)
95 FQRMATI/3.X.40HNC •. OF G.a.F. OF THE' SySTEM :, rIO.

13X,40HNO. CF 3A5I5 EARTHQUAKES •••.•••••••••••• :,110,
/3 X.40H5CIL C::JNO ITlON CASE•••••••••••••••••••• :, 110,
13X.40HNu. GF ~CINT5 FOR ~N4LY5rs •••••••••••••:,IIO,
13X,40HOURArION Of' ~NALYSI5 ••••••••••••••••••• :,FIO.5,
13X.40HYIELD FORCE •••••••••••••••••••••••••••• :FtO.5111

g6 FORM4Tl/3X.I1HMAS5 MATRIX./I
::;7 FORMATlI3X.14HDAMPING MArrUX,1l
~8 FCRM~TI/3X,loHSTIFFNE5iM4T~rx,/)

99 FGRMH{ lOX, 71"10 .3l
100 FORMAT! 31 lO}
101 Fr;RMATI8FI0.51
1C2 FQRMATC3F10.3l
103 FC~M4T(/3X,17h5A5rs =~RrHQUAKE5,. ,
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C
,C

C
C

117X,3HNO.6X,4HFtL=,6X,9HST~RT5 ,lX,~HtNTEN5ITV,6X,
4HM4X.,5X,7HAT TIME/I

104 FORMATISX,IS,IlO,FIO.S.'('.I3,11'.3FIO.S,'1 ',13,' 1'1
105 FORMATI/1l3Xrl7HT[.'''E INCRE~MENr :,F3.5,2X,3HSEC,fll
lOb FORM<\T1 IH 1.

113X.25(, '.' I ./3X.17H* ITER4TlON C~SE, IS ,3H *,
13X, 25 I '.' IIIl

107 FORMAf1l3X,4Q.HEQ. SYSTE~ : DAMPING- MATRIX ,II
106 FORM~r{lOX.7FIO.31

1C9 FORM AT I 13 X,40HEQ._ S'tSTEM : STtFFNES S HATR IX , II
110 FCRMU(/3X,40HMGDAL'SHAPES & FREIJ. BEFORE NCRM ,/11
III FORM~T 115X,5HSHAPE,6FIO,4/1
lIZ FORMATI/3X,40HMOOAL SHAPES & FREQ. AFTER NORM ,III
113 FORMATIII13X,40HRESULTS FOR OUTPUT O.O.F. C~SE ,15,

• 113X.4SI'*'I.111
114 FORMAT(/3X.2~HINOIVIDUAL.RESPONSES.

• 1I10X.SHOUAKE.6X,4HMAX.IX,13HU TIME-peINT./1
lIS FORMU(S.<, [10 .2FI0.5, I I', Itt,' 1'1
lIb FORMATl/3X,40HCCEFFICIENTS OF THE eRIT. EXCIT ,II
117 FORMATl5X.tlO.F10.51
113 FORMATI/3X,40HMAX. OF THE CRITICAL RESPCNSE

• 13X,4HMAX:,FIO.S,3X,2HT=,FI0.5,3X.6HPCINT=,ISI
Ll9 FOl<MATII3X,40HCFlTlCA\. RESP. & VEl.. REC:ROS II
12C FORM4T(/3X,14HFOR O.O·.F. NO:.I5,1,

16X,4HTIME,3X,17HCRITICAL RE5PQNSE,3X.
• 1,7HCR I TIe AI. VELD CI TYlI

121 FCRMAT(3X,F7.3.2F2C.51
122. FQRMAT1I3XtlZHMCD~l MASSE~'/I
123 FORMATl8FI0.51
124 FDRM~T(/3x.40HP~RTICIP~TIONF~CTQRS ,II
125 FORM ATt/3 X,5HMaOE:. 13 ,4)(, 5HFREQ: ,flO. 4t3X, 7HRAD/S EC" I
126 FORMAT 111/3X.14HNO. OF a.O,F :.I5,/3Xrl91'*,'I.11l
127 FORMAT( 15 X.5HPO INT, I6X.4Hrr ....E ,UX ,9HCR. RESP.,

3'X,12HELAST1C R.F••5X.1SHNON L [NEAR. FUN. ,4X.
i. 6HEI.A STOPLA 5. R.F,/ II '

126 FORMAT l3X.IT,5l5X.FL5.411
129 FORM4,T 1I/3X.30HMAX. ELASTIC RESTORING FORCE: ,FlO.411
I~O FORMATtIIJ3X.;HMATRIX .11,:./1
131 FORMATt/3 x, 5HROW : tI5 ,/3X, 10 I' .,." Ill· .
132 FORMAn 10FIO.41,
133 FORMATtI13X.39HPLor OF ELASTOPLASTIC ReSTORING FORCE :,1/1
134 FORMATtI13X.28HPlOT JF NONLINEAR FUNCTION: ,III
135 FORM~rII13x.26HOERIVE~Sr[FFNESS MATRIX :,1/1
136 FORMATlIl3X.24HDERlVED DAMPlNG ,..,ArRIX :,/11
137 FORMAT (113X,30HMAX •.ELASTOPl. RESTOR. FORCE :.FIO.4/f
138 FCRM~T(5X.Z9HlINEARCRIT. EXCIT. FOR OOF :,151
139 FORMArll0F3.31
140 FORIol4TlSX.29HNONLIN CRlT.EXCIT •. FeR OOF :,151
141 FCRMAfISX,5HPCINf,6X.4HTIME,aX,12HCRIT, EXCIT .. "gX,12HCRIT. RESP ••

III
142 FORMATl II0.FlO.4.2F20.41
143 ;:ORMATl/3X,5HOOF :,I3,3X,21HM~X.. RESTORING FORCE':,FIO ..3.11

HOP
END

5U5RbUTINE ~IGI~N IDATA,RE5P,VELT,RFCRCE,tCRTL,YC~VL,B,G,Br,

~L F ~, ? :~ AX , :l.L PH :l. , CC , R :=, 'I'M , r i , N'( , 5 5r1 , SSC , 5 5K .,
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2 SCI, SKI ,SCC ,SKe .NLCASE,N4,Nf,DT)
c .. c
ccccccceeeecceecccceeccceecccceeecccecccccccccccecccecccccccceeecccccc
c c
C THI S SUBROU TINE COMPU TES THE V&.LVES OF SCQ ~ SKO C
C ACCORDING TO THE EQUIVALENT LlNEARlZ.a.TION C::::NCEPT.- c
C IT IS TO BE USED FOR C~NSTRucrlaN OF CRITICAL SPECTR&..- C
C C
C SUBROUTINES USE[l. ARE : PRSPA PCRTl PFNL PCP PETOE MINV C
e c
c NLellSE : TYPE OF NONl [NE&.R [Tf.. C
C DAT&.tI,JJ :[NPUT eXCITATIONS. C
c RESP(I,JI :OUTPUT RESPGNSES. e
e VaTII,J) :OUTPUT VE~GcrTIES. C
C RFORCEI [} :NON-LINEllR FUNCTION AiSOCIl\TED WITH THE SYSTEM. C
C YCRTl' () :Cl<IrIC.\l RESPONSE. C
C R~AX [ [ I :/oIAX. RE SPCN:it: S DUE TO EXC [U T [ONS. C
C cet U :VECTGR ASSOCIATED .. rrH THE NONLINEAR! TY. C
C RE :REFERENCE [NTEN5rTV. e
C 'l'M,TV.NY :,..,4)(. VALUES OF THE CRITICAL RESP'ONSE. C
C C
Cccccccccecccccccceccccccccccccccccccceeceecceececcccecceccccceccccccc
c c
c

e

O[~ENSION

D PIE 'IS ION
DIMeNSION
DIio1ENHON

DArAINA.NEI,RESPINA,NEI,VELTINA,NEI
RFCRCE IN4I,YCRTllN4) .YCRVL INA) -
Bl NE.N El • Gl NE.NE) • ~L?H.u NE I'. ~I.F~1 NE I ,B y INE hRM4Xl NE)

·S(2,Z) ,eCI5) ,~S(ZI,,'1S(21 ,TNLI21.?(ZI

WW=5KS/514
WN=SQRTCWW)
PEROaZ.OO*3.L~159/WN

WFlh.l.OOI PERD
GEH...SC SII 2. OO*\o;N!I>Sl-n

c

c

c
e

S1"lOSSM
ie=ssc
51<"551<

SC5=SC":;C I
SI<S=SK"Si<!

