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SUMMARY

A simple approximate method is proposed to compute the maximum
response of 1ight secondary systems attached to buildings subjected
to earthquakes. The methed is derived by considering that a secondary
system and its supporting primary structure form a single assembled
system, and by applying a modified version of the response spectrum
technique to such an assembled system. It is formulated in terms of
the dynamic propertiés of independent pfimary and secondary systems and
of the response spectra of a specified ground motion, is developed for
the analysis of any multi-degree of freedom secondary system attached
to one or two arbitrary points of a multi-degree of freedom primary
structure, and may be applied for secondary systems in resonance with
their supporting systems. It is restricted, however, to those cases in
which the independent primary and secondary systems are linear elastic
systems with classical modes of vibration and the masses of the secondary
system are small in comparison with the masses of its primary structure.

The accuracy of the method is verified by means of a comparative
study with time-history solutions. In this comparative study, the
proposed approximaté procedure yields, on the average, errors of no more

than about 7%.
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CHAPTER 1

INTRODUCTION

1.1 Background

Ordinarily, there are a variety of attachments to the floors and walls
of large and complex buildings which, because of their different charac-
teristics and functions, may not be considered as part of the structures
which support them. Piping systems, electrical equipment, pressure ves-
sels, motors, generators, pumps, tanks, stacks, furnaces, bins, conveyor
systems, mixers, precipitators, cranes, antennas, elevator penthouses,
and parapets are just a few examples of the attachments which may be found
in multi-story buildings, industrial plants or nuclear power facilities,

To distinguish them from the structural systems whose main function is to
resist forces, these attachments are often referred to as secondary systems.

The experiences from past earthquakes have demonstrated that these secon-
dary systems are particularly vulnerable to the effects of earthquakes,
such that in many instances their total failure has been observed in spite
of the fact that their supporting structures have shown only moderate
damage. Understandably, their low damping values and the amplified motions
of the parts of the structures to which they are attached make them undergo
accelerations greater than the ones that normally act on their own sup-
porting systems. And often those magnified accelerations are extremely
large because of the resonant effect produced by the closeness of their
natural frequencies to any of the natural frequencies of their supporting
structures, a closeness that is 1likely to occur because the masses and

stiffnesses of a secondary system are usually small compared to those of a

’
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primary system. At the same time, past earthquakes have alsc demonstrated
that the survival of some of such secondary systems during the occurrence
of an earthquake may be vital to provide emergency services (equipment in
power stations and communication facilities, for example) and that their
failure may produce loss of human 1ife and property. Thus, it is apparent
that these building attachments or secondary systems should be the object
of a reljable seismic analysis.

In principle, the analysis of a secondary system may be carried out
in conjunction with the analysis of the primary system to which it is con-
nected. That is, the earthquake response of a secondary system may be
obtained by considering this secondary system and its supporting struc-
ture as a single combined system and by analyzing this combined system
by any conventional method of analysis. This procedure, however, presents
the following inconveniences:

1} Since a piece of equipment or any other secondary system is
customarily designed after the completion of the design of the building
where such a piece of equipment or secondary system is housed, a second
analysis of this building to include its attachments introduces a problem
of schedule and eff?ciency.

2) The number of degrees of freedom required for the modeling of
Targe and complex facilities makes the analysis of a combined system
cumbersome, costly and impractical.

3) The conventional methods of analysis become inaccurate and in-
efficient when they are applied to a system where there exists a large
difference between the values of its various masses, stiffnesses and

damping coefficients.



Among all these inconveniences, perhaps the mose serious is the last
one. The response spectrum method shows difficulties in computing the
natural frequencies, mode shapes and damping ratios of such a combined
system and in the combination of its waximum modal responses. The time-
history approach becomes prohibitively expensive because: (a) the excessive
number of degrees of freedom involved, (b) the necessity of carrying out
several analyses to cover the possible varjations in the calculated charac-
teristics of the aforementioned combined system (such as natural frequencies
and damping ratios) and in the characteristics of the earthquake input, and
(c) the different order of magnitude of the values of the masses, stiffnesses
and damping coefficients_of a primary and a secondary system makes a step-
by-step integration extraordinarily sensitive to the selected integration
time step. In Tike manner, a.random vibration solution turns out to be
particularly susceptible to the spectral density used to represent the
ground motions expected in a given area and to the assumptions made about
the characteristics of the probabilistic model adopted, such as stationarity

and earthquake duration,

1.2 Previous Studies

- Several methods have been suggested to simplify the analysis of
secondary systems. Initially, a common method of analysis was the so-called
floor response spectrum method. With this method, the motion of the sup-
porting point of a secondary system is calculated by the respone-history
analysis of its primary structure. Then, a response spectrum, the floor
response spectrum, is determined with the time-history of this motion, and
the secondary system is analyzed by the response épectrum method in the

manner that the analysis of a primary system is usually carried out.



Realizing that this approach is lengthy and impractical, several
authors have proposed simple approximate procedures to construct such a
floor response spectrum. Biggs and Roesset (1970), Amin et al. (1971),
and Kapur and Shao (1973) give empirical rules to predict the response of a
secondary system using the information provided by the modal analysis of
its supporting building. Atatik (1978) suggests an interesting technique
to obtain the floor spectra of a building for a prescribed ground motion
by calculating the response spectrum of this ground motion after it has
been filtered through simple oscillators and by performing an ordinary
modal analysis of the building with this response spectrum. Peters, Schmitz
and Wagner (1977) derive approximate analytical expressions to evaluate
fioor response spectra at any point of a building directly from the re-
sponse spectrum of the ground motion specified for the building. Singh
(1972), Chakravorty and Vanmarcke (1973}, and Vanmarcke (1977) develop
analogous procedures based on random vibration methods.

A1l these simplified methods have beeh proved to give a reasonable
accuracy for secondary systems with small masses and with natural fre-
quencies which are not c¢lose to or coincide with the natural frequencies
of their supporting structures. They have, however, consistently failed for
the analysis of secondary systems which are in resonance with the primary
systems to which they are connected. The problem is that these methods
neglect the interaction between primary and secondary systems and that, as
pointed out by Crandall and Mark (1963), Singh {1972), and Kapur and Shao
(1973), a significant error is introduced in the arnalysis of secondary
systems under resonant conditions if this interaction is neglected. Based

on a comparative study of the mean square response of a two-degree-of-freedom



system subjected to an ideal white noise, Crandall and Mark (1963) indicate
that when a secondary system is near resonance with its supporting system
even a secondary to primary mass ratio of 0.001 is too large for a useful
approximation if the existent interaction between pfimary and secondary -
systems is neglected. In a simi]ar study, Singh (1972} finds that by
neglecting this interaction the response of a secondary system in resonance
may be in error by a factor of as much as 7.9,

Upon recognition of the importance of the interaction between primary
and secondary systems; several authors'have suggested methods in which this
interaction is taken into account. Penzien and Chopra (1965) introduce an
innovative approach to calculate the response of a single-degree-of-freedom
system mounted on the top of a mu1ti-degree of freedom building. They con-
sider that each mode of the building and the secondary system form a coupled
two-degree-of-freedom system and obtain the response of the secondary sys-
tem by analyzing each of these two-degree-of-freedom systems by the conventional
response spectrum method. Although in this way they account for the inter-
action between the primary and secondary systems, the method is nonetheless
inaccurate for secondary systems in resonance. This is because the authors
suggest the square root of the sum of the squares to combine all the invoived
modal responses and because this rule is inadequate to combine the modes
with similar natural frequencies of a system with resonant components (see
Chapter 8). 1In like manner, Newmark (1971) develops a simple approximate
procedure to estimate the maximum response of a multi-degree-of-freedom
secondary éystem connected to an arbitrary point of a primary structure.
Based on the modal analyses of the separate secondary system and primary

structure, he derives simplified expressions to compute the maximum amplifi-



cation factors of such a secondary system in each of the modes of jts
supporting structure. In any case, however, his procedure gives only an
upper bound to the true value of the secondary system maximum response
since this maximum response is estimated by adding the absolute values of
such modal amplification factors.

More recently, Sackman and Kelly (1978) propose a method to determine
the.maximum response of an attachment to a building ingeniously derived
from the frequency response analysis of the composite system formed by the
buitding and the attachment. In many respects, their method is, surpris-
ingly enough, parallel to the one described in this work, which is developed
in the time domain. In the derivation of their method, they recognize
the importance of the interaction between primary and secondary systems and
the deficiencies of the conventional rules to combine modes. In addition,
they estimate the maximum response of the attachment or secondary system
using the information furnished by the modal analyses of the separate primary
and secondary systems and the response spectrum of a specified ground motion.
However, they disregard the coupling elements of the damping matrix of the
aforementioned composite system. Since, as it will be shown later on, these
coupling elements may sometimes be an important aspect of the interaction
teween primary and secondavy systems, their method is only valid for the
few cases in which such a composife system has proportional damping. Another
disadvantage of their method is that it models the secondary system as a
single-degree-of-freedom system. With such a model, the method may overlook
significant contributions of the higher modes of a certain secondary system
in the computation of its maximum response, particularly when the frequen-

cies of these higher modes are close or equal to any of the freguencies of



the structure to which the secondary system js attached. Besides, it is

not possible to consider secondary systems connected to their supporting
systems at more than one point. A final objection to their method is that
the expression proposed to compute the maximum response of tuned or nearly
tuned secondary systems furnishes only an upper bound, for the approxima-
tions introduced in its derivation are equivalent to adding the absolute
values of the maximum responses in the two modes with nearly equal natural
frequencies of the associated composite systems. Since this upper bound may
grossly overestimate such a maximum response (sometimes with an error of as
much as 4000 %, according to the comparative study in Chapter 8), the

method clearly needs refinements in this respect.

1.3 Object and Scope

It is evident from the above discussion that the current methods to
predict the response of secondary systems attached to buildings subjected
to earthquakes are either inaccurate or impractical, and that there is still
a need for a simple and reliable procedure to facilitate the seismic anal-
ysis of such secondary systems. Thus, in this work is presented an alter-
native, approximate method that overcomes the weaknesses of the procedures
described above and accurately estimates the maximum response of secondary
systems. This method may be applied for the ana]ysis'of multi-degree-of-
freedom secondary systems connected to arbitrary points of a multi-degree-
of-freedom primary structure and exhibits the following characteristics:

1) It is simple enough to carry out the necessary computations by
hand.

2} It fully takes into account the interaction between a secondary

system and its primary structure, including the damping effect that each



system exerts upon each other.

3) It is formulated in terms of the natural frequencies, mode shapes
and damping ratios of independent primary and secondary systems.

4) 1t uses the ground motion prescribed for the analysis of a
primary system to define the earthquake input to its secondary systems.

5) It may be used to analyze secondary systems which are near or in
resonance with their supporting structures.

The method, however, is limited to those cases in which the separate
primary and secondary systems are linear elastic systems with classical
modes of vibration. In addition, it is restricted to the analysis of
secondary systems which are connected to a primary system at no more than
two points and which have small masses in comparison with the masses of

their supporting structures.

1.4 Basic Approach

In the belief that the only possible way that the interaction between
a primary and a secondary system may actually be accounted for is by
analyzing the interconnected system built up by such primary and secondary
systems and that in spite of its difficulties the response spectrum method
is not only the most reasonable method of analysis but certainly the most
convenient to derive a simple approximate procedure, the development of the
approximate method proposed in this study is based on the following basic
approach:

1) A primary and a secondary system are considered to form a single
assembled system.

2) The response spectrum method is used to determine the maximum

response of this assembled system.



3) Simple approximate analytical expressions are derived for each of
the steps which constitute the modal analysis of such an assembled system.

4) Considering only the response of the secondary system, these
expressions are simplified and integrated into a single relationship.

Obviously, the use of the response spectrum method in the analysis of
such an assembled system brings up the inconveniencies mentioned in Sec. 1.1.
For the practical application of this approach, therefore, these inconven-
iences are circumvented as follows:

1) To avoid the computational difficulties involved in the determi-
nation of the natural frequencies and mode shapes of an assembled system
whose components have masses and stiffnesses of different order of
magnitude, a method is derived to calculate these natural frequencies and
mode shapes in terms of the natural frequencies and mode shapes of its
independent components, i.e., in terms of parameters which normally are of
the same order of magnitude.

2) To take into account the complete interaction between given primary
and secondary systems, the modal analysis of the corresponding assembled
system is carried out in the complex plane; that is, the complex natural
frequencies and complex mode shapes of this assembled system are considered.

3) To simplify such a complex modal analysis, an approximate procedure
is introduced to estimate the maximum earthquake response of systems with
nonproportional damping by the conventional response spectrum method.

4) To accurately predict the maximum response of any assembled system,
a rule is established to combine the modal responses of systems with closely-

spaced natural frequencies.
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1.5 Organization

In Chapter 2 is presented the general procedure by which the response
of a secondary system may be obtained through the modal analysis of the
assembled system formed by this secondary system and its supporting struc-
ture. The aforementioned method to determine the natural frequencies and
mode shapes of such an assembled system in terms of the dynamic properties
of its separate components is developed, and a genera] rule to combine its
maximum modal responses is introduced. For the sake of clarity, the
presentation in Chapter 2 is Tlimited to secondary systems which are
connected to only one point of their supporting systems and which together
with these supporting systems build up assembled systems with proportional
damping.

The derivation of a simplified method to predict the maximum response
of secondary systems based on the developments in Chapter 2 is described
in Chapter 3, In Chapter 4, this simplified method is extended for the
analysis of secondary systems with up to two points of attachment.

Chapter 5 is devoted to the analysis of systems with nonproportional
damping. In this chapter, a brief review of the theory of a complex modal
analysis is made, a criterion is suggested to define the modal damping ra-
tios and natural frequencies of systems with nonproportional damping, and
an approximate procedure is derived to calculate the maximum earthquake
response of these systems with nonproportional damping by the conventional

response spectrum method. In addition, the rule to combine modes presented

in Chapter 2 is generalized for its application to systems with nonproportional

damping.
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On the basis of the concepts introduced in Chapter 5, the approximate
methods developed in Chapters 2 and 3 are genéra]ized in Chapter 6 for the
secondary systems which, in combination with their supporting structures,
give rise to assembled sysfems with nonproportional damping. The obtained
general approximate method for the analysis of secondary systems is then
summarized and illustrated by means of numerical examples in Chapter 7.

The accuracy of the proposed approximate methods is tested by perform-
ing a comparative study between the approximate and exact solutions of
various different systems. Chapter 8 contains the details and results of
this comparative study.

The overall conclusions of the investigation are stated in Chapter 9.
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CHAPTER 2
MODAL ANALYSIS

2,1 Introduction

The response of a secondary system attached to a supporting primary
structure subjected to a specified earthquake motion may be determined
from the separate dynamic properties of the structure and the attachment
and the response spectra of the specified earthquake motion if: (a) a modal
analysis is carried out for the assembled system formed by the intercon-
nected primary and secondary systems and (b) this modal analysis is per-
formed in terms of the above menticned dynamic properties of the independent
primary and secondary systems. In this chapter, then, such a modal analysis
is formulated, and the general procedure by which the maximum response of
a secondary system may be obtained through this modal analysis is established.
For this purpose, methods are herein developed to compute the natural fre-
quencies, mode shapes, and participation factors of such an assembled sys-
tem in terms of the mode shapes, natural frequencies, and mass values of
its independent components; and a rule is introduced to combine its maximum
modal responses when some of its natural frequencies lie close to one another.

In order to introduce the basic concepts in a simple and clear manner,
the formulation of the aforementioned general procedure is here 1limited
to the analysis of secondary systems which have only one point of attach-
ment and which, in combination with their supporting structures, give rise
to assembled systems with proportional damping (that is, assembled systems
whose damping matrices are proportional to their mass or stiffness matrices).

Its generalization for systems with two points of attachment and nonpropor-
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tional damping is left for subsequent chapters.

In accordance with the limitation of assembled systems with propor-
tional damping, it is assumed throughout this chapter that the damping
matrices of given primary and secondary systems are proportional to their
respective stiffness matrices and that the constant that relates this
proportionality for the primary system is always egual to the correspond-
ing one for the secondary system. In other words, it is assumed that the
assembled systems studied in this chapter are always systems with classical
modes of vibration.

For the sake of clarity, too, the expressions developed hereafter are
obtained first for the model depicted in Fig. 2.1 and then generalized for
systems with any number of degrees of freedom and different locations of

the point of attachment by simple induction.

2.2 Mode Shapes of Assembled System

As mentioned in Sec. 2.1, the development of the sought procedure
to determine the maximum response of a secondary system attached to a
supporting structure requires the formulation of a method to compute
the mode shapes of a compound system using the information furnished
by the analysis of its separate components. By following a procedure
similar to the component mode synthesis technique introduced by Hurty
(1965) and described in Ref. 15, such a method is then formulated in this

section as follows:
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Consider the assembled system of Fig. 2.1. Each of its components
may be isolated and considered independently if the reaction that each
subsystem exerts upon each other is taken into account. In this manner,
the primary system may be treated as a three-degree-of-freedom system
with one fixed end and an applied force on its first mass. Similarly,
the secondary system may be viewed as a three-degree-of-freedom system
with free ends and a force acting at the point of attachment (see Fig.
2.2).

Let then the independent primary system be defined by its frequency

matrix
rwp] 0 0
[wp] = 0 mp2 0 » (2.1)
0 0 @
P3

—
¢1(1) @1(2) @I(S)

[s] = @2(1) ¢2(2) @2(3) , (2.2)

@S(i) ¢3(2) ¢3(3)

. —

*
and its generalized masses Mi defined by

x 3 4 i
My = n;} Moer(i), i=1,2,3. (2.3)
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In the same fashion, let the independent secondary system be

characterized by

w 0 0
>0
[ms] = o ws] e i, (2.4)
0 0 w
_J _ 0 0 ]
I = |1 () (@ |, (@)
T 4,(1) 4,(2)
and
* z . . .
j - nZ_I mj ‘t’n(J), J = 1, 23 (2-6)

i.e., its frequency matrix, modal matrix {mode shapes with unit partici-
pation factors) and generalized masses, respectively. MNotice that an
extra degree of freedom is added to the independent secondary system
to account for the rigid body motion of the system. In the above
equations, this extra degree of freedom is identified by the frequency

wg T 0 and the mode shape
0

1630 - gy - (2.7)

—

The mode shapes {¢}(j), J

i

1, 2, in Eq. 2.5 are selected to be the

normal modes of the one-end-fixed secondary system.* As a result, these

*Any set of independent modes may be used to represent the fixed
modes, hut it is convenient that these modes be the normal or natural
modes of vibration [15].
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modes constitute a set of orthogonal modes. It should be observed,
however, that since such modes are not orthogonal with respect to the
rigid body mode, the modal matrix [4] is not, as a whole, an orthogonal
matrix.

Thus, primary and secondary systems may be considered as two
independent conventional systems subjected to external forces, and hence
conventional modal analyses may be performed to determine their displace-
ment response. Since the response of these independent systems represents
the desired mode shapes of. the assembled system (multiplied by a function
of time), the mode shapes of this assembled system may be then found
from the modal analysis of such independent primary and secondary systems

as follows:

Primary System

With reference to Fig. 2.2(a) the equation of motion for the primary

system is given by
[M] {ip} + [K] (X} = (R(t)}, (2.8)

where {xp} is the vector of displacements, relative to the ground, of
the primary masses, {R(t)} is the vector of the external forces applied
to the system, given by
R(t)
R(t)y=¢ 0 ), (2.9)
0
and [M] and [K] are, respectively, the mass and stiffness matrices of

the system.
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Under the transformation
{xp} = {o] {Y'}, (2.10)

which explicitly may be expressed as

r ) ' A ~ 3
X ‘3](]) ‘1’1(2) @'[(3)

<Xp2 )= <¢2(1)> Y; + <@2(2)

—
-
[ 2
+
e N

5,(3)) g, (201)

o) L0 95(3) 25(3)]

¥
where Yi’ i=1, 2, 3,are unknown functions of time, this equation of

motion may be then written in normal coordinates as

- T () * 2 FN
mooo0 |Y, Ky Y. 2, (1)
* .l '* '
0 My 0 (Y, + 10 Ky, O (Y, =(8,(2) HR(t)
‘* ..‘l * ]
0 M) 00 K Uy )

(2.12)

*
in which Mi’ i=1, 2, 3, are the generalized masses of the primary system
(see Eq. 2.3) and K:, i=1, 2, 3, the corresponding generalized stiffnesses
(KF =2 )
.i - wpi ',i »
Now, since {xp} raepresents the displacements of the primary masses

in one of the modes of the assembled system (displacements in a free

vibration motion)}, this vector may then be expressed as

{xp} = {up} cos(w-6) (2.13)

where {up} is the part corresponding to the primary system of such a

mode shape of the assembled system, » is the natural frequency in this
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mode, and 0 is a constant phase angle. In the 1ight of Eq. 2.10, the

vector {Y|} may be therefore written as
' _
(Y 1 = {Y} cos (w-0) (2.14)

in which {Y} is simply a vector of unknown amplitudes.
Thus, by substitution of Eqs. 2.13 and 2.14 into Eq. 2.10 one has
that

{up} = [o] (Y1 . (2.15)

Similarly, if: (a) Eq. 2.14 is substituted into Eq. 2.12, (b) R(t) is

solved from the first and substituted in the second and third component
: *

equations of this Eq. 2.12, (c) Y, is set equal to unity and (d) Y2

and Y3 are solved from these last two component equations, one obtains

2 *
w - u)p M ® (2)
Y, = = 2] a 51177 (2.16)
W o= w My 1
Py 2
2 2
woom ey g (3)
Y, = oyl 1] (2.17)
3° 7T w1y .
) M 1
Py 3

It may be inferred, therefore, that for the general case the primary
system part of the rth mode shape of an assembled system may be expressed

das

tup}(“) - [s] 3T (2.18)

(r)

where the Yi factors are of the form

*Notice by inspection of Eq.2.15 that because the mode shapes are

only relative in value, the factors Yf, i=1,2,3, are also relative in
value.
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2

o, - “p. Mi/8, (1)
r \
s I R KRS (2.19)
Wy, ~ wp. N_i/¢k(1)

1

in which the subscript k indicates the primary mass to which the secondary
system is attached, o, is the natural frequency corresponding to that rth

mode shape, and N_ is the number of degrees of freedom of the primary

p
system.

