POLYTECHNIC INSTITUTE OF NEW YORK
FINAL REPORT
PREDICTION OF EARTHQUAKE RESISTANCE

OF STRUCTURES

Grant No. PFR 76-14893

o — N i ™~
Principal Investigator: 7 7 — L)
I
Ping-Chun Wang ;

Professor of Civil Engineering

Date: January 20, 1980

Any opinions, findings, conclusions
or recomnmendations expressed in this
publication are those of the author(s)
and do not necessarily reflect the views
of the National Science Foundation.






50272-101

REPORT DOCUMENTATION | 1. REPORT NO. )
PAGE | NSF/RA-800013

3. Recipient's Accession No.
LR AT a7

: 97351

4. Titie and Subtitle 5. Report Date

Prediction of Earthquake Resistance of Structures, Final Report 15 January 20, 1980

7. Authoris) 8. 7F;!v5|:f_(;l’miﬂg Qrganization Rept. No.
P.-C. Wang

9, Performing Organization Name and Addre§§ 10, Project/Task/Work Unit No. T
Polytechnic Institute of New York
333 Jay Street 11. Contract(C) or Grant(G) No.
Brooklyn, New York 11201 ©

& PFR7614893

12. Sponsoring Organization Name and Address' ) S ) 13. Type of Report & ﬁ}:riod cbdé;ed' o
Engineering and Applied Science (EAS)
National Science Foundation Final
1800 G Street, N.W. e, T o
Washington, D.C. 20550 o ]

15. Supplementary Notes

-16. Abstract (Limit: 200 words)
The prediction of structural resistance to earthquakes provides the focus of this
report. Particular attention was paid to developing an upper bound or critical
ground excitation for a structure of major importance, so that a high level of con-
fidence in the prediction of structural resistance may be achieved. The term criti-
cal excitation is defined here as the one among a class of credible excitations at a
given site that will produce the maximum response peak for a given structural design
variable in question. Both linear and nonlinear structures were considered. To
verify its practicality,the method was applied to several nuclear reactor structures.
The results show that the method is conservative but not overly so. The responses
obtained from the critical excitation are in the range of 1.1 to 2 times those pro-
duced by recorded earthquakes of the same intensity. To further enhance the practical
appiications, response spectra for different soil conditions were also produced.

17. Document Analysis a. Descriptors

Farthquakes Earthquake resistant structures
Dynamic structural analysis Nuclear reactors
Forecasting Buildings

b. ldentifiers/Open-Ended Terms
Critical excitation

c. COSATI Field/Group ;

18. Availability Stateméﬁt 19. Security Class (This Report) 21. No. of Pages
NTIS ,, e
20. Security Class (This Page) 22, Price
(See ANSI-Z39.18) See instructions on Reverse OPTIONAL FORM 272 (4-77)

(Formerly NTIS-35)
Department of Commerce






TABLE OF CONTENTS

ABSTRACT

CHAPTER 1 INTRODUCTION

1.1 Background
1,2 Review of Past Whrk
1.3 Scope of the Investigation

CHAPTER 2 METHOD OF GENERATING CRITICAL EXCITATION

2.1 Selection of the Basis Excitations
2.2 The Effective Duration of Excitation
2.3 Determination of Critical Excitation
2.4 Practicality of Critical Excitation

CHAPTER 3 CRITICAL EXCITATICN OF INELASTIC STRUCTURES

3.1 General Description

3.2 Discussions of Critical Excitation With Intensity Constraint
Cnly

3.3 Critical Excitation of Nonlinear System Replaced by Equi-
valent Linear Systems

APPENDICES

A, Site-Dependent Critical Design Spectra

B, Critical Seismic Response of Nuclear Reactors

C. Critical Excitations of Linear and Non-linear Structural
Systems

D, Effective Duration of Seismic Accelerationh and Occurence
of Maximum Responses

k. QOther Related Publications

F. Computer Programs

-1-






ABSTRACT

This report deals with the problem of prediction of earthquake resis-
tance of structures. Particular attention was paid to developing an upper
bound or critical ground excitation for a structure of major importance, so
that a high Tevel of confidence in the prediction of structural resistance may
be achieved. The term critical excitation is defined here as the one among
a class of credible excitations at a given site that will produce the maximum
response peak for a given structural design variable in question. Both 1in-
ear and nonlinear structures were considered, To verify its practicality
the method was applied to several nuclear reactor structures. The results
show that the method is conservative but not overly so. The responses ob-
tained from the critical excitation is in the range of 1.1 to 2 times those
produced by recorded earthquakes of the same intensity. To further enhance
the practical applications, response spectra for different soil conditions

were also produced.






1. INTRODUCTION

1.1 Background

The prediction of earthquake resistance of structures is an engineering
procedure of decision-making based on uacertain or incomplete informations.
Ideally, a person who is responsible for devising such a procedure is expected
to arrive at a decision on a high confidence level that a structure will survive
all credible ground motions which can occur at a particular location, For
structures of major importance such as nuclear power plants, hospitals,
school buildings, or strategic installations, even higher confidence level of
safety must be achieved in the design against seismic excitations than those
required for conventional structures, In the past, seismic assessment of
structures was based on either statistically constructed design spectra or
past ground motion records, Artificial time-histories generated from the de-
sign spectra were also used, However, it is not clear whether these ap-
proaches lead to designs that can be relied upon on the confidence levels that

are presumably desired for structures of major importance mentioned above,

In such cases it is not unrealistic to rely on the idea of the so called "worst-
cagse analyais'.
The present investigation in the prediction of earthquake resistance of

structure is essentially 2 modified version of the "'worst-case analysis' which

greatly takes advantage of the past experience together with an intelligent
prediction of the future events, The method relies on the concept of the
critical excitation, The latter is defined as an excitation, amonag a certain
class of exciiations, which will produce the largest respoase peak for a
structural design variable of interest, The major difficulty in this ap-
proach is the determination of the class of excitations that the critical one

must he extracted from, It is reasonable to assume that a realistie class



should be chosen in such a way that it includes all ground motions that are
credible for the location under consideration, and includes as few others as
possible, According to this assumption one should first of all consider, for
a given site, all excitations that have already been recorded there or at some
other locations with similar site conditions, focal distances, and macro or
micro zoning, In addition one may also consider all linear combinations of
these ground motions as credible ones,

The second difficulty in connection with this approach is the specification
of a limiting intensity of the excitation. Many definitions have been proposed
for the measurement of earthquake intensity[1l] . A common definition used
by engineers is the peak acceleration. Other definitions are the spectral in-
tensity proposed by Housner[ 2], power spectral density [ 3] and square in-
tegral of the ground acceleration [ 4]. In the present investigation, partly
for the convenience of calculation and partly from comparison studies,
the square integral of ground acceleration was used as the intensity measure-
ment. The comparison stud\-f was carried out by coastructing response
spectra using equal intensities defined first by the peak acceleration and then
by the square integral of the acceleration history, There were less disper-
sions of the spectra when the second definition of intensity was used. With
the class of excitations and the intensity measures defined, the critical ex-
citation thus produced will excite the highest response peak of a prescribed
design variable. |

in case one wants to scale the design excitation to a lower level than
the critical one, it can easily be done by arranging the class of excitations
together with the critical one in 3 statistical distribution so that desired pro-

babilistic level of a design excitation can be determined,
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1. 2 Review of Past Works

This investigation under NSF Grant No. PFR 76-14893 is a continuation
of the effort initiated in a previous Grant No, AEN 72-00219 for developing
a method in the prediction of earthquake resistance of structures based on
the idea of "minimax procedure''. The method is relatively conservative and
thus has the potential of improving the design of socially or economically im-
portant structures such as nuclear power plants, hospital buildings or mili-
tary installations, It is also based on a well founded mathematical formula-
tion and thus will enhance the confidence on the part of the designers,

The original ideas of 'critical' excitation or "minimax' procedure was
developed on the basis that ground motions encompass all possible excitations
with the intensity limited to a prescribed value E, The critical excitation is
defined as the one among these excitations that will produce the maximum
response peak for a design variable in question, The outcome from this as-
sumption leads to a critical excitation proportional to the time reversed
unit impulse response function of the design variable [4,5]. Previous in-
vestigations show that this approach , although simple in concept, generally
leads to assessments that are too conservative tao be applicable to practical
design,

Subsequent modifications were then carried out to improve the applic-
ability of the method. The first attempt was done by way of least squares-
fitting of the linear combinations of a selected set of past ground records
(basis excitations) with the critical one previously defined. The new ex-
citation is then called the sub-critical excitation which will have the least-
squares difference from the critical cne, The intensity coastraint E is still
maintained, By this modification not only the shape of the time history of the
excitation appeared to be more realistic but also the over conservativeness

of the response was reduced, Previous reports, [56,7,,8] show that the
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results are quite reasonable although inconsistency in the conservativeness
may occur occasionally.

The present modiﬁcéﬁon is aimed at improving the credibility of the
critical excitation and at the same time to eliminate the occasional irregu-
larties in conservativeness, The basis excitations are selected with special
attention paid to the site conditions, epicentral distances, and other per-
tinent characteristic of a particular site in question. Then the critical ex-
citation is obtained by the linear combination of these basis excitations in
such a way so that the design variable in question exhibits the maximum
response peak. The intensity limitation is posted as the constraint on the
maximization procedure, The excitation thus produced are conservative
but credible in all respects in comparison with recorded ground excitation
both in the time domain and in the frequency domain,

L3 Scope of the Investigation

As mentioned in the review of the past work, since the reversed-unit-
impulse-response critical excitation and its least-squares fitted sub-critical
excitation have drawbacks when applied to the real design applications, the
first task in the present investigation is to search for an improved procedure
to produce the critical excitation, This was indeed successfully accom-
plished at the begining of the investigation, Detailed presentations are given
in several papers in the appendices , and a summary of the procedure is
given in chapter 2. The criterion of selecting basis excitations was then
studied in detail, A discusgsion of this is given alsec in chapter 3. Using the
iIﬁproved method, critical design response spectra were then constructed,
This is presented in detail in Appendix A, Next, the critical excitation method
was applied to the evaluation of nuclear reactor structures and the detailed
presentation is given in Appendix B, Since inelastic behavior was inevitable in

structural respcnses to strong earthquakes, a detailed discussion of critical
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excitation for inelastic structures is given in Appendix C and a summary is
given in chapter 3, The.oretically', critical excitations can be different for
different design variables, However, it is impractical to design a structure
based on a great number of individual critical excitations for many design
variables in question, In Appendix C methods of producing critical excitation
based on the first few free vibration modes are discussed. In addition, Ap-
pendix C also presents a method of creating spectral confiorming time-
history as a single design critical excitation for a particular site. Ap-
pendix D is a paper dealing with the effective duration of the critical excita-
tion, Appendix E includes other published papers and reports in connection
with this investigation, Finally,computer programs to generate critical ex-
citations are attached to form Appendix F'.
2. METHOD OF GENERATING CRITICAL EXCITATION
2.1 Selection of the Basis Excitations

As mentioned in the introduction, critical excitation is created from a
specific class of excitations suitable for the design of a particular structure
at a particular site, These excitations then form the '"basis’, The question
of how to select the hasis excitations plays an important role in the final out-
come, It is not precisely known just what characteristics an excitation must,
or must not have in order to be considered a realistic {(or credible) candidate
for the design of a particular structure at a particular site. It is customary
to assume that it is possible to set an upper bound E on the ground motion in
tensity at a given location which is so chosen that its exceedance is too un-
likely an event to be taken into account, Several other characteristics are
also widely accepted as distinguishing realistic candidates of ground motions
from their opposites, Vanmarcke [ 9], for instance, lists the following:

(a) Duration of strong ground motion

(b) Variation of motion intensity with time
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(<) Relative frequency coatent
(d) Effect of macro-zone, micro-zone, and site-soil
(e) Effect of focal distance
Some of these characteristics are clearly of a rather qualitative nature
and it is not obvious how they are best converted into quantitative form,

Discussions of this problem and a suggested method of selecting basis ex-

citations were presented in reference [ 6] , This report is based on a
modified and theoretically better founded version of the last. This stems

from the following line of reasoning,

First of all consider any excitation to be realistic, that has been re-
corded at a site or at some other locations with similar soil conditions, focal
distances, and rmmarco or micro zoaing, In addition, one should presumably
admit any other excitation which has the same or similar characteristics (in
the sense of the above li'st) as the basis excitations, Despite the vagueness
of the list, it may be safe to say that these characteristics are shared by all

linear combinations of the basis excitations, with the proviso that their in-

tensities do not exceed the upper bound E appropriate for that location,

It is not known whether the c;lass of excitations defined in thisiﬁvay com-
prises all that can be considered ''realistic' or '"credible", However, at the
present state of knowledge regarding seismological disturbances, aay further
expansion of it seems difficult to justify, In this report, at any rate, the
class of "realistic'’ basis excitations will be defined as just described,

2.2 Effective Duration of Excitation
The intensity measure ] l ;C l l adopted in this report is based on the

square integral of the ground acceleration,
1

- T. 3 2
x| =[£ x () dt] (2-1)



The limits of the integration defines the effective duration of the excitation,
Real ground motions lasta few seconds to a few minutes, However, the portion
of the shake that influences the response of a particular structure is limited
to a strong region of the shake, the duration of which depends on the rigidity
and damping of the structure, . A d;etailed discussion of this problem is given
in Appendix D, A simple rule of selecting the effective duration based on the
fundamental frequency of vibration w {r.p.s.) and damping ratic B is

T =z={(-nC)(Bw) -1 (2.2)

where C is the acceptable decay ratio (say 1/5) which indicates the fraction
of the maximum value of the unit impulse response peak that can be disre-
garded with no appreciable error, In practical application and based on com-

putational experience, the following rule was also used

4(sec) £ T = 8x Tl < 80 { sec) (2.3)

where T1 is the fundamental period of the structure and is equal to %E

2.3 Determination of the Critical Excitation

Although the detailed derivation of generating the critical excitation is
given in Appendices A, B and C, it is not out of place to summarize it at
this point.

In mathematical terminoclogy, the selected class from which the critical
excitation is gen;.-rated lies in a linear manifold spanned by the basis ex-
citations, In symbols , if ;l(t)’ :;2(1:), ..... xn(t) are the ground accele-
rations that form the basis, the manifold which is spanned by them contains

all excitations



- n -
() = )2 (2.4)

The class of allowable ones among these then includes all whose intensity
] ] x || does not exceed the given maximum E,
If the intensity is defined by (2,1), then the intensity constraint takes

the following form

1/2

- ) T..2 .
H=]]= [g x (t>dt] E (2.5)

with E being a prescribed value,
The response y(t) of a linear structural system to an excitation in the

manifold ig

&
t . & t°.

where h(t) is the impglse response function of the design variable under con-
sideration and Yi(t) is its response to a basis excitation ;i(t)' The critical
excitation ;cc(t) in the manifold is now defined as one which drives the
response y(t) to its maximum value and which at the same time obeys the in-
tensity constraint (2.5).

The problem of determining a critical excitation is the following. It
is required to find an excitation ;Ec(t) of the form (2,4) which obeys the con-
straint (2,5) and which drives the response y(t) in (2, 6) to its largest peak.

If the time t* at which y(t) reaches its maximum were known, the problem

=10~



would be that of deter mining a set of coefficients 2., i=1, 2, ... n, which

achieves
* q *
maxally(t )[ =ma.xa-| Z ai yi(t )l‘ (2.7
i i i=l
subject to the constraint
T. n n T . -
E2 > 0[ 22 (t) dt = Z; a, a f x,(t) x . (t) dt
i=l j=1 0
Z‘n n (1]
= ‘ ., a.a., X .. (2.8)
=l =1 ' 1 :
where
T Ld .
w5 =[x =0 ar (2.9

However, the time instant t* is not known, Thus the maximization y(t) must
be carried out with respect to time t also, i.,e,,

n

max, max, [v(t)] =max, max, [ Z; a; v, (t) I (2.10)

i i 1=

must be determined. The maximization with respect to a, can be carried out
by simple linear algebra, However, the one with respectto t can be done
only by a numerical evaluation. These two procedures will be described now,
One can, first of all, ignore the absolute value in Eq. (2.10). For, if
some set of a, achieves the positive maximum, the set of (-ai) yields the
negative one, and vice versa, Thus, y{t) is to be maximized for a fixed time

t and subject to Eq, (2,8). This can be done by setting

~11-



a n n n
0= 5— R HOE Y Y a3, Xy,
j i= i=l 3=l J
n -
=y,(t) +2\ L xua i=L 2 ..n (2.11)
i=1

where \ is a Lagrangian multiplier. This equation can be rewritten as

ke
- _ 1 . -
1; xji a, == 2\ YJ(t) s ] 1, 2, ... n (2.12)

or, more comprehensively, in matrix form, namely

-

Xxa == --2lf-Y(t) (2.13)
where a and Y(t) are n-dimensional column vectors with the components a

and y.(t) , respectively, and x is an n x n-dimensional matrix with the com-

nonents XIJ The sclution is thus

a=- = x Y (2.14)
where invertibility of x can be shown in the following way. One assumes
to start with that the basis excitations are linearly independent. In practice
this is almost a matter of course and in theory it merely iniplies that none

of those excitations can be omitted from the basis, Thus,

n non T . o n -
0 < E)f Z x(8)] dt = ;Z:leélai aj_g xi(t)x(t ;;1 [R5 x g



The expression on the right can be interpreted as a gquadratic form in.the
variables a, , and in fact a positive definite form as the inequality shows.

It follows that the matrix :( is positive definite also, hence has only positive
eigenvalues, Since none of the eigenvalues vanish x is invertible,

The Lagrangian multiplier can now be determined from the constraint

equation Eq. (2.8) which, written in matrix form, is
{2,15)

where aT is the transpose of the vector a. Substituting Eq. (2.13) into Eq.

(2.15) gives

—-12— T (xh T 2ty - —17 T x vy <E?  (2.16)
an 4N
LT -1

in which use has been made of the fac;: that ( x ) = x because x is
symmetric. Eq. (2.14) implies that the values of a; as well as v(t) grow
larger in magnitude as \ decreases. Thus, y(t) is maximized, for fixed t,

if equality prevails in (2,15), i.e., if

" 1/2
A = §-lf [YT(t) P Y(t)] (2.17)

This value, substituted into Eq. (2,14), gives the maximizing coefficients a;
It remains to carry out the maximization in Eq, (2,10) with respect to

the time t, This can be done numerically by subdividing the time period T

of interest into subintervals At, Ia computational practice, to achieve a de-

sired accuracy in the results without excessive effort, consideration must be

-13-



given in the choice of At to the natural periods and decay time of the impulse
response h(t) of the structural variable as well as to the frequency contents
of the basis excitations, In this study, the subinterval At was taken as

T/200 (i,e., approximately TI/ZO).

2.4 Practicality of the Critical Excitation
The critical excitation produced accordiag to the method presented
above is a ""worst-case' or upper bound approach, Its practicality certainly
needs verification and it is done by three comparison studies versus real
ground excitations:
(a) Comparison of the characteristics of time-histories,

(b) Comparison of the frequency contents of the Fourier
Spectra,

(c) Comparison of the response peaks of various design
variables.

These studies were carried out in reference [ 6], Appendix A, B and
C. When the time-history and Fourier Spectfum were plotted separately for
the critical excitation and for the real ground accelerations, there is no ob-
servable difference., The comparison of the peak responses of various design
variables was also carried out in the same reference and appendices, The
ratios of the peak responses obtained from the critical excitation to that ob-
tained from the real ground accelerations were in the range of 1.1 to 2.0,
It can be concluded that the critical excitation is a realistic but somewhat
conservative ground motion. When it is applied to structures of social or
economical importance it will enhance the confidence reliabity of the struc-

ture,

~1ld=



3. CRITICAL EXCITATION OF INELASTIC STRUCTURES
3.1 General Discription

The basic advantages of the critical excitation method is that it produces
highly reliable assessments of structural earthquake resistance, Effective
computational procedures exist by which such assessments can be derived, pro-
vided however the structure under study respoands elastically. Evidently,
this is unrealistic, Under severe ground shaking structures will exceed their
elastic limits, and many are in fact designed to do so. It is accordingly
highly desirable to develop computational procedures that are effective als‘o
for inelastically vibrating structures but which do not compromise the high
reliability of the assessments to which they head.

Two studies exist which seek to achieve this goal. One was reported
previously [10], and another in Appendix C of this report, Both extend the
idea of the critical excitation into the inelastic domain and provide workable
procedures, The first study was aimed at producing a critical excitation
with intensity constraint only, The difficulty in regard to this approach is
discussed in section 3,2, The second study is based on the equivalent lin-
earlization of the nonlinear system, A brief summary is given in section 3,3
while a detailed description is given in Appendix C,

3,2 Discussion of Critical Excitation with Intensity Constraint only,

The first study follows the same path as that of the original idea for the
linear structure, that is to determine the critical excitation with intensity
constraint only. It did not achieve the desired assessment reliability on the
same level as that for the elastic one, The reason for their short fall is
fairly deep-seated, One can trace the trouble to the fact that the critical ex-
citation method is based on a fundamental inequality (the Schwarz inequality)
which can be exploited only when the structure is elastic. What would be

needed therefore is an analogous inequality which applies to inelastic struc-
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ture, No such inequality is known, to the writers' knowledge. It therefore
seemed desirable to explore the possibility of deriving one,

Two avenues were explored towards this objective, As of this writting
neither has completely produced results, but neither exploration seems ex-~
haustive. Kach can be stated as a conjectured theorem regarding certain

very general system properties. They can be described 35 follows. |

1. A Theorem Regarding Random Connections of Systems,

Suppose two systems S1 and 52 (not necessarily linear) are coannected
in series, as shown in the figure, and driven by an input X which is a unit

impulse

applied at the time t =0. The problem is as follows: for a given 52, how
should S1 be chosen (subject to a certain normalization constraint}, in order
for the output Z to have the largest response peak at the time t = 0? The

following conjecture arises:; the system S1 must obey the same (differential)

equation as S, except the t in all is replaced with ( - t},

2

This coajecture is valid for linear systems {i,e.,, elastic structures
and the critical excitatioca method) but its extension to non-linear (inelastic)
systems has not yet been proven,

2. A Representation Thecrem for Random Processes

The second conjecture seeks to exploit a parallel between the critical

wlf=



excitation method and the response characteristics of systems to white noise
inputs. This parallel was pointed out at one time for linear systems [4]
but never exploited. The exploitation in the direction of nonlinear systems

require the proof of a theorem conjectured to be roughly as follows:

Every random process whose distribution functions F(xt [ X }, con-

t-€
ditioned on the past X, _, are continuous in x, for every € > 0, can be gene-
rated from white noise by a suitable nonlinear systems, unless the random
process has a perfectly predictable component, In that case, only its imper-
fectly predictable component can be so generated,

A proof of this theorem may have been obtained receantly for the simpler
case of discrete time, It is fairly abstract however and needs to be carefully

reviewed before publication is attempted,

3,3. Critical Excitation of Nonlinear System Replaced by Equivalent Linear
System

The critical excitation of nonlinear system replaced by equivalent lin-
ear system is presented in Appendix C., However a brief summary is given
below.

The typical nonlinear equation of motion of a single degree of freedom

oscillator is
my + ¢y +ky +f =x (3.1)

The term { is a nonlinear function associated with the nonlinearity of the os-
cillator and its presence does not allow 2 straight forward evaluation of its
critical excitation for a given basis and reference inteasity E, To overcome
this, a linearization technique based on the concept of equivalent lineariza-

tion {31 ] is employed, According to this approach the nonlinear oscillator is

-17-



replaced by a linear one in such a way that the difference d between the two

oscillators is minimized, The equivalent linear oscillator is:
my +cSy+kSy=x (3. 2)
where ¢- and k° are equivalent damping and stiffness;

c =c¢ tc
(3,.3)

k- =k +k

The new parameters ¢qs Kk, are time independent but they do depend on the

solution V1, of the equivalent linear oscillator as will be domonstrated below,

The minimization of the difference d is expressed as:

A (@%) =min ¥, k) (3.4)

where ¥ is an averaging operator,
By carrying out the minimization operation, the following equation is
obtained:

A*p=hb (3.5)

where p and b are 2-vectors as:

ko A {fy)
p= and b= _ (3.6)
<o A (fy)
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and A is a 2 x 2 matrix:

Ayd Ay

5
1

£3.7)
4Gy AGH

Eq. (3.5) assumes the equivalency of the two oscillators (Egs, 3,1 and-3, 2),
The existence of the equivalency depends on the existence of the vector p,
which in turn depends on the invertibility of A, +

It is clear, in general, the solutions from Egs, (3.1) and (3. 2) will dif-
fer. However, any trial value <y and ko result in trial solution Y, and {rL
from Eq. (3.2). When they in turn are substituted into Eq. (3. 5) a new set
of values ¢, and k, can be found, Thus by successive computation an equi-
valent linear system will be obtained.

In order to apply the equivélent linear system for generating the crit-
ical excitations and then to construct the nonlinear response speétra, one
proceeds in the same way as in the linear case; first select a set of basis
excitations xi's. For a given initial set of gy and kO’ equivalent linear crit-
ical excitation and a vector can be determined, With these prelininary

values of vector 2, the A matrix in Eq, (3,7) is determined as follows:

(3.8)

The invertibility of A depends on the linear independence of y. ; i =1, .
N, which depends on the selection of linearly independent basis excitatioas
%, 1=1 N

i’ 3’ .

-
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where R, Q and W are N x N matrices:

i}

R” cﬂwi%)

Q

i3 A (y, Vj) (3.9

& e

Similarly, the b vector becomes

= = a4 T
b1 = izjl ay af(fyi) a .

|

(3.10)

N . T
sy N ey -2

i=]

faa

and thus new values of ¢, and kO can be computed from Eq, (3.5), Successive

computations are carried out until two consecutive c, and k, values differ

0 0
insignificantly,

The equivalent linearization of nonlinear system approach were em-

ployed to produce the nonlinear critical design spectrum, These were pre-

sented in detail in Appendix C,
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1. Introduction

This paper deals with the problem of how to assess the seismic
resistance of important structures, particularly of huclear reactor
gstructures. Ideally, a person who is responsible for éuch an assessment
is expected to certify on a high confidence level that a structure will
gurvive all credible ground motions which can occur at its location, and
perhaps also that it will do so on no more than a prescribed damage level.

Most of the design procedu;es presently in use or under investigation
are based on design response spectra [ 1, 2] obtained by statistical evalua-
tion of past ground excitations assuming certain probability distributions
{e, g. normal or lognormal) of response peaks. Artificial time histories
generated from these spectra are also useéd [ 4]. However, it is not clear
whether these approaches lead to designs that can be relied upon on the
confidence levels that are presurnably desired for structures such as
nuclear reactors whose integrity during an earthquake is of considerable
importance, The trouble lies with the fact that the analysis of structural
integrity seems highly sensitive to the assumptions regarding the nature of
those probability distributions: small variations, especially in the tails of
the distributions, can induce large changes in the desired results. This
greatly weakens the reliance that can be placed in many assessments of
earthquake resistance.

In this paper, a new method is developed which has the potential of
avoiding those weaknesses. It is more specifically based on assumptions
that seem well supported by seismological cbservations but side-steps
others, especially those regarding the probability distribution of ground

motions, which are more conjectural.



The avoidance of such assumptions is usually purchased at the
expenserof some conservatism in the results, and the new method is no
exception. The assessments of earthquake resistance that are obtained
through it are somewhat conserv;ative. This makes its application most
attractive to structures or devices whose integrity duriﬁg a strong earth-
quake is of special importance, and nuclear reactors are felt to be good
cases in point. The present paper therefore describes several such

'
applications.

The method relies on the concept of the critical excitation. It is
defined here as an excitation, among a certain class of excitations, that
will produce the largest response peak for a structural variable of interest,
The class in which critical one is determined shouid be chosen in such a
way that it includes all ground motions that are credible for the location
under consideration, and as few others as possible.

The definition of what does and does not constitute a credible excita=-
tion proved to be one of the major difficulties in the develcpment of the
method. This development is sketched in Sect, 2 below and the definition
that was ultimately adopted is described there., It appears to represent
a fairly realistic one in that it retains those features which are generally
accepted as being characteristic of credible ground motion, while it excludes
others which are of a more doubtful nature. Sect, 3 then outlines the com-
putational procedure by which the critical excitations, and the response
peaks they generate, are determined. Sect. 4 finally describes the applica-
tion of the method to three reactor containment structures. The upshot or

the results reported there is that there exist many credible ground motions

that drive the structures to higher response peaks than any already
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recorded ground moticons, and hence, that reliance on the latter may lead
to assessments of earthquake resistance that are lower in some cases

than that suggested by their importance,

2. Definition of Critical Excitations

A critical excitation has just been defined as one among a class of
allowable excitations which will produce the most severe response peak in
a structural variable. The nature of the critical excitation thus depends
on the class of allowable excitations on which it is based and on the
structural variable of interest. The choice of the latter is at the discretion
of the structural engineer. That of the former however is not. In fact,
the designer must in some way take into account all ground motions that
can realistically be expected at the site of the structure.

Unfortunately, it is not quite clear just what characteristics an
excitation must, or must not, have in order to be considered a realistic
(or credible) candidate for a ground motion during an earthquake. It is
customary to assume that it is possible to set an upper bound E on the
ground motion intensity at a given location which is so chosen that its
exceedance is too unlikely an event to he taken into account. Several other
characteristics are also widely accepted as distinguishing realistic can-
didates of ground motions from their opposites. Vanmarcke [5], for
instance, lists the following:

(a) Duration of strong gound motion

(b) Variation of motion intensity with time

(z) Relative {requency content

(dy Kffect of macro-zore, micro-zone, and site-soil

(e) Eifect of focal distance

36



Some of these charactaristics are clearly of a rather qualitative
nature and it is not obvious how they are best converted into quantitative
form. DBased on some early and inadequate ideas by one of the writers
(61171, .Shi.nozuka. [8] accomodated (c), and Iyengar (a) and (b). The
present authors proposed another approach intended to allow for all five
[10]. The one on which this paper is based is 2 meodified and theoretically
better founded version of the last, OCne is led to it by the following line of
reasoning,

One should first of all consider any excitation to be realistic, for a
given site, that has already been recorded there or 2t some other location
with similar soil conditions, focal distances, and macro or micro zoning.
These are called '"hasis' excitations below. In addition to these, one
should presumably admit any other excitation which has the same or similaxr
characteristics (in the sense of the above list) as the basis excitations.
Despite the vagueness of the list, it may be safe to say that these charac-
teristics are shared by all linear combinations of the basis excitations,
with the proviso that their intansities do not exceed the upper bound E
appropriate for that location.

It is not known whether the class of excitations defined in this way
comprises all that can be considered ''realistic' or ''credible''. However,
at the present state of knowledge regarding seismological disturbances,
any further expansion of it seems diificult to justify. In this paper, at any
rate: the class of '"realistic’’ excitations will be defined as just described.