RESPONSES
DO Z J:al.NE
CALL :>RSP~

YM4XaABS( V~AX f
RMAX{ JJ=Y ,..AX

2- CONTINUE
c
C VELOCITIES VEI.T([.JI,I=l,NA,J=l,NE
C

NU:NA-l
DO 5 J=-l.NE

5 VEl. TI N4. ,.J Jo=o .00
DC 4 J=lr NE
DO 3 I=l.NAt
va r I I, J) ,,( RE·SP I I H.J l-RE SP C[,J II/Of

3 CONT INUE
4 ceNT INUE

c
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C.:::EFFICIENH OF THE CRntc.AL EXCITATION ALPHAII) .I=l.NEC
C

CALL PCRTI..
1

Y/,·YCRL
TV= T·YCR
NY={YCR

(RESP,a.ALPHA.6Y.ALFA.YCRL.TYCR,IYCR.
RE,DT.NA.NEI

C
C
C

CRITrCAL. ~ESPONSe YCRTLILI.I=l,NA

DO 6 K=l.NA
1'C=O .• OO
DO 7 I=l,NE

7 YC=YC.ALPHALII*RES?IK.II
iCRT!..(K I=YC

6 CONT[NUE
CCISI='!'M

c
C CRIT[CA~ VELCerTY YCRVL(II.I=l,NA
C

DO 19 [= 1 ,NA 1
YCRVLIII=(YCRTLII+ll-VCRTLIIII/OT

19 CONTrNUE
vCRVL1NAI=O.OO

NON-LINE~R FUNCTION RFORC.EfII,[=l.NA

on g [=l.NE
DC 9 J=l,NE
CALL PCP

g CONTINUE
9 CCNTINUE

DO L0 I =L ,NE .
00 11 J =L .illE
CALL PC?

11 CONT INUE
10 CONTINUE

C
C
C

C

C

c

C

CALL

CALL

CA.LL

PFNl.

?ETDE'

PETOE

I VEL T( 1. I.l,RESPI l,J I,G' r. JI,NA. Dr I

I G,.ALPHA. A12.f*E I .
C

eo 12 [=L.Ne
00 13 1=1 ,NE
CALl. PC?

13 CONT [NUl:
12 cm-IT [NUE

(VELTll.Ll.VELTI l,JhGI hJI ,NA. OTI

DD14I=1.NE
C.!.LL PCP
CAll. PCP

L4 CONTINUE

C

C

C

. CALL PETDE I G. ALPHA.• A22.NEJ

I RFORCEl11 • RESP 11 , I I, ::;1 1.1) ,NA, Of I
( RF-JP. CE I 11 • VEL r I 1", I I ,G( ( .2) • NA. oT I

P1=0.00
0015.I=1,NE
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P1=P1UI.?Ht.( ll*GI 1.ul
15 CONTINUE

c

{S.2.50.LS.MSI

c

c

c
C
C

c
c

P2=0.00
DO 16 r=l.NE
?2=P2"4LPH~t1 I*GI 1,21'

16 COl1lINUE

Sll,1}=6011'
511,21=0\12
SC2 .. 11=SI1.21
512.21=422
C60I.L 'IINV

PIll:?l
P(21=P2

VALUES OF 5C [O.SKID

DO 17 [=1.2
TN!.! tl=O.OO
00 19 JaL.2
TNllII=TNLL£H5<C.JI*PIJI

19 cmu INUE
17 CONTINUE

5Ke= TN&. (11
seo= TNI. ! 2 1

c
c ' •

ReTURN
END

e
e

SUBROUTINE ~THEN~ !X,1"y,Fteet5S5~.S55C,55SKt

1 sea.5KCI. se r t 51<. I. r'",rCASE ,N.". uTI
c,. . c
ecceeccecccecccecccccccceeccccccceeceeecececceececccececccee
c c
e FeR ~ GIVEN SET :5CO.SKO, TH[5 SUBROUTINE e

• C COMPUTes, A NEW ONE : 5CON.SKON ,ACCORDING C
C TG THE EQUrVAl.ENT I..lNE4RIzurON CCNCEPT.- C

C I e
C C
e 5UBROUTIN'ES CALlED :: PRSP~.,PFNL. ,PCP,.MINV C
C c
cccceecccccecececcccecccceeececccccecceectccccecccccceecccee
c c

c

c

DIMENSiON
DI1olENSION
DIMENSION
DIMENSION

5M=5 SSM
sc=s sse
SK=S5SK

5C.5"5c~se I
S1<5= S/H 51< I

Xlll.Hlll.flll.'fY<ll.F{11
S5i2.21,L5(ZI.M5IZ1
?P ( 2 I • rNL r2) .
eet 5 I
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C
Wit.. SI< SI 5i'" .
•ml=SORTl\oiWI
PR01=2.00*3.14159/WNl
GET.'. L=i>Ci> I l2 .OO*SM*kNU

c

c

CAl.L PR SPA
"(H=AaSI Y~AX)

1 XIII. YI 1 I ,PROl.GET At. YMAX. NA. 0 Tl

c

C

C

IUl=NA-l
00 1 J=l,NAI
HI J I=t "(I HI J-f I J) I lor
CONT lNUS
'fYINAI=O.OO
CCI·51="(/ot

CALL Pf~L IFIll.Ylll.YYlll,CClll.ICASE,NAI

CALL PCP IYYlll,fYIlI,4.11,NA,:JTI
C4.LL PC? 1"(III.YIII.A22.NA.DTI
C4.LL PCP (YYIlI ,fill ,U~,NA,DTl"

5S11,U=,Ul
SSIl.21=~t.2

55 ( 2 ,11 =5 S11.21­
5512.21=4,22

C
CALL. PC? IFlll.YYIll,P1.NA.OTl
CALL PCP IFUJ.Y( lI,P2,NA,prl

C
?PI I J =1' 1
1'1'121=1'2

C
C4.LL M[~V lSS,2,DS.LS.MSI
DO 2 [=l,.l
fNL 1 [ 1"0.0
DO 2 J=l.Z
TNLI I1=TNL 1 U "5 Sit, JJ*PP {J J

2 CCNTlNUE
c

SCO= TNL! 1 J
SKO.. TNLl21

C
RETURN
END

C
C

SUBROUTINE B[TRV I~AT~.~PREV,N,NREMI

C SHUFFLE THE'DAT4. BY ~91T ~EVER54.L*~

C 0[~ENSION DArA!NPREV,N.NRS~1

C JIH4.1I1ol2REV,L31=04,fAUlolZtI3I, 4.LI. [l FRC~ 1 TO NPREV.
C 4.1.1. 12 FRCM 1 Te N IWHICH ~UST BE ~ POWER 'JF TWOI,.a.NO l.LL.
C ·[3 FROM 1 TO NRE,'l,WHERE (2REV-l [S THE BIT REVERSEGF [2-l.
C FOR EXAMPLE.• N = 32. [2-l = IOOl! AND I2REV-l = llCCl.

DIMENSlON D1.T~!lJ.

tPO:2
I Pi =I PO*N PREY
[P4=tPl*N
IP5=[P4*NRE"1
! !+REV= 1
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DC 60 14=ltlP4. [PI
IF (I4-14REVI 10.30.30

l~ [l1~U=[4+ IPI-IPO
'00 20 [1=I4.11~AX.[PO

DC 20 I5=Il.1P5.1P4
[5REV"'HRE~H5-14

TcMPR",OH Al [51
TEMPI=DATA[IS+11
DATACI51=CATACI5hEVI
DHA(I5+11=OAH(I5F:EV+II
DATAl [SREVI=TEMPR

20 DATAI[5REV+ll=rE~p[

30 IP2:IP4/2
40 IF C14REV-[P21 60.60;50
50 [4REV=14REV-IP2

IJ:2=1?2/2
IF I fP2-IPll 60.40,40

60 I4REV=14i;EVtoIP2
RETURN
END

c
c

SUBROUTINE COOL210ATA.NPREV,N,NRE~.ISIGNI

C FCUI'IER TRANSFORM OF L.ENGTH N Bl' THE COIJI..EY-TUKEY
C ALGGRITHM. BIT-REVERSED Te NORMAL ORDER.
C DI;.,ENS[ON DHAlN?REV,N,NRE:H '
C COMPLEX DATA
C Dt-TA Cll,J2.13I= SUi'll DA rAe [loIc,l3I*EXP( [SI::iN*2*P[* [* I I [2-11*
C lJ2-IJ/Nfll.SuMMED eVER [2=1 TO N FC~ ALI.. II FRaM I TO
C NPREV. J2 FRO~ 1 TO N lNO [3 FRO~ 1 TO NREM.N Musr BE A
C' POWEP 'JF TWO. FACTeR[NG it Bf.4S S4VES ABOUT 25 PERCENT-
C eVER FACTOf'!NG BY TIoOS.
C NorE-IT IS UNNECESS~RY TO REI'IRIrE THIS RCUr[NE [NTC CC,,,,Pl..EX

. C FORM sa LONG AS THE F8RTRAN CQMP[LE~ USED STnRES ~EAL ~ND

C I~"'GINARV PARTS IN 40JACENT STOR~GE LOCATIONS. [T MUsr ALSO
C srORE AR1Ul'S \<lITH THE F1Rsr SUBSCRIPT INCREA5IN::; F~STEST.·

