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6th 1ine from the top, Change: Step-by-Step Model
To: Step-by-Step Integration Model,

7th line from the top, Change: Improved Step-by-Step Model
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9th line from the bottom, Change: € = strain, To: e = strain,
axial deformation,
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ABSTRACT

An analytical study is presented for investigating the effect
of interacting three dimensional ground motions on the response
behavior of elastic and inelastic building systems. The structures
can be subjected to simultaneous input of static loads and multi-
component earthquake motions that are applied in any direction
of the structural plane for which the P-A effect of the second-
order moment, which results from the gravity load and the vertical

~ ground motion, is considered.

‘The building systems may have elevator cores, floor diaphragms,

and shear walls of reinforced concrete as well as steel beams,
columns, and bracings. The material behavior of the steel members
is based on the Ramberg-0Osgood hysteresis Toop from which the
stiffness coefficients are derived for loading and 1oéd reversal
with the Bauschinger effect. Takeda's model for the stiffness
degrading technigue is employed for the reinforced concrete ele-
ments. The system stiffness and geometric matrices, and the
numerical integration procedures are developed with regard to
the building characteristics that each floor has degrees of free-
dom associated with the axial displacements of the columns and
one torsional and two transverse displacements at thevmass center.
Thus, computation efficiency can be achieved by eliminating struc-
tural joint rotations from floor to floor with only the displace-
ments associated with the lumped masses 1éft for the motion
equation.

The yielding surface of a steel member is based on the non-

linear interactions for both strength and stability. The modified

ii
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plastic moments and the axial yielding forces are reducéd according
to von Mises yield criterion. Although the reinforced concrete
shear walls and shear panels are considered as p]éne elements,

the yielding surface of reinforced concrete co]ﬁmns is also
discussed.

The mathematical formulations in§1ude the seishic input energy,
kinetic energy, energy dissipated by démping, and the dissipated
strain energy as well as the stored strain energy. These energies
are used to study the serviceability of the structures and to check
the accuracy of the numerical solutions. The ductility factors
and excursion ratios are derived on the basis of three definitions:
rotation, variable strain energy, and hybrid strain energy. The
strong and weak points of each definition are discussed.

A computer program, INRESB-3D, which has been comprehensively
developed, can be conveniently used by research workers and prac-
titioners. A total of 26 numerical examples havevbeen investigated
for various low-rise and high-rise building systems subjected to
various loading cases of interacting ground motions. The response
parameters of main interest are 1) transverse, vertical, and tor-
sional moVements, 2) internal moments and their associated rotations,
3) energy absorption characteristics, 4) ductility factors and the
excursion ratios, and 5) the effect of different earthquakes and
that of p1astic models on the response.

Numerical results show that interacting horizontal components
can significantly increase the axial forces and moments of columns and
the moment of beams. The amount of the influence depends on the

geometric condition of the structural plane and elevation. A
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vertical ground motion decidedly increases axial forces but only
slightly increases the moments of columns. Coupling ground motions
have a strong influence on the magnitude and direction of the axial
forces of bracing members. Interacting ground motions can increase
the lateral displacements and thus cause significant permanent
deformations for a structure having an uhsymmetric rigidity or an
unsymmetric mass center. Vertical displacements can be influenced
by horizontal components but are mainly due to vertical ground
motion. The ductilities and excursions of beams and columns that
result from three-dimensional motion are much greater than those
induced by one horizontal component. The ductilities of columns
are demanded more at the quarter floor level from the top. UWhen

a structure has a shear wall, the wall requires more ductilities
than any of the other columns. The critical region of the wall

is at the first floor. Large ductilities and permanent deforma-
tions induced by an interacting ground motion exhibit severe local

damages and thus diminish the serviceability of a structure.
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I. INTRODUCTION

A. SCOPE OF INVESTIGATION

The purpose of the study for which this report has been prepared
was to investigate the effect of two horizontal and one vertical
interacting ground motions on the response behavior of elastic and
inelastic three-dimensional structural systems. Determinations were
made as to whether an inelastic structural system will exhibit unstable
behavior in terms of the large deflections and ductility require-
ments resulting from multicomponent earthquake motions. The earth-
quake motions could be applied in any direction to a structural plan
whose shape was not necessarily rectangular. Although the structures
considered were mainly for building systems having elevator cores,
floor diaphragms, shear walls, and steel beams and columns, as well as
bracing members, some of the response studies of space frameworks
have been included in this report. The building systems were subjected
to the simultaneous input of static loads and earthquake excitations
for which the P-A effect of the second-order moment resulting from a
gravity load and vertical initial forces acting on columns was con-
sidered. The maieria] behavior of the steel members was based on
the Ramberg-0sgood hysteresis loop for which the Toading, reversal of
loading, and Bauschinger effect were included in the stiffness deriva-
tion. The hysteresis system for the reinforced concrete elements was
based on either the simplified Takeda's rules or the extended Takeda
model. The von Mises' yield condition was used to determine the inter-
action between the yielding axial force and the plastic torsional
capacity. The influence bf the interacting axial force with bending

moments on the flexural capacity of a cross section was based on the



approximate yielding surface resulting from both the theoretical and
experimental work that has been done on steel wide flange sections.
Because the shear walls and flexural shear panels mainly have moments
about their major axes, these members were treated as plane elements
for which the moments about the minor axes were not considered.

A computer program, which was identified as INRESB-3D (INelastic
analysis of REinforced concrete and Steel Building systems for
3-Dimensional ground motions) was developed for the research, and the
results presented herein were obtained by using an IBM 370/168 computer
through the computer network of the University of Missouri. To obtain
computation efficiency, the structural joint rotations were eliminated
from floor to floor, and, only the displacements associated with the
Tumped masses were left for the motion equation. The structural
joint rotations and member forces were then found by using backward
substitution after the motion equation had been numerically integrated.
The numerical integration was based on the incremental form of using
either the step-by-step method or the midpoint inprovement method. The
responée parameters were observed for different building systems with
various structural planes and different heights that were subjected to
one-, two-, and three-dimensional ground motions. For each time step,
the law of energy conservation was observed to ensure that the differ-
ence between the seismic input energy and the output energy of kinetic,
strain, and dissipate was within tolerance Timits. The response
parameters were mainly observed for the following results:

1. Comparative studies of the internal moments and axial forces

of the individual constituent members.



2. Comparative studies of relative displacements in horizontal,
vertical, and torsional rotation at various floor levels.

3. Comparative studies of the ductility factors and excursion
ratios with emphasis being placed on an evaluation of the results
produced by the traditional definition and the new definitions pro-
posed for the research.

4, Comparative studies of the seismic input energy, stored
energy, and the dissipated energy resulting from inelastic deforma-
tions and damping.

A brief discussion of the contents of each chapter of this report
is given below.

Chapter II describes the characteristics of the structural model,
formulation of the system stiffness, and the general solution procedures
for static loads and earthquake motions.

The formulation of the stiffness matrices and geometric stiffness
matrices of steel members is given in Chapter III, which also includes
the simplified Takeda's hysteresis model and the extended Takeda model
for reinforced concrete elements.

Chapter 1V contains the criteria of the yielding surface that are
used for considering the effect of the axial force which interacts with
biaxial bending on the cross-sectional moment capacity.

Chapter V includes the definitions of ductility factors and
excursion ratios. A new definition of ductility that is based on
strain energy absorption is proposed in the chapter.

The numerical procedures and the flow charts for the INRESB-3D
computer program are presented in Capter VI. A program 1list, input

instructions for users, and sample examples are given in Ref, 1.



Chapter VII includes the numerical response studies of various
elastic and inelastic structures.

The work is reviewed in Chapter VIII, and the conclusions based on
the results of the work are included.

B. LITERATURE REVIEW

Because the literature on the dynamic analysis of inelastic plane
structures is voluminous, the review is logically confined to studies of
the effect of interacting horizontal and vertical time-dependent forces
on plane structures and to the analyses of three-dimensional dynamic
building systems. Other pertinent references are cited in the appro-
priate chapters.

The effect of a static gravity load on the dynamic response of
plane structures has been studied by a number of investigators.2-4
They generally recognized that a gravity load can significantly
increase plastic drift. The effect that a harmonic axial force has on
the instability behavior of an elastic member or a structural system
was investigated early by Bo]otin5 and Barney and Jaeger.6 Cheng and
Tseng later studied the dynamic instability behavior of elastic and
elastoplastic plane frameworks subjected to combined axial pulsating
loads and lateral forces or ground motions.7 Cheng and Oster further
examined the effect of interacting earthquake motions (one horizontal
and one vertical) on the response behavior of plane structural systems

of elastoplastic and bilinear hysteresis mode]s.g’9

The general
observations of the above studies7'9 are that whereas longitudinal
harmonic forces can definitely excite a structure to a point of dynamic
instability when the natural frequency of any mode is equal to a

certain amount of the longitudinal forcing frequency, a vertical



earthquake motion can sometimes excite a structure to have larger
amplitude. The occurrence of a rapid increase in the amplitude of
elastic systems depends on the natural frequency of the structure and
on the dominant frequency of the frequency spectra associated with
horizontal and vertical earthquakes. For inelastic systems, the rapid
increase of amplitude cannot be easily determined, because the struc-
tural characteristics constantly change; however, the inclusion of
vertical earthquakes can result in a significant -increase in the
ductility requirements for some members of a structural system.

The dynamic analysis of three-dimensional structures can be

divided into space frameworks 013 14-19

and building systems.
References 10-13 mainly emphasize the various aspects of deriving
force-displacement relationships, numerical procedures, and yielding
criteria. Methods of analyzing tied buildings for static loads,
buckling loads, and time-dependent forces are proposed in References
14-17. The ETAB computer pr‘ogram]8 was devised for the purpose of
solving elastic linear building problems for which a horizontal earth-
quake component can be applied in any direction to the structural
plane, but no interacting ground motions nor the P-A effect are

included. DRAIN-TAB'®

is basically used to analyze two-dimensional
inelastic frames, which are tied by floor diaphragms. Thus, the
yielding criteria for individual columns are based on one-dimensional
bending and axial forces.

The research reported on herein extends previous work8’13’15_18
undertaken for the study of three-dimensional seismic building systems.
A sophisticated computer program was developed and can be used by both

practitioners and researchers. Part of the research results has



20-24

already been presented elsewhere. This report documents some of

the detailed work and numerical results.



II. STRUCTURAL MODEL AND METHOD OF ANALYSIS

A. STRUCTURAL MODEL AND ITS CHARACTERISTICS

The typical three-dimensional structural model is shown in Fig. 1.
The plane view is sketched in Fig. 2. The characteristics of and the
general considerations for the model are as follows:

1. The structure consists of steel columns, beams, and bracings
as well as floor diaphragms, shear walls, and flexural shear panels.
The floor plan does not need to be rectangular. It can be oriented in
any direction, and the reference coordinates, x and y, do not have to
coincide with the directions of the horizontal ground motions. However,
the floor levels must be horizontal, and the columns, shear walls, and
panels must be vertical.

2. The floor and roof diaphragms are idealized as laminae having
infinite rigidity in their own planes but f]exibility out of them. The
diaphragms can be thin, cast-in-place, concrete slabs on open weB steel
joists or cold formed steei—deck panels with concrete placed on them.
Composite steel concrete beams can be modeled in the analysis, but the
solutions are approximate if the beam elements deform beyond the
elastic 1imit. Because of the rigidity, each floor can have three
common degrees of freedom: two translations and one rotation. However,
the individual columns can have axial deformations and be able to bend
about strong and weak axes.

3. The structure can be subjected to static vertical loads on
beams and joints and lateral loads at the floor levels as well as to
three-dimensional interacting ground motions. The mass at each floor
produces two transverse and one rotational inertial force as well as

vertical inertial forces at each column. The dead load of all the
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floor masses and their inertial forces, which result from vertical
ground motion, induce an overturning moment, which is included in the
analysis as the second-order moment of the P-4 effect.

4. The bracing members are axially-loaded members either in
tension or compression. The beams may have torsion and bending about
the horizontal axes but cannot have axial deformation nor bending about
the vertfca] axis, because the floor is perfectly rigid in its own
plane. However, the columns can have forsiona], axial, and bending
deformations (about both major and minor axes). The torsional and
translational displacements of the columns and shear walls as well as
translational displacements of the shear panels at each floor can be
transformed to three common degrees of freedom. Hence, the computer
storage requirements can be reduced, and the computation efficiency can
be remarkably increased.

5. The Ramberg-0sgood hystersis loops are employed to derive the
stiffnesses of the steel members. The simplified Takeda model and the
extended Takeda model are used as one of two opfions for reinforced
concrete members. The effect of the interacting biaxial bending,
axial load, and torsion on the yielding surface is considered for the
columns. The torsional plastic capacity is determined by using the
von Mises' yield condition from which the axial yielding stress is
constantly modified. The shear walls and panels are basically treated
as plane elements on which the significant moments are only those that
exist about the major axis. The moments about the minor axis are
negligible. In the inelastic analysis, the displacements and internal
forces occasioned by the static loads, if any, are the initial condi-

tions for dynamic analysis. The static response, however, must be in



the elastic limit. The finite length of the rigid structural joints is

considered in the system stiffness formulation.

B. METHOD OF ANALYSIS

1. Stiffness Condensation. Because the Tumped masses at each

floor are associated with the floor displacements of two translations
and one rotation as well as with the axial deformations of the columns,
the rotational degrees of freedom at the structural joints can be
condensed in the motion equation for the purpose of increasing the
computation efficiency. The reduction of degrees of freedom is
similar to stiffness condensation and is performed through a process of
forward eliminations of the structural stiffness matrix, story-by-story,
from the top of the building. Thus; during the dynamic response
analysis, the displacements associated with the rigid-body motion of
the floor displacements as well as the vertical column displacements
are calculated first, then the joint rotations and member-end forces
are obtained by using backward substitution.

For a typical frame of stories, m and n, such as is shown in
Fig. 3, the force-displacement relationships can be expressed in terms
of the stiffness matrix, KE’ and the'geometric stiffness matrix or the

second-order matrix, EG’ as indicated in Eq. 2.1:

.f.'
R = (Ke - Ky

~

f (2.1)
In this equation, Bf is the load vector, and rf is the displacement
vector. The superscript, f, represents the reference coordinates.

The detailed form of Eq. 2.1 becomes

11



12

COLUMN
FLOOR |
— BRACING SHEAR PANEL
FLOOR m
BEAM Zg% % é%}
. —
. 1
b 4
4! X l 1 J—

ZREFERENCE POINT

Fig. 3. Typical Frame For Elimination of Joint Rotations



13

(] [, | 1 ¢
Rm mm E mnomv sz 0 i 000 r;
NE T e 000 |
J n L E nn nv ng i i T no (2.2)
RS E vV sz E 0 0 r5
: i
LR;J LSymm.é Kgg‘ LSymm.:: ng‘ LrE‘

in which the subscripts m and n of r; and r: denote the joint rotations

at floor levels m and n; r€ represents the axial displacements of the
columns, and EE is associated with the rigid-body motions of the
translations and rotations of the structure. It is apparent that the
beams at level m contribute stiffness to K . K ., and K . other
constituent members contribute to all the other stiffness submatrices.
As shown in Chapter III, the second-order matrix has only the sub-
matrix, gﬁg, associated with the lateral floor-displacements. The
load vector, B;, represents the fixed-end moments at the joints that
result from the static vertical loads, which act on the beams at level
m plus the forces from the previous elimination, Bz is zero at this
stage. The forces Bs'and BE not only act in column axial and floor
lateral directions respectively, they also include forces resulting

from the joint-rotation elimination. Let the matrix partition in

Eq. 2.2 be expressed as

f £

Rl [%11 K2 |0 O "o

I O B N - (2.3)
£ f

R Koy Kopl |0 Gopllr

from which



14

f_ -1 of f

= Ky Ry = Ky ) (2.4)
and
£ A . . .
R = Ko1 Kyq R = (Kpp = Koy Ky Kypdr - Ggp v (2.5)
Let
f_ . f -1 f \
RU =R - K1 Ky Ry (2.6)

This indicates that R'f not only represents the applied forces but also
the sway effects occasioned by stiffﬁess condensation. The sway
effects, however, are only influenced by the stiffness matrix, EE' The

elimination process for joint-rotations can be performed on BE from

floor to floor without using K As shown in Eqs. 2.2 and 2.6, after

Kge
the joint rotations are eliminated for floor, m, then the subscript n
becomes m for a new floor below, which will then be represented by n.
Thus, after the elimination is completed for the joint rotations at all
the story levels except the ground Tevel, one is left with a vertical

and lateral stiffness, which is then combined with the second-order

matrix to yield the system matrix in the reference coordinates.

f ) ' f

Rv KVV KvQ 0 0 rv
- - (2.7)

o f T o f

Ry Kve Keg 0 Gog) | e

It is apparent that the processes of elimination and backsubstitution
are performed through a Gaussian elimination technique in the computer

program, INRESB-3D.



2. Réference Coordinates vs. Global Coordinates. In order to have

a diagonal mass matrix for simplifying the dynamic analysis, the global
coordinates of the system must be chosen at the mass centers of the
different floors through which earthquake motions are assumed to be
actihg. Thus, the displacements (two lateral and one rotational) at
the mass center of each story segment and the vertical displacements at
the column-ends (not including the ground level) can be considered to
be the global coordinates. The relationship between the reference
coordinates and the global coordinates of n floor levels may be

established as

(2.8)

in which the superscript g signifies the global coordinates, I is the
identity matrix corresponding to the vertical displacements of columns,

and

ATl
Al = AI2 (2.9)
.AIn

For any floor i shown in Fig. 4 of a system having n floors,

cosf sinB (-Ay cosp + Ax sing)
Ali = |-sing cosB (Ax cosB + Ay sing) ’ (2.10)
1o o 1 RS
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The system stiffness matrix, Ee’ and the second-order matrix, Eg,

in the global coordinates become

1 1
I 0 va sz I 0
K. = (2.11)
- T T '
0 Al Kv% Km 0 AI
and
K = ALl G, AI (2.12)
S = g = :
0f course, the force vectors, Ri and Rz, in Eq. 2.7 MUst be transformed
in the global coordinates to
1o ||’
RY = . f (2.13)
¥ 0 AI RQ

3. Solution Procedure for Static Loads and Multicomponent Ground

Motions.

a. Solution for Static Loads. By using Eqs. 2.11-2.13, one can
g

first find the global displacements, r, through any method in vogue and
then calculate the displacements associated with the reference coordi-
nates from Eq. 2.8. In solving the Tlocal displacements, the displace-
ments at the foundation are first set to zero. Knowing the reference
displacements, one can find the rotations in the reference coordinates,
and at the same time, compute the internal forces. The computation is

carried out floor by floor,

b. Step-by-Step Integrations. Let the incremental dynamic

motion equation including the P-A effect be expressed in global

coordinates as
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MAY + cAr + (K, - gg)m: = - MR (2.14)
in which

M = diagonal mass matrix,

¢ = damping matrix,

Ee = structural stiffness matrix,

Eg = geometric stiffness matrix,

Ar = jncremental displacement vector,

AE = incremental velocity vector,

Af = incremental acceleration vector, and
Aﬁg = ground acceleration vector including the verfica1 (Avg)

and horizontal (AVX, Avy) components.

The geometric stiffness matrix has the following form:

= (g +V )K! (2.15)

in which Efg includes the masses, which induce the axial forces,
(Mg + MVg), that act on the individual columns. Because the difference
of V_ between time intervals is small, the second-order term of Agg is
not considered.8

The damping matrix is expressed in terms of a combination of the

mass matrix, M, and the stiffness matrix, K = K_ - K , as

c=aM+ pK (2.16)

which can be used in any of the following ways:

1. mass plus stiffness proportional damping

o = Aw, B = Mw (2.17a)
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in which X is the fraction of critical damping to be assumed, and w is
the estimated fundamental frequency in radian per second.

2. mass proportional damping

o = 2:w, B=20 (2.17b)
3. stiffness proportional damping
a =0, B = 20/ w (2.17¢)

The solution of Eq. 2.14 can be obtained by using step-by-step
1'ntegrat1’on,25 which is actually based on the linear acceleration
techm’que26 as shown in Fig. 5 for which the mathematical expressions

may be written as

3 2

r(t) = A3 + BEZ + Ct + D (2.18)

P(t) = 3At% + 2Bt + C (2.19) |

R(t) = 6At + 2B. (2.20)
At t=0,r ;=D ;=CoandB=xP . At t=4,ais the tine

interval of At, then A = (Fn - Fn_])/(GAt). By substituting A, B, C
and D for their equivalent parts in Eqs. 2.18-2.20 for each time-step

of At, one can obtain

AV = —5 Ar - A ‘ (2.21)
At? a
and
[ ] - 3 ’
Ar. = = Ar - B (2.22)
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in which

roop + 34 (2.23)

and

B = 3r (2.24)

At ..
n o B

By substituting Eq. 2.16 and Eqs. 2.21-2.24 (expressed in vector form)

for their equivalent parts in Eq. 2.14, one can obtajn

6 3 _ .
M(~,—~2— Ar - An) (aM + BK)(At Ar - B ) + Kar = - MArg. (2.25)

~ ~ ~N

At

Now use AP = - MAfg in Eq. 2.25. This equation can now be arranged

as follows:

3 6 3o 6 . 3oy, 1
(1+ zgB)KAr + (=5 + Fo)MAr - BKB - (5 + ;) (—5—)8MB, |
At AtT 1+ K{B

= AP+ M(A + 6B ) - (-§—-+-2—%)(

5 1 )M (2.26)

3 ~n
At 1+ ZEB

By employing the following notations in the above equation,

1

= 3 .
At 1+ ZEB

» Cp = CCys Cg = 0 = CoB, | (2.27)

we have

Kar = AP (2.28)

in which
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K=K+, (2.29)

Ar = =—Ar - 8

r=gor- 68, (2.30)

and

AP

~

B ). (2.31)

M(-DEg * Ay *+ cgBy

From Eq. 2.28

]AE. (2.32)

Ar =

~

I~

The incremental displacements, velocities, and accelerations can be

obtained from Eqs. 2.30, 2.21, and 2.22 so that

Ar = c Ar + c8B > (2.33)
AR = S ar - B (2.34)
~ AtT- -n’ .
and
AP = o - AL (2.35)
ALE Y

Note that Eq. 2.28 has an identical form to static loading. Thus,
the numerical procedures of solving static problems as discussed in
Section 3a can also be used for earthquake motions.

The numerical procedures for each time interval are summarized as
follows:

(1) Calculate the damping constant according to Egs. 2.17 and

then find €y c1, Cos and Cs from Eq. 2.27.
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(2) Establish the initial structural matrices of Ee’ Eg, and M.
(3) Form the "effective" stiffness matrix, K, which is then

triangularized for backsubstitution.

K=K, - 386.4 K+

K!
g9

f7=
il

K+ CZM

(4) Form ﬁn and gﬁ on the basis of Egs. 2.23 and 2.24 in vector

(5) Form the "effective" incremental earthuake Toad, AE, of
Eq. 2.31. |

(6) Solve for the "effective" incremental displacements, Af} of
Eq. 2.32.

(7) Calculate the incremental displacements, velocities, and
accelerations at time, t, by using Eqs. 2.33-2.35.

(8) Repeat steps 3 through 7 with a new Ee if it is changed, for
the next time increment.

c. Improved Step-by-Step Integration. Integration that is based

on the linear acceleration method is accurate if the time step is small
compared with the 1longest natural period of a system. If the time

step is long compared with the Tongest period, the method yields an
unstable solution and fails to produce realistic results. Early

studies on the method indicated that the time interval should be less
than 10 percent of the Tongest period. To avoid excessive computing
time for using a small time step and to eliminate the instability
behavior, an improved step-by-step integration method was 1ntroduced.8’25

This method is based on the midpoint approximation of linear
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acceleration solutions at n and n-1. The time interval for the improved
method is 2At.

The derivation of the improved integration method can also be based
on Egs. 2.18-2.20 and Fig. 5 for which A is now used as 2At. In a
manner similar to the linear acce]erafion method, we can use the
initial conditions at t = 0 and t = 2At to find the integration con-
stants in Egs. 2.18-2.20. These constants are then substituted back
into the equations for the incremental accelerations and velocities at
n. Thus, the results given in Eqs. 2.21-2.35 can be directly used for
the improvement method. However, At should be replaced by 2At in these
equations. Apparently, n and n-1 correspond to t and t - 2At
respectively.

Knowing the displacements, velocities, and accelerations at n-]
and n (or t - 2At and t), one can find the solution at midpoint, m of
Fig. 6. The use of Egs. 2.18-2.20 respectively yields Eqs. 2.36-2.38

at midpoint m as follows:

At2 . . .
Tm = Tn1 ¥ —Tﬁ’(rn ¥ 5rn—1) oy At (2.36)
. M . e
Tm " Cne1 Y (P * 3£n_1)» (2.37)
and
" =l(r o ) + P (2.38)
Im =2 Y 7 In ~n-1° .

Again, n and n-1 in the above correspond to t and t - 2At respectively.
The incremental form of Egs. 2.36-2.38 for the time intervals of tm

and ﬁm"At becomes
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2
-— é_L re . L]
Arm,tm—At T2 (Arn—] * 6fn-1) * En_] At, (2.39)
. - At o .
Myt oat T g Bpg AT ) (2.40)
and
A% - 3 F (2.41)
~m,tm—At 2 "~n-1° .»