In mathematical terminology, the class lies in a linear manifold
spanned by the basis excitations, and it is a solid sphere within it namely

the one with the maximum intensity E as radius. In symbols , if Xl(t) .
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Xz(t) s eeas xn(t) are the ground accelerations that form the basis, the

manifeld which is spanned by them contains all excitations
n .

= Z a x (t) (1)
i=1

The class of allowable ones among these then includes all whose intensity
ﬂxw does not exceed the given maximum E.

Several intensity measures have been employed for seismic excita-

tions in the past. Among them, the peak ground acceleration

|% || = max, [x @) (2)

is probably the one used most often. The square integral of the ground
accéleration over the time period T of interest, i.e.
&u:[f¥w$“ 8
0 J
is another. The second is more easily utilized towards obtaining peak
responses of linear structural systems. Hence it is used in this study and
a class of allowable excitations is defined as a set of ground accelerations

of the form (1) whese intensities satisfy
- 1/2
I= | 2 [f ] < E (4)

with E being a prescribed value.
The response y(t}) of a linear structural system to an excitation in

the manifold is

£ .. 1 ..
y® = [ x(Mh@-T)dT= ), a [x (Mh(-TaT
D i=1 ' 0 t
n
= Z a. v, (t) (5)
i=l



where h(t) is the impulse response function of the design variable under
consideration and Vi(t) is its response ta a hasis excitation xi(t).

The critical excitation xc(t) in the manifold is now defined as one which
drives the response y(t) to its maximum value and which at the same

time obeys the intensity constraint (4).

3. Determination of Critical Excitations

The problem of determining a critical excitation is the following,

It is required to find an excitation xc(t) of the form (1) which obeys the
constraint (4) and which drives the response y(t) in (5) to its largest peak.
If the time £ at which y{t) reaches its maximum were known, the problem
would be that of determining a set of coefficients 3, i=1,2, ... n, which
achieves ¢

ly(t*)l-max | i a, y. (%) ] . (6)

'L 1.-

subject to the constraint

T.‘..,2 o) T.. .
Ezfox () dt:él aiajgxi(t)xj(t) dt

1) Nt >

j=1

i
? 1 .

=/ Z a, a, X, {7
i

=1 j=1 b )M

LX) T LR
where XLJ = gxi(t)xj(t) dt (8)

However, the time instant t is not known. Thus the maximization

yv{t) must be carried out with respect to time t also, i.e.,

max, max 1!Y(t)] = max, max , Z a. y' t)! (9

,g(’:i



must be determined. The maximization with respect to a, can be carried
out by simple linear algebra. However, the one with respect to t can be
done only by a numerical evaluation. These two procedures will be de-
scribed now,

One can, first of all, ignore the absolute value in Eq. (9). For, if
some set of a, achieves the positive maximum, the set of (-a.l) yields the
negative one, and vice versa. Thus, y(t) is to be maximized for a fixed

time t and subject to Eqg. (7). This can be done by setting

@ 5D ek
0 = ( a, v.(t) £ A a..a.,i«':..)
Baj 2y b =171 11
n. .
=y, + 2 ) Z'x..ai j=1,2,... n (10)
i=1 Ji

where M\ is a Lagrangian multiplier. This eguation can be rewritten as

n ..

N D=
le ai— 2N YJ(t)s 3‘1’2: IE e (11)

or, more comprehensively, in matrix form, namely

. 1
Xa=- =% Y (t} {12)
where a and Y(t) are n-dimensional column vectors with the

components a; and Yi(t)’ respectively, and X 1is anh x n-dimensional

matrix with the components x TR The solution is thus

1 v -1
—2‘7\: X Y {t) (13)

a = -

where invertibility of X can be shown in the following way. One assumes
to start with that the basis excitations are linearly independent. In practice

this is almost a matter of course and in theory it merely implies that none

ko



of those excitations can bhe omitted from the basis. Thus,

T..

T e n n
o< Of iaixi(t) dt = Z__.‘.l 5§1aiaj X (t t)d’c-i Zaa. x

i=1 i 0 i=l j=1 °

The expression on the right can be interpreted as a quadratic form in the
variables a; and in fact a positive definite form as the inequality shows.
It follows that the matrix X is positive definite also, hence has only

o

positive eigenvalues. Since none of the eigenvalues vanish X is

invertible.
The Lagrangian multiplier can now be determined from the constraint

equation Eq. (7) which, written in matrix form, is
a¥ Xa<E : (14)

where a.T is the transpose of the vector a. ' Substituting Eq. {13) into

Eq. (14) gives

A vT e @ HTx Xty = 5 YR e X Tty < B2 (15)
2 2 -_—

4N 4x

in which use has been made of the fact that (5(‘: _l}T = X:. -1 hecause X is

symmetric. Eg. (13) implies that the values of a, as well as Y (t} grow
larger in magnitude as \ decreases. Thus, Y(t) is maximized, for fixed t,

if equality prevails in (14), i.e., if

. .y 1/2
e s Yhm XTh v (16)

This value, substituted into Eqg. (12), gives the maximizing coefficients a, .
It remains to carry out the maximization in Eq. (5) with respect to

the time t. This can be done numerically by subdividing the time period T

H\



of interest into subintervals At . In computational practice, to achieve
a desired accuracy in the results without excessive effort, consideration
must be given in the choice of At to the natural periods and decay time
of the impulse response h(t) of the structural variable as well as to the
frequency contents of the basis excitations. In this study, based on com-

putational experience, the time interval T in Eq. (4) is taken roughly as
4§_T=8le_<_4:0 {sec) (17)

where Tl is the fundamental period of the structure. The subinterval
At was taken as T /200 (i.e., approximately Tl /20). Computation of
critical excitations for 6 structural variables consumed a computer time

of roughly 2 minutes on an IBM 360/65 machine, an effort which is con-

sidered quite modest.

4, Analysis of Nuclear Reactor Structures

In order to illustrate the critical excitation approach to the practical
design of structures, particularly of nuclear reactor structures, three
analyses of containment structures are presented below. The first two
example were drawn from the technical literature [6] [7] . The third
was obtained from a civil engineering consulting firm which specializes in
the design of such structures.

Effects of soil-structure interactions are represented in the analysis
by introducing equivalent soil springs. In order to allow consideration of
the geclogical properties of the construction sites, two sets of ground
accelerations which were recorded respectively on stiff soil sites and on

rock sites [11], are selected as basis excitations see Tables 1 and 2.

Accordingly two classes of credible ground excitations are constructed

2
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from them in the way described in the previous section., The critical

excitations are, then, computed for several design variables of each struc-

ture, Finally, comparisons are made between response peaks due to

critical excitations and those produced by several actual ground motions.
The results obtained are as follows.

4.1 Reactor Structure [

The first example is a relatively simple model of a nuclear reactor
building analyzed originally by Hamilton [ 12]. It consists of two sub-
structures, namely the containment building and the auxiliary building. For
the structural analysis it is idealized as a 2 dimensional two-sticks model
with lumped masses, a3 shown in Fig. 1. The effects of soil-structure
interaction are introduced by two equivalent soil springs which are attached
to the foundation in horizontal and rotational directions. .

For the dynamic analysis, the first six modes are used. The viscous
damping is taken as 7% of the critical for each mode. The first three
natural periods are . 342, .132 and , 067 sec.

In order to illustrate the assessment of the earthquake resistance of
this structure, it is assumed that it is to be constructed on a stiff soil side in
California. Accordingly the twelve ground accelerations recorded on stiff
soil sites in that area are chosen as the basis excitations. They are listed
in Table 1. The maximum intensity E of Eq.4 is taken to be that of the
NS-component of the Imperial Valley earthquake, as recorded at El Centro

on May 18, 1940. This intensity to E = 7. 90 ft/sec>/2

, with T = 4 sec as
the relevant duration of strong ground motion. The maximizations described
in the preceding section are carried out at intervals of At =.02 sec.

Critical excitations are computed for six design variables, namely

top displacement, bottom moment and bottom shear for each substructure,
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The critical excitation for the bottom moment of the containment building
is shown in Fig. 2 along with the record of the San Francisco earthquake,
as recorded at the Alexander Building on March 22, 1957. By inspection,
at least, the former seems as realistic a sample of a possible ground
motion as the latter. This impression is confirmed by a comparison of
their Fourier spectra in Fig. 3.

Some of the results of the calculations are presented in Table 3.
The first column lists the response peaks generated in several design
variables by the critical excitations. Column 2 and 3 show the response
peaks produced by the ground motions recorder at El Centro and at the
Alexander building, normalized to the same intensity El and column 4
the so-called i’response envelope'!, i.e., the largest peaks due to the 12
basis excitations,

The comparison among these figures shows that there exist realistic
excitations, namely the critical ones as well as others with similar
characteristics, which produce reskponse peaks that are higher by factors

of 1.4 to 2 than those produced by recorded past earthquakes.

4.2 Reactor Structure II

The second example is a containment structure to be built on a stiff
soil site in India, according to information presented by Arya, et al. [13].

This structure consists of three substructures, namely i) the outer
containment, consisting of an outer cylindrical shell with a spherical dome
at the top, ii) the inner containment consisting of an internal cylindrical
shell and a cellular grid at the top, and iii) the internal structure which
includes the reactor internal structural system and the raft, A vertical

cross section of the structure is shown in Fig.4 a, For the structural

Ny
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analysis, this structure is represented as a three-sticks model with
lumped masses as shown in Fig. 4 b. The effect of soil stiffness on the
imbedment port‘wn‘is included by introducing one rectational and 8 trans-
lational soil springs.

Dynamic analyses are performed by using the first 6 modes, Damp-
ing ratios are taken as 5% for each mode. The {irst three natural periods
are .699, .232 and .121 sec.. Because no earthquake records in India
are available, to the authors the twelve ground accelerations in Table 2
recorded in the United States are used as the basis excitations. The
maximum intensity E is taken as that of El Centro earthquake as for the
preceeding structure but over a time interval T of 6 sec. Maximizations
are carried out at intervals of AT =.03 sec. The critical Excitations are
co&xputed for several design variables, namely top displacement, bottom
moment and bottom shear face for each of two containment structures.

The critical excitation for the bottom moment of cuter containment is show‘n
in Fig. 5, along with the El Centro ground motion. Fig. 6 displays their
Fourier spectra. All are normalized to the same intensity E. Again, no
characteristics are evident in either that are not present also in the other.
The response peaks due to the critical excitations are compared in
Table 4 with those generated by two recorded ground motions, namely at
El Centro on May 18, 1940. and at Castaic during the San Fernando earth-
gquake on February 9, 1971, Also, the peaks from the response envelope
are listed. As it happens, they are 21l produced by the same ground motion
record, namely the one from El Centro.

Asg in the preceding example, the conclusion is that there are realistic

ground motions which induce response peaks in these structures that are

higher (in the present case by factors up to 1.77) than those considered in

previous assessments of earthquake resistance.

s
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4,3 Reactor Structure III

The last example to be discussed here is a relatively complex
reactor structure for a nuclear power plant.which is to be constructed on
a rock site in the United States. It consists of three substructures,
namely the containment building, the internal structure and the annulus
building. A vertical cross section of this structure is shown in Fig. 7 a.
For the analysis, it is idealized into a 3-dimensional stick model with
lumped masses as shown in Fig. 7 b. Eiffects of soil-structure interaction
are included by equivalent soil springs in three translational and three
rotational directions.

The first fifteen modes are used and viscous damping is taken as 7%
of the critical one for each mode. The first three natural periods are
.275, .276 and . 138 gec.

As the basis excitations, twelve ground accelerations recorded on
rock sites are used. They are listed in Table 2. The i.ntensi.ty’ E assumed
to be that of the ground motion recorded at the Pacoima Dam during the
San Fernando earthquake over a period of T = 4 sec, i.e., E = 17.89 ft/.
secS/Z. Maximizations are executed at intervals of At = .02 sec,

The critical excitations are computed for nine design variables,
namely top displacement, bottom moment, and bottom shear face for each
of the three substructures. The critical excitation for the bottom moment
of the containment building is shown in Fig.5, along with the Pacoima
Dam ground motion.

The response peaks due to the critical excitations are compared in
Table 5 with those recorded at other rock sites, namely at the Pacoima

Dam during the San Fernando earthquake and at the Golden Gate Bridge
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during the San Francisco earthquake. All are of course normalized to
the same intensity E. The peaks of the response envelope are also shown
in the table.

The critical response peaks are seen to be higher than the other
table entries by factors ranging from 1, 10 to 1. 87. The conclusion here
is thus the same as in the preceding two examples: there are many
credible excitations that exert higher stresses on this structure than those

produced by recorded past earthquakes.

5. Conclusions

A new method has been described for the assessment of seismic
resistance of structures, particularly of nuclear reactor structures. The
method is based on the concepts of critical excitations and responses. It is
derived under well-specified assumptions and by a well-defined procedure.
The design ground excitations, namely the critical excitations, obtained
are found to be quite realistic samples of possible ground motions.

The effects of these excitations were analyzed on three designs of
reactor containment structures. It was found that the resulting response
peaks are higher by factors ranging from 1.1 to 2.0, approximately, than
those that would have been produced in these structures by already
recorded ground motions. The conclusion therefore is that there exist
many excitations which are realistic candidates for seismic gro_rund
motions at any location but which will drive a structure there to stronger
responses than is evident from the history of such responses in the past,

Experience with similar analyses of other structures by this method

indicates that competent structural engineering designs are typically

A1
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adequate to accormnmodate these higher response peaks in ways provided
for by the designers. It is considered very likely that the same is true of

the structures discussed abova.
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Table 1, Basis Excitations on Stiff Soil Sites
File
number Earthguake Date Record Comp,
CITull’\eport
AQ001 Imperial Valley 5/18/40| El Centro NS
AQ01 Imperial Valley 5/18/40 | E1 Centro SO0W
A014 San Francisco 3/22/57| Alex. Bldg.,S.F, NOSW
AOQlé6 San Francisco 3/22/57 | State Bldg.,S.F. S09E
B024 Lower California 12/30/34 | El Centro NS
D056 San Fernando 2/09/71| Castaire N6IW
D058 San Fernando 2/09/71| Hollywood Storage | NS
1. A,
D058 San Fernando 2/09/71 | Hollywood Storage | N9OE
LA,
£083 San Fernando 2/09/71 | 3407 6St. L.A, NS
£E083 San Fernando 2/09/71| 3407 éth St. L., A, NSOE
H11l5 San Fernando 2/09/71] 15250 Ventura Blvd | N11E
L. A,
Q233 San Fernando 2/09/71| 14724 Ventura Blvd | N78W

L.A,
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Table 2. Basis Excitations on Rock Sites
File
number Earthquake Date Record Comp.
CcIT Rler;ort
AQ15 San Francisco 3/22/57 | Golden Gate,S.F. NI1OE
B025 Helena 10/31/35 | Federal Bldg.S.F. NS
B037 Parkfield 6/27/66 | Temblor S25W
Co041 San Fernando 2/09/71 | Pacoima Dam S16E
C106 San Fernando 2/09/71 | C.I.T.,Seis. Lab. EW
J141 San Fernando 2/09/71 | Lake Hughes Sta.l ! NZ1E
J142 San Fernando 2/09/71 | Lake Hughes Sta. 4 {. S6GE
J144 San Fernando 2/09/71 | Lake Hughes Sta. 12 ; N21E
L166 San Fernando 2/09/71 | 3838 Lankershim % NS
Blvd., L. A. |

0198 San Fernando 2/09/71 | Griffith Park Observ, f SN
Pz21 San Fernando 2/09/71 | Santa Anita Dam ) N87TW
W334 Liythe Creek 9/12/70 | Wrightwood i S25W

3\
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Table 3. Maximum Responses of Reactor Structure [

Structural Alex Bldg.
Variables Critical | E1 Centro S.F. Envelope
3/22/57

Top Displ. {in)

*

Containment Bldg. 1.185 . 525 . 820 . 820
Auxiliary Bldg. . 049 .027 .018 .037"

*®

Bottom Moment (10 Kip-ft)

Containment Bldg. 1.022 . 439 .719 719"
Auxiliary Bldg. . 141 .078 . 052 . 107

Bottom Shear {1 OSKip)

Containment Bldg. . 642 . 300 . 462 . 4627
Auxiliary Bldg. . 380 . 207 .138 .289
Note:

*Response peaks due to ground motion at Alexander Building,S.F.3/22/57

Response peaks due to ground motion at Sixth Street, L.A. 2/9/71
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Tahble 4. Maximum Responses of Reactor Structure II

Structural E]l Centro ! Castair
Variables Critical 5/18 /40 2/9/71 | Envelope
Top Displacement (m)
at node 1 . 227 169 132 169"
at node 27 . 139 . 103 . 082 .103"
Bottom Moment
(106 Ton-m)
member 25 711 . 546 . 386 546"
member 47 . 471 . 357 . 264 .357
Bottom Shear
(104 Ton)
member 25 1.09 . 841 . 587 841"
member 47 1,39 1.075 .832 1.075"

Note:

*Response peaks due to ground motion at El Centro, 5/18/40

53



-21-

Table 5, Maximum Responses of Reactor Structure [II

Response Peak

%}t::ic;;lreasl Critical nggma Gol%ix;dgzte Envelope
9/2/71 3/22/57

Top Displacements (inch)
at node 6 . 749 415 . 499 636" "
at node 16 4,183 2,351 3. 955 3.955"
at node 21 3, 201 1.769 3,059 3,059
Moments (107 Kips-1ft.)
member 2, node 1 6.558 3. 655 4. 690 5.849
member 6, node 2 3.848 2.140 3. 605 3.605"
member 17, node 1 1.570 . 794 1.004 1,349 "
Shear Forces (lOSKips)
member 2, node 1 5. 736 3,181 4,110 5.122" "
member 6, node 2 2. 444 1,207 2.319 2. 319*
member 17, node 1 1,993 1.014 1. 280 1,712 7

Note:

%Response peaks due to ground motion at Golden Gate Bridge, 3/22/57

*

’_1

*
Response peaks due to ground motion at Santa Anita Dam, 2/9/71
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CHAPTER 1
THE CONCEPT OF EQUIVALENT LINEARIZATION

1,1 Introduction

The response of a nonlinear dynamical structural system is as-
sociated generally with the solutioﬂ of 2 set of second order nonlinear dif-
ferential equations. Techniques for exact closed form solutions are limit-
ed only for a few special cases of nonlinearity and types of inputs, A re-
view of available techniques for noalinear analysis oriented toward earth-
quake engineering area is given by Iwan [10 ].

The idea of replacing a nonlinear structural system by an "equiva-
lent' linear one seems very attractive, for ﬁhe reason that by this replace-
ment the well-known results of linear analysis can be extended to nonlin-
ear problems. There are various criteria according to wﬁich the equiva-
lence of the two systems is assured. As such a criterion in this thesis,
the minimization of the time average of the square of the difference be-
tween the two systems will be employed [ 8 ]. This point of view has
the advantage of giving a very clear physical picture of the nature of the
approximation. Furthermore it will be assumed that the equivalent linear
system is time-independent and therefore the equivalent damping and stiff-
ness matrices are constant in time,

Recen.tly Spanos [ 11 ] and Mason[12 ] used this technique to
develope approximate solutions for nonlinear systems subjected to deter-
ministic and random inputs. -In the present work, the equivalent lineariza-
tion technique is employed in a different direction of application, namely to
generate critical inputs for nonlinear structural systems, A brief summary
of the linearization technique is presented in the first chapter, More de-

tailed discriptions can be found in reference [ 8 J.

f
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1,2 Formulation of the Problem

The response of a discrete n-degree-of-freedom nonlinear struc-
tural system subjected to dynamic inputs is described mathematically by

the following set of differential equations:
M.y+C. y+K:- y+f=x (L

Where M is a n x n mass matrix, C is 2 n x n damping matrix and K is a

n x n linear stiffness matrix, ;3;, :y- and y are n-vectors of the system ac-
celerations, velocities and displacements associated with its n-degrees-

of-freedon. f is a n-vector of general function of;r and y expressing the

nonlinearity of the system. x is a n-vector of the dynamic input.

The equivalent linear structural systems will be described mathe-

matically by the following auxiliary system:

M. y+C®. y+KS . y=x (2)

—t

It is assumed that the equivalent linear system is time invariant and there-
fore the parameters ¢ and K&, which are called equivalent linear damping
and stiffness, are time independent, They can be expressed as:

c®=c +c°

(3)

K¢ =K +x°

where C° and K° are n x n variable damping and stiffness matrices in con-
nection with the nonlinearity of the system,

By proper selection of Co, K° the auxiliary structural system of
Eg. (2) will becorme equivalent to the actual nonlinear one represented by
Eq. (1). According to this formulation the determination of the equivalent

linear structural system will be based on the evaluation of c® and K°. This

i



will be done by minimizing the time average of the square of the difference
between the two systems with respect to c® and K°. If 4 is 2 n-vector

which represents this difference, i,e.

3Ky (4)

’

a=f-¢

By carrying out the minimization, matrices c® and K° will be de-

. . . €
termined in terms of some time averages between the n-vectors y and

-*

ye, which are solutions of Eq, (2) and the n-vector £, This can be ex-

—

pressed as:

[e} _ € ¢ € n
clj ~£(I,Z:£)
(5)
o _ € €
Ky A5 15D
where i, j, =1, 2, ..., n ~

The determination of C° and K° is by first assuming their trial values and
then by solving Eq. (2) and Eq. (5) iteratively until the two succesive values
of C° and K° differ within allowable limits. The derivation of Eq. (5) will
follow.

1.3 Equivalent Linear Damping and Stiffness Matrices

The definition of the equivalent linear structural system is associ-
ated with the determination of the equivalent damping and stiffness matrices
c€ and K® or, according to Eqgs. (3), the determination of c® and KO, This
is based on a minimization technique similar to that given in reference
[ 8 1.

The minimization criterion according to which the equivalency of

Egs. (1) and (2) is defined can be expressed mathematically as:
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min g .41 ¥ o oyhe K (6)

C o k L s
13 . 1)

where: i, j=1, ..., n

where g is a class of solutions in which the solution of Eq, (2) is assumed
to be a member. A particular member of the class #is identified by the
parameters Cc® and K°. The symbol .4 denotes an averaging operator

having the following properties:

D, = A[=t)] =0

o, A [zl(t) +zz(t)] =A[ zz(t)] +A4 [ zz(t)]

., A[z%()] >0; ¥ a(t) £0 and A[0] =0

vy, If :
1 - *Im
A
’ml * " "mm
then:
AlzyTeee AL z,]
,,q[‘z]= ..................
ﬂ[zml] . ﬂ[zmm]

By using the property ¥1 and Eq. (4):
T .1 2 &
,A[d y =_,,4[£i1 d; ] =£Z; D, (7)

where:

i



2 | 2 o SIS
D,=4 [ d ]=ﬂ[(f- c -y - ) kY. 3] (8)
Ji [ i 1 pzl Lp VP qzl p Yq)
From Eq. (8) and according to the property III it is concluded that:

D,>0 ; ¥12=12, ..., n (9)

combining Egs. (7} and (8) the minimization procedure can be expressed

assfollows;
for fixed value of i, T
min o o (Di) ¥ v(t) € # (10)
c .. k..
i, -1}
where: i,j =1, ..., n,
J

Eq. (8) shows that D ;i=l, ..., nis an explicit function of

Coij and koij. According to differential calculus the mimimization proce-

dure results to the following 2n simultaneous linear equations

o D.
c:1 =0
Bcij
¥i=1,2,...,n: ¥ =12 ..., n (11)
8Di
=0
5k°,.
1]
which can be simplified to
B'P]._:g_i; i=1,2, ..., n (12)

where,



k°.
= i
P - =
o
c .
- 1
and
W
B=({-=""-
L

-

(13)

W, L and Z are n x n submatrices with typical elements .4 | y; - YJ' ],

A [ ¥y g,j 1 and A i’i . g,vJ] respectively, The n-~vectors _l_:oi and goi

are the i-th rows of the K° and C° matrices and the n-vectors Iy 8 have

typical j-th elements [ f, . y‘J] and A4 [ £, - YJ] respectively, From

the solution of Eqs. (12) the matrices C° and K° are obtained for agiven

nonlinearity vector f and a set of responses z(t) andj"(t),

The invertibility of matrix B is very important in the above formulation,

In reference [ 8 ] it has been prooved that for linearly independent functions

Y5 (+), Y; (t};1=1, ..., nthe matrix B is positive definite,



CHAPTER 2
CRITICAL EXCITATIONS FOR STRUCTURAL SYSTEMS

2.1 Introducticn

The seismic assessment of socially or economically important
structures requires high confidence level of .reliability' and consequently de-
mands carefully selected ground excitation input for computing responses,
These excitations must be on one hand credible ones and on the other hand
produce upper bound re s‘ponses for the structure in question, As more re-
cords of strong ground motions become available, the information concern-
ing the characteristics of credible earthquakes becomes more accessible,
Based on these statistical informations many investigators have proposed
artifical earthquake models which are stationary or nonstationary stochastic
processes, However these works in general do not consider specific site
conditions or particular structures in question. Consequently there is no
assurance that the ground motion thus produced can produce upper bound
responses, In this thesis a new type of generated ground motion which is
termed as "critical excitation' is introduced, It is defined as an excitation
among a class of credible excitations recorded at a specific site condition
that will produce the highest response of a specific structural design vari-
able, Furthermore the excitationl is subjected to an intensity constraint,
The concept of a critical excitation is described in section 2,2 and the in-
tensity constraint is analyzed in section 2,3, The generation of critical
excitations for linear structural systems is given in section 2.4, Finally the
results obtained in section 2.4 are extented in section 2,5 for nonlinear

structural systems,

7
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2.2 The Concept of A Critical Excitation

A stated before a critical excitation is defined as an excitation among
a class of ""credible'’ excitations of the same characteristics that will pro-
duce the largest response peak for a given structural system.

For a given site condition, a number of earthquake records can be
selected from the available past recorded ground motions occurring at
similiar geological sites, focal distances and macro or micro zonations,

: t . -
These selected records are called '"basis'' excitations:

x(t) 3 i=L2 ..., N (14)

An excitation xm(t) constructed by any linear combination of these
may be considered as a member of the class of '"credible' excitations §
if its intensity does not exceed an upper bound E appropriate for the given

site condition., This is expressed as:

N
_ _ . T
x )=) a -xl)=3" . x
i=]l
xm(t) € £ 'subjected to the constraint (15)
|l x ® |l < E
where the symbol || || denotes intensity and will be defined in the next

section. In mathematical terminology the class £ lies in a linear manifold
spanned by the basis excitations xi(t) : 1=1,2, ..., N and it is a solid
sphere which has as radius the intensity E.

A critical excitation symbolized as y(t) is a member of the class £
which is identified by the property that when applied to a given structure, it

will produce its highest response. ¥From this definition it is clear that a

critical excitation is site as well as structural system dependent, The site
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depending is expressed by the vector x and the system dependency by the
vector a , The latter is obtained by a maximization procedure as will be
discussed in section 2. 4.

2.3 Intensity Constraint

According to Eq. (15) the intensity constraint is an important con-
sideration for the generation of the critical excitations, Several intensity
measures have been employed for seismic excitations, Housner [ 13 ]
has suggested using the spectrum intensity (SI). In their work for genera-
tion of artificial earthquakes, Housner and.mJennings [35 ] have alterately
used the root mean square (RMS) of the excitations over a duration of 30
sec, Peak ground acceleration has also been used as another definition of
intensity, In the present work the square integral or root-square (RS) of

an excitation over a duration ta is considered as the intensity measure,

Thus, so if x(t) is an excitation then its inteasity is defined as follows:

fe 2
I =0 | =\] [ °=x°® . at
0

The time te is the effective duration of the excitation [ 38 ].

According to the above definition and Eq, (15) the intensity constraint

is expressed as:

N t
e
Z aj - a5 fo NORENCREE

I
| Y
I
Q
([

(16)
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where G is a N x N matrix with typical element

t
e P

.. = ) ¢ ox.(t) - At i,3=1, ..., N 17

g f(; x,(t) xJ() j (17)

1]
and a is the Nvector of the weighing coefficients applied to the basis ex-

citations,

2.4 Critical Excitations and Responses of Linear Structural Systems

In this section the generation of critical excitations associated with
n-degree-of-freedom discrete linear structural systems is presented, The
results which are obtained here will be extented to nonlinear case in sec-
tion 2,5.

The differential equation which describes the system is:

M-y+G-§f+K'y=_§ _ (18)

where M, C and K are constant n x n matrices representing the its mass,
damping and stiffness. The n-vectors x and y are the input and the
response respectively., The individual responses of this system due to a
given basis of excitations xj {t} ; j=1,...,Nare described by defining two
matrices Y and ¥, Both are n x N matrices with typical elements yiJ.(t) and
;rij(t) defined as the response and the velocity associated with the i-th de-
gree-of-freedom of the linear structural system due to the j-th basis ex-
citation, A critical excitation of this linear structural system will be de-
fined with respect to its n—degrees-of-freedom i=1, ..., n. Let xi(t) to be
the critical excitation associated with the i-th degree-of-freedom of the
system, If aij represents the weighing coefficient applied to j-th basis ex-

citation to obtain the x; (£) then according to Eq. (15)

4D



N T B
subjected to the constraint
I x,wll < E
where i=1, ..., n P

Let d,:i(t) be the response of the system due to Xi(t)' This respgonse is ob-
tained by convolution operation as follows:
N
¥ (e 31‘[1 3y xj(t)f* hy(t)

N
- R A
"j;]. aij d Ylj(t) - ?‘_ 1 Zl(t) (20)

where Y is the i-th row of the matrix Y. The symbol + stands for convolu-
tion and hi(t) is the unit impulse response of the i-th degree-of-freedom of
the system. The response {.(t) will be called the i-th critical response,

By extending the above, then for a given basis of ground excitations

"
—_—
o
~—
e

j=1, ..., N, there are n critical excitations Xi(t) s i=l, ..., n
associated with the n degrees-of-freedom of Eq, (18) which are expressed

as;:

x{t) =A - x(t) (21)

where x(t) is a n-vector of the n critical excitations and x(t) is a Nevector of
the N basis excitations, Matrix A is a n x N matrix with typical element
aij » where index i indicates the degree-of-freedom and j the basis ex-

citation.

-11-



In order to evaluate a critical excitation associated with the i-th
. degree-of-freedom of the structural system of Eq. (18) the response qu(t)
must be maximized under the constraint developed in section 2.3. When

i is fixed and for a particular time t the mathematical formulation

becomes: -
N
’J; aij . yij(t) [ =max ¥ aij s j=L ..., N
subjected to constraint: {(22)
_1T- G- a =< E? .