CW-1ENSIC1"t' OHAl II
HiO? I =6.2 53I3530n*FLJHI IS IGNI
[PO=2 '
[?l=[PO*NPREV
IP4=[Pl*f14
[P5=[P4*NREM
IP2=IPI
rF{N-ll 150.150·. 5

5 NPAR T=N
10 IF(NPART-2150,30,20
20 NPART=NPART/~

GO TO 10
C DO A FOURIER TRANSFQR~ OF LENGTH Twa

30 I?3: [P2*2
DO 40 [1= l,1Pl. IPC
DO 40 IS=Il,I?5.I?3
JO=IS
Jl:JO+1PZ

.TEMPR=OHAiJlJ
TEMP I =0 oU 'A.(J 1 +1 I,
JArAIJ11=OATAIJOI-TEMPR
DArA(Jl~II=OArA(JO~l)-r~~PI
OATA:JC)=CAT~(JOl~r~~PR

40 JHA (J.J ~1) =iH fA (JO~ 11 ~f'="!PI
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C
50

C

60

10

C
30

90

100

he

120

130
140

150

GO TO 140
FOURIER TRANSFOR ..., OF LENGTH 4 (FROM 3rT RSVE~SE_O nRCERI
lP3=lPZ*4
THETa=TWOP lIFLOAT£ I P3/I?11
SINTH=SlN(THEr~/Z.)

W5TPR=-Z.*SlNTH*SlNTH
cos (rHET4 1=1. FeR ACCUR AC Y.
IoiSTP r"'51N (THErA I
WR=l.
141=0.
DO 130 I Z=1. [PZ-, [P 1
I F ( I Z-1 1 70. 10.60
.. ZR=\oiR*WR-\oIl*W[
,.. 21=2.*WP,·WI
1oI3R=IoZR*i<iR-WZ I* WI
w3I=w2R*w £."Z I*WR
[L"'AJ(=r2~ IPI-IPC
DO 120 ll=rZ,I1MAX.IPO
DO 120 [5= [1. IPS. IP3
JO=I5
J1=JOHPZ
JZ=J 1~[ P2
J3"'JZH P2
IFI 12-1 190.90.ao
APPLY THE PHASE SHIFT FACTORS
Tr:"lPR=OATAIJ11
OU l\ (J 11 =WZR* TEMPR-wZl*OAT 4JJ 1~l 1
OArA(Jl+ll=W2R*OATA(J1+LI+WZI*TEMPR
TEMPR=04T AIJ21
DATA(JZI=wR*TE"lPR-WI*DArArJZ+ll
Dtt. TIl IJ2 +t I =\oIR*OAT H j2+1 1+1011 *rE!'IPR
TEMPR=OU Al J3 I,
OATAIJ31-W3R*TEHPR-W3I*OATAfJ3+l1
OATAIJ3+l I=W3R*OATA'J3+11~W3I*rEMPR
TOR=OAT AI JCI +OA TA (J 11­
T0120ATA'JO+ll.OATtt.(JL+L1
TlR=OAUI JOI-OA TA(J Ll
Tll=CATA(JO~ll-DATA(Jl~ll

T2R=04T U J21+CA TA (JJ)
T2I ..04T~( J2~1 )'-OAU{J3i>1l­
T3R=OArA(J21-Q4rA{J31
T3I=o4rA(J2+l1-04r4(J3~1)

OAUfJO)= TOR+-T2R­
D4r~IJO.l)=rOI.T21

DAU(J21= TOR-fZR
DATAIJ2~l I=TOI-TZI
[F(rSrG~llQO.100.11Q

T3R=-T3R
DI=-r31
D<H4(Jll=TlR-T3l
D4rA(Jl+l)=r1r~r3R
DAUIJ31=TlR+T3(
DU4(J3H )=Tll-T3R
r E,,,\PR=wR
WR=\oI5TPR*TEMPR-~srPI*WI+-TEMPR

o'i 1=101 5TP.R*IH HoiST PI*-r E-1PR.w I
IP2=IP3
IF(IP3-(P4150.l50.150
RerURN
END
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SUBROUTINE FCUR2 IO.r4.N.NOrM,LSl~NI.

THli 1 S. FOR MUlI l-DH~EN510N.L FOUR IER rR.NSfORM. rlO~

MI1'-lV 33

?OUHS

\-

,
:N*O L to! 01 MENS LDN"'l rNPU T MArR I)( OF CQ,~PL!:X NUMB ER S;

LATER RESULT WILL BE STATED
:lENGTH Of CCLU~N IN OATA;INOICATING Tt~E CR FREQUENCY
:LENGTH Of ROw IN DATA;INDLCATING DIMENSICN QF F.T.
: -1 FORWARD TRANSFORM

H lNVERS/:; TRANSFCRM

IF ~OIM=l;

N
04raIJl=SUM· O.T.IKl*EXPI l*IS1GN*Z*3.14*K*J/NI

K-"l

DIMENSION DUA(ll. NUl
N TO T., 1
00 10 IO(M=l.NOlM
Nl0T=NTOT*NllDIMI
NREM=NTOr
DO 60 IOIM=l,NOIM
NREM=NREM/NIIDIM"
NPREIJ=IHOT/INI LDL:.. l*NRE:-I).
fIlCURlhl'{ I I DIM'
CALL B1TRV IDAiA.NPREV,NCU~R.NREMl

CALL COOlZ IDATA,NPREV.,NCURR.NRE~.ISIGNI

CONTINUE
RETURN
END

DATA

N
ND1M
I SIGN

10
20

60

40

c
C

c
C
G
C
C
C
C
C
C
C
C
C
C
C
C

c
c

C
C THLS PROGRAM IS FOR ~ITR1)( INVERSE
C A:N*N OI,.-IENSIONiU. [NPUr MUR[X. LUER RE?!.L\.CEO BY RE~UU

C N:L=NGTn OF COLUMN OF A
C O~ OETERMINls.NT CF RE5ULT
C L: N-O£MENSIGNAI.. ,o/ORKING VECTOR
C 1'1: N-D IMEN·SICNAL ',jORKING VECTOR
C

DIMENSiON All/.UB .I·ttn
c
C SEARCH FOR LARGEST E1..EMENT
C

D=.J..a
NK=-N
DO SO K:=l,N
NK=NK+N
LIKI=K
MIK)=K
KK=NKI-K
B IGA=A( KK)
DO 20 ;=j(,N
[ Z=N*I J-l )
')0 20 I=K.N
[J=IZ+[

10 [FIIoB5IBIGAI- ABSI~(IJI)1 l5.l0.20

MINV 340
·..,[NY 530
MriiV 540
MINV 550
11lNV 560
~[NV 570
"'[1'1'1 530
,'1[01'1 590
1'111'1'1 600
M£NV 610
M£NV 620
MI~V 630
'HNV 640
M1NV 650
I1PN 660
..,UN 670
.'HNV 690
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15 BIC4=41 IJ) MlNV 690
LlKI=I ,"lINV 100
~IKI =J. MINV 710

20 CONT INUE "'INV 720
C Mt!llV 730
C INTERCHe.NGE RC(o/5 M[NV 740
C MIN'J. 150

J=l.IK~ IoIINV 760
lFIJ-KI 35,35,25 M{NV 710

25 I< [=K-/II MINV 790
D030I=l,N ,'Hf>+V 190
KI=KI+N M[!'(IJ goa
HOLD=-o. I K II MINV 310
JI=KI-I(+J MI.'W gZO
e.IKlld.IJ{1 MINV g30

30 0. I J I I =HOLD IolI.NV 940
C :-I[NV 650
C IN TERC HANG!: CCLU:.1N5 IHNV 660'
C '1INV 370

35 (="tIKI 1oI{/IlV 990
IFll-K) 45,45,3a ,"lINV 990

38 JP=N*1 I-II MnoN 900
DO 40 J=I,N- MIIIIV 910
JK=NK+J- MINV 920
J I=JP+J ,'1{NV 930
HOLO-e.lJKI :H:w ;40
A(JKI=4IJII MON 950

40 4 {J I I =HOlD MHN -960
C MtNV 'HO
C DIVIDE COLUMN av MINUS PIVOT ( VALUE CF PIVOT EL.EMENT [S MINV 990
C CONro.tNEO IN BIGAI M{NV ;90
c MINVIOOO