The subscript m, tm-At signifies the increment between tm and tm-At.
Use Eqs. 2.37 and 2.38 as the initial conditions for the next time step
A = 2At and then repeat the process of displacement, velocities, and
accelerations as outlined in Eqs. 2.28-2.35. Equations 2.39-2.41 are
used to find the incremental forces of the constituent members.

The numerical studies in this work show that for a structure
subject to one or two components of horizontal ground motions the time
steps for the improvement method can be several times larger than that
required for the linear acceleration method. However, when the
structure is subject to three-dimensional ground motions, both methods
require almost the same time inter?a] (smaller than that normally needed
for linear acceleration method) in order to yield accurate axial forces
in columns. A larger time-step can be used in the improvement method,
which only yields accurate moments but not axial forces. It is
apparent that the vertical components of both the E1 Centro, 1940, and
Taft, 1952, earthquakes are sensitive to the time-step size. It should
be noted that because of the midpoint approximation the improvement
method cannot be used to check the conservation of energy, that is,

the total seismic input energy obtained by using the method will not
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be equal to the total strain energy, kinetic energy, plus the total
dissipated energy. However, the Tinear acceleration method can provide
the conservation of energy for checking correctness of the computer
output for each time step. Both the linear acceleration method and the

improvement method are available in the computer program, INRESB-3D.



ITI. STIFFNESS AND GEOMETRIC STIFFNESS MATRICES OF INDIVIDUAL ELEMENTS

A. RAMBERG-0SGOOD MODEL

Experimental analysis indicates that the load-displacement (or
moment-curvature) relationship for structural members, structural steel
in particular, has an elastic branch,'which is followed by a transition
curve that Teads to a plastic branch. When the displacement (or
curvature) is reversed, the transition becomes more gradual because of
the Bauschinger effect. Such a relationship can be expressed quite
c]ose]yvby the Ramberg-0sgood model. The experimental studies include
the behavior of single steel members of different cross-sectional
propert1e527 and that of non-slipping weld connections of a typica]

8 WF 20 steel section.28 Early work on the Ramberg-0sgood model may be

found e]sewhere.zg’30 The original expression of the Ramberg-0sgood
stress-strain curve 153]
r
_ O o}
1% -E"' K(‘E) (3])

in which ¢ is the strain, E the Young's modulus, and K and r are
constants. Let oy be the yielding stress and a be K(oy/E)r—] for

determining the secant yield strength. Then Eq. 3.1 becomes

) (3.2)

in which a and r are positive constants chosen to fit the stress-strain
curve of the structural material. Following Eq. 3.2, one may express

the moment-curvature relationship (M-¢) as follows:

28
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) (3.3)

in which ¢ is the curvature, M the bending moment, I the moment of
inertia of a cross section, and Mp the plastic moment cépacity whose
associated yielding moment is My = CMp. C is the ratio of the elastic
section modulus to the plastic section modulus. Although Eqs. 3.2 and
3.3 are for the same.material,_g and r should be different values for
these two equations. Equation 3.3 is graphically represented ih Fig. 7
for various values of r. The graph also includes as two Timiting cases
the elastic (a = 0, r = 1) and the elasto-plastic (a > 0, r = »)
relations.

A general description of the moment-curvature relationship of the
Ramberg-0sgood model may be found in Fig. 8. As shown in the figure,
immediately after the load is appliied, the moment-curvature follows the
skeleton curve from 0 to N (or from O to N'). The load is then
released, and finally in the opposite direction, the moment-curvature
follows the branch curve from N to N'. The point N is treated as the
origin of the branch curve, which is identical in shape to the
skeleton curve. In the process of load reversa], the moment-curvature
relationship is linear for a range of moments designated as M;.

Because of the Bouschinger effect, the magnitude of M; is less than or

at most equal to 2My' The curvature associated with the branch curve

may be expressed as

¢ = ¢, *+ do.. (3.4)
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Employment of Eq. 3.3 in the above yields

M-M e 71

0= 0y * 20+ 2l ) (3.5)
Equations 3.3 and 3.5 are used to derive the bending stiffness
coefficients as shown in Appendix A.

When a member is subjected to an axial force, P, which can be
either tension or compression, the tensile load cannot be more than the
yielding capacity, Py, and the compression should be limited by the
critical load of buckling capacity, Pcr' The Toading and its reversal
are sketched in Fig. 9. Because the Ramberg-0sgood model is an
increasing function, the analysis yields a greater flexibility of the
member andbdoes not provide»co]]apse conditions. From Fig. 9, one may
express tHe skeleton curves for tension and compression in Egs. 3.6

and 3.7 respectively as follows:

-1
_n P
e =Py a}P ) (3.6)
. y
and -
r-1
PL
e = 4l + a|lg— ) (3.7)
AE Pcr

For the branch curve,
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in which Py is the product of the yielding stress, Oy’ and the cross-
sectional area, A; P0 is the point at which the load release begins,
and Pcr is a result of the critical stress, Oy multiplied by the

cross-sectional area. The critical stress may be determined by using32

o 2 2 :
= A (L(L) for KL en_E (
o o , for < 3.9)
cr y 4ﬂ2E r r cy
and
2 2
Ogp = E 5 5 for ék‘i. 22 E, (3.10)
(KL/r) y

Equations 3.6, 3.7, and 3.8 are used to derive the longitudinal
stiffness in Appendix A.

The Ramberg-0Osgood torsional hysteresis loop is sketched in
Fig. 10 for which the skeleton curve and branch curve can be respec-

tively expressed by Eqs. 3.11 and 3.12:

r-1
Y-%—(] +aH—— ) (3.11)
z p
] -1,
Y=+ g - T ¢ ajmﬂp ) (3.12)

in which v is the torsional deformation, T the torque, G the shear
modulus, E the polar moment of inertia, and Tp the plastic torsional
capacity of a given section. For the typical wide flange cross section

shown in Fig. 11, Tp'may be expressed as33

33
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t

=0 [te(b. - 1) + Mg+ My - ¢ t2
T, = 1y ltelbe - 57) + 5{d + 37) - tt ] (3.13)

By neglecting te/3 and t,/3, one obtains

2 1 2

T =r1b.t t 5 fytw(d - th), - (3.14)

p y f°f
which is employed in the computer program, INRESB-3D. The magnitude of
the shearing yield stress, Ty, is based on the von Mises' yield

criterion and has the following form:

_ / 2
T, * Oy/3. (3.15)

The elastic 1imit is defined as Ty = TyIZ/h; h is the thickness (short
dimension) of the plate element (web or flange).

Equations 3.11 and 12 are also used for deriving the torsional
stiffness coefficients. |

Wheh a structure is subject to earthquake motions, any of the
end-forces of the constituent members may reverse its direction
independently to other forces. Thus, the stiffness coefficients for the
typical structural elements of beams, columns, and bracings should be
derived‘for both skeleton and branch curves. For the branch curve,
careful consideration must be given to the reversal of individual
forces, such as the moments about both the major and minor axes df a

cross .section and the axial force and torsion on that section.

1. Stiffness of Columns in Member-End Deformations. A typical

column is shown in Fig. 12 in which I and J are the points of interest

for the beams and columns. Because the beams and columns always have a
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certain depth that forms a great amount of rigidity at the intersecting
points defined as rigid zones T and B, the forces for engineering
design should be obtained at the member-ends that are signified by i
and j respectively and correspond to the tops and bottoms of the column
elements. The force-deformation relationship of the column element,

ij, may be expressed as

F =Se : (3.16)

Fy Q 921
i i
FX A C ex
J ' J
FX cC A 8
< y = < < (3.]7)
Fa H wa
i i
F B D
Yy ey
FJ D B'| [ed].
1 L

An examination of Eq. 3.17 and Fig. 12 indicates that the torsional

twist, ez, and the axial displacement, w_, of the member, ij, are

a
relative deformations between two ends, and that the bending rotations,
i
y
chord to the tangents. The chord is defined as the line that connects

e;, 8. s ei, and ej, (about the x and y axes) are measured from the

two ends of a member, whether the member is displaced or not. The
detailed derivation of the stiffness coefficients is shown in Appendix A
from which the results have been taken to be used in Eq. 3.17 in
accordance with the loading behavior of the skeleton curve and branch

curve.
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a. Skeleton Curve.

| 6EL (2+2W .+Q W .)
A = , X1 “xj xJ (3.18)

2
LL242U, 0 Q) (B4R G HR 5)=(3+U 14U oS ()7

bEI (1+ex1wx1 GXJWXJ)

2
L[(2+2w +wx3QxJ)(6+Rx1'+Rx .)- (3+U +Ux35x3) ]

6EL, (2420, +Q, MW, o)

A' = 5 (3.20)
L[(2+2wx1+wijXj)(6 Rx1+ij)-(3+Uxi+ijij) ]
= AE
6EI (2+2W .+Q .W '
AW Q. . J-(3+U .+U .S .
L[(2+2Ny1 WYJQYJ)(6 Ry1 RYJ) (3 Uyl UYJSYJ) ]
6EI (1+G_.W .+G .W .
LL(2+2W w +R .)-(3+U .+U .S .
L( yi Q )(_ yi YJ) ( ¥y 'yl YJ) ]
6EI (2+2W W
B! = .X( yJ Q)"'_.)”) (3.24)
LL(242W W .Q ) (6+R . +R .)=(3+U .+U .5 .)°] '
yr ylyd y1 VA yr yJ yd
and
GIz
Q = v ° (3.25)
The notations in Egs. 3.18-3.25 are:
M r-1
6a X ‘
R. = (3.26a)
Xi (1+MXJ/MX]) xip
M r-1
_ 6a Ayi
R . (3.26b)
M
vi MYJ/ y1) yip
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xi

yi

XJ
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xi

yi

1

ba

(1+MX1/MX57'M

xjp

ba

6a

M

| \Mxi
2|M
(r1) (144 5/, 0)

r-1

yip

r-1

2
(r+1) (140 /M, )

6a

(r41) (140 /M )

6a

XJj ‘

ijp

r-1

_.L_]
YJPl

M.
xi |

r-1

(r+1) (r+2) (14 o

6a

|
Mgy 3Meip!

r-1
yi

M.
(r+1)(r+2) 1+ 243

yi

M
g

yip
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.26¢)

26d)

.26e)

.26f)

.26g)

.26h)

.261)

.263)
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ijp
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6a ’ VA '
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.26k)

264)

.26m)

.26n)

.26p)

.26q)

.26r)

.26s)

.26t)
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M .
65 =" (r+2)(ﬁ>f%) (3.26u)
A
Mx' Mx' 2
Q5 = r(r+1) + 2r(r+2) (72 + (r+1) (r+2) (59 (3.26v)
X1 X1
’ M. Mos o
Q . = r{r+l) + 2r(r+2) (X)) + (r+1) (r+2) (21) (3.26w)
yi Myi Myi
My Mei\ 2
ij = r(r+1) +2r(r+2)(ﬂ—j) + (r+1)(r+2)(prf0 (3.26x)
XJ XJ
M . M oc
Qs = r(r+1) +2r(r+2) (1) + (r+1) (r+2) (X9 (3.26y)
yJ M. M.
NA yJ
r-]
T=1+ar P (3.262)
p
r-1
V=14 ar'7r4 (3.26za)
p

b. Branch Curve. The load reversal can be divided into six
conditions, each of which can occur independently. As demonstrated in
Appendix A, the stiffness coefficients associated with the branch curve
are almost identical to those associated with the skeleton curve given
in Egs. 3.18 through 3.25 except that some inelastic parameters of
Egs. 3.26 must be modified for each condition. These necessary

modifications are as follows:



42

b.1. Moment Reversal in x-direction at End-i. 1In Egs. 3.26a, e,

i, my r, and v, the moments of Mxi’ M ., and Mxi should be respectively

replaced by Mxiid’ ijid’ and Miip’ w::ch are deiined as
Meiid = Mxi = Myis (3.27)
ijid = ij ~ iji (3.28)
and
M. = M. . (3.29)

CXip Xip

b.2. Moment Reversal in y-direction at End-i. In Egqs. 3.26b, f,

js n, s, and w, the moments of Myi’ M ., and M j should be respectively

VA yip
replaced by Myiid’ Myjid’ and M&ip’ which are defined as
Myiid = Myi - Myii (3.30)
Myjid = Myj - Myji (3.31)
and
M. o= 2M . . (3.32)

yip yip

b.3. Moment Reversal in x-direction at End-j. The moments of

Mxi’ ij, and ijp in Eqs. 3.26c, g, k, p, t, and x should be respec-

tively replaced by Mxijd’ ijjd’ and M;jp’ which are defined as
Migd = Mxi = Mxij (3.33)
M =M. -M.. (3.34)

xJjJjd xJ xJJ
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and

! -

ijp 2ijp‘ (3.35)

b.4. Moment Reversal in y-direction at End-j. The moments of
Myi’ Myj’ and Myjp'in Eqs. 3.26d, h, &, g, u, and y must be respectively
' . .
replaced by Myijd’ Myjjd’ and Myjp’ which are defined as
= - M

Myijd Myi hyij | (3.36)

M ..,=M.-M.. - (3.37

yijd  yd  ydd ( )
.and

M!'. =2M . . .38
yap yip _ (3.38)

b.5. Axial Force Reversal. Replace P and Pp in Eq. 3.26z with P'

and Pé respectively for which

P- P (3.39)

Pl

and

PL =P, Py (3.40)

b.6. Torsional Moment Reversal. Replace T and Tp in Eq. 3.26za

with T' and TE respectively for which

T=T-T, (3.41)
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and

= 2T . .
Tp b (3.42)

2. Stiffness of Columns in Reference Coordinates. For a system

analysis, the member-deformations, s of Eq. 3.16 must be expressed in
terms of the displacements at the intersecting points of the rigid
zones (I and J of Fig. 12), which are then transformed to the displace-
ments corresponding to the reference coordinates as shown in Fig. 13.
The displacements, Ef, associated with the reference coordinates
include the joint displacements of ei, 6f

y
The relationship between €. and r

, and ri as well as the floor

. f f f f
displacements of re ry, and re.

may be expressed as

e, =Br. (3.43)
By employing the notations in Figs. 12a and 13 in Eq. 3.43, B and rf
become
[ 00 1 o0 0 00 0 -1 0 0o 0
cs n T T _C s _n B _B
rr trps-OvQe0-¢g-g-7 e 0
cs n T Tc c_s_n By. _ B
[T L 1° " O-p-p-pUrps -0+ e o
B = , (3.44)
00 O O 0 1 0 0 O 0 0 -1
sc_m . T T s_c m B B
rr-r e (O+s0 ¢-¢ [ € 0
sc_m T T s_¢c m (4, B B
IT-T T© 5 O p-¢ r (rpe O+ps o

and
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SRR 5 QN S P S G I N S IO S B 1 P

~ "x y 6 x Ty 'z "x ry Yo “x y ‘z-°° (3.45)

In Egs. 3.44 and 3.45, I and Jrrefer to the top and bottom of the
column, m = - ys - xC, h = - yc + xS, C = c0Sy, and s = siny for which
the angle y and coordinates x and y are shown in Fig. 13.

The forces at the member-ends may be found by using Eqs. 3.76 and

3.43 as follows:

8 Rf (3.46)

Fe = 2
in which FC may have the following dimensions:

- i 2J i d T
Fo = [P P Py Fa By FY Py Py] . (3.47)

The last two rows of Eqs. 3.47 are the results of equilibrium

conditions as indicated in Eq. 3.48:

F1+F3< Floy p
PX Ry Py = —X—E—Jx . (3.48)

The column stiffness in the reference coordinates may be expressed

as

r (3.49)

in which

B (3.50)

(L7<
|
Jo
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and

I 1
M, Fy F

T G
Fo= [Fy Fy M M F

x

I J W oyd J dqT
< y My M My FZ] . (3.51)

3. Geometric Stiffness of Columns in Member-End Deformations and

Reference Coordinates. The geometric stiffness matrix of columns is

based on the second-order moment resulting from the axial force times
the transverse member-end displacements; the moment is then resisted by
shears, which form the geometric stiffness matrix or the second-order

matm’x.34’35

Figure 12b shows the shears, N/L, that result from the
axial force, N, times the displacement of u' (x-direction) and v'

(y-direction) from which one has

il [N N [ 5
PU L 0 E 0 1 u
P! 0o - %- 0 %- v
3 VE = { % (3.52)
J N _N J
Pu [ 0 L 0 u
J N _ NiLd
LPV L 0 L 0 L ~v‘
or
Pe =S4 d_. (3.53)

Note that the displacements at the member ends of ui, vi, uJ, and vj

are respectﬁve]y identical to uI, vI, uJ, and vJ and are designated as
the displacements at the intersecting points of rigid zones. The axial
force, N, includes the gravity load and the inertial force that result

from vertical ground motions. In a manner similar to that of the

stiffness derivation, the relationship between member-end deformations




48

and the reference coordinates may be expressed as
r (3.54)

in which

= : (3.55)

ql\lm

o
o
o
o
o
o
w
1

o
3
o
o
o

and rf is given in Eq. 3.45.
The force~displacement relationship expressed in the reference

coordinates for the geometric stiffness of an individual column is

f fo.

Flekr (3.56)
in which

K.=B'S B, (3.57)

I st

and Fz is identical to Eq. 3.51. The detailed form of EG becomes
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“~
v

N N{(ms+nc) N N(ms+nc)
iy 0 - -—~I-~<O 00 [ 0 T 000
N - N(mc-ns) N N(ns-mc)
-1 —~—~E--0 00 0 [ — 000
_ N(m2+n2) 000 N(ms+nc) N(ns-mc) N(m2+n2) 000
L L L. , L
000 0 0 0 000
00 0 0 0 000
0 0 0 0 000 (3.57a)
N N(ms+nc)
[ 0 - —1 000
_ N N(mc-ns)
r 5L 000
2, 2
- Mmn) 900
Symmetric 000
00
0
\ /

The above equation further illustrates that Rf

~%
the forces of FI FI MI FJ FJ and MJ at the reference point for each
XS y’ e’ X’ yS 6

in Eq. 2.2 includes only

floor, and that no forces are associated with Pm Tn and r_ in
that equation.

4, Stiffness of Beams in Member-End Deformations and Reference

Coordinates. A typical beam is shown in Fig. 13 in which the member ends
are identified by i and j, the ends in the rigid zones are signified by

I and J, and the rigid zone Tength is defined as a and b. Because of

the rigid floor diaphragm, the member-end deformations are only the
torsional twist, 65 and the bending deformations of 0. and ej about

the axis parallel to the floor (the major axis of the cross section).
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No axial deformation nor the bending deformations about the axis
perpendicular to the floor plane are considered. Note that 0. and ej
are the relative angles measured from the chord to the tangents. The
chord may have relative displacements occasioned by the column axial
deformations at end-I and end-J of the beam. The force-displacement

relationship at i and j may be expressed as

Fb = 3 & (3.58)
or
(
M) [ o o]fe]
< M_i > = 0 A C £ e_i > (3'59)
M. 0o ¢ A'lle
[ J) L | J

The stiffness coefficients of Q, A, A', and C are identical to the
coefficients for the column members given in Egs. 3.17-3.20 and 3.25.for
both skeleton and branch curves.

The relationship between the member-end deformations and the

reference coordinates is

e = By Ty (3.60)
in which
( -C -3 0 ¢ s 0 W
B, = |(1+D)s -1+ Dye i & - -] (3.61)
h kL




51

and

]T

f_
"y ~ [eIx er "1z Oax eJy iz (3.62)

in which the subscripts I and J refer to the beam ends as shown in

. . R . f
Fig. 13. Thus, GIx’ er, and ry, are respectively identical to ex,
ej, and rz at end-I of the beam in that figure.

By expressing the forces and displacements in reference coordi-

nates, one obtains

£ T f

Fb = By Sy By 1y (3.63)
in which

£ _ T

Fp = DMy My, Frp Mgy My, E (3.64)

Because the floor is rigid in its plane and the beams are oriented
in the horizontal direction, no P-A effect of the second-order moment
on the beams is considered.

5. Stiffness of Bracings in Member-End Deformations and Reference

Coordinates. The bracing element is a two-force member for which the

axial stiffness can be expressed in the following standard form:
F. = He. (3.65)

In this equation, the stiffness coefficient H is given in Egs. 3.21,
3.36z, 3.39, and 3.40 for both the loading and the reversal of loading.
The transformation of the axial deformation, e, to the reference
coordinates can be obtained first by transforming e to the horizontal

and vertical displacements at the member-ends of rﬁ, ri, rﬂ, and ri
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and then transforming the member-end deformations to the reference
coordinates, r:. ri and ri are associated with the vertical displace-
ments of columns at the upper floor level, I, and the lower floor level,

J, as shown in Fig. 14. Thus,

e =8 r (3.66)
in which

B, = [c'c c¢'s -c'd s' =c'c =-c's c'd -s'] (3.67)
gnd

t: = [P:I r;I rgl er rid r§J rgJ f;J]T. (3.68)
Other notations are c' = coso and s' = sino. The term o designates an

angle measured from the lower floor level to the member axis along the
vertical plane.

The stiffness matrix in the reference coordinates is

r (3.69)

f_ T f
a Ea HB, T,
in which
f _ el I I I J J ,J 3.7
Foo=[F, FooMg Fp Ry Py M 1. (3.70)

Because the bracings are used mainly to resist lateral forces, the
bracing members are not considered to share the P-A effect caused by

the axial forces that act directly on the columns.



Fig. 14. Horizontal Plane of Diagonal Bracing
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B. MOMENT-ROTATION CHARACTERISTICS OF REINFORCED CONCRETE ELEMENTS

The reinforced concrete elements employed in this work are mainly
the shear walls and shear panels shown in Fig. 1. These two elements
can be treated as flexural elements that are subject to bending moments

and axial forces.]8’36

The plasticity models of general flexural
members can be modeled in different ways. They can be modeled as
parallel elements with multilinear relationships and as Tumped plas-
ticity models consisting of two separate nonlinear hinge elements that
connett both ends of an elastic member. These two plasticity models
were thoroughly examined in a recent review paper.37 The separate-
nonlinear hinge model shown in Fig. 15 was employed in this particular
study. In the figure, the member, ij, is elastic and connects the
nodes i and j. The zero-length hinge elements connect node i, i', j,
and j'; i' and j' are at the edges of the rigid zones. Nodes i and j
are parts of the member-element, because they can be condensed out
before the element stiffness is assembled into the system stiffness
matrix. Figure 15 is identical to Fig. 12a. The hysteresis behavior
of the reinforced concrete element is actually based on the nonlinear
spring stiffness of the hinges for which the simplified Takeda model

38-40

and the extended Takeda mode] were used.

Simplified Takeda Model--The original Takeda model has 16 hyster-

esis rules, which are very complicated and difficult to apply. Otani,
by reducing the number of rules to 11, simplified the Takeda model.
These rules were developed from experiments on reinforced concrete
beam-columns for which the failure mode must be dominantly flexure.
The 11 rules are used to determine the moment-rotation relations for

various combinations of small and large amplitudes under three loading
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N

‘ — ~ZERO LENGTH

Fig. 15. Reinforced Concrete Element with Nonlinear Rotational Spring



conditions: loading, unloading, and load reversal. Four typical
combinations are sketched in Figs. 16-19 to illustrate the rules. In
these figures, the numbers in the circles are rule numbers; the
unloading points on the positive moment side and the negative moment
side are respectively labelled U and U*.

Figure 16 shows the large amplitudes for both the positive and
negative moments. That is, the unloading points on:the positive side,

U , and the unloading points on the negative side

*
i+1™m ]Um, are always

i+
greater than 1.Um and iU% respectively. The subscript, i, signifies the
unloading sequence.

Figure 17 illustrates the case of smé]] amplitudes of load rever-
sal for both positive and negative moments. The unloading points on
the positive side, Uj’ and on the negative side, UE, are always smaller
than 1.Um and 1U$ respectively. The subscript, j, refers to the unload-
ing points with small amp]itudes.v

Figure 18 shows that the unloading points on the positive moment
side, Uj’ are always less than iUm’ and the unloading points on the
negative side, 1+]U$, are always greater than 1U$'

Figure 19 is just the reverse of Fig. 18 in that the unloading
points on the positive side, 1+1Um’ are always greater than iUm' The
unloading points on the negative side, U?, are less than iU%..

The hinge stiffnesses are defined by the slopes of the moment-
rotation relationships shown in Figs. 16-19. These stiffnesses are
then governed by the following 11 rules. In these rules, five differ-
‘ent stiffnesses are used. They are K0 = slope (O, ]Um OR 0, ]U$),

= = *
slope (1Um’ 1.Um OR ,U*, .U*), K slope (XO, 1.Um OR Xo’ 1.Um),

K T"m”> i™m 2

1
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slope (X;» ;U OR X, 1.Ur’lfl), Ky = slope (XZ’ Ui(max)), and

= slope (X3, U?(max)).

number 1: FElastic condition (Figs. 16-19)

Rule

1.1 Loading condition
1.1.1 F < U5 stay on rule number 1 with hinge stiffness
equal to slope KO.
1.1.2 F > 1Um; go to rule number 2 with hinge stiffness
equal to slope K].
1.2 Unloading condition
Stay on rule number 1 with hinge stiffness equal to slope Ko‘
1.3 Load reversal condition
Stay on rule number 1 with hinge stiffness equal to slope KO.

number 2: Loading condition after ]Um or ]U$ (Figs. 16-19)

Rule

2.1 Loading condition
Stay on rule number 2 with hinge stiffness equal to slope K].
2.2 Unloading condition
" Go to rule number 3 with hinge stiffness equal to slope Ko‘

number 3: Unloading after point 1.Um or 1U$ (Figs. 16-19)

3.1 Loading condition
3.1.1 F < ;U s stay on rule number 3 with hinge stiffness
equal to slope Ko'
3.1.2 F > 1.Um; go to rule number 2 with hinge stiffness
equal to slope K].
3.2 Unloading condition
Stay 6n rule number 3 with hinge stiffness equal to slope Ko'

3.3 Load reversal condition

Go to rule number 4 with hinge stiffness equal to slope K2.