According to the above expression, the determination of the critical ex-
citation Xi(t) requires a double maximization under a constraint. The

maximization with respect to 3—1?61: fixed time t is carried out by using a

standard technique and that with respect to t by using a numerical evaluation,

The first maximization cperation is done by using a Lagrangian

multiplier ?\i as follows:

-
For i fixedand k =1, ,.., n
N N N
-g—[gai.»yi.(t)-i-)\io ) A - a g ]:o (23)
2 ¥ U p=1 g=1 P T Pd
¥ £=1, ..., N -/
The solutionh of which in matrix form can be written as:
- t=" 1 -1 t
a, =z () G - oy, (24)

1 Z\.
1

The value of the Lagrangian multiplier A, is determined by substifuting the

value 2, into (16) and observing the symmetry of matrix G:

B~



For a fixed value of time the response will be maximized when the equality

prevails in the above relationship:

= . |
Ay = A (E) -—-Z—é . »\/_yi(t) gl ¥;(®) (25)

This value of A is then substituted into Eq. (24) and the vector a; is evalu-
ated for the time t,

The second maximization, that is with respect to t, is done numer-
ically by dividing the total duration into sufficiently representative steps and
by comparing and selecting the largest value of the response at these steps,

According to the above the critical excitation Xi(t) is obtained by the
determination of the weighing coefficients or the vector 2 applied to the
basis excitations x (t} so that the response ll’i(t) is 2 maximum., By repeat-
ing this procedure for i=l, ,,.,n, the matrix A of Eq. (21) is obtained,

2.5 Critical Excitations of Noalinear Structural Systems,

For a given basis excitations the maximization of the response of a
nonlinear system described by Eq, (l) subjected to an excitation which be-
longs to the class £ is not a straightforward problem. This is because of
the presence of the nonlinear vector f. Therefore only approximated crit-
ical excitations can be generated. In this section an extension of the results
of section 2,4 is employed to obtain the critical excitation of an equivalent
linearized system,

A class of auxiliary linear structural systems in the form of Eq, (2)
is associated with a given nonlinear one of Eq. (1) based on the parameters

c® and Ke. The equivalent linear one is selected from this class according

{3



to the criterion that the values of C° and K° will minimize the time average
of the square difference between the two systems, This is expressed by
Eq. (12) of section 1,3, To find the critical excitations of the linear auxil-
iary systems of a nonlinear one, the basis excitations xj(t) and the coef-
ficients aij where i=1, ..., n and j=1,,..,N have to be incorporated in the
minimization criterion through Eqs. (12).

For a given basis of excitations xj(t) = Jj=1, ..., N and a reference
intensity E the critical excitations Xi(t) and the critical responses and

velocities _tbi(t) . 'L!.Ji(t) ; i=l,,.., n of the auxiliary linear system of Eq. (2)

. € € N .
corresponding to the values C~ and K~ are obtained according to the method

developed in section 2,4, i,e.

N T
J:
¥ T

Wty = . a5 yij(t) =a% - () (27)
J:

. N : 7 .

() = Zl a; - vyt =2y oy (28)
J:

In the above Eqs, (26) and (27) the N'VeCtorsl’i(t) andl;(t) are the i-th rows
of the matrices Y and Y defined in section 2.4,

The criterion of equivalency between the actual nonlinear structural
system of Eq. (1) and the auxiliary linear one of Eq, (2) as expressed by
Eq. (12) can now be modified by including the weighing coefficients aij's as
follows:

The n x n submatrices W, L. and Z of the matrix B of Eq. (12) will have typical

a4

—1th



elements as:

TR R AORRACH
N N
= A [ }kzl a0 Vit % 3 I;ﬂ % ij(t) “
N N
= L L Ch a_)m { .ﬁ[ Yik(t) Vi m(t)_]i

ij i’ ij j (29)

Q

where Woij is a N x N matrix with typical w % m element,
wo = A ty . (t) (30)
km Yik Yim
Similarly,
_.T o . . o _ )
L= 2y - L% v 2 withtypical 1% =4 [yik(t) . yjm(t)] (31)
- 2T 2% . a2 withtypical 2% = [y (0. ¥, (8 ](32)
250 24 iy~ Ry WHR PR Zm T Yik'™ * 7im ]

The sub-vectors x; and s; of vector g, can be derived as follows:

The j-th element of the L, s i=l, ..., n vectors is:

ALyl



or in matrix form:

a’, - rgi) ' (33)

where E(ij) is a N-vector with typical k-th element:
A [fi . yjk(t)] (34)
Similarly the j-th element of the s, vector is:
PEERPL (35)
J J

where g(ji) is a N-vector with k-th element as:
4[5 - ypm] (36)

Further modification of submatrices W, L and Z leads to the following:

T
W=A_ - Q. A (37)
L=aT . R LA (38)

B )

Z=A_ - 58 A (39)

[ 2 0 ) 0o
0 22 0
A= | - : . : (40)
0 0 P
L B

als
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and Q, R and S are aN by nN square matrices with typical elements the
N x N submatrices W3, , L, 2d Z3;, given by Egs, (30), (31) and
(32) respectively,

By introduction of W, L. and Z from Egs. (37), (38) and (39} ‘into

matrix B it is obtained:

B=H . B .H (41)
where:
Q| R
I
By = | ---de-n-- (42)
R + S
and
A ! 0
o |
H= | --mobone- (43)
0 A
o

The vectors T and 8. i=l, ..., n are further modified according to

Eqgs. (33) and (35) as:

r. =A" . e. (44)

and

s.= A° . u (45)

where Al has been defined by Eq. (40) and e and y; are nN-vectors with j-th
(1) (1)

elements the sub-vectors EJ and s given by Eqs. (34) and (36). By com-

2 s

bining Eqs. (44) and (45) the vector q; takes the form:
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s

i

(46)

where

b, = { ---- | (47)

In summary the criterion of the equivalency between the nonlinear

system and equivalent linear one, leads to the following equations:

B - ...1..31= gi H i=1, ...,n
where
T
B=H - B . H ; q =HY .b. (48)
o 1 2i

and

o

=1
Pi® N7

o

—..i o

It is noted that the matrix Bo depends only on the individual responses of
the auxiliary system of Eq, (2) due to the basis excitations, On the other
hand the vectors hi depend, in addition, on the nonlinearity of the given non-
linear structural system (i.e. fi), According to Egs. (48) it can be seen
that the matrix B and vector q; are in a transformation form through the
matrix H which depends on the coefficients aij of the critical excitations,.
From a computational point of view it is noted that for a specific auxiliary

structural system the matrix B is computed only once for all the values of -

i in the derivation of the equations B - Py =9;-

@
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For a given basis of excitations and a reference intensity E, the
critical excitations associated with a given nonlinear structural system are
obtained by the following successive approxirmation procedure:

Any trial set of values Ce and Ke will define an auxiliary linear system.
By employing the method described in section 2,4 the associated critical
excitations as well as the individual responses due to the basis excitations
can be obtained. By introducing the weighing coefficients a‘ij and the in-
dividual responses into Eqs. (48) a new .set of values for C and Kt is ob-
tained and consequently a new auxiliary structrual system is defined. This
procedure will be carried out continously until the successive values of CE
and K© differ insignificantly, The last set of c and K will define the
equivalent linear system from which the critical excitations of the non-
linear system are obtained,

The magnitude of the nonlinearity involved in the above formulation is very
important. By comparison, it has been concluded that the equivalent lin -
earization technique, when is employed for the determination of critical
excitations for elastoplastic systems, gives good results for values of

ductility factor smaller or equal to 3,0,
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2.6 Applications

2.6,1, Critical Excitations for a Single Degree-Qf-Freedom System

In order to illustrate the concept of critical excitation for a single
degree-of-freedom system, the model of a one story frame structure
shown in Fig, l{a) is considered, The mass, damping and linear stiffness
are 5.0 k_-seczl ft, 2% and 8773 k /ft respectively., The linear elastic and
the elastoplastic behavior of this structure are analyzed,

The first ten ground acceleratiorns listed in Table 1, are chosen as
the basis excitations occured at stiff soil sites. The reference intensity E
is chosen to correspond the N-S component of the Imperial Valley Earth-
quake, recorded at El Centro on May 18, 1940, The value of this intensity

3/2 A total duration of 4,0 sec with a time step

is equal to 7.9 ft/sec,
equal to 0,00571 sec has been considered for the analysis, The results are
surmnmarized in Table 2,

The linear elastic response is based on the natural period of the
frame equal to 0,15 sec, The elastic critical excitation is shown in Fig,
3 (a). The elastoplastic response is characterized by the restoring force
shown in Fig. l(b) and the nonlinear function f shown in Fig, l{c). For a
fizxed ductility factor u =3.0 the equivalent linear system has been found
after three iterations with natural period equal to 0.18 second and damping
ratio equal to 2.5%.

The envelope response is defined as the maximum response among
those produced by the basis excitations acting individually on the system,
The envelope response for the linear elastic case is due to the N-5 component
of the Lower California Earthquake, as recorded at El Centro on December
30, 1934 and that for the elastoplastic case is due to the San Francisco

Earthquake recorded at the Alexander Building S. F. on March 22, 1957,
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Table L‘ Basis Excitations for Stiff Soil Sites

i

I3

File
Number :
Earthquake Date Record Comp.

AQ01 Imperial Valley 5/18/40 El Centro . SO0E
A001 Imperial Valley 5/18/40 El Centro S9OW
A014 San Francisco 3/22/57 Alexander Bldg, S.F. NO9W
A014 San Francisco 3/22/57 Alexander Bldg, S.F, | NSIE
_A016 San Francisco 3/22/57 State Bldg, S.F. S09E
A016 San Francisco 3/22/57 State Bldg, S, F. S81W
BO‘24 Lower Calif. 12/30/34 El Centro S0OW
BO2% Lower Calif, 12/30/3% El Centro S90W
B034 Parkfield 6/27/66 Cholame Shandon 5 NOsSW
B034 Parkfield 6/27/66 Cholame Shandon 5 N85E
D056 San Fernando 2/09/71 Castai NZIE
D056 San Fernandé 2/09/71 Castaic N69W
D058 San Fernando 2/09/71 Hollywood Storage L. A. | SOOW
D058 San Fernando 2/09/71 Hony{vood Storage L. A, | N9OE
E083 San Fernando 2/09/71 3407 6th St., L.A. SO00W
E083 San Fernando 2/09/71 3407 6th St,, IL.A. ' NYOE
H115 San Fernando 2/09/71 ' 15250 Ventura

Blvd., L. A. N11E
H1is5 San Fernando 2/09/71 15250 Ventura

Blvd, L. A, N79W
Q233 San Fernando 2/09/71 14724 Ventura

Blvd., L. A, S1zZ2W
Q233 San Fernando 2/09/71 14724 Ventura

Blvd, I..A. N78W

Ak



TABLE 2: Peak Responses (inches) of One Story Frame Structure

Linear Non-Linear
Iterations 1 2 3
El Centro 0.18 0.27 0. 28
Envelope 0.270 | 0,462 | 9 4703
Critical 0.36 0.62 0.63

Note for envelope responses

(1) Response peak due to Lower California Earthquake at El
Centro, (NS Component, December 30, 1934),

(2) Response peak due to San Fernando Earthquake at Castaire,
(N69W component, February 9, 1971)

(3) Response peak due to San Francis co Earthquake at Alex, Bldg,
(NO9W component, March 22, 1957)
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From the peak responses listed in Table 2, it is concluded that the
ratio of critical to the envelope response for the elastic and elastoplastic
case is equal to 1,33 and 1. 34 respectively. This ratio indicates a small
degree of conservatism associated with the critical excitation and appears
to be fully justified for important structures. The total displacement due
to the elastoplastic critical excitation is greater than that due to the elastic
critical excitation, This fact is consistent with the result obtained by other
investigators [ 17 ] that for high frequency systems the elastoplastic sys-
tem produces greater total displacements than that produced by elastic
ones. By inspection of the time-histories shown in Figs, 3(a), 4(a), 5(a),
6(a) and the frequency contents given by Fourier amplitude spectra shown
in Figs. 3(b), 4(b), 5(b), 6(b) it can be stated that the generated critical
excitations appear to be realistic samples of possible ground motions.
Thus, they should not be excluded from the consideration for the design of

important structures,

2.6.2 Critical Excitations for a Two Degree-Of-Freedom System

Critical excitations for a two-story frame structure shown in Fig, 2
are generated here in order to demonstrate the application of the theory to
a two degrees-of-freedom structural system. It is assumed that this struc-
ture is located in an area characterized by stiff soil conditions. Accord-
ingly,‘ the first ten 'earthquake‘ ground motions listed in Table 1 are used
to form the basis excitations, As the reference intensity the square in-
tegral of the ground acceleration of the N-S component of the El Centro 1940
Earthquake has been taken for the analysis and-an effective duration equal
to 6,0 seconds with a time step equal to 0,0086 seconds is used,

The structure is idealized by a stick model. It's masses are lumped
at the first and second flocrs equal to 5.0 k- Secszt and 2,0 ko‘secz/ft re-~

spectively. The lateral stiffness of the first floor is 1600, 0 k/ft and that of

49
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the second floor is 900.0 k/ft. The svstem is considered undamped., The
results of the analysis are summaxziz<d in Table 3, where peak values of
the responses are given,

The first iteration respesents the linear elastic case based on the
mass and linear stiffness matrices, The elastic translations of the two
floors are governed by two modes with periods equal to 0,45 and 0. 23
seconds. By comparison of the results, it is concluded that the ratios of

the Critical to the enve10pe peak reSanSES are 1-50 for the first floor

translation and 1. 45 for the second floor translation, These values indi-
cate a slightly higher and justifiable conservatism in connection with the

design of important structures,

The critical elastoplastic response analysis is done for a fixed
ductility factor u=3.0, by employing an equivalent linear frame, The re-
sults are obtained at the fourth iteration. Two modes with periods 0, 68
seconds and 0,29 seconds have been found from the free vibration analysis

of the equivalent linear system. The difference between these natural

periods with the ones obtained previously from the elastic analysis indicates

the well known result that vielding modifies completely the elastic vibration
mode characteristics,

Again by considering the ratios of the critical to the envelope peak
responses from the results of.the fourth iteration listed in Table 3, they
are found to be equal tol .60 and1.67 for the ductile translations of the
first and second floor respectively. Same justification for using critical
excitations for designing important structures appear to be valid,

Summarizing the results of the elastic and elastoplastic critical
response analysis of the two story frame, it is concluded that in both cases

the critical response concept introduces an additional safety margin for its

19
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seismic assessment, This additional safety margin is expressed by the
ratio of the response due to critical excitation to the envelope response
due to the basis excitations., These ratios ranging from 1.45 to 1,67 have
been found, which appear to be reasonable, especially when important
structures are considered,

An additional insight into the elastic and elastoplastic critical ex-
citations of the two-story frame structure the time histories and their
frequency contents were plotted and comparison with real earthquakg
ground motions were made. Figures 7(a) and 8(b) shows the time his-
tories of the elastic and elastoplastic critical excitations generated for the
translation of the top floor of the two-story frame structure, Their fre-
quency contents are shown in Figs 7(b) and 8(b) respectively, Time his-
tories and frequency contents of the two basis excitations associated with
the elastic and elastoplastic envelope response of the top floor are shown
in Fig, 9 and 10, By comparison of the time histories and the frequency
contents of the critical excitations with those of the basis excitations it is
concluded that the critical excitations are realistic candidates of possible

ground motions,
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TABLE 3: Peak Responses of the Two Story-Frame Structure

Peak ITERATION
Responses Linear Non-Linear
1 2 3 4

2nd Floor

Translation 5.70 2.65 7,25 7,21
El Centro 1st Floor P

Translation 3.32 1.50 4..87 4.66

2nd Floor

Translation 6, 96(1) 5, 06(2) 2162(3) 7.55(3)
Envelope 1st Floor 3

Translation | 3.971 | 2.85(2) 1 5 1403 s0a

2nd Floor

Translation | 0-1 7.86 N 12.53 12.63
Critical st Floor

Translation 5.98 4.43 8.33 8.09
Note:

1 Response Peaks due to San Fernando Earthquake.

(2)

(Castaire, February 9, 1971, component N6GW).

Response Peaks due to San Fernando Earthquake.
(3407 6th St., L. A,, February 9, 1971, Component N9OE).

Response Peaks Due to San Fernando Earthquake.

(Hollywood Storage I.. A. , February 9, 1971, Component NS),
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CHAPTER 3

CRITICAL RESPONSE SPECTRA FOR ILINEAR AND
NONLINEAR STRUCTURAL SYSTEMS

3.1 Introduction

The concept of the response spectrurn for seismic excitation of
structures was introduced by Housner and Biot in the early fourties, Since
then, response spectra have been increasingly used for the analysis of the
response of structural systems, due to seismic excitations,

One of the most significant studies in this area was done by Housner
[ 13 ] who proposed in 1959 an average velocity spectrum, This spectrum
was constructed by simply averaging the spectra of four strong ground
motions using the two horizontal components of each of these motions,
Later in 1969 Newmark and Hall [ 14 ] proposed another method of produc-
ing average response spectra and most recent studies by Newmark, Blume
and Kapur [ 15 ] in 1973 recommended a single set of design spectrum. In
these studies a large number of earthquakes were considered and normal
or log-nornial probability distributions were adopted for the analysis of
spectral data, ‘
| In the area of inelastic response spectra the studies by Veletsos and
Newmark [ 17 ] in 1960 and by Veletsos, Newmark and Chelepati [ 18 ] in
1965 are significant, The site-dependency of the response spectra was
studied first by Seed [16 ] in 1974, Finally response spectra of artificial
earthquakes were proposed by Housner and Jennings [ 35] in 1964, These
earthquakes were generated by using a stétionary Gaussian random process
based on statistical data from known earthquake ground motions,

In this chapter a type of response spectra called "critical response

spectra' is formulated and proposed for the seismic assessment of socially

oG
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or economically important structures, which require a high confidence of
reliability. Linear as well as nonlinear critical response spectra are con-
sidered,

Comparison of the critical response spectra with those previously
derived by other investigators lead to the conclusion that they are con-
servative to a certain degree, When they are used for the seismic assess-

ment of important structures, higher confidence levels will be attained,

3.2 The Concept of the Critical Spectrum

The critical response spectra are contructed by generating critical
inputs according to the theory developed in chapter 2. In order to produce
these spectra, the procedure starts with the search and collection of a set
of representative ground accelerograms recorded at similiar geological

sites. These records form the ''basis!' excitations:

x(t) i=1, ..., N (49)

A potential future ground excitation is postulated as the linear combination

of these;
X T
x(t) = Ziai coxdt) = at . x(t) (50)
i=
where a is the vector of the unknown weighing coefficients, The excitations

given by Eq. 50 are subjected to an intensity constraint,

The response of a single degree-of-freedom oscillator due to this ex-

citation is maximized with respect to the weighing coefficients
a; : i=1, ..., N and with respect to the time, Thus it is clear that
for a given set of basis excitations corresponding to a specific site condition

the vector a must be determined for all the frequencies of the spectrum,

'\ 07
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This determination implies that for each frequency of the spectrum there

is a critical excitation associated with a particular set of the weighing coef-
ficients a. Damping and the type of nonlinearity of the single degree-of-
freedom oscillator also play an important role in constructing the critical

spectrum,

3.3 Linear Critical Response Spectra

Elastic critical response spectra are constructed by employing a
linear oscillator with frequency w and damping ratio { , The critical ex-
citation of this single.degree-of-freedom oscillator is determined following

the procedure described in section 2. 4,
_ __T
x(t) =x(w,L,t) =a” (w, &)« x(t) (51)

where a(w, ) is the vector of its weighing coefficients, determined from
maximizing the response subject to the intensity constraint, If S;(w, t)
represents the critical pseudovelocity spectral value for frequency w and

demping {, then: .

S (@, ¢) =max, % X (t) * hs(t)f

where: (52)

hs(t) =h (w,%,t) =exp (~Lwt) sinwt
s -

The pseudovelocity curve for damping { in discrete form is obtained by ex-

tending the above for a range of frequencies w 3 m=1 ,,., k as
follows:
c =
SV (wm: ;) "maxt i Xm(t) * hs(wm: g: t) (53)

where Xm(t) is the critical excitation associated with the m-~th spectral fre-

quency.

(0¥



3. 4 Nonlinear Critical Response Spectra

Nonlinear critical response spectra can be constructed by application
of the procedure discussed in chapter 2. The structural system will be a
singie—degree-of—freedom nonlinear oscillator with damping coefficient c,
stiffness k and nonlinear restoring force f. ¥or an elastoplastic system,
the above variables can be represented by the linear frequency w, damping
ratio { and ductility factor u,

By employing the equivalent linearization approach an equivalent lin-
ear single-degree-of-freedom oscillator can be determined by computing the
equivalent damping ¢ € and stiffness k* for a given excitation, According to
the procedure in chapter 1, this can be done by considering an auxiliary lin-
ear single-degree-of-freedom oscillator and by minimizing an average of the
square of the difference between this oscillator and the nonlir-lear one, For
the particular case of a critical excitation input this minimization results the

following two simultaneous linear equations:

-
kO
A lxerte 1o = A0 fy ]
c:0
where: (54)
5 ft)
Ye T
e

!

The functions LL/E(t) and @E(t) are the résponse and velocity of the equivalent
linear oscillator due to the critical excitation x (t). The Eq. (54) forms the
basis of an iterative procedure for the determination of the equivalent linear

single-degree-of-freedom oscillator associated with a given nonlinear one,

Vo4&
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Based on the above formutlation., for a given basis excitatior‘ls and
a reference intensity E, the equivalent linear oscillator for prescribed
balues of spectral frequency, damping and nonlinearity can be computed as
follows:
For a given initial set of c0 and x° an auxiliary linear oscillator is defined.
By application of the procedure presented in section 2.4 the critical excita-
tion and the response and velocity due to it of this auxiliary linear oscillator

can be computed. These results are then substituted into Egq. (54) from

which a new set of values for c® and k© are obtained, Successive computa-

tions are carried out until two consecutive c® and x° values differ insignifi-
cantly. The last computed critical excitation defines the equivalent damping
€ anci stiffness kE. The spectral values are then computed by considering

the above derived equivalent linear oscillator and its associated critical ex-

citation and employing linear methods,

By repeating this procedure, the equivalent linear oscillator can be
defined for all the spectral frequencies and consequently the corresponding
critical excitations can be generated, The critical pseudovelocity spectral

value Sf’r (w, ) for frequency w and damping { can be expressed as follows:

Sfr(m, L) =max, ‘Xft) . hes'(t)i

where: (55)

h 5t = bS5 ) =exp (50 ) sinatt

J

In Eq, {55) the superscript € indicates that the corresponding values are the
ones of the eguivalent linear single degree-of-freedom oscillator. The sym-

bol * stands for convolution operation, The pseudovelocity curve for fixed

damping and-type of nonlinearity is obtained for a range of frequencies



w ; m=1 .., k as follows:
- € €, € €
(wm,z;) = max, xm(t) * hs (com s L, 1) (56)

where Xern(t) is the critical excitation associated with the equivalent lin-

ear oscillator corresponding to the m-th spectral frequency,

3.5 Applications

Critical response spectra have been constructed according to the
procedure described in the previous sections, These spectra are developed
by using the twenty ground motions listed in Table 1; to form the basis ex-
citations represeating stiff soil sites, The maximum intensity E appearing
in the constraint of Eq, (19) is taken to be the intensity of the El Centro
1940 FEarthquake, which is the first ground motion listed in Table 1. The
time history and the frequency content of this Earthquake are shown in
Figs. 16(a) and 16(b). For a duration of 4.0 sec. it has been found that
E =7.90 ft /sec3/2. For the computations, the participating time histories
have been taken over a duration which depends on the value of the spectral
period under consideration. For period T, the duration of the records has
been taken roughly equal to 7, T , but not less than 4.0 sec. or more than
40.0 sec, This definition for the duration of the time histories of the ground
motions has been found to give good results in ‘regard to the response spec-
trum shape. Elastic and also elastoplastic critical response spectra have
been constructed for the above defined basis excitations and reference in-
tensity, Thus these spectra are proposed for the seismic assessment of

structures to be constructed in stiff soil site conditions., These results can

bt

be easily extented to other site conditions by choosing proper basis excitations.
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Elastic critical response spectra for damping 2,5 and 10% is shown
in Fig. 1I. A comparison between the critical, envelope and El Centro
1940 Earthquake response spectra for damping 2% is illustrated in Fig, 12,
The envelope spectrum is constructed by considering the maximum spectral
value among those produced by the basis excitations, It is concluded that
the critical spectrum is a reasonable amplification of the envelope one, This
amplification provides an additional safety for the structures designed ac-
cording to the critical spectrum. In Fig, 13 the spectrum recommended by
Newmark, Blume and Kapur [ 15 ] is compared with a smooth critical for
damping 2%, Both these‘ spectra have been normalized to 0,2 g,

Critical deformation spectra for elastoplastic systems are shown in
Fig. 14 for ductility factor g =1, 1.5, 2 and 3, The value of damping has
been taken equal to 2%, For the construction of these spectra an equivalent
linear single_degree-of-freedom oscillator has been defined over the range
of spectral frequencies and the associated critical excitations have been
generated, Such a critical excitation for spectral frequency equal to 1 cps,
damping { =2% and ductility p=1.5 is shown in Figs 17(a) and (b), Finally
in Figs, 15(a) and (b) a comparison between the critical, envelope and El
Centro spectra is shown for ductility factor jiequal to 1.5 and 2 respectively
and damping equal to 2% , The spectral curves of El Centro in both of the
above cases have been computed by Newmark [ 20],

From the above it is concluded that both linear and elastoplastic
critical response spectra are somewhat conservative compared with others
that have been used in practice. However, this conservatism can be justified

for the design of important structures,
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APPENDIX

SIMULATED CRITICAL EXCITATIONS

A.1 The Simulation Problem

The seismic assessment of structures employed commonly in in-
dustry is based on the given response spectra, However, there are
special cases which require a time history approach for the determination
of the response, Such cases are the calculation of '"floor response spectra'
and the analysis of the response of ''soil-structure interaction' models, in
which there is a need to generate time histories consistent with the given
ground motion spectra, The generation of spectra consistent ground
motions is done usually by applying simulation techniques, A review of
the current methods is given by Vanmarcke [ 33 ] ,

The critical excitation discussed in previous sections is associated
with a specific structural variable (displacement, shear, moment etc,) of
a structural system. It is generated by superposition of a selected number
of ground motions, The weighing coefficients of this superposition are the
coefficients expressed by the vector a, which depends on the spe,cific‘
structural variable under consideration, Thus many critical excitations
are required for many design variables of a single structure. To simplify
the method, a statistical evaluation of the vector a defined over a large
range of frequencies and different values of damping appears to be neces-
sary.

However, an approximate solution of this problem can be achieved
by synthesizing a time history consistent with the critical response spectra,
This time history will represent a " simulated critical excitation', which
may process the essential characteristics of such an excitation, defined for

the range of spectral frequencies,
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For the generation of such excitations the inverse problem of con-
structing response spectra for a given earthquake, must be solved, The
solution of this problem is not unique. It means that for a given spectrum
several time histories can be found which are consistent with it, Some of
the criteria for selecting a "'suitable'' time history to represent the ground
motion associated with a given spectrum, were discussed in reference
[ 34].

In order to generate a ''simulated critical excitation” compatible
with the critical response spectra, the well-known simulation model of
superposition of sinusoidal waves with random phase angles is employed
here, According to this model the "simulated critical excitation' has the

following form:

' T
X, =y . . w
where v (t) is an envelope function used to give a transient character in the
motion. The vector w represents N sinusoidal waves with random
phase angles and the wvector r their amplitudes, An iterative procedure
proposed by Scanlan and Sachs [ 36 ] was used for the simulation,

Next some applications were demonstrated.

A, 2 Applications

In order to illustrate the concept of a ‘'simnulated critical excitation
for stiff soil sites was generated from the critical response spectra con-
structed in chapter 3. The dynamic responses of nuclear reactor structures
were studied., ZFirst, a number of critical excitations associated with some
desigh variables of these structures were synthesized by using the theory
developed in chapter 2 and response peaks due to them were obtained.

Second, response peaks of the same variables were determined from a

WA



simulated critical excitation, These results were summarized in Tables
4 and 5. It can be seen that the simulated critical excitation gives very
similar results compared to those produced by the critical excitations
determined by the rigorous analysis, Accordingly this excitation is sug-
gested for the seisfnic assessment of structures to be constructed on stiff
soil sites. These results can be easily extended for other soil conditions,

The first structure is a reactor for a nuclear power plant, This
structure was originally studied by Hamilton and Hadjian [ 32 ]. The
dynamic model of the structure is shown in Fig, 15, According to this
maodel, the structure is idealized by two sticks with seven and four lumped
masses respectively, The first stick represents the containment and the
second the auxiliary building. The effect of soil-structure interaction is
idealized by one translational and one rotaticnal soil spring,

The second structure is also a reactor for a nucle'ar power plant
which is showr—1 in Fig. 18, The idealization of this structure consists of
a three-stick model, which represents the three substructures, namely,
the containment building, the intertial structure and the annulus building.
The effects of soil-structure interaction are included in this idealization by
equivalent soil springs attached to the model in three translational and three
rotational directions. This structure is more complex than the previous
one,

To investigate the validity of the ""simulated critical excitation'', the
following procedures were carried out:
First a simulated critical excitation shown in Fig, 21. was constructed by
using critical response spectral values for frequencies between 0,1 and
10.0 cps and for values of damping 0, 2 and 5 percent, The time step was

taken equal to 0.1 secand the frequency interval equal to 0.1 cps. These



i1,

CONTAI AMENT

Ipin snituse

EFRIE R PYE NI FETT |

19

Ereae
@
.

FNTERNLL

$TRULT,
M 1

| LML

_.T
YEISEL
FENERATBA

-

_..__.
Lead bt b )
;

llll.\
A=—=REAGTER
1=5TEAN
C~PRERBURIZER

ARBULNS

TE1BLIRG Lanqn(ene

o0 o
= = - - ~
=)
o
[

5 11ihg Lzama(eleel

1

“5le



spectral curves were constructed from the twenty basis ground motions
listed in Table 1, according to the theory described in chapter 3, A total
number of four iterations was used for each value of damping in the simu-
lation procedure. These results are shown in Figs, 20(a), :(b) and (¢), The
continuous curves represent the original critical response spectra and the
dotted ones, those produced by the simulated excitation, It is noted that
the fourth iteration gives a very good approximation for each value of the
damping.

Next the individual critical excitations associated with the top dis-
placement, bottom shear and moment of both containment and auxiliary
buildings have been generated for the first reactor structure according to
the theory of the second chapter. In this computation a viscous damping
equal to 7% has been used for each mode and a total number of the first six
modes was used. The responses due to these individual critical excitations
were recorded in column 4 of Table 4, The responses of the above structur-
al variables due to the simulated critical excitation shown in Fig. 2lwere
also computed and recorded in column 5 of Table 4. Together with the re-
sponses due to the El Centro 1940 earthquake and the envelope response,
Table 4 presents the comprehensive comparison,

Birnilar computations for the second structural system shown in Fig,
10 were summarized in Table 5,

By comparison of the peak responses listed in Table 4, it can be
seen that the critical response is higher than the envelope one by an aver-
age factor of 1, 41, Furthermore, the responses due to the simulated crit-
jecal excitations are very close to those of the critical excitations. In Table
5, the average ratio of critical response to the envelope response is 1,57,

From the application results the following conclusions can be drawn:



For the critical seismic assessment of linear structural systems a rigor-
ous analysis based on individual critical excitation for each design variable
can be performed without excessive computational effort., However in the
case of critical assessment of nonlinear structural systems the computa-
tional effort based on rigorous individual critical excitations pertaining to
each design variable becormes many folds higher than that employed to
produce critical response spectra and then the simulated critical excitation
for all the design variables, Thus the later appears to be the only feasible

approach.