45 IFlBlG41 48.46,48 M{NVIOIO
46 0=0.0 MINVI02C

RETURN :-lINVI030
48 DO 55 I=I,N MINVI040

[FlI-K) 50,55,50 MINVI050
50 IK=NK+-t MINVI060

H IKI"o.l IK 1/1-6 {GAl MlNV1070
55 CONTINUE MINVloeo

c MINVI0;O
c REDUCE 1AURIX l'!INVllOO
C M(NVIllO

DO 65 [ =I,N - :-lINV1l20
IK=NK+! MINVU30
HCLD=Al IK) /olINV1l40
IJ=I-N MI'lV1150
DC! 05 ,1=1,1'+ ,"H~Vl160

I J= {J+N :'1INV1110
IFI!-KI 6C,65,60 MI"lVl190

60 IFlJ-KI 62.65.1:>2 M[NV[l'lO
62 KJ= [J-I +K io4INV1200

~ ( I J I =HCL c*<\ ( KJ 1+ 4{ I J l :'lINVl2l0
65 CONTINUE :'lINVl2Z0

C 'lINV1230
C D{VIDE ROW BY PI va r ~INvt240

c MlNV12S0
KJ=K-/Ij '1[NVl260
JO 15 J=t,N ."1 ["IVI 270
KJ=KJ~N ..., Y'N I 290
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IF(J-KI 7C,75.70
70 <\(KJI=4CKJI/3IG4
75 CONTINUE

C
C PRaoue. T OF PIVOT 5
C

D:&0*8I .. A
C
C REPLACE PIVO T BY RECIPROCAL
C

ACKKI:a1.J/BIGA
90 CaNT INUE

e
c F.INI\L ROW AND CCLU,'-4N lNTERCH4NGE
C

K=N
100 K=(K-ll

IFIKI 150,150,105
105 I=UKI

£FII-KI120tl20rl08
loa JO=N*IK-l)

JR=N*([-ll
DO 110 J= trN
JK=JCtoJ
HOLOaAt JK I
Jl=JR+J
A(JK 1=-1\( Jl I

110 ~(Jt) "'HOl.D
120 J=tol( K)

I !=-I J-i<.l lOOtlOOrl25
125 KI:aK-N

DO 130 I:l ,N
Kl=K I toN
HOLD=4tKI)
JI=K I-K+J
<\ I K11 :-A{ J I I

130 A(J L) :HOlD·
GO TO 100

150 RETURN
END

c
e

iUBRCUT [NE (T .4NSihFUN.Nl ,N2 ,CHECl< 1

M£NVL290
M1NV1300
MINV1310
MIN.V1320
1'111'1'11330
f'!rNV1340
"lINVl350
MINVl3bO
"HNV1370
MINVDBa
)1rNV1390
MINVl400
....1NV1410
MPW1420
/'tlNVlHO
MINV1440
MINV1450
... rNVI4bO
,... INVI470
MlNVl490
... 1"1'11 .... 90
1'11\1'11500
MINVl510
1'11'1'11520
MINV1530
MINV15<f.C
,'oIHN1550
MINVI5bO
,... INV1570
~INV15aO

>oIINV1590
MINVlbOO
M£NVl'blC
MLNVlblD
MINVl630
,"lINV1640
toIINVl650
toIINV1660
M£NV1670
MINVl6BO

c c
CCCCC:CCCCCCCCec.CCCCCC.CCCCCCCCCCCCC.CCcccccceCCCCCCCCCCCeCCCCCCCCCC
C e
C THI5 15 TO PR [N r THE. ~N'SWERS ~ rEVER Y VALUE OF r c
e c
Ccc cceeecccccec ccceccccccccccccccceccccccccccccccccecce cccccccccc
C c
e

DH~ENsrON ' ANSR(l),FUN(ll,CHECKlll
c

DC=CHECI<I 3)·

lo:.r IDD +~

c
WRITEI6,1) ID.T,4NSR(Zl ,~N5j;.( 1) ,~H

t WRITEI7,21 T,AN5R(ZI
C

1 FOR/'UT (5X, 15,31 5X ,F 15. ]-) ,5X, 15)
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1~.48.TMX,JMX.OT.NU)

C C
CCCcccccceccceCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCccccccececcccc
c c
ccccccccecccccccccccccccccccccccccccccccccccccccccccccccccce
c c

c c
cccccccccccccccccccccccccccccccccccccccccccccccctccccccccccc
c c
C THIS 1S TO ceMPurE THE' o\UTOCCRRELATICN FUNCTION C
C OF 4< GIVEN SIGN4L. . C
C RX(fTl ..E(XlTIX/f+TTH C
C Xlrl.r .. l.NU :G[lfEN S[GNAL.· c
C RxIII.I=l.NP :AUTOCORRELl\TION OF XII). C
C ' RELurCN aETileEN RECORD I.::NGHT) : NP=NU/2 C
C C
cccceccccecccccccccc.cccccccccccccccccccccc'ccccc,ccccccccccc
C . C

NP~NU/Z

NPl=-NP-l
DUR=- INP 1-1.I*OT

00 1 LR."I.N?"
[R=lR-l
SUM=O.OO
bo Z IX=-l.NPl
[Xl=[X+l
Ql=X IIXI
02:Xl1XlI
Rl=X( [X'HRI
R2=X( [Xl+[I<)
SUM=-SUMt-Ql*1<2 j.(~2*Rl t2.DO*tQl*Rl+QZ*R21

2 CONTINUE
SUM: 3UM*O TIl, .00
SUM=5UM/DUR
::<X (LR I =-S;)M

p6,Ur0010
P4.UTlJ020
pA.Ura030
pA.Ur0040
PA.UT0050
P4.UT.0060
PA.UTO070
PA.UTOOSO
PA.lJTOO:;O
PA.UTOI00
pA.UTO 110
p6,Uf0120
pA.uro130
pAUT011tO
p&.UT0150
p~UT0160

PAUT0170
p<\ur0130
P4.UT0190
Piur0200
p6,Ur0210
P&.UT0220
P<\UT0230
pA.Ur02~O

P<\UT0250
P<\UT0260
P4.UT()270
P~UI0280

PWTOZ90
P&.UT03·OO
P4U f0310
PIl.UT0320
PAUT0330

P&.MUOIO
P4M&.X020
P4M4XQ30
P6,M6,X060
P6,M4X070
P6,M6,X080
P&.M4.X090
PiM4XIOO
P4.MA.X 110
P6,;~&.Xl20

P~MA.X130

P4.M&.X140
PM1AX 150

·P4.MAX160
PV1AX1.70
P~MA.X190
P4MAX1.90
P4.MAX200
P4.MAX210

.l X.RX ,N\hOT)·

XU:) ,RX( Ll-

P4.UTO .

DIMENSION

SUBRCUTINE

rMX~(JMX-ll*Dr

RETURN
END

ar 'lEN Sr ON A. (L I

A.B=4BS( 41U I
DO 2 J:2.NU
A.BSM:4.BSI AIJ II
I F ( 4. 8 SM .~ T• A. a I ~ rC 2
4.8"4.85,'"
JIo4X=J

2 emu rNuE

c

C

c

c
c

c
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1 CONT [NUE
c

RETURN
E-ND

p~urC340

p~lJrG350

P~U rc360
P~UT0370

c

c

PCPOOOIO
PCP00020
PCP00030
PCP00040
PC?00050
PC?Q0060
PCP00070
PCP00030
PCP0009C
PC?00100
PCPOO 110
PC?OOlZO
PC?OQ 130
PC?00140
PCPOO 150
PCP00160
PCPC0170
Pco00190
PCP00190
PCP00200
PCP00210
PCPOOZZO
?CPOOZ30
?C?00240

P!:TDEOIO
PETDE020
PETDE030
Pl:fDE040
PETOE060
PETDE070
PETDE090
PETDEOSlO
PETDE 100
PErDEIIO
PErOElZO
PETOE130
PETDE140
PETDE150
PETDE160
PETi:JE 170.
PETDE180
PETDE190
PETi:JE zeo
PEfDE210
PETDE220
PHDE230
PSroE240
PETDE250
PETOE260
PETUE270
PETDEZ90

, PSfDE290

PETCE5UBRCUTINE

DC t 1=:1, N
SOlO. 00'
DO 2 J=:l,N
5=5+DI r.J !*E I J)

2 CONT INUE
DI£.11=5

1 CONTINUe

DIMENSrOi\4

c
C

C=o.O
D03 r"'l.N
C=c t E( [ I" CI r , 1)

3 CC~lT INUE

SUBROUTINE PCP (~.6.C.Nr,OTI

DI ME N5I eN ~d 11. a ( 11
NH=Nr-l
c..o.
OQ 100 r"l,~lrt

r 1= r +1
<\l=A([l
l\2=~ ( 111
B1=6 ( 11
32=61111
C=C +~1*B2 +42*81 +-2.*1 U*Sl H2*e21

leo CONT INUE
C..OT*C/6.
RETURN
END

C
C

C C
CCCCCCCCCCCCCCCCCCC~CCCCCCCCCCCCCCCCCCCCcCCCCCCCCC

C C
C COMPUTATION CF: C
C COl 5Ur-I(..1{JI*atJI*OTl J=l.NT C
C C
CCCCCCCCCCCCCCC'CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC
C C
C

c

C . c
ccccccccccccccccccccccccccccccccccccccccccccc
c C
C r c
c ETOE% E ... D ,.. E- C
C C
C AFTER THE MULT1PLLCArrCN' C
C MATRIX D IS DESTROYED C
C C
Ccc ccccccc£cccc ccreec CCCCCCCCCCCCCCCCCCCCCCCC
c ' c
c
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ETDE=C
c