Rule

number 4: Loading toward point 1.Um and 1U$ (Figs. 16-19).

Rule

4.1 Loading condition
4.].1 F 5_1um; stay on rule number 4 with hinge stiffness
equal to slope KZ'
4.1.2 F > 1.Um; go to rule number 2 with hinge stiffness
equal to slope K].
4.2 Unloading condition before U
Go to rule number 5 with hinge stiffness equal to slope Ko‘

number 5: Unloading from point Uj after rule number 4 (Fig. 18)

Rule

5.1 Loading condition
5.1.1 F f-Uj; stay on rule number 5 with hinge stiffness
equal to slope KO.
5.1.2 F > Uj; go to rule number 4 with hinge stiffness
equal to slope K2. .
5.2 Un]oading condition
Stay on rule number 5 with hinge stiffness equal to slope KO.
5.3 Load reversal condition
Go to rule number 6 with hinge stiffness equal to slope K3.

number 6: Loading toward point 1U$ (Fig. 17).

6.1 Loading condition
6.1.1 F 5_1U$; stay on rule number 6 with hinge stiffness
equal to slope K3. |
6.1.2 F > 1.Ur’]';; goes to rule number 2 with hinge stiffness
equal to slope K].

6.2 Unloading condition before 1U$

Go to rule number 7 with hinge stiffness equal to slope Ko'

60
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Rule number 7: Unloading from point U§ after rule number 6 (Fig. 17).

7.1 Loading condition
7.1.1 F E_Ug; stay on rule number 7 with hinge stiffness
equa] to slope KO.
7.1.2 F > Ug; go to rule number 6 with hinge stiffness
equal to slope K3.
7.2 Unloading condition
Stay on rule number 7 with hinge stiffness‘equa1 to slope Ko'
7.3 Load reversal condition
Go to rule number 8 with hinge stiffness equal to slope K4.

Rule number 8: Loading toward point Uj(max) (Fig. 17).

8.1 Loading condition
- 8.1.1 F E_Uj(max);vstay on rule number 8 with hinge stiffness
equal to slope K4.
8.1.2 F > Uj(max); go to rule number 4 with hinge stiffness
equal to slope Koe
8.2 Unloading condition

Go to rule number 9 with hinge stiffness equal to Ko‘

Rule number 9: Unloading from point Uj after rule number 8 (Fig. 17)

9.1 Loading condition
9.1.1 F< Uj; stay on rule number 9 with hinge stiffness
equal to slope Ko‘
9.1.2 F > Uj; go to rule number 8 with hinge stiffness
equal to slope K4.
9.2 Unloading condition

Stay on rule number 9 with hinge stiffness equal to slope Ko.
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9.3 Load reversal condition

Go to rule number 10 with hinge stiffness equal to slope K5.

Rule number 10: Loading toward Ug(max) (Fig. 17).

10.1

10.2

Loading condition

10.1.1 F f_Uj(max); stay on rule number 10 with hinge
stiffness equal to slope K5.

10.1.2 F > Uj(max); go to rule number 6 with hinge stiffness
equal to slope K3.

Unloading condition

Go to rule number 11 with hinge stiffness equal to slope Ko’

Rule number 11: Unloading from point Ug after rule number 10 (Fig. 17).

1.1

Loading condition

1M.1.1 F < UE; stay on rule number 11 with hinge stiffness
equal to slope Ké'

1].1.2> F > Ug; go to rule number 10 with hinge stiffness
equal to slope Kg

Unloading condition

Stay on rule number 11 with hinge stiffness equal to KO.

Load reversal condition

Go to rule number 3 with hinge stiffness equal to slope K4.

Rules 1 through 4 are basic rules; the other rules are introduced

to fit the moment-rotation relations of small amplitudes. If rules 1

through 4 were used for both large and small amplitudes, the moment-

rotation curves would appear as shown in Fig. 20. In the figure, (:)3,

(:)3, and (:)4 are respectively identical to rules 3, 4, and 3 that are

labelled as @], @], and @2; the new rule is of number , which

was introduced to fit the path. For convenience, (:)3, <:>3, and <:)4
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are signified by rules 5, 6, and 7 respectively, and rules 9, 10, and
11 are employed in the similar manner. The positive or negative yield

moment of a cross section for stiffness, K_, is the resisting moment

0
when reinforced steel reaches its yield point.

Extended Takeda Model--Based on the engineering judgement of the
behavior of small and large amplitude oscillations, the simplified
Takeda model can be modified by reducing the unloading stiffness and
increasing the loading stiffness as shown in Figs. 21 ahd 22
respectively.

The reduced unloading stiffness, K U, can be controlled by the

R
parameter o and the maximum permanent set, Pm. Point M in Fig. 21 is
the recovery point when the original unloading slope is used. Point N
is the new recovery point for the reduced unloading slope, which is an
aPm distance from point M. The parameter, a, varies from zero to 0.4.

The reduced unloading slope cannot be less than the following
reloading slope, KRU(min), if one is to avoid the negative area in the
hysteresis loop. This reduced unloading stiffness is applied to rule
number 3 only.

The increased loading stiffness, KIL’ can be defined by the
parameter B and the maximum hinge rotation, Rm. Point Un in Fig. 22 is
the new leading point for the increased loading slope, which is a BRm
distance from point Um. The value of B may be used from zero to 0.6.

In a case where X] is Tess than Xo’ the increased loading slope
from X] to U; can be excessively large and may possibly be negative if
point X] Ties on the left of point U;. In order to correct this

situation, a new point, U%n’ may be defined for the leading point of

the increased loading slope, K%L’ as

64
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= o 1
Ux Ux = Ux Ux 5 v (3.71)

in which

N = index to control the location of point U%n‘

N equals 1: Umn will be between Uﬁ and U; in the same proportion

as X] is positioned between X0 and Xoo'
N less than 1: U* _ will be close to U*.
mn m

N greater than 1: U%n will be close to U;.
In any case, the increased Toading slope will never be larger than the
reduced unloading slope. This increased loading stiffness applies only
to rules 4 and 6 of the 11 rules.

Properties of Members--The properties of reinforced concrete are

not unique because the concrete material is nonhomogeneous and the
 reinforced steel area is variable. The propekties obtained from
experiments on an individual member can provide good source material,
but if test data are not available, a reasonable approximation can be
employed.

If experimental data are available, one may find the effective

flexural stiffness by using the following equation:

F L(1-8/2)
El = G (3.72)
y
in which
El = effective flexural stiffness of the elastic element,
Ey = yield moment,
L = length of the cantilever shown in Fig. 23a,
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(b)

Pk

s
(c) ©

Fig. 23. Relationship Between Member and Rotational Spring
(a) Cantilever, (b) Simple Beam, (c) Strain Hardening

of Spring
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ey = rotation at the tip of the cantilever at yield,
AY = deflection at the tip of the cantilever at yield,
g = 3F1/L%Re
A = effective shear areawith respect to the axis of bending
under consideration, and
VG = sheér modulus.

.Analogously, Eq. 3.72 is derived from the fact that the deformation of
the cantilever in Fig. 23 is identical to that of a half-span beam.

When the cantilever yields at end-A, the rotation at end—B>is

e = Ax,(1__%), (3.73)

e = 6, - AY (3.74)

Thus, Eq. 3.72 is obtained by u$1ng the equality between Egs. 3.73 and
3.74.

If experimental data are‘not available, EI can be approximated as
the EI of a cracked section.

Properties of Springs--When a cantilever yields, an incremental

angle, A6, develops at end-A, thus the moment of the spring is

Ker = Fy. (3.75)
From Fig. 23a, one thus obtains

Ae = é_Y_ - @ (3'76)
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in which

F L(1+R)

e= L. (3.77)

Thus, the initial spring stiffness becomes

3El F L
Ky = % (3.78)
[3EIAy-FyL (1+8)]

The strain hardening ratio p shown in Fig. 23c is formulated by
observing the u]timate loading stage, Pu’ at which the incremental

moment after yield is

AF = PL - PL, (3.79)

which is equal to the incremental moment of the spring, because

AF = KOPAe'. ‘ (3.80)

From Fig. 23a, one obtains

AD' = é9~i-é1-- e (3.81)
in which
. AL
e' = 3EI(]+B). (3.82)

Substitution of Egs. 3.79, 81, and 82 into Eq. 3.80 yields the desired

result as follows:
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3EI(P L-F )L
P = u_ Yy .
KO[(AU—AY)3EI—(PU-Fy)(]+B)L2]

(3.83)

81

If experimental data are not available, a large number of 10
can be used as the initial spring stiffness. On this assumption, the
hinge will be rigid up to the yield stage. A strain hardening ratio

can then be obtained from

3EIp(1+B)
EI(1-p)L + 3EI(1+B)

p. = (3.84)
a 108

in which p is an input datum. A computer can generate K0 = 108EI and

Py when the input for K0 is zero.

1. Shear-Wall as a Beam-Column. The typical element of a shear

wall is shown in Fig. 15. It consists of an elastic member, one
nonlinear rotational spring at each end, and two rigid-zones outside
the springs.‘ Let the flexibility coefficient of the spring be f as an
inverse of the stiffness, K, then the rotations measured from the

chord, 1j, to the tangents of the rigid zones can be expressed as

i L. 1L i
y = < 3 (3.85)
'j - _I:.__ - __L._ —- l_ J
8 6EI(] 28) 3EI(] g) + Kj F
F, J J

- . (3.86)
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in which A = C] EI/L, A' = 02 EI/L, and C = C3 EI/L; the coefficients
of C], CZ’ and C3 include the spring constants. For a prismatic
member without rotational spring stiffnesses and shear deformation,

C, = 62 = 4 and €y = 2. Observation of the similarity between Figs. 12a

1
and 15 yields the stiffness matrix of Fig. 15 at ends i' and j' as shown

below. .

Ft Q ez
F AC o)
P c A 67
¢ = ) [ ' (3.87)
Fa H wo |
i i
F B D Sk
y y
J ) 1J
F D B 3]
| J U

in which Q = GJ/L, H = AE/L, B = B' = 4EIy/L, and D = 2EIy/L. AE should
be the effective axial stiffness, and GJ and EIy can be small numbers
arbitrarily chosen, because the primary resistance of a shear-wall
element is the axial force and the bending about its major axis. The

angles 6! and 6}3 are actually equal to 6; and e; respectively. Thus,

y
the stiffness matrix and the geometric stiffness matrix in the reference
coordinates derived in Sections A-2 and A-3 of this chapter can be
directly used for the shear wall element.

2. Flexural Shear Panels. A diagram for infill shear panels,

which may be used for an elevator core, is shown in Fig. 24. The
shear wall elements discussed in the previous section cannot be used

for this case, because the column lines of the shear-wall elements are
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at the center of each wall. This condition models the elevator core in
four independent columns. A typical model of a shear panel is shown in
Fig. 25, This example is subject to flexural angles, 6'1 and e'j, at
both ends and a relative axial displacement, Wos along the center line,
m-m, of thé element. The angles, e'i and e'j, are the same as those in
Fig. 15; however, no rigid zoné is considered for shear panels. The
ang]es,Ae'i and e'j, and the displacement, W, are first transformed to
deformations at the left and right ends of the panel. These are then
transformed to the reference coordinates.

a. Stiffness of Flexural Sheaf Panel in Member-End Deformations

and Reference Coordinates, A flexural shear panel is treated as a

plane beam-column for which only the axial stiffness and the bending
stiffness about the major axis are considered. From Fig. 25, one

obtains either

r . f

Fl A ¢ of]e"!

Rt =lc At ol{etd} (3.88)

F. LO 0 -~ Hj|w

| a

or

(3.89)

in which A, C, A', and H are identical to those given in Egs. 3.86 and

3.87.

The transformation of the member-end deformation to the left and

right ends of the panel may be expressed as

e =b (3.90)

r
~p  ~p ~p
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in which
bbb
~p=]ﬁ o 0 -4 -1 (3.91)
LO 12' 15 0 ']§ ']§‘
and
o= oy Mg owgug W wm.]T. (3.92)

Expressing rp in terms of the reference coordinates r;, according to

Fig. 26, yields

N f : _ '
fp gp fp' . (3.93)
Then,
=b_a r | (3.94)
~p PP ~p
in which
( \
cs d _ 11 ¢ _sd 4
h h h L % h h h
-|lc s d ¢ s d 1 1
bhay=*lrh 7 O 0 -y wRtT % (3.95)
11 11
L0 0 0 7 3 0 0 0 - 5 - EJ,
and
f_ o f1 fI fI fI fI fJ f3 fJ fJ fI4T
rp = [rx ry Pe Yoo Tor Ty ry e g rzr] (3.96)



Fig. 26.

fI
Wri, Mzr

REFERENCE COORDINATES

Flexural Shear Panel and Reference Coordinates
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Thus, the panel stiffness in the reference coordinates is

B 75 5 (3.97)
in which
K, = (bya)' s (b a), (3.98)
o p ot pp p
gnd
F§=fFi F; " Fro Far Fj M Fy F‘;rj (3.99)

b. Geometric Stiffness of Flexural Shear Panel in Member-End

Deformations and Reference Coordinates. The geometric stiffness of the

flexural panel may be formulated on the basis of Fig. 25. The shears
required to balance the moments resulting from the axial force, N,

times the lateral displacements, Uy and “j’ can be expressed as

N
h
N1 (3.100)
h

or

=S d. 3.1
EP —gp ~p (3.101)
Transformation of the lateral displacements yields
d =Tvr (3.102)
~p —~p

in which



Expressing dp in terms of r; and using Eq. 3.93 yields

in which

I

The final

in which

The vectors r

The detail for EGp may be expressed as

{—
1

d =Ta rf
~p TP AP
C S -d 0 O
a::
@ o o o0 0 0
geometric stiffness is then
f f
F. =K r
~p  —Gp ~p
K. =(Ta)'s (Ta).
—Gp ——p° —gp — P
f
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(3.103)

(3.104)

(3.105)

(3.106)

(3.107)

and E; are identical to Eqs. 3.96 and 3.99 respectively.



Nc _ Ncs Ndc
h h h
NS Nsd
h h
N2

Symm.

Nc2 Ncs Ncd
h h h
2
Ncs Ns Nsd
h h h
Ned  Nsd  Nd
h h h
0 0 0
0 0 0
2
Nc Ncs Ncd
h h h
N hsd
h h
Nd®
h
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(3.108)
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IV, YIELD CONDITIONS AND INTERACTION RELATIONS

A. YIELD CRITERIA

The values of the bending, axial, and torsional capacities of a
member ‘dependent upon the interaction among the internal forces at the
cross section. Studies of the interaction relations of a steel beam-

41

column under biaxial loading have been made by Morries and Fenves = and

2-44 among others. They derived interaction

Chen and his associates4
equations in closed form for various steel sections. These equations
can be used directly in structural analyses in order to avoid the
excessive labor of searching for an optimum plastic state. Some
researchers, however, have employed the yield criteria in their struc-
tural analyses in which they assumed plastic functions for various
elliptic, hyperbo]ic, or other forms that were expressed in terms of
the internal forces and plastic capacities of a cross section. A
plastic state is searched for by converging the plastic function to
satisfy the desired yield criteria during each incremental step of
structural aha]ysis. Ffom the computational point of view, the inter-
action equations are more efficient than the yield functions used
directly in a structural analysis that deals with many constituent
members.

A yield condition can be formulated in terms of either stresses or
forces. The approach based on stresses is best suited for finite
element analysis. The yield condition for framed structures is most
convenient]y’formulated in terms of either force components or

normalized (dimensionless) force components., Expressed in terms of

forces, a yield condition is an equation that defines the combination



of force components necessary to initiate inelastic deformation at a
cross section. In formulating a yield condition, the parameters are
associated with the force components, which contribute to the strain
energy of the deformed structure. 1In general, the deformations result-
ing from transverse shears are usually small for framed members having

45 The shear deformations are normally not

large slenderness ratios.
included in the yield conditions.

Morris and Fenves4] considered various possible locations of the
neutral axes of a cross section subjected to St. Venant torsion and
biaxial bending and then developed many interaction equations corres-
ponding to the neutral axes considered for each of several different
steel sections. They assumed that the torsional shear stress, T, is
constant over a cross section but in the opposite direction for each
side of every plate element of the section. This assumption leads to

the following relationship between the torsional moment, T, and the

shear stress, T:

In this equation, W, and tj represent respectively the width and
thickness of each of p plate elements. Similarly, the plastic torsion,

Tp, expressed in terms of the shearing yield stress, Ty’ is

80
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From Egqs. 4.1 and 4.2,

_ T
" [?}Tp (4.3)
Y
let
- T _
m = ‘1?_ 2 . (4.4)
y

then on the basis of the von Mises yield criterion, one may find the
maximum normal stress, o, which can occur at a cross section having a

torsion, T. Thus,

2]1/2

o= Oy[l-m (4.5)

in which Oy is the normal yield stress. The result implies that the
effect of torsional moment can be taken into account in axial force and
bending moments by reducing their magnitudes by a factor of //;:;7 .
The interaction equations presented by Morris and Fenves require
quite a Tot of computation effort in system ana]ysis; because there are
many possible neutral axes that have to be evaluated for each member.
In this research, the interaction between combined moments and axial
loads is based on Chen's recent work,44 whereas the torsional effect

on the moments and axial forces is based on the results obtained by

- Morris and Fenves.

Santathadaporn and Chen42 started using lower- and upper-bound
techniques to find the approximate equations for the reduction of the
moment capacity occasioned by biaxial bending and axial forces.

However, the results are somewhat lengthy for practical engineering



practice. Atsuta and Chen43 later proposed a superposition technique
for finding an exact solution and presented a number of interaction
curves for typical steel sections. In view of the inconvenience of

using graphical results, Tebedge and Chen44

used the graphic results of
some typical steel sections ahd then developed non]ineér interaction
equations applicable to short and iong columns. The interaction equa-
tions were selected for this study for the following reasons: 1) The
interaction equétions have the similar expressions as those used around
the world in most official steel design codes. 2) The equations
include the effect of strength and the effect of stability. 3) The
interacting equation of the stability consideration can be used

directly for both short and long reinforced concrete columns if the

appropriate values of the exponents are employed in the equation.

B. INTERACTION EQUATIONS

Two sets of interaction equations were developed for checking the
strength and stability of a member. Strength is usually critical at
bracedvpoints, whereas stability is checked for the location between
braced points.

1. Check for Strength. The interaction equation has been devised

for checking the strength of short columns. It is:

'MX»“ m \® (.6)
+ Y = ] 4.6
MPCX [MPCY

in which Mx and My are the applied moments about the major and minor

axes respectively, and Mpcx and Mpcy are the modified plastic moments

82

that include the effect of the axial compressive force, P. Let p = P/Py,

then
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]

1.18(1-p)M

Mpcx px-i M

pX

and

2
1.190(1- M
190(1-p) I, <

Mpcy py’

The exponent, o, is a numerical factor whose value depends on the
shape of a particular cross section and on the magnitude of the axial
load. The variation of o can be approximately expressed by

o = 1.6-5—&)‘95 (4.9)

in which &n is the natural logarithm,

2. Check for Stability. The following equation is used to check

for stability between the braced points of long columns:

B B
C_M C_M
(J;-}I-’i—)i] + [—'%y—l} < 1.0 | (4.10)
ucx ucy ,

in which

me, Cmy = equiva]ént moment factors used in the AISC Specifi-

. 46 . "
cation interaction formula, i.e.,

M
. 1
Cm = 0.6 + 0.4 Mgri 0.4 (4.11)
in which M]/M2 is the ratio of the smaller to larger moments at the

ends of that portion of the member unbraced in the plane of bending

under consideration. The ratio M]/M2 is positive when the member is
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bent in a single curvature and negative when it is bent in a reverse

curvature.

unity.

Mx’ My

w
{

and

or

in which bf and d

If M] and M2 are not properly identified, Cm is used as

the greater of the moments applied atvone or the other

end of a beam column;

= 0.4 +p+bg/d>1T, when be/d > 0.3

1, when bf/d < 0.3

(4.12a)

(4.12b)

1.4 + p (simplified form to replace Eqs.4.12a

and b)

(4.12¢)

are the flange width and depth of the W or I section

respectively.
M . M = ultimate moment capacities about the x- and y-axis
ucx’ ucy
respectively, when there is zero moment about the
other axis, but P is not necessary to be zero; i.e.,
P P
M =M (1- 5)(1- 5) (4.13)
ucx m Pu PeX v
and . -
P P
M =M (1- 59)(1- ) (4.14)
ucy py Pu Pey

in which
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1.7 AFa in which 1.7 is the load factor and A is the cross-

sectional area, in2. The allowable stress, Fa(ksi), has the

following form:

2 o
_ (KL/r) y KL
F, = [1- 5 ] FsT o when ;r-f_CC (4.15)
ZCC
12 % E KL
Fo=-2T & when — > C (4.16)
a KL 2 r C
23(;-)
. =§+_3_,K_L_l['_<k_)3 (4.17)
* 3 8r 8 (rC ? *
C C
_ 2nE
CC - o ) (4-]8)
y
2. .
EA
p =LA | , (4.19)
™y

actual unbraced length between floors, in.,

= actual unbraced Tength in the plane of bending, in.,

radius of gyration in the plane of bending, in.,
the Teast radius gyration of the cross section,
effective length factor in plane of bending,
effective length factor of the member,

modulus of elasticity, ksi,

A, and
%y
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Mm = maximum moment that can be resisted by the member in strong
axis bending in the absence of an axial load and weak axis
bending moment. In lieu of a more precise calculation, Mm

may be taken as

L N
(;—)/qy

< M

=11.07 - =L~
M= 1407 = =¥ Mok < Mo

(4.20)

Note that the values of the exponents, o and B, determined from
Egs. 4.9 and 4.12 are close to each other when p < 0.6. A comparison
of the results obtained by using the interaction equations with the
exact results is given in Figs. 27 and 28.

3. Procedures of Reducing Plastic Capacities. At any time step

in the structural analysis, a reduction of plastic moments, Mp, mus t
be made to include the influence of the compressive axial force based
on Egqs. 4.7 and 4.8 for strength and Egs. 4.13 and 4.14 for stability.
These modified plastic moments, Mpc and Muc’ must then be reduced
because of the torsional effect in the amount of 1—m2 shown in

Eq. 4.5. The torsional influence should also be applied to the axial
force to change its capacity. The final reduced moments, Mrp’ and the
axial force, Pr’ are employed in the stiffness coefficients for the
next time step in the analysis. Because the stiffness coefficients
are derived on the basis of the Ramberg-0Osgood hysteresis with strain-
hardening that is not considered in the interaction equations, the
1hterna1 actions at some Toading stage can be greater than the plastic
capacities at that stage, which must be approximately reduced in

order to fit the interaction equations.
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The procedure of finding the reduced plastic capacity of a short
column at any time step can be described as follows:

(1) The Torsional Effect.--Compare the actual torsion, T, with the

torsional capacity, Tp, of a member. If T is greater than Tp, the
cross section, according to von Mises yield condition, cannot resist
any normal sfress. In order to avoid numerical difficulties in the
computer program, the following reduced plastic capacities have to be
used 1h the stiffness coefficients without any further checks in

steps (2) or (3):

Mrpx = 0.1 MpX (4.21)
M =0,1T M 4,22
rpy py ( )
and
p =0.1P. : (4.23)
ry Yy

The beam stiffness coefficients include Mrpx only. If T is less than

Tp, then the bending moment of a beam becomes

_ 2
Mrpx =/ 1-m Mpx’ (4.24)

and the axial force of a column should be

p =/ 1-m Pye (4.25)

ry

(2) The Axial Force Effect.--Compare the actual axial load, P,

with the reduced axial capacity, PﬁY’ If P is greater than Pry’ let

p = P/Pry = 0.9. If P is less than Pry’ then find p. Calculate
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_ P
a=1.6 - T
The plastic moments are also calculated to include the current axial

force as

=
it

1.18 (1-p)M

pcX pX

and

]

1.19 (1-p2)M_ .

M
pcy py

(3) The Biaxial Bending Effect.--The reduced plastic moments are

evaluated according to Eq. 4.6. Check My if it is greater or less than
Mpcy‘ If My_i Mpcy’ then reduce My gradually until it is somewhat less

than M
" Mocy

be evaluated by using

for which the reduced plastic moment in the x-direction can

I
=M 1- (L) (4.26)

pcy” then Mrpx is obtained

from Eq. 4.26. The reduced plastic moment about the y~axis can be

in which My is the reduced moment. If My <M

determined in a manner similar to that discussed above, i.e.,

- X _ya _
Mrpy = Mpcy 1—(M ). (4.27)

The procedure of finding the reduced plastic capacity of a Tong

column is similar to that used for short columns:
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(1) The Torsional Effect is the same as for short columns.

(2) The Axial Force Effect is similar to the short column

analysis except that the exponent, B, given in Eq. 4.12 for Eq. 4.10
should be evaluated for the current value of p.