Table 4: Peak Responses of Nuclear Power Plant I

Simulated
Structural El Centro Critical Critical .
Variables Earthquake | Envelope Excitation | Excitation
. Top
an Displ. 0.534 1.075 (11) 1.608 1.824
=) .
= {inch)
m
K] Bottom .
g Shear 0.304 0.596 (9) 0.840 0.942
o 5, .
F (10° kips)
g Bottom
o Moment | 0.442 0.929 (11) | 1.380 1.560
(10 kips-£t)
Top
Displ. 0.027 8.039 (16) 0.057 0.059
. (inch)
-
)
E Bottom
o Shear g.208 0.305 {16) 0.444 0. 455
8| 0kips)
& Bottom
< Morment 0.078 0,144 (16) 0,165 0,169
{10 7ki'ps-ft)

VD



Table 5: Peak Responses of Nuclear Power Plant II

Simulated

Structural El Centro Critical Critical
Variables Earthquake |Envelope | Excitation | Excitation
Top Displ.

(inch) 0.887 1,548 (3) 2.172 2.136
Bottor Shear| ) o390 1.650 (16) |  2.740 2. 760

(10" kips)
Bottom
Moment 1.180 1.890 (16) 3.140 3.160

(10 "kips-£t)

| o~
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APPENDIX E.1

SYSTEM RELIABILITY ASSESSMENTS USING CRITICAL EXCITATIONS

R F, Drenick and P.C. Wang*

Abstract - Critical and certain related excitations are
applied to mechanical and structural reliability
problems involving the assessment of the resistance
of systems to dynamic Joads whose characteristics
are partly or largely unknown. The experience
gained thus far in practical situations and possible
extensions of the use of the technique are described.
Dependable, but somewhat conservative, reliability
assessments have been achieved that might be appli-
cable to various systems.

A recurrent problem in many fields of engineering
is that of assessing whether or not a system that has
been designed to survive, perhaps with some tolerable
level of damage, any of a large class of possible
excitations can indeed survive. This problem arises
in civil engineering with regard 10 the effects of
earthquakes, wind forces, and wave motion; in aero-
nautical engineering with regard to the effects of
wind gusts and air or jet turbulence; and in mechani-
cal engineering in the study of engine vibrations
and vibration effects on delicate instruments. The
common factors in all cases are 1) the uncertain
nature of the characteristics of the excitations to
which the system might be subjected, and 2) the
probabilities with which such excitations are likely
10 occur, These factors are of greatest significance
in systems of great economic, social, or military
-value. In such cases, any statement regarding system
integrity should be made with a high level of con-
fidence and ought to be compared only with informa-
tion known 1o be at a comparable level of confidence.
Unfortunately, such information is often unreliable,
particularly statistical data pertinent to a reliability
assessment, as has been previously noted [1].

Critical and certain related excitations were first
applied to the problem of assessing system reliability
aimost a decade ago [2]. Since then, the variations
that have been developed and the practical applica-
tions that have been expiored [3-7] indicate that
the concept has considerable theoretical and practical
potentiai. it is therefore of interest to report on the

*Potytechnic Institute of New York, 333 Jay St., Brooklyn,
New York 11201

work thus far in this area and on some possible
extensions.

The technique is based on the assumption that it
is possible to characterize, at a desired level of con-
fidence, a certain class of excitations that a system
should be able 1o withstand. The critical excitations
within that class are used to drive the dynamical
variabies of the system to their highest response
peaks, if those peaks are compatible with the damage
level that can be tolerated in the system, the design
is judged satisfactory.

The intuitive appeat of the technique lies in the fact
that only reliable data regarding excitations of
concern are used, In practical applications, however,
probiems are often encountered. It is frequently
difficult to define the class of excitations that the
system should be able to withstand. Design engineers
usuaily have fairly definite notions of the excitations
they consider realistic or credible and what their
designs should be prepared to accommodate. it
is another rnatter, however, to convert design con-
cepts into mathematically manageable definjtions,
The compromise has heen to define so-called sub-
critical excitations of a system.

Subcritical excitations have for the most part applied
to ecarthquake engineering. This review describes
both critical and subcriticai excitations and some
of the results that have heen abtained in earthquake
engineering. Partially solved and potential problems
are surveyed.

The general conetusion is that the use of criticai and
subcritical excitations results in realistic, if somewhat
conservative, reliability assessments, but that they
can be used with greater assurance than those derived
from others now in use or under consideration. The
technique might eventually be used, either in its
present ar in some modified form, with systems
whaose survival and integrity is of considerable im-
portance.



CRITICAL EXCITATIONS

In arder to derive the critical excitations of a system,
information available regarding the system under
consideration must be collected, including the ex-
citations the systemn shouid be capable of with-
standing; the reliability of the information must
also be established. The various structures studied
thus far in earthquake engineering have included
some already built, some in the process of design,
and one after it collapsed. The anaiyses were based
on the assumption that the equations of motion,
established from engineering drawings and restricted

to the elastic domain, did in fact adequately describe

the structure. In other words, no allowances were
made for uncertainties regarding system dynamics.

With regard to the excitations, it was initially as-
sumed that only an upper bound on the intensities
of the ground motions was known at the desired
level of confidence. The idea was that a designer
of a structure in, say, San Diego would be able 1o
establish that earthquakes with intensities beyond a
certain level could not be disregarded in his design,
It was further assumed that he could estabiish this
level with confidence because pertinent statistics
are sufficiently reliable, and it was aiso assumed that
no ather ground motion statistics are reliable enough
to be utilized. A class of admissible excitations was
thus defined.

It was necessary to determine the critical excitations
of the structure in that class. The critical excitations
have intensities not exceeding an assumed maxi-
mum, and they drive selected structural variables
to their highest response peaks. Such excitations are
not very difficult to determine, The precise form of
an excitation depends on the definition of its in-
tensity. Table 1 shows three examples {3]. The
symbo! & denotes the unit impulse and h the im-
puise response function of the variable under con-
sideration. The first example shows a critical excita-
tion that is, except for a constant factor, the time-
reversed impulse respanse. The second example
is a squared-off version of the first. {in undamped
systems, this version is a combination of sine waves,
as is sometimes expected.}

One disadvantage of examples such as those shown
is that they can lead to preposterously large response
peaks, especially for structures with relatively large

fundamental periods. That is, the response induced
in the structure by one of its critical exgitations
would be larger than could occur as a result of any
realistic ground motion. Information regarding
ground motions other than their intensity aiso lead
10 disqualification. Unfortunately, critical excitations
derived without the benefit of information regarding
ground mations are often disqualified.

Table 1. Examples of Critical Excitations

[ntensity Critical Responée Notation

Definition (I} Excitation Pesk

o0 ' . . aa

S et A NIREY N NE=fh? t)dt<on
' ’ vo

maxyix{t)| tht-ti/ht-nl - INg - Ny =fihft)idi<e

oo .

Jix{tiidt B{t+1m) 2 ANg  Ny=maxgih{t)|

o .

= |h(t i<

It has not vet been passible to establish uneguivocally
the  additional information required and- how to
utilize it to determine critical excitations in earth-
quake engineering. A variation of the basic idea
that has been somewhat successful is described in
the next section.

SUBCRITICAL EXCITATIONS

Subcritical excitations are derived from critical
anes. Although the characteristics of realistic ground
motions have not been established, motions that
have aiready been recorded are real — although some
-might be more typical than others for a particular
geographical site or geclogical environment, It might
be surmised that any linear combination of recorded
-ground mations could be- considered realistic, pro-
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vided the intensity does not exceed the maximum
assumed for a given location. These linear combina-
tions thus define a manifold of all possible excita-
tions. Consider those excitations that lie within
this manifold - and hence are realistic — but differ
least from the critical ones described above 10 be
the subcritical excitations of the structure. (The
least difference is taken as the least squares.)

" RELIABILITY ASSESSMENTS

The earthquake resistance of various structures has
been assessed: by using many of their subcritical
excitations. Twelve ground motion records, obtained
in California during the past 40 years, were used as
basis excitations to estabiish linear manifolds. All
were recorded within 30 km from epicenters.

Some of these assessments are shown in Table 2.
They are typical of others [6-8]. All have been

-normaiized to the intensity of the ground motion

of the NS companent of the imperial Valley earth-
quake, as recarded at El Centro on May 18, 1840.
The subcritical excitations were derived from the
critical ones shawn in Table 1. The structural anal-
yses were executed with modified versions of the
STRUDL [9] and XTABS programs [10] .

- The response peaks listed in Table are from 25

to 3.5 times greater than those calculated for the
El Centro ground mation. This implies that some
realistic excitations -~ namely, suberitical ones ~
have the same intensity as the El Centro ground
motion but induce response peaks in the structures
that are higher by the factors cited, One such excita-
tion, shown in Figure 1, drives the top floor of Office
Building 1 {Table 2) to its highest peak. (Other
peaks for the same building are similar.} On inspec-
tion, the excitation can pass for a realistic ground
motion in the sense that no conspicuous fraits dis-
tinguish it from recorded motions. (Nor does a
Fourier amplitude spectrum reveal such traits.)

it is of interest whether or not the structures were
designed with a ductility margin sufficient to absorb
the motion described by the large peaks {see Table
2). The two office buildings are considered satis-
factory. (Both were in fact designed by a consuiting
firm with broad experience in earthquake engineer-
ing.} The Laboratory Building and the Hospital are

&

‘Table 2. Reliability Assessments

Response-Peaks  Ductility Ratios

Dueto Dueto ODueto Dueto

El Sub- El Sub-
Centro. critical  Centro critical
Excita- Excita-
tions tions
Office Building 1
Top floor displ.  1.36 34
{ft). '
- Col. moment g72. 2785
(ft-k) 1.09 2.50

‘Col. axial force 952 2500
k) '

Laboratory Building
Top floor displ.  -0.53 187

{ft)
-Col, moment 1021 3334

(ft-k) 183 498
-Col. axial force 369 1144

(k)

Office Building 2 :
Top floordispl. 0.46 1.20
{ft)
-Col. moment 727 1123
(ft-k) . 084 1.34
- Col. axial farce 1096. 2073
(k)

Hospitai
'2nd fioor displ.  0.218  0.307
{ft)
Ext. Coi.
Moment (ft-k) 1922 2680 =12 =18
Shear {k} 307 428

judged to fail short of what might be desired. In
the case of the Laboratory Building, the same con-
clusion was independently reached by its owners,
and a. reinforcement program is underway. The

collapse of the Hospitai during the San Fernando
earthquake of February 9, 1971, confirms the con-

clusion for this building.
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Figure 1. Example of a Subcritical Excitation
with El Centro Intensity

DISCUSSION AND CRITIQUE

The results reported above, and others not reported
in this review, support the conclusion that reliable,
though somewhat conservative, assessments of
structural earthquake resistance are possibie by the
method described. There is every reason to believe
that similar assessments can be expected in other
fleids. These remarks should not be interpreted,
however, to mean that modifications in the present
method or variations on the original idea are not
warthwhile. On the contrary, improvements and
extensions are desirable in several directions.

First, the transition from a critical to a subcriticai
excitation contributes to the realism of the method,
but at a price: the neat extremal properties of the
critical excitation are last, There is no guarantee that
a subcritical excitation generates the highest response
peak among all of those in the manifold of realistic
ones. Computations have shown excitations that
lie in the manifold but produce somewhat higher
response peaks than the subcritical ones. This is
not desirable. It would be better to determine the
critical excitation in the manifoid, but, aithough it
can be done, no computational experience yet
exists.

it would be even better to have a clear definition of
what constitutes a realistic excitation. In earthquake
engineering, several studies have been published
{4, 5], but none has been practically applied. Success
in this direction might eliminate a further disadvan-
tage of assessments based on suberitical excitation:
the sensitivity to the choice of the basis excitations.
The elimination and/or addition of one such excita-
tion can apparently bring about a non-negligible
change in the response peaks that can be generated
by the subcritical excitation. This is not desirable.

The nature of the geological overburden is an im-
portant factor in the assessment of earthquake
resistance. Perhaps its importance would decrease
if assessments were made using the critical excita-
tions of a structure.

The computations in all case studies thus far have
been comparable, perhaps shightly [ess than, those

required for the reliability assessment of dynarical

systems by other methods, Possible computational
shortcuts are now being explored in an effort to

-econaomize, and additional study is desirable.

Evidently any mechanical system becomes nonlinear
as it approaches faifure. It is therefore desirable to
extend the method to nonlinear systems. One theore-
tical extension has thus far been made [11], but
no appreciable computation has been done. [t is thus
not clear that this particular extension will be suited
to practical applications.
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APPENDIX F

COMPUTER PROGRAMS

FORWARD

3 3 X ¥ % %W I
13

These programs have been developed for the solution of problems
related to the seismic response analysis of structural systens,
They are written in FORTRAN IV language and used on the

IBM 3%60/65 computer at Polytechnic.Institute of New York.

A data set with DSNAME=USER.PCWANG.BASIS including 60 records

of earthquake time histories has been created and stored on thé
disk USERO1.The first 20 of these records are selected to represent
rock soil sites condition,the next 20 to represent stiff and the
last 20 cohesionless soil site conditions.The subroutines used by
the programs have been compiled and stored on the disk USERO1 with
DSNAME=USER. PCWANG. PHILIP. | -

In this. text the descriﬁtion of input data and the listings of the

subroutines and main programs are given.For each program the output.
of the results of the solution of some sample problems can be found,.
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Program

SP{1)

This program computes linear and nonlinear regular response spectra.:
records are limited to 701 points and a maximum number of 20 periods

can be compﬁted.-

Card 1 :IANAL,NA,NF,INL,IFILE (8110)
IANAL=0 : Linéar spectrum computation.
IANAL=1 : Nonlinear spectrum computation.
NA : NO. of points of the records.Must be less than 701.
NF : NO, of periods to be computed.Must be less than 20.
INL : Type of nonlinearity. |
=] : Softening-Hardening spring case.
=2 : Elastoplastic case. .
=3% : Bilinear case. ) T
IFILE : NO. of the file of earthquake considered.Must be equal
to 1 up to 60.
Card 2 :GETA _ (F10.5)
GETA  : Damping ratio for the spectrum computation,
Card 3 :DUCT,BSK,6SHC,GC,GK,ACRC,ACRK (8F10.5)
DUCT : Ductiiity factor for INL=2.
BSK : Ratio K,/K, for INL=3. ’
SHC : Coeff1c1ent a for INL= 1.(f—y+ay ).
GC : Assumed value for C_.{(Usually equal to 0),
GK : Assumed value for K,- (Usually equal to 0).
ACRC ¢ Accurancy for damping computation.
ACRK : Accurancy for stiffness computation.

-T2~



card(s) 4 :The values of the ne;iodé are fgiven with format 8F10,5 .

Examples:Two cades of spectrum computation are listed here.First
linear elastic response spectra are computed for the El1 Centro
earthquake.Second elastoplastic spectra are also computed for
the same earthquake with ductility factor equal to 3.0.

Program : SP(2)

This program computes linear critical response spectra,

Card 1 :DAMP, ISOIL,NPRS (F10.5,2110)
DAMP  :Damping ratio for the spectrum.
ISOIL :Type of soil condition.

=1 is for rock

=2 is for stiff

=3 is for cohes. S
NPRS :No. of periods to be considered.Must be less than 20,
Card(s) 2 :Values of periods.{8F10.5)

c-F3-



Program_: SP(3)

This program compd&es elastoplastic critical response spectra.

Card 1 :ISOIL,NITER (8I10)

ISOIL :Same as in program SP(2).
NITER :No. of iterations to be done.
Card 2 :DANP,DUCT (8F10.5)

DAMP  :Damping ratio to be considered.
DUCT  :Ductility factor.

Card 3 :PERD (F10.5) ‘

Value of the spectral period.

Program = SP(4) -

This program computes critical excitations for linear structural -

systens, - ..

Card 1 :DTHT,SPHT,ISOIL, IPUNCH (2F10.5,2I10)

DTHT :Time step for unit impulse response record:h(t),

SFHT :Scalar factor to be applied for h{t) record.

ISCIL :Soil condition type.Same as program SP(2).

IPUNCH :If =1,the time history of the critical excitation is punched

out,

-4



Card(s) 2 :The h{t) record with format (4(F13.8,7X)).

Program _: SP(5)

! -

This program computes critical excitations for elastoplastic
S.D.0.F structural systems,

Card 1 ¢ NE,ISOIL,NP,NITER,IPUNCH (8I10)

NE :No. of basis excitations.Max.=10,
ISOIL :Same as in program SP(2).
NP :No. of points of the records.Max.=701.

NITER :No. of iterations to be considered,
IPUNCH :Punch out case(=1),

Card 2 :TDUR,DUCT {8F10.5)

TDUR  :Duration of the analysis.

DUCT tDuetility factor.

Card 3 :SM,DAMP,SK (8F10.5)

SM :Mass, ‘
DAMP :Damping ratio.
SK :Stiffness,
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Program : SP(6)

This prdgram COmputq? simulated earthquakes from given response
spectra, (Velocity spectra Sv).

Card 1 __ :NITR,IPLT,IPUNCH (8I10)

NIIR :No, of iterations for each given'spectrum,

IPLT - :Plotting cazme. - R

IPUNCH  :Punch out case. If =1 the ‘'simulated earthquake will

' be punched out.

Card 2  :DF,FBUILD,FDECAY,RAMDA, SCLF (8F10.5)

DF :Frequency step in cps of the 1nput spectrum.

FBUILD :Percent of the perlod of the S.E used to build up
~ its time history.’ - x

FDECAY :Percent of the period Qf the S.E used in order to

. decay its time history.. .
RAMDA :Coefficient of the exponetial decay. _
SCLF - :Scalar factor to be applied for the input S spectra.

Card 3 :DMP(I),I=1,3 __ (8F10.5)
Three values of damping ratio for the given input Sv sPéctra.
Card(s) 4:Three sets of velocity spectra are to be given.(5(7X,F8.3))

-F6-



Program : SP(7)

This program computes critical excitations of nonlinear M.D.O.F
structural systems. '

Card 1 :NDOF,NE,ISOIL,NP, IPUNCH (8110)

NDOF :No. of the degrees of freedom of the system.
NE :No., of basis excitations.

ISOIL :Same as program SP(2).*

NP :No. of points in each record for the analysis;

IPUNCH :If =1 then linear and nonlinear critical excitations
are punched out. ‘

Card 2 :TDUR,DUCT __ (8F10.5) )

TDUR - :Duration to be considered for the analysis.

DUCT :Ductility factor. .

Card(s) 3:Mass matrix.{(8F10.5)

Card(s) A:Stiffness matrix.(8F10.5)

L
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C ~ c
C PROGRAM "OSP(1r c
c ' o
c THI3 [S T2 CCMPUTE LINEAR AND NONL INE&R C
C REGULAR RESPCNSE SPECTRA FOR 4 S.0.0.Fs SYSTEM. [of !
c . <
c [ANAL =0 esensessLINEAR SPECTRA ‘C
o TANAL 40 v eeeee e «NONLINEAR SPECTRA c
c c
C c’
c c
C C

cecceccooecccoeocococeoooccococecococecoocccccccoceceoceccrccocce

-

[
(g

DIMENSICN X{700E,¢(T0L)»YY(70L),F{T0L)
SIMENSION PERD(20),CNL({S)

c .
S3CLF=32.174%12.00

C
READ(S.1) JANAL ) NAGNF, INLLIFILE
READ(S5.29) - GETA
READ(S+2C) | DUCT B SKs3HC +3C» GK,ACRC»ACRK
READI5.20) (PEROLINsI=1NF) )
WRITE{6,3¢C)
WRITE{&»4C) I[ANALNASNFIFILE.INL,OUCT »B8SK,SHC,
L GC +GKs ACRC,ACRK,GETK
WRITE(6,108)
ARITZ(64,20) (PERDIIL}sl=1NF}

c . .

C

00 1 IP=l.NF

PRO=PERDIIP)

WF=1.00/PRD
AN=2.00%3,14159/PRD
TOUR=7.00%=PRD

{F (TCUR.LT.#s) TDUR=4.00
IF (TOUR.GT.40+) JDUR=40.00
NAl=NA~1 :
0T=TOUR/NAL

c
c ) .
CALL P INPUT {X{L1) TOURWSCLFINAS IFILE DT, N5P TSP,
L SToXMAX » TXMXs IXMX ’
3{=31/5CLF
IMAX=XMAX /SELF
WRITE(6430) IP+PRDWF WN o TOURSOT 5T XMAX
c
C ‘
[F  (TANAL.NE.J) GO T 2
CALL AR3PA (XE1) . r{L34PRDGETASYMaNA,IT)
30=46S{ 4}

Rerr;duced frém
-F8- beg available copy.
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on g N e

[aNal

[a e

GC TC 7
2 CONTINVE

AM=1 .GO
AKZniNRWNEAM
AC=2 . 30*AMKGE TA®WN
CNL{1l)=AK
CNL{2V=AK*»B5K
CNL{3)1=3HC
CNL{4I=0UCT
CNL{51=0.C0
3CE=GC.
SKI=GK
I{NDEX=0

% CONTINUE

CALL ATHENS
3
SC=a851YM).
SO=50/DUCT
01=3CC-5C1
D2=5K0~5K 1
D1=48S(01)
02=485{02)
001=01=ACRC
D02=D2=ACRK
[F {DDLl) S¢5+6
IF  (DD2) 3:3+6
& CONTINUE
3CI=5C0
SKI=SKQ
SKKK=AK #3K 1
SCLL=AC+3CI
[ (INDEX.EQ.3Q)
INOEX=INOEX+]

wn

3 CONTINUE
IF [IMDEX.EQ.LDY
WRITE(H.50)

CXULD YLD YYL Lo FLL) LUNLLLY 9 AM A0, 4K,

SCO s 3KD»SCL,SKE Y™y INL.NALDT)

GO 1o L .

50 TC 7

WRITE{6+70) [MDEX, a0 4K, SLCC,5KKK

7 CONTINUE
IV=wN®EID
SAzwN®EWN*SD/S5CLF

WRITE(6,30) SDy3Vy 54
‘WRITE(7'90l4 PROYWF +302 5V 3A

L CONTINUE

10 FTAMAT (8110
20 FCRMAT (3Fl10.3}
30 FCRMAT [ 1IHL, /75X

a0 FORMAT (/5X%,33HTYER OF QNALYSIS..:----oo.-o-lca.--.-:'ELQ9

LZHIMPUT DATA :.//)
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DX N w AW

5Q FORMAT

SN

&0 FORMAT
1
2
70 FCRMAT
80 FCRMAT
1
2
3
€ 30 FORMAT{2
100 FORMAT

sToP

PROGR

THIS
LiNEA

DAMP-
[seit
[SCIb
[S0TL
[30IL
NPRS
NA

NE
NRE .

SUBRQ

3y =

OO GOOOOO000RO0OO0000n [N gl

/5% 33HNCA. OF POINTS IN THE RECORDSeesessssai {10,
/5X¢35HN00 s3] pER[ODS.-I.ll.lllll.l.l..ll.l.:lllo’
/75X 33HFILE NQO. OF QUAKE RECCRDeasvcscsceseaais [10,y
/5XQ33HNONL[NEARITY TVPE..,QQI S4bssddasenbebas) [Xlo'l
/65X s IBHNONLINEARITY PARAMETERS seveacencvnesnaniy
3(/43X,F10.5) .
/65X« 38HACC URANCY CGNTRCL DATA L saessssaccsnnniy
4{/43X.F10.5}),
79Xy IBHDAMP (NG RATIOcacooncncsnscacsssnassssneetyFi0,5)
(LHL o /5X THTABLE :4154/5Xs12(0%21),4//,
/SX'38HPERIOD---oo--.o--(SEC"ov-ot--QV|---v:rFlOnS?
/5x.33HFREQUENCY:~...--o(CPS’l.ooo-oclaltfoozyFLOQsl
/SX s 38HFREQUENCY eonvasae (RAD/SEC) sunnssarveelsFlOe5y
/5% +33HOURATICN COF ANALYSIServesesesl{3EC) sn et FLOLS,
/5K 38HTIME [NCREMENT sensacvressonelSECT snaetsFlI.3,
/9K 3BHINTENSITY OF QUAKE RECORDeeslGlansaea? s FLILG,
/85X +33HMAX . VALUE OF QUAKE RECCORD4o(G)easnseisFlOL5)
(50/) o3 XelOMCYCLC 0wae? s 12Xy L3IHNCNLINEAR SYSTEM
11X, L3HEQUE VALENT LINEAR .
/15X e2l aXsFHDAMP (MG 1,4XLLHSTIFFNESS $1/)
(5XeI10+4F154%)
{5(4)+5Xy LTHSPECTRAL VALUZS .
I/SX.3BHSG...............(INCH!...........-..:.FIO.Sp
,fSXt33HSV-t---..ooo..ta.(I“CH/)EC)nt....cnnto.FlQ 5!
//5X|3BH5A...n.-.lll.o.iotG,olh-.b.o-caannb-ot'Flo 51
FL1Ca5+3F15.5}
(/SXcBBHTHE PCR[DDS ARE GIVEN BELGh.....-....-g//)

dddenddndasaindvinsgdediedanaansesrsasddassadadasdaardaaaasdaga s

aM -1 4 Y4]

1S 10 COMPUTE =
R CRETICAL RESPONSE SPECTRA

SPERCENT CF THE'CRiTICAL‘DAHPING

:SCIL CONDETION

=1 ROCK NRE=4 {PACTOTIMA)
=2 3TIFF NRE=L | {EL CENTRO)
=¥ COHES.. . NRE=4 (BUREK 4)

iNQ.. OF PERICDS FOR THE RESPONSE SPECTRUM
:NO. OF POINES FOR [HE ANALYSIS.

NO. OF EARTHQUAKE RECORDS .

NQ. FILE FOR THE REFERENCE EARTHQUAKE RECORD

UTINES USED HERE ARE :
’ T PINPUTPCP yPRSPA,PCRIL yMINY

4,0 PHILIPPACOPOULLS

cecccoecLcocegooeoecceecloccecoCoccoooocoocoeoeocececaceogoenLecceceenecs
c

DIMENSICON X{7QL,20),¥(701,201,3(20+20)
CIMENSION - 403000, ALPHAL 201, ALFAL2C),33D(2D)

DEFINE F

DIMENSION BY {20) ,LB(201,M48{20),311201,PBRI(20)

TLE 12160+3000,+U+KV?
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OOOOOONOOO 00

c
C
c
C
c
[
T
[
c



e Ng Kul

(e Ralgl

o
c

NTQT=701
MTOT=20

{NPUT CATA

READ (5:L) CAMP, [ SOIL«MNPRS
READ (5.2) (PERDUIIsI=1 NPRS)- .

NA=NTOT

NE=MTOT :
SCLF=32.174

[F  {150[L.8@.1} [STRF=0

IF {(ISOTL.ED.2)} [3TRF=20

IF (ISCIL.EQ.3} [3TRF=40

{F {(IS0[L.EQ.1} NRE=sé

IF  (I30IL.EQ.2) NRE=1

[F {[S0IL.54.3) NREs4

PRINT DATA
WRITE {6+4)

ARITE {695} ODAMP,[SDILNRE,NANENPRS
WRITE (6471 (PERD({),[=1.MPRS)

ceoeeccceee

DG 8 [PalL,NPRS

ceececceceec

[zEeRe]

aoo

WRETE (6441}

PRO=PERD(IP}

WFal .30 /P8R0
WN=2,00%3,141593/PRD
TOUR=T,G0*PRD

[F (TDUR.LT+%4.00) {DUR=%4.00
IF {TDURLGT.40.0) [DUR=40.00
NAL=NA=] -

OT=TRUR /NAL .
WRITE (6,22) [P2PRO+WF WNTDUR,DT
WRITE {6+ %)

[NPUT THE BASIS EXCITATIONS XULed) sl=1sNayd= Lo NE

WRITE (64.23) f
00 9 IF=L,NE ‘ ,
[FILE=TSTRF+IF
CALL  PINPUT (X{L+IF),TDUR,SCLF+NA+[FILE,OT)NSPs TSP,

1 5314 EXMAX, TEXHX s NPEMX) - :
WRITE (641C) IF, [FILTNSP+ T3P s35L+EXMAX s TEXMXyNPEMX
STCEFI=S31
CONF INUE

" NGRMAL I'ZE SXCITATICNS

EM=SJ(NRE)

D0 12 J=1,NE

[F {J.EQ.NRE | 50 (2 12
AMJ=EM/SI ()

D0 13 1=l .N&
X{Ledh=X{ 1,1 2AM]

-Fll-
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13
12

15

14

186

17

CONT INUE
CONTINUE

CCOMPUTE MATRIX 2 BileJ)eI31eNE4J=L+NE

00 14 [=L.NE

D3 15 J=I «NE

CALL pCP (XELe D)o X{1sd)s841,J0,N4,DT)
IF (I.NE.Jd) B(Jy[}=811,sJ)

CCNTINUE . ’

CENT [NUE i

CALL M INV (BsNEsDBsLB+B12
’CDMPUTE‘RESPUNSES ¥ {Ted) izl sNAsJaLl,NE

0C 16 J=1l.NE
catL PR5PA
S530{2F=485(3D}
3304 41=5350(3)*12.00
CONT INUE .