RETURN
END

c
c

Pi:TOE300
PETDE310
PEfDE320
PETDE330

SUBROUTINE PFNL IRF,RY,RYY.C.,IC.&.SE,N\JI
C . c
ccccccececececeecccccccecccccecececcccccececcccccc
c c
C CCMPUrl\rICN OF fHE NON LINE4R FORCE C
e c
ccccccccccccccccccc~cecccccccccccccccccccccccc~ccc

c c
e le1\52=1 :SDFTENtNG - HARDENING C
C - ICUE=Z :ELl\STCPLl\ST Ie c
c ceA5E"3.:B ILINEAR ELASHC C
C C
cceecececeeeeccccccccececceecceee,cececccccceccccc
c c

DIMENSION RFll',l.'YIU
Or.'lEN5lCN .C( 51

e
SK=C.( l'
SKK=C(ZI
RM=C(3}
OF=C(4J.
Y~AX=CI 51
YLIM='I'MAX/DF
'fLIM=4a S( 'iLL.., I

e

e
C

IF (ICAS E.EC.l )
CF IICA5E.EO.ZI
IF (lCASE.E!;).3'
GO TO.50

GO TO 1
GC ra Z,
~c fO 3

c
c

c

1 CI4=RM
DC 24· I=I.NU
ISIGN=-l
RF{ I)" l 51 GN*SK*eM*RY{ n*RY" n "'flY ( I I'

24- C.ONTINUE
GO TO 5

2 RFY='I'LlM*SK
DO 1:1 I=l,NU
'IF (4aSt RY( l)} .!of .'(LIM) GO TO 7
GO TO 3

7 RF (1' ) =0 .J
GO to 6

3 iF (RY(l)) 9ol0rll
9 RF(!}=~SK"'RY(II-RFY

GO TO 6
10 RF{[)=Q.JC

GO TO 6
11 ~F1I)=-5K$RYI1l+RF'l'

(, CCNTlNUE,
GO Te '5

-F48-



~FY=YL04*SK

DO L6 I=I.NU
IF f'BSIR~IIII.Lr.YLIMI GO TO L7
GO TO Ul
RF{I):aO.O
GO TO 16
[F(R"!l)1 19.20.,21
RFII)=-lisK-SKK).RY([1-5KK*VLIM+RF1)
GO TO Lo
Rf( f 1=0.0
GO TO 16
RF( II =-( I 5K- SKK I*RV II I+5KK*VL IM-RFV I
CONTINUE
CONTINue
GO TO 52
IoIRITElo.511
FCRMATII/I0X. '$$$ :FROR CHECK V4LUE OF rC4Se U$' .111
CONTINUE

RETURN
END
S.UBROUT INE PF TXT

****************.******'*****'*********'************'***
• XfIII,I=I,N IS THE FIJUlnER 4MPUTUTE •
* VECTOR CF xIII,I:I,N .- ...
* DT IS rIME [NCR. CF XITI RECORD ...
* ,)W IS THE F~EO. HICK. OF XFIWI RECORD ..
... OT*OW=2~O*3.1~159/NFl ..
* LIMlr4rlON: ~ ~UST BE LE~~ TH4N NFL ...
*******************.******************************.

DI"lENSlCN
DIMENSION

XX I 2C4iH
Xlll,XFlll

NF!:1024
NF2 2 2*NFI
SClF=or
DW=~.OO*3.14IS9/INFI*OTI

C
C
C

V ECTOR

DO 1 I:I,NfZ
1 XXI II =0 .O~

00 2 IlOl,N
11=2*1-1 .

2 xXllrl=XI II

:XXI I) ,r :I,NF2

FOURIER 'MPLiTUTE VECTOR

DO 3 1.= I, N I

LR=2*1.-1
LI=2*t.
XR=XXILRI *self
xI =XXI LI I *SC LF
D=Xfl*XR+xI*xl

C

C
C
C

C'LL FCURZ IXX,NF1.l,-!1
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D=5QRTl OJ
XFI L1=0

3 eOtU {NUi
c
e

RETURN
END

c
e

5UBROUT INE PFUNF IY.F,eF,T,OT,[eA5EJ
e
eceeeecccecececceeccceccceeecceececccccccccccececccccceccccc
c c
c SYSTEM DY/DX=F • C
e THIS 1 S TO COMPUTE THE veCTOR FaFI~. YIXII C
e C
ecccecceeeecccccccccccccccccccececccccceccccecccccceecccccec
c

COMMON
O[MENSICN
DH~ENSION

c
VEL=Ylll
DISP",Y(ZI
r1'~E=T .

e
SM=CFI11
GenseF (2)
SK=CFt3 I
5F=CFI~')

DF=CFI51
c

\(~=5KI')/o(

I'IN=5QIH ( .. \Ii-)
e

IX=TIMe-/DT+l
Ext !T=XG( IX I

e

XGnCLl
tlll,Flll
CF 1101

[F lIeASEI 1,2,1
2 FF=lJN*WN*OISfl

GO Ta 3
1 CALl. PRF· IFF,VEL,DISP,CF.leA-SEI

c.
3 F { 11 =-2 .JO*GE TA. *WN*VEL-i"F-EXCI r

FIZI=VEL
c

Vl11=VEL
YI21=DIS?
T=-!lME

c
RETURN

END
c

SUBROUTINE PFNL2 IRF,RFMX,F,OF,NI
e ,.. ,..
c ***************************************************
c * ...
c .. THIS CC~PUTES fH'i: I\lCN-l\NEA.R VECTQR F *
C * F:::~ A. M.O.C.f. NmlUNEA.R 5Y5T2;~ *
C * *
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c ***************************************************
c ,. •
c

DO lCO I=l.U
Rl;R F (1 )
IF C.aSlR1I.GT.RFLTl GO TO 10
F I [) :0.0
GO Te 20

10 CONT lNUE
[F l IH) 3C.40.50

30 FlI):-R1-RFlT
GO TO 2G

40 F ( {I;O. a
GC Te 20

so F ( I J =-{< 1 to RFl.. r
20 ceNT [NUE

lCO CONT INUE

C

c

c

C
C

DlMENSlON

RFLf;RFMX/OF

RETURN
END

SUBFleUTINE
1.
2

RF CL J • FC 11

PURA _ (X,'f,F,H.'f'I'.CC,SSSI'I,S5SC,SSSK.
5Ccr.5KO.3CJN.3KON,fM,fV,Nf,
{C,,-Sf.NA.Oll

C C
CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC~CC

C C
C FeR. GIVEN SET :SCO,SKO fHIS SUBROUTINE C
C cc~purES 4 NEw ONE :SCCN.SKON ,ACCDROlNG C
C Te TH~ EQUIVALENT LINEAR IZ4TION CONCEPT.- C
C C
C t. (yv*yy> ~<n*v> C
C SS = C
C • <Y.H> ~<Y*Y> C
C C
C 4<F*YY> C
C pp" C
C A<F*'I'> C
C C
C 4 ..~ AVER4GING OPERHCR C

.C C
C SU8ROUflNES CALLED :PHT, .prOfR.,FFNc., .PCP .. .'·HNV C
C _ c
CCCCCCCCCCCCCccccccccccccccccceeccceccccccccceccccccccceccce,
c c

c

c

c

DIMEN5IO~

DIMEN5l0\l

51'1:555104
5e"'5 sse
5K:5SSK

5CS'" 5C to 5C C
SKS;SKfoSKC

XI [l ,Hn~,'fI LJ ,yy{,ll ,FIll
; 5 ( 2 , 2 ) • L ; I 2 I , MS,( 2 r
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WW=SKS/S:-\
wN=Sr.lR-TIW\ol1
GETJ\=5C 51 (2.DO*WN*SMl

c
C
C

c
c
c

HITl

Y( Tl

:JNIT IMPULSE RESPONse RECORD

:RESPONSE RECORD

c

c
C
C

CUL, PTDTR IX Ill. Hill. YI 11.1MAX. TY,'lX. NPYMX.DT.N Al

Y"'..YI'IAX
TY=TYMX
NY=NPYMX

RESTOR ING FORCE 'l<ECCRO

lH1X=ABS IV '" I*SK
DC 2 1=1. N~

2 YY III =1 I I I *SK
c
c
c

FUI :NQN~LINE~R FU~CTION RECORD

CALL PFNL2 IYYt1).RMX.Ftt).CC.N~1

C
C Y'lTl :VELCCITV RECORD
C

c
c
c

c

NAI=Nb.- t
DO 1 J= I.NAl
Y'ft J I =4 't'( Jt-ll-1{ H1/Df

L CCNT {NUl:
¥YINA1='t'Y IN4tl

~ AfR I X $S 12 .2 I

C~L~ PCP 1'( If 111 • '('1'1,1> • &.ll.NA,. DT I
CA~l PC? l'(II1.'(lll.A22.NA.Dil
CAl.l. PCP !'fytll.Vlll.HZ.Nt..DT)