The ultimate moment capacities can be modified from Eqs. 4.13

and 4.14 as
ryy . Dey
Mrux = Mm(l- P )(1- ) (4.28)
u ex
and
Pryyq. Dry
Mruy = Mpy (1- 7, )(1- ey). (4.29)

(3) The Biaxial Bending Effect is similar to the procedure used

for short columns. The reduced plastic moments can be obtained from

Eq. 4.10, as

Mucx B CmyMyJB
M = 1~ ‘ (4.30)
rux me Mucy
and
Mucx 8 {meMxJB
M = 1- . (4.31)
ruy Cmy Mucx

It has been observed from some numerical examples in Chapter VII
that for a strain hardening of r = 20, the interaction equations do not
yield unity but a quantity in the neighborhood of 1.15. However, when

r = 80, as in an elastoplastic case, the interaction equations yield
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approximate unity as expected. Note that the values of o and B
determined from Eqs. 4.9 and 4.12c are very close to each other for a
value of p < 0.6. The interaction equation, Eq. 4.10 (Cm = 1) can be
used with reasonable accuracy for short columns when the axial

47

compression is confined by the parameter, p < 0.6.

4, Interaction for Reinforced Concrete Columns. The interaction
48

equation for reinforced concrete columns was proposed by Bresler.
Chen's interaction equation of Eq. 4.10 has been proven to be appli-
cable to both short and long reinforced concrete co]umns.49 In using
Eq. 4.10, MUCX is the ultimate moment capacity about the y-axis at a
given ultimate axial load when Mucy is zero, and Mucy is the ultimate
moment capacity at the same given ultimate axial Toad when Mucx is zero.
The exponent, B, is included in the function of several parameters,

such as in the strength of concrete and steel, the ratio of the rein-
forcement to the column cross section, and the magnitude of ultimate
axial load. Different values of B from Ref. 48 are given in Table I.

In this table, P is ultimate axial load, AS is the total area of
reinforced steel, a and b are the dimensions of the cross section

(20 in. x 20 in. or 0.508 m x 0.508 m). The concrete strain, eé, is
taken at 0.002, when the concrete stress is k]fé. The concrete crushed
strain, €o° is used as 0.003. The yield stress of steel is signified

by fy, and L/a represents the slenderness ratio.

The shear walls and shear panels used in this work are derived as
beam-column elements for which the interaction of the biaxial bending
and the axial force is not considered. Because the main internal force
of these walls is the moment about the major axis, the interaction is

neglected.
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TABLE I. EXPONENT 8 FOR INTERACTION EQUATION FOR REINFORCED CONCRETE
COLUMNS, 1 ksi = 6.895 N/mn°
8
L/a
P/flab  kf! f, A /ab 10 20
(ksi)  (ksi) '
1.0 4.2 60 0.0325 70 2.00 -
0.5 30 1.40 .50
0.1 40 1.50 .70
0.5 3.0 60 0.0325 25 1.25 .35
4.2 30 1.40 .50
5.0 35 1.35 55
0.5 4.2 40 0.0325 40 1.70 .60
60 30 1.40 .50
80 20 1.25 .45
0.5 4.2 60 0.0125 40 1.60 .30
0.0325 30 1.40 .50
0.0833 J0 1.20 .25




V. ENERGY AND DUCTILITY FORMULATION

A. ENERGY

There are at least two reasons for the formulation of energy.,
First, the servfceabi]ity of a structure can be studied by observing
both the seismic input energy and the energy stored in and dissipated
from thé structure. Second, the accuracy of the step-by-step integra-
tion results can be checked by using the Taw of conservation of energy.
The conservation of energy requires that the total seismic energy put
into a structure at a certain time must be equal to the total strain
energy, damping energy, and the kinetic energy of the system at that

time. The mathematical expression for this concept is

Ere = Erse * Exe * Epp (5.1)
in which
EIE = total seismic input energy,

ETSE = total strain energy including the dissipated strain energy,
EPSE’ occasioned by the permanent set and the elastic strain
energy., EESE’

EDD = dissipated energy occasioned by damping, and
EKE = kinetic energy.

The above individual items of energy are formulated in this chapter,
which also includes the formulation of ductility factors and excursion
ratios.

1. Input Energy. The total amount of energy resulting from the '
support motions in two horizontal directions and one vertical direction
that is put into a structure at the end of a particular time increment

can be obtained by summing the following terms,

93
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(1) the product of the average horizontal column shears, HX and
Hy, in the x~ and y-direction and their corresponding incre-
mental horizontal ground displacements, AXe and AYe,
(2) the product of the average vertical column reactions, V, and
the incremental vertical ground displacements, AZe, and
(3) the product of the average horizontal floor forces occasioned
by the P-delta effect and the corresponding incremental values
of the absolute horizontal floor disp1acement$ as well as by
the product of the average torsional moments at the floor
resulting from the P-delta effect and their associated
incremental floor rotations.
Because it is not necessary for the directions of horizontal ground
displacements to coincide with the directions of shears at the supports,
the horizontal ground displacement, Aux and Auy, can be transferred to

the local major and minor axes, Axe and AYe, of the individual members

as follows:
AXe = Au, COSO - Auy sind (5.2)
AY, = Au, sind + Auy cosh (5.3)
AZ, = Au, (5.4)

in which A signifies incremental forms, 6 is the angle between the

minor axis of the column and the earthquake component in the x-direction,
(c]ockw1§e is negative as shown in Fig. 4), and AZe is the vertical
displacement at the column support that is identical to the vertical

ground displacement, Auz.
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The displacements Aux, Auy, and AuZ can be determined respectively
from the earthquake accelerations of Gx’ Uy, and Uz by using either the
step-by-step integration or the improved integration method. Let U
represent earthquake accelerations in the x-, y~-, or z-direction, then
the incremental displacement, Au, and the velocity, U, can be obtained

from Eqs. 2.18-2.20 on the basis of the Tinear acceleration method as

follows:
A = 3 At+~A~£(2U v i) (5.5)
Yt,t-at © Yt-at 6 t-at © Yt .

. _ e éE . "

Up = Uppp ¥ (g g * Uy (5.6)
Simitarly, from Eqs. 2.36 and 2.37 for the improved step-by-step
method,

. Atz

M ot -t Upopelt + 75 (B ppe + UL (5.7)

. - . _A-E . .

Ue T Yt-aat g Bl ¥ U (5.8)

By substituting Eq. 5.5 or 5.7 into Egs. 5.2-5.4, one may express the
input energy as described previously.

(1) Due_to horizontal ground displacements

t NC
= 1 1
EH = tzo NZ] [é(Ht—At-I—Ht)X AXe + E(Ht‘At-}-Ht)y AYe] (5.9)

(2) Due to vertical ground displacement

e
E, = SV, L +V,) AZ (5.10)
Vg Wby 2ttt e



96

(3) Due to P-A effect

+5,) (4r +su ) +]§(s #5,), (or a0, )

t
. I
i St-at™St t-at "t’y' By

2 tON]

+ §(Mt At Mt)Ar

—_—

(5.11)

in which H represents the horizontal shears, V the axial forces, S and
M the floor forces and the floor torsional moments, respectively,
resulting from the second-order moment occasioned by the P-A effect of
ng’ Ar the floor displacements, NC the number of column Tines, and NS
the number of floors of the structure.

The total seismic input energy is the summation of Egs. 5.9-5.11.

This is expressed by

E..=E, +E, +E (5.12)

IE H v PA*

2. Total Strain Energy. The total strain energy, ETSE’ includes

the dissipated strain energy, ETPS’ and the elastic strain energy, EESE'
Figure 29 shows the relations between ETSE’ ETPS’ and EESE for a

general force, F, and its associated deformation, e. From the incre-
mental analysis point of view, the total strain energy is the area of
0AC, which is the summation of the small area DEFG resulting from FaV
times Ae. Because typical e]emeﬁts of co]umné, beams, and other
members have different deformations as discussed in Chapter IV, the

following strain energy equations are derived according to the deforma-

tion characteristics of individual é]ements.
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Fig. 29. Relationship Between Elastic and Dissipated Strain Energies
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(1) Column or shear-wall elements

t N e _
] 1 1
Eesg = L L | 2(PyagtPp)as + (T, 4700,
t=0 N—] - -
e
+ S(M__ M. )AB (6.13)
R |

in which N1 = NS(NC), N2 = 4(N1), P and S8 are the axial force and
displacement, T and eT are the torsional moment and twistingangle, and
M and eM represent the bending moment and bending deformation.

(2) Beam elenents

t N3 1 t N4

B = )T (M M
BSE ~ 4 Wy 2 t-at

1

Jag, + ¥ Y (T +T.)a6,.  (5.14)
tM TR A 2 et T

in which N3 = 2(NB)(NS), N4 = NB(NS), and NB is the number of bays of

a system.

(3) Shear-panel elements

L F e B

E = =(P +P)AS + (M +M, ) AD (5.15)
PSE ~ 4L wbq 2 t-at tho nEp 20 teat Tt M

in which N5 = total number of panels, and N6 = 2(N5).

(4) Bracing elements

t N/ 1

Ecgp = 2 L (P

= 5 P.)AS (5.16)
SSE 2o Ner 2

t-attt

in which N7 is the total number of bracing members.

From Egqs. 5.13-5.16, the total strain energy is
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E =E + E + E + E

csE T oEpse * Epse (5.17)

TSE SSE*®

3. Kinetic Energy. The kinetic energy can be expressed in terms

of mass and its velocity as

e 3 [ 2 + Iukei2+ 1 Lar?
KE ™ W&y L2t T 20y T L 2 g
N]'I . - 2
+ NZI S rgtu)? (5.18)

in which M is the mass at each floor for both x- and y-directions, Mz
the mass Tumped at each column associated with the vertical motions,
J the torsional mass at each floor, r the velocity in global coordi-

nates, and.u the ground velocity from Eq. 5.6 or 5.8.

4, Dissipated Energy Occasioned by Damping. The equation for the
dissipation energy occasioned by damping is found from the work pro-
duced by the damping force going through the absolute displacement of
the mass. The incremental expression of the damping energy for a
structural system is

t NS—'I

atf

At + {F

F 7

E = +E,) (v, ,.tv,) +F.)
DD t=o N=1k t-At  tixt-At tix t-At t'y

At + Z]I(M At]

(Vipt*vely toat ™M) (Veattviede

-t Nl 1
+ ) ) glA

) At (5.19)
t=0 N=1

pent ) (Veopetve) , Ot
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in which A, F, and M respectively represent the vertical forces of
columns, the transverse forces at floors, and the torsional moments at
floors resulting from the damping effect of g_i. v represents the
absolute Ve]ocities associated with the forces, A, F, and M.

5. Dissipated Strain Energy Occasioned by Permanent Set. The

dissipated strain energy occasioned by permanent set is the area 0AB of
Fig. 29 for é'ha]f-cyc1e response. ‘For each time step, the incremental
dissipated strain energy is the area DEHJ, which may be represented by
the prodhct of Fav and Ae'. The actual incremental deformation is Ae,

which can be related to Ae' by using

(5.20)

Thus, the dissipated strain energy may be expressed in the similar

manner as shown in Eqs. 5.13-5.16 as follows:

(1) Columns or shear-wall elements

oMoy Koo 1
Ecop =2 1 } 2P at P800 )5 + 5Ty Ty )0y
t=0 N=1 1
Kz) - E %‘2 L Ko
(1- & + (M M, )00,(1- 55) (5.21)
(2) Beam elements
R k
Enne = (M, M)ae (- =)
BDE ~ 4 n&y 20 t-at EOM T KM
R 2
+ T, .-T.)86-(1- 55) (5.22)
A L A A
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(3) Shear panel elements

e g
E = (P +P, )A8(1- +5)
PDE t20 N=1 2V t-At  t K] S
e :
+ (M, _ M )46, (1~ =) (5.23)
t=0 N=1 2V t-At TtTM K] M
(4) Bracing elements
e L 1] as(1-
E = (P, #P)AS(1- =) (5.24)
SDE t=0 N=1 2" t-At 't K] 8
Apparently the dissipated energy occasioned by permanent set is
Erps = Ecoe * Fpoe * Eppe * Espe (5.25)
and the total dissipated energy = EDD + ETPS'

B. DUCTILITY FACTOR AND EXCURSION RATIO

The ductility factor, which is commonly used as the maximum
required deformation of a structure, is generally defined as the
deformation in a region of a system (or an overall response of system)
that is divided by the corresponding deformation present when yield
occurs. The excursion ratio is used as an index of the total severity
of the inelastic deformation during a response history. The excursion
is normally expressed in terms of a summation of ductility factors. If
- the ductility factors are used to describe the deformations of indi-
vidual regions, they are normally measured on the basis of rotations,
curvatures, or strains. ‘The difficulties of applying the ductilities

of curvature to a structure subjected to interacting ground motions
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were described in Reference 8 in which a new ductility definition of
variable energy absorption was introduced. In this work, the ductility
factors for rotation and variable energy were also used, and a new
definition based on hybrid energy was proposed.

1. Ductility Based on Rotation. A cycle of the moment-rotation

curve for either end of a member is shown in Fig. 30. The ductility

factor is defined as the maximum absolute nodal rotation, |e|max’

divided by the yield rotation, ey. Use of the notation in Fig. 30

gives the following ductility:

o

ny = = =1 + = (5.26)
1 8 8

y Y ey

in which the yield rotation is based on the antisymmetrical bending of
a member when its two ends are subjected to the plastic moment, Mp; thus,
ey = MPL/6EI in which L is the length of the member, and‘EI is the
member's flexural figidity. The angle, o, is measured from the first
yield at which the member stiffness coefficients pass beyond the
elastic limit.

The excursion ratio, €15 corresponding to the ductility ratio can
be defined as the total plastic rotation of a node of a member divided

by the yield rotation of the joint. 1In terms of ductility

u

1

&1

e~ =

L (ugy-T) (5.27)
j

in which My is the ductility factor for the half cycle plastic
rotation, i, and Nu is the total number of times the node becomes

inelastic.
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Theoretically, the ductility should be calculated according to the
information.in Fig. 31 in which Hy = T+ u]/B], and Hy = 1 + u2/82.
However, when 62 is small, then M, can be unrealistically large. That
is why a constant ey is used. |

2. Ducti]itxﬁBased on Variable Strain Energy. When inelastic

rotation at the end of a member occurs, the dissipéted»strain begins to
accumulate. For a perfectly elastoplastic system, the amount of strain
energy- dissipated during the p]éstic rotation is directly proportional

to the amount of rotation. This relationship between the inelastic
deformation and the dissipated strain energy provides ways of formulating

the ductility factor. This definition of ductility can be expressed a58

E

u, 214 2k (5.28)
SEE
in which
EDSE = dissipated strain energy of a member end during a half
cycle of deformation, e, and its associated force, F, as
shown in Fig. 32, and
ESEE = total elastic strain energy at both ends of the member.

The excursion ratio may be expressed in a manner similar to that

of Eq. 5.27. In terms of Eg. 5.28,

U

ey = T (uy-1) (5.29)

e~ =2

i=1
The numerical procedures in the computer program have three steps:

(1) calculate the dissipated strain energy EDSE] at a joint of a

member during a half-cycle response. (2) When the load reverses,
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calculate ESEE] for both ends of a member and then find Mo and €pe
(3) For the next half-cycle, set EDSE] equal to zero and calculate
EDSEZ‘and Eseps for the next u, and e,.

3. Ductility Based on Hybrid Strain Energy. This is a new

definition, which is similar to the variable strain energy except that
the strain energy, ESEE’ is replaced by a constant strain energy, ECSE‘
The constant strain results from the antisymmetric bending of Mp at both
ends of a member, thus ECSE = MSL/6EI. The purpose of using this new
definitiqn is that the three-dimensional ground motion can sometimes
force a moment to have a Tow magnitude with a long duration of deforma-
tion as shown in Fig. 33. As shown in the figure, EDSE2 is apparently
Targe and ESEEZ small, thus an excessive ductility can result. This
complicated force-deformation relationship is due to a combined influ-
ence of the Bauschinger effect, strain hardening, and interacting three-
dimensional ground motions. It is felt that great caution should be
exercised in using the variable energy method for three-dimensional
problems. It isba]so felt that the method is versatile and deserves
further study. The new definition provides a reliable means of check-

ing the results of maximum required ductilities for all structural

analyses. The expressions of the ductility factor and excursion ratio

are
E
~DSE
U, = 1 + =—= (5.30)
3 Ecse
and
N
U
€q z (p3_i -1). (5.31)



The numerical procedures for calculating H3 and €3 are similar to
thuse used for Ho and €, except that ECSE is a constant.

Although the definitions of the ductility factors and excursion
ratios have been derived from the hysteresis loops of steels, the
methods.are of.a general nature and have been applied tb reinforced

concrete members in this work.

107
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VI. NUMERICAL PROCEDURES AND DESCRIPTION OF INRESB-3D COMPUTER PROGRAM

A. NUMERICAL PROCEDURES

The INRESBg3D program, which is composed of a main program and
22 subroutines, is capable of anaTyzing building systems subject to
static loads, multicomponent seismic excitations, or a combined action
of static load and earthquake motions. The static loads can be two
independent lateral forces and four 1ndependent.verticel forces for
which the analytical results can be expressed in a number of combina-
tions. When the static Toad is considered in the seismic response,
the static displacements and internal forces of the last combined
results are used as the initial condition for the dynamic analysis.
The numerical procedures are explained in the sequence of seven major
steps outlined in Fig. 34. The pertinent subroutines used in each
step are shown in the diagrams of Fig. 35.

Step 1--Read and Write Input Data. The MAIN program reads in the

type of structural analyses and structural information in accordance
with input Codes I and II in Ref. 1. The rest of the data are read in
by using the subroutine INFORM. All the input data are printed out for
a double check of their correctness. Because the subroutine INFORM

can generate the columns having the same structural properties and the
beams having the same properties and vertical loads, the subroutine
GENERA is called from INFORM to print the generated information.

Step 2--Clear Arrays and Initializing Input Data. Because the

program can solve as many of the problems as the user desires for
each input service, all the numerical arrays must be clear before
each of the problems is processed. For shear wallk and shear panels,

the rule numbers and the associated stiffnesses have to be determined



STEP 1 READ AND WRITE DATA

STEP 2

STEP 3} FORM GEOMETRIC STIFFNESS

STEP 4| FORM STRUCTURAL STIFFNESS

LAST PROBLEM
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CLEAR ARRAYS AND
INITIALIZE DATA

v
SOLVE
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=

g. 34. Flow Chart of INRESB-3D Program
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on the basis of the past response results, thus the initial infor-
mation for yield moments and their corresponding slopes must be
provided so that the first half-cycle can be analyzed. Detailed
steps can be found in the descriptioh of the subroutine INITIAL.

Step 3--Form Geometric Stiffness. The geometric stiffness

is a result of both the dead loads and the inertial forces asso-
ciated with the vertical ground accelerations acting on vertical
members. If the vertical ground motion is not included in the
analysis, then the geometric stiffness is constant. For computational
efficiency, the geometric stiffness is formulated only once in
terms of the lumped masses acting on the vertical members. The
actual geometric stiffness is a product of the original matrix and
the coefficient of gravity acceleration plus the vertical ground
acceleration for each time-step. |

The detailed procedures for formulating a typical floor are
sketched in Step 3 of Fig. 35. The formulation starts at the roof
of the structure and then progresses floor-by-floor to ground level.
For anybf1oor level, the stiffnesses of the columns and shear-walls
are determined by using the subroutines COLUMN and REFCOR. These
stiffnesses are then added to the floor stiffness in accordance with
the subroutine FLOSTF. After the floor stiffness, which is contrib-
uted to by the columns and shear walls, is established, the sub-
routines, PANEL? REFCOR, and FLOSTF, are called for the panel stiff-
nesses. The final floor stiffness is added to the system's geometric
matrix by using the subroutine ELIMIN. The procedures are repeated

for the next lower floor level until the ground level is reached.
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Step 4--Form Structural Stiffness. The formulation of struc-

tural stiffness depends on the Toading stages and can be classi-
fied as initial stiffness and modified stiffness. At the beginning,
the initial stiffness includes the effect of static response, if
any, of axial forces and bending moments. The stiffness is then
checked for each time-step, if it is necessary to be modified for
any of the following conditions: 1) Whether the hysteresis loop of
a steel member changes from skeleton to branch, from branch to branch
(opposite direction), or from branch to skeleton. The force and
deformation at the point, when the change occurs, are used in fdrmu—
lating the modified stiffness for which the origin corresponds to
that point. 2) Whether any shear wall or shear panel has inelastic
stiffness changes. When a new rule number is used, the stiffness
must be modified accordingly. 3) Whether the difference between
the previous stiffness and the current stiffness of Ramberg—Osgood‘
material fs greater than the tolerance 1limit. The tolerance is
an input datum, which is used so that one does not need to change
the stiffness‘for every time-step.

The numerical procedures, which are composed of five parts,
are illustrated in Fig. 35. Parts 1 through 4 correspond to the
formulation of the member stiffnesses of the columns, beams, shear-
walls, shear panels, and diagonal bracings. These are then added to
the floor stiffness. In part 5, the rotational degrees of freedom at
the joints are eliminated by using the subroutine ELIMIN. For steel
elements, the subroutine INTRCT is used to find the reduced plastic
capacities, which are then used in the subroutine INECOF to form the

stiffness coefficients. The stiffness coefficients of concrete
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elements are formed by using the subroutine SHRWL1. The stiffness
coefficients are then expressed in the reference coordinates used in
the subroutine REFCOR. Before part 5 is executed, the subroutine
FLOSTF is used to add the stiffnesses of the individual members to
the floor stiffness. The structural stiffness is determined after
the ground floor stiffness is obtained.

Step 5--Solution for Static or Dynamic Displacements. The problem

of static displacements is solved only once at the beginning. For this,
the subroutine GLOCOR is used to transform the geometric and the struc-
tural stiffnesses from reference coordinates to global coordinates.
The independent static lateral forces and veftica] nodal .Toads are
added in static loading arrays . Then by applying the Gaussian
elimination in the subroutine GAUSS, the static loads can be used to
find the global dfsp]acements. The REFDSP subroutine is then employed
to transform the global disp]acements back to the reference coordinates.
For the dynamic case, the displacements are repeatéd]y calculated
in accordance with the number of incremental time-steps as well as with
the number of changing hysteresis curves. There are two optional
methods of finding the displacements. These are the step-by-step
method and the improved integration method, which are represented by

the subroutines LAC1 and LACZ respectively.

Step 6--Solution for Internal Forces. The static internal forces
are solved only once af the beginning of each problem. The internal
deformations and their associated forces are obtained by using back-
ward substitution from the base of the structure. The combinations of

static response are performed after the forces corresponding to all
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independent forces are found. The Tast combined static results are
used as the initial conditions for dynamic response analysis.

The incremental dynamic forces are obtained in the same manner as
in the static case. Before adding the incremental forces to the
previous results, one should determine if there is any interchange
between the hysteresis curves. If there is any interchange between»
the skeleton curve and branch curve, the internal deformations and
forces have to be recalculated on the basis of the new stiffness
coefficients for which steps 4, 5, and 6 must be repeated. The ‘
addition of the resulting forces is performed in step 7 in which the
correction of the internal forces of reinforced concrete members is
also made.

Step 7--Total Forces, Energies, Ductilities, Excursions, and

Printout of Results. The results of static response are printed out

in this step. The energies, ductilities, and excursions of all the
members are calculated, and the incremental dynamic forces of the
steel members are added to the results at the-end of the previous
time-step. For reinforced concrete members, the rule numbers are
checked at the end of each time-step. If there is no change in the
rule numbers, the incremental forces are added to the previous forces.
If there is any change in the rule numbers during loading, unloading,
and.1oad reversal, a new spring stiffness has to be formed for the
next step. For the loading case having the moment, MT’ greater than
the yield moment, My, the correct nioment, Mac’ is set equal to the
yield moment, My, plus the fraction of the new incremental moment as

(1—f)AMn. The new incremental moment, AMn, is obtained from the new



116

spring associated with the new rule number. The fraction, f, is
(MT - My)/AM in which AM is the 1ncreménta1 moment in the last time-
step for MT‘ This correction technique is also applied to the load
reversal for which the moment should ideally approach zero; then the
new rule begins. The corkection of overshooting yields an unbalanced
shear, (MT- Mac)/L’ which should be combined with the dynamic load in
subroutine LACT or LAC2 for the next time-step of the analysis. The
unbalanced shear induces moments, which should also be included in the
Toad matrix. |

The difference between the current steel stiffness and the previous
stiffness should be compared with a tolerance. If the difference is
within the 1imit, steps 5, 6, and 7 are repeated for the next time-
step, otherwise step 4 is executed.

A11 the response results at certain time intervals should be
printed according to the input instructions. The information for
plotting is kept on the disc. The maximum forces and displacements

for each problem are then printed out at the end of each problem.

B: DESCRIPTION OF SUBROUTINES

The subfoutines are depicted in the order in which they first
appear in the seven steps shown in Figs. 34 and 35. Thus, some
relations can be seen between the previous section on numerical
procedures and this section on subroutines.

1. Subroutine INFORM. This subroutine is called from the MAIN

program to read in all input data except for input codes I and II,
which are in the MAIN program. The input information is printed out

to check its correctness. The subroutine GENERA is called to generate



117

the beam Tocation, the column location, and the beam lodads for the
common members.

2. Subroutine GENERA. This subroutine is called from the sub-

routine INFORM to generate the beams and columns for those elements
having the same properties in each group.