(XE1ad) ¥ (2120, PRD,OAMP,5D,NA,OT)

COMPUTE THE COEFFICIENTS OF FHE CRITICAL EXC&TATKON

CALL PCRTL
YCR=YCR*12.00
SCCR=YCR
SVCR2SDCA*WiN
SACR=SVCR#WN/(32.1T74%12.00)
TYCRCL=TYCR

IYCRCL=IYCR

{¥yBe ALPHASLBY yALF&, YCR, TYCR I YCR,

'

PRINT RESULTS

WRITE (6,24}

D0 17 [=1.NE

RO=3SC( D)

RV=RD*WN

RA=RO*WN*WN/(32,174%12,030)

WRITE. {6,25) [,ALPHALL),RD.RY,RA

CONT INUE

WRITE (6,27

WRITE (6+29) SDCRy3VCRsSACR s FYCRCL, [YCRCL

" ggoceceeeee

-
c

3

1
2
4
5

~ O N

CONTINUE

ccceococece

FORMAT (F10.5,21101
FCRMAT (3FL10.3)
FORMAT (1H1}

EM, 3T ,NA,NE)

FCRMAT {LC{/)e5X,'CCMPUTATION OF THE RESPCN3E SPECTRUM

I795X+38(7%0},10(/1),

flox;'DAMP[N‘J!9!.....0!99!".'..0‘.vo'tbco:i'tol.!‘

710Xy SOIL CONDITION ROCK{L) 4STIFF(2)+CCHa(3)a0seat
F10X e "REFERENCE CARTHQUAKE sasssssvnssssassassssasnsi
710X 4*NO, QF POINTS FOR ANALYSISeecsssecsacosossness
/10X ' NQ, OF BASES EXCITATIONS sensassravassevessaal
/10X *NQ. CF PERICDS FPOR THE RESPONSE >P=CTRUM....:

7 FDRMAT (/710X ' {HE FOLLOWING PERICDS ARE USED:',

1

FelOFl2.547/¢lOFLU.5+/410F10.5T

-Fl2-
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10 FORMAT
22 FCRMAT

SN e

23 FORMAT

[V Ve

24 FORMAT

(3I10,4F10,3,E10) -
(200/) (10X, " TABLE NOo ', I5:,/10%,16('2"},5(/),
IIOXQ'PER[CD..'OO'Q“D.I.G Dlﬂ'..ﬂ'rn;..Dg"Floﬁs’
/10X *NATURAL FREQUENCY (CPSlocevrsscsss?! :FL0.5,
/10X CIRCULAR FREQUENCY (RAD/SEC)eessei?»FlQs5s
710X, *DURATICON CF THE RECCRDSesascesscesityFlle5,
/10Xy TIME INCREAMENT USEDsssessscssanaei® F10.5}
L775Xs 'QUAKE?Y 46X+ *FILE " s 5X+ ' 3TART Y, 5X, 'START?,
AXe"SQRT OF ¢ o TX " MAX? 1 8Xe "AT?,3Xs AT, /77X, INO2?,
TXp *NO2 ' 56X, *POINTS HSX LT TIME: ,2Xs 'SQ, INTEG?,
GXy YACCEL 21 o SXo 'TIMEZY y2X, ' POINT 4, /)
{/7/715X s "QUAKEY 46X 'COEFF. 4&°,

1 10X, tRmprxrexx INDIVIDUAL RESPONSES wsxswxkkxi,

2 164X, % 30
25 FORMAT
27 FCRMAT
28 FORMAT (//5X.
1 T3,

syap
END
C
cceecoooeecccocoeace
PRCGRAM ¢
rti{ c
PON

[P
Wy b=

CR
R E
NPoessssconsses
MEossassscsnerse
iRE.....D‘.‘...
>CLF.$ L8020 b s
DAMPI. ehe bbby
pERD....0.0....
BUCT seccescnsee

"BY : AW

CCCcLcccecccecccecce

OO0 OHOOOOO0ONnOND

DIMENSION
DIMENSION
DIMENSICN
OIMENSION

.

[PTOT=70L
[ETQT=20
NOL=14
3CLF=32.172

OO0

READ {5,101
4840 {5,1803)

L
g

H1,9X, 0% SV RT,9X,0e SA %1,/)

(1CX, [1044F15,5)

(/710X ,*MAX, OF THE CRITICAL RE:PGNSE',/n
13027 F1045s5X s " SV FL04545Xs *54= " s FLO45, 5Ky
FLO5v3X e {4457 )7}

.

(oo ol ot ot of ol of ¥ o ) o€ ol o o8 ok o il ol ok of of st o o o o of of o o{ o s of i o' s o o4

c
ccccccccccccccc'ccccccccccccccccccccccccc
c
3P(3) c
c
E L ASTOPLASTIC c
SPEGCTR Ae= c
¢
INOL.OF PCINTS IN EACH RECORD c
iNO. CF BASES EXCITATIONS c
:FILE NO. OF THE REFERENCE EXCITATION €
:3CALAR FACTOR FOR THE EXC ITATIONS c
:DAMPING ¢
$PERICD ¢,
:OUCTILITY FACTOR ¢
¢
PHILIPPACTPOULOS . ¢
A
c
¢

AG (701,203 ,RESPIT70L, 20}
B{20,20)+3(2,2)
YCRIEATOL)»vCRTL{TOL) »FUNCITOL }

CSL1200.L3(201,MB(20),88(20)sALPHAC20),ALFA{20)

RMAX{2C)H vL 3t 21 .M5(21

INPUT DATA

ISCIL+NETER

DaHP,DUCT

~F13-.
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aonNno [g]

2 X e¥yl OO

e X2 X%l

{F ([SOIL.EQ.1)  [STRE=0
[F {[301L.83.2) [ STRF=2C
1F (ISOIL.EQ.31  LSTAF=40
IF ([S0IL.EQ.1) [RE=4 =
1F (ISCIL.EG.2)  [RE=]
IF (ISOIL.EQ.3) IRS=4 .
NP=IPTOT . ‘ B
NE=LETAT Co
PRINT CATA

ARITE (64105}
WRITE (64108)
WRITE (64107} OAMP, ISOILWIRE«NPINELCUCT

00 1000 {DL=L,NGL
READ (5,102) PERD
COMPYTE THE DURATION FCR_THE ANALYSIS

PERD=l,00 /PERPD . ) . . LY T
PRO=PERD :

WF=l.,00/PRD

WN=2 .00%3 14153 /PRD

TDUR =7, Q0% PRDr

IF (TDUR.LT.4.000) TOUR=4,.00

IF (TDUR.GT.40.20} TDUR=40.0
NPlaNP=]

27=TRDUR/NPL

ARITE (64105} B

WRITE (6,110) PﬁDthrHNnyUR:DT
WRITE (6e111}

WRITE {(6+112)

INPUT THE BASES EXCITATIONS 3 XG{Is»J)e[=21,NP,Jal,NE

. Da 2 [F=L.NE- ' -

[FELE=ISTRF+IF

CALL PINPUT (XGIYsIF)+ TOUR +SCLF NP IFILE,OT+NSP, T5P, 551,
1 ) XKGHAX » TXGMX » LXGMX )
WRITE {6+ 113) IFe IFTLE+NSP TSP »351 » XGMAX s TXGHMXs IXGMX
SI{rF=ssI .

CONTINUE

NCRMAL [ZE THE BASES»EXCITATIUNS T3 THE REFERENCE INTENSITY

SIRE=SI{LRE}

DO 4 J=1,NE

[f (J«Z0. RS} GC TS 4

S1J=51IRE/SI{J}

00 5 [=1,NP

XGLI+J)=2XGU{[sd)#STY

CONT INUE :

CONT INUE R

COMPUTE AATRIX 8{T1+J}sI=L,ME,J=L,NE

27 & I=1,NE%

-Fl4-



CMa '}

o a [eN e

(9]

Qoo

aaa

00 7 J=I[,NE
CALL 2P (XGULeT Yo XGULod)eBL{TIoJ0 NP, OT)
[F t1.NEud) BlJsll=3{{,4])

7 CONTINUE -
- & CONTINUE '

CALL  “INV (3/NEDB /LB MB)
.COMPUTE THE SPECTRUM VALUES

SM=i,00
SC=2 003 MHDAMP %N
SK=Wh=uWN» SM

GCD=0.0
GKG=0.0
SKO=GKQO
3C3=45C0
{NDEX=1
WRITE (64116}

11 CONTINUE

SKIaSK#SKC
SCIs3C+SCC

OMEGA=SK] /34

CMEGAs3SGRTICMEG A

EQDMP=SCI /(2. 00%5M%OMEGA)

EQPRD=2,00%3,13153/CMEGA . -

WRITE (441051} .
WRITE (6,115 INDEX«ZQDMP,OMEGA

INDIVICUAL RESPONSES

00 21 L=L,NE )
caLL . PRSPA (XGL1 I RESPILLI),EQPROEQDMP, YMAX ,NP,DT!
YMAN=AB S{ YMAX) '

YMAX=L2 JQ0*YMAX
IE . [ INDEX.EQel) GO TO ' 4l
YMAX=YMAX /OUCT

41 CONTINUE
RMAX(T) =¥ MAX

21 CONTINUE

CRITIC AL RESPONSES

caLL PCRTL " (RE3P,B.ALPHA,3B¢ALFALYCRT,TYCR,IYCR,
N . SIREOToNP,,NE)

SD=YCRT*} 2.00 '

[F  (INDEX.EQok) G3 To 42

350=5D/0UCT

42 CONTINUE

00 31 K=1l.NP -
¥Cs0.0 ‘ :
DC 32 T=L.NE

-Fl5-
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oo ocoo

[aNnXel

oan

(2N al

OO0

2

al

22

23

YC2YCrALPHA{ L)*RESP (K1)
YCRTL{KI=YC
CCNT INUE

RESTCRING FORCE

00 22 [=L,NP
VCRTLIL ¥=sSKayCRTL{L)

CONT INUE
NON-LINEAR FANCTION,
CALL pPaMAX {VCRTLEL) yRFMX y TMX ¢ [MX,DT NP )
CALL PFNL2Z (VCRTLUL) JREMXsFUNC [ L ,0UCT ,NP)
CRITICAL VELCCITIES
NPlaNP=] .
30 23 [=1.NPl _
VCRTL(I}=YCRTLII+L}=yCRTL (I}
VCRTL{{)=VCRTLLL1/0T ,
CONT INUE
VCRTLINPI=VCRTL (NPL I
MATRIX S ‘
caLL PCP EYCRTLUL),YCRTL (L} 2511, NPWDT?
CALL pCP {YCRTL{ LI ,¥CRTL{1}+»S12,NP,OT}
$212312
cALL pCP (VCRTLI1)»VCRTLIL 1 +522,NP,0T)
S(Lylh=si1

5{i,2})=3512
5{2.1li=521
3{2e21=822
CaLL’ A INV. {5+2,05,L3¢M8)

NEW VALUES FCR 3C0.SKG

caLL  oce [FUNCIL1,YCRTL{1}P1,NP,OT)
CALL  PCP (FUNC (L) »VCRTLL 11 4 P2oNP,OT)

SKI=S(Ll,1)}=pPL+5(1,2)%pP2
SCO=S(2.L1%PL1+5(2,2}%P2

55D=5D

SSVshiNx 33D
SSA=WNEWN®SS
SSA=334/(32.174*%12.00!

PRINT RESULTS

WRITE (56,1213

WRITE (6,117}

00715 I=1.NE

ROzAMAXIT )

RY=RMAX () *WN

RA=RHMAX (T 1 ®WN*WN

RA=£A/{32.174%12.0CC)

WRITE 16.113) LyALPHA(L) »RD RV, RA

15« CONT INUE

-Fl6-



N g ] ao, (e R3] [a N4

[elsEaNsRaNe Nal

WRITE “( 64 115} .
WRITE (6,120) 55D, 55V 554

IF {INDEX.GE.NITER) GO T3 10
INDEX=INDEX*L
GO TO 11 S

10 CONTINUE

1000 CONTINUE

101
102
13
165
106
L1C7

1
2
3
4
5

1o

’.//IISX'.;’ERQGD ‘SEC) .lb..‘..ﬂ.lfl"l..‘.l;

2
3
4
5
111
L2
1
2
3
113

FORMAT
FCRMAT
FORMAT
FORMAT
FORAMAT
FORMAT

{arioy *
{3FL0.5)

{4Fl0.3)

{1H1)

(/775X "RESPONSE 3SPECTRUM DATAZ*,/5X,23('="})
(,/’SXI ‘DAMP[NGIOIQI.QOO.IQODGD oL eR OCRERPDY Il:',FIVJ.S'

75Xe *SCIL CONDITICNssccacossssosasscancai’  [10,
/5%, "REFERENCE EARTHQUAKE swacsscoscasseesi? 10,y
/5%s "NO» OF PCINTS FOR ALL RECORDS s suseai'sl10y
F5Xs '*NGs COF BASIS SXCITATIONSssvesrseesst?sIl0,
F85Xs POUCTILETY FACTORscwcosscasssnsssasnai'sFLOLS)

FORMAT

(
$F10.5,

WF10 .5,

t

/5Xs *FREQUENCY (CP5) cceaceosccennesaal’hFlO.5,
]
[}

/5%, tFREQUENCY {RAC/SECH sosnobb S DRwaD ]

/75Xy 'OLRAT ION {3EC) Lo mberdB L B0 FEOD ¥ ’F10-5|
75X, PTIME INCREMENT [5EC) sasvsescenaai?»FLO.5)

FORMAT
FCRMAT

FCRMAT

(/7755 " AYe FASES EXCITATIONS DATA ')
{/775%e 'QUAKE * 56X 'FLILE s SX s * START 45Xy 'START'

AXe PSART CF M, TX o "HAXY 2 3Xe YAT! L BX AT 4/ TX, 'NOS?,

TXy INQ2t poX o VPOINF2?  SX,VTIMEZ 12X, *5Q. INTEGH

$Xo FACLEL s ¥4 SX, ' TIMEL Y 2w 4xX s PAINTS 1, /)
(3110:4F10.3.110)

115 FORMAT{//85X, VITER WSV w40

. 2/5X.G5(V=r)
L1s FORMAT .

(/775X *BY. [TERATION :0;://)

L17 FORMAT {//7/10X+'QUAKE! ,4X+'CCEF,. ALPHAMY,SX,

- Fasmihoew INGIVIOUAL RESPONSES =wsmkmatd,/ /30X,

- SXyt® SO RV, 9X,tx SV ¥, IX, 0% 34 ®¥, /)
118 FORMAT  (5X+110,4F15.5) ' )
119 FORMAT {/2///75% "1 1F. QRILICAL 3SPECTRAL VALUES : ', 7/}
120 FORMAT (5Xe?SD=%2F10a4¢5X s 3VST P10, 405X, SA=" 4 FLO.4)
L21 FORMAT {////7/5X,' [} INDIVIDUAL SPECTRAL VALUES :7%,//7)

5TOR

END

ceccecceeccccIceLoceoiocccocLccoccecceccaloicceLscoeceeceoececelincns

PROGRAM H 3PL4)

FHIS [3 TC CCMPUTE ¢ -
CRITHPICAL T XCITATILCNS

~Fl17-

779Xy "EQ. DAMP .3 ,F10.3,3X, 750 FREQe=?,F10.3,

OoONODOOn

PEeerrre
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32

DIMENSION
O {MENSICN
DIMENSION

NTGT =701

FCR LINELR SYSTEMS.

1301t S3CIL CONDITICN

{3G1IL =1 RDCK NREs4 {PACDIMA)

Esoic =2 - STIFF - NRE=L- . LEL CENTROi
PSCIL *3 . CCHES. NRE=4 (EUREK A}

N4 NG, CF PCINTS FOR THE ANALYSIS

NE . INO. OF EARTHQUAKE RECQRDS

NRE :NQ, FILE FOR THE REFERENCE EARTHQUAKE RECCRD

BY ¢ AJJ.PHILIPPACOPCULCS

t

NTOT =301
MTOT =20

READ (5,1}
READ (5.2)

MA=
NE=

INPUT paTa

NTCT
MTCT

SCLF=32.174
SCLF=9,8067

0t1=

D IHT

NAl=NA—-1
TOUR=NAL1®DT

[F
IF
[F
IF
IF
{F

({SOEL.EQeL)

(ISOIL.EQ»2)
{[SOIL.EQ.31}
{ISOIL.EQel]}
{ISOIL.EQ.2)
{[SOIL.EQ.3)

PRINT DATH

WRITE (644}
WNRITE (6.5} OTHT,[STIL,NRE,NANE,TCUR, SEHT
WRITZ (6,4}
WRITE (6,37}
WRITE (8421 (HT(L}, 021,080
- pC

HTUI =HT{TI*SFRT

32 1=L.NA&

WRITE {6+4)

INPUT THE BASIS

WRITE {6,223}

ac

3 [F=l.NE

fSTRE=Q
I'STRF=2
[STRF=4
NRE=4%
MRE=L
NRE=4

EXC 1T

0
0

TICNS

-F18-

X(TOLs 200/ {-7QL w20 HTI(TOL)
8(20.20),L8(20).MB1(20)
ALPHAL2D0),4LFAL20),530(20),8Y(20)

DTHT SEHT . {SCIL, [PUNCH
(HT(I) =1 ,NTOT)

X{Isd) s I=1NAsJ=1,NE



g NN e]

OO0

OO0

[N eEs]

(4R 22X}

(%]

13
12

15
14

i6

IFILE=I3TRF+I[F :

CALL PINPUT (X{1lsIF) TOUR»SCLFWNALIFILE+OTsN5Py TSP,
: SSLEXMAX s TEXMALNPEMXY

WRETE (69 10) [FoIFELE+NSPsTSP ¢ S51+EXMAX s TEXMX o NPEMX

SI{IFI=531 : . :

CONT INUE

1

NCRMAL IZE SXCITATIONS

EM=31{NRE)

20 12 J=l.NE

IF (J.8Q.NRE J GO T7 12
AMJ=EM/ ST ()

0O 13 I=Ll.NA
X{lodi=X{iod)*AM)
CONTINUE

CONT INUE

COMPUTE MATRIX : 8{I1,J),1=1,NEsJ=1,NE

DC 14 I=1,NE
00 15 JsIoNE

CALL PCP (61,00 pXItypdde{Iodl sNA,DT)
1F (I.NE.J) 3(J,[)=8(1,J}

CANT INUE

CONT INUE

CALL M ENY {B,NE,DB,LB,MB)

CCMPUTE RESPOMNSES T Y{T,dbs1=1N&sJ=l,NE

WRITE {64221
DO 16 J=l . NE .
CALL PIDIR EXEL 3D s HTL LD 5001 od) o YMAX, TYMX, [YMX,DT,MA)

WRITE (60251 Js YMAX,TYMX, [YMX

CONTINUE
CCMPUTE THE CCEFFICIENTS OF THE CRITICAL EXCITATION

CALL PCRTL [¥s8, ALPHABY »ALFALYCR,TYCR, IYCR,EM, DT, ,NANEY
ARITE (6.27) .

WRITE {(6528) {({[.,aLPHA{[}).D=L,NE]

WRITE {6430} YCR.IYCR,IYCR

IF  LIPUNCH.NE.1) G3J TO 53

00 54 [=1,N&

RT(1=0.0

CRITICAL EXC [TATION

" 00 54 K=1,NA

55

5%

53

XC=0Q .0

00 55 I=1.+NE
XC=XCrALPHA([)*X{Ks )

HTIK }=XC

CONTINUE

WRITE (6,35}

WRITE (6,73 (HT{I),1=1,N8)
WRITZ (7e34) [HTLLD)»isl.N&)

"CONT INUE

-F19.
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OO0 NO0O00CONOOOWwOD0D

1 FORMAT {2F10.5,2110}
2 FORMAT(8Fl0.1)

4 FORMAT (1dl}
5 FORMAT (L0073 «SXs *INPUT DATA /75X, 10('%%) 4/,

2 ILOXQ'TIME’INCREMENT“Dnctcn@no.l.cc-novtlh-ton.'-:'gFlO.SD
3 710X+ S0TL CONDITION ROCKIL)»STIFFI2),COHM {3 e ai®yll0,

o IIOXI’REFERENCE EaRTHQUAKEDI..tl.ll...to..t‘l‘o.-l:rlrlo'

5 /10X " NQ. OF PCINIS . FOR ANALYS[Seuscacensssanessani?y[10,

6 Z10X+tNQ, CF 3AS[S EXCITATIONS svsccessassnrcervenssl? 10,y

7 F10X« "DURATION FOR ANALYSISsseeccsscncneansedoncensd! 1, Flle5y
3 /IGXO'SCALAR FAC[OR FOR H{T) RECURB............v-o:’pF10.5l

7 FORMAT(5E13.5])

10 FORMAT (3110,4F10.3.110)

23 FORMAT - (775X, 'QUAKE Y 16X o TFILE " 15Xy START !, 5%, 'START,
1 3Xy 'SQRT CF*,7XpPAAXY p 3N *AT? 43X,y 'ATY, / TX, 'NOI?,
2 TXo "NOT' )X, "POINTE? p5X, 7 TIMET* ,2X, "33+ INTEG?
3 4Xs "ACCEL ! \5X, "FIMEI! 4%, "POINT: ", /}

22 FORMAT (/77104 ,'IMDIVIDUAL RESPONSES?.,
1 FI5Xy "QUAKE? o L2X » 'RESPONSEY » L&Xy "TIMEY , 10X 'POINT ./ /)

25 FORMAT (5Xs[5910XyE1Qe%sl0X+F1l043,10Xe[51)

27 FCRMAT (///10X,'COEF. OF THE CRITICAL EXCITATICN', /)

23 FCORMAT (10X, [10vFlQ.4%}

30 FORMAT (//10Xe 'CRITICAL RESPONSE'+/10Xs'MAKe VALUE=",E1d.4,
1 SXetTIME=",F6.3+5%,'POINI=*,[5) '

34 FORMAT (5El1Q.4)

"35 FORMAT {///10X+*C€RITICAL EXCITATION ﬁECDRD';/Ii

37 FORMAT (///10X.*UNLIT IMPULSE RESPONSE RECQRD',//}

SsTQR
END

:a*#t*:z:*::stta*x**t*tt*tt****tx**#*#!tt**#*#*t*t*
PRGGRAM : ™ SPp (S5) »

THIS TS TO COMPUTE
CRITICAL EXCITATIONS 0OF
$.0.0.F SLASTOPLASTIC SYSTEMS

x

-

x

-

»

x=

»

* « NE INO. OF BASIS SXCITAT [ONS

*® [3CIL:TYPE OF SGIL CONDITICN

- NP INO. OF POINTS FOR ANALYSIS
% NITERINO. OF [TERATIONS

» TOUR :QURATICN FOR ANALYSIS

= RFMX. rr1ELDING. FORCE

ES M tMASS OF THE SYSTEM

* DAMP :DAMPING RATIC (LINEAR)

» 3K SATIFFNESS (LINEAR)

* [PLCT=] [3 FCR PLOTTING CASE

* IPUNCH=1 13 FOR PUNGHING QUT CASE
x
*
b ¢
*

3y ALJ.PHILIPPACOPOULOS

I R LR R E S E E R E S

200 0 e Mok o O R S AN A A A A T S R A AR

DIMENSICN . XG{73L,1C).RESP(TOL,104

DIMENSEON YCRTLOTOL)»VCRTLLI70L 3, ERF{( 701 ,FNL {701}, TRF{701)
.« fHELTQL Y, XCRTLETOLH,CRTA{70Y)

DIHENSICN SU10.10)8402,2Y
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IO O

[sXa s sXaks)

aon Oono

“aOn

L

DIMENSICN

ALPHAL 10, 801101 ,800102, L6110 +4GE101,LAAL21 sMAA02)

» 310100

INPUT DaTa

READ 100, NEsISCIL NP NITER, [PUNCH, [PLOT
READ 101, TOURRFMX.PLYM

READ LOLys SMeQAMP 43K

SCLF=32.17%

PRINT CATA

PRINT 102 +NEs [SCIL, NP RFMXe SM,JANP s SK

INPUT THE 3AS5IS

SXCETATIONS

[ STRF=0Q
[ 3TRF=20
1 3TRF 240
[RE=4
IrE=tL

DO L [F=l,NE

IF  {[5QLL.EQ.1)

[F (I3CIL.EQ.2)

[F ¢(I5CIL.2Q.3)

[F (ISOIL.EQ.LL])

[F (1ISOIL.EQ.2)

[F (IS0IL.EQ.3) [RE24
CPRINT 103

. [FILEa{STRF+LF

CALL - 2INPUT {XGLL1,IF)oTOURySLLFSNPyIFILESDT

N3P, T3Py SIL o XMX, TMX, IMX) s

PRINT 106G IF+IFILE TSPLNSP,3IL »XMK, TMX, IMX .

SILIFI=SIL
CONT [NUE

NORMAL TZE
SIRE=SI{IRE)

20 2 J=l.NE
[f {J.EQ.IRE)

IHE BASIS OF ZARTHQUAKES

GO T2 2

$1J=SIRE/SILJE

D0 3 [=L,NFP

XG{LoJI=XG(],d1*S1Y

CONT [NUE
CONT [NUE

CCMPUTE MATRIX G

00 4 I=1sNE
00 5 J=1.NE
Catt. pPCP
IF {1.N2.J)
CONT INUE

CONT [NUE

CALL INV
PRINT 105,07

(XG(L,IIrXthrJ);GilrJ?.NPrDT)
Gldel }=G1 1,41

1G+NE,OGVLGMG)

ITERATICN PRCCEDURE

5C0=90.0
5KG={0.0
CMEGA=3K/ SM

CMEGA=SOQORTICMESA)

-F2Zl=



iz Nel [gXe Nl

O 0.0

aOn

SC52,00*DAMP*OMEG A% SH
¥ IELD=REMXA/SK
PRINT 124eYIELD

. PRINT 125,CMEGA

35

2l

20

&7

70

1D=1

. CONT INUE

PRINT 107,1D
5C0=3C0+5C

3K0=SKO+3K

FRU=SKDASM
FRO=SQRT{FRQ) .
OMP=SCO/( 2.00%SM*FR Q)
PRINT 103 ,0MP.FRQ

UNLT [ MPUL3IE RESPONSE
CALL PHT {HTC(L) »3M,0MP,FRG,NP, GT)

INDIVICUAL RESPONSES

PRINT 103

00 3 I[=1,NE .

00 85 J=l NP .
XGidsLh==XG{Jd el IRSM

CALL  ~ PTDIR (XGELe Vo HTULI,RESP{L ol oYisFY 4 1Y, 0T,NP)

PRINT L1Q oYM TY (Y
00 36 J=1.NP
XGLJel1=XGld, [}/ {=3M)

CONTINUE -
CRITICAL RE3IPONSE
CaLL FCRTL (RESP »G+ALPHA,BC,ADYCR,TCRIICR,HSIRE, DTS NP #NE)
PRINT 106 :
PRINT L27

PRINT 11L,(CLsALPHA(I}} 1L NE)

D0 20 K=l NP

¥YC=0,0

DG ZL [=sL.NE-

YO=YC +ALPHAL [ I*RESP (K4l )

YCATL(K IsYC

CONTINUE : , ,
CALL - PaMax LYCRTLL) o YCRMX ,TCRMX S [CRMX, 0T, NP )
PRINT 112, YCRMX ,TCRMX, ICRMX

IF - (YCRMX.LT.r{ELD) GO 1O &3
OUCT=YCRMX/YIELD

PRINT 123,CUCT

IF  (IPLOT.NE.l) GO TQ 57

PRIMT L21 )

CalL PPLT (YCRTL NP, 1oPLY ML)

CRITICAL VELCTITY

NP1=NP=] - . i
00 70 [=1.NPL

VCRTLI{IN=YCRTLII+L)=yCRTLI{])
VCRTLUL)=vCRTLL [ /DT

VCRTLINPY=VCRTLI(NPL)

-F22-



[aNalNel

TOOP

ooDnN

OoODo0

OO0

a0

62
&3
64
61

-2

33

41

40

30

1)

ELASTIC RESTCORING FORCES

‘DA 30 L=1.NP

ERF{I)aYCRIL{ 1} %3K
CONTINUE -

NCNL INEAR FUNCTION

00 66 [=1.,NP '
[F (ABS{ERF({L}).LELRFMX] GO TC 61
IF (ERF{I)} 52,63,6%
FNL{ [)s=RFMX=YCRIL L E)*SK
GO 0 &5

FNL{LI=0.0Q

30 7O &5

FNL{ [ )= +RFMX=YCRTL{ [)#3K
GG TO 65

FNL{1i=0.C

CONTINUE

CONT INVE

TCTAL RESTCRING FORCE

D0 33 [=l.NP
TRELIVSERF{II»FNLLL)

IF (IPLOTWNE.L) GO TO 68
PRINMT 122
PLRAF=1.5%RFMX
CALL PPLT LIRFsNPsLoPLRF, L)
CRITICAL EXCITATION

00 40 K=l.NP

XCR=Q.0

00 41 [=L.NE
KCR=XCR FALPHA (T I#XG (K1)
XCRTL{K ) =XCR

CONTINUE

IF (ID.NE.L) GG TC 30

[F (IPUNCH.NE.L1} GO TC 30
PUNCH 120 UL I, XCRTL {1} },1I=1,NP}
PUNCH L20 »{{I,TRF{L})+I=L,NP)
CONTINUE

MdTle AA

IF {ID.ZC.MITERY GO TO 17

CALL pPCP {(YCRTL{13.YCRTL{1}+ALL,NP,OT)
CALL aCp CYCRTLOL) »VCRTL L) v AL 2,NP,OT )
a21l=al2 )

CALL PCP

Ad{l,L}=4all
aa{f,21=412"
aa{2,1)=a21
AA(2,2)=422 )

cattL MINY {44,2,044,L448,444)

MEW STIFFMESS & DAHMPING

-F23-
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X e el o

+  CALL pce . {FNLILY,YCRTL{1}).PL+NP,DT]}
GALL pCp (FNLUL) o YCRTLALILPZ,NP,OT)
SKO=AA[1l, 1)*PL+AA{L,2)%P2

- SCO=AA{ 2, 11*PLLAA(2 ,2) %P2

fC=ID+l
GO TQ 7

17 CONTINUE
OUTPUT RESLLTS

PRINT 113
PRINT Liw
O 13 [=1,NP ' .
T={[=11%0T
PRINT L15¢IoToYCRTLLT I, VCRTLED) 4 XCRTLIIISFNLITI W TRF(D)
18 CONTINUE
IF {IPUNCH,NE,1} GO T2 31
PUNCH 120 24T XCRIL (LIS T=L1, NP
©OPUNCH L20+(tL+ITRF(I 1, [=L,NP)
81 CONTINUE
GQ TC 31
£9 PRINT L2&
31 CONTINUE

LO0 FCRMATI3I1IO)
101 FCRMAT(3F1C.3}
102 FORMAT{IHL,//3X,12HINPUT DATA 2,
. I3X. 3‘4HN°'o GF EARTHQUAKES- L N O N AT ) -.ooo.: '{10!
/avaQHSUIL FYPE;’D."'U'.l..'...'..".’ziilof
/3Xe34HNQ, CF PU[NTSm--ovoqnvvovonpoivvn;fllsl
/3Xe39HYIELDING FORCEswvcencossonsnsncseisFlde3s
73Xr34HMASS s ssrsessersrreonssansnssrrnesi»FlCe3, -
/3x'34HDAMPfNG’RATISI».ptwonvvlcaooocrbo:rF10m3r
»/Bxl34HSTIFFNESSDIO!'I'...’Q..".'..'..l=’F1°.3,/,}
L03 FORMATL/3X+19HBASIS SARTHQUAKES 3.
. IITXv3Hh036Xv4HF!L=76X-BHSTARTS o IX «FHINTENSI TY ; 6X
. SHMAX . + 53X THAT TIME/)
104 FORMAT{5X'«l5. IlU;FlO.Bv'('»I3r‘!’v3FlO.3.'€'-13.'l’)
105 FORMAT{/II3X-ITHTIME INCREAMENT $+F345¢2X+3HSEC,/ /)
106 FORMAT(//7 /1)
107 FQRMAT(1HL, R
. //3X025{‘*‘J;I3X-LTH* ETERATION CASE+L5.3H  *y
- /33X 250w}/ /)
138 FORMATL//3X,
e 12HEQ. DAMPING=,F10.3,5X;L4HEQ. FREQUENCY=,F10.3,//)
109 FORMATI/3X,22HINDIVIDUAL RESPONSES :,/)
LIC FCRMATI{3X,2F10e342XslH( 14+ LHLL
111 FORMATI3X,Il0.F10.2)
112 FORMATI//3X«1IHCRITICAL RESPONSE 2,
o FF3XsZF104342Xs L (s[4 1HY)
L13 FORMATL///3X,15HFINAL RESULTS :,.,//1
114 FGRM&T(IISX.QHPCINTsch+HTIWE.5Xa:HRES?..SXp:HV:_T.:
. LXe9HCAW EXCT4olXyFHNL FUNCT ., 3X7HTCI. RF,//)
L15 FORMAT{LIL1Os6F10.3)
118 FORMAT(ILQ,5F19.3!