5511.U=Ul
55! 1.21=4.12
SSI2. ..U=S511.21
$51Z,2)=4.22
C.~L ~l!'lV 15i.Z.DS.L5.,~SI

, ,

C
C
C

C
C

C
C

c
c

COMPUTE SCCN.5KON

C~LL ?CP Iflll •.yy(U,PI,tu'.OTl
C~LI. PCP If (11.'( 1I.PZ.NA;.OTl

5CON=SSll,ll*PL+S511,ZI=P2
SKON=S5(Z.ll*Pl+iSI2,Zl*P2

RETURN
END
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5UBRlJur IN E
e c
ecceeeceeecceececceeeccecccecccccccccceeccceeeceececcec
c COMPUrE UNIT lMPUL5E RESPONSE; HtTl e
C FOR 4 GIVEN lINE~R SYSTEM C
C e
C l.-M l5 S ... Q •• e-••.•• 0 ••• _ ~ 0 .••••• SM- C
C 2.-04MPING.o ••••.•• III · •• GT4.· C
C 3.-~4r. FREQUENcr •••• ~ •••••••••WN e
e ~.-NC. CF POUlTS IN HlTl •••.••••NU e
e 5 •.-T I'IE INeRE~MENT•••••• •••.••• • DT C
e c
ccccececececcceeccccccceecccceeceeeeccccecccecceeecceec
e . c

o{MENSI ON Hill
c

GT"G r4*IoiN
w50=",N* 50 RHI .JQ-G T4*G T4)

c
DO 1 J:l. NU
T=OT*( J"'ll
HJ=SINllIs,*rl
HlJ)=HJ*EXP(-GT*rl.llSM*WSQI
CONT INUE .

e
RETURN
END

c
e

SUBRCUTINE PINPUT (EX,TDUR.5CLF,NU,IFILE,DT,N5P,TSP,
1 SI.EXM4X.TEXMX,NPEX~XI

e c
ccceccceeeccececccccecceecccceeceecccceccccecccecccceeeceeceeeecccccce
c . e
e INPUT RECORD 410',1 =1 ,3000 (0 TO , TaURO) c
e OUTPUT RECORD EXllld=l.:>lU IDT,rDUR) e
c e
c W'HERE: C
C C
C THE PROGR4M"RE40S THE RECORD .If) FROM :\ GfVEN FlLE C
e 4ND CREATES THE EXCI) RECORD .eCOROING- TO • GIVEN e
C DUR4TlCN (TOUR) 4ND :\ GIVEN :--lOo- CF PClNrs (NUl e
e " c
cccceeccecetcecctceccceeccc.eeeeeceecececeececcc.ecccecececceecececcceec
c e
e ~jSP :ST4RTING POINT OF THE SELECTED PORTION e
C TSP :TIME. U .... HICH·THE 5El.ECTED PCRTlCN ST~RTS C
C EXMA.X :M4X.~:\I.UE OF EX! {) REe:JRD. e
e rEXMX: TI~E ",-rriHICH fH~ M~X. OCCURS e
c NPEX~X :PC IN r ~ r \oiH LCH fHE ~",-X •. V"'-l.UE OCCUR 5 C
C 5L :SQRT. OF THE SQU<\RE [NTEGR4L OF Ext!) RECORD C
C DT :TI?-IE INTERV~L FOR ::Xl[l RECORD C
e OTO :TIME INTERVA.L FOR AlLI RECORD e
e e
ccceeccececee eecceeceeeee ecceeeeecceeee eeece&ceeceeee.cc ee ecce cceeceecc
c c

PHTOO 10
PHT0020
PHT0030
PHT0040
PHTOO50
PHT0060
PHTJ070
PHTOOSO
PHTOQ9Q
PHTQIOO
PHTOllO
PHTOl20
PHT0130
PHT0140
PHTOl50.
PHT0160
PHT0170
PH T0180
PHTiJ190
PHT0200
PHT0210
PHf0220
PHT0230
PHT0240
PHT0250
PH10260
PHT027Q

DEFINE FllE LO(60,3000.J,KV)
c

DI?-IENSlON
OI>1ENSICN

"'-130001
::X (11
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c

C

C
C
C

c
c
c

C

c

c

OTO=<l.020
NU1=NU-1
DT=TDURINU1
NTE"=TOUR10TO+l
NTEN=20 lO-NTe

. DTR4=OT /0 TO
DO 't4 K=l,NU
EXIK 1=0 .JO

44 CONT 1Nue

KV=1FILE'
RE~O (lO'KVI ~

I FIT DUR .:; T.25.1 GO TO '+3
5UM1=O.
DO 34 K=l,Nfe

34 5UM1=5UMltAIKI*AIKt
51.M=SUM1 .
[ 5T= 1
DO 32 K=L,NfEN .
5UM2 =SUMl tAIN TE +.K)* AI NfEfoK I-A.{K I*A (K)
I F{ SU~2 ~L E. SU~H :;0 TO 32
[ ST=K+l
SU~=SUM2

32 SUMl=5UM2
SUM=SQRT! 5UM1*5ClF
T55=( 15T-11*oro .
GO Te 47

43 1ST=l
T55=0.

47 CONTINue
IMXT"'fST
A,PlX=O.
DO 31' K=l,NTc
K1=1< ..15T-1
LFI48Slllo(KIII.lf.ALMXI::;0 fa 37
PIXT=KI
H:~X=4851 HK1 II

37 CONT 1NUE

l~t=1 IMXT-lSTI/OTRA-l
LMR=NU-I:~L

')0 36 K::1. LMt.
R I 5= UoIX, r-o TR A*K t. 001
JI 5=1' I 5
DJ=R IS-j! 5
EX(IML-K"[I=(~IJl51"(~(J15+[I-llo(J{SII·OJ1*SCLF

36 C.ONT INUE

DO 33 ;<::[, lMR
RI5={MXT+OTRl~(K-[I·.OO[

J L:i=R I ;;
JJ=RI5;-J[ S
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2X I t ~l +1( I" ( ~ I J I ~ I +l ~I J [ ) +11- AI JI) I I *QJ I *5C!- F
38 CONTINUE

c
NSP,. 1ST
TiP"T»

c
c
c

SS.aO.
00 39 J-I.NUI
51-eX(J l*f;X( J'
52=EXfJ+L>*EXfJ+1>
S3=EXIJI*EX(j.1>
SS"':;S.01* (51+52.53> 13.00

39 eCI'4TINUe
5l=SQRT"I SS)

c.
c
c

4U,.l\BS{EXf 1) I
00 40 J=2,NU
B6B=A8S( EX(j) I
[ F I BBB. LT. UA I GO fa 40
Ul\=Bsa
JJJ"J

40 CONTINUE
EXM4'X=l\l\l\
NPEX""X"'JJJ
rEXMx.:( JJJ-1)*0 r

c
RETURN
ElVD

C
C

5UBROurtN~ PIOFT (l\,l\4.SF,NP,ICL5E)
c'cc ec ecceeceecececeececce ceccececceceeeccceceeccece cc cc ee ecceecce
c c
C THIS 5UBRCUr [NE FORMS THE tlO VECTORS FOR IiFCU~2!1 C
C OIMENSION FOR l\ &.1\4, IS zatta c
e. e
cceeccc ece.cee cceeeeecce:c ee,ccecceccccceeeccceeeecee cc ce ee ecceeccee .