Secondary System

A similar procedure may be followed for the secondary system. In

this case, the equation of motion is
[m] {x_} + [K] {x} = -(R(t)} (2.20)

where {xs} represents the displacement vector of the secondary masses,
also relative to the ground [see Fig. 2.2(b)]; [m] and [k] are the
secondary system mass and stiffness matrices, respectively; and {R(t)}
is as defined before.

Equation 2.20 may also be transformed into normal coordinates
although, because of the rigid body mode of the system, such transformation

does not uncouple the equations of motion. Accordingly, if {xs} is

written as

{x;} =[] Ly}, (2.21)
which in its expanded form results as

CY ) A r B

Xe 1 0 0
0
Voy =41 Yo rinp v (oy@)) vy (2.22)
! $5(1) (#2(2)]

-
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Eq. 2.20 becomes

é’"n Emn‘bn“) Emn¢n(2) ] rji(‘; EREE (y(’; (Rt

gmnq;n(]) mT 0 <y] $+ 0 K 0 <y;>=§ 0

L—rglmn%(z) 0 my | 5 “0 0 k;J s | 0
(2.23)

where {y'} is, again, a vector of unknown functions of time, and mf and
*
kj’ j=1,2, are the generalized masses and stiffnesses, respectively, of

* 2 *
the secondary system (k. = v m,).
J SjJ
If by the same argument presented for the primary system the vector

{xs} is expressed as
{x,} = {u } cos(u-o), (2.24)

where {us} is the secondary system part of the mode shape of the
assembled system whose natural frequency is », then {y'} may be put

into the form
{¥'} = {y} cos (w-0) (2.25)

in which, similarly to the vector (Y} for the primary system, {y} is
a vector of unknown amplitudes.

Thus, by virtue of Egs. 2.21, 2.24 and 2.25 {u} may be written as
{u .} = Lol v} . (2.26)

In Tike manner, if Eq. 2.25 is substituted into £q. 2.23 and if the

following relationship applicable to mode shapes with unit participation
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factors is employed:
. 2. *
I (@) = Imye () = mg 3 =1, 2, (2.27)
n

the last two component equations of Eq. 2.23 lead to

2
T e BN (2.28)
i) - W
51
2
o y (2.29)
Yo 572 7 0
CL)S =
2

In the general case, therefore, the secondary system part of the

rth mode shape of an assembled system may be expressed as

{us}(’") = 6] 3" (2.30)
where the associated y§r) factors result of the form
(r) _ “E (r) .
yi ' = ;§*t—;§- Yo 's 3712500 0Ng (2.31)
S.j r

in which NS represents the number of degrees of freedom of the constrained
{no rigid body motion) secondary system.

It should be noticed that in this case the unknown factor Yo cannot
be given an arbitrary value because {up} and {us} together represent a
mode shape of the assembled system under consideration and because an
arbitrary value has been already selected to define this mode shape
(i.e., Yy = 1.0). Consequently, ¥q should be soived from the equations of

motion of such an assembled system (Eqs. 2.12 and 2.23) or, more
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conveniently, from the compatibility conditions. Here, the latter

approach is utilized as follows:

Compatibility Conditions

By compatibility, it is known that the displacements of the
point of attachment of the secondary system and its supporting primary

mass are the same, That 1s,

X =X . (2.32)

Therefore, if this compatibility relation is written in normal coordinates
by applying the transformations given by Eqs. 2.11 and 2,22, after using
Eqs. 2.14 and 2.25 one obtains

Yo = 87(1) Yy + 2,(2) Y, + 20 (3) ¥, (2.33)

(r)

The general expression for the factor Yo of Eq. 2.31, which may
be called the compatibility factor inasmuch as it depends on the

compatibility conditions, results thus as

=

(r)_ _ P oy oy(r)
Yy = upk(r) -121 2 (1) Y3 (2.34)

where subindex k is, again, the number of the primary mass to which the

secondary system is attached and,as before, Np is the number of degrees

of freedom of the primary system.

Summarx

Summing up the above results, one has thus that the rth mode shape

of .a system formed by its assembled primary and secondary systems is
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given by the following two equations:

N
(r) = 3Py (r) g ()
s 121 Yo e} (2.35)
(r) _ > (r j
tu =] y§ Yy (3 (2.36)
J=0
here { }(r) d (r) i
where up an {us} are the parts of this rth mode shape correspond-

ing respectively to the primary and secondary systems,

ol a2 MY/ (1)
r P $
yir) . LI il S T P (2.37)
1 m2 -mz M./0, (1) P
roop; i’k
(r) o (r)
r) _ T r .
yj = m2 ‘— wz yo [ J ]’2,---,Ns (2-38)
5
N
| J
yér) =y (r) =} o (i) Ygr) (2.39)

L T
and
w,. = assembled system's rth natural frequency
k = number of the primary mass supporting the secondary system
N_ = number of degrees of freedom of the primary system

N_ = number of degrees of freedom of the secondary system
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It may be observed from the inspection of Eqs. 2,37 and 2,38 that
whenever one of the frequencies of the assembled system matches one of
the frequencies of the independent primary or secondary system, Ygr) or
y§r) may acquire infinite values. As a result, Eq. 2,37 is not valid
when o = Wy » and Eq. 2.38 is not valid when w. = w, . It should be

. S.
noticed, how;ver, that these equations have been deriged for closely-
coupled systems and that for this kind of systems such cases can never
occur.

It is also important to note that the above equations have been
derived without having introduced any approximation. Hence, Egs. 2.35
through 2.39 Tead, provided the natural frequencies of the assembled
system are known, to the exact mode shapes. In view that Eq. 2.35
and 2.36 are expressed as combinations of the mode shapes of the
independent subsystems, by neglecting the insignificant modes of each of
these subsystems Eqs. 2.35 through 2.39 lend themselves, nevertheless,
for obtaining simple approximate relations for such mode shapes. An

approximation used, in fact, in the simplified approach proposed in

Chapter 3.

2.3 Natural Frequencies: Resonani Modes

It may be observed that in order to compute the mode shapes of an
assembled system with the procedure formulated in the previous section
it is necessary to determine first its natural frequencies. To obtain
these natural frequencies, then, one might continue that procedure and
also solve the associated eigenvalue problem from the transformed

equations of motion. This approach, however, becomes to involved

and does not lead to explicit relationships. An approximate alternative
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may be utilized instead by making use of the fact that the natural fre-

quencies of a system are always stationary in value in the neighborhood
of its exact mode shapes* (that is, small variations from the true mode
shapes only produce higher order variations fn the frequency values) [8].
A fact that in combination with Egs. 2,35 through 2.39 may be used advan-
tageously to obtain accurate estimates of the sought natural frequencies
of assembied systems from simple approximations of their mode shapes.

In this section, this latter approach is accordingly used to aerive an
approximate formula for the natural frequencies of assembled systems

~ whose primary and secondary components are under resonant conditions.

It has been observed by Nakhata, Newmark and Hall (1973) that
whenever one of the frequencies of a secondary system matches one of the
frequencies of its primary system (resonant case) the assembled system
has to modes whose freauencies are very close to the frequency in
resonance (the closeness depending on the mass values and interconnection
of the subsystems in question). From this observation and from the
analysis of Eqs. 2.37 and 2.38, it may be seen that the modes of the
independent components which most significantly contribute to the
summations of Eqs. 2.35 and 2.36, and therefore to the values of a mode
shape of an assembled system, are those whose frequencies are the
closest to the frequency of the assembled system in such a mode. Conse-
quently, if only such closest component modes are taken into account, the
resonant modes of such an assembled system (i.e., the modes whose

frequencies are close to the resonant frequency) may be approximated as

{up}(“) - Y§F){¢}(I) (2.40)

*This property of the natural frequencies of a system is known as
Rayleigh's principle [14]
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a3 = i)y 00) (2.41)

where subscripts I and J identify respectively the primary and secondary
modes whose frequencies are in resonance.

Since by knowing Y§r) and ygr) one may know {up}(r) and {us}(r),
Egs. 2.40 and 2.41 suggest thus that in the resonant modes the assembied
system may be reduced to an approximate equivalent system with only two

degrees of freedom. Accordingly, if'the equation of motion for the system

of Fig. 2.1 is written in a partitioned form as

M 0 0 x ) Kty K, 0 1fx ) rkT o ol (x )r)
Ra! Py P
- + -
0 M, O fpz Ky KpbKg Ky xpz +10 0 O xp2
0 0 M X 0 K K ' o 0 0
3 p 3 3 Xp3 xp3
- 7
k, 0 SO
X
5
-{0 0, ={ 0 (2.42)
S
0 0 2 0
. (r) ' X (r) (r)
m, 0 xsl k1 0- 0 Py k]+k2 -k2 x51 0
. - X + = )
0 m, x52 0 0 O . 2 -ky K, xs2 0
P3
(2.43)

by substitution of Egs. 2.13, 2.24, 2.40 and 2.41 and premultiplica~-
T
)

, T
tion of Eq. 2.42 by {¢}(I and Eq. 2.43 by {¢}(J) such an equation of
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motion may be reduced to the following matrix equation:

* (r) * 2 (r)
2 MI 0 YI K +k ‘I’](I) 'k]‘b](l)‘j’](‘-]) YI 0
- + =
ol N * . (2.44)
0 myt Yy -kyo,(Ieq(3)  « Y 0 .

J

This equation is the free vibration equation of a two degree of
freedom system; from the soltution to its characteristic equation the

natural frequencies of the assembled system results then approximately

as
1/2
> K kg (1) k:; : K kg8 (1) kz \ 4k2¢2(1)¢$(d)}
v, Ty % g eyt s hE s L (2.45)
M m M my Mpm,

. cp te s . 2 * % 2 * %
which, if it is considered that: (a) w? = Ki/M; and «° = k,/m_ ,
p, LI sy
(b) by assumption the jth secondary mode is in resonance with the Ith

primary mode and hence

k* K*
S E= (2.46)
my MI
where wy is the resonant frequency, and (c) for mode shapes with unit
participation factors w§ may be written as (See Appendix A)
kq$,(J)
wg = w2 = *l*%r—m R (2.47)
J ° m
J
may also be expressed as
$5(1) o2 (1) $200) | 172
m2=m2+lm2 1 IR 1 [1+4 ) ”1-"-] (2.48)
r Yo" 2% 4,{J) 13 =7 % 9,{J) '1J 2(1) Y1 '
1
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where Y1g is the mass ratio for the Ith primary and Jth secondary modes

defined as

Y19 T M (2.49)

= *!C—-E* .

But for small mass ratios (YIJ<<1.0). the second term in the right-hand
side of the above equation is small when compared to mi whereas the sec-
ond term within the square root is much greater than unity. Therefore,

2

for small mass ratios W, may be approximated as

oh = W8 (12 e (1) AT (2.50)

For systems with the secondary system attached to the kth primary
mass, this expression may be thus generalized as

wo = w5 (1 £ 8 (DAL - (2.51)

Hence, since for small mass ratios the second term within the parenthesis

is less than unity, W results as

op = ug {1+ 3 0, (1A . (2.52)

Equation 2.52 provides thus the simple approximate formula sought
to compute the natural frequencies of the resonant modes. MNotice that
this equation verifies the observation made in Ref.19 and stated at
the beginning of this section. That is, it verifies that indeed the
interconnection of primary and secondary systems with a common frequency
gives rise to an assembled system with two modes whose frequencies are

very close to each other and close to the common resonant frequency.
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Notice also that Eg. 2.51 indicates that such a closeness increases as the
mass ratio decreases. Therefore, the statement made at the end of the last
section about the impossibility of having an assembled system with frequencies
equal to the frequencies of its separate subsystems is also corroborated

by this equation, because i1 shows thap in order to have such a case a

mass ratio with a zero value is necessary. A value that is only possible,

obviously, for nonexistent secondary systems.

2.4 Natural Frequencies: Nonresonant Modes

It is also noted by Nakhata, Newmark and Hall (1973) that the frequen-
cies of an assembled system which are not close to a resonant frequency
{frequencies of nonresonant modes) only depart slightly from the original
frequencies of its independent primary and secondary systems. Therefore, a
procedure similar to the one used for the resonant case may be followed to
derive the natural frequencies of such nonresonant modes.

If, accordingly, it is assumed that each nonresonant mode at the assem-
bled system of Fig. 2.1 is composed by only those modes of the independent
components whose frequencies are the closest to the frequency of the non-
resonant mode in question, assumption that is tantamount to set in Eqs. 2.11
and 2.22

.

G-y g ger (g

: _
] o, (2.53)
J

Cay -t
“H S SH

[}

where I and J are, respectively, the subscripts corresponding to the men-

tioned primary and secondary closest modes, Eqs. 2.12 and 2.23, the equations

of motion of this assembled system, mav be similarly reduced to the following

system of equations:

+ K v; = ¢ (1) R(t) (2.54)

* oot

MYy
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s * ..
(g m) yg +my ¥y = -R(t) (2.55)
* oy b I * _
my Yo * My ¥yt kyyy =0 (2.56)

in which @1(1) has been changed to ¢ (1) in order to generalize this deriva-
tion for any support conditions. By the same token, the compatibility

factor given by Eq. 2.39 may be approximately written as

v = g (1) vir) (2.57)

Substitution of Egs. 2.14, 2.25 and 2.57 into the above system of

equations and elimination of the reaction R(t) from Eqs. 2.54 and 2.55 lead

then to
* 2 * (r) * (r)
Mp + @k(I) (E mn) @k(I) m, Y, K; 0 Y
- + =
* * * 0
¢k(I) mJ mJ yJ 0 kJ yj

(2.58)

which after neglecting the term @i(l) (% mn) Teads in turn to the following
characteristic equation:
2 2
® 2w 2
Pp - wp 785~ @ 2
(-~ 2 ) (=) = o (v . (2.59)
r

w
r

It may be observed thus that for small mass ratios the frequencies of
nonresonant modes are essentially the same original frequencies of the inde-
pendent primary and secondary systems. Therefore, these frequencies may be

approximated without much error as

wr‘_l = ub]:‘ (2.60)
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o = - (2.61)

The adoption of this approximation gives rise, however, to some
difficulties since in these cases the factors Y§r) and ygr) as given by ‘
Egs. 2.37 and 2.38 reach infinite values. To overcome these difficulties,
then,alternative formulations for those particular cases are presented in

the following sections.

(r) (r) -
2.5 Yi and Y3 Factors When w,, mpI

When a frequency of an assembled system is very close to one of
the frequencies of its primary system, Eq. 2.37 demahds great accuracy in
the value of the frequency of tﬁe assembled system in order to obtain a
reliable value of the corresponding Ygr) factor. In such a case, a more
convenient alternative expression for Y%r) may be developed if in the
derivation that led to Eq. 2.19,instead of Y%r),the Ygr) factor correspond-
ing to wp ,the closest primary frequency to the frequency Ws is now set

I
equal to unity. In this manner, the following equation is obtained:

Y§”)= T~ (2.62)
Thus, if w_ is approximated as indicated by Eq. 2.60, thevgr)
factors when . = w_ result as
rpg
1if i =1
yir) . (2.63)

! 0if i#1
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Notice that this result may be verified by analyzing Eq. 2.19
itself. For, if w,, is very close to mp » then Y%r) becomes a very large
I
quantity while all the other Ygr) remain comparatively small. Hence,

(r)

if all these values are normalized with respect to YI » the same con-

clusion (i.e., £q. 2.63) approximately follows.

The y§r) factors may be computed directly by Eq. 2.38, even if o is
approximated by wp . It should be noted, however, that this approximation
is not valid when w0y is close to any of the frequencies W because in

[ ,

such a case the frequency W should approach the value of the frequency

of a resonant mode. To establish, then, the separation between by
I

and W for which such an approximation is valid, one may observe that

in the Timiting case when mp = wg s wE is given by Eg. 2.51 and consequently
I J
for this Timiting case one has that
(r)
(1) ord) TN O .
i sy (1) Lyl s —0— . (2.60)
wg = W YIJ Cbk(I) YI;]'

Hence, since the y§r) factors should be less than or equal to this value,

for all cases the following condition need be satisfied:

e L ”

o (1)ATT l : (2.65)

(r)

Thus, when w, is approximated by wp s the yj factors may be
I

calculated by

(r) _ (r)
.Yj 5 2 Yo (2.66)
. wg
i P



if

i L B

@k(I)/«Egi ; (2.67)

otherwise, ygr) should be computed by considering W and mp as rescnant
J I
frequencies.

(r) (r) . -
2.6 Yi and yj Factors When ©. wsJ

When w, = W s the Ygr) factors may be calculated directly by Eq. 2.37.
d
But, as in the previous case, the calculation of these Ygr) factors should

be Timited to those values of w and W for which such substitution of

Py J
W, by W remains valid, By following the procedure in that previous
J
case, the valid relation between Wy and wy  may be therefore established
i J

as follows:

According to Eq. 2.37 and 2.51 when mp = we {that is, when wp
i J i
and w, are in resonance), the corresponding Ygr) factor resuits of the
J
form
wz wz * w2 _ wz -
MMl A1) B e S L) R
1 . —_ . .
w. - wp-i M.i/ilk('l) +wSJ @k('[)\/ iy Mi/d>k('l)
Therefore, for all values of wp one has that
i
w2 _ u)2 wZ _ w2
r p. S p
w g (1] [iH]
r Py S
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Thus, when W, is approximated by Wy , the Ygr) factors may be
J
expressed as

wz —wz P*
Y(r) sy Py 4]/¢k(1) )
i T W (2.70)
msJ wpi i’ %k
if
l wl -y
s Pa
J i .
l —-—;§——— > l@k(1) JYij b (2.71)
53

If this condition is not satisfied, the'Ygr) factors should then be
calculated as if wg and W were resonant frequencies.

J i
Contrary to the Ygr)'s, the v§r) factors cannot be determined by

o

£Eq. 2.38 when the frequency @ is assumed equal to msd. In order to

be able to approximate the natural frequencies of nonresonant modes by
Eq. 2.61, an alternative expression is thus necessary to calculate the
ygr) factors in such a case. Although not as straightforward as for the
Y$r) factors in the previous section, this alternative expression may
still be developed by recurring to the original formulation that led to
Eq. 2.31 as follows:

With reference to the model of Eq. 2.1, let w be the frequency of
the assembled system that is close to ms], the first frequency of the
secondary system, and assume that except for y1, the one that corresponds
to ms]’ all the Yi and ¥; factors in Egs. 2.12 and 2.23 have been previously
determined. Thus, if R(t) is solved from any component equation, say

the ith, of Eq. 2.12 and the result is substituted into the first of

Egs. 2.23, the following equation is obtained:
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* . .y R '] koo _
Mg Yo ¥ My Yy v My ¥y + E;T?T'EMi Y% + Ki Y%] =0 (2.72)
in which
* )7 (0) |
my = {¢} [m] {¢} = Zmn . (2.73)
n

By substituting Egs. 2.714 and 2.25 and solving for yy» one then obtains
2 2 2
(w_p-i-m ) Y.‘ - ‘I’](]) uw [Y'IO 'yO + YTZ yz]
¥y = 5 (2.74)
ol (1) W Y.
1 il

where
*
m, :

Y--z'J-J*'a j=03132. (2'75)
M,

If Eg. 2.31 is used to disclose the relative magnitude of all the
yj factors in £gq. 2.74 and if_it is considered that by assumption w is
very ciose to W, s it is easy to see that the value of 2 is considerably
larger than the value of all the other yj's are. If in addition it is
considered that the values of the mass ratios Y10 and Y11 are small,
then it may be deduced that the terms between brackets in Eq. 2.74 are

negligibly small. Consequently, yy may be approximated as

(mg_ - mz) Y.]
y. = 1 . (2.76)
L (i) 2

1 AL B
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In general, when the rth frequency of an assembled system is close to
the Jth one of its secondary system,its y§r) factor may be .therefore

expressed as

g (r) |
o - . . (2.77)
) (1)MEY1J

To complete the derivation, w,, May now be substituted by we - As
J
in the previous cases, however, it is necessary to determine first the

relation between the values of w_ and 0 for which such a substitution
i J '
is applicable. Again, this relation may be obtained by noticing that when

Wy and mp are equal, ©, is the frequency of a resonant mode. Accordingly,
J ! (r)

if Eq. 2. 51 is substituted into Eq 2.77, in such a case Y3 results as
2 2 |
wo - W {r) (r)
OO N B O ' 0 (2
Y3 .y 2 i = ey e —
‘l’k(]) wr YiJ (] + q’k(.') 'Y]J) Y3 Yi\]

Then, since for th1s 1imiting case ub and wy, get the closest and therefore
(r) reaches its minimum value, in a11 cases the following relationship

shou1d he satisfied:

P |
— ] 2 e (1) Ay |, (2.79)

By replacing . by wg in Eqs. 2.77 and 2.79, one has thus that

when Wp = g the er) factor may be alternatively expressed as
J

> (2.80)
¢k(1)“sJYiJ
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if
s
“‘”ﬁf‘”“ > |¢ (1) l . (2.81)

Similarly to the previous cases, if W and wy do not satisfy this

(r) J

i
relation, Y3 should then be computed as for resonant modes.