LI I I R B ]

i
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aAaOMNMOaOAGGannn

120
121
122
123
124
125
126
127

FORMAT(&( [4,FT.30}

FORMAT( 7/ 73X, 27HPLOT COF CRITICAL RESPONSE )

FORMAT(// /3X,25HPLGT OF RESTGRING FORCE )
FORMAT{//3X, L THCUCTILETY FACLTOR=,F8,2,//) ‘ :
FORMAT(///3X, 2ZHYTELDING DEFORMATION :4Fl0.3+¢//1}
FORMAT( /7 /3X« 13HLINEAR FREQUENCY :,F10.3://1
FORMAT{ 7/ /3X+30HTHE JSCILLATOR REMAINS ELASTIC.//3X3C(1'8°%)
FORMAT{3X+34HC3EF. CF THE CRITICAL EXCITATICN :/) :

sTap
END

RRAERE XXX AR EREE KRS RERERRE R RR KK KA K REEE KB A K 2
PREGRAM TR Sp{er
T0 GENERATE SIMULATED EARTHQUAKES

BY : 3.J.PHILIPPACOPOULOS

R KEE KRR R
H o % 4 % # #

A A KN 3 R AR A 300 A R R I A K o O K

CIMENSICNM ACC{200L},RESP (2001} ,ACP {1024} ,AFQUR (1024}
DIMENSICN AMPLTILO LY SVINPTULIQL »SVOUTPCLOL) »OMEGA(LCL!
: + RANDF (- LOL) »FREQY(LOL)DMPL3)

DIMENSION GAMALLIQO} '

NTGT=2001
MTOT=5Q
NFT=2102¢
PLTMX=200 .0

READ 3+NITR,IPLT»IPUNCH p
READ Ll OF FBUILD.FOECAY.RAMDA,SCLF
READ Lle(oMP{Il}si=le3ie

.DW=2 .00%3 . 141 59%0F

SEW=0W
SEP=22.00*3,14155/3EW
SEF=1.00/5EP

OT=SEP/NFT

3F=DT
FBULLD=SEP*F3UILD
TOECAY=T3UILD+3ED
[T=TDECAY +FOECAY®SEP

N=fT/0T +1 .00} v

NBUTD=TBU [LD/OT +1..001

NCECAY=TDOECAY/OT+#1.001

NPE=NNECAY=MBUIDF]

IF  (NPEL.GT.NFT) NPE=NFT

M=MTOT ,

PRINT 24N TTWNBUID, IBUILDNDECAY . TOECAY 07, 35P,3EF, SEW
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\,\

OO

350

2230

[a X2 B4l

OO

aah

PRIMT 54M,CW,s0F o IPUNCH, IPLT,5CLF

IF  (N.GT JNT2T) GO 2 4000

D0 350 [=1.M
SVINPT{11=0.00 -
SVOUTP( I} =0.00
CMEGA(]1)=0.00
FREQY (I 1=Q.0

AMPLT(L }=0.00 :
CMEGA{L )=Dw -

DG 2030 [=2.M
CMEGA({ [ )=CMEGA( [~1) +Di
CONTINUE

DO 350 lal.M |
FREQY{[}=CMEGA(I}/{2.00%3.14153)
CONTINUE

INPUT SPECTRUM

[OMP=1

5551

1G5

150

2083

2000

GENERATE THE RANUOM ANGLE

DAMP G=0MP { {DMP}

PRINT &1, CAMPG.

PRINT &2

READ 23 (SVINPTU L) s(=1,M)

"READ 4, {GAMA(T),I=L,1001}

D0 5551 [=1,M
L=2%]
SVINPT( L} =GAMA(L)
DO 105 I=1.4
SVINPT( 1} =SYINPT{I}*SCLF"

CGNT INUYE o

08 150 [=144

AMPLT{I )= SVINPT (L}

CONT INUE

PRINT 36

PRINT 38

PRINT 37, ({FREQY(LI,SVINPT(I} Y, l=l,M
PRINT 39

CALL  PPLT (SVINPT (1) »My14PLTMX, 0}

.

4=100000aQL

© 00 2053 1=1.M

CAaLL RAN3 6O [dedTRI
RANDF([1=2.00%3,14159=R
J=40 .

CONTiNJE

SACH ITERATICN STARTS HERE
[{TER=L A

COEF=2.00/3SEP

CONT INUE

PRINT. 35.1TER

(NITTAL [ZE 3.2, RECCRD

-F26-
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(3 XN el

[aXaNel

aoonn

[s R aEyl

S0ca

2099

2087

&0

70
Elel

30
550

5001

2016

2021

2001

DG 5000 [=1,M
ACCI11)=0.0C
CONTINUE,

GENERATE THE RANDOM. JAVE

00 2057 I=L,N
T={I=1}%DT

C so'.

00 2059 I1Isl.
WHsOMEGA( TI1»

b
T

ANGLE=WWeRANOF( [}

SENL=SENCANGL

E4

C=C+SINI®AMPLTIIT)

CONT INUE
ACCIIY=CraACCH
CONTINUE

GEMERATE THE

AQ=1,0/T3UILD*=2

DO 550 I=1.M
T=07¢t{{=1}

n

S«Es RECORD -

(F{ [=~NBUID) 60+60.70Q

EMUL T=A 0% T 2
30 re 550
IF{I=NDECAY}
AMUL T=1 .2

GO 10 550

30+80+ 30

AMULT=EXP { (TDECAY=TI®RAMDA}
ACCtL)=ACC(Li#AMULT

DA SO00L [=1.N

call PAMAX
CALL PSQIL

ACC(L)=ACC(I)*COEF

CACCIL) »ACCMX AT IME S L A0 0T o N}
[ACCLI) QASIrDI{N)

PRINCIPAL PART COF THE 5.E RECORD

=1

00 2016 [=N3UIDWN

ACP(KI=ACCIL)

[F (K.EQ.NPE) GQ T3 2021

K=K+l
CONTINUE

CALCULATE CUTPUT RESPONSE SPECTRUM

GETA=CAMPG
PRINT 29,GETA
DO 2GOL [=1,4

SRD0=2,00%3.14L53/CMEGA(T)

CALL PRIPA
3D=48S5133)

PSY=SO®RCMEGALT)

SVOUTPLT) =P3V
CONT INUE

COMPARE [NPUT

PRINT 32

5

{ACC{114RESP(L),PRDC,SETA,30,N, DT

QUTSUT VELGCITY SPECTRA

-F27-



(el nNal

o000

Qa0

(e N e R

2003

20405

2314

3¢z

5552

4Qc2

4001

340

D0 2093 ([=Ll.¥
PRINT 33, FREQY(ILIpSVINPTL{IY,SVOUTPITII)eil

CONTINUE

IF (IPLT.NE.l) GO TQ 2705

CaLL PPLT (>VCUTP,Ayl.PLFMX.O!
CONTINUE

IF (ITERWLGE.NITRY GO T3 302
FOURIER SPECTRUM

CALL PETXT (AC#(li’AFdUﬂ(I'yDrvahpNPE¥
PRINT 273
PRINT 31, (L[, CMEGA{ )y AFCQUR(I)E,0=1,M1

MEXT ITERATION

FACT =L

00 2014 (=1.,M

3iC= )VGUfP(E)/)VIWPT({} .
SIQ=1.0Q7 810

_>[C=>IU*FACF

AMPLT{L 1=313*AFCUR( [+ 1}

CONTINUE ' :
[TER=[TER +] 4
G3 T3 2040

NEXT JAMPING RATFIO

CCONT INUE .
[OMP=IDMP+] _

IF (IDMP.GT.3) GO T3 4001
JAMPG=0MP { [OMP)

PRINT 41, CAMPG

PRINT 42

ITER=1L

READ 4, (SVINPT{I),I=L,M)

READ 4 (GAMAL 1),1=1,100)

DO 5552 [al,™

L=2%]

SVINPT{ [} =GaMa(Ly

DO %002 [=1,M
SVINPT(I}=SVINPT{[) #SCLF

PRINT 36

PRINT 33

PRINT 37, ((FREQY(1) ,SVINPTILI ], 1=1,M)
PRINT 39 ,

CALL PpLT {SVINPT{L}+Myl,PLTMX, G}
GG o 2021

CTNT INUE

QUTPUT THE RESULTS

IF (IPUNCH.NE.L} 63 TO 360
PUNCH L1,07sTTWN

PUNCH 12, (ACC({L)+{=1sN)
PRINT 15, ACCMX, AT IME, {4,451

PRINT 24

PRINT 23, ((I,ACCI{I}}sI=Ll,N} _
CALL rpLr {ACCHIL) wNeloACCMX, LY

CONTINUE
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o0

L FORMAT{3F10.5)

2 FORMATULIHIHSXsL4HCONTRCL DATA .,/

/5Xe4lB NO, OF PQINTS FOR 35.E. RECORDececoscowraz sl
75Xe0lH JURATION NF THE Se.E. REGCRD....:....,..:,FIOQS,
75X, 41K POINT 10 3UILDesecccacsoccasansscenaeceslyl(lly
75Xs4lH TIME TO BUILDoeeesoecsscesosccossssnnnr sl 1 FIO,5
fSXralH PGINI fG DECQV'ouov'.onv--o-ooo-q--o-o:vIIO’
/SXy4LH TIME [T DECAY---o.c-vonva-o--vo..--q---:yFlO;S'
F5Xp 4Lt JT FCR 34Z¢ RECURDsssessoseceovcencesesl FlO45,
/5Xedlh PERICD OF THE SeCeesoe{SECYcoevsecrsneet FL045,
/S5Xs&lH FREQUENCY JF THE Sef. (CPSlevssssscssssiofl0edy
/.5Xs4lH FREJUENCY CF THE SeZs (RAD/SECIsvecneeeiyFLOWTI
3 FORMAT(3I1O} !

& FORMATIS{ TXsF3.3)1)

S FORMAT |{ .

SXeolH NO, OF FREJUENCIES TO 8E COMPUTED ceuwa o110,
/SX el FREQUENC Y INCREAMENT .. {RAD/SEC)ecennssst 1 FLO:3,y .
/SXs461H FREGUEMC Y INCREAMENT aa‘CPSln_on-o&--..o..: .FIO.S,
/9K, 41H PUNCH OUT CASEoceseccasensccosecnsveseas s 1Oy
/SX'QIH 9LDTTING Cissnccaocncctnn:nao-.oo-.n..-:yflay
/5XeaLH 3CALAR FALTOR ccesecsesssssccnancavensstsFlO.53)

11 FQRMAT{23H QCﬁclﬁﬁA[IGV FIME (NT. 3F5.3,0Xs LINTOTAL TIME=FS.1,13HT

LOTAL NUMBER=I4)
12 FCRMAT{3F10.4)

15 FORMAT  {///5X, 22HS (MULATED QUAKE DATA :,/, .

» /5XpslH MAX: VALUE covwcocossormnncansocscansssst FLOLS,

® F5K Gl T{ME AT [HE PHEAKcessscsevsconesevsssns et sFlQa5y
C e 75Xy 4lh POINT AT THE PEAKessessesscvsvosscecaceel 110,

. 75X, 41k 30, ROOT JF [HE 30, IMTEGRALcececaceans et ;71051

16 FORMATI10F10,5) .

17 FORMATLLOF1O.51

13 FORMATLLJFLO .S}

19 FORMAT{FT .3,4(F12,4,2F3.41)

23 FORMAT  {5(15,F11,4))

26 RORMAT (///7/5X+30H 3[MULATED SARTHQUAKE RECCRD :,//,

. IRSHFOINT 2, 19X, SHTIWE-v7X,l3HACCEL=RATIGM:,///)

27 FORMAT(FS +2e3HHI ¢ 1 X, 10F10.3)

23 FORMAT (A ///5X.3THCUTRUT VELOCLTY SPECTRUM FGR DAMP IMNG2 yFS5.357)

29 FORMAT (/ /775X 1SHFOURIER SPECTRUM: ./ /1

21 FORMAT (41I5+2X o (' +F6a2s') ' 42X4F1l031)

32 FORMAT ({//77/5X,17HTA3LE TO CCMPARE:,

e /28X.,2THS P2 E L T R U M4 SV
. 76Xy FHFREQUENCY, 20X, SHINPUT ; 9X,6HOUTPUT/ /)

33 FORMAT (SX Fl0-5,10%,2(5X,F1lO+43,10X,15}

34 FORMATL///7,L3HENTENSITY 2F 34E. :,Fl0.3).

35 FORMATILIHL//30X»LLHITERATION 2,.[5,/7/5X,70(%='},//)

36 FORMAT (/7 /75X 24HINEUT VELCCITY SPECTRUME,//)

37 FORMAT(4{2XsF e 4e3XFLl2441)

38 FORMAT{4{ SXy3HFREQ. »4 X LIHSV=SPECTRUM}/ /)

39 FORMAT{///5X,25HPLET OF [NPUT SV=SPECTRUM,//)

4l FPRMQT(lHlyZ#(/leXrlSHDAMP{N” RATID $4F5.3+//5%X,20(7%11})

42 FORMAT(1d1}

¢ & % & 9 6 8 o 5 p

a4 & o 5 89 ¢

c
c
sTP
END
[ = *

[od A T TR A N R M O e DR N K e 26 G O R T T e 3 a0k e kO ek R ze ke

Reproduced from V -F29-
best available copy.




AOOOOOCGOOODDOOD 00000

[aNaln]

NaXaXa)

OO0

[ PUNCH 21 THEN LINEAR AND NONMLINEAR CRIT.
EXCITATIONS ARE PUNCHED 3UT,

E 3 ) »
= PRCGRAM ¢ ™ SP(7) @ "
* L]
= THIS 15 10 COMPUTE CRITICAL EXCITATIONS *
= OF AN JNDAMPED NONLINEAR 'MDOF SYSTEM *
= IN FORM OF A STICK MOQDEL. ®
- ' =
* NDOF IND. OF Dul.F. OF THE SYSTEM =
= NE tNO. OF SASIS SXCITATIONS %
= [seis s TYPE OF 301L 3(TE * .
* NP INQo. OF POINTS FOR ANALYSIS ¥
* [ DUR tDURATION FOR AMNALYSIS #
* 3 FEMY tY{ELD FORCE *
* *
E 3 %
* *
- *
* £ 3

BY : A,J.PMILIPPACOPOULDS.

07 e 3o e ok e kol e ol sk 0 3N o o o e e ks ke o 2l sols K o R Kook ek ok ke e
* . : =
DIMENSION XGU7OL+10)+RESP(TOL,1Q),H{TOL,2F,H3{T01,2)
OIMENSION GEL0,10)+51110),AC(L0O)AC(101,8Y(10),LGILOYMG({1Q)
S IMENSICN SM(2,2)55K(2+2),5K012+2),5KEi2,2)+55(2+2),ALPHA{LO,2)
. 1GRUZ92)sGAL2020+EIGVI2),PF {21, 5HP(Z) »3MM{2]),
. ' LGR{2) ,MGR(2)PP{2}

INPUT DATA

SCLF=32.17%

NITER=3

READ LOQ,NUOFWNE,I3QLL NP ,IPUNCH

READ 101+ TOUR +AFMX

READ 102 CUSMUL+d}ed=1,NDOF),=1,NDCF)
READ 1024 (ISKILyd¥sJd=1sNDOF ). [=L,NDCF)

PRINT OATA.

PRINT 33

PRINT 34

PRINT 95 NCOFINE, ESCSIL »NP» TDUR »RFMX

PRINT 96

00 &1 (=L, ,NOGF

PRINT 99+ {3M(Ied)»J=L.NOCF}
41 CONTINUE

PRINT 98 -

00 43. 121 ,NDOF

PRINT 39, (SK({ {+J)sd=l ,NOOF}
43 CONTINUE

INPUT THE BASIS EXCITATIGNS

IF {(IS0IL.EQ.l)  ISTRF=0Q

IF {3CIL.EQ.2). [5TRF=20

[F {I30[L.EQ.3) [STRF=40

IF (IS0IL.2Q.1} [RE=a : +
[F "{ISGIL.EQ.2Y [RE=1 '

[F {(IS501L.EQ.3) IRE=%

FRINT 103~
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DC L IF=Ll.NE
[FILE=ISTRF+IF

CALL PINPUT {XG{1+IF) s TOUR+SCLE NPy LFILESOT,

1 N3P TSPy SIL o XMX,y TMX, [MX)
PRINT 10%,[Fy IFILE s TSPINSP ¢ SIL o XMX 4K, IMX
SI{IF)=SEL

CONT [NUE

NORMAL [ZE FHE BASE3S OF EARTHQUAKES
SIREaSI{IREY
0O 2 J=1,NE '
{F (J.EQ.IRE}Y &GO THD 2
SIJ=SIRE/SILY)
00 3 i=1+NFP
XGL{I+Ji=xG{[,J)5514
CONTINUE
CONT INUE

COMPUTE MAIRLX G
30 4 I=1.NE
0C 5 JY=1,NE

catLl pCP (XG{1a L} o XGULod¥ Gl Lo d) NP:DTH

IF (!ANEUJ! G(J'I,‘G(ItJl

CONT IMUE ) :

CONT INUE B

CALL MINY {GINEsDGILGIMG)
PRINT 105,07

AISUMED VALUES FCR 3KO

00 6 I=1,NOCF
00 & J=1,NDOF
SKOU1,43=0.0

CONT INUE

{TERATICN PROCEDURE

(D=1
CONT INUE

£0 3 =1,NOOF

00 3 J=1,NDOF

SKE( L, J)=SKI1,J1+3KOE14d)
CONT INUE

PRINT 106 +1D

PRINT 109

D0 46 1=1,NDOF

PRINT 108, {3KE( {+J} »J=1,NOCF}
CONT INUE

MCDAL- SHAPES & FREQUENCIES

PRINT I'lQ

00 70 [=1.NOGCF
00 71 J=1.NDCF
GRIT+J¥=3M{L, 2}
Swllsd)sScEIL4d)
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47

54

56

55

[V

CONTIMNUE

CONT INVE

CALL NRCOT
DO 51 I=1.NOGF-
EVSEIGVI(I )
EV=l,00/EV
EV=SORTI(EV)
EIGVIE)=EV
CONTINUE

0G 47 1=l NDGF
PRINT 125,[.EI1GV(I)

(NDOF,GR,GQ+EIGVeSS)

PRINT 111,453 (Jelted=1, NDOF)

CONT {NUE
PARTICIPATION FACTORS

DO 53 L=l ,NDOF
DO 54 [=1,NDGF
SHPI[1=5341sL)
CCNT INUE

RO=0.0

DO 55 K=1,.NDOF
HO=0 .0

DC 564 J=1,NDOF -
HO=HO*SMIKWJ) -
CCNTINUE
RO=RO+HO® SHP (K)
CONT INUE .
PF{L)=~RD

MCD&L MASSES

Q0=0.32

DC 57 M=l .NDCF

I0=0.0

00 58 JM=1,NOCF
LO=I0+SMIM UM )I*SHP L IM)
CONT [NUE
QU=Q0+Z0*SHP (M)}
CONTINUE

SMMILI=QT

MODAL UNIT IMPULSE RESPONSES

AMAxSMM{L )}
AFR=EIGV(L)

A0M=0.00

08 53 [L=1,NP

HOLL L) =PpFr(L ) (L. L)
CONTINUE

CONTINUE

PRINT L22

PRINT 123, (SMMLL),1=1.NDCF)

PRINT 124

PRINT 123 4(PFLL)I[=1,NDOF ]

EQUIVALENT SYSTEM

90 65 [M=1,.,NDCF -
0C 66 [=1+NDCF

UNIT IMPULSE RE
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£8
67
65

34
a3

i8

2L
20

101

ir

73
72

.37
36

703

A

SHP(LI=33( M. E)
CONTINUE

00 &7 K=L.NP
Q=0.0

00 63 J=1.NOCF
Q=Q+SHP{J )*H{K, )
CONT INUE
H3{KsIM)=C
CONT [NUE

CONT INUE.

00 33 J=1,NOGF
DG 34 [=1,NP
H{Isd)20.0

CONT {NUE

EQUIVALENT SYSTEM JINQIVIGUAL RESPONSES

0C 17 [I1=1,NDCF

PRINT 113,11

PRIMT 114

8C 13 J=i.,ME

CALL PTOTR (XGLLad) e HI{Lo LI FeRESPILoJlsYMy M, leDTvVPi
PRINT L15+deMaTMe[M B

CONTINUE

EQUIVALENT SYSTEM (CRITICAL RESPCNSES

CALL PCRTIL {RE3P+GrAC» B AQ YCRe TCR, ICR, SLRE,DT NP, ME)
0O 20 K=L NP

YC=Q.0

00 21 {=L.NE

YCSYC*AC(I)*Rﬁhp(KvII

Hi{xXe [[}2YC

CONTINUE . ’

CALL FAMAX (H L IX )2 AM THM, INDTNP)
PRINT 114

PRINT Ii?Q({F;QC(EJ,pISKyN53

PRINT 113 +aMeTHMIM

00 741 KK=[.NE

ALPHA(KKR, L1} =4A0 (KK}

CONT INUE

08 T2 J=l.NE

00 73 (=1L ,.8P

RESP LT, 41 =2C.0
CAONT IMUE

CONT [NUE

EQUIVALENT SYSIEM SCRITICAL EXCITATIONS

080 36 J=L,NDOF

D0 37 (=1 ,NP

HS{ [ +J3=0%0

CONT INUE

00 704 KF=1,NOCF

00 702 Kal,NP-

XC=0.0

Ja 703 Js1.MNE
KC=XKT+ALPHAL Y JKFIREXGIXK, J)
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HS(K KF)=XC
CONT [MUE
CONT INUE

PUNCH OUT THE LINEAR CASE -

"IF (IDWNE.L) 32 TC 706

[F {(IPUNCH.NE.L) GO TQ TQé

2 D0 T7AT J=1.NDCF

7C7

706

s X e Xal (o]

0

- 29

28

Oon

310
320

340

350

74

(g X e X el

16
210

18

PUNCH 133.d

PUNCH 1393 (HS({14d),I=14NP}
CONT INUE

CONTINUE

IF {IDLST.NLIER) GO 1O T00
ELASTIC RESTORING FORCES

00 28 =1 ,NDOF

D0 29 L=1.NP

1=0,0

00 30 J=L,NDCF

L3Z#SKILeJIXHIL 2 J)

RESPILs 1) =l

CONTINUE :

CALL P AMAX {RESP(1v[)+EQ,TEL [E2DTuNP) .
PRINT 143.+1.,EC ,

CONTINUE

NCN LINEAR FUNCTIONS

RFLM=REMX .

00 74 [=1,NOCF

DO 75 J=l.NP

R1=RESP{J I}

IF  (ABSCRLILGT.RFLMY GO TC 310
RESP(JeI11=C.0 -

Gd TG 75

CONTINUE

[F {(Rl} 330,340,350
RESPLIs [} ==R1-RFLM

GG 1O 75

RESP(Jel)20.0 :

GQ. 10 75 ~
RESP(Je [} ==R1L+RFLM ’
CONT INUE

CONTINUE

i

COMPUTATICN CF MATRIX 4a

CO 210 I=1,MDOF
DO 76 J=1,NDGF
GR{L+J4)=0.2
CONT [NUE

00 77 [=1.NDCF
80 78 J=1.NOGF ‘
CALL RCP {HEL T AUy J) e GR{T 4 I, NP,DT)

IF ([.MELJ) SREJ 1)=GR{T, 4}
CONT {NUE
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77 CONTINUE
CAlL M NV (GR¢MOUF, D3R LOGRIMSR)
DG 200 IK=Ll.NOOF )
DO 201 [=1.NDOF

CALL PCP {RESP (L4 IR} oH{L,1),PP(1),NP,DT) .

201 CONTINUE . \
D0 202 1a1,NDCF . : . .
22=0.0

DO 203 J=1.NDOF :
LZ=ZZ¢GRE T JIRPPIU) -
203 CONTINUE
SKO( (KeI}=2Z o
202 CONTINUE
200 COMTINUE

PRINT CERIVED CEMPING & STIFFNESS MATRICES

PRINT 135 '
DG 21l [=1,NOQF
PRINT 131,1!
PRINT 1324 (SKC{{sdis J L/NOOF)
211 CCONTINUE .-

{(D={D+1
Ge 7¢ 7

PRINT RESULTS OF TFHE LATEST ITZRATICN

7C0 CONTINUE
PRIMT 33
08 703 Jsl.MOCF o
PRINT 11344
PRINT 141
0C 710 I=1,.,NP
f=(I=1L}*0T )
BRINT 142 claTHS{IJY 1T sd}
710 CCNTINUE
709 CONT {NUE
IF (IPUNCH.NE.1Y GO TOQ 715
D 7146 Jal.NOCF
PUNCH L40.J
PUNCH 1393 «{HS{I +di,121,NP)

716 CONTINUFE
715 CONTINUE ‘ ) .

93 FORMAT (LHL+/) ‘ ' =

S4- FORMAT{IX » L1HIMPUT DATAz.///)

95 FORMAT(/3IX.40HNC. OF DodoFs OF THE SYSTEMsvewessascead 110,
/BX'QGHNO- CF aAsxs EARI‘HQUAKES. LA R BN N N 55-011[10!
’3XV#OHSCIL CBNDIT{GN C‘ASEEI.- as 80 Aok PP b b -.:II107
/3X4CHNG. TF SOINTS FOR ANALYSISesseccvacsvaei 10,
73X,40HDURATION OF ANALYSISesecsvssvessnassaaai F1O.35,
F3X¢40HYTELD FORCEZ evnvavasaccascnsssvsansscceseiFl0s57/71
6 FORMAT{/3X,11HMASS MATRIX./1}

37 FORMAT{/3X,L49HOAMPING MATREX,/)

98 FCRMAT(/3X4LOHATIFFNESS MATRIXW/)

99 FCRMAT(1OX,7F10.3)

100 FORMATI(3I10)

101 FORMATIBF10.5)

1C2 FORMAT{SF10.31 .

103 FORMAT{/3X,17r3A31S ZARTHQUAKES,

“ vt s e
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o 77 TRe3HNCLOX 4HFILE 64, SHITARTS + 1X s IHINTENSL TY,6X,

. SHMAX. + 5X 4 THAT TIME/)
104 FORMAT(S5X.IS+ILGsFLOSs* ("5 13317 ,3F10.5,7(*413,7)7) .
105 FCRMAT(//7/3X+1THTIME INCREAMENTE :,F3.5,»2X,3HSEC,/ /)
106 FORMATIL1HL, i

. 773Xe25{ P%%) 4/3X,1TH® [TERATION CASE,[5,3H =,

. /3Xe250V %0}/ /7) :
1G? FORMATI/3X440HEQ. SYSTEM : DAMPING MATRIX o /)
108 FORMAT{13X:7F10.3) . :
LC9 FORMAF{/3X,40HEQ. SYSTEM : STIFFNESS MATRIX e /)
110 FORMAT(/3X,4QHMGDAL "SHAPES & FREQ. BEFCRE NCRM v 77}
111 FORMAT {15X,5SHSHAPE ,6F10,4/)
112 FORMAT( /3 X%,40HM00AL SHAPES £ FREQ, AFTER NORM e 47
113 FUORMAT( /7 /73X, 40HRESULTS FOR QUTPYUT DeO+F. CASE e 15,

. FI3X 45 R) /)
114 FORMAT(/3 X,27RINDIVIDUAL RESPONSES,
s /710X, SHQUAKE, 6XvaHMAX o1 Xy LIHAT. YIME‘PCINTI/)
115 FORMATISA ¢ IL10+2FLl0, 3 (21440 )*}
116 FORMATI(/3X,40BCCEFFICIENTS OF THE CRIT. EXCIT 1/}
117 FORMAT(SX,110,F10.5)
113 FORMAT{/3X,4CHMAX, OF THE CRITICAL RESPCNSE '
. /3Xe HMAX2 ,F10.5 43X+ 2HT=FLlO.5 43X, 6HPCINT=,15)
119 FORMATU{/3X,40KCRITICAL RESP. S VEL., RECCZROS /3
1eC FORMATI(/3X,L4HFCR 0.0.F. NO:,I5,/,
. 76Xs4HTIME I X L THCRITICAL 153PDN>E-3X.
. LTHCRITICAL VELQCITY/)
121 FORMATI3X +FT.3+2F20.5)
122, FORMAT{/3 X, 12HMCD AR MASSES, /)
123 FORMATI(8FL10.51)
124 FORMATL /3 X.,40HPARTICIPATION FACTCAS v 7]
125 FORMAT(/3X,SHMUOE 13 ,4X+SHFREQ:,F10. QQSX'THRAD/:Ecnll
126 FORMAT (/773X 14HNG. COF Da0.F 14154/3X,19(%11,//)
127 FORMATU/SXeSHPOINT, I6Xs@HTIMELLIX+I9HCR. REIP.,
. FALLZHELASTIC R.F. 45X« 1SHNON L (KEAR FUN--#K,
- LOHELA STOPLAS. RoF,/7)
128 FORMAT (3Xal745{5XsFL5.a)} .
129 FORMAT (//3X,30HMAX, ELASTIC RESTORING FBRCE Sy FL0.4/1
120 FORMATC /7 23X, SHMATR IX Az./4)
131 FORMAT(/3Xs5HROW 2y [5./3X»10( =43/}
132 FORMAT(IOF10.4)-
123 FORMAT(//3Xe39HPLOT OF ELASTOPLASTIC RESTORING FORCE :,//1)
134 FORMAT(//3X:28HPLOT OF NONLINEAR FUNCTICN :,//)
135 FORMAT!//3Xs26HDERIVED STIFFNESS MATRIX 2,//)
136 FORMAT(//3Xs24rADERIVED DAMP ING MATRIX 24/7)
137 FORMAT (//3X,30HMAX. ELASTOPL. RESTOR. FORCE :,FlQ.4/)
138 FCRMAT(5X.25HEINEAR CRITe EXCIT. FBR DOF :,[5})
129 FORMAT(10FB.2) .
140 FORMAT{5X,29HNONLIN CRIT. EXCIT, FCR DOF :,13)
14l FOCRMAT{S5X,SHPCINT,6X, QHTIME'axoLZHCQlT- EXCIT wne3X 9L 2HCR [T RESP .,
11}
L42 FGRHAT([leFLU.%.ZFZO.#I
143 FORMAT(/3X+5HOOF £,13,3X,21HAMAX, RESTORING FGRCE=,F1043,/) -

SIop
END

SUBRCUTINE  AIGIDN  (DATA,RESP,VELT;AFCRCESTCRTL, YCRVL ) B+Ge8Y .
1 ALFAARMAAX y AL PHALCCoR oYM, T Y, NY, 35M,53C,53K [
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A0 NOOO0NONON0nOn0

[a N g

o0

2 SCLeSKI +5CE o3KG W NLCASE,NASNE, DT )

THIS SUBROUTINE COMPUTES THE VALUES OF S$SC0 &  SKO
ACCORDING TO THE EQUIVALENT LINEARIZATICN CONCEPT .-
IT {3 TD 88 USED FOR CONSTRUCTION OF CRITICAL 3PECTRA.=

SUBROUTINES USED. ARE ¢ PR3PA PCRTL PFRNL PCP  PETDE  MINY

NLCASE tTYPE OF NONLINEARITY.