QIMENSIQN
c

Nl=lOZ4
NZ=2*Nl
[·F I ICASEl 1.2.3,'

e
e
c

c

ICAse:l

3 CONTINtJE
00 4 l=i,NZ
44( I )=O.JO

4 ceNT INUE

00 5 J=I,NP
J J"'2*;-1
!I,4(JJI=:\1 J I

5 CONTINUE
GO re b

:FCR~' INPUT VECTOR Utn.l=i.N2
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c
c
c
c
c

ICA5E:-l :FGRM OUTPUT VECTOR ~III

RE At. P Il.R T [ .. 1 •••••••••• NP
IMMAGINARY PART : 1=INhll ••• 2*NP

c

c

c

c
C

1 K:l
DC 7 1.:1,NP
LR=2*l-1
A{KI=UILRI*SF­
K=KH'

7 eSliT INUE

KK=NP+l
DO a LI.;=l,NP
L 1'"2 *1.1-
4 I KK ) =4 4 ( LI )*SF
KK=KK+l

a CCNTINUE

6 CClNT INUE
2 CONTINUE'

RETURN
:NO

511BRCUT lNE PPI.T IXX"IXX,JXX,XMAX, I SO)
c c
ecccccceeeececcceccecccccccececceccccccccccccccccc
e e
c PPLr neTS fHE ~RR"'" : C
e XXtI,JhI:ltIXX,-J"l,JXX C
C C
C lXX :CC~MCN LENGHf FOR AlL,RECORDS C
C JXX :NO. eF RECORDS Ta ae PLOTTED e
e ~AX.tJXXI=10 c
c c
eccecccceeceeecccccccccccccccccccccccccccccccccece
c 'c

REAL LINE
DI~EN51GN 'xXtIXX,JXXI
DI;~ENSICN LINEI140I,5fMBLt lQI,JC1tlOI
D4TA- BLANK,OOT,SYMBO/' ""'00"'-'/
OArA, 5'( MB L ,. 1 ' .. ' Z., '3' , ' ~•• ' 0; ". • 0" • '7.·, .. • g', ' 9 t'. • 0 • ,

c
JL=116
JH=50
J6=56
IF {[50.EQ.QI
IF 115D.EQ..OI
;x=10
'< JX=JX
JMAX=IXX .
NDIM-JXX

JH= 100
J6=5

C
DO 109 J=1.5

rC9 LINEIJI=8LANK
00 110 J=6,Jl

110 LINEIJI:uCT
"RLrEI6,1411 ILlNQIII,l=l,Jll
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00 112 J= IdL
112 LINE I. Jl =8UNK

C
C

DO 120 J1=1.JMQ,X
Jr=J 1IJ X
RI=Q,SSCJT*RJX-Jll
rFCRI.GT •• OlJ GO Tp 33
LrNE(JBI=SV~~80

83 CONTINUE
C
C
C

C
e
e

FORM ARRAY l.INEI Cl ,[=l.JL FOR ~ HEP

DO 30 JPf=I,NDIM
XJ=XXI J 1. JPTl./XM.t.X* JH
J=XJ+JB-
JQe JPrl =J

80 LINECJI=SYMBLCJPTI
WRITE16,1401 ILINerII,I=l,JLI

CLEAR 4RR4V LINECII,t=I,JL FOR THE NEXT STEP

00 31 JPT=l,NOIM
J .. ;OCJPTI

91 LINEIJI=BL.NK
L{NEI J81=OCT

120 CONTINUE

Jl+l

C
140 FCRMATI1H ,120411
141 FORM~n IHl.l20Q,1l

C
RETURN
ENO

c
e

SUBROUTINE' PRF - IF,v,D .. CF,ICI
C e
ccc ce ce eeececccccececccccccccccccccecccccccc:cecce ecccce cc cec
e c
C THiS. r s. TO 'COMPUTE fHE RESTOlHNG FORCE C
e QF ~ S.O.O.f •. SYSTEM.- C
C C
C le=1 :SQFTENING SPRING RESTORING FORCE C
e IC=2 :E"LA-STOPLASTIC RESTORING FQRCE C
C rC=3 :BILINEAR'RESfORCNGFQRCE C
C C
C F ••••••••••RESTORING· FORCE C
C v ••••••••·•• vELaCITY c
C D••••••••••DIO?LACEMENT C
C e
C eFlfl.I:ltlO f,5 rHE VECTOR OF e
C THE. NONLINEARITY CHARACTERISTICS OF THE 5YST~~.- C
C C
CCC cccccccccccc eee ceceeccceececceececcccccccc ce eeceeece cc eee
c c
c

C
D r."lENS rON

M~S5.::CF( 11­
DAMP'=CF (2 I

CF 1101
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STIF"CFI31
SFl=CF( 41.
S1'2::CF151
COEF:CF(o I
YQ::CF( 7)
YLln:CF (3)

C
[Fl H: .':Q.lI

.IFtlC.EO.2)
1Ft [C.EC.31

GO TO 1
GO TO 2
~ rc 3

C
C SOFTENING SPRING RESTORING FORCE:
C

1 rSIGN=-l
1'=51' l*D+LS IGN*COEF*O*O*O
GO TO 4

c
C EL<\5TOPL<\5TIC RESfJRING FORCE:,

2 FO=SF1*YO
I FlO.) 6 • 5 • 6

5 1'=0.00
GO TO 4

6 480=A85101
[F I ~80.GT. YOIGO TO 7'
F=SF1*D -
GO TO 4

7 IF IDJ a.~,~

9 1'::1"0
GO Te 4

3. 1'=-1'0
GO TO 4

c
C BILINEAR RESTORIN~ FORCE:
C

3 FL:H=SF1*YL;",r
IF 101 11.IO~11

10 1'=0.-00
GO TO 4-

11 A80:::~8SID)'

[I' (~80.GT.'fLMT I GO TO 12
1'''51'1*0
GO TO 4-

12' 1':::51'2*0
c

c
REruRN
ENO

c
C

SUBROUTINE ?RSPA IA,UU~TT.BETA.5D,NU,OTI

c c
eeeccccce/: eccccccccceccccccccccceccceccccccccecccecececececce ecccetcce
C c
C THIS IS FeR COMPUTING ~4X. RESPONSE FOR SINGLE OEGREE SYSTEM'C
e e
e INPUT EXCITATICN :AIII,I=l,NU C
C OUTPUT RESPONSE :UUIII,I=l,NU C
C cUTURAL RERL.CO :fT C

-F58-



C D~MPING RAno ~B!:TA c
e :·1AX'. ~E5PGNSE :SO C
e c
ecccccceccccccccccccccccccccccceeccceccccccceccccccccccccceccccccccccc-
c c
c

DIMENSlml ~l 1·1 .UU( U
c

NU1=NU-'l
W=6.Z83135311TT
1012=1'1*101
.. 3=w*W*w
WO=W*5gRTl1.-6ET'*BET~1

c

c
c
c

c

c

z=o.o
DZ=O.O
so=o.o

CCMPUT~ R~SPCNSE UU 'NO VALUE OF SO

DO 20 I P= I.NUl
c~=~{ II' I
eB,. ( A( I p .. 1 I-A {[ PIt lOT
C=C 0 5 Iw 0* 0 TI
S=SIN(WO*OTI
1I= { Z-C V w2 "2.* 8Ero.*eB/W3 I"'e H OZH~ET4*W*Z-6ET A*CA 1104 ..CB/WZ

'1 "IZ.*BET'*BEr'-1.II*S/',,1O
Zl=Z (*EX? (-BE rA*W*O Tl "( eA 11'12-2 .*I3EU/W 3XCS+CS/W 2'" or I
Dl= (tJZ-CB IWZ j.e H CA-WZ* Z-6ET4*W*( Dt. "(;8 I 1021 I *S 11010,
Dl=0t.*EXP(-BEr,*w*orj"C8/W2

UU( [PI=Zi

IFIABSIZll ... T.ABS(SCll :;0 TO 30
GO TO 40

30 CONTINUE
sOan

40 CONTINUE
Z=ll

20 eONT£NUE
e-
C REARRANGE VECTCR UU
e

HOL.Dl=UU( It
DO 10 (,.z ..NU
HQLOZ:uUI [ I
UUHI:HOL01 '
HOLOl=HGI.C2

10 CONT {NUe
UUl11=O.JO

c
RETUl<N
END,

c
c

SUBRQUTINE PSGDE tPRMT,V·,OERY,CF,NDIM.rHLF,AUX, lUll
e
ecccceccccccccccccccccccccccccccceccecccccccccccccccccceccec
c e
e 5Y5TE'~ SF :RDINARf DIFF. EQUAT rONS IN F[,R;~: - C

-F59-



C DYlDX=F,lX,Yl C
C WHERE: C
C 1'l'11 C
C Y:Ike
C 1'(21 c
C c
C IFl(X,tl,f211 C
C FlX,VIS"l J C
C. IF2(X,Vl r V211 C
C C
cceeccceeecccccccccecccccecccecccccccceeccececeeecccceececee
e

c

CC~~MCN

OIMENSlON
DH1ENSICN

XGl1011
~U XIS, II , tC 11 ,DERY ClI ,PRM r (ll
4S(4.,BSl41,CS(41.CFIIOI

sr~RT &\ STEp·

7 CAl~ CUTP lX,Y,OE~Y,{~cC,NDl~,PRMT)-

4 IF [lX"H-XENOI*HI· T,6,5
5 H=XEND-X
6 rEND=l

DO 1 I: 1, NO l:-l
4UX/ 3, I I:O.Q6666667*OEln'/ II
X=PRMft 1)

XENO=PR~r(Zl
H=PRMT (3)
PR~T(5):O.CO·

OOX: PRM T( 3.