2.7 Participation Factors

Although the participation factors for an assembled system may be
computed directly once its mode shapes are known, it is convenient, never-
theless, to derive an analytic expression for these participation factors
in order to study their variability with different values of the different
parameters defining that system and to develop hencefrom simpTle approximate
retationships. If, as indicated in Sec. 2.2, the mode shapes of such an
assembled system are expressed in normal coordinates, a simplified analytic
expression for its participation factors may be then obtained as follows:

By definition, the rth participation factor of an assembled system

may be expressed as

N N
P ! S
nz] Mn upﬁr) + Z} m usgr)
- n=
Zp ug (r +30 moug (r)
n=1 n

where, as before, Uy {r) and us(r) represent respectively the amplitudes
n n
of the primary and secondary masses in the rth mode of this assembled

system and Np and NS are their respective number of degrees of freedom.
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If by virtue of £q. 2.35 and 2.36 u, (r) and ug (r) are expressed as

n n
"o
upn(r) = 121 Ygr) ¢n(i) (2.83)
NS
ug {r) = _20 ygr) o(3) (2.84)
n j=
then a,. may be written as
N /() NS | H "
o=t LYT My (D] + jzoy Zm WENIVA Z v{r ZMn¢n )] +

A N,

N
PoPuir)y(r) M2 2,
* L t§1vsr Ytr.fg Mponlsleg(t)] + § 73 (r [y (4)]
s¢t
Ns N
) 2 Y r)ytr)[Zm ta(s)e, (1)T1 (2.85)
5=0 t=0 :
st

where Z simply indicates the sum for all n. However, since {¢}(i).
n .

i=T1, 2, «.., Np, and {¢}(J), I=1s 2y «vus Ns,are mode shapes with unit

participation factors and {¢}(0) is a vector of unit elements (see Eq. 2.7),

one has that

N N -
o R 2o R
n§1 Moo (i) = nE1 Mo () = M i =152, oy i (2.86)
N M
3 : > 2. *
Lomeg(3) =1 me (3) =my 3=, 2, L, N (2.87)

n=1 =1
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Ng Ny 2 *
nz] m, ¢n(o) =n£1 mdy (0) = E My =mg - {2.88)

Similarly, in view of the orthogonality conditions it may be observed

that
NP
LMoo (s) g (t)=0,t#s, torsfo (2.89)
n=1
Ny
n§1 My ¢,(s) ¢ (t) =0, t#s, tors#0 (2.90)

Consequently, Eq. 2.85 may be put into the form

Np 5 - . Ns . Ns .
-Z Mivgr) + ygr)(mo - .Z mj) + 'Z mj(yor)+y§r))
= 1§; . . J‘]NS L =+ (2.0)
* y(r) (r)® * _ * S ko (), ()
121 M, Yy * ¥ (m0 jZ]mj) +j£] mj(y0 *Y; )

‘ *
and thus, i1f it i{s considered that the values of M J=10,7, ..., N, and

* S *
of the difference my - N m; are small and, hence, that the terms multi-
31

plied by this difference may be neglected, a, may be approximated as

N N
R LR TG ILE
_ i=1 j=1 4 70 J (2.92)
Ctr' N : N * 2 ' . )
P % (1)2 Syt 4 y(r)
Lomovimee oMyt Tyl

—de
—

J=1
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A simpler approximate fofmula for a, may be obtained from this
equation by considering only the Y(:) and ygr) factors which significantly
contribute to the indicated summations. Accordingly, since by inspection
of Eqs. 2.37, 2.38, 2.51, 2.60 and 2.61 one may conclude that of all such
factors the largest in value are those corresponding to the closest

natural frequencies of the primary and secondary components to the rth

natural frequency of the assembled system, by denoting these largest

factors by Ygr) and yér), Eq. 2.92 may be written approximately as
r
BrY§ & [yor) ¥ ySr)]YIJ
T, e, (] 2%
r r r
Yf +[.y0 +.yJ ]YIJ
* %
where it is recalled that Yig = mJ/MI and Br is defined as
i
p
I Ygr)
_ i1 _
B, = ) (2.94)
MI YI

Notice that .E Mivgr) in this last expression cannot be approximated
by M?Ygr) be;;lse its different terms may not be very much different in
value. Notice, however, that when M?Y%r) is indeed Targer than the rest
of the terms in the summation Br results very close to unity.

Equation 2.93 is the desired simplified expression to compute the
participation factors of an assembled system and the basis to derive

with further simplifications the less accurate but simpler relationships

in Chapter 3.
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2.8 Maximum Modal Responses

In this study, the structural response of a secondary system to
any given ground disturbance will be measured by the maximum.distortions
of the elements between its masses. Therefore, this response will be
henceforth identified by what will be called "secondary element distor-
tions"*. Such maximum distortions are of interest because they are
directly related to the maximum stresses that earthquake ground motions
induce into a system. It should be noticed, however, that the procedure
presented in this section is not Timited to this kind of response; it may
be applied as well to predict any other response, as long as the expressions
derived below be adjusted according to the definition of the response
under consideration.

In accordance to the response spectrum method, the rth vector of maxi-
mum modal distortions of a system is determined by multiplying its rth vector
of modal distortions (i.e. the difference in modal amplitudes between
adjacent masses) by its rth participation factor and by the ordinate in
the displacement response spectrum of the specified earthquake excitation
corresponding to the frequency and damping ratio of its rth mode. For an
assembled system such an rth vector of maximum modal distortions may be

then expressed as
{X}(r) = o {du}(r) SD (w,, £,) = {du'} SD (w0 £) (2.95)

where {du}(r),the rth vector of modal distortions, is of the form

*Spring distortions or story drifts may be used as alternative names,
bgt given the diverse nature of secondary systems these alternative names
might not sound appropriate.
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rup (r) ~
1
upz(r) : up](r)
tduy™) =< " . > (2.96)
u51 r ? upk(r)
(r) - (
kuSNSr ust—l r{

{du'}(r) is the rth vector of unit-participation-factor modal distortions

defined as
w3 < ar{du}(r), (2.97)

and SD(mr, gr) is the aforementioned spectral displacement corresponding
to the rth natural frequency and the rth damping ratio of the system.
Presumably, the rth modal response of the secondary system aione

may be written as

R gr) (2.98)

(r) _ (r) - e L (r)
{xs} = ur{dus} SD (wr, gr) = {du o} SD (mr

where, correspondingly,

il

{du;}(r) ar{dus}(r) | (2.99)

and

{dus}(rl (2.100)

1t
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2.9 Maximum Response: Combjnation of Modal Maxima

It has been recognized by several authors [1, 12, 28, 29,30] that
the most commonly used rules to combine modal responses may become greatly
jnaccurate when they are applied to systems in which two or more of their
frequencies 1ie very close to one ancther. For instance, the absolute
sum of the maxima, an upper bound, may grossly overestimate their true
maximum responses and the square root of the sum of the squares (SRSS),
although it gives fairily good results for systems with well-separated
frequencies, may give values far off their exact solutions. This fact
may be exp]a{ned as follows:

When all the frequencies of a system are well separated from one
another the system usually has a dominant mode; therefore, its maximum
response may be expected to be close to the maximum response in such
dominant mode. For these systems, then, the rule used to estimate that
maximum response is of little imporiance since no rule can deviate very
much from the exact solution. In contrast, if a system has two or more
natural frequencies close to one another, then it will have two or more
modal responses with the same order of magnitude. As a result, since the
contribution of each of these modal responses is equally impoftant, the
estimate of its maximum response become very sensitive to the rule adopted
to combine those modal responses.

Since the assembled systems under study may have closely-spaced
natural frequencies (see section 2.3), it may be seen, thus, that the
accuracy achieved in the prediction of their maximum response may depend
strongly on the rule selected for combining their modal responses. To

estimate, then, with a reasonable accuracy the maximum response of these
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assembled systems, a general criterion to combine modes applicable to any
of such systems is next described, discussed, and after a few simplifications,
established for the systems treated in this chapter. In Chapter 8 this
criterion is evaluated by comparing solutions obtained with conventional
rules and with exact methods.

From random vibration theory [12], it has been established that the
general expression for the maximum response of a N-degree-of-freedom system

is of the form

TN
£ 7T o ™ o (2.101)
=1 p=1 M
m#n

N 7
- (r)
Xy =/ 3

where {X}max is the vector of maximum responses to a given ground disturbance,
i.e., the vector of maximum element distortions discussed in Sec. 2.8;

{X}(r) is the vector of maximum modal responses corresponding to the rth

mode ; and o is a factor, called modal correlation factor, that weights

the coupling between the mth and nth modes. The absolute value of %N
varies between 0 and 1.

In view of the fact that formula 2.101 is approximately equivalent
to the solution formulated by random vibration methods, it may be assumed
that this formula gives the "exact" maximum response. In this context,
therefore, the problem of predicting the maximum response of a system is
reduced to one of determining its modal correlation factors %n since,
once these factors are known, the calculation of the maximum response
readily follows. Unfortunately, such modal correlation factors cannot

be determined in a precise manner. The chaotic nature of earthquakes

makes extremely difficult the derivation of exact analytical expressions
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to relate those factors with the characteristics of structures and earth-
quakes. As a result, the maximum response of a system may only be
approximated by introducing assumptions concerning its modal correlation
factors. Thus, for example, if the correlation between jts modes is
assumed small, every one of its correlation factors may be set equal to
zero. Then, the SRSS rule is obtained. Similarly, if it is assumed that
every one of its modes is perfectly and positively correlated with one
another, then each of its correlation factors may be set equal to unity.
This assumption is thus tantamount to the absolute sum of the maxima.

It is apparent, therefore, that an accurate rule to combine the modal
responses of a system with various modes of similar importance may be
obtained if valid assumptions regarding its modal correlation factors may
be established. 1In terms of the separation between its natural freguencies,
Rosenblueth (1968) has derived an approximate expression for the modaT
correlation factors of such a system. Based on a model in which seismic
disturbances are idealized as a segment of a stationary white noise process,

he proposes

o = 1 (2.102)

where Es T =M, Ny Q corrected damping ratio to account for the transitory
nature of actual earthguakes, is given by

=g

+-2  yr=m o (2.103)
r wrs

and w.e T 7 M, oM, is the rth natural circular frequency of the system.

In this latter formula, gr,'r =m, n, is the corresponding rth modatl
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damping ratio and s is the duration of the above mentioned white noise
process which most closely represents the earthquake excitation under
consideration. In general, this equivalent duration does not coincide
with the actual duration of such an earthquake excitation and is different
for earthquakes with different characteristics, For design purposes,
therefore, s should be determined from the characteristics of the average
earthquakes expected in an area of interest and from given site conditions.
Thus, for example, Rosenblueth and Bustamante {1962) found that for a
group of earthquakes recorded 6n relatively firm ground along the West
Coast such an equivalent duration may be taken as 12.5 sec. In Sec. 2.10,
a procedure is suggested to calculate the equivalent duration of a group of
earthquakes from its average response spectra.

Equation 2,101 in combination with Eq. 2.102 satisfies the following
Timiting conditions:

1. When for all m and n 9 and w are far apart from each other,

every o, approaches zero and hence Eq. 2.101 results as

|

7
_ (r)
Xhax = r21{X} (2.104)

2. For a two degree of freedom system with wy T, and g] = 52

Eq. 2.102 gives a,, = 1.0 and as a result Eq. 2.101 becomes

12
- () (2)
Xlpax = X3 + {X} (2.105)
3. For every value of %
X (r) )
X} < L[y (2.106

r=1
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Observe also that when s, the earthquake equivalent duration, approaches

infinity, the modal correlation factor for undamped systems approaches
zero; hence, for large s Eq. 2.101 is tantamount to the SRSS rule. On
the other hand, when s approaches zero, % approaches unity; then Eq.
2.101 turns out to be the algebraic sum of the modal maxima.
Rosenblueth's method remains valid as long as the assumptions on

which the derivation of Eq. 2,102 is based are approximately satisfied.
According to Newmark and Rosenblueth (1971j, this equation is valid if
for a given structure and an actual earthquake:

a} The dominant natural perjods of the structure are not
excessively short,

b} The velocity response spectra as a function of the natural
circular frequency do not have too pronounced a curvature in
the neighborhood of the natural frequencies of the structure,
and

c) The fundamental period of the structure is shorter, or at least not

much Tonger, than the duration of the earthquake.

Accordingly, Rosenblueth's rule will be accurate for most practical
structures when they are founded in firm ground at moderate distances
from focal points and when the shorter periods of the structure do not
significantly contribute to the response.

Notice, however, that even though Rosenblueth's rule may be applied
to a broad variety of structures, it may not be considered as a general
rule. In this respect, therefore, Eq. 2.101 should be thought as that
general rule in which the specification of the required modal correlation

factors may ultimately be left to the designer's judgement, who, in any
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particular case, may consider appropriate to choose, for the sake of
simplicity, conservative values. Notwithstanding, the derivations in
this work will be lTimited to those systems for which RosenbTueth's modal
correlation factors are app]icable.ri

Thus, if it is taken into account that for an assembled system of the
kind studied in this chapter the natural frequencies of its separate
primary and secondary components are, ?y assumption, far apart from one
another and that the resulting natura!kfrequencies of its resonant and
nonresonant modes are very close to tho%e of such separate components,
all its correlation factors other than ihose between two adjacent
resonant modes may bé neglected and, as a consequence, for such a system

Eq. 2.101 may be simplified as

N + N
P oSy (0f (n) (y,(n+1)
{X}max::J/ rzl ! - Rgza"("+‘){X} X} (2.107)

where R is the number of resonant modes in the system, {XS}(n) and
{XS}(n+1) are two of such adjacent resonant modes, and % (n+1) is their
associated correlation factor. In turn, this correlation factor may be
simplified as follows:
In the light of Eq. 2.102 % (nt1) may be written as
(1) T T ET S 2 (2.108)

14 (L0

1 1]
Enn T 1 %n+

But since the systéms treated in this chapter are systems with proportional
damping and since O and w41 Y€ by hypothesis very close to each other,

it may be assumed that
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- t - 1 = _g._
=g " ot as (2.109)

in which 9, and £, are respectively a common natural frequency and damping
ratio of the above mentioned separate primary and secondary components.

Hence, Eq. 2.108 may be expressed as

1
o = —_— 2.110
n(n+1) e (wn+1'wn )2 ( )
Ey w04

Therefore, if the expression for resonant frequencies given by Eq. 2.52

is substituted, U (n+1) may be approximated as

n+1

1
2
%) vy

2
4&5

®n(n+1) (2.111)

1+

Equation 2.107 in combination with Eq. 2.111 and 2.109 will constitute
the rule adopted in this chapter to combine the modes of the assembled

systems under study.

2.10 Earthquake Duration for Equivalent Ground Motion Excitations

As mentioned jn the foregoing section, the derivation of Rosenblueth's
rule is based on the idealization of an earthquake excitation as a segment
of a white noise process, i.e., a series of random impulses with constant
intensity per unit time; and hence, in order to apply this rule, it is
necessary to determine an equivalent duration by which specified earthquake
excitations may be represented by such an ideal segment of white noise. A

procedure by which such an egquivalent duration may be obtained is then
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established in this section as follows:

It is stated by Newmark and Rosenblueth (1971) that for a segment
of white noise the ratio of the expected values of its damped to undamped

pseudovelocities may be approximated by

_E(sv) -0.56
Bp = fégvay'— (1 + 0.5g0s) (2.112)

where E{SV) denotes the expected pseudovelocity for a damping ratio &,
w represents a natural circular frequency, and s is the duration of the
process; subscript 0 stands for 0% damping. In theory, then, if an average
earthquake motion is equivalent to a white noise process, the B ratios
calculated from its response spectrum should be equal to those obtained by
Eg. 2.112. Thus, the equivalent duration for a group of earthquakes
representing the earthquakes expected in a given area may be determined
by choosing the duration s that gives the best fit between the BE values
calculated from the average response spectrum for that group of earthquakes
and those computed by means of Eq. 2.112. Since the "best fit" is not
necessarily the same for different damping values, notice that, in general,
different durations will be obtained for different percentages of damping.
Equation 2.112 is useful to adjust the duration of earthquakes for
any percentage of damping except zero percent. Therefore, it is necessary
to adopt a separate criterion for this particular case. In this work,
the duration for zero percent damping will be calculated by assuming that
the relation between this duration and that for a small percentage of
damping is directly proportional to the relation between the expected
values of their corresponding pseudovelocity spectral ordinates. That is,
if Sq denotes the duration for zero percent damping, s, will be calculated

c
as
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E(SVO)
So T EEY) S (2.113)

where s is the duration for such a small percentage of damping determined
by Eq. 2.112 and the procedure introduced at the beginning of this section,
and E(SV) represents the expected value of an ordinate in a
pseudovelocity fesponse spectrum,

Equation 2.113 may be justified if it is considered that: (1) the
ordinates of a response spectrum change only slightly with a small
variation in the value of the considered percentage of damping, (2) the
duration obtained for a small percentage of damping should consequently
be very close to the one for zero damping, and (3) because of their
closeness, a linear variatidn suffices to relate these two durations and
their pseudovelocity ordinates.

One should observe that although for a white noise process the
expected undamped pseudovelocity is constant for all fréquencies (see
Rosenblueth and Bustamante, 1962), the average response spectra for a
finite sample of earthquakes will be, no doubt, frequency dependent.

Therefore, s, should be determined by selecting the duration that gives

0
the best fit between the observed ordinates in the pseudovelocity portion
of an average zero percent damping response spectrum and those computed
by: (a) Eq. 2.113, (b) the observed spectral ordinates in the correspond-
ing response spectrum for a small percentage of damping, and (c) the
equivalent duration for this small percentage of damping.

The above criteria are applied in Chapter 8 to find the equivalent

durations of three recorded earthquakes.
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2.11 Illustrative Example

In order to illustrate and summarize the procedure developed
in the foregoing sections, the maximum distortions of a two-degree-of-
freedom secondary system connected to the first floor of a three-degree-
of-freedom primary structure are here calculated for the case when the
base of this primary structure is subjected to a portion of E1 Centro
(May 18, 1940) earthquake ground acceleration record. The primary and
secondary systems are depicted in Fig. 2.3, and the response spectrum of
the considered portion of the mentioned acceleration record is shown in
Fig. 8.3{a). These primary and secondary systems are assumed to be
linear elastic structures whose damping matrices are proportional to
their respective stiffness ones and to form an assembled system also with
proportional damping whose damping ratio in the fundamental mode is of
2 percent. The following are the dynamic properties of such independent
primary and secondary systems:

Primary System:

i
1]

0.5 0.4 0.1 f 0.02 M

1.0 ¢.p.s £, 4.5

[ 0.04 M. = 0.9

H
t

"
—
[ow]
o
[p]

-0.2 f 2.0 c.p.s g

[—
[$2]
[
j
(@2
o
w—nd
-
H

i

3.0 c.p.s £ 0.06 M, = 0.1

Secondary system:

[l
"

0.040

i

0.5 0.5 fs 2.0 c.p.s £g
[¢] = 1 1
1.5 -0.5 f 2.0/3 c.p.s ¢

0.009

=3

1t
1
1

- 0.069 0.003

3
Mk — %
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Thus, the described primary and secondary systems give rise to a
five-degree-of-freedom assembled system (see Fig. 2.3) whose five mode
shapes and secondary modal distortions may be computed, on the basis
of these dynamic properties and according to the procedure established in

this chapter, as follows.

Mode Shapes and Secondarg;Distortions

First Mode. In this case, the first mode of the assembled system
is a nonresonant mode with a frequency close to the fundamental fre-
quency of the primary system. According to the discussion in Sec. 2.4,

the frequency of this first mode may be therefore approximated as

f1 = fp1 = 1.0 c.p.s.