DATA(L+dd $INPUT ZXCITATICNS,

RESPL{I J} - :QUTPUT RESPCNSES.

VELT{I,Jd) :OUTPUT VELGCITIES.

RFORCELI) SNCON~L INEAR FUNCTION ASSQOCIATED WITH THE SYSTEM.
YCRTL(T) :CRITICAL RESPONSE. .

RMax{Iy . iMAX, RESPCNSES DUE TC EXCITATIONS.

18 5 8 IS :VECTOR ASSCCIATED #ITH THE NONLINEARITY,

RE tREFERENCE I[NTENSITY.

YMe TY MY MAX. VALUES OF THE CRITICAL RESPONSE.

ool of of ot off of of o of of i of ot of o o of o ol f o o o sk o o o o o o ok o o o el o) o o o o o o o o o o o o o o ot o o o o o i o o
. . C

OIMENSION DATA(NASNE] +RESPINA,NE ), VELT (NA,NE)
DIMENSION RFPGRCEINA) ,YCRTLINA) ,YCRVL [NA)

c

P
A

c
¢
¢
C
C
C
c
c
c
c
c
C
c
c
c
o
c
C
C

DIMENSTON BINE,NE} ,GINE,NE), ALPHA(NE }J5 ALFAINE) ,8Y(NE),AMAXINE]}

O {HMENSEIGN 542420900150 132} ,M5(21 s TNL (21 4P(2)

SM=S M
3C*33C
SK=3 35K

SC3=SCHsC I - :
SKS=SKeSK 1

WWSSKS/SM

WN2SQRT (Wi}
PERD=2,00%3.1515%/WN
WFR=1.00/PERD

GETaaSCSA(2.00%wNRSMY
RESPONSES - CRESP(LsJ)el=lNAed=i,NE
DG 2 J=1.,NE ] : )
CALL PRSP X . (DATA(L+ b1y RESPIL4J} ¢ PERD+GET A, YMAX,NA,OT} .

YMAX=ABS{YMAX) i
AMAX{J)sYMAX
2° COGNTINUE

VELOCITIES VELT{Isd)sI=L N&yd=Ll,NE"

NalsNA=1 . J
DO 5 J=l,NE :
5 VELTINA,J}=0.00
DG 4 J=1,NE
DG 3 I=leNAL
YELT (s ) =(RESP(I+1 s JI=RESPL[,d11/DT
3 CONTINUE
4 CONTINUE
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CCALL PETDE [GeALPHALAZ22,NE)

CCEFFICIENTS OF THE CRITICAL SXCITATION ALPHA{T) ,I=1,NE

CaLL PCRTL (RESP B, ALPHA ,BY ) ALFA,YCRL,TYCR,H,IYCR,
1Y RELDT,NASNE)

YM¥=YCRL

TY=TYCR

NY={YCR ' h

CRITICAL RESPONSE VYCRATLILD).[=1.NA

00 &6 K=l,NA

YC=0.00

00 7 I=L.NE

YCaYC+ALPHA(TI*RESP (K, 1) -

YCRTL(KI=YC

CONT INUE : : .
CC(S5)=vYM :

CRITICAL VELQCITY YCRVLII).[=1l.N4&

00 19 [=1,NAL

YCRVLIE )= {YCRTLII+L ¥=YCRTLIINI/DT
CONT INUE -
YCRVLINA) =0.00

NON=LINEAR FUNCTION RFORCE( ) sl=1,NA
CALL  PFENL  (RFORCE(L1),YCRTL{L),YCRVL {11, CC (1), NLCASE,NA)
DN 3 [=1,NE '
DO 3 J=1,NE
caLL  eCe (RESPULyIFeRESPIL,dl oGl Lsd)sNA,OT)
CONT INUE
CONT INUE
CALL  PETOE { GeALPHALALL,NE}

00 10 [3L,NE-
SO0 LD Jal.NE

CALL pCE (VELT(1,LLeRESPIL,dtsGlIsd] o NA, O}
CONT INUE .
CONTINUE 7

CALL PETOE " {GeALPHA,AL2,NE)

B0 L2 [=L,NE

OC 13 1=1.NE

CaLL ace IVELTI1 I3 VELT(LlsddeGlIsJeNa, DT
CONTINUE

CONT INUE

N

0O L4 I=1,NE

caLL PCP LREORCZILISRESP (L L¥y 3L Lo 1) eNaA, D)
CALL 2CP (RFEJRCEILIZVELTL e 110Gl 1e2)sNA,0T)
CONTIMUE . : .

P1=0.00
0G0 15 1=l ,ME
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PL=PLeALPHALLI%GE [ L)
15 CONTINUE

P2=0 .00

DO 16 !=1.NE

P2=p2eaALPHAL L) %G1 1,2
16 CONTINUE

Sti.13=4811"

Stle2¥=a12

S{2¢l)=5(1,2) ) L :
$12,2)=422

CALL M 1INV £5e2s30,L5eM5}

P({li=Pl
p{2l=P2

(A N Ne]

VALUES CF 3CIC,3KID

DO 17 1=1,2 _ K -

TNLE12=0.00 .
0 18 J=1+2
TNLETI=TNLRLE #5300 )%P LU
18 CONTINUE ‘
17 CONTINUE

SKC=TNL{L}
SCO=TNL (2

¢ i
RETURN ,
END :

SUBRCUT INE ATHENS (X )V oYY eFaClsS33Me 35350 ,355Ky
' SCOeSKO5CT +SKI» M, ICASENA,ITI
. Co. A - C
CCCLCOCCUCELOLCLLLLLeLCCCOLLlLOLCeCCLGLCaCLLCECTeLLCeeoriee

L

ECR & GIVEN 3ET :SCO.SKQ THIS SUBROUTINE
COMPUTES A NEW ONE :3CON»SKCN »ACCCORDING
TG THE EQUIVALENT LINEARIZATION CONCEPT.-

I
SUBRDUTINES CALLED & PRSPA¢ s PFNL 4 s PCP 5o MINY

CCCECCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC@CCCCCCCCCCCCCCCCC

OO0 O00a0
OO OQOOaOEOO

DIMENSION XULIoRUL) 2 7L L3 eYYLL) &F (1)
D IMENSION 5312,2).L5020.M5(2}
CIMENSICON PP(2)s INLIZ)

DIMENSIGN CCis)

C- -
SM=353M ‘
$C=855C
SK=555K

c

SC3=5C+SC I
SHS=SK#SKT
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W= SKS/ 34

AN1=SORT{ WW)
PROL=2.00%3,14153/WN1
GETAL=303/(2.00%SH*nNL}

CALL  PRSPA . (X{11,Y!{L),PRDL,GETAL,YMAX,N&,OT)
YM=ABSTYMAX) )
NAL=NA=1

on 1 J=1,NAl

YY(Jr=r{dsli=013)) /DT

CONT INUE

YY(NA)=0. 60

CLioisYM

CALL PRNL  (FCL) Y Il Y {1),CCLLY, ICASE,NAY

caLl PCP (YY{L)erY{L),AL1L,MA,0T)
CaLL PCP  {Y{l)eY(12,A22,NA,0T)
calL PCP LYY{LR) +¥{13+A12,NA,DTY
3S{lsLli=all

55(1.20=412

55{2+1)1=35{1.,2})

55(2+21=222

CALL PCP {F{Ll)sYY{L}+PLsNA,DOT)
CALL PCP  {F{l)+Y(1)+P2ZeNA,DT)

PPLL)=PL
PPI212P2

CALL MIMV  (55,2,0S5:L3.45)
20 2 i=sl.2

INL(T}ag.O )

D0 2 J=L,2°
TNLOI3=TNLILY +SSULe JIAPPLJT
CONT [NUE

SCO=INL{L)
SKO=TNL{2)

RETURN ~
END

SUBRQUEINE SITRYV (DATANPREV,N,NREM)
SHUFFLE THE DATA BY =3IT REVER3AL¥,
QIMENSION DATA(NPREV.NsNREM) : '

DATALIL 2 I2REV,I3)=0DATALIL,12,13)s ALL Il FROM 1 TO NPREV,
ALL 12 FREM L TE€ N (WHICH MUST BE A POWER CTF TWOI LAND ALL.
- I3 FROM L TG NREMyWHERE 12REV-~L [3 THE BIT REVERSE GF 12~1.
FOR ZXAMPLEs, N = 32, [2=1 = 1QOI1 AND I2RSV-~l = 110Cl.

DIMENSION DATA(L)
IPO=2
IPL=TPO*NPREV
[Pe=1PL*N
[PS=[P4ENREM
T4REV=1
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[aEe]

bisa)

290
3¢
40

50

69

OO0 nnNO

10
20

30

40

0G 60 14=1+LPac (P}
IF {14~I4REV) 10,30,30
[1MaX=[4¢[PL={PO

D0 20 l1=[&.1IMAX,IPD

00 20 I5=211l,1P5,1P4
[SREV=2I4REVe[S5~14
TEMPR=aDATALLIS)
TEMPI=DATA{IS+L} .
JATA(IS)}=CATA(ISREV]
DATA(IS+1)}=0ATA{ISREV+L)
OATA({ISREVI=TEMPK
DATA(ISREV+LI=TEMPL
1P2=1P4/2 :
[F (14REV=IP2) 60,008730

- 14REV=I4REV=[P2

[P2=1P2/2 .

IF {IP2=1P1! 60,40,40
I4REV=14REVFIPZ
RETURN

END

SUBRGUTINE CZOL2(DATANPREV ¢NeNREMs ISIGN)

FOURISR TRANSFORM TF LENGTH N 3Y THE COCLEY=TUKEY !
ALGCGRITHM . BIT-REVERSED TC NORMAL UROER.

DIMENSION DATA[NPREV.N,NREM}

COMPLEX DATA : o
ogrAcIl.J2.I3|=SUM(DA[A{Il.l&;lB:*EX?lISIGN*Z*PI*[*((IZ-lJ*
{J2=13/NF) e SUMMED CVER [2=L TO N FCOR ALL Il FROM 1 TJ
NPREV,y J2 FRCM 1 TO M AND I3 FRCM 1 TC NREM.N MUST EE A
POWER OF Twl. FACTORING M BY .45 SAVES 4BOUT .25 PERCENT

CVER FACTCRING AY Twls5.

NOTE—IT I35 UNNECESSARY TUO REWRITE THIS RCUTINE [NTC CSMPLEX
FORM 30 LGNG A5 THE FORTRAN COMPILEZR USED STDRES REAL ANMD
IMAGINARY PARTS IN ADJACENT STORAGE LGOCATICNS. L7 MUST ALSO
STORE ARRAYS wilW THE FIRST SUBSCRIPI INCREASING FASTEST, -
DIMENSION: CATALL) : .
TwlP1=6.2931353Q72%FLIATILSIGN)

[PQ=2 .

[PL={PORNPREY

[Pa= Pl *N

[PS= [P4ENKEM

1P2=1PR1

[F{N=1) 150,150+ 5

MPAR T=N

IFINPART=21502,30,20

NPART=NPART/4&

G 10 10

DO A FOURIER TRANSFIRM IF LENGTH TWHE

{P3x(P2%2

00 49 [L1=1,[PLsIPC

DO 40 [5=11,1P53.,[P3

JOo=13

J1=40#[ P2

TEMPR=0ATAIJL)

TEMPI=DATALIL#L ) -
DATA(JLI=0ATA{JOI=-TEMPR
CATAUJE #1)=0a T4 (JO+1I=TEMRT
DATALIC)I=CATA{JO) +TEMRR
SATA(JO L )=0ATALJOFL) #TEMPT
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50

60

10

a0

£

igao
ito
120
130

140

150

GZ TS 140

FOURIER TRAMSFORM OF LENGTH 4 (FROM 31T REVERIED TRDER)

[PI=[P2*4
THETA=TWOPI/FLOATIIPI/IPL
SINTH=SIN(THETA/2.)

WI3TPR==2 ,#3{NTH®S [NTH
COS{THETA =1, FCR ACCURACY.
WSTPI=2SINCTHETA)

HR‘I, [3

HI'-'O-. . B

DG 130 [2=1,[P2+{P1
IR{I2=1)73+70+60

WER=WRFEWR=W]*WI

W2E=2 W] ¥W]

W3R=W2R*WR=WZI*WI
W3[=W2R%*W I'+w2 [*WR
TIMAX={2+IPl=IPQ

00 120 11=12,I1MAX, IR0

09 120 [(5=[1,.[P5,[P3

Jo={s5 :

J1=40+1P2

J2=11+[P2

J3=f2+(P2

[F{I2=113C+90.40

APPLY THE PHASE SHIFT FACTORS
TEMPR=0DATA(JL)

DATA(JL )2 W2R=TCMPR-W2IHDATALIL +1}
ODATAL L+ 1 1=w2REQATALIL v L) +W2I=TEMPR
TEMPR=2DATAL2)

DATA( 2 1= wR=TEMPR=-WI*DATALJZ+ 1)
DATA{J2+1 ) =wR*DATA{ JZ+1 ) +WInTEMPR
TEMPR=0ATALJ3), .
SATA{J3I=W3R*TEMPR=WI[*DATA(J3+])
QATAE( U3+l I=W3R*DATA(JI+1) +WITHRTEMPR
TOR=DATA{JC)+DATALUL)

TOL[=0ATAL JO+13+DATALIL 1Y
TIR=DATA( JOV=DATALJ1!
T1I1=CATAL YO+ I=-DATAL{JL L)
T2R=0ATAL J2Y+CATA(JUS)

T T21=DATALJZ2¥L)+0ATAL3+L}

TIR=DATALJ21=0AFALS3)
T31=0aTA{ J2+ 1 1=0ATA{JB+]1)
DATALJOI=TOR®IZR -
DATA{ O+ ) =TOI+T2E

DATA{J2 1= TOR=TZR .
DATA(J2+1 )=TOI=-T21 -
IF{ISIGN) 1CQ,100,110

TIR=z=T3R

[3{s=731]

DATA(JL}=TIR=T3U
DATA(JI+1)=T1I+ 3R
DATA(J31=TLIR+TII
DATA{J3+1L)=T1I=T3R

TEMPR=WR o .
WRaWSTPR* TEMPR=WS TP I=W[ +TEMPR
AT=WSTPREN] +WSTPIRTZAPR v
[P2=1P3 R
[F{IP3={P4}50,153,150

RETURN

END
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GO

OO0 00

10

SUBRQUTINE FOURZ (DATA,N,NOIM.ISIGN)
THIS I3 FOR MULI[-DIMENSIDNAL FOURIER TRANSFORMATICN

If NOIM=1;
N

DATA(J)=SUM DATAIKI®EXP( [£15IGN®2%3 , Lomka /N)
K=l

DATA  iN#O(M DIMENSIONAL (NPUT MATRI{X GF CGHPL‘K NUMBERS:

N

LATER RESULT WILL BE STATED
SLENGTH OF COLUMN [M DATA3INDICATING rtw= LR FREQUENCY PUOINTS

NDIM (LENGTH OF ROw [N DATA; INDICATING OIMENSICN OF F,T,
ISIGN 3 =1 FCRWARD TRANSFCRM

20

40

&Q

[Nl

[sNeEg] Qoo nn

+1 INVERSE TRANSFCRM

DIMENSICN OATA({L), N{14

NfOT=1

CQ 10 [O{¥=L,NDIM

NTOT=NTOT=N{I0IM)

NREM=NTCT

00 60 IDIM=L ,NOIM

NREM=NREM/N(IDIMY
NPREVANTOT/INL(IDIMIINREM).

NCURR=N({IDIM}

CALL BITRV {DATAJNPREVNCURRNREMI

CaLL COOL2 {(DATAWNPREVYHCURRNREMSISIGNY
CONT INUE
RETURN
END

¥

SUBROUT INE “MINVIA Ny Dbk o M2 _ : © MINV 33

THIS PROGRAM [35 FOR 4ATRIX INVERSE :
AsNRN OIMENSIOMAL (NPUT MATRIX, LATER REPLACED 8y RESULT
NLENGTH OF COLUMN OF 4
D DETERMINANT CF REIULT : '
L: N=DIMENSIONAL 4QRKING VECTOR
M2 N=DIMENSICNAL WORKING VECICR

DIMENSION A(L),LIL)Mt1) : MINV 340
. : C MINV 530

SBARCH FOR LARGEST ELEMENT - : . MINV 540
MINV 550

O=le8 ' ) MINV 560
NK==N : , . MINV 570
00 30 K=l .N - ) MINV 530
NK=MNK+N ‘ : MINY 530
LK} =K ) ] MINV 600
MIK) =K L . . MINV 610
KKsNK K ) L ’ . . MINV 620
B{GA=4{KK) " ) MINV 530
00 20 IsK.N ) : MINV 540
[Z=N#{J=1} MINV 650
20 20 I=K.N MINV 560
TdslZ+{ MiNY 670
1C [F{ aBS{BIGA)I~ ABS(A{{JI}) 15,20,20 MINV 53¢
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[aNalal

QO

2 RaNeXal

[aNgNel

e Rl

15

20

25

30

35

34

48

45
4&

48
50
35

&0
&2

65

BIGA=A{1J)
LK) =1

MR =4
CONTINUE

'INTERCHANGE ACWS

J=LIK}

[F{J=K} 35,3525
K [=K=N .

D2 30 [=1L.+N
KI=zKI+N

HOLO==4 (K[}
Ji=KI=K+#}
A{KDI=alJ ()
A(J[} =HOLD

[NTERCHANGE COLUMNS

[=M{K}

IF{l=K] 435,845,338
JP=Nk (=i}

00 40 J=l.N.
JK=NK+ S

JI=ap+)
HCLD=z=a{JK) .
ACJKI=ALIDD
alJEY =HOLD'

© GIVIDE COLUMN 3y sIMUS PIVOT (VALUE CF’PIVOT ELEMENT IS

CONTAINED IN B31GA} :

IFIBLIGA} 43:46.48
D=20.0

RETURN

DC 55 1=1,N

IF{I=K} 505550
TKaNK L
A(IK)I=A{ K}/ (B [GA)
CONTINUE

REDULE mATRIX

D0 65 [=L,N
IK=NK+{
HOLE=4( IK

[J=f=N -
00 65 4=l ¢
Td={JeN

IF{I=K} 5065460
[F{J=K) 62.,65.,62
KdslJ=1+K
AtIJ)=HOLD®A{KI }+aL L2
CONT INUE

OIVEDE ROW BY elvar
KJ=K=N -

30 7% J=i,N
KJ=KJeh

-F44-

MINY 690
MINV 700
MINV 710
MINV 720
MINV 730

INV 740
MINV 75Q
MINV 760
MINV 770
MINV 730
MiINV 790
MINV 300
MINV 310
MINV 320
MINV 330
MINV 340
MINV 350
MINV 360
MINV 370
MINV. 880
MINV 890
MINV 900

. MINV 910

MINV 920
MINV 930
MINV 340
MINV 950
MiNV 960
MINY 370
M{NV 930
MINV 990
MINV1OQOQ
MINV1IQLO
MINVIC2C
MINV1Q30
MINVIQ20
MINVIOSG
MINVIOG&O
MINVIGTO
MINVLIQRO
MINV1OQ3C
MINVLI100
MINVIL1Q
MINV1120.
MINVL1130
MINVL14Q
MiNVL 150
MINVLLOQ
MINVLLITC
MINV11BO
MINYLL130
MINVIZ2OQ
MINY1210
MINV]I 220
MINVIZ30
MINVI2&40
M{NVEZ5Q
MINV1Z260
MINVIZTO
MINV] 280



[FLJ=K) TC,75,7¢
70 A(KJI=4(KJII/31G4
75 CONTINUE
PRODUCT GF PIVOTS
D=20*B15A

REPLACE PIVGT By RECIPROCAL

aomn oon

A{KK)=1.0/B81GA
30 CONTINUE

FINAL RCW AND CCOLUMN INTERCHANGE.

Ooaon

K=N
100 K={K=1)
IFIK) 150,15G,105
105 IsL{K}
[F{{=x) 120,120,108
103 JO=N={K=~1}
JRaN®([~1])
00 110 Jd=1,.N
IK=C+y
HOLO =41 JK }
Ji=JR+}
AfJK ) =wAl g1} ] =
110 A(J1) =mM3L0 ¢
120 J=M{K} -
TR(J=K) 100.100.,125
Y126 KiaK=-N
DO 130 I=1,N : . . '
KI=K1+N '
\ HOLD=a(KI)
- Ik =Ky
B(K[)=—af L[}
130 Af{Jl} sHOLD
GO TO 100
150 RETURN
END .
c o . ;
c
SUBROUTINE ouTR [ToANSR FUN N1 N2 LHECK Y

c . Cox
(AR et et st oW Aol st oiotod f A R it ed ol ket of oE sl of oo o R {904 60 A o o] st o o X0 o o o R o 08 o1 0 o4
C . s

: c

o THLS [5 TQ PRINT THE ANSWERS AT EVERY VALUE OF T c
C : c
CLLCLLeLooCeCeooceecceLeeecoceorcecccerceeeeoreeototoecerececceee
C z
c ‘

OIMENSION - ANSR(L).FUN{LI,CHECK(L)
c

OC=CHECK( 3} '

ID=7/DD+]
c ’ .

_ WRITE(S,1) [D,T;AMSRIZ],ANSR{L),N1

c WRITELT,21 T,ANSR{2)
¢

L FORMATISX +I5+3[{SXsF15.7)+3X415)

-545-

MINYL290
MINV1300
MINY1310
MINV1320
MINV133Q .
MINV1340
MINV135Q
MINVI360
MINV13T0
MINVL330
MINV1390
MINVL400
MINVL&LD
MINV1420
MINVL 430
MINV1440
MINVE45C
WINVL46a
MINV1470
MINVL480
MINVL49Q
MINV1500
MINVISLO
MINV1520
MINV1530

S MINVIS4Q

MINV1550
MINVLS560
MINVLISTO
MINV1SS0
MINV1530
MINV16QO
MINVLBl0
MINVLIGE2G
MINVIS3Q
MINV1 640
MINV1&S5Q
MINV1660
MINV1&TO
4INVI&EBO



2

(o N

a oo

ceLcLLcooeoecceoLcLcocoececeeLcececeeeicooceteccecaaeoeceece

c

cccecoceLcerceceeoeccereececeeece
C .

c

ny

(o] DO OoOnNaoOon o0

DIMENSION a(L)

FORMAT{1IX,2F15.6)

RETURN

CEND

SUBRBUT INE PAMAX [&04Bs TMX  JMX,0T JNUL

A8=485{4(1))

oo 2 J=2,NU

AB5M=aR8504(J)]
IF{ABSM.LT.431) 30 TC 2
48=483M

JMX=J

CONT [NUE

TMX3{JMX=11%0T
RETURNM
END

SUBRCUTINE  PAUTO - (XeRX,NUsDT)

THIS (S TG COMPUTE THE QUTCCORRELATICN FUNGTION

OF & GIVEN SIGNAL. |
RX(TTI=B{X{TIXLF4+TT )}
X({I)gyl=2lsNUseeensneesGIVEN S[GNAL.‘

RX(II e l=1vHP e vunaeer PAUTQCORRELATION OF X1,
+ RELATION BETWEEN RECORD LENGHTS = NPR=NU/2

CCCCCCCCOCCLCCCCCoOLLCLcLLoloLaTeLeLegoiceeceeeeecceeocece
‘ ' c

JTIMENSICON XELY oRXE LY

NPsNU/Z
NPL=NP=-1 ”
DUR={NP1~1}>0T i

DO 1 LR=1l,NP

IR=LR~1

SUM=0.00

D8 2 IX=1,NPL

[XL=[X+1

QL=X(IX}

Q2=X{IX11

Rl=x{IX*(R)

R2=X{I{X1*[R) :
SUM=SUM+Q1*R2Z +Q2%R L #2.C0# (QI*RL+Q2%=R2Z)
CONTINUE

SUM=aSUM*D T /46,00

SUM=3UM/DUR

AXILRI=2SUM

-F46-

¢
cee
CCLCELEECCLe CCCECelCilnsst

-

geeeccecccoceococceLceoececccesecoecitoctectceceteeccececce

C
i
C

-
C
c
¢
"
¢
¢
C

FAMAXDLO
PAMAXQ20
PAMAXQ3Q
PAMAXQAQ
PAMAXQTO
PAMAXQ30
PaAMAXQI0D
PAMAX1GQ
PAMAXLIC
Pa4AX120
PAMAX130
PAMAX 140

_PAMAX 150

PAMAX14C
PAMAXLTO
PAMAX1S0
PAMAX 130
PAMAX20C
PAMAX210

pauTaGLQ
PaygrTQo29
PAUTTO030
PAYICO4O
PAUTRO%0
PAUTCO06Q
PAUTOQT7O
PAUTOOS0
PAUTOQ30
PAUTCLOO
PAUTOLL1Q
pauIgl 2o
PAUTCL30
PAUTOL 40
PAUTDL5Q
PAUTO160
PAUTOLYO
PAUTOLSO
PAJTOL3C
PAUTQZGO
PAUTOZLO
PAUTO22Q
PAUTO230
PAUTC240
PAUTD250
PAUTOZ260
PAUTO2TO
PAYTO280
PAUTA230
PAUTO300
PAYTID3LO
PAYTO322
PAYUTO330

R4



1 CONTINUE PAUID340

ol . : . PAUTC350

REFURN: ) ’ : PAYTC36C

END ' . PAUTO3TO
c . i
C .

SUBRCUTINE  PCP (AsBsCaNT,DT) PCPOACLO
c . . ¢ . PCPOO02D
CLCCCCCCCCCLCOCOLLOLLOLLCLootloCoerLertectceceeeace PCROOO3D
c C PCPO0040
o COMPUTATION CF: o PC 200050
C Cs SUMEALJI%BL{JI%DT)  J=1,NT C PCPQOGSK0O
C . c PCPOOOTO
o d e o A A A oS A ot of of o] S o o ol ni o o of of R od o o of o ¥ of o€ of of S of o o o o8 o} o o PCPODO3YD
C o C PCPRO03C
c ' . PCPOO100

DIMENSICN Atl), 8(1) X PCPOOLLD

NTL=NT=1 _ PCPOCLZ20

C=0. _ PCPOO130

00 1C0 I=1l,MTL - PCPOQ1 40

Tis{+l ) PCPQOLSO

Al=a{D) . : . PCPOQLSD

A22A (1) . , PCPCOLTO

al=a{ly : PCP00130

82=5{11) : PLPOOLIO0

C=CHALRB2 +42%81 +2 ,%{AL#BL +42%R2) PCPONZOD

160 CONTINUE PCPOO21LG

C=DT=C/ 4. PCPOQ220

RETURN £CPA0230

END . PLRGO240
¢ )

C .

SUBROUTINE  e8TOE {D,E+ETDE, N} . : PETREOLD
¢ ‘ N ¢ PETDEC2G
CLLCCCCCLCCOLCLLLLECLnCCCLoieCceeeceeateeeetee ’ : PETOED3Q
c C PETDEQSD
4 T c PETDECSD
t ETOE= € * D = g o PETDEQTD
I c FETDEDSD
c AFTER THE MULTIPLICATION o PETDEQSO
c MATRIX D 1S DESTROYED . o PETDELIDD
C . ‘ C PETOELLQ
CCLLCCOLOLLCL i eErnLscooaceernecegencesenceece , PETDELZD
c ' - T FETDEL3Q
C ‘ ‘ PETDEL40

DIMENSION CUMNLELNY PETDELS0
c PETCELSO

DG L I=l.N ' PETDELTO

3=0,00 ‘ : . PETDELA0

D0 2 Jsl.N PETDEL30

SES+0([,JI*EL D) ' PETOE200

2 CONTINYE PEIDE210

At L1=3 PETDE222

1 CONTINUE ‘ PETDE230
c PETDE240

C=0.0 PETDE2SD

DO 3 I=L,N : , PETDE260

C=CrELLI®0(L, 1) PETHER2TO

3 CCNTINUE PETDEZ28R0
C ) ,PETDE230
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ETDE=C

¢

RETURN

. END

c .
c : e

SUBROUTINE  PFNL  [RF,RY,RYY,CyICASE,NU)
c : . ¢
LCCCLCCLCCOCCLLLCeeCoeecetheLeereeceescctLeceeeee
c o , ¢
o COMAUTATICN OF THE NON LINEAR FORCE ¢
c . ¢
[{ o A A A L A LA A A AR AA A A A A A A { R A oA A A R A R Aok
€ : S o
o [CA3E=] tSOFTENING -~ HARDENING o
o " ICASE=2Z  tELASTCPLASTIC o
o [CASE=3  :BILIMEAR SLASTIC o
c v o
(ol Ao Aol o] ol ol A A f ol st ol Ao o o] A o A A of o ol o o] el A o A A of oA A
c : c

DIMENSION  RF(1},RY (1)
OIMENSION . C(5)

SK=C.(1)
SKK=C(21)
RMaC(3)

DE=L (&)
YMAX=C{ 5] .

YL [M=YMAX /OF
YLIM=ABS(YLIMI

LF (ICASE.EQ.L) 6O TC L
IF (ICASE.EQ.2} 6GC TO 2,
IF (ICASE.SQ.3) 58 10 3
GO 10 .5¢Q :

1 CM=RM
00 24 I=1.NU
[3{GN==] : ,
RE{L}={SIGN=SK* MR Y{ [J*RY{)*RY{]I )
24 CONTINYE ;
GO ¢ 5

2 REY=YL{MeSK
DO & I=l.NU -
IF {ABS{RY{I)}.LT«YLIM) GO T 7
GO TCO 8
T RE{T1=0.0
G2 O &
3 LF {RYLD)) SelC.11
9 RF{I}==+SK*RY|{1)=RFY '
G0 IC 6
10 RE{11=0,.0C -
GO TC &
1} SF1L)==3K*RY{ 1) +RFY
6 CONTINUE -
G3 IC 5

-F48-
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(2 X gl

OO0 0O0n

o NaNal

IO (@]

17
13

.19

20

it
83

30

5U

s
-

AFY=YL [ M®SK

0C L& Isl. AU

IF {ABSIRY(INI.LT.YLIM} GT TQ L7
GO TC 18

RELI3120.0

GO 7O 1é .