3. Subroutine INITIAL. This subroutine is called from the MAIN

program to clear arrays and to initialize data. The arrays include

all the member forces, structural displacements, and stiffness
coefficients. The initialized data consist of the primary slopes of
the inelastic springs, yield moments and rotation, and the rule numbers
for the reinforced concrete elements,

4. Subroutine FORM, This subroutine is called from the MAIN

program to formulate the geometric stiffness and the structural
stiffness for which the details are given in steps 3 and 4 of the
previous section.

5. Subroutine COLUMN. The subroutine FORM calls for COLUMN to

form the geometric stiffnesses and the structural stiffnesses of the
steel columns and shear walls for which the subroutine REFCOR is used.

6. Subroutine BEAM. The subroutine FORM calls for the sub-

routine BEAM, which then calis for REFCOR to form the structural
stiffness in reference coordinates.

7. Subroutine PANEL. This subroutine, which is similar to the

subroutine COLUMNS, is used to form the geometric and structural
stiffnesses for the panels.

8. Subroutine BRAC. As in other subroutines for the member

elements, this subroutine is used to form the structural stiffnesses

of the bracing members in reference coordinates.



9. Subroutine REFCOR. This subroutine is called from the sub-

routines COLUMN, BEAM, PANEL, and BRAC to transform the matrices
relating the member-end deformations to the deformations at the center
of rigid zone, if any. The matrices are then transferred to the
reference coordinates.

10. Subroutine FLOSTF. This subroutine is called from the sub-

routine FORM to set the member stiffnesses and the fixed-end forces of
the beams in proper arrays for a typical floor of a system. The
specific arrays are assigned for certain stiffness elements, which
~depend on the degrees of freedom associated with the elements that are
to be eliminated or saved.

11. Subroutine ELIMIN. This subroutine is called from the sub-

routine FORM after the subroutine FLOSTF is executed. The stiffnesses
associated with the degrees of freedom to be saved are added to the
structural stiffness, and then the Gaussian elimination is begun.

The effects of elimination, or the so-called sway effects, on the
static vertical load and lateral forces are computed. The elimination
is applied only for the structural stiffness, not the geometric
stiffness.

12. Subroutine GLOCOR. This subroutine is called from the MAIN

program to transform the geometric stiffness and structural stiffness
from the reference coordinates to the global coordinates at the mass
center. The transformation for a typical floor includes the lateral
and rotational floor stiffnesses and their couplings as well as the
sway effects. The subroutine GAUSS is called to solve for the static
displacements of six possible independent forces, such as two sets of

lateral forces and four sets of vertical loads.
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13. Subroutine GAUSS. This subroutine is called from the sub-

routine GLOCOR to compute the static displacements for which the
forward elimination and backward substitution are used.

14. Subroutine LACT. This subroutine is called from the MAIN

program to calculate the incremental ground displacements and the
incremental structural response. Energies due to the second-order
effect and damping are computed in this subroutine. This is an
optional subroutine based on the step-by-step method of the linear
acceleration method.

15. Subroutine LACZ. This subroutine is similar to LACI and is

used as an optional subroutine based on the improved step-by-step

method,

16. Subroutine REFDSP. This subroutine is called from the MAIN
program to transform in a floor-by-floor process fhe lateral and |
rotational displacements from global cogrdinates to reference
coordinates.

17. Subroutine FORCES. This subroutine is called from the MAIN

program 1) to compute the internal forces of members for static and
dynamic cases, 2) to determine the paths of force-deformation in the
steel members depending on whether a skeleton curve or a branch is
used, and 3) to combine the static responses according to the loading
cases in the input data.

In calculating the internal forces, the rotations of the members
in reference coordinates can be computed floor by floor by using the
fix-supported conditions and the known vertical and lateral displace-
ments. The local deformations and the internal forces are then found

at the same time by starting on the first floor,
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The loading and the Toad reversal of the steel members are
examined by using the following two checks at every time-step:
1) The previous and current signs of the internal forces for each
member are compared. If the signs are the same, it signifies that
the forces stay on the same path; the incremental forces can be
added to the previous results. Otherwise, the forces obtained at this
time step are recorded as previous forces and then used in reformulating
the stiffness for the new forces. The sign of the new forces is
checked with that of the forces just recorded. If the sign is the
same, the incremental forces have to be added to the previous forces.
Otherwise, the stiffness has to be reformulated and the sign rechecked.
2) The reverse loading on the branch curve is checked whether the
total force on the branch curve at a given time-step is greater than
the maximum force recorded earlier on the skeleton curve. If it is
greater than the maximum force, then a new stiffness must be reformu-
lated on the basis of the skeleton curve from which the force is
obtained for that time-step.

18. Subroutine REFROT. This subroutine is called from the sub-

routine FORCES to compute the local static and dynamic displacements
of members. Member forces for different static loading combinations,
are computed and then printed out.

19. Subroutine RESULT. This subroutine is called from the MAIN

program for the following purposes: 1) to find the total forces of

the stee] members, 2) to compute the energies, ductilities, and
excursions, 3) to compute the inelastic spring stiffness and the total
forces of the reinforced concrete members, 4) to compute the percentage

of the. difference between the stiffness at the previous time-step and
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the current stiffness and then to compare the percentage with the
tolerance, 5) to search for maximum forces and maximum displacements.
6) to print out energies, member forces, lateral and rotational
displacements, velocities, and accelerations, 7) to print out duc-
tilities and excursions, 8) to write the data on the disc for plotting,
and 9) to print out the maximum forces of the individual members and
the maximum displacements of the structure.

This subroutine is called only if the incremental forces of the
steel members can be added to the previous forces. That is, the
checks in the subroutine FORCES have been passed.

The calculations for the internal forces of the reinforced
concrete members have already been discussed in step 7 of the numerical
procedures.

20. Subroutine INECOF. This subroutine is called from the

subroutines FORM and RESULT to formulate the stiffness coefficients
of the steel members in local coordinates. This subroutine is called
four times for 1) the coefficient parameters (Eq. 3.26) at end-i,

2) the coefficient parameters (Eg. 3.26) at end-j and the flexural
stiffness at both ends, 3) the axial stiffness, and 4) the torsional
stiffness.

21. Subroutine INTRCT. This subroutine is called from the

subroutines FORM and RESULT to find the reduced plastic moment capa-
cities in the major and minor axes of the steel members.

22. Subroutine SHRWL1. This subroutine is called from the

subroutines FORM and RESULT to formulate the stiffnesses of the con-

crete members. The flexibility coefficients of the elastic member



elements are first added to the flexibility coefficients of inelastic
springs from which the inverse becomes the stiffness coefficients of

the member.
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VII. NUMERICAL EXAMPLES AND RESPONSE STUDIES

The influence of multicomponent ground motions on structural
response behavior is illustrated here by several numerical examples
of elastic and inelastic building systems. Because elastic design
philosophy is commonly used in engineering practice,so it is beljeved
that the éna]yticaT results of member forces and transverse and
rotational structural movements of various types of low- and high-
rise buildings are essential to engineering planners and structural
designers. The effects of interacting ground motions on the service-
ability and ultimate capacity of different high-rise buildings are
observed by studying the ductilities, excursions, energy absorptions,
nodal displacements, and the constitutive relationships between the

forces and their associated deformations.

A. ELASTIC SYSTEMS

When a three-dimensional building is subjected to the interaction
of three ground motion components, its response behavior may possibly
be affected by the following factors: 1) symmetric condition of the
structural plane, 2) geometric condition of the structural elevation
in which one bay is higher than another, 3) cross sections of the
columns, which may be either singly symmetric or doubly symmetric,

4) influence of bracing members, and 5) the center of the floor mass
relative to the center of rigidity of columns at the floor. Thus,
the structures selected for the study have the following character-
istics: 1) symmetric plane and symmetric elevation, 2) symmetric
plane and unsymmetric elevation, 3) unsymmetric plane of L shape,

4) singly symmetric plane of T shape, and 5) symmetric rigidity but



unsymmetric mass of the floor. The structures may or may not have
bracing members, and the cross sections of the columns may or may
not be doubly symmetric.

Because it is well known that all earthquéke records have
distinct characteristics and are not alike, two earthquake motions,
E1 Centro 1940 (N-S, E-W, and vertical) and Taft 1952 (N69W, S21W,
and vertical), were used to analyze some of the structures. The
N-S component of the E1 Centro earthquake is chh stronger than the
E-W component, and the two horizontal components of the Taft earth-
quake have similar magnitudes. It is believed that the use of these
two types of earthquakes can show the influence of earthquake charac-
teristics on structural behavior.

The parameters selected for the study of the earthquake response
of the investigated structures are: the moment at the top or bottom
of a column bent in either an x- or y~direction and the axial force
of a column, the maximum displacements relative to the ground, and
the response history of some nodal displacements. These parameters
were chosen to show how the strength and stiffness of some typical
structural systems are affected by various ground motions. The
parameters were obtained from the following considerations: 1) one
horizontal earthquake motion only, 2) two horizontal components
of ground acceleration, 3) one horizontal component with the P-A
effect resulting from dead Toad, 4) two horizontal earthquake com-
ponents with the P-A effect of dead load, and 5) two horizontal
components and one vertical with the P-A effect resulting from both
dead load and vertical ground motion. When the internal forces are

compared for the five cases, the locations of these forces in a
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member must be consistent for all the cases. It is believed that these
five cases can clearly demonstrate how individual earthquake components
influence the structural response and that the P-A effect resulting
from the dead Toad and vertical ground motion can be studied separately
for the purposes of showing how the significant second-order moments
are induced by these two forces.

1. Low-Rise Structural Systems. The low-rise structures were

analyzed in Examples 1-12 of which the four types of structural
systems shown 1nvFigs. 36-39 were used. The cross’sections of columns
of these systems can be either singly symmetric or doubly symmetric

as given in Figs., 40 and 41. For the examples, the floor mass is

2.5 k-secz/ft (3720.41 kg—sz/m) and the moduli of elasticity are
30,000 ksi (20,684 kN/cm2) and 3,000 ksi (2068 kN/cm2) of steel and
concrete respectively.

Two-story, Unbraced, Symmetric Building with Singly Symmetric

Columns~--Example 1.,--The unbraced structure shown in Fig. 36 has

singly symmetric columns (Fig. 40) and is oriented in the E-W direc-
tion of the structural plane. It was analyzed by applying the first
five seconds of the E1 Centro, 1940, earthquake record. During this
period, the N-S earthquake component acted along the N-S plane of

the structure and the time interval, At, was 0.01 sec. The effect

of the interaction of the three earthquake components on the undamped
response was investigated by considering a) the N-S Component only,
b) the N-S and E-W components, c¢) the N-S component with the P-A
effect of dead load, d) the N-S and E-W components with the P-A
effect of dead load, and e) the N-S, E-W, and vertical components

with the P-A effect of both dead load and accelerations resulting
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from the vertical earthquakes. The response parameters of the axial
forces and the moments acting in both the N-S and E-W planes are
given in Table Il for a typical member, column 1. The table is

to be found in Appendix B. The numerical results reveal that

1) the interaction of the earthquake components significantly increases
the axial froces, and the increase becomes greater on the upper
floor, and 2) the E-W earthquake component adds a considerable amount
of momehts to the E-W structural plane in which there are no moments
when the N-S component acts alone. The comparison of the moments

of a member is based on the moments at the same member-end either

at the top or at the bottom.

Two-Story, Braced Building with Symmetric Plane and Singly

Symmetric Columns-Example 2.--The braced system with singly symmetric

columns that is shown in Fig. 37 was analyzed under the same condi-
tions as those described in Example 1. Table II includes the inter-
nal forces of co1umns 1 and 2, which are affected more by coupling
ground motions than the other members. Because of the bracing resis-
tance, this structure is quite sensitive to the interaction of earth-
quake movements. The application of the N-S component alone can
cause moments about both major and minor axes of a member. The
increase of axial forces is similar to that in Example 1.

Two-~Story, Unbraced Building with Unsymmetric Elevation and

Singly Symmetric Columns-Example 3.--The unbraced system shown in

Fig. 38 has a symmetric plane, unsymmetric elevation, and singly
symmetric columns. It was analyzed with the loading cases given
in Example 1. From Table II, one may conclude that the axial forces

of the interior column, 3, and the exterior column, 5, are
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significantly increased because of the vertical ground motions.
The N-S component does not induce any moment in the E-W plane; even
the structure has an unsymmetric elevation.

Two-Story, Unbraced Building with Unsymmetric Plane and Singly

Symmetric Columns-Example 4.-~The unbraced system shown in Fig., 39

has an unsymmetric plane of L shape and singly symmetric columns.

It was studied with the loading case as in the previous examples.
The results included in Table II indicate that the increase of the
axial forces of the 1nterior corner column, 4, is greater than that
of the exterior column, 1. The unsymmetric plane causes some moment
in the E-W plane when the N-S earthquake component is applied.

Two-Story, Unbraced, Symmetric Building with Doubly Symmetric

Columns-Example 5.--The structure used in this example is the same

as the one used in Example 1 except that the columns are doubly
symmetric (Fig. 41). As shown in Table II, the moments remain
almost the same for the five loading cases; however, the axial
force of‘case (e) is about two times greater than that of case (a).

Two-Story, Braced Building with Symmetric Plane and Doubly

Symmetric Cb]umns—Examp]e 6.--This analysis is based on the doubly

symmetric éolumns used in the braced structure given in Example 2.
The axial forces and moments of columns 1 and 2 are tabulated in
Table II from which one may find that the structure used in Example
2 is influenced more by coupled earthquakes than this system.

Two-Story, Unbraced Building with Unsymmetric Elevation and

Doubly Symmetric Columns-Example 7.--In this example, the structure

used in Example 3 was analysed for doubly symmetric columns. By

observing Table II, one can find that the behavior of the axial



130

forces is similar to that of Example 3, and the moments are slightly
Tess than in that system. The moments of case (a) act in both of

the N-S and E-W planes, which means that the system with an unsymmetric
elevation and doubly symmetric columns is more sensitive to coupling
motions than one that has singly symmetric columns.

Two=Story, Unbraced Bui1ding with Unsymmetric Plane and Doubly

Symmetric Columns-Example 8.--The analysis of this example is based

on the structure of Example 4 and the doubly symmetric columns.

The response behaviors of both systems shown in Table II are similar
except that the axial forces in Example 4 are more sensitive to
vertical ground accelerations.

Comparative Studies of Example 7 for the Earthquakes of Taft

1952 and E1 Centro 1940-Example 9.--The structure given in Example 7

was analyzed with the three components of the Taft, 1952, earthquake
whose N69W component was applied along the N-S plane of the structure.
The undamped response included 10 seconds of the earthquake record
for which the time interval, At, was 0.01 sec. The axial forces

and the moments of loading cases, (c), (d), and (e) are shown in
Table II1. The solution of Example 7 as based on the E1 Centro
earthquake 1is given in parentheses. The influence of the Taft earth-
quake components on the internal forces is similar to that of the

E1 Centro earthquake. The E1 Centro earthquake induced a larger
magnitude of internal forcés.

Comparative Studies of Example 1 for the Effect of Floor Rigidity

on Response Behavior-Example 10.-~The structure used in Example 1

was analyzed as a space frame for which no floor slab had been con-

sidered, and each of the structural nodes had six degrees of freedom.
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The N-S component of the ET Centro earthquake was applied along the
E-W plane of the structure. The axial forces and moments, expressed
in terms of either loading case (a) or (b), are shown in Table IV.
The internal forces are slightly more sensitive to coupling ground
motions than those of building systems.

Comparative Studies of Example 5 for the Effect of Floor Rigidity

on Response Behavior-Example 11.--In this example, the structure

used in Example 5 was analyzed as a space frame with the Toading
conditions given in that example. Tables Il and IV reveal that
the interaction of the earthquake components influences this space
frame éystem more than the building system.

Comparative Studies of Example 6 for the Effect of Floor Rigidity

on Response Behavior-Example 12.--In this example, the braced building

system of Example 6 was analyzed as a space frame. The results
are given in Table IV. The axial forces and the moments in the
N-S plane are significantly affected by the interaction of the earth-
guake components (N-S component was applied in the E-W direction
of the plane), and the influence is greater in this example than it
is in Example 6.

Problems 10, 11, and 12 were analyzed by using a different
computer program for space frames.

2. High-Rise Building Systems. Some typical building systems

have been studied in Example 13 for which the structural properties
are given in the accompanying figures. The moduli for the elasticity
of steel and concrete are 30,000 ksi (20,684 kN/cmz) and 3000 ksi
(2068 kN/cmZ) respectively. As in the case of the low-rise building

studies, the parameters selected for the study of the earthquake
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résponse are the maximum moments and axial forces of columns and
shear walls and the maximum axial forces of the bracing members.
The displacement responses were plotted for some structures. The
response parameters were obtained for the following three cases:

c) one horizontal component with the P-A effect resulting from dead
Toad, d) two horizontal earthquake components with the P-A effect
of the dead load, and e) two horizontal components aﬁd one vertical
with the P-A effect resulting from both the dead load and vertical
ground motion. A1l the structures were analyzed by using the seven
seconds of the E1'Centro, 1940, earthquake records whbse N-S com-
ponents were applied along the N-S direction of the structural plane.

Ten-Story Reinforced Concrete Building with Symmetric Plane-

Example 13.--The ten-story reinforced concrete rigid frame shown in
Fig. 42 was analyzed for the three loading cases of (c), (d), and
(e). The compafisons of the internal forces are shown in Figs. 43-
51. The moments of a column were selected at the top of the member
for which the comparisons of the moments were referred to the same
location and the same direction. The ratio, d/c, indicates how the
E-W component affé;ts the response behavior, e/d shows the increase
caused by the vertical ground motion, and e/c signifies the influence
of both the E-W and vertical components. In Figs. 43-48 1in which

the axial forces are compared, one can observe that the E-W component
has more effect on the exterior columns (1 and 2) than on the interior
columns and that the vertical component strongly affects the interior
columns (3 and 4). The E-W component and the E-W component combined
with the vertical can increase the column axial forces (resulting

from the N-S component and P-A(DL) by 2.2 and 3.3 times, as shown
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in Figs. 43 and 44 respectively. Figures 49-51 reveal that the
vertical component is sensitive to the exterior column moments,
which can be increased by 30 percent over the results obtained

by considering the N-S and E-W components only. The coupling
'earthquake motions increase both the axial forces and moments more
on the top columns than on the lower columns of a system,

Figures 43-51 illustrate only the qualitative differences of
the internal forces, which are expressed in terms of ratios corres-
ponding to the three cases. The substantial values of the moments
and axial forces can be found in Tab]e V in Appendix B. For sim-
plicity, only the internal forces at the tops of the columns are
shown in the table. |

Ten-Story Reinforced Concrete Building with Shear Panels and

Symmetric P]ane—Exa@p]e 14.-~The structure for Example 14 shown

in Figs. 52 and 53 has shear panels identified as 9 and 10. These
are placed at the east and west sides of the building. The maximum
ratios of the axial forces of all the columns at each floor are
plotted in Figs. 54 and 55. Comparisons of the forces for the
individual columns are illustrated in Figs. 56-60. Similarly, the
maximum ratios of the moments and detailed comparisons are given

in Figs. 61-65.

By observing Figs. 54 and 55, one can see that a vertical earth-
quake component can increase the axial forces of the interior columns
of 3 and 5 by 280 percent. The axial force of the shear panel is
increased by 40 percent as a result of the vertical component as
revealed in Fig. 60. The E-W component does not noticeably influence

the column moments; however, the vertical motion can affect the
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moments of the exterior columns for which the increase may be as
high as 30 percent (Figs. 62-65).

Tﬁe numerical values of the axial forces and the moments at
the tops of individual columns are tabulated in Table VI of
Appendix B.

Ten-Story Braced Steel Building with Symmetric Plane and Doubly

Symmetric Columns-Example 15.--The example for the ten-story braced

steel building has the structural properties shown in Fig. 66. The
columns are made of double wide flanges. These are identified as
system I in the accompanying figure (a). The éingle wide flange
co]uhns (system II) shown in the figure are used for the next example.
The effect of the interacting earthquake components on the bracing
members and columns can be studied from Figs. 67-84 as well as from
Table VII of Appendix B.

The maximum ratios of the axial forces, d/c and e/c, of the
bracing members are shown in Figs. 67 and 72. The inclusion of
the E-W component and the vertical component can increase the axial
forces by 30 percent over the results occasioned by the N-S com-
ponent and the P-A effect of dead load. The effect of the individual
components on the changes of the axial forces can be found from
Figs. 68 vs. 71 and 69 vs. 72. The numerical values of the forces
are tabulated in Table VII of Appendix B in which the positive and
negative signs of the axial forces of only the bracing members are
included. The table reveals that the inclusion of an additional
edrthquake component can change a tensile force to be a compression.
The comparisons shown in the figures are based on the absolute

magnitude.
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The maximum ratios, d/c and e/c, of the axial forces of the
columns are sketched in Figs. 73 and 74. The inclusion of the E-W
component can increase the axial forces on the first and 10th floor
columns about 35 percent but decreases the axial forces at the 6th
floor (Fig. 73). The vertical component can definitely increase
the axial forces for all floors about 2.5 times over the axial forces
(Fig. 74). The increase of five times for column 3 and the top
floor (Fig. 74) should not be regarded.as a severe case, because

the actual numbers are very small, as 13 and 74 show in Table VII.

145

The maximum ratios of the moments, d/c, are illustrated in Figs. 79

and 82. The maximum increase is about 80 percent, but for the most part

it is in the neighborhood of 20 percent. The increase in the moments is

mainly influenced by the E-W component. The effect of the vertical
component on the moments is negligible as shown in Table VII.

The disp]écements in the x- and y-directions at\the 10th floor
are shown in Figs. 85 and 86 respectively. In these figures, one
can observe that the E-W component of case (d) can remarkably in-
crease the displacements associated with case (c). However, the
vertical component does not cause any significant change in the
displacements as shown in case (e). A similar displacement behavior
is found for the Tower floors, such as the displacements in the
x- and y-directions at the 6th floor that are shown in Figs. 87
and 88.

Ten-Story Braced Steel Building with Symmetric P]ane and Singly

Symmetric Columns-Example 16.--This example is identical to Example

15 except that the columns are singly symmetric as shown in Fig. 66(a)

of system (I1). The effects of the interacting ground motions on
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the axial forces of the bracing members are illustrated in Figs. 89-
93, and the effects on the axial forces of the columns are sketched
in Figs. 94-99. The comparative studies of the moments are graphi-
cally shown in Figs. 100-105. The numerical values of the internal
forces are given in Table VIII in Appendix B. As shown in all the
other tab]eé, the positive and negative signs are given only for
bracing members. Other comparisons are based on the absolute values.
By comparing Example 16 with 15, one can find that the E-W
component and fhe vertica] component can significantly increase
the axial forces of the bracing members (Figs. 67 vs. 70 and 89 vs.
91) for which the increase is about 30 percent for system (I) but
nearly 250 percent for system (II). Both the E-W and the vertical
component can also significantly increase the axial forces of the
columns (Figs. 73, 74, 94, and 95) for which the increase resulting
from the E-W component combined with the vertical motion is 250
percent for éystem (I) and nearly seven times for system (II)
(Figs. 74 and 95). The moments of the columns of case {(d) over
case (c) can be increased about 20 percent for system (I) and nearly
200 percent for system (II) (Figs. 79 and 103). In the above com-
parisons, extremely high ratios are not used, because the numbers
for the ratios are relatively small and cannot be considered
significant. |
The displacements in the x- and y-directions at the top floor
and those at the 6th floor are shown in Figs. 106-109 respectively.
As in the previous example, the displacements for cases (d) and
(e) are almost the same. They are, however, greater than those

for case (c).
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Ten-Story Unbraced Reinforced Concrete Building with a T-Shape

Plane-Example 17.--The T-shaped, ten-story, unbraced structure

shown in Fig. 110 was analyzed without damping for the first seven
seconds of the E1 Centro, 1940, earthquake and the first 10 seconds
of the Taft, 1952, earthquake. The N-S component of the ET Centro
and the N69W component of the Taft earthquake were applied in the
direction of the N-S plane of the system. Comparisons of the re-
sponse parameters corresponding to the E1 Centro and Taft earth-
quakes are shown in Figs. 111-122 and Figs. 123-134 respectively.
Figures 111-113 show that the axial forces of the interior columns,
4 and 7, are significantly influenced by coupling earthquake move-
ments fn the amount of d/c and e/c, which are nearly 1.4 and 25
respectively. However, the actual axial forces of these two columns,
which correspond to cases (c) and (d), are relatively small in
comparisons with the same cases associated with the exterior corner
columns. The axial forces are gradually amplified from the ground
floor to the top as indicated in Figs. 111-113. The ratios used

in the figures are for the purposes that d/c reveals the effect of
one additional horizontal earthquake component on the response,

e/c measures the influence of the addition of one horizontal and
one vertical component, and e/d signifies the influence of the
addition of the vertical ground movement. The moments in the N-S
and E-W planes shown in Figs. 117-122 indicate that the interaction
of the earthquake components increases the moments more in the E-W
plane than those in the N-S plane and that the increase becomeé
larger for the upper floors. The S21W component of the Taft earth-

quake has more influence on the axial force than the E-W component
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Top of Col. 4;
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of the E1 Centro (Figs. 111 vs. 123). However, the vertical com-
ponent of the Taft earthquake has less effect on the axial forces
than that of the E1 Centro (Figs. 112 vs. 124). The influence of
the Taft earthquake on the moments is not as distinct as that of
the E1 Centro (Figs. 117-122 vs. 129-134).