Thus, Eqs. 2.63, 2.38 and 2.39 lead to the following YE” and yg”

factors:
Y%” = 1.0
(1) .
Y2 0
(1) .
Y3 0
y$ = 0.5
(]) — [ 100 . =
A e {0.5) = 0.16667
(2) _ 1.0 :
‘y2 = m (0.5) 0.04545,

Equations 2.35 and 2.36 yield then the following first mode amplitudes

of the primary and secondary masses:
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N
e {1'.5

1) F}* '{& {Oﬁ}_{ﬂﬁmmﬁ
fug}' = 0.5{;f+ 0.16667 ].g}+ 0-08545¢ 9.5} = {0.72728

In 1ike manner, since in this case
B-l = ].'0,
Eq. 2.93 gives

_ 1.0 + (0.5 + 0.16667) 0.002
1.0 + (0.5 + 0.16667)° 0.002

ay = 1.00044,

Consequently, the approximate first normalized mode shape of the

assembled system results as

0. 50000 0.50022

(1) 1.00000 1.00044
fu'} = 1.00044 ¢ 1.50000 ) = ¢ 1.50066
0.60606 0.60633

0.72728 0.72760

from which one arrives to the following normalized secondary distortions:

. (1) _{0.60633 - 0.500227 _ [0.10611
{dug* ™’ "{0.72750 - 0.60633}"{0.12127 '

Second and Third Modes. Since the second frequency of the primary

system is in resonance with the first of the secondary system (i.e.,

fS = fp ), the assembled system results with two modes, resonant modes,
1 2 :

whose frequencies are close to the resonant frequency f0 = 2.0 c.p.s. By
virtue of Eq. 2.51, then, the squares of the frequencies of these two

resonant modes are



55

£5 = 4.0 (1 - 0.4/0.07) = 3.84
fg = 4,0 (1 + 0.4/0.01) = 4.16.

Thus, in the 1ight of Eqs. 2.37 through 2.39 the Ygz) and y§2) factors

result as
v(2) 2 1.0
1
(2) _ 3.84 - 1.0 4.5/0.5 _
Y2 " =388 - 80 0.9/0.4 - ~71-00000
(2) _ 3.84 - 1.0 4.5/0.5 _
Vo s e o0 0./0.7 - 495349

yéz) = 0.5(1.0) + 0.4(-71.00000) + 0.1(-4.95349) =-28.39535

(2) _ 3.84

A 170 - 3.84 (-28.39535) = -681.48838

L

(2) 3.84

v32) = B, (-28.39535) = -13.36252

from which Eqs. 2.35 and 2.36 lead to

(2) 0.5 0.4° 0.1 -28.39535
{u 1\’ = 1.0{1.0 - 71.00000{ 0.2 - 4.95349 {-0.2}={—12.20930}
P 1.5 -0.6 0.1 43.60465

(2) _ e 0.5 0.5) [ -375.82079
) ?) = 28.30535 { 1} 681.48838 { -2} -13.36252{ 0 2}{ ;375- 8079}
(2) (2)

Similarly, by substitution of the above Yi 3 vaiues into Egs. 2.93

and y

and 2.94 one obtains

- (4.5 x 1.0 - 0.9 x 71.00000 - 0.1 x 4.95349) _ 0.93733

B, 0.9 x 71.00000
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_ 0.93733 (-71.00000) + (-28.39535 - 681.48838) 0.01 _ _5 4473
0‘.2"' 2 2 = =y, 06-
(-71.00000)" + [-28.39535 -681.48838 ]° 0.01

As a result, the approximate second normalized mode is given by

-28.39535 0.20746

(2) -12.20930 0.08920
{u'} = -0.007306 43,60465 )= (-0.31858
-375.82079 2.74583

-1043.94665 7.62730

whence it may be seen that

a3 - 2.74583-0.20746}={2.53837
Us 7.62730 - 2.74583 4.88147 "

With a similar procedure for the third mode, the following values are

obtained:
v{3) o
1
(3) _4.16 - 1.0 4.5/0.5 _
Y2 = 776- 4.0 0.9/0.4  72-00000
(3) _ 4.16 - 1.0 4.5/0.5 _ _
Y3 =776 -9.0 0.1/0.1  >-87603
(3)
Y, = 0.5(1.0) + 0.4 (79.00000) + 0.1 (-5.87603) = 31.51240
y{3) = 216 BLIIZA0). _g19 39237

(3) _ 4.16 (31.51240)_
N o P W T 16.72086

(3) 0.5 0.4 0.1 31.51240
fu_ P o= 1.0{1.0}+ 79.00000{ 0.2} - 5.87603 {-0.2}={17.97521}
P 1.5 -0.6 0.1) \-46.48760

(3) _ {1} 0.5 { o.5}={ -369.78837
17 = 31.51240 { | - 819.32232 {75} + 16.72086{ 5" £1=1_7205.83163
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(4.5 x 1.0 + 0.9 x 79.00000 -0.1 x 5.87603) _
By = 0.9 x 79.00000 = 1.05503

_ {1, 05503)(79 00000) + (31.51240 - 819, 32232) 0.01 _ 4. 006063

43
3 (79.00000)2 + [31.51240 - 819.32232)1° 0.01
31.51240 0.19106
(3) 17.97521 0.10898
w' '3 = 0.006063 { -46.48760 Y= ( -0.28185
-369.78837 -2.24203
_1205.83163 _7.31096

{du'}(3) ={-2.24203 - 0.19106}= {-2.43309
S -7.31086 + 2.24203 -5.06893
Fourth Mode. The fourth mode is also a ‘nonresonant mode with
frequency close to a primary frequency, the third primary one. Hence,

f4 may be approximated as

f,.=f = 3.0 c.p.s.
4 P P

According to Egs. 2.63 and 2.38 one has thus that

(4) _
vt =0
4
i <o
v =10
v = 0
(4) 9.0

y1° =g g (01) = -0.18
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(4) _ 9.0

y2 =150 -9.0 (0.1) = 0.30.

Therefore, {up}(4), {us}(4), B4 and oy result as

0.1
w3 - {-0.2}
p 0.1

(1) {1} -{0.5 0.57 _ [ 0.16000
lugb* = 0.1 - 0.18 1.5]’+ 0'30{*0.5} = {-0.32000
B = 1.0

_ 1+ (0.1 +0.30) 0.03

oy 5 = 1.00717 .
1+ (0.1 + 0.30)° 0.03 :
Consequently,

0.10000 0.10072
(4) -0.20000 -0.20743
{u'} = 1.007174 0.10000 ) = 0.10072
‘ 0.16000 0.16115
-0.32000 -0.32229

and
{du'}(4) ={ 0.16115 - 0.10072}={ 0.06043}_
s ~(.32229 - 0.16115 -0.48344

Fifth Mode. The only one in this example, the fifth mode ijs a
nonresonant mode with its frequency close to one of the frequencies of
the secondary system. Accordingly, it is valid to approximate this fifth

natural frequency as
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fy = f52 = 2.0/3 ¢.p.s.

As a result, Eq. 2.32 and 2.33 give

/(5) _

SN
¢(8) . 12.0 - 1.0 4.5/0.5 _ .
2 “T12.0- 4.0 0.9/0.4 - °
(5) _12.0 - 1.0 4.5/0.5 _
Y3 = 120-9.0 o1/01° 330
yé5) = 0.5(1.0) + 0.4(5.5) + 0.1(33.0) =
(5) _ _ 12.0

"Wt TE- 1Z0 (6.0) = 9.0.

(5)

~In order to find the value of the second y factor, it is necessary to

resort to the alternative expression given by Eq. 2.80 since in this case
0, F W Thus, if in this equation i is chosen arbitrarily as 3, one

J
obtains .

5 9.0 - 12.0
yé ) - (671)(12.07(0.03)(33'0) = -2750.0.

The above Y(S) and y(s) factors and Eqs. 2.35, 2.36, 2.93 and 2.94 lead

therefore to
(5) 0.5 0.3 r 0.1 6.00000
{u_} 1.0{1.o}+ 5.5{ o.z} + 33.0 {-0.2 = < -4.50000
P 1.5 -0.6 0.1 1.50000

i 1 0.5 0.51_ [-1364.5
‘6.0{1}+ 9.0{1_5 - 2750.0 {_0._5 - {153

-
[ =
%]
[S
————
[$2]
f
1

_ (4.5 x 1.0+ x 5.5 + 0.1 x 33.0) _
5 0. 33.0

0.9
T % = 3.86364
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- 3. 86364(33 0) + (6.0 - 2750 0) 0.03 _

og = = 0,000199.
(33. 0) + (6.0 - 2750. O) 0.03
Hence,
6.00000 0.00119
(5) -4.50000 -0.00090
{u*'} = (3.000199 1.50000 ) = ¢ 0.00030
-1364.50000 -0.27340
1394.50000 0.27221
and

{du'}(s) - { -0.27340 - 0. 00119} { -0.27459
S 0. 27221 + 0.27340 0.54561
Observe that even though this is a fifth mode (the highest mode of
the system) the modal distortions represent about 10 percent of the distor-
tions in a resonant mode., Contrary to the belief that the resonant modes
are the only modes of any importance, this example shows that modes with
frequencies equal to secondary frequencies may be of some importance

whenever they are among the first modes of a system.

Maximum Modal Responses

From Fig. 8.3(a), the spectral displacements SD (fr,gr) corresponding

to the frequencies and damping ratios of each of the above modes are:

D (1.0, 0.020) = 0.168 m
SD (2.0, 0.040) = D.055 m
SD (3.03 0.060) = 0.017 m
SD (2/3, 0.069) = 0.013 m .
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In the Tight of Eq. 2.98 and the foregoing secondary distortions the

maximum secondary modal responses result then as

‘{xs}m = 0.168 {0-105” ={g:8gg}m

0.12127
(2) _ 2.53837 71 _ [0.140
X} 0.055 {4.88147 = 10.268

(3) _ {-2.43309 -0.134
{X3777 = 0.055 -5.06893} { 0.279

(4) 0.06043 0.001
X3 = 0.017 {-0.48344} { 0.008

(5) _ -0.27459 ~0.004
X377 = 0.013 { 0.54561 } { 0007,

Maximum Secondary Distortions

Since in this case
Eo =gp = ;;S = 0.040

and since from Fig. 8.8 it may be seen that for the excitation under

consideration, this damping value , and a frequency of 2.0 c.p.s
= 9.7 sec,

by substitution into Eq. 2.103 the following corrected damping ratio for .

the resonant modes is obtained:

. 2/9.7 i} _
g0 = 0.040 + S2oee = 0,056

hence, their correlation factor (see Eq. 2.111) is
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1
+ (0. 4) 0.01
2 (0.056)%

53 = 0.887.

By virtue of Eq. 2.107, the maximum distortions of the secondary system

result thus as

) /{0 0’[8} +{0-100 Z +{-o.134}2 of 0.001}2 +{-0.004:’@
sfmax = y10.0205 *10.268 -0.279f *1-0.008 0.007

0,740 [0.134) _ [0.068
- 2(0’887)'{0.268 {0.279} {0 133

The approximate results herein obtained may bé compared with their
corresponding exact solutions in Tables 8.9 and 8.30. For reference, the
example just solved corresponds among the systems solved in Chapter 8 to
the system B2 with a mass rafio of 1 percent. The exact five modes and
natural frequencies are shown in Table 8.9 whereas the exact maximum
response is shown, corresponding to E1 Centro earthquake and 2 percent

damping, in Table 8.30.
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CHAPTER 3
APPROXIMATE METHOD: PROPORTIONAL DAMPING AND
A SINGLE POINT OF ATTACHMENT
3.1 Introduction

In the previous chapter, approximate eXpressions have been derived to
compute the natural\frequencies, mode shapes, and participation factors of the
system formed by a struﬁture and its attached secondary system. A rule to
combine the maximum modal responses of such an assembled system has also been
established. With such expressions and this rule, a procedure'is then suggested
to calculate through the modal analysis of this assembled system the seismic
response of the secondary system. In this chapter, these approximate expres-
sions and rule to combine modes are further simplified and incorporated into
a single expression to develop a simple formula by which one may obtain, with
a reasonable accuracy, quick estimates of the expected maximum responses of
secondary systems to any speciffed ground disturbances.

As in the preceding chapter, the derivation of this simplified formula
will be here limited to secondary systems which have only one point of
attachment and which in combination with their supporting structures form
assembled systems with proportional damping. In Chapters 4 and 6, it will
be extended for systems with two points of attachment and nonproportional

damping.

3.2 Maximum Modal Responses: Resonant Modes

According to the discussions in Sec. 2.2 and 2.3, the natural frequen-
cies and the secondary system part of the mode shapes of the resonant modes
of an assembled system are given respectively by Eqs. 2.51 and 2.36. By

the same argument used in Sec. 2.3 and 2.4 to approximate the natural
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frequencies of such an assembled system, it may be seen thus that if all

r)

the insignificant Yg and ygr) factors in Eq. 2.36 are neglected, the ampli-

tudes of the secondary system in these mode shapes may be approximated as

(r) - (r) ric . (3) |
{us} = y0 {J} + Y3 {4} (3.1)
where by the same token yér) mdy be written approximately as
(r) _ - o ()y{r)
Yy upk(r) 2, (1)Y5 (3.2)

and where, as before, subscripts I and J identify the modes of the primary
and secondary systems whose frequencies are in resonance. |
In the light of Eq. 2.99, the vector of secondary modal distortions

may be therefore expressed as

{du;}(r) = g ysr) {d¢}(J) (3.3)

r‘ .

in which {d¢}(d) is of the form

r“¢"|(J)

¢2(J) - ¢](J)

tdpr(9) < i (3.4)

iy @) 4y
¢NS( ) ¢NS_1(J)

However, by substitution of Eq. 2.51 and 3.2 into Eg. 2.38,y§r) may be written

as

- @k(I)] Y%r) | (3.5)
YIJ .

which for small mass ratios may be approximated as
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(r) 4 1 yir)
AR vil. (3.6)
J A I

Similarly, if Egs. 3.2 and 3.6 are substituted into Eq. 2.93 and if, again,
)

all insignificant Ygr factors are neglected, the participation factor o, may

be written as

= 1

1 1
ap = YIM (7+72 %) (3.7)

from which it may be seen that for small mass ratios a good approximation for

this participation factor is

o =3
r

| —

1r _ (3.8)
Y1

By virtue of Egs. 3.3, 3.6, 3.8, and 2.98, the maximum secondafy dis-

tortions in the resonant modes result thus approximately as

1

J
SRR 163 sD(u ) (3.9)

where it has been assumed that the spectral ordinates for two adjacent res-

onant modes are the same and equal to the one for w_ and go, the natural

0
frequency and damping ratio of the corresponding modes in resonance of the

primary and secondary systems.

3.3 Maximum Modal Responses: Nonresonant Modes

The natural frequencies and secondary system part of the mode shapes
of the nonresonant modes of an assembled system may be determined by Egs.
2.60, 2.61 and 2.36. Using the procedure in the preceding section, then,

it is also possible to derive approximate expressions for the maximum res-
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ponses of the secondary system in these nbnresonant modes. However, since the

(r)

expressions derived jn the last chapter for the Y5 factors of Eq. 2.36 are
different for thosSe nonresonant modes with a frequency close to any of the
frequencies of the primary system and those with a frequency close to any

of thé secondary system's, these approximate expressions are here derived
separately fdr each of these cases.

Case I; W, f__u:pI

In view of the discussion in Sec. 2.5, the yé r) and Yj (r) factors of
Eq. 2.36 result in this case as
v - w, (r) = o (1) (3.10)
k .
5 _
(r) “py
yi o= o ll) iy (3.11)
: ws - W
j Py

By virtue of Eq. 2.35 and by noticing that all these ygr) factors may be of the
same order of magnitude, the rth vector of secondary modal distortions may

be then expressed as

- {du} ) % I (”) rdgy ¢ (3.12)
: J=

in which by substitution of Eqs. 2.63, 3.10 and 3.11 into Egs. 2.93 and 2.94

the participation factor o, results of the form

r
2
uw
1 +.[@k(1) + ¢ ( )'1[——————ﬂ Y14
o s p .
(lr = | - "]2 I . (3.]3)

]

p 2
S I D)+ e (DT
. Ll)sJ - (DpI
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If it is observed, however, that the maximum value of @k(I)wg /(mi - ws )
is J?IE (see Sec. 2.5), then for small mass ratios the numerator o; thig :
equation may be approximated by unity. Similarly, it may be noticed that
when wSJ and wpI are well separated from each other the second term in the
denominator results negligibly small if compared with unity. On the other
hand, when these two frequencies are very close, the first term in the
expression between brackets in the same denominator becomes relatively small
and may be negiected. Therefore, in all cases it is justified to approximate

S
Otr,a

_ )

%r 2 ‘ (3.14)
“pp 2 |
2
P =57 vy
S P1
Thus, if one denotes

. wp1

AO(J) = 9, (I) ;2—_-:)? , (3.15)

by which y§r) and a, may be alternatively expressed as

(r) g (5
y; = Ad) (3.16)
@ ; , | (3.17)
1+ AC(d)vyy ‘
{du;} may be written as
NS .
(dul) =~ 2 Ay(3) aptd) (3.18)

1 Ay 3]

oy as
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' A_(J3) Ng .
{dug} = g Zory {d¢}(3) (3.19)
1+ AO (J)YIJ J=]
where rj, defined as
AO(J)
r. = R (3.20)
IA() | |

js a factor that indicates the participation of the jth secondary mode in

the formation of the vector‘{du;}. Notice that rs varies between -1 and 1

and that it is always equal to 1 for the closest secondary mode (i.e., j = J).
According to Eq. 2.98, the rth veétor of maximum secondary distortions

in these nonresonant modes may be therefore approximated as

A_(J) s
2 [

2 .
1+ AO(J)YIJ J

n-- 2

{r) _ - (3
x 1" = ry @3S0 e ) (3.21)

1 I "I

where SD(mpI,gpI) is the ordinate in the specified displacement response
spectrum corresponding to the Ith natural frequency and damping ratio of
the primary system.

Notice that since Eq. 3.11 is only valid for the interval (see Sec. 2.5)

2 .2
9 P |
2 > | Qk(I) iyl (3.22)

Py

Eq. 3.21 is also only valid for this interval.

Case II: w, = ws}

Because the closeness between'mr and w, and hence the large values of
J

(r) » the secondary moda] distortions in this kind of nonresonant modes may

a]so be approximated by Eq, 3.3, except that in this case the associated

subscripts I and J do not refer to the primary and secondary modes in
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resonance but to those whose frequencies are the closest to the frequency of
the nonresonant mode under consideration, and that the indicated y§r) factor

is now given, according to Eq. 2.80, by

2 2

W "UJS
MO Py J Ygr) i |
Jj . ' ‘ : (3.23)
Qk(I)wSJYIJ .

Therefore, if this equation and Eq. 3.2 are substituted into Eq. 2.93, the

corresponding participation factor results as

Br + [@k(I) +
1
o -
ro yir | Lol
I Pr Sy
1+ [‘I’k(l) + 5 ] Y1J

(3.24)

which, if it is considered that the minimum value that the second terms

between brackets may assume 1is 1/V&IJ (see Sec. 2.6), for small mass ratios

may be approximated as

wz - W
S LTS S
r g (1) wl
o = 5J ) (3.25)
r Y(f) wz _ wZ
I p s 2
1 I J
1+ -2 ( 2 ) Y
¢k(I) MSJ 1J
By introducing a new variable Bo(i) defined as
mZ
] _ sy ‘ _
Bo(l) = ¢k(1) ;—Z—'T (3.26)
LS S

a,. may be thus written as
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1
B, 51T)
0 = ] T - (3.27)
r gy

I 2
BO(I)YIJ

But by the definition of the parameter Br (Eq. 2.94) and by means of Eq. 2.37

one may express this parameter as

mz - wz N
B r” Yp 2 o, (1) (3.28)
r ¢k:I: i=1 wﬁ - mg )

which, by considering that, by hypothesis, for the case under consideration W, =

msd,and after substitution of Eq. 3.26, may also be put into the form

NP
_ 1 .
B, = E;TT) iE 30(1) . (3.29)
Consequently, one may write @, as
NP
1+ 5 B_(4)
1 i=1 ©
. (3.30)

o =
r {r) ]

Thus, since by means of Eq. 3.26 yd(r) may also be expressed as
(r) _ 1 (r)
Y9 T B, 1 (3.31)

by virtue of Eqs. 2.98 and 3.3 the maximum secondary distortions in the

nonresonant modes herein being considered result as
N
1+ B (i)

ji=1 ©
1+8B

o3 sn(ug e ) (3.32)

{xs}(”) =
(I) Y13 J J

ool 1T

where SD(“% ,E% ) represents the spectral displacement corresponding to the .
J J
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Jth natural frequency and damping ratio of the secondary system.
As in Case I, it should be noted that because Eq. 3.23 is limited to

those values of w. and w_ for which (see Sec. 2.6)

Pr SJ
w2 ’ w2
Pr ™ S, |
e SR S e - (3.33)
MSJ )

Eq., 3.32 1is also limited to such values. Notice also that when wpI and

w, are well separated from each other (i.e., when Bg(I)yIJ << 1.0){XS}(r)

J
may be approximated as

N

xg M =1 g B,(1)3¢de1®) sn(u, 5 ) . (3.34)

Hi=1 33

3.4 Approximate Maximum Response

By using the rule established in Sec. 2.9 for combining the foregoing
maximum modal distortions, the approximate maximum distortions of a secondary

system may be then expressed as

p+Ns 2
- (r) . : (n) (n+1)
{Xs}max rzl {XS} + 2 R;Z un(n+1)‘{xs} {XS} (3.35)
where {XS}(P) is the rth vector of such maximum moda1.distortions given by
Eq. 3.9, 3.21 or 3.32; R is, as before, the number of resonant modes ;

and % (n+1) is as indicated by Eq. 2.111. If, howéyer, the combined response
of two adjacent resonant modes is written in a'single expression as

1/2

2 2
o)) = pox e DT e M ™ (56)

which by substitution of Eq. 3.9 results of the form
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x8) = J/ ' - onue1) <ao3'Y) sgu, 5, (3.37)

QL
2vy

then Eq. 3.35 may be simplified as

ve ( )2 P { )2 ( )
_ 5 r 3.38
{&hm[' gl{&} *'£1 {&} .