PFUNF lV,DERY~CF.X,ODX.ILN.e4L1.

IF (H*IXENO-X., 33,37.2
2 45(1)=0.50

4S( z1=0 ,292:1932
~S(3)=l.Ten07
45(4)=0.1666667
aSlll=2.JO
B5121=1.:10
aSl3I=I.JO
a 5(4) =2.0e
CS(1)=0 ..50
eS(2) =0. .. 2929932'
CS(3)=1.707107
C5(4)=0.50

DO 3 [:I,NOIM
4UX ( 1 • I 1= Y( [ )
~UX(2.II=CERV(Il

~UXI3.ll=O.OO

3 4UXI 6.1 ):0 ..,)0

IREe';/)
H=H~H

IHLF =-1
r 5 fEP.=O
1END=O

c

c

c
c
c

c

c

c

c
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c

c

[F (PRMfeSII 4Cd,1tO
9 I TE 5 T=O

~ 15TEP=[HEP+l

rES T _

GO TO 10

ERROR CALCULATIDN

PFUNF IY,DERY.CF,X,DDX,II.N)

PFuNF eV,DERv,CF,X,DOf,ILNI.n- CAU

00 22 l=l,NOIM
4UXeS,{)=vILl

22 4UXI7,ll=OERy cr I
GO fe ~

J=l
10 ~Jd.5(JI

8J=8SeJI
CJ=CSeJ I
DO 11 I :1.NOI M
Rl=H*OERl'e!1
R2=4J*1 Rl-eJ* \UXlo, [II
VIII =VI I I fo Q 2
R2=R2+R2+R2

11 \UXf 6. C I =6,UXl 6, IlfoR2-CJ*Rl
[ F ( J- 41 12, 15 o1S

12 J=JH
CF IJ-3) 13.14.13

13 X=X+O.SO*H

15 [F ([ T~ 51' I 16.L 6 ,'2 a
16 DO 17 l=l,NOI~

17 4UX 1 4,I ),. y 1 [ I
C rES f= l
I5TEP=ISTEPfoISTEP-2

'13 IHlF= CHLF+l
X=X-H
H=O"SO*H
DO l ~ C=1 "NO [M'
Y1I ) =4U X( 1, I )
DER VI I) =~ux12, II

1'1 auxI6oIl=b,UX13ri)
GO Ta '1

20I:"'OO=ISfEFI2
IF I ISTE?-IMCD-CMCOI 21,23,21

C

c

c
c
c

c
c
C

c

c

C
C
C

23 DEU=O.OO
DO 24 I =1 ,NO I M

24 DEL r "DELT +4UX (3 ,I) * \85 ( AU Xf 4, I )- VI I ) )
CF IDEl..r-PR7·HI411 23,29,25

ERRGR > GIVEN- I=PRMr(41)

25 IF (r i'lL F- to I 26,36,3 6
26 DC 27 [=1,NOIM
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E~ROR : OR < GIVEN I=PR~T(41)

27 ~U)((4,[I=~Ul((5'[1

ISrEP=[STEP~ISrEP-4

X=;(-H
I END =0
GC Te 19

c
C
C

c
29 CIll!. PFUNF IY,DERY,CF,X,DDX,ILNI

c

DC 29 I: 1 , ND I 101
.l.UX I l, t I: 'fl I I
A.UXI 2tI I:OERY II I
IlUXI3,II:AUXI6, [l
'f ( I I :4U XI 5, I I

29 DERY(II=~UX(1,11

Ctlll CUT? (X-H,i,DERY,IHLF,~DIM.PR,IolTl

C
IF {PRMTI511 40,30,40

30 DO 31 I=l,NO!~

YIII:4UX( 1,[1
31 DERYIII:4UXI2,11

I REC =IHlF
IF (IENOI 32.32.,3:;

32 If"lF=IHl;:-l
ISTEP=ISTEP/2
H=H+H
[F ([HL F I 4-.33 t3 3

33 IfAQO=ISTEP/2
rF CIsr=p-r\lCD-U~C'DI 4,34,4

34 IF (DELT-O.02*PRi'1TI411 35,3'5,4-
35 IHLF:IHLF-l

Isr::p=IHEP/2
H=HfoH

c
GO fa 4

c
36 f HLF= 11

C
CALL PFUNF (Y,OEP'Y,CF,X,DDX,II.NI

C
~c T'J 39

37 IHLF=L2
GG TG 39

39IHlF=L3
c

39 CALL CUT? (X,'f,OE}<y,[HL~,NDIM,PR ... rl
c

40 ReTURN
e~lD

c

c :
CCCCCCcccccceCCCCCCCCCCCCCCCCCCCCCCCGCCCCCCccccccecccceeceee

c C
CCCCCC~CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCGCCCecccee

C c
C SJ/ol: 5:.JRf(5Ui'1(4IJI**Z*OTll J:L,NU C

c
SUBRCUT INE ( ",SiJM,OfrNUI PS·',J ILOI0

PSQIL02C
PSQIL030
PSQIL040
PSQIL05C
PSQIL060
PSQIL070
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c
c
c

c

c

e

e
c

C IMENSIO'll 4,( 1l

N=NU-t
SU;.l ..O.

00 60 J=L,N
41=<\ /Jl*<\ Ul
~Z=~ / Jfo1l *4/ HI)
b,3=4,lJl*4,/Jt-11
SU:"=SUiHO T"'( 4LHZ t<\31 13 •

(:0 CCNflNUE

5U:~=SQR T( SU:11

RETURN
END

c

SUBROUTINE PTOTR /X,H,y,YM~X,TYM4X,NPYMX,DT,NUI

e C
eeeceeeeececcceccceccccccccccccccccccccccccccccecccccccccccec . . c
C THIS SUBROUTINE COMPurES THe RESPONSE OF ~ C
C S .0.0. F. SYSTEi-1 IN ~IME DO:"~IN. C
C C
teeeeecccccceeccccccecccceccccccccccccccccccccccccccccecccce
c . c
C X(JI,J=l,NU :[NPUr RECOP,D C
C H(Jl.J=L,NU :UNIT r.'-1?ULSE RESPONSe RECORD c
c Y{JloJ=l.NU :REiPCNie RECCRD C
C 'f:~AX :MAX. VALUE' OF THE R!:SPONSE C
C NPYMX :PCINT AT ',';HICH THE PEAK RESP. !JCCUR S C
C TYM~X :rIME Ar WH[CH rHE P=~K R:5P. OCCURS C
C NU :NO. OF PC[NTi FOR X([I,H(lI.'(![) C
C OT .:TIME INrERV~l FOR 4LI. RECORDS (X,Htf) C
C c
cccccceccecccCCCCCCCccctCCCCCCcccccceCCCCCCCCCCCCCCCCCcccccc
c c
c

DI:~ENSIQ~ X(ll,H{lI ,'f(U
C'

NPT=NU-l
YMAX=Q.OO

C
C

DO 200 J=l,NPT
v'(=o.
IN=J

c
DC l;)O K=l,JN
K l=K +1
JK=JN-K .,2
JKl= JK-l
YOf =yy H XI K I:l<H I J K1 I ~ X( K 1 I*H I JI<.) "2. ~ ( x I K) "H I J KI +oX (K 11 *H ( J K1) ) )

lCe CC'lfINUE
c

'((JI= YV*Or/6.
!F(AoS(Y(JII.LE.,(M~X) GC rG 2~O
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Y:~~X=4B5( Y(J11
N?V:4X z J I

zeo ceNT 1NUE
C
C

HOLDl='(ll )
C

00 300 [=2,NU
HOL02=V(l I
'(I)=HOL01
HOL01=HO'_02

300 CONT INUI:
C

YI11=0.00
C

TYMAX=N?Yfo'X*O r
~~P"MX=N Pi /-'X tL

C
RETURN
END

C
5UBRCUT £N E F.4tl360 1 £X, £Y, YFL I

************~************************************************

[X :FCR THe FlRsr eNTRY MUSTCCNTt>,lN ~NY 000 INTEGER
NU.'~13ER \HTH N£NE OR LESSOlGtrs.
AFr2~ THE FI~sr ENTRY IX SUULD BE THE PREY10US VALUE
CF If CO~PUTED 8Y THE SUBFOUTINE.I

YFL :IS TH; REsu!.r~rH urJIFOR,"II.Y OlSfRI8UTED Ft~Hnl~

PaINT R4.NOC,"I NUI-1BER IN THE RANGE 0 Ta 1.0 ./

C
C
C
C
C
C
C
C
C
C
C
C

c

. !Y=IX*6553:;
IF (lYI 1,Z,2

1 1Y=lY+2147493641+1
2 YFL= ty

YFt=fFL *0 .4656613E- 9

RETURN
END
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