The substantial values of the axial forces and bending moments
for both the E1 Centro 1940 and Taft 1952 earthquakes are given in
Table IX of Appendix B.

The displacement in the x-direction (the origin of the reference
coordinates at col. 1) at the top floor is shown in Fig. 135. In
this case, the displacements corresponding to the loading case (c)
are very .small and those associated with cases (d) and (e) are almost
identical. The displacements in the y-direction at the same floor
are essentially the same for all the three loading cases as shown
in Fig. 136 in which the magnitude is greater than that in Fig. 135.
The displacements of both the x- and y-directions at the sixth
floor are shown in Fig. 137. In this case, the behavior is similar
to that at the 10th floor. The vertical displacements of columns 1,
3, and 4 are shown in Figs. 138-141. The two exterior corner-
columns of 1 and 3 have a similar response behavior. The interior
corner-column identified as 4 has smaller displacements for cases
(c) and (d) but larger displacements for case (e) in comparison
with the respective cases of columns 1 and 3. For the purpose of
observing the significance of the relative vertical displacements,
the vertical displacement at the base of column 4 is given in Fig. 141,

which reveals a similar behavior of other columns at the base.
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Six-Story Unbraced Setback Steel Building-Example 18.--The

setback steel building is shown in Fig. 142. In this case, the
time interval of At = 0.005 sec. is used in a step-by-step integra-
tion analysis. This example is devised to show how the interacting
ground motion influences the response behavior of the disp]acements
of this system, which has an unsymmetric elevation. The displace-
ments in the x-direction at the origin of the reference coordinates
(at column 1) for loading cases (c), (d), and (e) are shown in Fig.
143, which reveals that the inclusion of the E-W and the vertical
components does not affect the displacements in x-direction. The
displacements in the y-direction corresponding to loading case (c)
(Fig. 144) are very small, and those associated with cases (d) and
(e) are almost the same and are greater than those in the x-direction
_ vesulting from cases (d) and (e). It is apparent that the N-S earth-
quake component acting along the x-direction does induce some move-
ments in the E-W Plane. The interacting ground motions do not influ-
ence the rotation at the mass center of either the top floor (6th)
or the lTower floor (2nd) for which qualitative comparisons are
shown in Fig. 145. The vertical displacements of the two typical
columns of 1 and 3 are shown in Figs. 146 and 147 respectively.
The displacements do not have significant differences between (c)
and (d) and are similar for both columns. However, the displace-
ments for case (e) of the interior column, 3, are greater than that
of the exterior column, 1.

Because the effects of the interacting ground motions on the
internal forces are similar to the previously cited examples, they

are not tabulated.
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Eight-Story Unbraced Steel Building with an L-Shape Plane-

Example 19.--This example, which is shown in Fig. 148, is used to
study the effect of the unsymmetky of the mass center and the effect
of the floor rigidity on the response behavior of the structural
displacements. For the structural plane, the mass center is at
point "A". The forsiona] masses are 62,111.8 k-in-sec2 (715,604
kg—m-sz) for the first and second floor, 55,900.62 k—in—sec2
(644,044 kg—m—sz) for the third through fifth floor, and 49,689.44
k-in—sec2 (572,483 kgem-sz) for the sixth through eighth floor.
The maéses associated with the axial displacements of.co1umns are
distributed according to the dashed lines shown for the floor
masses in the figure. The N-S component of the E1 Centro 1940
earthquake acts along the N-S direction of the structural plane.
The time interval of At = 0.005 sec is used in the step-by-step
integration technique.

The displacements in the x-direction of column 1 (the reference
point) are shown in Fig. 149 in which the displacements of cases (d)
and (e) are almost the same but are somewhat larger than those of
case (c). The displacements of (d) and (e) in the y~-direction of
Fig. 150 are much larger than the displacements of case (c) but
much less than those of (d) and (e) in the x-direction of Fig. 149.
The torsional rotations at column, 1, of the eighth floor are
plotted in Fig. 151, which reveals that the rotations correspond-
ing to (d) and (e) are almost identical but less than those of
case (c). It is apparent that the two coupling horizontal
earthquake comporients can counterbalance the torsional motion.

The vertical displacements of this structure are plotted in Fig. 152
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for the interior corner column, 4. The displacements are different
for the three cases of (c), (d), and (e) for which the behavior is
somewhat different from that of the previous examples.

Ten-Story Unbraced Steel Building with (A) the Mass at the

Center of the Floor Plane and (B) the Mass Off the Center of the

Floor Plane-Example 20.--The structure shown in Fig. 153 is to be

used to study the effeet of the mass center on structural displace-
ments. As shown in the figure, the center of rigidity is at the
center of the floor. However, the mass center is considered for

two conditions: A) the mass at point, C, at the center of the floor
and B) the mass at C', a fourth of the distance from column 4 along
the diagonal to co]umn.l. For condition A, the lumped mass on

each of the four columns of a floor is one-fourth of that floor

mass. However, the Tumped masses for condition B must be distributed
according to the distances from the columns to the mass center,

The masses at the 10th floor are determined as 0.03688 k—secz/in
(658.602 kg-sz/m), 0.09435 k—sec2/1n (1,684.898 kg-sz/m); 0.06864
k-sec?/in (1,225.770 kg-s2/m), and 0.11068 k-sec2/in (1,976.519
kg—sz/m) for columns 1, 2, 3, and 4 respectively. The masses of

each of these four columns at any other floor can be determined
because they are proportional to the masses of each of the columns

of that floor. The torsional masses for condition A are 6,055.90
k-in-sec® (69,771 kg-m-s2) for floors 1, 2, and 3; 5,450.31 k-in-sec?
(62,794 kg-m-s2) for floors, 4, 5, and 6; and 4,844.72 k-in-sec’
(55,817 kg—m—sz) for floors 7, 8, 9, and 10. The torsional masses
for condition B, based on the mass center C, are 10,597.83 k—in-sec2

(122,100 kg—m-sz) for floors 1, 2, and 3; 9,538.04 k-in-sec2
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(109,890 kg-m-s°) for floors 4, 5, and 6; and 8,479.26 k-in-sec?
(97,691 kg-m-s%) for floors 7, 8, 9, and 10.

The comparisons of the displacements for both conditions in
the x-direction at the top f]oor are shown in Fig. 154, which indi-
cates that condition A yields the same displacements for cases
(c), (d), and (e), whereas condition B yields the same displace-
ments for (d) and (e) but Tess displacements for (c). The dis-
placements associated with condition A are much higher than those
associated with condition B.

Comparisons of the displacements in the y-direction for both
conditions of A and B are shown in Fig. 155. Condition A induces
negligible displacements for case (c) but significant and identical
displacements for (d) and (e). Condition B yields significant
displacements of case (c) and identical displacements for (d) and

(e) which, however, are less than those of condition A.

The torsional rotations at the top floor are shown in Fig. 156.

The torsional angles associated with condition A are very small for

cases (c), (d), and (e). However, condition B yields torsional angles

for case (c) that are less than the identical angles for (d) and (e).

The vertical displacements for both conditions, A and B, of

column 2 at the top floor are shown in Figs. 157 and 158 respectively.

The behavior of both conditions is similar, but the results of (c)
are less than those of (d), which are less than the displacements

of case (e).
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B. INELASTIC SYSTEMS

The effects of multicomponent earthquake motions on elastic
systems were discussed in Examplies 1 through 20 in Section A. The
inelastic response behavior resulting from interacting ground
motions is examined in this section for Examples 21 through 26.

The response parameters of interest are 1) the transverse, vertical,
and torsional movements, ¢) the internal moments and rotations of
members, 3) the energy absorption characteristics associated with
seismic input energy and dissipated energy, 4) the ductility factors
and excursion ratios of individual members, and 5) the comparison

of response behavior for different earthquakes and plastic models.
These parameters are studied for three loading cases as follows:

(c) one horizontal component with the P-A effect resulting from dead
Toad, (d) two horizontal components with the P-A effect of dead load,
and (e) two horizontal components and one vertical with the P-A
effect resulting from both dead load and vertical ground motion.
These three cases, which were used in the elastic studies, show that
they can be used to demonstrate clearly how individual earthquakes
influence structural response. The strucfures to be studied are

so designed that plastic hinges may possibly develop at any of the
structural joints; thus, the effect of interacting ground motions

on the response behavior can be observed for all the constituent
members. The earthquake records are properly scaled, if necessary,
so that the structures are deformed to a plastic state under earth-
quake excitations. The entire duration of the earthquake records
was not included in the analyses, because the magnitudes of the

Tatter portions are usually very small. A36 steel was used for



all the examples investigated. The moduli of the steel and con-

crete are 29,000 ksi (2039 kgf/cmz) and 4000 ksi (281.24 kgf/cmz)
respectively. The yielding surfaces are based on the strength of
the short columns.

Ten-Story Unbraced Steel Building with the Mass at the Center

of the Floor Plane--Example 21.--This structure is the same as the

one shown in Fig. 153. The example is discussed for the purposes
of 1) comparing the ductility factors and excursion ratios, which
were obtained by using the definition of rotation, with those
obtained by using the definition of hybrid energy and 2) comparing
the response behavior of this example, which has a plane with sym-

metric rigidity and a symmetric mass center, with that of the next

example, which has symmetric rigidity but an unsymmetric mass center.

The N-S and E-W components of the ET Centro 1940 earthquake are
applied respectively in the x- and y-directions of the structural
plane. The scaie of all three components is increased by 1.5. In
order to have a minimum error in the energy balance between the
total input energy and the total output energy, the step-by-step
integration method is employed for which the time interval, At, is
0.005 sec. This is an undamped analysis for which a=1, r=20, and
the allowable tolerance of the difference between the current and
the previous stiffness at each time interval is three percent for
reformulating the structural stiffness matrix. At the end of the
five second earthquake input, the error in the energy balance, that
is the ratios of the difference between the total input energy and
the total output energy to the total input energy, are -0.0008,,
-0.0012, and -0.0035 percent. These percentages correspond to cases

(c), (d), and (e) respectively.
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The transverse displacements at the origin of the reference
coordinates in the x- and y-directions at the top floor are shown
in Figs. 159 and 160. The N-S earthquake component of case (c)
induces more permanent deformation in the x-direction than it does
for cases (d) and (e), but it does not induce any noticeable dis-
placement in the y-direction. The vertical component can only
slightly affect the transverse displacements, as shown in case (e).

The total input energy and the total dissipated energy are
plotted in Fig. 161. The ratios of the input energy to the dissi-
pated energy at the end of the applied earthquake duration that
are used as a measurement of the energy absorption are 1.33, 1.28,
and 1.33 for the cases of (c), (d), and (e) respectively. The
ratios of the total input energy of cases (d) and (e) to that of
case (c) are 1.35 and 1.41 respectively.

The maximum ductility factors of the columns at each floor in
both the x- and y-directions of the structural plane are plotted
in Figs. 162 through 165. Figures 162 and 164 are based on the
definition of rotation, whereas Figs. 163 and 165 are based on
hybrid energy. The figures reveal that the coupling earthquake com-
ponents can definitely increase the ductility demand for which the
significant 1ncréases are at the seventh floor and the top floor
in the x-direction and at the sixth floor and the top floor in the
y~-direction. These maximum ductilities are associated with the
bending about the major axes of individual columns. The N-S com-
ponent acting alone requires no ductilities in the y—directidn but
much Tess ductilities in the x-direction than those resulting from

either two components or three components. The ductilities based
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Fig. 162. Max. Ductility Factors in X-Direction of Columns of Exanple

21 Based on Rotation.
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Fig. 163. Max. Ductility Factors in X-Direction of Columns of Example

21 Based on Hybrid Energy.
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Fig. 164. Max. Ductility Factors in Y-Direction of Columns of

Example 21 Based on Rotation.
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Fig. 165. Max. Ductility Factors in Y-Direction of Columns of

Example 21 Based on Hybrid Energy.
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on the rotation are much greater than those based on hybrid
energy.

The Maximum ductility factors of beams in the x- and y-
directions are shown in Figs. 166 and 167. The ductilities are
much greater at the lower floor levels. Inclusion of one additional
horizontal component and a vertical component affects the ductili-
ties more in the y-direction than in the x-direction.

Ten-Story Unbraced Steel Building with the Mass Off the Center

of the Floor Plane--Example 22--This structure is the same as the

one shown in Fig. 153, but the mass center is at C' in the struc-
tural plane. The loading conditions and other analytical parameters
are identical to those uséd in Example 21, except that the time
interval, At, is 0.0025 sec. - At the end of an earthquake input
with a five-second duration, the errors of the energy balance are
-0.0003, -0.0003, and -0.0031 pércent for the three loading cases
of (c¢), (d), and (e) respectively.

The displacements in the x- and y-directions at the origin
of the reference coordinates at the top floor are shown in
Figs. 168 and 169. 1In comparing this example with the previous
one, the displacement in the x-direction of case (c) is less than
that for the same case in the previous example; however, the dis-
p]acement in the y-direction is much greater in this example. The
displacements in both the x- and y-directions of cases (d) and (e)
are also larger in this example. The effect of interacting ground
motions on the torsional displacement at the origin of the refer-
ence coordinates at the top floor is shown in Fig. 170. As shown

in the figure, inclusion of one additional horizontal component
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Fig. 166. Max. Ductility Factors in X-Direction of Beams of

Example 21 Based on Rotation.
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Fig. 167. Max. Ductility Factors in Y-Direction of Beams of

Example 21 Based on Rotation.
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and one vertical component to increases the rotation in the nega-
tive direction. The axial displacement of column 1 at the top floor
of Fig. 171 shows that the displacement of case (e) is about three
times that of case (c).

A comparison of the total input energy and the dissipated energy
is shown in Fig. 172. 1In this figure the ratios of the input energy
to the dissipated energy at the end of the applied earthquake are
1.34, 1.36, and 1.51 for cases (c), (d), and (e) respectively. The
input energies of cases (d) and (e) are respectively about 1.45 and
1.64 times greater than that of case (c).

The maximum ductility factors and the maximum excursion ratios
of the columns in both the x- and y-directions are shown in Figs. 173
through 176. The loading cases (d) and (e) require more ductilities
than the loading case (c), and the ductilities are more in demand
for all three cases at the eighth floor and the top floor than at
any of the other floors. All the ductilities are associated with
the bending about the major axes of the individual columns.

Ten-Story Braced Steel Building with Unsymmetric Rigidity and

the Mass at the Center of the Floor Plane--Example 23--This struc-

ture for which the N-S component of the El Centro 1940 earthquake
is applied in the N-S direction of the structural plane is sketched
in Fig. 177. The magnitude of all three components of the earth-
quake is increased by 2.5, and the step-by-step integration method
is used with the time interval of 0.005 sec. The structure is ana-
lyzed with a=1 and r=20 and with three percent of the allowable
tolerance in the differential stiffness coefficients and five

percent damping expressed in both the mass and stiffness (o = 0.2732
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Fig. 173. Max. Ductility Factors in X-Direction of Columns of

Example 22.
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Fig. 174. Max. Excursion Ratios in X-Direction of Columns

of Example 22.
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Fig. 176. Max. Excursion Ratios in Y-Direction of Columns of

Example 22.
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and g = 0.00915. - At the end of the five-second duration of the
earthquake input, the errors in the energy balance are -0.0519,
0.2387, and 0.2222 percent for cases (c), (d), and (e)
respectively.

The displacements in the x- and y-directions and the torsional
movement at the origin of the reference coordinates of the top floor
are shown in Figs. 178 through 180. Because of the structure's
unsymmetric rigidity, the N-S component acting alone in the x-direction
can induce a considerable amount of displacement in the y-direction.
The torsional motion of this system is quite sensitive to interacting
ground motions and presents some significant permanent deformation
for all the three loading cases. The axial displacement of column 3
at the top floor is shown in Fig. 181. The displacement is not
influenced by the vertical ground motion as much as that of the
column in the unbraced systems. A comparison of the total input
energy, the total dissipated energy, and the energy dissipated by
damping is given in Fig. 182 from which one may observe that the
ratios of the total input energy to the total dissipated energy
at the end of the earthquake application-are 1.33, 1.28, and 1.27
for the cases (c), (d), and (e) respectively. The input energies of
cases (d) and (e) are respectively about 1.28 and 1.40 times greater
than that of case (c).

The ductility factors and excursion ratios of the columns and
beams are given in Figs. 183 through 188. The effect of the inter-
acting ground motions on the ductﬁ]ities of the braced systems is
not as distinct as that on unbraced buildings. However, the.co]umns

require more ductilities for the first floor than for the other floors;
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Fig. 183. Max. Ductility Factors in X-Direction of Columns of

Example 23.



Fig. 184. Max. Excursion Ratios in X-Direction of Columns

of Example 23.
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Fig. 185. Max. Ductility Factors in Y-Direction of Columns of

Example 23.
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Fig. 186. Max. Excursion Ratios in Y-Direction of Columns of

Example 23.
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Fig. 187. Max. Ductility Factors in X-Direction of Beams of

Example 23.
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Fig. 188. Max. Excursion Ratios in Y-Direction of Beams of

Example 23.



the beams demand more ductilities for the second floor. The moment-
rotation reiationship for both the major and minor axes of column 1
at the base are plotted in Figs. 189 through 194 from which the
effect of the 1nterécting ground motions on the moments can be
observed.

Eight-Story Unbraced Steel Building with L-Shape Plane for

(A) Five Percent Damping and r=20, (B) Five Percent Damping and

r=80, and (C) Undamped and r=20--Example 24--This structure is shown

in Fig. 148, which was used in Example 19. This example serves as
a comparative study for considering the structure as A) an inelastic
system with a=1, r=20, and five percent damping in combination with
the mass and stiffness (a = 0.4305 and 8 = 0.00581), B) an elasto-
p]ast1§ system with a=1, r=80, and five percent damping in terms
of the mass and stiffness (o = 0.4305 and 8 = 0.00581), and
C) an inelastic undamped system with a=1 and r=20. For all three
systems, the first five-second duration of the El.Centro 1940 earth-
quake is used. The scale for this is dne, and the N-S component
is applied in the N-S direction of the structural plane. The step-
by-step integration method is employed with a time interval of 0.005
sec. The allowable tolerance in the differential stiffness coeffi-
cients 1s_three percent. At the end of the earthquake duration,
the errors in energy balance for loading cases (c), (d), and (e)
are respective]y equal to -0.0374, 0.0065, and 0.0194 percent of
system (A), 0.0119, -0.0089, and 0.0066 percent of system (B), and
-0.0015, -0.0004, and -0.0045 percent of system (C).

Figures 195 through 202 reveal the effect of strain hardening

(r=20 for system A and r=80 for system B) on the transverse,

229
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rotational, and vertical displacements at the origin of the refer-
ence coordinates of the top floor. For the same interacting ground
motions, the elasto-plastic system (r=80) yields larger displace-
ments than the inelastic system (r=20) as well as permanent defor-
mation. The vertical displacements, however, are not significantly
affected by the strain hardening.

Comparisons of the input energy and the dissipated energy of
these three systems are shown in Figs. 203 through 205. The energy
absorption characteristics may be numerically expressed in terms
of the ratio of the total dissipated energy. The ratios corres-
ponding to loading cases (c), (d), and (e) are respectively equal
to 1.50, 1.40, and 1.37 for system (A), 1.48, 1.54, and 1.62 for
system (B), and 1.50; 1.34, and 1.45 for system (C). The seismic
input energies of loading cases (d) and (e), expressed in terms
of the input energy of case (c), are respectively equal to 2.00
and 2.11 for system (A), 3.05 and 3.48 for system (B), and 2.24
and 2.22 for system (C). It is apparent that inclusion of the one
additional horizontal component and the vertical component is very
sensitive for the elasto-plastic system, which exhibits more input
_energy and dissipated energy than the other two systems. The increase
of the input and dissipated energy of the elasto-plastic system
becomes quite rapid at the end of the earthquake as shown in Fig. 204.

Comparisons of the maximum ductility factors and the maximum
excursion ratios of the columns in both the x- and y-directions
of the structural plane for systems (A), (B), and (C) are shown
in Figs. 206 through 217. A1l these ductilities and excursions

are based on the same definition of hybrid energy. Inclusion of
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Fig. 203. Input and Dissipated Energy of Example 24, System (A).
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Input and Dissipated Energy of Example 24, System (B).
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K x (max)
i L 1 . 1 L 1
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Fig. 206. Max. Ductility Factors in X-Direction

of Columns of Example 24, System (A).
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Fig. 207. Max. Ductility Factors in X-Direction of Columns of

Example 24, System (B).
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Fig. 208. Max. Ductility Factors in X-Direction of Columns of

Example 24, System (C).
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Fig. 209. Max. Excursion Ratios in X-Direction

of Columns of Example 24, System (A).
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Fig. 210. Max. Excursion Ratios in X-Direction of Columns of

Example 24, System (B).
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Fig. 211. Max. Excursion Ratios in X-Direction of Columns of

Example 24, System (C).
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Fig. 212. Max. Ductility Factors in Y-Direction of Columns

of Example 24, System (A).
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Fig. 213. Max. Ductility Factors in Y-Direction of Columns

of Example 24, System (B).
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Fig. 214. Max. Ductility Factors in Y-Direction of Columns

of Example 24, System (C).
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Fig. 215.
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Max. Excursion Ratios in Y-Direction of Columns of

Example 24, System (A).
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Fig. 216. Max. Excursion Ratios in Y-Direction of Columns of

Example 24, System (B).
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Fig. 217. Max. Excursion Ratios in Y-Direction of Columns of

Example 24, System (C).
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the E-W component and the vertical component significantly increases
the ductility demands for all three systems. The critical ductility
demands are at the upper floors between the fourth and the sixth.

As expected, the ductilities of the undamped system (C), are greater
than those of the damped system (A). However, the ductilities of
the elasto-plastic system (B) are much greater than thdse of the
inelastic systems (A) and (C). By observing the displacements and
ductilities, one may conclude that the elasto-plastic mode] is sen-
sitive to interacting ground motions and that it may be too conser-
vative a model for mu]ticomponent seismic analysis.

The ductility factors of the beams in both the x- and y-directions
of the structural plane are shown in Figs. 218 through 223 for the
three structural systems. The N-S component acting alone does not
demand any ductility in the y-direction but does demand a consider-
able amount of it in the x-direction. Inclusion of the E-W component
and the vertical component can significantly increase the ductilities
in the y-direction but only slightly in the x-direction. /

Eight-Story Unbraced Steel Building with L-Shape Plane for the

Taft 1952 Earthquake--Example 25--The structure shown in Fig. 148

is analyzed for the first five seconds of the Taft 1952 earthquéke.
The N69W component of this earthquake is applied in the N-S struc-
tural plane. The scale of the earthquake is one, and the other
parameters are a=1 and r=20 and five percent damping in combina-
tion with mass and stiffness (o = 0.4305 and g = 0.00581), three
percent of the allowable tolerance in differential stiffness coeffi-
cients, and At = 0.005 sec. in the step-by-step integration. At

the end of the earthquake, the errors in the energy balance are
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Fig. 218. Max. Ductility Factors in X-Direction of Beams of

Example 24, System (A).
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Fig. 219. Max. Ductility Factors in X-Direction of Beams of

Example 24, System (B).
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Fig. 220. Max. Ductility Factors in X-Direction of Beams of

Example 24, System (C).
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Fig. 221. Max. Ductility Factors in Y-Direction of Beams of

Example 24, System (A).
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Fig. 222. Max. Ductility Factors in Y-Direction of Beams of

Example 24, System (B).
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0.0064, 0.0819, and 0.1164 percent for Toading cases (c¢), (d), and
(e) respectively. '

The displacements in the transverse, rotationa], and vertical
directions at the origin of the reference coordinates are plotted
in Figs. 224 through 227 for the top floor. Inclusion of the addi-
tional horizontal component and the vertical component can slightly
affect the displacement in the x-direction but significantly influ-
ences the displacement in the y—direction‘as well as the torsional
and vertical displacements. The effect on the displacement response
resulting from the interacting Taft 1952 earthquake is similar to
that resulting from the E1 Centro 1940 earthquake, as shown in
Example 23. However, the magnitudes of the displacements are much
smaller fhan those in that example.

The characteristics of the energy absorption are shown in
Fig. 228 in which the total dissipated energy is due to the energy
dissipated by damping. No noticeable energy dissipated by the
inelastic strain can be observed, thus the ductility factors based
on the definition of hybrid energy are very small. - The ductility
factors and the excursion ratios shown in Figs. 229 through 234
are based on the definition of rotation. These serve to illustrate
that the Taft and E1 Centro earthquakes have similar influences on
the ductility demand, but the demand resulting from the Taft earth-
quake‘is much smaller.

The effects of interacting ground hotions on moment-rotation
relationships at the support of column 1 are shown in Figs. 235
through 240. By comparing Fig. 238 with 239, one may find that

the moment of case (d) is about three times greater than that of case (c).
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Fig. 228. 1Input and Qutput Energy of Example 25.
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Fig. 230. Max. Ductility Factors in Y-Direction

of Columns of Example 25.
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Fig. 231. Max. Excursion Ratios in X-Direction of Columns of

Example 25.
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Fig. 232. Max. Excursion Ratios in Y-Direction of Columns of

Example 25.
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Fig. 233. Max. Ductility Factors in
X-Direction of Beams of

Example 25.