In 1ike manner, if each modal response is viewed as the product of an ampli-

fication factor, a modal configuration, and a spectral ordinate, by virtue
of Egs. 3.37, 3.21 and 3.32’{XS}(5) and {Xs}(r) may be then conveniently ex-
pressed as follows:

Resonant Modes

03 = wl8) 1y spa e ) (3.39)
where _
1 -a
11,F({s) -/ = 1J (3.40)
Y19
and
Ol = 1 L ]
1J 22(1)y (3.41)
MR A O
L
a5

Nonresonant Modes

]

W

Case I:
(.Ur pI

(r) _ o (r) ¢ (3)
X} | wp [.jzlrj {§¢} ] SD(wpI,gpI) (3.42)
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Case Il: w_. = w

where

A ()
W}(Dr) - . (3.43)
1A (v,
P~———SJ
i 1) = o{r) gy () SD(wSJ,gSJ) (3.44)
1+ ;p B (i)
1
o) o351 2 (3.45)

s 2
1+ BO(I)YIJ

Equation 3.38 in combination with Egs. 3.39 through 3.45 represents thus

the desired approximate formula to compute the maximum distortions of a second-

ary system.

Notice the sensitivity of the amplification factors W(S) to the

R

variation of the modal correlation factors org they may vary from zero for

ary = 1.0 to 1/JYIJ for eyg = -1.0. Since for small mass ratios the difference

between these two extreme values may be considerably large, notice therefore

the influence that these modal correlation factors may have in the accuracy of

the prediction of such maximum distortions. Observe also that in view that the

response of a secondary system resting directly on the ground would be of the

form

7
S N

/ S ()
Xroo= /1 {de3Vd SD(wsj,gs') (3.46)

s “max =1

J

the effect of mounting this secondary system on a supporting structure is in-

dicated by the extra terms added to the summation of this equation and the

amplification factors multiplying each of the terms of the augmented sum-

mation.
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CHAPTER 4

EXTENSION OF APPROXIMATE METHOD
FOR TWO POINTS OF ATTACHMENT

4.1 Introduction

By following the approach used in the last chapter and intro-
ducing the necessary modifications to account for an extra point of
attachment, the approximate procedure therein developed is extended
in this chapter for secondary systems with up to two points of at-
tachment. To clearly show the basic difference between the systems
with one and two points of attachment, the assumption of assembled
systems with proportional damping is, however, also kept throughout
this chapter.

As in Chapter 2, the expressions derived below will be first
obtained for a particular system, the one shown in Fig. 4.1 in this
case, and then, by induction, generalized for any other systems. The
notation used here will also be that introduced in the previous

chapters.

4.2 Mode Shapes of Assembled System

By considering the primary and secondary components of the
assembled system of Fig. 4.1 as two independent conventional systems
subjected to external forces and by following the procedure utilized
in Sec. 2.2, the mode shapes of this assembled system may be deter-

mined as follows:
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With reference to Fig. 4.2(a), the equation of motion of the

primary component of the mentioned assembled system may be expressed

as
— _‘ .- n M

M] 0 0 fp] K1+ K2 -K2 0 by R](t)

0 M2 0 xp2 . —K2 K2+K3 -K3 xpz ‘ 0 (a1
EP 0 MB_, Xp3 g 0 -K3 K3~ Xp3 R3(t)

Then, if the frequency matrix, modal matrix and generalized masses of
this primary component are defined again as indicated by Egs. 2.1,
2.2 and 2.3, respectively, and if the displacement vector {xp} is

transformed into normal coordinates as

X @1(1) @1(2) ¢](3)

1 ' : :
xp2 = @2(1) Y] + @2(2) Y2 + @2(3) Y3, (4.2)
xp3 63(1) @B(Z) ¢3(3)

this equation of motion may be written as

* * ]
M] 0 Ky 6 0 Y, ‘I’l(” <1>3(1)
“* * [}
0 M, +{0 K, 0 Y, ¢2(2) Rl(t)+ ¢3(2) R3(t),
F 3 1
0 0 i 0 KB_J Yy ¢3(3) @3(3)
(4.3)

In the 1ight of Egs. 2.13 and 2.14, the ith component equation of

this matrix equation may be therefore put into the form

(o2 - mgi) v, = ;11; Loy (1)8; (1) + 23(1)R5(0)] (4.4)
1
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which by introducing the parameter

Ry(t)
"c R (4.5)
may be alternatively expressed as
(W? - 0 ) ¥, = L Toy (1) + noa(i) TRy (t) (4.6)
py iy R RIS A '

i

Hence,by: (a) setting Y, = 1.0, (b) solving R1(t) from the first of

these componént equations, {c) substituting the resulting expression

for Ry(t) into the ith one, and (d) solving afterwards for Y., one

obtains

2 *

p &1 (1)4na,(1)

Y, = 21-<} 1 3. (4.7)
p, 1

0 (1)+ne,(1)

It may be seen, thus, that the primary system part of the rth
mode shape of an assembled system whose secondary system is attached

to the Kkth and g£th primary masses may be written as

w " = [e3ny ) (4.8)
where
wz-wz * oo,
(r) . " P M? @r(]) .
Y/ o= = = , 1=1,2,...,N (4.9)
i w2~w2 M o (1) P
rops i Tr
¢r(i) = @k(i) + . ¢m(i)’ i=1,2,;..,Np (4.10)
and '
R, ()

T\Y. - [—R'k—(:ET] . (4.”)

r
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Secondary System

As shown in Fig. 4.2(b), the secondary system may be considered as

an unrestrained four-degree-of-freedom system whose equation of motion

is of the form

r " (e — - VR ~
0000 xSOW ky <k; 0 0) xSO Ry (t)
Om O Of)X -k, kytk, -k ) X 0
1 s b+ 01 1k 2 k 2 {5y : < (4.12)
0 0 0 0} gXSCJ 0 0 -k3 k3_J k)(SC_) \_R3(t)

But according to Hurty (1965), the displacement vector of this secon-
dary system may be expressed as the combination of: (1) a rigid-body
mode, (2) a constraint mode, and (3) the two normal modes of the
system when both of its ends are fixed. Then, sincé the rigid-body
mode may be written as

030 - gy - ; (4.13)

1
1
1
1
the constraint mode may be selected to be the mode produced by a
unit displacement at the point where the third primary mass is con-
nected while the point where the first is connected is kept fixed,

i.e., the following vector of flexibility coefficients:

0) [0 h

ro3le) - fic?= " > : (4.14)
fzc 1/k]+1/£<2
fch 1/k]+1/k2+1/k3J
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and the normal modes of the two-end-fixed secondary system (see

Fig. 4.3) are of the form

-~

(0
, 91(3)
(039 - <¢2(J')$, j=1,2; (4.15)

0

- -
one may express {xs} as

1 0 0 0
_ '! [ ¢ 'I 1 2 ] (
oy =41 P+ 500 00+ JiE) w Haar e @1e)
1 0 0 ¢C(c)
or as
tx} = L8] 1y} (4.17)
where _ -
1 0 0 0
1 ¢](1) ¢](2) ¢](C)
171 6,00 6p(2) aplc) (4.18)
U IR RO

and Yj i=0,1,2,c, is a set of independent generalized coordinates.
Consequently, in terms of these generalized coordinates the equation

of motion of the system {Eq. 4.12) may be written as

(ms b m mg; ¥y f[o o 0 o)) Ry (£)+Ry(t)
momb 0w 3/1>F 0 k¥ 0 0 <y1' - 0 >
moo omowe,l )3 [0 0 k5 oo |y 0

Lnigg méy mé, mE ) ¥ L0 0 0 g ladlye)  Lecle) Rylt))

(4.19)
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where
x (@7 (3) 2
my = {6} [m{¢} = Imd, (3, j=0,1.,2,¢c (4.20)
' n
and
* (c)T (3) L
mes = {37 [ml{e3*™" = ; men(ce, (1), 320,1,2. (4.21)

Thus, since for this secondary system {xs} and {y'} may also be
expressed as indicated by Eqs. 2.24 and 2.25, after substitution of
these two equations into Eq. 4.17 the secondary system part of the
mode shape with frequency w of the assembled system under consideration

may be expressed as
{ugt = [elly} (4.22)

in which, from the second and third component equations of Eq. 4.19

and by virtue of Eq. 2.25, the yj factors are of the form

2 *

] mci ‘ .
Yi =57 Wt %) i1, 2. (4.23)
w - W m,

In general, then, the secondary system part of the rth mode shape

of an assembled system may be written as

w ™ = 1 ™ (4.24)
where
2 o
® ,
") = o ol T, (e
S r J



80

in which NS is the number of degrees of freedom of such a secondary
system when both of its ends are fixed and yor) and yér) are deter-
mined from the compatibility conditions as follows.

Compatibility Conditions

In view of the continuity between its primary and secondary
components, the assembled system of Fig. 4.1 should satisfy the

following compatibility conditions:

X xp1 (4.26)

>
It
>

Py . (4.27)

If by means of Eqs. 4.2 and 4.16 these compatibility relations are
written in generalized coordinates as

Yo = @1(1)Y; + @1(2)Yé + op(3)Y, (4.28)

It

LA ' ! r 1
Yo * oclcdy, = 23(1)Y¥ + 25(2)Y, + o5(3)Y5 , (4.29)

after introducing Eqs. 2.14 and 2.25 one has therefore that in
general for the rth mode of an assembled system with its secondary
system attached to the kth and ath primary masses the yér) and ycr)

factors of Eq. 4.25 result of the form

N
v - T-Z: Y (4.30)
: N
e CEPACIUSENUBILNS (3.31



81

Alternative Expression for y(r) Factors

2
J

By substitution of Egs. 4.30 and 4.31 into Eq. 4.25, one ob-

tains, thus, the following alternative expression for the ygr)

factors of Eq. 4.24:

2
(r) . % ~(r)
Yj =2 2 Y
ws. - wr
i
where
N
~(r) 0 oy ()
yO iz1 QO (]93) Yi
in which

9,(153) = 9, (1) + g5 de(i)

(4.32)

(4.33)

(4.34)

In this last equation, de(i} represents the difference between

the ith mode shape amplitudes of the two primary masses to which

thersecondary system is attached, i.e.,

de (1) = ¢ (i) - ¢ (i)
and Bj is defined as

BJ.:.__]__
fCC

=
[Py i((_)‘g;(.

A relationship for this parameter Bj

parameters of the independent secondary system (assumed with both ends

fixed) may be obtained as follows:

(4.35)

(4.36)

in terms of the dynamic
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Consider the free vibration equation of motion of the secondary

system of Fig. 4.3 and let it be conveniently expressed as

my 0{eq(3) ko +k -ko {fo(3)
mi. ] ] . = ] 2 2 ] . (4.37)
ji0m ¢2(J) "kz k2+k ¢2(J)
Then, if both sides of this equation are premultiplied by {¢](c) ¢2(c)},

where ¢,(c) and ¢,(c) are as defined by Eq. 4.14, one is led to
h T( ) and 2( ) defined by Eq. 4.14 is led t

k ok Tk ko tkok
wij [myoq(c)é1(3)myo,(c)o,(3)] =9,(3) : 2k1;23 = (4.38)

which in the 1ight of Eq. 4.21 and since by virtue of Eq. 4.14 one has

that

k1k2 + k]k3 + k2k3

" = oo kg (4.39)
1"2
may also be expressed as
2 _ P ‘
msj mgj = f.. kg 9,(3) . (4.40)

Thus, from the definition of Bj (Eq. 4.36) it may be seen that this

parameter may also be written as

Koy ¢5(3)
8. = -i%ril--— (4.41)
J w. m*
5. M
J
or, if as shown in Appendix A it is considered that
og M= KE = ke (3) + Kgepld), (4.42)
J .
as
kat,(3)
g, = —32 - (4.43)

T ko (3) + kgep(3)
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In general for a secondary system with NS degrees of freedom,
B results then of the form

Kuge1 (9
By © * (4.44)
3 2
.ws‘ mj
J
or
st+'l ¢NS(J)
B, = : SO (4.45)
3 kyee(3) + stﬂ ¢NS(J) |
Summary

Summarizing the above results, one has therefore that

the rth mode shape of an assembled system whose secondary component

is attached to the kth and sth masses of its primary one may be

expressed as

N :
{upgr) = Zp Ygr) {@}(1) (4.46)
i=
(r) N (5)
{us}r = yér) {3y + jzl y§r) {¢}J + ygr){f} o (4.47)
(r) (r)

where {up} and {us} are respectively the parts corresponding

to the primary and secondary masses of this rth mode shape, {J}

is a vector of unit elements, {f} represents a vector of flexibility

coefficients of the form

r}/k] -
1/ky + 1/k,
= { . Y (4.48)
17k, + Vky + . ..+ 1Ky
g
.

~
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J)
and {¢} is the jth normal mode shape of the secondary system when
it has its both ends fixed. In addition,

2 2

“p T Up MY 6 (4)
e Al 1,2, N (4.49)
Y T wpi Mi e (1) .
{r) o (r)
r) _ r Ay ‘o
2 e aa SR MR 1,2,...N, (4.50)
Sj r
"
W= 1 e v (4.51)
i=1
(r) b (
r 1 . r)
y V= ] de(i) Y (4.52)
¢ fcc i=1 1
in which
NSE1 ] ( : |
f = — 4.53
cc =1 kj

The parameters 5r(i) in Eq. 4.49 are defined as

o (i) = o (i) +n. e (i), | (4.54)

r

and the factor §ér) of Eq. 4.50 is given by

p
1

w5 -

1 =

0 (i,d) ¥i" (4.55)
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where

o (1.3) = ¢ (1) + gyde (i) . | (4.56)

In these equations, n is defined by Eq. 4.5, and By and de(i) are

as indicated by Eqs. 4.44 (or 4.45) and 4.35, respectively.

Convergence to the Case of One Point of Attachment

Formulas 4.46 through 4.56 are the generalization of the
expressions presented in Sec. 2.2 for systems with only one point
of attachment. Therefore, if the conditions which convert aksystem
from two to one point of attachment are introduced, it is obvious
that these formulas should converge to the corresponding ones for
one point of attachment. To demonstrate, then, that they indeed
converge to those in Sec. 2.2, consider once agéin the assembled
system of Fig. 4.1 and assume first that its secondary system is
attached to the first primary mass only. In this case, once has

that R3(t) and k3 are zero and hence

Ry ()
" T R
95(3) kg .
%5 7 e (3) F Kgtp(3)
.o k]k2 + k1k3 + k2k3 o
cc kqkoks

(r) Np
i .
ycr = F 121 de(i) Y%r) =0,

1



86

It may be observed, therefore, that upon substitution of these
values Eq. 4.46 through 4.56 lead to Eqs. 2.35 through 2.39. Similarly,
assume now that the secondary system is connected to the third primary

mass alone. RT(t) and k1 are then zero and as a result

Rylt)
(3 )k |
B, = 23 .
J k]¢1(J) + k3¢2(J)
oo ket kikg ¥ Koy
cc
kiKoks

N
(r) . _1 P ago(i)Yi") -
fcc 121 o) !

~<
]
[
]
o

Thus, it may be seen that in this case too the general equations of

this chapter converge to the particular ones of Sec. 2.2.

4.3 Natural Frequencies of Resonant Modes

By following the procedure used in Sec. 2.3, the natural fre-
quencies of the resonant modes of an assembled system with two points
of attachment may be obtained as follows:

Consider thé assembled system of Fig. 4.1. If partitioned to
separate the displacements of the primary and secondary components,
the equation of motion of this assembled system may be expressed by

the following two matrix equations:



M 0| (x KoK, oK ] i ]
0 M2 0 sz + -K2 K2+K3 -K3 xpz +1 0 0 0 xp2 -
M { 0 -K
j) 0 3 xp3 i 3 Kl xp3 L_O 0 kl xp3
k] 0 x31 0
- 0 0 = (0 (4.57)
0 kyl{¥s 0
. 3JL72
*p
m k,+k -k X K 0 0 1 0
P3

Then, if the displacement vectors {xp} and {xs} are approximated as

(1)

o= ¥ o costa, - 6 (4.59)
(J)
{Xs} = ysr) {6} cos(mr - er) (4.60)

where, as before, subscripts I and J respectively identify the primary
and secondary modes whose frequencies are in resonance, after pre-

T
)

T
multiplication of £q. 4.57 by {Q}(I and Eq. 4.58 by {¢}(J) these two

equations lead to the following simplified equation of motion:

* () ra, 2 2 ]
wz MI 0 Y_I + KI+k]®](I)+k3@3(I) 'k]q’](l)cﬁ(*])'k:i@:.}(l)ﬂbz( )
- r * *
0 mJ )fJ "k]@](I)¢](J)‘k3¢3(1)¢2('3) kJ
‘ r)
YI 0

. : (4.61)



88

Thus, from the solution of the characteristic equation of this simpli-

fied equation of motion one obtains

2 2
2_ 2, 12 kyo7(1) + kge5(1) .
W T Wy 2 %o k* Y13 =
J
kaao(1) + ko92(1) 2 Koo (1o (d) + kodo{I)o,(d) &
1 2 /"% 3%3 2 1806 323tl)e,
T o ( * Jyr, + 4( x : Y
7 Y 1 1J
Ky ks

(4.62)

where according to the notation in the preceding chapters W, is a
frequency in resonance of the primary and secondary systems, and
113 is the mass ratio in the modes of these primary and secondary
systems whose frequencies are equal to such a resonant frequency.
Hence, if it is observed that for small mass ratios the terms

[k e5(1) + kg05(I)Jryy/k) in Eq. 4.62 are negligibly small, wi

may be approximated as

ko, (1), (J) + k,2,(1)¢,(J)
2y g 110 > 273 T (4.63)

+ w
Y‘ —

2 _ 2
0 I

J

It may be noticed, however, that in view of Eq. 4.42 the

term between brackets may be written as

kyo7(1)7(9) + kaoa(1)e,(J kgt ()
101D oq(9) : 33D () oy (1) + _§§2_~;, do(1)  (4.64)
kJ : wsJ m

or in the light of Eqs. 4.41 and 4.34 as
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kyeq (D)o () + kgeq(1)9,(d)
B 3 () + sytelD) = ay(1,0).  (4.65)
k

J

Consequently, Eq. 4.63 may be expressed as

|+

) (I Iyt ) (4.66)
and hence,

+ % o g (4.67)

Observe, thus, that the only difference between this expression
and the corresponding one for one point of attachment (Eq. 2.52) is
that @k(I) is now replaced by the parameter ¢0(I,J), which accord-

ing to the above equations in its general form results as

ky2 (1oq (D)+ky " (I)¢N (4)
. (4.68)

k94 () + ky .oy (J)
141 N+17N,

¢O(I,J) = ¢k(1)+BJd¢(I) =

Observe, also, that when k1 or k are zero, @0(I,J) turns out to

N+

be @k(I) or ¢2(I) and that in such cases Eq. 4.66 leads conseguently
to the corresponding expression proposed for systems with a single
point of attachment (see Eq. 2.51). Therefore, this parameter re-
presents a weighted average or central value of the amplitudes of the

primary masses to which a secondary system is connected.

4.4 Natural Freguencies of Nonresonant Modes

The natural frequencies of nonresonant modes may also be deter-
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mined by following the procedure in Chapter 2. Accordingly, if in
Eqs. 4.3 and 4.19, the egquations of motion of the primary and second-
ary systems in Fig. 4.2, it is assumed that
i#1
[} L \!#0
Y. =y: =0 for(lJ# (4.69)
j#c '
where, again, subscripts I and J refer to the primary and secondary
modes whose frequencies are the closest to the frequency of the non-

resonant mode under consideration, then these equations of motion may

be reduced to the following set‘of equations:

k.l %* 1

My Yy o+ Ky Ypo= o (DR () + 05(T)R4(t) (4.70)
* . * . * .