[FIRYLTIY) 13,20,21

RE{I)=w{{ SK=SKK)®RY {[)=SKK*YLIM+RFY}
G0 10 16 :

RFLI1=0,D

GO I0 16

RELL J==(( SK=3KK )=RY ([ ) +SKK®YL [M=RFY}
CONTINUE

CONT.INUE

GQ TO 52

WRITE(&.51)

FORMAT{//10X,"$3% SRROR : CHECK VALUE OF (CA3SE 88S8',//)
CONTINUE -

RETURN
END
SUBROUT INE PETXT (X2 XF DT s IWaN)

o4l e s o e e e ot e ok el ok o ot ek SR ek o o ke R K ok ke

XF{lY,1=2L,N IS THE FOURIZR AMPLITYTE *
* VECTOR CF X{1Jsl=leN o= *
»* 8T I3 [IME INCR. CF X(T) RECORD *
* OW [5 THE FRED. [MCR. OF XF(wW) RECTRD *
* 0 DTROW=2.0%3 L14159/NFL Tk
* LIMITATION 3 o MUST OE LE3S THAN NF1 *
ek A e S oo et e o o et o e e R AR Rk R e ek e

D IMENSION XX {2048}
DIMENSION XELIsXFE L]

NF1=1024

NF2=2%®NFY -
SCLF=0T
Ow=2.00%3,141 53/ (NF1*0T}

VECTOR  :XX(11,0=1,MF2

DO I I=1l,NF2
XX(I1=0.00
00 2 I=LN
II=2w]~]

CXXTIT1=XC 1

catl FOURZ (XXoNFLslsv=11}
FOURIEBR AMPLUITUTE VECTOR

20 3 Lsl.N
LR=Z¥ | ~]
Li=2%y
XR=XX{LR}*5CLF
AT=XX(LIVY*SCLF
D=XR*XR +xX [*X ]
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D=3QRT( D)
XFiL 130
3 CONTINUE

a0

RETURN
END

SUBRCUT INE PEUNF  (Y+FoCF+T+DTy ICASE)

ool of stad of ok of of ot of f o of ¥ of o of o st o of o o o o o o of o ol o o o o o S o o] of & of o4 S of o o o s sl o ol X
‘ : c
SYSTEM : DY/OXsF : .« C
THIS {S TQ COMPUTE THE VECTOR FafF{x, yiX)} c
: c

[{fd i dddddsisdvin drdudddg o dudueduddn ddsdsdssd st g gl it dvie

OO0 Oomn a0

COMMON XGLTCLI
DIMENSICN YLl F (L}
DIMENSION CR(10)

VEL=Y(1)
OI3P=Y(2}
TI4E=T -

SM=CF{l}
GETA=CF(2)
3K=CFt3)
SF=CF{%}
DF=CFL5}

Ww=SK/SM
wN=SURT (Wwi

[X=TIME/DTH
SEXCIT=XGEEIX)

. IF  LICASE) le241
"2 FFauN*WN¥Q[SP
GO TC 3 )
1 CaALL PRF. (FFWWEL,DISPICF,ICASEL

3 F{1)==2 . 00%GE TARUN®VEL —FF=EXCIT
F{Z)l=VEL

Y{1]1=VEL
¥Y{21=015P
T=TIME

RETURN
END

(]

SUBRCUT INE PENL2 (RFsRFMX,E4DF, N}
* : *
HOM SRR R R O ORI A O R R R R AR RO RN R
* E2
* TH{3 CCMPUTES THE NCN=LINEAR YECTQOR F
* FIR A MaOeCoFe NCMLINEAR SYSTEM
*x

23X aNeRnNalNal
# W
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Sk ok A e Aakc 36 0 ook ok AN Tk Rk A AN ol ol o o 0 K ok ok kR A Rk R
* %*

Oon

OIMEMSICN RFE{LIsFILY
RFLT=RFMX/CF

[ 3 .}

DO 100 I=1.,n
Ri=RE{L}
IF (ABS{R1JLGT.RELTY GG T 10
Fii1=0,0Q
( GO TR 20
10 CONTINUE
(f (RI) 3G,40,5G
30 F(li==R1=RFLT
GG TC 26 . .
40 F{l}=0.0
6C TC 20
80 F{ll==RL+BFLT
20 CONTINUE '
160 CONTINUE

RETURN
END

SUBROUTINE  PATRA . (X oY sFaHaYY CCs355M,3555C 555K,
L ) SCT 23K SCINe SKONsYMa TY W NY,
2 [CASEWNALOT)

(aef st eteisiufuiol sfaledad sf g dof of oot ufod ofed of s of st ot ool sf ot of s of st ol of o f o o o o i o i A ]
FCR A GIVEN 5ET :3CD0.53K0 THIS 3UBROUTINE

COMPUTES A NEW CONE :5CCN+SKON (ACTOGROING
TC THe EQUIVALENT LIMEARIZATION COMCEPT.~

I ALYYRYYD> ACyy®yY> |
33 = | oo |
] ATHRYY> aY®EY> |
{ ACRRY YD |
pp = | |

) A<E#Y> |
4 : AVERAGING 0OPERATCR
SUBROUTINES CALLED :PHT, +PTOIR 4 PENL, 4PCR »yMINY
fCCCCCCCCCCCC&CécCCCCECCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC

OO OOaOOODOODNN000Nn
QOO OOANMOOGOOOMO0OnA000

DIMENSION XEL) yHELY YO 1) oYY (L) ,FL1)
DIMENSION 3342,2) L5020 ,M302Y
SM=33SM )

$C=535C

$K=$ 33K
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(] [xXaNpl [gXalnl

g eRal

el e el

' ials

ono

e NaNgl

WW=SKS/ 5%
WN=SGRT [NW)
GETA=SC S5/ { 2,20% WNHS M}
HIT) :JNIT IMPULSE RESPONSE RECGRD
CALL  PMT  (H11)s3M.GETAsWNsNA,DT}
YT IRESPONSE RECORD
CALL. PTOTR  (XUL),Ai13aY (L sYMAX TYMX o NPYMX DT ,N A}
YMzYMAX 1
TY=TYMX
NYsNPYMX
RESTORING FORCE RECORD
RMx=ABS (Y MI®3K

0C 2 (=1,NA
YY(ii=v¥(])*SK

F{Y) INON-L INEAR FUNCTION RECORD
caLL PENLZ Hyﬂﬂ'nﬂx.ﬂt).é:.&ﬂ
YY(T) IVELGC ITY RECORD
NALaN&=L

DO L Jd=1l.NAL
YY{dIst YL el Y7 (21D /DT
CONT INUE

¥Y{NAI=2YY [NAL)

MATRIX 53i2,2)

CALL pCP iYYlll-Y#(l).ALl.NAmDT&
CAaLL PCP iYLl Y(L) PA22,.NA,CT)
CaLl PCE {YYLL)»¥{1),ALZ2,NA,DT}

35{1l.1)=Al1 : o
58{1+2)=412 »
SS{2»1)=3511,+2) )
55{2s2¥=422

CALL  MINV  (35,2,05:L5.481}

COMPUTE SCUMN.SKON
CALL ace (F(l&rYY(LI-Pl-NA}DfD
CALL CPCR AR L Y( L) 2P 2aNAKDTY

SCON=3S (1. 1)*PL+S3{1.,2)%P2
SKON=33(2s11%PL+33(2,21%P2

RETURN
END
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OO0 MNDO0ONOO0Oa000n

SUBROUT INE

C

CCcrococcoooeeecedee
COMPUTE UN
FOR A GIVE

1.,=MASSaus
2»~0AMPING
3.~NAT. FR
 &.=NC. CF

5.=T[ME IN

coceceocceeoceccccee

DIMENSION H(1

GTs6 A% WN

- WSQ=wN®SART{1
of
00 1 J=1.NU
T=0T*(J=1}
HIsSIN{ASC*[)
HiJisHI*EXP (=
L CONTINUE
c .
RETURN
END
C
c -~

SUBROUTINE P
1

geeoeegeeaioeoocee

(INPUT RECT
CUTPUT REC

THE. PROGRA

DURATICN

MSP
T3P
SxXMAX
TEXMX
NPEXMX
31

oT

010

cccccccoceecccococe

CIMENSICN
OIMENSICN

DEFINE FILE

PHT  (Hy SM ST WN4NU,DT]
CCCGLCLGGECLCOCEOLLEEREnECRLLiTe

IT [MPULSE RESPDONSE ® HIT)
N LINEAR SYSTEM

(X} l-oa—.A.ocolqn.‘..l;qslsm'

EQUENC Y snaossasccoashll
POINTS IN HiT)aoenesoNU
CREAMEMNT sussscvennanadT

c
°
c
c
c
c
'I‘....'Dl.’:...DIDQI.GTA- - C
c
c
C
c
[ dddduddddasdduydtnssdssgsases

) =

)

DO=GTARGTA)

GT*T 1/ {SM*W3Q)

IMNPUT (EX!TDURUSCLF!NUvIFILE;UT'NSPrTSPI
SEeEXMAX, TEXMX yNPE XMX)

¢
oLl 014 00 o of 1Y o o 8 4 o1 o€ 04 9 ] 191 1 o8 0 ) o O 01 ) o o o o 9 oo oY o o o Y 0] o X o o4

RD H A{IFp,1=21,3000 ' (0TQ,TOURG)
ORD 3 EX{LYI=aleNU {DT,TDUR)
WHERES

M-RZADS THE RECORD A(L) FRCM A GIVEN FILE

AND CREATES THE EX{l})} RECOROD ACCORODING TC A GIVEN

TOUR) AND A GIVEN NQ. CF PCINTS (MUF

Hq AR A HoA n A A A AR A A A A A XA A A AR A A A A A A A A S A AN AR A AR LT A A A Ao

$STARTING POINT OF THE SELECTED PORTICN
tTIME AT «wHICH THE SELECTEQ PORTICN STARTS
sMAX. vALUE QF EX{[) RECORDO

1TIME AT RHICH THE MAX. OCCURS

tPCINT AT wHICH THE MAX. VALUE QCCURS
15QRT. OF THE SQUARE INTEGRAL COF £X{1) RECORD
'TIME IMTERVAL FOR EX(I[)} RECORD )
sTIME INTERVAL FOR A(L) RECCRD

VOO0 0ao o

(ool o o ot ok ol o of of of of of of o1 o o o ] of o o ot ¥ o 0 o s o o o o8 ) o o o o o o o o i o o} o o o

A 3000
X1}

18050, 3000sd ek V]

-¥F53-

C

PHIOQLQ
PHTNOZC
PHTIO030
PHTO040
PHTOOS50
PHTQQ&0
PHTIO70
PHTOG23Q
PHYOQ90
PHTQLCO
PHTOLLO
PHTOL2Q
PHTOL3Q
PHTOL4O

PHTOLSO .

PHTQL160
RHTOLTO
PHTOL80
PHTYILIO
PHTQ200
PHTO210
PHIDZ220
PHT(3239
PHTO240
PHTO250Q
PHTQO260
PHTO2T0

.
o



OO0

[REREa]

LT3

34

43

47

37

07¢=0.029
NUl=NU=1

‘DT=TDUR/NUL

NTE=TOUR/OTO+1
NTEN=2010-NTE

- DTRA=0T /070

DO 44 Ksl .NU
EX{K1=0.30
CONT INUE

Kv=IFILE" -
READ (LO'KV}) A

[FITDUR 3742541 G0 TO 43

SUMl =G,

00 34 K=l ,NTE

SUML=5UML +AIKI*A(KY

SLM=aSUML .

(3r=1

DO 32 K=1,NTEN . _ .
SUM2 =3UML PAINTERKIFAINTE+KI=A{K)*8{K)
[F{SUM2 .LE.3UMK GC 1D 32

[3T=K+1

SUM=suM2 -

SUML =8SUMZ

SUM=3ORTI SUMY®3CLF

T33=({31T=131=0T10

S0 IC 47

I18T=1

r$3=0. ) -

CONT INUE

IMXT={ST

AlMX=0. .

0O 37 421 ,NTE

KI=Ke¢iST=1
[F(ABStatKi} L FadIM)Y GG 7O 37
[MXT=K]

ALMX=ABS( A{KI )

CONT INUE

[ME=( IMXT={STY/OTRA=
EMR=NU= [ 4L

30 36 K=l, Mt

RI{S=[MXT=0TRA*K+,.0G 1

i13=R]3

DJsRI3=4I3

EX{IML=Ke 132 (A{JISY#{A(ITS+1LI=A0J(S ) 12D J)*SCLF
CONTINUE

oG 33 K=1,[MR’
RIS=IMXT+DTIRA®(K=1)+#,0301L
JIS=R[S

DJ=RIS=JL3
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EXCIMLFR) 2(ALJIS)H(ALJI3+LI=a0 115 1)#DJ1#SCLF
28 CONT INUE

NSP=[ST.
T3P=T33

T aon

35=0.

00 39 J=l.NUIL

S1sEX(JI*EX( S}

S2=EX{J+L )xEX{4¥])

SA=EX(IImEXE L)

$5a53+0Tx (351 +52+53) /3,00
39 CONTINUE s

3[=SQRT153})

[a R aNal

ABA=ABSIEXIL))
00 40 J=2.8U v
BBB8=ARS{EX(J}) '
{F (8BB.LT.a44) GO TC 40
4A4=383
Jdd=J

40 'CONT INUE
EXMAX=AAN
NPEXMX=44d
FEXMX={ i)d=l)*0T

RETURN
END §
c . o
C
. SUBROUTF INE PICFT  (A,AA,5FyNP,ICASE]} .
[of of o oy ot ol of ol of of f of o o of ot ol st o o o o ¥ off o ok 54 o§ o o8 of o o o8 S o o of oY o of o of € o o o st oY o o of ek SR SR ot ¥ of o o o

c . - ¢
C THIS SUBRCUT INE FORMS "THE [/0 VECTORS FOR #FCUR2# c
C DIMENSION FOR & £. A& IS5 2043 c
c C

CCCCCCCCCCCCCCCCCCCCCCC&CCCL&C;CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC
C : .
OIMENSION alll,aaty)
- .
N1=1024
N2=2%xN1 . -
ILF (ICASE) 1.243

ICASE=] tFCRM INPUT VECTOR AALI),IsLl,N2

0o

3 CONTINYE
00 & [=}.N2
Aa11)=0,00
4 CONTINUE

20 5 Jal.NP

JJmi®g=-1

AatJdr=at dy
5 CONTINUR

GO TC 6
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ICASE==1 :FORM QUTPUT VECTOR A(I)
: REAL PART : H IleC..lll‘l.Np
IMMAGIMARY PART ! IS(NP#l)e. 2%NP

oOoOnan

1 K=l .
DO 7 LaleNP
LR=2& w1
A(K)=8A{LR)}=SF-
KK+l

7 CONTINUE

KK=NP+1
00 3 Li=1,NP
Li=2%tl
A{KKI=AAILII®SF
KK=KK#+L

3 CCNTINUE

CONT INUE
CONT INUE -

~n o

RETURN
END

-

SUBRCUT INE PPLT !XX.KXXrJXX.XH&X'(boi

on

c
CCCCCCCCCCCCCCuCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC”CCCC

PPLT PLCTS THE ARRAY ¢
CARLL edd eIl LAXydml e dXX

JAX  :NQ. CF RECCRDS TC BE PLOTTED
HAXL{JXX)=10

C

C

c

. c

I[XX :CCMMCN. LENGHT FOR ALL. RECOROS C
e

c

C

c

OO MNMOOONDOn

CCCCCCCCCCCCCCCCCCCCCCCCCCGECECCCCCCCECCCCCCCCCC
‘ ' c

REAL LINE

DIMENSICN ‘XX([XX-JXX)

DIMENSICN LINE(I*O);)YMBL(IQquQIIOI T

DATA BLANK,DOTySYMBOAY BV t,t=t/

DATAvSYMBL/'I'r‘ZFv’3'n'@‘y‘E'v'b‘v'l’r's'l'qrv'o‘f
c ‘ - .

JL=l1l6 g

JH=50

18256

[F (L530.EQ.0) JH=100 -

EF (I5D.EQ@e3}) J43=5

JX=L0 :

R X=JX

JMAX=IXA

MO M= XX

0C 10% Jsl.5
TC9 LINELJI=8LANK
20 110 Jsé&.dh
110 LINE{J¥=0CT
#RITE(G.L4L1) (LINE(T),L=1,40)
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00 112 d=I1.4L
C112 LINELJ) =BLANK

00 120 Jl=1,4MAX
Jr=dtrgx
RI=aB8S{ JT#RIX=J1)
IF(RI.GT..01) 0 10 33
L INE (JB)=5Y"80

83 CONTINUE . -

OO0

FORM SRRAY LINE([),[slodL FOR 4 STEP : Jl

00 30 JPr=1,NDIM
XJ=XX{J1y JPT)/XMAX* jH
JaXJ+]B- s
JAUJIPTi =4 . .
80 LINE[J)=3YMBL(JPT)
WRITE(6,140) [LINE{L),[=1,JL)

Do

CLEAR ARRAY LINE({[},I=1.JL FOR THE NEXT STEP : Jlsi

00 31 JPT=L.NOIM
J=IQL{UPT)
21 LINE{J)=3LANK :
LINE(JB=DCT N
120 CONTINUE

140 FORMAT(IH .129a1)
141 FORMAT(1M1,12041)

(9]

RETURN
END
SUBROUTINE  ARF - (FyV,D4CE,IC)
) c
[ 98 8 o5 o8 o o of 108 0 08 04 o 08 03 0 o1 0 of o8 of o 910 o o 94 o 0 3 o oo 8 o o o o 0C o o 0 0 0 44 o 0 o o8 o ¥ ol {4 o o 4

THIS (S TO COMPUTE THE RESTORING FORCE
UF 5 SIQ'DIFDSYSTEM‘-

iC=1 ISEFTENING SPRING REITORING FORGE
IC=2 tELASTOPLASTIC RESTORING FGORCE
[L=3 $8IL INBAR  RESTORING FORCE

Feesossres RESTORIMNG FORCE
Veosasseas o VELOC ETY
DeoeeesrensDIDPLACEMENT

CRiI),1=1,10 [3 IHE VECTOR QOF
THE NONLINZARITY CHARACTERISTILS OF THE SYSTIM.~

CoecrLLoooecocooerocooecoucocceeeccoecooececoceccocccceecodoce

OO0 OaOoOaO0

DIMENSICN = CF(10)

o anamMoooNoOannDOoOoNOoOn [z X%}

MASS=CF(Ll}
OAMP=CF(2)
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STIF=CF(31

SFL=CF{4).

3F2=CFLI5)

COEF=CF{(6)

¥QaCFL(T)

YLMT=CF (3) . B -

IFUIC.EQe1) GO TC 1
[F{IC.EQ.3) GO TC 3

SOFTEN ING SPRING RESTCRING FCRCE:

ano

1 [S5IGN==1 :
Fz3F 1xD+[.SIGN*CCEF*O*D*0
GC TC 4

SLASTOPLASTIC RESTIRING FORCE:

QO o

2 FO=5FixYQ
iF {0 84946
5 Fa20.00
GO 1T &
6 4B0=4B310}
[F (4B0.6T.YQ) G50 F2 7
FxSF1xg .
50 TC 4
T IF (D} 343.3
3 FsfQ
G0 TC 4
3 F==FQ
GO TC ¢

BILINEAR RESTCRING FORCE:

aan

3 FLMATSSFLIxYLMAT
IF {D)r 11,1011

1C F=0.s00
GO TC 4 .

11 488=483(0) - .
[F (ABD.GT.YLMTE GO 7O 12
F=SF 1*0
GR- 10 &

12 Fa3F2*0

4 FaF/MASS
C a.
RETURN
END

OnN

SUBRCUT INE PRSPA  [A,UUyTT,3ETA&3D,NU,0T)
cccccccccccc;cccicccccccccccccccccccccccccccccccccccc:ccccccccccc:ccg
THIS IS FCR COMPUT ING 44X. RESPONSE FOR SINGLE DEGREE SYSTEM

{NPUT EXCITATICN PALD) D=L, N

QUTPUT RESPCONSE UUC L) T21,NU
HATURAL RERLCD T

OO0 O000n
OO OC
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0 AOANOM

[aBalel

[aReN o)

[aleNaFal [N el

cocoooeccLoecccceceecocceceocccocooeeeceocioceceocoeceoecreecectoeceece

DAMPING RATIOQ TBETA
MAX. RESPONSE 150

N

OIMENSION ALL) »UULL)

NUL=NU="1
W26.2931353L/T7T

W2Eh W

NI TWHWE W

WO=W*SQRT {1.=dETA®BET 4}

20,0
DZ=0.0
580=9.0

CCMPUTE RESIPONSE JU AND VALUE JF 39

00 23 IP=1,NUL

Ca=aA(IP}

Co={a({[P+L)=A(IP)}/OT

C=COS5iwD*0T)

S5=SINIWO=LT) '

L1220 Z~CA/W2+2 HBETARCR/WI 1ML +{OLrBETARWHI-BETA*CA /W eCB/ W2

1l ®(2.%BETARBET A=l )*S5/WD

40

20

Z1=21%EXP (~BETA®WAOT) + (CA/WE=2 . #BETA/W3HCB+C3/W2* 0T}
DI=2(0Z~Ca/W2 i*C +{CA~W2% L= RETA*W* (DL +C3/ W2} ) *5/WDy
DZ=D2IkEXP(~BETASRWRDT) +LB/ W2

uutiri=21

[FABSELZL)OT.AB5(5C0y 50 TO 30

GG TO 44

CONT INUE

SDsIt

CONT INUE

=21 . ’ -
CONT ENUE S ' '

REARRANGE VECTCR uu

HOLOE=UU( 1Y

00 10 =2 Ny

HOLDZ=uyl [} . .
Uudri=HoLor ’

HOLDL=HGLC2

CONT INUE

UUL11=20.30

RETURN
END.

SUBRCUTINE PSTDE  {PRMT .Y, 0ERY;CFoNDIMyIHLF, AUX, [LM)

cecocociLoeceLegoLecrioecoreeoereceecceLecececeeeeecececceet

c
SYSTEM CF TROINSRY DIFF., EQUATIONS [N FDRM:S C
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OO0 O0O0OOn

[« EaEa]

[+ VR

DY/DX=2F (XY}
WHERE:
A%
y=§ kL
irz]

IFL{XsrL,¥2) |
Fixyv)=] }
- IFE2(Xs¥lyp¥2i}

CCCCCCCCCCCCCCCCCCCCCCCCCC&CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC

coMMcH XG(701) B
DIMENSION AUX{3:1),Y(L}yDERY(L) PRMT (L)

GIMENSICN AS{4)+BS{4).LS5(%).CF{10)

OG 1 E=L.NDIM ,
AUX{3+1 120406666667 *DERY(T)
X=PRMT{1)

XEND=PRMT (2}

H=PRMT(3)

PRMT [51=0.00-

D0X=PRMT(3}

CALL  PFRUNF . (Y,OBRY.CF, X, 00X, [LN}

IF  (M*{XEND=X}) 33:37.2
AS{1120.56
£5(27=0,2923932
45{31=1.7C7107
A3(4)=0,1666667
BS{131=2,30
8S(21=1,30
85(31=1.30
8514)=2.0C
C3(11=0.5G
£5(2120,2528332
cs{al=l.707107
Cile1=0.50

DO 3 [=1,MDIM
AUX(L, i)=Y}
AUX(2+11=CERY (I}
AUX{3,11=0.00
AUX{ 641 }=0.30

[REC=0
H=tsH

IHLF s~1
I[3FES=]
1 END=0Q

- START A STE3-

IE  [{XFA=XENO I%HI - 7,645
H=XEND=X

[END=1 !

CALL SHIP [ Xe¥ OBRY, [REC,NDI[M4,PRMT)-

-Fé0-

C
C
c
c
c
c
c
C
¢
¢
c



ord (]

O,

Y Oy Y

10

i1
12
13

14

15
ié
17

‘13

23

24

[F (PRMT (511 4C.34%0
ITEST=D : ’

ISTEP=[STEPL

4=1

AJ=45¢0d)

BJ=B85(4}

Cd=C30d)

30 Ll [=1,MD0M
Rl=H=0ERY{[)
R22AJ*(R1=8J% X6, [}
Y{l)=v{1)+c2
RZ=R2¢R2+RZ

AUX{ G, LIz AUX{ 6y [} #R2-CU*R ]
[E (J=4) L2,15415
J=Jd+l

IF {J=3) 13.,1%,13
XzX+0,50%H

CALL PFUNF [ Y, DERY CFp Xy DDXs (LN}
GO 10 LlQ
TEST .

[F {ITEST! 16416420
DO 17 Ial.NDIA

AUX{ 4ol 2=y (L}

[TEST=l

ISTEP=ISTEP+ISTEP=2
[HLF = THLF +1

Xax=H

H20.50%H

D0 L3 [=1,NDEM

Y(Ly=AUX{ L, 1)

DERY (1) 2aUX{2.1}

AUXT 601 )5AUXT 3 D)

6a TG 3 :

[MO0=I5TEF/2

IF (ISTEP=IMCO=IMCD} 21,23,21

- CALL PEUNF (Y-OERY.CF.X.DD)(.IL.‘H

00 22 1=1,NDIM

AUXLSeT1=Y (L) ‘
AUX(7,1)=0ERY (L}

60 I0 3

ERRDR CALCULATION

DELT=0.00
B0 2% [=1.NDIM

DELT=0FLT +AUX {3, 1 )#ABS{AUX (&1 t=Y1 1 )}

{Ff (DELf=-PRMT(4)} 23,29,25
ERRGR > GIVENe (=PRMT {41))

[F {IHLF=121 261320436
0 27 (=1,n01M )

. Reproduced from j
best available copy.
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27 AUX{4,1)=aUX{5y[)
ISTZP=ISTER+ISTZP=%
X=X
{ END =0
GC TC 18

ERRDR = OR < GIVEH {=PRMT (%))

X k2l

23 CALL PEUNF (Y DERY,CFo X 00Xy [LN}

00 29 [=L,NDIM
aUXtl.f1sy(D) .
AUX{2+11=0ERY (I} , .
AUX{3411=aUX 5 1)
Yil}=aux(5,0)

29 DERY ([)1=aUX{T,1])

CALL TCUTP I X=H+7yDERY s [HLF NDIMs PRMT)

[F (PRMT{S}1) 43,30.,40
30 00 3L I=1.NDIM
Y{P)=aUX( 1.0}
31 CERY{U)=aUX[2.{)
IREC=IHLF
tF {[END] 32.32,33
32 THLFP=s{HLF=1
ISTEP=ISTER/2
HaH+H
{F {IHLF) %433,33
33 [(MOD=I3T2PR/2
[F (ISTEP=[MO3~IMTD) 4,34,4
14 IF (QELT=~C.O2%PRMT{4})  35.,3%+4%
35 THLF ={RLF-1 :
[37Zr=(37TER/2
Mz 4+

246 {HLF=11
CaLy PRUNF Y, 0BRYLFy X 00X, TLNY
3202 339
37 IHLF=12
GG 10 39
33 [HLF=13
35 CALL ZUTP (XY OERY,[HLF I NDIMPRMT)
4 RETURN
=N
SUBRCUTINE  A3afL (As3UMDT NUI
(08 o o ORUR R 9% o8 4L O 0% V1 o o . O F ) L0 ot 4 4 O 0 o€ of sk 5 00 001 00 0 1 08 45 01 4 0% o 0 X 91 0 o8 P o o L8

SuM=z SQRT(SUM{A{J 1®*2=0T)) J=1,NU

O oo

CCCCCCCICLOTCICCooitoCeCCeictClCosolttiCtClCCTatinoccesce

(g}
«1

-F62- -
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PsSQfLoze
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PSQILO4Q
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CIMENSION aA(l)

N=aNU=1
SUM=G.

D0 60 J=L.N

Alsa(li»a ()

A2=41J0rl)*A{ J+1)

A3=A(Ji=alJel)

SUM=SUMeD T*[ALlr22+031/3,
&0 CCMTINUE

SUM=SQRT( SUM}

(@)

RETURN o S
END . ‘

[

SUBRCUTINE PTDTR (XpH.YyYMAX.YYMAX:NP?MX.DT.NQ)
C
CeLcCCecocceconcccceceecoccccaeoococcacecLcecccecaccoeeocecet

THIS SUBROUF INE CCMPUTES THE RESPCNSE OF &
5.,D040.Fs SYSTEM IN TIME DOMAIN.

CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCQCCCCC

X{J)ed=1sNU : - INPUr RECGRO
H{Jd) »d=LNU SUNLT IMPULSE RESPONSE RECORO
Y{Jis+d=loNU tREIPCNSE RECCRD
LALL DS tMAX. VALUE - OF THE RESPCONSE
NPYMX sPCINT AT WHICH THE PEAK RESP. RCCURS
TyMax STIME Af WHICH [HE PEAX RESP, CCCURS
- NU :NG. OF POINTS FOR X{L},H{1Y+v( 1)
or CsTIME INTERVAL FOR ALL RECGRDS  {XsH Y]

CCCCCoeLeeieoLoceeeecereceoticeoceogeeeceoeoceeeerescetcencce

[ g OO0 anNataann aa
OO Oamaaoaaaaond

DIMENSION XU1).H(L),v(L1)

NPT=2NU=1
YMAX=0,00

(g N el

00 200 J=1,4PT
YY=Q.
JN=J

D0 130 K=1,JN

Kl=K+1

JK=JMN=K +2

JKL= JK=1 :

YY=sYY edX{RKIFHIIKL ) e XTKLI¥RHTJK ) # 2.5 { XK =H{UK #X K 1) xH{JK1) 1))
10 COMTINUE

{dl= YY*07/6. E
TR{ASSIY (i) JLS.YMAXY  GC TS 200

~-F63-



[g]

OO OO nn

2C0

3C0

YAAX=AB3{Y(I))
NPYMXa) '
CCNTINUE !

HOLDL=Y {1}

00 300 {=2,\U
HaLDZ=Y (L)
Y{1)=HOLD1
HCLDLl=HCL 02
CONTINUE

¥Y{l1=0.00

TYMAX=NPYMXEDT
NPYMX=NPYMXEL

RETURN
END

SUBRCUT IHE FAM3 460 {IXy [Y»YFL)

o o e e R o i Bl e i TR R e G ok K R O TR R i o ik ok e R e e
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