278

) Hy (max)
ya 1
0 i 1.0 1.5

Fig. 234. Max. Ductility Factors in

Y-Direction of Beams of

Example 25.
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Eight-Story Building of L-Shape Plane with Steel Columns and

a Shear Wall--Example 26--This structure for which the floor masses

are the same as in Examples 24 and 25 is shown in Fig. 241. The
cross-sectional properties of the shear wall are that the yield
moment is 40,000 in-k (4520 kn-m), the moment of inertia about the
4 ( 4

major axis is 864,000 in" (0.3596 m'), and the effective Cross-

2 (0.4645 mz). The torsional moment of

sectional area is 720 fn
inertia and the moment of inertia about the minor axis are assumed
to be negligible. For the steel members, Tet a=1, r=20, and three
percent of the allowable tolerance are adopted in the differential
stiffness coefficients. The first five seconds of the E1 Centro
1940 eartthake are used with the scale of one, and the N-S com-
ponent is applied in the N-S structural plane. In the analysis,
five percent damping and At = 0.005 sec. were employed.

The response behavior of the displacements and the moments is
similar to that of the previous two examples and is therefore not
shown here. However, the ductility factors and the associated
excursion ratios of the columns and the shear wall are quite fnter—
esting and are plotted in Figs. 242 through 245. The critical duc-
: ti]ify demands in the x-direction are mainly developed at the shear
wall for which the maximum required ductility is at the first floor.
From the second floor to the top, the ductilities are demanded slightly
by the other columns, and the shear wall remains elastic. The duc-
tilities in the y-direction are mainly developed at column-7, for
which thelcritical location is at the fifth floor. Because the
shear wall and column 7 suffer severe damage, the ductilities and

the excursion ratios of these two members are plotted along with the
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Fig. 241. Eight-Story Building of L-Shape with Steel Columns

and Shear-Wall of Example 26, (1 ft = 0.305 m)
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Fig. 242. Comparison of Max. Ductilities in X-Direction of

Columns with Shear-Wall Ductilities of Example 26.
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Fig. 243. Comparison of Max. Excursion Ratios in X-Direction of

Columns with Shear-Wall Excursion Ratios of Example 26.
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Fig. 245. Comparison of Max. Excursion Ratios in Y-Direction

of Columns with Col. 7 Excursion Ratios of Example 26.
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maximum required numbers for each floor of the system. The duc-
tilities of the beams in the x- and y-directions of the floor plane
are shown in Figs. 246 and 247. Inclusion of the E-W component

and the vertical component demands more ductilities in the y-
direction than in the x-direction in comparison with those occasioned

by the N-S component only.
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Fig. 246. Max. Ductility Factors in X-Direction of Beams of

Example 26.
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VIII. REVIEW AND CONCLUSIONS

A. REVIEW

The analytical study, which has been presented,was conducted
for the purpose of investigating the effect of one vertical and two
horizontal interacting ground motions on the response behavior of
elastic and inelastic building systems. These structures can be
subjected to the simultaneous input of static loads and multicom-
ponent earthquake motions that have been applied in any direction
of the structural plane for which the P-A effect of‘the second-
order moment, which results from the gravity load and the vertical
ground motion, is considered.

The building systems may have elevator cores, floor diaphragms,
and shear walls of the reinforced concrete as well as steel beams,
columns, and bracings. The material behavior of the steel members
was based on the Ramberg-0sgood hysteresis loop from which the stiff-
ness coefficients were derived for loading and load reversal with
the Bauschinger effect. The stiffness coefficients for biaxial
bending, torsional, and axial deformations were used for both elas-
tic and inelastic analyses. For the inelastic analyses, various
strain hardenings were employed. The hysteresis behavior of the
reinforced concrete elements was based on Takeda's model as a stiff-
ness degrading technique. The mathematical formulations of system
stiffness and geometric matrices, the solution technique for the
system matrices, and the numerical integration procedures for the
motion equation, which have been presented, were developed with

regard to the building characteristics that each floor has independent
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vertical displacements of columns but one common torsional displace-
ment and two common transverse displacements. Thus, computation
efficiency was achieved by eliminating the structural joint rota-
tiohs from floor to floor with only the‘disp]acements associated
with the Tumped masses left for the motioh equation.

The yielding surface of a steel member was based on the non-
linear interactions for both strength and stability. The modified
plastic moments and the yielding axial forces were reduced accord-
ing to von Mises yield criterion. Although fhe reinforced concrete
shear walls and shear panels were considered as plane elements, the
yielding surface of reinforced cohcrete cotumns was also discussed.

The mathematical formulations include the seismic input energy,
kinetic energy, energy dissipated by damping, and the dissipated
strain energy as well as the stored strain energy. The seismic in-
put energy is due to three-dimensional interacting ground motions
and the P-A effect of the gravity load and the vertical ground motion.
The kinetic energy is generated by the masses and their velocities
in the vertical, horizontal, and rotational directions. The energy
dissipated by damping results from the work produced by the damping
forces going through the absolute displacements of the masses. The
dissipated strain energy and the stored strain energy result respec-
tively from the elastic deformations and the permanent sets for
which energy equations were derived accokding to the deformation
characteristics of typical individual elements. The ductility fac-
tors and excursion ratios were derived on the basis of three defi-
nitions: vrotation, variable strain energy, and hybrid strain energy.

The strong and weak points of each definition have been discussed.
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The computer program, INRESB-3D, which was comprehensively
developed, can be conveniently used by research workers and prac-
titioners. The computation procedures are given in the report.

The program list, description, input and output instructions, and
sample problems are documented in a separate report.

A total bf 26 numerical examples were investigated for various
low-rise and high-rise building systems. Observations of these

systems are included in the next section.

B. CONCLUSIONS

1. Summary of Low-Rise Structural Examples. The elastic response

behavior of the low-rise systems of Examples 1-12 can be summarized
as follows:

Unbraced Systems with Symmetric Plane and Elevation.--For an

unbraced structure having a symmetric plane and symmetric eleva-

tion with either doubly symmetric columns or singly symmetric columns
oriented in one direction, a horizontal earthquake acting in one
direction can merely (nearly zero) induce the moments of the columns
to act in a plane perpendicular to the direction of the éarthquake
movement. A vertical earthquake component can significantly affect
the axial forces of the columns (Examples 1 and 5).

Unbraced Systems with Unsymmetric Elevation.--When an unbraced

structure has a symmetric plane but unsymmetric elevation, a hori-
zontal earthquake component acting in one direction can slightly
(nearly zero) induce the moments of the columns that act in the
plane perpendicular to the earthquake motion for a system having

singly symmetric columns oriented in one direction (Example 3).



However, for a structure having doubly symmetric columns, the inter-
acting horizontal components can mutually affect the moments in

both planes. For both column systems, the horizontal components

can noticeably increase the axial forces of the columns. These
forces, however, are increased mainly by the vertical components
(Example 7). |

Unbraced System with Unsymmetric Plane.--When an unbraced struc-

ture has én unsymmetric p]ane (L shape) with efther doubly symmetric
or singly symmetric columns oriented in one direction, the horizontal
components in both directions can mutually influence the column
moments acting in both planes. The axial forces of the columns are
sensitive to the vertical componehts (Examples 4 and 8).

Braced Systems with Unsymmetric Rigidity of Floors.--When a

braced structure has an unsymmetric floor rigidity, because two
adjacent sides of the rectangular plane are braced (Examples 2 and
6), thé horizontal components acting in both directions can sig-
nificantly influence the moments acting in both planes. The verti-
cal components mainly cause the axial forces of the columns to be
increased.

Effect of Different Earthquakes on Response.--The Taft 1952

earthquake and the E1 Centro, 1940 earthquakes similarly influence
response behavior (Example 9).

Effect of Floor Rigidity on Response.--Space frames not having

slab rigidity are slightly more sensitive to interacting ground
motions than the same frames having rigid floors in their own plane

(Examples 10, 11 and 12).
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2. Summary of High-Rise Structural Examples. The response

behavior of high-rise structures may be summarized by two groups:
(a) elastic systems and (b) inelastic systems.

a. Elastic Systems.--The response behavior of elastic systems

is discussed below with regard to the effect that interacting ground
motions have on the internal forces of the individual members and
on the nodal displacements of various structural systems.

a.l. Internal Forces.

The Effect of the Interacting Horizontal Earthquake Components.--

For unbraced systems having symmetric structural planes, as in Examples

13, 14, and 17, a horizontal component acting in one direction can

slightly affect the column moments acting in the plane perpendicular

to the earthquake motion; The interacting horizontal components

can sometimes significantly increase the axial forces of some columns.

Generally, the exterior columns are mostly affected. In Example 13,

the increase of the exterior column, 2, is about 1.95 times (d/c =

703/360) and 1.57 times (d/c = 33/21) the results of case (c) at

the ground and top floors respectively. The axial forces of the

interior columns, 3 and 4, of the example are almost the same for

both cases. Similar behavior may be observed in Examples 14 and 17.
For the braced systems of Examples 15 and 16, which are repre-

sentative of a system having unsymmetric floor rigidity and symmetric

floor masses, interacting horizontal earthquake components can sig-

nificantly influence both the axial forces and bending moments.

In the case of Example 15, the axial force of column 2 at the ground

floor is increased by 1.36 times (d/c = 432/332), and the moments

of column 4 at the same floor is increased by 1.27 (d/c = 113/89)
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and 1.11 (d/c = 246/221) in the N-S and E-W planes respectively.
The axial force of the bracing member 2 at the fourth floor is 64
kips (284.7 kN) and -66 kip (-293.6 kN) for cases (c) and (d)
respectively. As for Example 16, the axial force of column 2 at
the ground floor is increased by 1.36 (d/c = 391/289). The moments
in the N-S and E—w planes of the same column are respectively
increased by 1.12 (d/c = 230/205) and 3.10 (d/c = 267/86). The
axial force of bracing member 4 at the second floor is changed

from 104 kips (462.6 kN) of case (c) to -114 kips (-507.1 kN) of
case (d). Column system (II) is more sensitive to the interacting

components than system (I).

The Effect of a Vertical Earthquake Component.--For unbraced
systems having symmetric structural planes, such as Examples 13,
14, and 17, a vertical earthquake motion can significantly affect
the axial forces but only slightly influence the bending moments.
The axial forces of the interior column, 4, of Example 13 are
increased by four times (e/d = 88/22) and 2.04 times (e/d = 706/346)
at the top and bottom floors respectively. The axial forces of
the interior column, 5, of the top and ground levels of Example 14
are increased by 2.96 (e/d = 71/24) and 2.21 (e/d = 778/352)
respectively. The axial forces of the exterior corner column, 6,
of Example 17 are increased by 1.2¢ times (e/d = 1343/1066) at the
ground floor and 2.83 (e/d = 99/35) at the top floor. In ﬁhe same
example, the axial forces of the interior corner column 7, at the
ground and top floors are increased by 23.3 times (e/d = 1934/83)

and 52 times (e/d = 364/7) respectively. The ratio of 52 is large,
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because the two horizontal components have induced the axial force
only in the amount of 7 kips (31.1 kN).

A vertical component combined with horizontal components can
sometimes slightly reduce the axial forces of some columns. The
axial force of column 6 at the bottom floor of Example 13 is changed
from 630 kips (2802.2 kN) to 507 kips (2255.1 kN) or e/d = 0.80;
the axial force of column 2 at the ground floor of Example 14, is
reduced from 955 kips (4247.8 kN) to 933 kips (4136.6 kN) or
e/d = 0.97; and the axial force of column 2 of Example 17 is reduced
from 1023 kips (4550.3 kN) to 950 kips (4313 kN) or e/d = 0.93.

The increase of the moments of these three examples, as a
result of the inclusion of the vertical component, is significant
mostly in the E-W plane.

For the braced system of Examples 15 and 16, a vertical earth-
quake component can significantly increase the axial forces but
not the bending moments. For instance, the axial force of column 3
at the ground level of Example 15 is increased by 2.21 times the

result of case (d), (e/d = 455/206), but the moments for both cases

of (e) and (d) are essentially the same. The axial force of brac-
ing member 1 at the second floor is changed from 113 kips (503 kN)
of case (d) to -111 kips (-493.7 kN) of case (e). In Example 16,
the axial force of the same column, 3, discussed in Example 15,

is increased by 2.76 (e/d = 450/163), and the axial force of the
bracing member 3 at the second floor is 112 kips (498.2 kN) and

-112 kips (-498.2 kN) for cases (d) and (e) respectively.



Comparison of the Response Behavior of the Results Based on the

Taft 1952 Earthquake and of Those Based on the 1940 El Centro

Earthquake.--From Example 17, the response behavior based on the
Taft earthquake is similar to that occasioned by the E1 Centro
earthquake, except that the S21W of the Taft affects the structural
responseimore than the E-W component of the E1 Centro (in terms

of d/c). It is because the magnftudes of both horizontal components
of the Taft are almost the same but the N-S component of the El
Centro is much larger than its E-W component. The effect on the
moments of the interacting horizontal Taft components is not as
distinct as that of the E1 Centro components.

a.2. Structural Displacements

Either:'Singly Symmetric or Doubly Symmetric Floor-Rigidity.--

The setback and T-shape structures of Examples 17 and 18 are systems
that have singly symmetric floor-ridigity. Example 20(A), however,

has doubly symmetric floor-rigidity. For these three examples,

a horizontal earthquake component applied in one direction does

not influence the lateral displacements perpendicular to the earth-

quake motion, and the lateral displacements are not at all affected

by the vertical ground motions.

The three interacting ground motions can influence the tor-
sional movement of the setback structure, but no rotational dis-
placement is observed for Example 20(A), which has the doubly
symmetric floor-rigidity.

The axial displacements are mainly caused by»vertica] ground
motions, which affect the interior columns more than the exterior

columns. Interacting horizontal earthquake components can have
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some influence on the axial deformations of the exterior columns.
The influence on the T-shape system is greater than on the setback
structure.

Unsymmetric Floor-Rigidity. The braced structures of Examples 15

and 17 are systems that have unsymmetric floor-rigidity. Interacting
horizontal earthquakes can significantly affect the lateral dis-
ptacements in two directions. These displacements, however, are

not influenced by vertical ground motions. The lateral displace-
ments of the structure having doubly symmetric columns (Example 15)
are greater than those of the structure having singly symmetric
columns (Example 16). |

Unsymmetric Mass-Center at Each Floor.--The mass-center of

Examp1e 20(B) is not at the center of the structural plane as in
the case of an unsymmetric mass-center. However, Example 20(A)
has the mass at the center of each floor plane. Horizontal ground
motiohs applied in one direction can affect the lateral displace-
ment perpendicular to the earthquake motion for Example 20(B) but
not for Example 20(A). The lateral displacements of both examples
are not at all influenced by vertical ground motions. The rota-
tional displacements of Example 20(B) are affected by interacting
horizontal earthquake components, but no rotational movement is
observed for Example 20(A) for ahy of the three cases of (c), (d),
and (e). Interacting ground motions can affect the axial defor-
mations of the columns which are actually more sensitive to a

vertical earthquake component.
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Unsymmetric Floor-Rigidity and Mass-Center.--Example 19 with

its L-shape structural plane has unsymmetric floor-rigidity and an
unsymmetric mass center at each floor. An interacting horizontal
earthquake component can significantly influence the lateral dis~
placements, which are not at all affected by a vertical component.
A horizontal component applied in one direction can cause rore
torsional movement than two interacting horizontal components which
seem to counterbalance the twisting angle. The three interacting
earthquake components can influence the axial deformations for
which the increases are mainly due to vertical ground motions.

b. Inelastic Systems.--The response behavior of Examples 21

through 26 may be summarized in the following five categories:
1) displacement response, 2) moments and rotations, 3) energy
absorption, 4) ductility factors and excursion ratios, and

5) mathematical plastic models.

b.1. Displacement Response.--When the rigidity and the mass

center are both symmetric about a floor plane, the horizontal com-
ponent, when applied alone in one direction, as in the x-direction,
does not induce any noticeable displacement in the y-direction.
However, the inclusion of the horizontal component in the y-direc-
tion and the vertical component can influence the displacements in
both directions. The influence on the displacements in the y-
direction is much greater than those in the x-direction. Uhen

the structural plane is not symmetric for either the rigidity or
the mass center or both, the horizontal component acting alone in
the x—diréction can induce the displacements in both the x~ and y-

directions. The inclusion of an additional horizontal component



and the vertical component can cause a considerable amount of per-
manent deformation in the torsional and y-directions. For all

the symmetric and unsymmetric cases, the increase of the horizontal
displacements is mainly due to the interacting horizontal components
but slightly due to the vertical component. The axial displace-
ments of a column are heavily affected by the vertical component

but moderately influenced by the horizontal components. For the

same structure subject to an identical earthquake motion, the elasto-
plastic model yields much more deformations in bothvthe transverse
and rotational directions than the inelastic model. Vertical displace-
ments are not sensitive to mathematical models. Although no dis-
tinct instability phenomenon has been observed for applied earth-
quakes with a unit scale, in some cases large permanent deforma-
tions in both the transverse and rotational directions can make a
structure unserviceable.

b.2. Moments and Rotations.--When one horizontal component is

applied, the moments and their associated rotations in the plane
parallel with the earthquake mction are significantly large, and
those in the perpendicular plane are very small. However, the
inclusion of the additional horizontal component and the vertical
component can remarkably increase the moments and their rotations
in both directions. The increase is mainly due to the interacting
horizontal components but slightly due to the vertical component.
This. observation may lead to the conclusion that a three-dimen-
sional building system cannot be analyzed in the traditional
manner by treating the system as a number of plane frameworks that

are tied by floor diaphragms, because the plane frameworks have
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only the moments in one direction that are much less than the actual
moments of a real building system.

b.3. Energy Absorption.--The seismic input energies resulting

from the interacting three-dimensional ground motions are about 1.40
to 2.24 times the input energies resulting from one-dimensional
motion for the inelastic examples with r=20. The ratio can be as
high as 3.48 for the elasto-plastic system with r=80. The ratios

of the total seismic input energies to the total dissipated energies
vary from 1.28 to»].Sl for inelastic examples but 1.48 to 1.62 for
the elasto-plastic example. Comparisons of the input energy with
the dissipated energy yield a little variation among the loading
cases of (c), (d), and (e) for each individual structure. The com-
parisons apparently show that the interacting ground motions induce
more input energy to the structure than the one-dimensional ground
motion and then cause more damage to the system. The errors in the
balance between the total input energy and the total output energy
for all the examples vary from 0.0003 to 0.2387 percent. These
small errors indicate that the numerical integrations are extremely
accurate.

b.4. Ductility Factors and Excursions:Ratios.--When a struc-

tural plane is symmetric for both the rigidity and the mass center,
one horizontal component acting alone in the x-direction only de-
mands the ductilities in that direction. However, the interacting
ground motions can significantly require the ductility factors as
well as the excursion ratios in both directions. When the struc-
tural plane is not symmetric for either the rigidity or the mass

center, the one horizontal component can demand the ductilities
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in both directions. The demand becomes greater when one additional
horizontal component and the vertical component are included. The
ductilities of columns are generally demanded more at the third-
quarter floor level (measured from the ground level) and the top
floor, but the ductilities of the beams vary with individual struc-
tures. When the structure has a shear wall, the shear wall is

the one member among all the columns that demands significant duc-
tilities. The critical region of the shear wall is at the first
floor from the ground. The corner columns require more ductili-
ties than the interior ones. The elasto-plastic model yields more
ductilities than the inelastic model with strain-hardening. The
ductilities based on the definition of rotation are much greater
than those that are based on hybrid energy.

A]though no distinct unstable behavior has been observed under
interacting ground motions, large ductilities caused by three-
dimensional ground excitation are apparently representative of loca-
tionbp1ast1c mechanisms.

b.5. Mathematical Plastic Models.--The elasto-plastic model

is very sensitive to interacting ground motions and, thus, exhibits
much larger displacements and ductilities than the inelastic model.
The elasto-plastic model may be too conservative for multicomponent

seismic analysis.
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APPENDIX A. DERIVATION OF STIFFNESS COEFFICIENTS FOR RAMBERG-0SGOOD

HYSTERESIS LOOPS

The stiffness derivation is based on the principle of incremental
analysis and the transfer matrix technique. A typical member is shown
in Fig. 248 where the forces (Mi’ Vi’ Mj and Vj) and their associated
deformations (Ti, Vis Tj, and Vj) are positive as indicated. Because
of the cycling loading process, the force-deformation relationships
must be expressed in two groups of loading and unloaind corresponding

to skeleton curve and branch curve respectively.

A. SKELETON CURVE

Let us consider a stable determinate beam shown in Fig. 249 for
which the elastic curvature associated with the given moments may be
sketched in the accompanying figure. The slope at end-i may be

expressed on the basis of structural mechanics and Eq. 3.3 as

L
T_i = - J (j)dX
0]
LM, M, r-1
S R O a‘M—‘ )dx (A-1)
0 p .

in which Mx = Vix - Mi’ Integration of Eq. A-1 yields




Fig. 248. Positive Forces and Deformations of a Typical

Member

G b1

(a) |

(b)

Fig. 249. Forces Applied at End-I
(a) Given Beam

(b) Curvature
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The deflection at end-i may be similarly obtained

L
[ ¢x dx
0

<<
I}

r-1
' (r+1) (V,L-M,) + (re2)(ViL - Mi)ZMi

v.L - M, 0 m, "l
‘ i 1’ 3

M
P

)

Since an incremental procedure must be used for analyzing the
inelastic structure, the force-deformation relationships at end-i can

be expressed in the following derivative forms:

r-1 r-1
dt. - M. M. -
oL 8 i a J -
aM. ~ El ’_] L P L B 'Mp' _‘ (A-4)
1+ EET) (1 + W
1 J
r-1
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v, ET 12 2 M
1 M. p
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e e )
M. p - j
(r+1) (1 + 55
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r-1
e S 2 it
V. ET 13 MERL
(r1) (r+2) (1 + 52)
1
r-1
Mo M,
+ 2 |4 lr(r‘+])+ 2r(r+2) —1J
v 3! M)
(r+1)(re2) (1 + ) |
J
Mo %
+ (r+1)(r+2)fﬁ~j ’} (A-6)
j -
and
dvi dT_i
@, " v, (A-7)

which is identical to Eg. A-5. Equations A-4 through A-7 are obtained

by just using the derivative with respect to the independent variabies

M1 and Vi and then substituting the equilibrium condition, Vi

= (Mi * Mj)/L, to eliminate Vi' Equations A-4 through A-7 are actually
an incremental form of flexibility matrix and can be symbolically

expressed as

dvil {f7 fol 4V
= (A-8)
drg| | foy ool dM,
or
da, = fd F,  (A-9)



Let the incremental forces at the supported end-j, of Fig. 249 be

dF, = [dV

T
. dv, -
£ 3 5 (A-10)

then the forces at the support can be found by using the equilibrium

matrix E as

(dFy = E dF, (A-11)
in which
10
E:
L -]
From Eq. A-9
dF; - £ Iy (A-12a)
Let
5. = f ! (A-12b)

S;; represents the stiffness coefficients which are due to the unit
displacements at end-i and are the inverse of the flexibility coeffi-

cients, f.

Substituting Eq. A-12a into A-11 yields

dF, = E £ (A-13a)

~

from which the stiffness coefficients can be obtained in the following

form
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S..=Ef! (A-13b)
§ji represents the forces at end-j due to the unit displacements at
end-i. To determine the stiffness coefficients, Sjj’ one may use the
reciprocal relations that the work done by dFi and dAi (when j-end is
fixed) must be equal to that by dFj and dAj (when i-end is fixed).

Thus

T T 21 T .
7 dfy dby = 5 dFy da, (A-14)

Substituting Eqs. A-13 into above

T T T

daj Sy dby = dby dF, (A-15)
from which
dF. = S|, da. | (A-16)
~1 NN
From Eq. A-13b
T _ 1 T i
Sy = fE (A-17)
Thus Eq. A-11 becomes
_ -1 T
dF, = E f  E dA, (A-18a)
~gooEs = TR
in which
S..=Ef E (A-18b)

=3J
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. _ ol
Using Eqs. A-12b, 13b, 18b and Sij = Sji
-1 =17
S Si5| | f e
= A-19)
-1 1T (
.. f
Sy Syl |EfT EfE
The detailed form of Egq. A-19 may be symbolically expressed as
(av.) [s. s s. s |[av,
1 L m n 0 1
dMi Sp Sq Sr dTi
; r = . (A-20)
de , SS St dvj
dM. . S dr.
L J \symm usl TJ

The stiffness coefficients, A, C, and A’ in Eq. 3.17 are for the
angles measuring from the chord to the tangents. The chord is defined
as the line connecting two ends of a member, whether the member is
displaced or not. As shown in Fig. 248, the chord is the line connect-
ing i' and j' and the angles are 61 and ej. Using the analogy of ei
and ej to T; and Ty one may find another set of stiffness coefficients

as
= (A-21)

When the stiffness coefficients of Eq. A-21 are used, the shears are
not treated as independent forces and are dependent on the moments.
Comparing Eq. A-21 with Eg. 3.17 gives the bending stiffnesses

about the x-axis as
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A = Sp, C = Sps and A' = Su (A-22)

Sp, Sr’ and Su are resulting from the matrix manipulation of Eq. A-19
and are given in Egs. 3.18-3.20. The dependence of shears on moments
is illustrated in Eqs. 3.44 and 3.48.

The axial stiffness coefficient may be similarly derived from
Egs. 3.6 and 3.7 in which Py and Pcr can be represented by a single
notation Pp. Thus

r-1

g = (1 +a ) (A-23)

3>['U
mj—

P
P
p

The derivation with respect to P yields

r-1

L ) (A-24)

%%zﬁ(] + ar

P
p

from which the axial stiffness is

r-1 -1 _
) (A-25)

Pp
which is used in Eq. 3.21.