My Yo * My ¥y * meg ¥ = IR {t) + Ry(t)] (4.71)
* o) *..t+*,.|+*._ ‘7

* . * .-t

] d oy t
Mg Yo * Mg ¥g tm. ¥+ o lcly, = - o (c) Ry(t) . (4.73)

Similarly, by virtue of Eqs. 4.69, 4.28, and 4.29 yb and yé may

be approximated as

Yo = (1) Yq (4.74)
v oo ode(I) ‘

c
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After substituting these two equations, Egqs. 2.14 and 2.25, and the
expressions for RT(t) and R3(t) obtained from Eqs. 4.71 and 4.73,into
Egs. 4.70 and 4.72, and after considering that @1(1) t B3 de(1) =
@O(I,J) and ¢C(C) = f..» one obtains thus the following simplified

equation of motion:

- * J * _1 r j(r)
2, .M Me do(1) , Mc d%(1)
105 (1) + 20, (1) rgd? o (I,d)vyy||Y
1 M 1 M f M* f2 0 1J I
_wz I 1 ¢ I cc < > +
r .
g QO(I’J)YIJ YIJ 3 LyJJ
— Y r “w(r) M
2
o2+ S2ll) 0 Y, 0
e A
N | - (4.76)
2
0 0
- msJ YI'J_J \yJJ L/

Hence, since for small mass ratios this equation may be written

approximately as

(— ) ("‘)"‘2 (r)
1 <1>0(I,J)YIJ Y wpI 0 YI 0
-uZ + - .+ (4.77)
2

BOIRERASH ) L0 s, 0
one is led to the following characteristic equation:

mz - m2 wz -‘wz

Pp "o, %1 .2 2 .
( ) { ) = ¢°(I,d) v7, =0 ., (4.78)
oo mz 0 Id
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It may be seen, therefore, that as in the case of one point
of attachment, the natural frequencies of nonresonant modes may also
be approximated as

W =W (4-79)

w, =W . (4.80)

4,5 Participation Factors

Since by definition the participation factor of the rth mode
of an assembled system with two points of attachment may also be
expressed as in Eq. 2.82,and since according to Eqs. 4.46 and 4.47

the modal amplitudes up (r} and Ug (r) may be written as

n n
_ I (r)
upn(r) = 121 @n(l) Yi (4.81)
N
o, )=y T e sy ae, e

then in generalized coordinates this rth participation factor results

as N N N

= P+ ( S ol ( (v) . 5 (r)
op = [ L vir) ' j§1 i (yor)+ycr)+yjr ) + (mg- 121 mtyr

N 2

N N
B Y S L2 AP A C N (S )
e M3/ Ye ] i1 i i = ki Yo V¢ yj

N

£ ey (rly(n)
=1 J

N
S 2
(r)
0 yc

+ (mk- 7 m¥) + (m*- ;Sm*) (r)? + 2(m*-
0 i=1 h| yO C 3=1 J yC c

J=1
N

RPN (O LD
+ 2 jz] (mcj- mJ.)yC yi '] . (4.83)
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Therefore, for small mass ratios o, may be approximated as

N N
p S
s ) 4 Pt (yér)+y(r)+y(r))
i=1 1 1 .j=] J c J
.. _— , (4.84)
Pox (r) s (r), (), (r)
121 A j§1 md (Vg Hye Tty )
or, if irrelevant component modes are neglected, as
5, 117+ gy g
T, (0, (7, ()2 -
r r r r
Yoo+ g Tty Yy ) g
where, as before,
NP
5w yir)
_di=1 1T .
B, = ey (4.86)
MY

4.6 Maximum Response in Resonant Modes

1t may be observed from the derivations in the foregoing‘sections
that the form of the equations to determine the natural frequencies
and mode shapes of assembled systems with two points of attachment
are very similar to the ones for those with just one of these points
of attachment. Hence, simplified expressions for the mode shapes and
modal distortions in the resonant modes of these assembled systems
with two points of attachment, and therefore for the corresponding
maximum modal distortions of their secondary systems, may be also
obtained by following the approach used in Sec. 3.2.

Thus, if in Egs. 4.46, 4.47, 4.51, 4.52, and 4.55 all insigni-
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ficant component modes are neglected, the rth mode shape of such an

assembled system may be approximated as

) = v{r) gy (1) | (4.87)
(r) (J)
{u) = yér){d} + yST){¢} + yé”){f} (4.88)
where
yér) = 9, (1) Y%r) - (4.89)
y{r) = dell)yir) (4.90)
cC
0)2
ygr’ = 0 (1,0) - Ygr) : (4.91)
U)SJ*u)r

Consequently, since in this rth mode the vector of element

distortions of the secondary system may be expressed as

{r) .
fdu} = . > . (4.92)
(r)- )
uSNS r uSNS_](r
Lypg(r)—usN (r)
S

the maximum secondary modal distortions may be written approximately

as

(r) |
oy = g Ldo(D) s (M s () sp(u ey (2.93)

S cC



(J)
in which {d¢}

()
{d¢} =

95

is now of the form

(¢4(J)
¢2(J)‘¢](J)

by (J)-0
NS NS

\'¢N (J)
S

-1

and {%ﬁl} is defined as
cC

df . _ ]
HFh} = =
fCC cc

~h

rf] c j

f2c_f1c

f -f
(NS+1)c Nsc
L J

(9)

J

1.1 .1
Ky ok S

r'

L

(4.94)

17k )
1k

i/k
RN o

~

Notice, however, that since for small stiffness constants

df

{q?—-} <

cc

and since for resonant modes y

{J}

J

ordinarily one has that

do(I){

J

(r)

(4.9

>(4.95)

6)

is usually large {i.e., ygr)>1.0),

(J)
%1&& Ygr)<< y(r){d¢}
cC

(4.9

and, thus, for resonant modes Eq. 4.93 may be simplified as

7)
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(r) (r) (3)

X3 = o,y ey SD(w,E) . (4.98)

But by substitution of Eq. 4,66 into Eq. 4.91 ygr) may be

expressed as

AL

o (1 v 2y Ly (4.99)

11J "Y1

Similarly, if in the light of Eqs. 4.89 and 4.90 and this last
(r)

~formula the sum ygr)+y£r)+yd is written as

(4.700)

y(()r)+y((:r)+y(r)= [@k(1)+ df?j:[) + 1 ] Ygzr) e + 1 Ygr)

J —
cc Y19 Y19

then by virtue of Eq. 4.85 and considering that for resonant modes
the parameter Br is very close to unity the participation factor G

may be approximated as

1 IJ - 1
6 = = . (4.101)
r Ygr) 2 ZY%FS

Therefore, if Egs. 4.99 and 4.101 are substituted into Eq. 4.98
and if, as in Chapter 3, it is assumed that the spectral ordinates
of two adjacent resonant modes are the same and equal to SD(mO,EO),

{XS}(r) may be expressed as

(J)
1de} - SD(w .5 ) (4.102)

=11
—
(<

Although this expression and the corresponding one for systems

with a single point of attachment are identical in form (see Eq. 3.9),
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it should be observed that these maximum modal distortions are
not independent of the number of points of attachment because
the mass ratio Y13 depends on it. (Recall that depending on the
number of points of attachment the normal mode shapes of a secondary
system are calculated considering that the system has either one or

both of its ends fixed.)

4.7 Maximum Response in Nonresonant Modes

Case I: w =w
P
In view of Eqs. 4.79 and 4.46 through 4.52 and proceeding as in

Sec. 3.3, one has that for this kind of nonresonant modes,

IRER S

v{v) - (4.103)
0 if izI
2
p
P = o (1.3) L (4.108)
wsj-mpl
v = o (1) (4.105)
y{r) - aell) (4.106)
ccC
(r) (1)
wi =) (4.107)
N
(i)
{us}(r) e Loy +yPm . waoe)
j=1

Therefore, it if is considered that the corresponding vector of

element distortions of the secondary system may be expressed as in
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Eq. 4.92, the maximum secondary distortions in these nonresonant

modes may be written as

(r) N (5)
(X} = a,[de( I){ gy, Z y {d¢} 1 SD(w_ ,&. ) (4.109)
s cc pI pI

where {———& and {d¢}(3) are as defined by Eqs. 4.94 and 4.95, re-
cc
spectively.

However, by substitution of Eqs. 4.103 through 4.106 into Eqgs.

4,85 and 4.86 the participation factor o, may be approximated as

al

14-[¢k I) + —Eill-+ ® (I »J) 2 ]yIJ

wf ug
0, = Jz I  (4.10)

1+ [¢k(I) + Q%%il + @0(1,3) P1

2 2 ] Y19

ﬂ)

sy P

which, by the same argument used in Sec. 3.3 to simplify Eq. 3.13,

may be reduced to

= . (4.111)
wp 2
;FT*"*if‘) 113
¢ Pr

1+ ¢§(1,J) (

Thus, if the parameter Ao(j) introduced by Eq. 3.15 is general-

ized for systems with two points of attachment as

2

w

p
Ao(j) = ®O(I,j) —?-_"l“?_' ’ (4.112)
wsj - U)pI
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by which ygr) and a,. may also be written as
y{ = A (5) (4.113)
h] 0
1
o, = > _ 4.114)
r 2 (
T+ A0y
{XS}(r) may be expressed as
N .
(r) AO(J) df s (J)
X3 =— [roF—d+ 1 rydded I8D(w, 5, ) (4.115)
1+AZ(d)y c 3=1 P Py
0 IJ _
where
_dy1
Yo = T3 (4.116)
0
and, as before,
A )
= 0 . \
Y‘J- = W (4.”7)

In similarity with the corresponding expression for systems with

one point of attachment, notice that Eq. 4.115 is only valid when

0 P1
> e (1,0)4l (4.118)
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and that for other cases wg and wp should be considered as
J I
resonant frequencies.

Qééﬁ_llihﬂriﬁsd
In virtue of Eqs. 4.80 and 4.50, it may be seen that for these
nonresonant modes ygr) is large and hence, as for systems with one
point of attachment, the maximum secondary d{stortions may be ap-
proximated as
(r) _ (r) (J)
{X.} BRRA {d¢} SD(mSJ,gSJ) . (4.119)

Notice, however, that as in the case of one point of attach-
ment, too, ygr) cannot be determined directly from Eq. 4.50 and
that as a consequence it is also necéssary to derive an alternative
expression for this factor ySr). With reference to the system in
Fig. 4.1 and by following procedure in Sec. 2.6, this alternative
expression may be then developed as follows:

Consider Egs. 4.3 and 4.19 and assume that all the Yi and Yj
factors in these two equations have been, with the exception of yj,
already determined. Thus, if Rl(t) and R3(t) are solved from the
first and last component equations of Eq. 4.19 and substituted into

the Ith one of Eg. 4.3, one is led to

* 1 * !

} L B . N
Mp Yo+ Ky Yy o+ (D Img vy + mf vy + mF g5 + mg, vl +

, de(I) [y Jo + mey Jy + me, Gy bWy GoHF §1=0. (4.120)

fCC

C
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By introducing Eqs. 2.14 and 2.25, by considering that be-

cause is considerably larger all other yj factors may be neg]ect-l

2

* *
ed, and since KI =@ MI this equation may then be simplified as

Py ,
m-k
2 2 2 79 _
(wpI - %) Yy + ety yJ[¢1(I) + T"“Tng_ de(I})] =0 (4.121)
cC

Therefore, solving for Yy taking into account Eqs. 4.36 and 4.34,

and generalizing for the rth mode with frequency w.s One arrives to

(L)Z - UJZ
OIS SRR O ) (4.122)
b (1,0)d° '

o\ PV /WY T

By replacing @ by we , the sought alternative expression for
J

ygr) results thus as

(.02 - wz
p 5
) I "3 yir) ' (4.123)
J o (I J)mz I
o'’ sJYIJ

which, by analogy with the corresponding expression for‘systems with

one point of attachment, {s valid only if

p
—L— = [e(LaYAT] (4.128)

A simplified expression for the participation factor @, may be

obtained as follows:
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Observe, first, that by substitution of Eq. 4.123 into Eq.
{r) .

4.85 and by considering that because the lower bound for yy ' is
(r)

o are always relatively small and

1/\/yIJ the factors yér) and y

hence negligible, this participation factor may be written as

wz - wz
B+ ! P1 SJ)
r QO(I,J) wz
a, = ler) - 32 (4.125)
- PI ) “dy2 ]
o (1,d) 5, Y14

which, if the variable Bo(i) defined in Sec. 3.3 by Eq. 3.26 is now

generalized for systems with two points of attachment as

2
w
. . 5
BO('[) = @0(1,J) ;—2-—:;'2— N | (4.]26)
Pi Sy
may be put into the form
B+ o
1 r BOIIS
o, = (4.127)
roy () 1
S P
BO(I)YIJ

Observe, then, that by means of Egqs. 4.86 and 4.49 and substitution

of . by wg the parameter Br may be expressed as
J

ve e M b (1)
B, = VS S S (4.128)
o (I) =1 w

-
r SJ p_i
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in which %r(i) may be approximated as follows:
Consider Eq. 4.19 and solve R](t) and R3(t) from the first and

tast of its component equations. Thus, one obtains

H

Rp(t) = -Rg(t) - [m* yo + mt yi + ms ys3 + m y!] (4.129)

¢°0

R . . .
Ry(t) f 2 [mo Yo * Mgy ¥y * M yp v iy + £ vel. (4.130)

From these two equations, the ratio R](t)/RB(t) may be therefore

written as

Ry (t)
R3(t$ = -1+ fec o

Y %
ey grmey it o, Gy | é*fcc Ve

o et S Gyms

(4.131)

which by neglecting, again, all the Y4 factors other than Y3

results approximately as

RT(t) mj
——1—7-= -1+ f 4,132
Ralt CCch ( )

or in the light of Egq. 4.36 as

Ry (t) 1 '
R3 t = _'I + _BE . (4.]33)

Consequently, one may write
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- R3(t) _ i

(4.134)

and hence by substitution of this relation into Eq. 4.54 @r(i)

may be put into the form

o i)+ gyle, (1) - 9 (1)1 o (i) (4.135)
1 -8, T -8

2, (1) =

Thus, Eqs. 4.135 and Eq. 4.128 lead to

mz —w2 N
S, P p o (i,J)
=41 y o - (4.136)
Pp (1) 471wl -ul
0 Sa Py
which in terms of the variable Bo(i)_resuits as
N
. P e () (4.137)
Accordingly, @, may be expressed as
N .
p
1+.X Bo(i)
S i=1 . (4.138)

(Xr = Y (r) ]
I BO(I)+ E;TTT?EJ
)

Since by virtue of Eq. 4.123 and 4.126 er may be written as

r) 1 y(r)

W g (4.139)

by substitution of this equation and Eq. 4.138 into Eq. 4.119 it
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may be seen, then, that the maximum secondary distortions in the
kind of nonresonant modes under consideration may be approximated as
b \
() PTG R ()
{X_} = {d¢} SD(w

S 2
1+ BE(I)yyg

Ee ) (4.140)

As in the case of cone point of attachment, notice that when

9 and o, are well separated from each other (that is, when Bg(l)
I J ‘
13 <<1.0), one may simplify Eq. 4.140 as

=
h=l

(r) _ (J)
X3y =0+ iZ] B,(1)] {do} SD(mSJ,E_;SJ) : (4.141)

(r)

Since yy ' as given by Eq. 4.123 is limited to the interval indicated
by Eg. 4.124, notice too that Eq. 4.140 is also Timited to such an
interval.

In comparing Eqs. 4.115 and 4.140 with Eqs. 3.21 and 3.32, one
may observe that the basic difference between the expressions herein
derived and those derived in Chapter 3 for systems with one point of
attachment lies, once again, in the substitution of @k(I) by the para-

meter GO(I,J).

4.8 Approximate Maximum Response

In the light of the relationships developed above and in view of
the similarity between these relationships and the corresponding cnes
for the case of one point of attachment, the maximum distortions of
a secondary system with two points of attachment may be thus approxi-

mated by



o J/kgz _{X}(s)2 Np+;s‘R (r)? (1.122)
= * (X} 4.142
s'max /(2 s 1 s

(s) (r)
where {XS} and {Xs} are as indicated below:

Resonant Modes

(s) (s) (9)
X3 = Yo' {d¢} SD(mo,go) (4.143)
in which
-a
N 1J
¥p = 21y, ‘ (4.144)

where by substitution of Eq. 4.67 into Eq. 2.108 and by considering
again that because of the closeness between the natural frequencies

of two adjacent resonant modes one may assume that

2

En = Epey T Eo T gt o (4.145)
ary results of the form
Oy = On(nel) - . (4.146)
'i‘ q’o(I:J)YIJ
+
1
2
4 g
Nonresonant Modes
Case I: w_=w .
l N .
(r) (r) d s (J)
: f
= ) B . {de} SD 5 4.147
{x} v Irg {fcc} j§1 ry {de} 1] (wpI apl) ( )
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Case I1:

where
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o) o Aol
P 14A%(J)
CAMEAS N
2
(r) (d)
xg =l ey s (og % )
N
e B, (1)
o) 2 i=1
S
1+ B (I)yyy

df

In these equations, ¢0(I,J), {?;Z}, Pes

{4.148)

(4.149)

(4.150)

ri» Ay(3), and B (1)

are as given by Eqs. 4.56, 4.95, 4.116, 4,117, 4.112, and 4.126,

respectively.



108

CHAPTER 5

EARTHQUAKE RESPONSE OF SYSTEMS
WITH NONPROPORTIONAL DAMPING

5.1 Introduction

The approximate methods developed in the preceding chapters are
not applicable when a primary and a secondary system form an assembled
system without classical modes of vibrétion, i.e., an assembled system
whose damping matrix is not proportional to its mass or stiffness
matrices or to any linear combination of them (Caughey, 1960). An
extension of these approximate methods is therefore necessary to evaluate
the response of secondary systems in such a case.

To analyze an assembled system with nonproportional damping, it
would seem natural, at first sight at least, to follow the approximate
approach used in the analysis of a conventional structure: a modal
analysis in which in order to uncouple the equation of motion of a system
the off-diagonal elements of its generalized damping matrix are disregarded.
A more careful examination of the problem would indicate, however, that this
procedure cannot be used for the systems studied in this work. The great
difference in value between the parameters of the primary and secondary
systems under consideration makes the off-diagenal elements of the general-
ized damping matrices of their associated assembled systems to be of the
order of magnitude of some of the elements along the main diagonal. By
neglecting such off—diagona1 elements, one may consequently introduce errors
of considerable importance.

Since the main purpose of this study is the derivation of simp]e

approximate methods and since the framework of the response spectrum
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method is particularly suitable to derive them, it is thus evident that
the only viable alternative for the solution of assembled systems with

nonproportional damping is a complex modal analysis. (For the descrip-
tion of a complex modal ana]ysfs, see Foss, 1958,and Hurty, 1964.)

In this chapter, then, the theory of such a complex analysis is
briefly reviewed and extended for the case of earthquakes excitations.
Also, an approximate scheme is introduced by which this complex modal
analysis for earthquake excitations may be reduced to the form of the
conventional response spectrum method. And since the systems of interest
in this investigation may have closely-spaced natural frequencies, the
rule presented in Chapter 2 for the combination of the modes of such
systems is generalized for the case when they have nonproportional
damping.

The analysis of response of a secondary system based on the complex
analysis of the assembled system that it forms with its supporting structure

will be discussed in the next chapter.

5.2 Complex Modal Sclution

Reduced Equation of Motion

The equation of motion of a n-degree-of-freedom system described by

its mass, damping and stiffness matrices is of the form
[M] {x} + [C] t&} + [K] (3 = (P(t)} (5.1)

where [M], [C] and [K] are respectively such mass, damping and stiffness
matrices, {x} represents the displacement vector of the system, and

{P(t)} is the vector of external forces applied to the system. In
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order to find a modal solution of Eq. 5.1, this equation need be written

as
[0l [M] {x} -[M] [0] {X} {0}
+ = (5.2)
M1 [c1 |{x} (0] [KI} [1x} [{P(t)}
or as
[AJGa) + [B] <q) = {Q(t)) (5.3)
where
(0] [M]
[A] = _ (5.4)
[M] [c]
M7 [o]
[B] = (5.5)
- [0] [X]
[{x}
{x}
and
{0}
{Q(t)y = i (5.7)
{;P(t)}

Equation 5.3 is a 2n X 2n matrix equation called the reduced equation of
motion of the system [14]. Since both [A] and [B] are symmetric and
positive definite, it is possible to find a transformation that may
simu]tanedus]y diagonalize them [13]. It is shown by Foss (1958} that as
| in the undamped case the matrix of the eignvectors of the system - the

solutions to the homogeneous equation of Eq. 5.3 - is such a transformation.
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Solution to the Homogeneous Reduced Equation of Motion

The homogeneous reduced equation of motion is given by

[Al{q} + [B] {q} = {0}, (5.8)

and its solution is of the form

{q} = {s} e)‘t . (5.9)

Substitution of Eq. 5.9 into Eg. 5.8 leads therefore to the character-

istic equation

|A[A] + [B]] = O (5.10)

whose solution leads in turn to a set of 2n eigenvalues Aps T 7 1.2,...,
2n, and a set of 2n eigenvectors {s}(r), r=1, 2, ..., 2n. When the
damping matrix is such that an oscillatory motion occurs, these eigen-
values and eigenvectors result in pairs of complex conjugates {]4].