Similar to the derivation of Egs. A-24 and A-25, the torsional

stiffness coefficient can be found from Eq. 3.11 as

r-1 -1
) (A-26)

GI
Q = —Ez-(] + ar

T.[T_
P
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B. BRANCH CURVE

The unloading case can be classified into four groups: (a) moment
reversal at end-i, (b) moment reversal at end-j, (c) axial load rever-
sal, and (d) torsional moment reversal. The moment reversals and their
associated curvatures for groups (a) and (b) are sketched in Figs. 250
and 251, respectively. These four groups will be discussed separately
as follows.

(a) Moment Reversal at End-i. Let the member end-i be subjected

to a moment reversal, dMi’ for which the curvature changes from the
solid 1ine to dashed line as shown in Fig. 250b. Because of the moment

reversal, the curvature between o and x' (¢__,) is reduced while the

ox'
curvature between x' and L (¢X.L) is increased, where x' = Mii/vii'
¢ox' and ¢x‘L are respectively corresponding to the branch curve and

skeleton curve for which the slope may be calculated as

X L
T = - g Dox'! dx - i' 1L dx (A-27)

from Eqs. 3.3 and 3.5

r-1
x' - M -M M - M -
X 0 X 0
T, =~ [ |o_ - (1+a ‘ ) 1dx

it 3 2 _

L M M r-1

- —%—(1+a e )dx ' (A-28)
x' p

in which

M = V..x - M.
0 id ii



M;=M;j + dM; Mngji +dM;
( i ] E)
E
Vi=V;i+dV; 1\/j=\/j]+de
(a)

dep;(dM;)
I X' , //// S ¥
! BRANCH ] /mmﬁ) (M)

J L L-x'
— SKELETON

dej(aMy) (b)
Fig. 250. Moment Reversal at End-1I

¢5i(M;)

]

(a) Given Beam, (b) Curvature

M; = M;; +dM; M= Mj; +dM,
(1 lE)
Vi= Vi +dv; lVJ"'Vji’“"'Vi
(a)
. dgb; (M)
X

l SKELETON R

=7 4 f”(M”)

dimp| | PilMy Loy J
T BRANCH
$i(M;) (b)

Fig. 251. Moment Reversal at End-J

(a) Given Beam, (b) Curvature
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Upon integration of Eq. A-28

S N D
i ET [ (rt1)V,,

M
p

(A-29)

Similarly

X
+ { X ET (T+a IM—- )dx (A-30)

' 3
a(Mi_Mii) |M. - M..

(r+1) (r+2) (V;-V.)
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2t - M)Z VL - Mi""‘]
(r+1)(r+2)V1? "
LOr+1) (VgL = W) + (re2)iy ]} (A-31)

Similar to the derivation of Egs. A-4 through A-7, one must first find
the derivatives of Eqs. A-29 and A-31 with respect to Mi and Vi and
then substituting the following equilibrium equation into the deriva-

tive equations:

M. = V.L - M., M.. = V..L - M.., M.., =M. - M..,
J i i Ji i 11 iid 1 ij

= - ' =
Mjid Mj Mji’ and Mp 2Mp.

Thus -the final incremental force-deformation relations are obtained as:

r-1
&:L]-{-—_____a ill.j_
Mi EI Mj M
(1 +'ﬁf) P
J
-1
M., "
i H]'d } (A-32)
“*MJ.].“S) P
i1
r-1
dt 2 M - M. -
Feebr et ] e[
o E{ il [roen
V. T TET 2 v, 2 1L ).
(r+1)(1 + =)
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M. 1
N a 5 ;11,"‘ } (A-33)
M.. P
(r+1)(1 + -319)
M..
iid
r-1
o 2
dv. ET 13 3 M
1 M..d p
(r+1) (r+2) (1 + 225)
iid
r-1
. a "5
v, 3 17
(r#1)(r42) (1 + 1)
i
_ M. M, 2
r(r+1)+2r(r+2)[ﬁ—}+(r+1)(r+2)[M——) ]} (A-34)
- i i
dvi dTi
. " v, (A-35)
1 1

Eqs. A-32 through A-35 are similar to Egs. A-4 through A-7 of skeleton

curve except that Mj/Mi is replaced by Mjid/Miid

replaced by ]Mijd/M6|F_]. The modification of the stiffnesses asso-

r-1 .
and le/Mpl is

ciated with the skeleton curve is given in Eqs. 3.27 to 3.32.

(b} Moment Reversal at End-j. Following Fig. 251 and Egs. A-27

through A-31, one may find four derivative equations of dTi/dMi,
dri/dvi, dvi/dMi’ dvi/dvi for which the following equilibrium equation

are substituted:

M. = V.L - M., M.. = V..L - M.., M.., =M. - M..,
J i i 33 ij ij ijd i ij
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.., =M. - M., and M' = 2M .
Jjd J ji> on p p

The final solutions are

., r=1
M EI M M
’ 0+ P
M.
;
M r-1
a 55d
e R (A-36)
(1 + G P
Jjd
S, ey
av. T \2 7 M
i M p
(r1) (1 + D)
1
r-1
M.. - M. . A=
+ a 5 l &%d r+(r+1)[MTJdJ,}
M D 2 5id)-
(r+1) (1 + 55%)
Jid
;=]
Vi ET\3 M. 3 1M
(r1)(r42) (1 + )
1
-1
M...,"
+ a ; , fﬁ?d (A-37)
M P
(r41) (r+2) (1 + 39)
M. .
jid
M54 Misd :
[r‘(r‘+1)+2r(r+2)[W-E)+(r+1)(r+2) W'*'_d") ]} (A-38)
JJ JJ
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(A-39)

Observing the above four equations, one may conclude that replacing

r-1

M. M. .

i ij ")
i by . and M |
J JJd

in Eqs. A-4 through A-7 of the skeleton curve gives the necessary
information for deriving the stiffness coefficients as shown in
Eg. A-19. The modification of the stiffness coefficients for the

branch curve is shown in Egs. 3.33 through 3.38.

(c) Axial Load Reversal. As pointed out in Eq. 3.8, the axial

deformation for the branch curve is

PL[ r-1 (P -P) p-p O]
e = -O ]+a|—| ] ——~——L[1+a _ﬂ| ]
AE AE Py + Pcr
Thus
r-1
P~ P
de _ L [ 0
== = == |{+ar|{s———=—
p E Py + Pcr

[ - -
Let P' = P - PO and Pp Py + Pcr

| r—l}

P

- = ——-[1+ar
p

dpP E

which is similar to Eq. A-24. The stiffness coefficient of Eq. A-

(A-40)

(A-41)

(A-42)

25

can be used for branch curve by replacing P with P' and P_ with Pé.

p



328

(d) Torsional Moment Reversal. From Eq. 3.12 one may express

the branch curve as

TL T a1y Tt
y = GTM[Ha T—J ) 4 L[]+a 5T ' : ] (A-43)
z p P
Thus
-1
T-1,"
dl = L O -—
dT = @l [”” 5T l ] (A-44)
z P
From which the stiffness coefficient is similar to Eq. A-26 as
-1
61 . |
p

in which
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APPENDIX B
TABLES II THROUGH IX
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TABLE V. COMPARISON OF INTERNAL FORCES OF EXAMPLE 13 BASED ON
EL CENTRO, 1940. (c = N-S, P-A(DL); d = N-S, E-W, P-A(DL);
e = N-S, E-W, VE, P-A(DL+VE); N = AXIAL FORCE, M, o = MOMENTS
AT COLUMN TOP IN N-S PLANE, M__ = MOMENTS AT COLUMN TOP IN
E-W PLANE; 1 kip = 4.54 kN, 1 ft-kip = 1.356 kN-m)
Fr.  Col. N (kip) Mg (Ft-kip) M, (ft-kip)
No. No. C d e c d e o d e
1 1 360 630 752 157 157 157  -- 197 201
2 360 703 791 157 157 157  -- 198 201
3 346 346 671 157 157 157 0 435 436
4 346 346 706 157 157 157 0 435 436
5 360 703 1016 157 157 157 -~ 198 195
6 360 630 507 157 157 157  -- 197 195
2 1 323 650 772 366 366 366 1 336 343
2 323 609 751 366 366 366 1 336 344
3 309 309 669 366 366 366 0 614 614
4 309 309 689 366 366 366 0 614 614
5 323 609 916 366 366 366 1 336 329
6 323 650 528 366 366 366 1 336 328
3 1 276 653 773 320 320 320 1 330 340
2 276 505 687 320 320 320 1 330 341
3 263 263 641 320 320 320 O 567 567
4 263 263 653 320 320 320 O 567 567
5 276 505 796 320 320 320 1 330 320
6 276 653 533 320 320 320 1 330 319
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TABLE V. COMPARISON OF INTERNAL FORCES OF EXAMPLE 13 BASED ON
EL CENTRO, 1940. (Continued)
e ool N (kip) Mo (Ft-kip) M (ft-kip)
No. — No. c d e c d e c d e
4 1 . 239 621 735 332 332 329 2 274 289
2 239 436 602 332 332, 329 2 275 290
3 246 246 584 332 332 329 0 467 467
4 246 246 597 332 332 329 0 467 467
5 239 436 672 332 332 329 2 275 260
6 239 621 507 332 332 329 2 274 259
5 1 217 551 565 287 287 285 2 204 217
2 217 356 505 287 287 285 2 202 216
3 222 222 513 287 287 285 0 409 410
4 222 227 530 287 287 285 0 409 4710
5 217 357 552 287 287 285 2 202 220
6 217 551 475 287 287 285 2 204 222
6 1 183 449 540 241 241 240 2 266 252
2 183 273 405 241 241 240 2 265 252
3 185 185 430 242 242 242 0 503 503
4 185 185 448 242 242 242 0 503 503
5 183 273 433 242 242 242 2 264 282
6 183 449 417 242 242 242 2 266 283
7 1 145 337 413 248 248 248 2 315 - 331
2 145 217 312 248 248 284 2 315 331
3 147 147 341 248 248 247 0 609 609
4 147 147 355 248 248 247 0 609 609
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TABLE V. COMPARISON OF INTERNAL FORCES OF EXAMPLE 13 BASED ON
EL CENTRO, 1940. (Continued)
Fir.  Col. N (kip) Mys (FEkip) My (ft-kip)
No. No.. c d e C d e c d e
5 145 217 322 268 48 247 2 315 317
6 145 337 339 268 248 247 2 315 319
g 1 103 224 284 288 288 287 2 346 362
2 103 156 213 288 288 287 2 346 362
3 105 105 255 288 288 287 O 585 586
4 105 105 268 288 288 287 0 585 586
5 103 156 246 288 288 287 2 346 331
6 103 224 248 288 288 287 2 346 331
9 1 59 122 163 296 296 295 2 288 305
2 59 90 138 296 296 295 2 288 205
3 60 60 162 296 296 295 0 460 461
4 60 60 178 296 296 295 -0 460 461
5 50 90 161 296 296 295 2 288 273
6 59 122 148 296 296 295 2 288 273
100 21 43 64 223 223 222 3 153 192
2 20 33 65 223 223 222 3 153 190
3 22 22 77 222 222 221 0 252 253
4 22 22 88 222 222 221 0 252 253
5 21 33 74 223 223 222 3 153 177
6 21 43 67 223 222 3 153 180

223
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TABLE VI. COMPARISON OF INTERNAL FORCES OF EXAMPLE 14 BASED ON
EL CENTRO, 1940. (c = N-S, P-A(DL); d = N-S, E-W, P-A(DL);

e = N-S, E-W, VE, P-A(DL+VE); N = AXIAL FORCES, M = MOMENTS

N-S

AT COLUMN TOP IN N-S PLANE, M = MOMENTS AT COLUMN TOP IN

E-W
E-W PLANE; 1 kip = 4.54 kN, 1 ft-kip = 1.356 kN-m)

Flr.  Col. N (kip) Mg (ft-kip) My (ft-kip)
No. No. c d e c d e c d e
1 1 932 999 991 1228 1228 1229 10 249 255
2 932 955 930 1228 1228 1229 10 264 270
3 332 335 656 242 242 242 9 513 512
4 332 349 645 242 242 242 9 521 526
5 335 352 778 242 242 242 9 521 521
6 335 337 682 242 242 242 9 513 516
7 932 955 978 1228 1228 1229 10 264 260
8 932 999 1006 1228 1228 1229 10 249 248
9 0 823 710 22068 22068 22078 0o 0 0
10 0 823 920 22068 22070 22080 0 0 0
2 837 894 887 1305 1305 1306 21 392 401
2 837 856 831 1305 1305 1306 21 423 434
3 312 311 641 227 227 227 19 711 704
4 312 321 606 227 227 227 19 722 714
5 314 323 730 227 227 227 19 722 728
6 314 312 650 227 227 227 19 711 718
7 837 856 879 1305 1305 1306 21 423 412

8 837 895 901 1305 1305 1306 21 392 400
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EL CENTRO, 1940. (Continued)
Flr.  Col. N (kip) Mg (ft-kip) Mgy (Ft-kip)
No. No. C d e C d e o d e
9 0 791 681 19635 19635 19643 O 0 0
10 0 794 891 19635 19637 19646 0 0 0
3 1 743 780 773 1103 1103 1104 31 38 375
2 743 744 720 1103 1103 1104 31 401 390
3 287 283 613 228 228 228 28 670 659
4 287 291 561 228 228 228 28 683 673
5 289 293 659 228 228 228 28 683 693
6 289 285 591 228 228 228 28 670 679
7 743 744 766 1103 1103 1104 31 401 412
8 743 780 786 1103 1103 1104 31 386 397
9 0 747 640 17245 17245 17252 0 0 0
10 0 747 840 17245 17247 17255 O 0 0
4 1 641 661 654 845 845 846 42 330 315
2 641 627 629 845 845 846 42 349 339
3 256 257 567 178 178 178 38 586 571
4 256 256 504 178 178 178 38 603 588
5 257 256 563 178 178 178 38 603 617
6 257 258 510 178 178 178 38 586 600
7 642 627 647 845 845 846 42 349 365
8 642 661 667 845 845 846 42 330 347
9 0 686 588 14622 14622 14629 0 0 0
10 0 686 770 14622 14625 14632 0O 0 0
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TABLE VI. COMPARISONS OF INTERNAL FORCES OF EXAMPLE 14 BASED ON
EL CENTRO, 1940. (Continued)

Flr.  Col. N (kip) My (ft-kip) Mc_ (ft-kip)
No. NO‘ c d e C d e o d e
5 1 189 493 488 654 654 654 45 290 282
2 489 486 492 654 654 654 . 45 281 299

3 220 225 509 174 174 174 38 466 477

4 220 215 438 174 174 174 38 473 48]
5 221 216 481 174 174 174 38 473 468
6 221 226 442 174 174 174 38 466 473

7 490 486 482 654 654 654 45 281 301
8 490 493 498 654 654 654 45 290 296

9 0 639 546 12854 12854 12860 0 0 0

10 0 638 719 12854 12854 12860 0 0 0
6 1 384 379 375 665 665 665 43 227 303
2 384 390 394 665 665 665 43 285 291
3 179 187 432 158 158 158 38 543 568
4 179 171 362 158 158 158 38 519 544
5 180 171 393 158 158 158 38 519 504
6 180 188 364 158 158 158 38 543 519
7 384 390 386 665 665 665 43 286 278
8 384 379 383 665 665 665 43 277 250

9 0 535 454 9695 9695 9699 0 0 0

10 0 535 605 9695 9699 9703 0 0 0
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TABLE VI, COMPARISON OF INTERNAL FORCES OF EXAMPLE 14 BASED ON
EL CENTRO, 1940. (Continued)

F1y Col. N (kip) My-s (Ft-kip) Me_y (Ft-kip)
No. No. C d e o d e C d e
7 1 277 269 265 634 634 634 49 366 397
2 277 286 290 634 634 634 49 338 369
3 140 148 342 153 153 153 43 708 738
4 140 131 284 153 153 153 43 683 713
5 140 132 309 153 153 153 43 683 655
6 140 149 285 153 153 153 43 708 680
7 277 286 283 634 634 634 49 338 306
8 277 269 272 634 634 634 49 366 334

9. 0 412 348 6571 6571 6573 0 0 0

10 0 412 468 6571 6575 6577 0 0 0
8 1 158 151 149 480 480 480 44 440 468
2 158 165 167 480 480 480 44 416 445
3 100 107 255 163 163 163 37 732 760
4 100 93 210 163 - 163 163 37 713 740
5 101 93 230 163 163 163 37 713 688
6 101 108 214 163 163 163 37 732 707
7 158 165 163 480 480 480 44 416 386
8 158 151 153 480 480 480 44 439 409

9 0 284 247 3894 3894 3896 0 0 0

10 0 284 327 3894 3898 3900 0 0 0
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TABLE VI, COMPARISON OF INTERNAL FORCES OF EXAMPLE 14 BASED ON
EL CENTRO, 1940. (Continued)
Flr. Col. N (kip) MN—S (ft-kip) ME—W (ft-kip)
No. No. c d e o d e o d e
9 1 77 73 71 393 393 393 41 385 414
2 77 81 83 393 393 393 41 364 393
3 61 66 165 152 152 153 37 615 644
4 61 57 139 152 152 153 37 597 626
5 62 57- 150 152 152 153 37 597 572
6 62 66 139 152 152 153 37 615 590
7 77 81 80 393 393 393 41 364 349
8 77 73 74 393 393 393 41 385 355
9 0 145 135 1334 1334 1335 0 0 0
10 0 145 173 1334 1337 1338 0 0 0
10 1 20 19 18 220 220 220 | 61 238 28]
2 20 22 23 220 220 220 61 216 251
3 26 27 78 126 126 126 48 394 435
4 26 24 69 126 126 126 48 371 411
5 26 24 71 126 126 126 48 370 383
6 26 28 67 126 126 126 48 394 360
7 20 22 21 220 220 220 61 216 257
8 20 19 20 220 220 220 61 238 218
9 0 45 47 106 106 106 0 0 0
10 0 45 61 106 107 107 0 0 0
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TABLE VII. COMPARISON OF INTERNAL FORCES OF EXAMPLE 15 BASED ON
EL CENTRO , 1940. (c = N-S, P-A(DL); d = N-S, E-H,
P-A(DL); e = N-S, E-W, VE, P-A(DL+VE); N = AXIAL FORCES,

M = MOMENTS AT COLUMN TOP IN N-S PLANE, ME-W = MOMENTS

N-S
AT COLUMN TOP IN E-W PLANE: 1 kip = 4.54 kN, 1 ft-kip

= 1.356 kN-M)

N (kip) M (ft-kip) M (ft-kip) N (kip) ON BRACINGS

Fir. Col.

No. No. ¢ d

N-S E-W
e c d e c d e C d e

1 1 348 345 677 170 163 163 140 136 136
2 332432692 170 163 163 221 246 247
3 186 206 455 89 113 113 140 136 136
4 183 230 470 89 113 113 221 246 247
2 1 328 328 652 57 72 72 171 154 154 117 113 -111
2 389 434 688 57 72 72 56 51 51 -109 -117 -122
3 199 207 472 171 159 159 171 154 154 74 81 89
4 201 246 465 171 159 159 56 51 51 - 178 -~ 79 ~ 84
3 1 306 307 625 125 142 141 341 359 359
2 451 438 746 125 142 141 207 248 247
3 208 201 479 136 147 147 341 359 359
4 275 305 503 136 147 147 207 248 247

4 1 278 268 566 53 71 70 243 279 279 - 6] 63 65
2 465 442 735 53 71 70 64 68 85 64 - 66 - 71
3 214 202 476 185 224 225 243 279 279 64 73 65

4 304 322 495 185 224 225 64 8 8 - 72 - 82 - 89
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TABLE VII. COMPARISON OF INTERNAL FORCES OF EXAMPLE 15 BASED ON
EL CENTRO, 1940. (Continued)
Flr. co1. N (kip) My o (ft-kip) M., (ft-kip) N (kip) ON BRACINGS
NO‘NO'"decdecdecde
5 1 234211490 143 184 182 132 175 175
2 471 454 723 143 184 182 105 135 134
3 198 188 449 166 188 189 132 175 175
4 316 319 481 166 188 189 105 135 134
6 1 181150394 38 34 35 78114114 -70 -72 - 8
2 391377601 38 34 35 92103103 65 68 - 68
3 174 165 403 122 144 142 78 114 114 - 58 70 75
4 263 251 437 122 144 142 92 103103 47 - 62 - 58
71 119128 294 109 112 112 223 256 257
2 310 298 485 109 112 112 197 218 218
3 137 130 331 181 185 185 223 256 257
4 203 210 379 181 185 185 197 218 218
8 1 76 96205 17 30 30 184 174 174 - 98 - 98  -104
2 194187 324 17 30 30 57 62 62 96 97 91
3 92 87 246 195175175 184 174 174 - 66 60 - 65
4 151159 281 195 175175 57 62 62 56 =-55 - 58
9 1 48 58154 59 79 82 248 262 257
2 92 89200 59 79 82 200 208 208
3 54 52 164 93 138 142 248 262 257
4 85 93175 93 138 142 200 208 208
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TABLE VII. COMPARISON OF INTERNAL FORCES OF EXAMPLE 15 BASED ON
EL CENTRO, 1940. (Continued)

Flr. Col. N (kip) MN—S (ft-kip) ME-W (ft-kip) N (kip) ON BRACINGS
No. No. o 4 e c d e c d e c d e
10 . 1 13 18 65 5 5 5 149 160 160 - 49 - 5] - 55
2 34 32 86 5 5 5 5 6 5 49 52 49
3 13 12 74 101 119 120 149 160 160 17 23 24

4 36 40 76 101 119 120 5 6 6 -16 =~ 21 - 22
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TABLE VIII. COMPARISON OF INTERNAL FORCES OF EXAMPLE 16 BASED ON
EL CENTRO, 1940. (c = N-S, P-A(DL); d = N-S, E-W, P-A(DL);

e = N-S, E-W, VE, P-A(DL+VE); N = AXIAL FORCES, MN—S

= MOMENTS AT COLUMN TOP IN N-S PLANE, M = MOMENTS AT

E-W
COLUMN TOP IN E-W PLANE, 1 kip = 4.54 kN, 1 ft-kip

= 1.356 kN-m)

Flr. co1. N (kip) M o (ft-kip) M, (ft-kip) N (kip) ON BRACINGS
No. No.

d e o d e C d e c d e

1 1 353 259 578 205 230 229 75 112 112
2 287 391 620 205 230 229 86 267 267
3 129 163 450 196 190 190 75 112 112
4 188 176 507 196 190 190 86 267 267
2 1 264 185 505 44 60 59 160 177 176 39 111 105
2 232 301 628 44 60 59 44 60 60 - 44 -110 -115
3 116 171 445 115 99 98 160 177 176 -102 112 -112
4 150 161 502 115 99 98 44 60 60 104 -114 -121
3 1 242 181 440 221 287 286 113 215 215
2 215 312 643 221 287 286 107 235 235
3 99 171 428 267 253 25 113 215 215

4 122 178 502 267 253 254 107 235 235

4 1 222 165 429 27 26 26 114 125 126 27 62 56
2 201 301 595 27 26 26 32 63 62 -~ 27 - 60 - 65
3 78 169 401 91 93 93 114 125 126 70 87 78

4 87 180 458 91 93 93 32 63 62 - 66 - 9] - 97




347

TABLE VIII. COMPARISON OF INTERNAL FORCES OF EXAMPLE 16 BASED ON
EL CENTRO, 1940. (Continued)

M (ft-kip) ME- (ft-kip) N (kip) ON BRACINGS

Fir. cot. N (kip) N-S Y

No. No. C d e C d e c d e C d d

5 1 201 157 418 116 132 129 57 108 109
2 187 279 553 116 132 129 77 91 92
3 64 153 367 141 132 132 57 108 109
4 76 172 425 141 132 132 77 91 92

6 1 169 146 376 12 14 14 121 113 117 25 - 45 - 53
2 147 245 453 12 14 14 25 54 54 - 22 43 - 43
3 55 129 326 57 64 63 121 113 117 - 52 - 60 - 59
4 62 142 356 57 64 63 25 54 54 51 55 54

7 1 131 133 331 107 123 123 82 161 166
2 104 212 386 107 123 123 60 127 127
3 43 100 268 149 142 142 82 161 166
4 51 110 295 149 142 142 60 127 127

8 1 96 101 254 4 7 7 15 159 160 - 29 59 - 63
2 70 140 274 5 7 7 18 38 39 28 56 - 62
3 30 68 204 57 57 59 156 159 160 35 43 51
4 36 77 222 57 57 59 18 38 39 - 36 - 42 - 45

9 1 58 61 169 77 108 108 88 150 156
2 41 75178 77 108 108 52 128 131
3 18 45 145 119 130 129 88 150 156
4 18 38 148 119 130 129 52 128 131
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TABLE VIII. COMPARISON OF INTERNAL FORCES OF EXAMPLE 16 BASED ON

EL CENTRO, 1940. (Continued)

N (kip) MN—S (ft-kip) ME-N (ft-kip) N (kip) ON BRACINGS

Flr. Col.

No. MNo. o 4 o c d e c d e C d e

10 1 22 23 81 - 1 1 88 130 133 - 9 26 - 25
2 15 27 79 -- 1 1 4 4 4 9 - 25 - 29
3 8 15 75 22 27 27 88 130 133 20 25 - 26

4 4 14 75 22 27 27 4 4 4 -20 - 24 - 27
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