Thus, there are 2n solutions to Eq. 5.8, and they are of the form

it
(") - L I N T (5.11)

(r)

Orthogonality of Eigenvectors {s}

For the rth mode, Eq. 5.8 results as

2 [A] 3 48] 63 = oy (5.12)

(s)T

then, if premultiplied by {s} , the transpose of the sth complex

mode shape, this equation may be written as
T T
a 15180 1 111w 18 8] 3™ = (5.13)

T
Similarly, Eq. 5.8 for the sth mode and premultiplication by {s}(r) lead
to
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As{s}(r)T[A] ts3(s + {s}(r)T 8] s3(5) = o (5.14)

which in view of the symmetry of [A] and [B] may alsoc be expressed as
Ag {s}(S)T[A] s34 {s}(S)T[Bj 53" < o, (5.15)

Therefore, by substracting Egq. 5.15 to Eq. 5.13 one obtains

)T

(O - 2g) 1538 17 30 = g (5.16)

and hence for any two different modes

(s)7

(s} Al s3ir) - 0, r#s. (5.17)

By substituting this equation into either Eq. 5.13 or Eq. 5.15 one also
has that

{s}(s)[B] {s}(r) =0, r#s. | (5.18)

(r)

It may be seen, thus, that the eigenvectors {s} are orthogonal
with respect to the matrices [A] and [B]. Notice that for a mode and its
complex conjugate the difference of frequencies in Eq. 5.716 is also

different from zero and that as a consequence for complex conjugates one

may write
&1 51 = o, r=1,2, ...n (5.19)
{Eﬁ(r)[s]{s}(r) =0 P=1,2, ..., n (5.20)
where {Eﬂ(r) is the complex conjugate of {s}(r).*

*Throughout this study, the complex conjugate of a complex variable
will be indicated by a bar above the variable.
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Uncoupled Equation of Motion

By substitution of the transformation
{q} = [s] 1z} , (5

where [s] is the 2n x 2n matrix of the eigenvectors {S}(r) and {z} is
a vector of unknown normal coordinates, and by premultiplication by

(n7 .
{s} Eq. 5.3 may be written as

T T T
130 1] 151 Gy + 13 8IS iz = 1537 wae)s (5.

which in view of the orthogonality conditions given by Eqs. 5.17 and

5.18 may be reduced to

T T T
151" a7 1531 2+ 3 [B]{s}(”)zr - 3" e (s,
where z. is the rth element of {z}. Thus, if the following variables
are introduced:
* (r)! (r)
A= {s) [A] {s} (5.
* (r)' (r)
B, = (53" [B] (s} (5
T ‘
or = 3" )y (5

here A, B
wnere Y"

*
" and Qr are complex scalars, and if it is observed that an

equivalent equation to Eq. 5.23 may be derived for each of the 2n modes
of the system under consideration the reduced equation of motion of this

system may be transformed to the following set of independent equations:

* * *
Ar z_+ Br z =0, r=1,2, ..., 2n . ‘ (5.

.21)

22)

23)

24)

.25)

.26)

27)
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Notice, however, that if Eq. 5.22 is written explicitly for the

rth complex conjugate mode shape one is led to

T T T
51 g 5 b+ 1) ey (0 7= 30

where z: is the normal coordinate corresponding to this rth complex

conjugate mode shape, or to

T g
in view that

- (r)! 09 PR S L -

A. = Lis} [A] {s}'" /] = {s} [A] {s} (5
= (r)T (r) —-(r)T —. (r)

B, = [{s}/ [B] {s}' '] = {s} [B] {s} (5.

T | T
T, = (s e = @ . (5.

Therefore, instead of Eq. 5.27 the equation of motion of the system

may be represented by

* . * _ * _ 5
Ar z, Br z, = Qr , r=1, 2, , N (
and
e ) i —%
Ar z— + Br z = Qr s, r=1,2, ..., n. (5.

Relation Between At and Bi_

If Eq. 5.11 is substituted back into Eq. 5.8 and if this equation
T
(r)

is premultiplied by {s} , then the homogeneous reduced equation of

motion may be expressed as

{Q(t)}, (5.

28)

29)

.30)

31)

32)

.33)

34)
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T T
Ar{s}(r) [a1is3 (M)« (530 8] s3{") - 0. (5.35)
By virtue of Eqs. 5.24 and 5.25 one has thus that
* *
Ar Ar + Br = (5.36)
and hence

*
BY‘

A= - L (5.37)
Ar

If the above operation is made explicitly for the rth complex

conjugate mode shape, one then arrives to

T | T
Lo e s e <. (5.38)

Therefore, using Eqs. 5.30 and 5.31 one obtains the following similar

—k —
relation between Ar and Br:
_*
)\Y‘ = - -5 (5.39)
Ar

Solution of the rth Uncoupled Equation

Equations 5.33 and 5.34 constitute a set of independent ordinary

differential equations which may be solved separately by means of either

the Laplace transform or the unit impulse function (i.e., Dirac's delta
function). Here, this latter approach is used as follows:
According to Eq. 5.33, the rth uncoupled equation of motion of a

*
system when Qr is equal to the unit impulse s(t) may be expressed as
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* *
ALz, t Bz, = s(t). (5.40)

Integrating each of its terms from O to t this equation may be then

written as

*t. *t _t

Arfo z, dt + Brfo z, dt = IS 6(t) dr (5.41)
oY as

* *t _-

Ar zr(t) + Brfo Zr dt = 1. (5.42)

Hence, by making t equal to zero one obtains
* — ——
Ar zr(t—O) = 1. (5.43)

It may be seen thus that at the end of the unit impulse the system

undergoes free vibrations with the initial condition

z, (t=0)= 1/Ar . (5.44)

Since the solution of the homogeneous equation of Eq. 5.40 is of the
form
2 =C_e'rt, (5.45)

where Cr is a constant, then the solution of Eq. 5.40 result as

z =L etrt, (5.46)

ro.
Ar

*
Consequently, by dividing the external force Qr(t) into a series

*
of impulses of magnitude Qr(T) dt and by applying the superposition
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principle the solution of Eq. 5.33 may be written as

toa (t‘T) *
z (t) = -]—,;[ e’ Q.(x) dr. (5.47)
Ar 0 _

By following a similar procedure, it is easy to show that the solution

of Eq. 5.34 is

2=(t) = _]'{ exr(tw) q.(x) d  (5.48)
" = p\T T. .
Ar :

Observe that since the complex conjugate of a sum is equal to the
sum of the conjugates of the terms of the sum and the complex conjugate
of a product is equal to the product of the conjugates of the terms of

the product, E}(t) may be expressed as

t (t-7)_ _«
7t) = & J U T 4  (5.49)
R, )
or as
t —
(t-1) _«
2 (t) = au J eAr Q,.(c) dv = z(t). (5.50)
Ar )

Hence, zr(t) and z;{t) are complex conjugates.

Response to Earthquake Excitations

Once the complex eigenvectors {S}(r) and the so1utions of Eqs. 5.33 and
5.34 are known, the solution of Eq. 5.3 is given directly by Eq. 5.21.

This solution, however, may be conveniently expressed as

n n o _
{q} = } {s}(r) z + ) {s}(r) z (5.51)
r=1 r=1
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which by virtue of Eq. 5.50 may also be written as

n
{q} = § {s}(r)zr +

MG (5.52)
r=1 = r

r=1
which in turn may be put into the form

n
{qy =27 Re[{s}(r)z
r=1

] (5.53)

where "Re" stands for "the real part of".
Thus, the solution of Eq. 5.1 may be obtained as follows:
Observe, first, that as indicated by Eq. 5.11 the rth solution of

the homogeneous reduced equation of motion is given by

At
(") = sy (r) (5.54)

and therefore since in the Tight of Eq. 5.6 {q}(r) may be
written as

. (r)
(Y‘) _ {x}
{q} {x}(r) (5.55)
one has that
- (r)
{x} At
- (r) r
{X}(r) = {s} e . (5.56)

Observe, then, that'{x}(r) describes the rth mode free vibration
displacements of the system defined by Eq. 5.1 and hence this vector
may be expressed as the product of a mode shape and a harmonic func-
tion of time, i.e.,

At
{x}(r) = {w}(r) e ' . (5.57)
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Consequently, one may write

At
o) HQ({W}(r)e ™) A nwp )
t . r r

= e (5.58)
(r)ekrt

() tw) wyr)

which together with Eq. 5.56 permits one to conclude that the

eigenvector {s}(r) may be expressed as

s3r) - (5.59)

{w}(r)

Netice that because'{s}(r) is complex {W}(r) will also be a
compiex vector.
Conceivably, by substitution of Egs. 5.6 and 5.59 into Eq. 5.53

one is led to

y (r)
{x} n xr{w}
=2 } Re z., (5.60)
r=1 (r)
{x} {w"
whose lower half indicates that
L (r)
{x} =2 } Re[w} 'z] . (5.61)

r=1

In 1ike manner, the substitution of Eqs. 5.7 and 5.59 into

Eq. 5.26 yields

T
q, - wr (" ey (5.62)
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while Eq. 5.24 in combination with Eqs. 5.59 and 5.4 leads

to

. T
Ar = () f2a Il + [e1lon (7). | (5.63)

According to Eg. 5.47, zr(t) may be therefore written as

t-1) T
i} (t),s‘fg ekr( ) {P{1)}dt . (5.64)
r

;
o 2, e 1on

But for the case of an earthquake excitation the vector of external

forces {P(t)} is given by
P(t)y = -[MJ{d}ag(t) . (5.65)

in which dg(t) is the earthquake ground acceleration and {J} is a
vector of unit elements. Then, for earthquake ground motions

zr(t) may be expressed as

A (t-2)
_ t r\ -
zr(t) ==Y, e qg(t)dr (5.66)
where Yy is defined as
T -
() [M]{J} _ (5.67)

Yp =

T
{w}(r) [ZAr [M] + [C]]{w}(r)

Thus, by substitution of Eq. 5.66 into Eq. 5.61 the earthquake response

of the system described by Eq. 5.1 results as
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n ‘ A ‘
(0= 2 ] e [y, (M)t "t (0d (5.68)

Notice that Tike the participation factors of a system with pro-
portional damping the parameters vy, in the above eqdation indicate
the degree of participation of each of the modes of the system herein
being considered in this sytem's total response, Therefore, these
parameters will be henceforth identified as the complex participation

factors of the system.

5.3 Definition of Modal Damping Ratios and Natural Frequencies

of Vibration

Motivation

It has been shown in the last section that the earthquake response |
of a system with nonproportional damping may be expressed as the sum of
the individual responses in each of its modes. Then, if a way can be
found to obtain the maximum values of these individual responses from a
response spectrum, the maximum response of such a system can be conven-
iently calculated by the response spectrum method. In this regard, it
should be noted that in order to use the reponse spectrum method it is
necessary to determine first if the concept of the modal damping ratios
and natural frequencies of vibration of a system with proportional
damping may be extended for the systems with nonproportional damping.
In this section, therefore, the significance of the complex natural

frequencies, modal damping ratios, and natural frequencies of vibration
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of a system with proportional damping is reviewed, and then, based on
this review, the meaning of the.same parameters for a system with non-
proportional damping is established.
Damping Ratios and Natural Frequencies of Systems with Proportional
Damping

It is well known that the matrix of the undamped mode shapes of a

system with proportional damping is the transformation matrix that un-

couples its equation of motion [ 87. Thus;
[MI{x} + [CI{x} + [KI{x} = {0}, B (5.69)

the damped free vibration equation of motion of such a system,

is satisfied by

o At ‘
{X}(r) = {U}(r)e.r 'y r:]’ 2: ey h (5'70)

where'{u}(r) is the rth undamped mode shape of the system, n denotes the
number of its degrees of freedom, and Ar_is an unknown constant.
To determine X,.» one may observe that by substitution of Eg. 5.70

into Eq. 5.69 and by premultiplication of thfs Tatter egquation by

T \
{u}(r) one may write the above equation of motion as

2 ~§+ *+ *
N Mot Lt KL= 0, =1, 2, L0y, (5.71)

where B
e o) ~ | |
Moo= {up*"’ [M}{ul : (5.72)

T

C: = {u}(r) [C]{u}(r)” (5.73)
S £ LY O S -
K.o= {ur''"’ [KI{u} , (5.74)



123

and hence after solving for A from Eq. 5.71 one obtains

c ¢ 2 K
e exted [(£) -aL . (5.75)
roZy-2f \y M '

r r r '

*
However, since M:, C;,and K, are real, in similarity with a single
degree-of-freedom system one has that: (1) the condition for having

an oscillatory motion in the rth mode of the system is (see Eq. 5.70)

c: K"
(_*r_) < 4__:_, (5.76)
Mr My
(2) there exists a critical value of C: given by

® * *
(C)ep = 2/ KoM (5.77)

with which such an oscillatory motion stops, and (3) Ct may be

defined in terms of a percentage £ of this critical damping value

as

* _ *

Cr =2 En Kr Mr . (5.78)
Consequently, since

2 {5.79)
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* .
Cr may be written as
* * o | :
C. =28M. w, (5.80)
and hence by substitution of these two equations into Eq. 5.75

Ar may be put into the form
A== Ew tiw S (5.81)

where

-

w. T ow 1 - ¢ (5.82)

is called the rth damped natural frequency.

On the basis of Eqg. 5.81, the solution of Eq; 5.69 may be there-

fore expressed as (see Eq. 5.70)

. 5
(r)ejﬁrwrt+1wrt -Erwrt 'Imrt

| {x}(r)

cq{u} + cé{u}(r)e (5.83)

or as

_ - w. t
{x}(r) {u}(r)e rr [cicos w;t + cé sin w;t] (5.84)

where C1s Cos ci and cé are constants.

Notice thus that in this case of pkoportional damping:

a) The parameter Ay is in general a complex constant, and it
is given in terms of the rth modal damping ratic and rth
natural frequency of vibration of the system.

b) A, defines thé vibrational characteristics of the system in
its rth mode; the imaginary part of Ay describes the fre-

quency with which the system vibrates in that mode while its
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real part indicates the rate by which such vibrations are
damped out with time.

c) The rth modal damping ratio and the rth natural frequency of
vibration are defined by means of Egs. 5.80 and 5.79,
respectively.

Damping Ratios and Natural Frequencies of Systems with Non-

proportional Damping

It is shown in Sec. 5.2 that the solution of -

[Al{g} + [Bl{q} = {0}, (5.85)
the homogeneous reduced equation of motion of a system

with nonproportional damping, is of the form

At
{q}‘r) s T , r=1,2,...,2n (5.86)

where {s}(r) and Ar are respectively the rth complex eigenvector and
complex natural frequency of the system and n is the number of its
degrees of freedom. By substitution of Eq. 5.86 and by virtue of

Egs. 5.4, 5.5 and 5.59, such an equation of motion may be therefore

written as
1M | | a00tr) vy o1 | Jaom (M o
A + -
(r) (r) (5.87)
(M1 [C] {w} o] (Xl {w} {0}
which in algebraic form results in the following two equations:
a, o o paontt) = o (5.88)

2 oo () Ar[cj{w}(r) + o = oo, (5.89)
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From this last equation, then, it may be observed that the homo-
geneous equation of motion of a system with nonproportional damping

given by
[MI{5} + [CHAY + [K]{x} = {0} (5.90)

is satisfied by

) At
{x}(r) =‘{w}(") e, r=1,2, ..., 2n. (5.91)

By noticing the simi]arity between these two equations and Eqgs.
5.69 and 5.70, one may thus follow the approach used for systems with
proportional damping to interpret the complex natural frequencies of
a system with nonproportional damping. Accordingly, if Eq. 5.89 is
premultiplied by {W?(r)T, the transpose of the rth complex conjugate
mode shape, the free vibration equation of motion of the system under

consideration may be expressed as

2 x

| oy k= 1 (5.92
A Mo+ A, Cut K= 0, reli2, 0, | .92)

: * K * .
where Mr’ Cr and Kr are defined as

) T |

iy = @™ e (5.93)
T

c, = ' reeet™ (5.94)

* T

= @ e (5.95)

(Notice that because of the symmetry of the matrices [M], [C] and
[K], the above generalized parameters are the same for a given mode and
its complex conjugate, and hence there are only n equations of the kind

of Eq. 5.92.)
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In order to go further, it is necessary to analyze first the
nature of these generalized parameters. For this purpose, consider

(r)

the complex mode shape {w} written explicitly in terms of its real

and imaginary parts as follows:

{w}(r).= {u}(r) + 1, | (5.96)

Observe, then, that after substitution of this equation into Egs. 5.93

* * *
through 5.95 Mr’ Cr and Kr may be written as

T T
M: - w3 o v o e () (5.97)
. T T
c, = w7 reren 7w ) g () (5.98)
* T T :
K, = ) k() & w17 ) (5.99)
or as
* * *
W, = MRP + MIr (5.100)
* * *
¢ =¢ C (5.101
r Rr+ I, )
* * *
K =K, +K (5.102)
r Rr Ir
where
. T
My = ) g () (5.103)

r
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.M;r - ™ g ) (5.104)
c;r - ™ et - (5.105)
c’{r . {v}(‘”)th]{v}(‘”) | (5.106)
K;r = {u}(”T[K]{u}(‘”) | (5.107)
k’l‘r = ™ ram ) | (5.108)

Notice thus that each of the generalized parameters of a system with
nonproportional damping consists of two tefms: one corresponding to
the real part of the eigenvector {w}(r) and the other corresponding to
its imaginary part. Notice also that these generalized parameters are
~always real and that each of their terms is defined 1ike any of the
generalized parameters of a system with proportional damping.

Back to Eq. 5.92, it may be seen, then, that this equation is of
the form of the corresponding one for a system with proportional damping
(see Eq. 5.71) and that consequently it is also possible to define from it
a critical damping value, a modal damping ratio, and a natural frequency

of vibration. In fact, if A is solved from Eq. 5.92 one is led to

ot N ¢
1
AN o (._;;) -4 L (5.109)
M W "

-
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which by denoting

(5.110)

* » »
and expressing Cr in terms of a percentage £y of its critical damping

value as

* =2 f i =2 i (5.111)
€y = 5r(cr)cr " e by Kp My =2 B M '

may also be written as

Ap = <E0 j_im; (5.112)

where as before

(5.113)

Similarly, if Eq. 5.112 is substituted into Eq. 5.91 one may express
(r) . *
{x} as

-E.wt : ' .
ol = gl [cosw t + 1 sin wtl, r=1,2,....2n. (5.114)

Evidently, the rth complex frequency of a system with nonproportional
damping also describes the vibrational characteristics of the system in
its rth mode. As in the case of proprotional damping, its imaginary and
real parts indicates respectively the frequency of vibration of the system

in the rth mode and the way the associated oscillatory motion dies out

*otice that the negative sign in Eq. 5.112 corresponds to the com-
plex conjugate of A, and therefore the substitution of Eq. 5.112 with this
negative sign into Eq. 5.91 would lead to{;}(r)_
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with time. Also as in the case of proportional damping, this complex fre-
quency may be written in terms of a modal damping ratio and a natural
frequency of vibration. In thé Tight of Egs. 5.100 through 5.102 and
according to Eqs. 5.110 and 5.111, in the case of nonproportional damping
such a damping ratio and such a natural frequency of vibration are, however,

defined by means of the following two equations:

KE + K
o=/ Iy - (5.115)
* *
My + M
RY‘ Il"
C* + C*
=1 M e (5.116)
rr oy % -
Mg+ My
r s

Observe that since the eigenvectors of a system with proportional
damping are always reaﬁ, for the particular case of proportional damping

one has that

w3 = ), (5.117)

K = C = M; = 0 (5']]8)

(5.119)

Ew=1 “r. (5.120)
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Observe also that in view of the discussion in this section, the damping
characteristics of a system with nonproportional damping may also be

specified in terms of modal damping ratios.

5.4 Earthquake Response by the Conventional Response Spectrum Method

Maximum Earthquake Response

15wyl

and A in Eq. 5.68 are written explicitly in terms of
their real and imaginary parts and if‘{w‘}(r) denotes a complex mode

shape with unit participation factor, i.e.,

w1 = g e oy ), (5.121)

the earthquake response of a system with nonproportional damping may be
expressed as
-Erwr(t-r)"

o)1= - 2 Tre ¢ [+ qiv 3 (Mg st §.(<)-
r=1 ° 9

«[cos w;(t—T) + 1 sin w;(t-r)] dr } (5.122}

or as

- t-t)-- ,
x(t)} = - 2 %] [ruty(r) te Ept )qg(T)COSwr(t-T)dT -
r=

(t-)

..gm
e T g (o)sineg (t-n)ded. (5.123)

(1)
- {v'} fo

But the second integral in this last equation may be identified as the
product of m; and the displacement response of a damped single-degree-of-

freedom system with natural frequency w_, and damping ratio & to the

Y
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ground motion ﬁg(t). Similarly, for small damping ratios the first inte-

gral may be considered as the corresponding velocity response. That is

t —gl"wl"(t-T)»- t r 5 ]24
- fo e qg(T)COSwr(t—T)dT = V(wr’gr,t) (5. )
-t w (t-1)
t rr - .y -
- Io e qg(r)s1nwr(t—T)dr = er(“r,Er,t)" (5.125)

in which V(wr,gr,t)and D(mr £y t) stand respectively for the afore-
mentioned velocity and displacement responses at a given time t.

Therefore, {x{(t)} may be alternatively written as

x(t)} = 2 ri[{u'}(") Wa, &, t) - {v*}(*)w; Doy, 2, t)], (5.126)

and as a conseguence the vector of maximum displacements results of

the form

n
b=2 7 wir)vle

L - V'(I")m;‘ D(“’r,gr,tmax)} , (5.127)

r.Er, tmax)

{Xmax

where tmax signifies the time at which the maximum value of the
displacement of a particular mass of the system under consideration is
attained.

Notice, thus, that as in the case of proportional damping the maximum
earthquake response of a system with nonproportional damping is given by
the sum of the individual responses in each of its modes, and hence this
maximum response may also be estimated from the maximum vaTues of those
individual modal responses. It should be noted, however, that since the

maximum values of the velocity and displacement functions in Eq. 5.126
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cannot occur at the same time (the displacement function reaches its
maximum when the value of the velocity one is zero), such maximum modal
responses cannot be evaluated directly from a response spectrum. To
determine, then, such a maximum earthquake response by the conventional
response spectrum technique, the following approximate formulation for the

aforementioned maximum modal responses is introduced.

Approximate Maximum Modal Responses

It may be observed from Eq. 5.127 that an upper bound to the displace-

ment response in the rth mode of a system with nonproportional damping is

(notice that u'(r) and v'(r) as well as V(wr,gr,tmax) and D(wr,gr,tmax)
may be of opposite signs)

r 1 1 '
ez (lu L T A 5.0 (CMUL NS ) b (5.128)

and thus since V(w, g, t ) and D(w, £, t .. ) are always less than or

max Oy, Spr, “max

equal to their corresponding spectral values the following inequaiity

holds:

caMez (urirsy, + v (ruiso )} (5.129)

where SVr and SDr are respectively the velocity and displacement corre-
sponding to a frequency W, and a damping ratio Ep in the response spectrum
of the ground‘motion ﬁg(t). The upper limit in this equation may be
evaluated from a response spectrum, and it may therefore be adopted to
approximate the maximum modal responses in concern, Less conservative
values may be obtained, however, if the two terms in Eq. 5.129 are com-

bined, instead, on the basis of the square root of the sum of their squares.
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That 1s,

{x}(r) =2 { Jahz(r)SV§ + V'Z(r)m;ZSDi h (5.130)

Since this approximation does not consider the relative sign between the
various modal responses of a system and since in some instances this

sign may be an important factor in the computation of this sytem's maxi-
mum response (when the cross terms in the rule to combine modes established
in Chapter 2 need to be considered, for example), it may be assumed that
the sign of the argument between the absolute value bars in Eq. 5.129 is
also the sign of Eq. 5.130. In this manner, the maximum modal responses

{X}(r) may be estimated by

00 = 2 tsgnfut (rsy, + v (M) 50,1/ uB(r)si + v () 2505 } (5.131)

where sgn js a function which reads as “the sign of." Furthermore, if
the known approximate relationship between spectral velocities and displace-

ment is used, i.e.,
SV 2w, 8D, (5.132)

and if it is considered that for small damping ratios w; 2 Wy, {x}(r) may

be approximated by

7= 2gsgnl(u(r) + v (r)ogsn, 1 furZn) + w2 () wys0, ) (5.133)
or by

{x}(r)* 2 {sgn{u' + v')|w' I} ; y (5.134)

where [w'| denotes the absolute value of w'.
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Equation 5.134 is the desired expression to determine the maximum
modal displacements of a system with nonproportional damping from a

specified response spectrum.

Convergence to the Case of Proportional Damping

To demonstrate that Egs. 5.126 and 5,134 converge to the correspond-
ing equations for systems with proportional damping when the damping of
a system is indeed so, one may proceed as follows:

It is well known that when the damping matrix of a system is pro-
portional to either its mass or its stiffness matrix or to any linear
combination of these two matrices, all its mode shapes are real. There-

fore, for such a system one may write
wi = Wi, (5.135)

Similarly, it has been shown in Sec. 5.3 that when the rth mode shape
of a system is real its rth natural frequency and rth damping ratio may

be expressed as

(5.136)

¥
C

= %__£ (5.137)
MY‘

Then, for a system with proportional damping Eq. 5.67 yields

.

o, w1y

r (r)T - CN (T‘)
W 2= 0, + dur)IMT + [CTlW
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T
) gy (s
= ) . (L}'M* + C*
- zgrmer tiz rr r
which by virtue of Eq. 5.137 may also be written as
T
w (5
*
" i w M
or as
0Ll"
r” 294! (8
Y

where ap is the conventional participation factor. In such a case,

Eq. 5.121 in combination with Eq. 5.135 leads therefore to

we e gy ey (0 2 B gy () (5

3
21mr

from which it is concluded that

wr - oy (5

At (5

20"
wl"

il oo

Thus, by substitution of these two equations into Eq. 5.126 one
obtains

{x(t)} =2 §1 [-(-'filéiu}(r)w; D(mr £, t)] (5
r= 1 3 ]

Zmr

.138)

.139)

.140)

.147)

.142)

.143)

.144)
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or

_ 0 (r)
{x(t)} —rz]ar{U} D(mr,ar’t). (5.145)

In 1ike manner by substitution of Eqs. 5.141 through 5.143 into

Eq. 5.134 one arrives to
(") = 5 Congl(= 250) u(r)] [5elr u(r)} w! S (5.146)
B3 = e tenglls g T, r 2Py :

or to

{x} = ar{u}(’“)SDr (5.147)

Equations 5.145 and 5.147 are identical to the expressions used in
the modal analysis of a system with proportional damping; the convergence
of Egs. 5.126 and 5.134 to the particular ones for proportional damping

is thus proved.

Maximum Element Distortions

In the derivation of Eq..5.134, the vector of maximum displacements
has been considered as the desired response. If the response of interest
is instead the vector of maximum element distortions, an expression
similar to Eq. 5.134 may be developed as follows:

According to Eq. 5.127 the rth mode displacement of the ith mass of
a system at the time the maximum displacement of this ith mass occurs may

be written as

x.(r) =2 Lus(rvle, & thax) - vi(P)ey, Do, £, T 0], (5.148)
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Therefore, the distortion of the ith element of the same system in its

rth mode may be put into the form

X;(r) = x5(r)= x;_;{r) =

= 2 Qug{r)- w4 (0] vlop g) tra) - Tve) - v (N o Dlo, & £,

(5.149)
and hence un upper bound to the maximum value of such a distortion is

X;(r) < 2 g[Lug(r)=ui 4 (N SV, + [vi(r)-v; ()] wy, SO (5.150)

Taking the square root of the sum of the squares of the two terms of

this equation while keeping the sign of its argument between the absolute

value bars, one then may approximate Xi(r) by

X;(r)= 2 sgn{ Lug (r)-u: 1 (N7 sV + [vi(r)-v {(r)]w 5D, } -

: J&u;(r)~u;_1(r)]2 SV + Lvi(r)-v_1(r12 w2 ? (5.151)

which, after considering Eq. 5.132 and that for small damping ratios

[
=
W = @, results as

X;(r) = 2 sgn (Lug(r)-ui 4 (N + Dyilr)-v; (113 -

- JTug(r)-up (2% + [vir)-vi_{(N1? w, SD, (5.152)
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or as
X;(r)= 2 sgny [u;(r) + v;(r)J - [u%_1(r) + \/;.J(r*)]}lw;.(r)-w;_](r)lw"ﬁf)r .
(5.153)

Thus, the corresponding rth mode vector of maximum distortions
may be expressed as
o) = 2 csgnl(u] + v]) - (up_y * vi )Ty - g 13T orsp

(5.154)

Equations 5.134 and 5.154 reduce the solution of a system with non-
proportional damping to one very similar to the conventional modal solution
of a system with proportional damping. Consequently, the maximum response
of such a system with nonproportional damping may also be estimated by
computing its maximum modal responses from a specified response spectrum
and by combining these modal maxima in the way established by the rule
selected for such a purpose. To complete, then, the procedure by which
the systems under study may be analyzed by the response spectrum method,
the rules by which their maximum modal responses may be combined are

examined next,

5.5 Combinations of Modal Maxima: Generalization of Rosenblueth's Rule

Applicable Rules

By the inspection of Egs. 5.127 and 5.134, it is easy to see that
un upper bound to the maximum response of a system with nonproportional
damping may be obtained if the absolute values of its maximum modal
responses are considered; hence, the combination of the modes of such a

system may also be conservatively made by "the absolute sum of the maxima."
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Similarly, if among all the above mentioned maximum modal responses
there is one that is significatively greater than the rest of them, it
may be seen that a less conservative estimate of such a maximum response
may be determined by "the square root of the sum of the squares". In
contrast, since the rule suggested by Rosenblueth and presented in
Chapter 2 has been derived specifically for systems with proportional
damping (see Ref. 26), this rule is not applicable for the systems with
nonproportional damping.

In view that the chief interest of this work is in the analysis of
systems with closely-spaced natural frequencies and that Rosenblueth's
rule is particularly appropriate to combine their modal responses, it is
here convenient to generalize this rule for its application in the cases
in which these systems have nonproportional damping. Based on the theory
deveioped in this chapter and on the original derivation of Rosenblueth's
rule as described in Ref. 26, this generaiization may then be accomplished

as Tollows:

Maximum Response in Terms of Modal Maxima
According to Eq. 5.68, the displacement response* of a linear multi-

degree-of-freedom system with nonproportional damping is given by

t-1
(x(t)}= -2 !§]Re [{w'}(‘”)fg ol )agh)de (5.155)
r‘:

where {w'}(r) denotes the rth complex mode shape with unit participation

factor of the system, N is the number of its degrees of freedom, and

*The generalization of Rosenblueth’s rule is made here in terms of
the displacement response; notice, however, that this generalization may
be obtained as well in terms of any other response, such as the element
distortion, velocity or acceleration response.
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all other symbols are as denoted before. For any particular mass, say

the ith, such displacement response may be then written as

Ar(t—T) '

N
xi(t) = -ZrZ1Re [w%(r)fz e qg(r)dr 1. (5.156)

But, if a new dummy variable 6=t-1 is introduced and if it is considered
that for t < o {that is,T < o) xi(t) vanishes and hence the upper limit of
the above integral may be replaced by infinity without changing the value

of the integral, this equation may be alternatively expressed as

N N
x;(t) = -2 > Re [wi(r) i e qg(t—e)de] (5.157)
r=1

which inturn, since the real part of an integral is equal to the integral

of the real part of its argument, may also be put into the form

N . A0 '
xi(t) = -2 57 Refwy(r) e " Tqg(t-0)de . (5.158)
r=1 |

By denoting

t
p, (t) = -2 Re [w;(r) exr 1s : - (5.159)

Xy

where ¢ (t) represents the rth transfer function of the system, one may

r
therefore write xi(t) as

N N
x;(t) = rél fj ¢Xr(1) qg(t-r)dr, (5.160)



142

and hence, since by definition the transfer fupction is the response to
a unit impulse 6(t)[ 9 1, where s(t) is Dirac's delta function, by
substitution of the function ﬁg(t—T) in Eq. 5.160 by &(t-t) one obtains

N ,

v (t) = ) w, (t) (5.161)

r=1 °r
which in words simply means that the transfer function of a system with
nonproportional damping is, as in the case of proportional damping, equal
to the sum of the individual transfer functions in each of its modes.

Then, since under the assumption of a stationary white noise

excitation the mean square of any response is of the form

EDx (£)] = 2nS, = wi(t)dt |  (5.162)

(see Crandall and Mark, 1963), where S, is the constant spectral density
of such a white noise excitation, by substitution of Eq. 5.161 into the

above equation the mean square of the total response xi(t) may be written

as
ELC(E)] = 205 /7 [ % v, ()77 dt =
i o © " La7X
r=1 "r
§ W (1) %'\21 "o, (thy, (t) (5.163)
= 2SS 9t (t)dt + 2n S Sy tiy t)dt. 5.163
r=] 0 ° Xp m=1 n=1 00 X XN

mn

However, if the argument of the double summation in this Tast equation

is expressed as
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215,75 by ()0 (D)4t - anw‘/TZHSOIOme(t)dt][2ﬂ50fowxn(t)dt] (5.164)

and if in the light of Eq. 5.162 the mean squares of the modal responses

X (t) are written as
Y\

E[x? (t)] = 2ﬂsofzwx (t) dt (5.165)
Y r

E[x?(t)] may be put into the form

2 N 2 N N 5 )
ELx; ()1 = ] Elxy ()1 + T T o f EDx; (£)] E [y (t)] (5.166)
r=1 r m=1 n=1 m n
m#n

where & is a factor, evaluatéd later on, introduced merely to correlate
the double product terms of Eq. 5.163 with their associated mean squares.

Notice thus that if in accordance with the theory of the first
passage problem (Ang, 1974} and with the equivalent assumption made in
the case of proportional damping (Rosenblueth, 1968) it is now assumed
that the absolute maximum value of the response of a system for any

given probability of exceedance is proportional to the root mean square

of such a response, j.e.,

2
X; =cf E(xi) s (5.167)

max

where X; is such a maximum value and ¢ is a proportionality constant,
max

the relation between the total maximum response of a system with nonpro-

portional damping and its maximum modal responses results as
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1

N N '
+ 7 3 e X X, (5.168)
=1 p=1 ™1, n

N 2
i = 1%
max =1 'r
m#En
in which Xi represents such modal maxima.
Y\

Modal Correlation Factors

The modal correlation factors G TRY be evaluated as follows*:

According to Eq. 5.164 the modal correlation factor of a system

with nonproportional damping is defined as

ST, (8) u, (t) dt
3 ° m *n | (5.169)
“mn ‘ .

[ US6 (0dtd 177 42 (1))
m n

where Uy s T = MMy is the transfer function defined by Eq. 5.159.
r

Since this transfer function may be written as

t

) A . At
- Dw(r)e T rw(rle " 1, (5.170)

n

.wxr(t)

then the integral in the numerator of Eq. 5.169 may be expressed as

s wxm(t) wxn(t)dt =

Vo (A, +A.)t \ O+ 3t
= 2 Re [w;(mw, (n) /76 moN gt o+ w; (s (n) /e n* ) dt] (5.171)

*Observe that the modal correlation factors of a system with nonpro-
portional damping differ from those of a similar system with proportional
damping because their transfer functions are different (see Eq. 5.159).
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and thus after solving these Tast two integrals one arrives to

w;(m)w%(n) . w%(m)ﬁ;(n)

Foby (E)oy (E)dE = - 2Re (5.172)

. -
n T A m o+ A

Similarly, by setting m=n=r in this last equation one has that the

integrals in the denominator of the same Eq. 5.169 are of the form

. Y-

2 wifr) Jwir)]
7 by (t)dt = - 2Re +

r ZAr 2ReAr

I2 — ] 2 .
_ Relwi{rn 1 [wi(r)] (5.173)
— |
Yy Erly

which for small damping ratios may be approximated as

. 2 . ws
fo Uy {(t)dt 2 —— (5.174)
r £ w

In the light of Eqs., 5,169, 5.172 and 5.174, the modal correlation factors-

% result therefore as

w;(m)w;(n) w;(m)wi(n) /Emmmgnmn

n = 2Re + (5.175)

—_— ] ] *
S A+ My s (m) | [w;(n)|

*n

Equivalent Damping Ratios

It may be observed that when the damping ratio Ep approaches zero,

the value of the integral in Eq. 5.174 approaches infinity. Consequentily,
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E [x$ (t)] as given by Eq. 5.165 and X; under the assumption indicated
r r

by Eg. 5.167 also become infinite. Since for real earthquakes the
maximum responses Xir are always bounded,the hypothesis of a stationary
process in the above derivation leads thus to an inconsistency that for
the accurate application of Egs. 5.168 and 5.175 needs to be corrected.
Using the concept of equivalent damping ratios introduced in the
analysis of systems with proportional damping [26,21], this inconsis-
tency may then be corrected by substituting the damping ratios of the
system under analysis (appearing in Eg. 5.175) by the damping ratios of
an equivalent system whose maximum response when determined with the
mode] described above (that is, with Eq. 5.167 and the hypothesis of a
white noise excitation of infinite duration) is equal to the maximum
response obtained when the original system is subjected to a finite segment
of white noise (a nonstationary model that accounts for the transient
nature of real earthquakes).
In determining such equivalent damping ratios, therefore, one may
note that in the light of Eqs. 5.174, 5.165 and 5.167 the maximum response

Xir on the basis of a stationary white noise may be written as

wi(r)]” i (r)]
Xi = ¢ 27rS0 —— = k] —_— {5.176)
" grwr Vgrwr‘

in which k] is a constant. If it is observed, however, that the sought
eguivalent damping ratios are not empioyed to compute the mode shapes of
the system and that for this reason w%(r) in the above expression may be

considered as a constant in spite that it varies with £ One may express
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X; = (5.177)

where k2 is just another constant. In 1ike manner, if it is assumed that
the maximum response of a system Tor a given probability of exceedance is
proportional to the exbected value of such a response*,and if it is con-
sidered that according to Newmark and Rosenblueth (1971) the ratio
between the expected values of the damped and undamped maximum responses
of such a system to a segment of white noise of duration S, is of the
form
- 0.5

Bp = (1+0.5 Erwrsr ) . (5.178)

then when the excitation is such a liﬁited segment of white noise the

aforementioned maximum response may be expressed as

Ky
Xir = k3 E(Xir) =

(5.179)

\/1 + 0.5 Erwrsr

in which k3 and k4 are other constants. Thus, if g; represents the rth
equivalent damping ratio and if ér in Eq. 5.177 is replaced by this
equivalent damping ratio, after equating Eqs. 5.177 and 5.179 one is led

to the following relation between_a; and g

I

£ W

=k (T+0.5 £us). (5.180)

*Assumption introduced in the original derivation b
Rosenb uethp 26,2??. d y
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By noticing, then, that when Sa approaches infinity, the above mentioned
finite segment of white noise becomes a stationary one of infinite
duration and that in such a case the equivalent and real damping ratios
in Eq. 5.180 coincide, it is easy to show that k = Z/Sr and that the
sought expression to compute equivalent damping ratios results conse-

quently as

(5.181)

Conclusions
If in following the above established criterion the damping ratios
En and & in Eq. 5.175 are substituted by their eqUivaTent ones g& and

gé, the corrected modal correlation factor S is therefore given by

w;(m)w;(n) . w (m)w (n) J Ero £l )

A A Ayt X (W (m) [ [w; (n)]

%mn = 2Re (5.182)

~ where according to the definition of a compiex natural frequency the

corrected frequencies A% and lé are of the form

! . I2

=-guw, * i T - Ep 5 T =M, N (5.183)

Equation 5.168 in combination with Eqs. 5.181 and 5.182 constitutes
thus the sought general rule to combine the maximum modal responses of
systems with nonportional damping. In examining this rule, one may note

that in this case of nonporportional damping:
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3)

4)

5)

149

the expression to compute equivalent damping ratios is identi-
cal to the one employed for systems with porportional damping.
The duration s, in Eq. 5.181 needs to be adjusted to fit

the average characteristics of specified ground disturbances
in much the same way as that for systems with proportional
damping (see Sec. 2.10).

Since Eq. 5.182 is a function of the ratios w;(r)/lw%(r)[,
r=mn, and w;(n)/|w.(n)|, which are nothing else but unit
magnitude compliex numbérs with the arguments of w%(r), r = mn,
and W}(n), respectively, the modal correlation factors of a
system depend on the phase angles of its mode shapes.
Differently from the ones for proportional damping which are
always positive (see Eq. 2.102), the modal correlation factors
may fluctuate between positive and negative values.

Because the various masses of a system vibrate with different
phase angles and % depends on these phase angles, there is a

different modal correlation fagtor for each of these masses,



150

CHAPTER 6

GENERALIZATION OF APPROXIMATE METHOD: NONPROPORTIONAL
DAMPING AND UP TO TWO POINTS OF ATTACHMENT

6.1 Introduction

Using the concepts developed in the foregoing chapter, it is now
possible to derive an approximate procedure based on the response spectrum
method to determine the maximum response of those secondary systems which
in combination with their supporting structures give rise to assembled
systems with nonproportional damping. For this purpose, it may be cbserved
that, as in the case of proportional damping, the maximum response of a
system with nonproportional damping may also be obtained by determining
the system's mode shapes, natural frequencies, participation factors,
and maximum modal responses and by combining its maximum modal responses
according to an established rule. Thus, since the determination of mode
shapes, natural frequencies, and participation factors and the rule used
to combine modes in the cases of proportional and nonproportional damping
are very similar in structure, the desired approximate procedure may be
derived by a logical extension of the procedure developed in the preced-
ing chapters.

In this chapter, then, the methods introduced in Chapters 2 and 4
are generalized to derive approximate expressions for the computation of
the compiex mode shapes, natural frequencies and participation factors of
an assembled system with nonproportional damping; the rule to combine
modes established in Sec. 5.5 is simplified for its application to the
systems studied in this chapter; and, on the basis of such approximate

expressions and this simplified rule, an approximate procedure--the
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generalization of the one proposed in Chapter 4--is derived to estimate
the maximum response of the secondary systems hefein under consideration.
As in the case of proportional damping, this general procedure is
here developed on the assumption that any given independent primary and
secondary systems are systems whose damping matrices are proportional to
their respective stiffness matrices, although in this case of nonpor-
tional damping the associated proportionality constants of such primary
and secondary systems obviously need not be the same. Alsc as in the
case of proportional damping, tﬁe expressions developed in this chapter
are first derived for a particular model and thereafter generalized for
systems with any number of degrees of freedom and other configurations

by simple induction. The model used in this case is shown in Fig. 6.1.

6.2 Complex Mode Shapes of Assembled System

By following the procedure employed for systems with proportional
damping and by considering the reduced equations of motion of the primary
and secondary components of an assembled system with nonproportional damp-
ing, an expression to obtain the complex mode shapes of this assembled
system in terms of the dynamic properties of its independent components

may be derived as follows:

Primary System Part of Complex Eigenvectors

Consider the assembled system in Fig. 6.1 and its primary subsystem
as depicted in Fig. 6.2(a). The reduced equation of motion of this

primary subsystem is given by

[Al {54p}'+ [B] fay} = (F(t) (6.1)
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where
" [01 [M]] o
[M3 Lcl| '
- -[M] [0]] ‘ o
[0l [k1) '
{0}
{(F(t)}= (6.4)
{R(t)}
p
{x_}
(g} = {:xp (6.5)
P {xp}

in which [C] is the damping matrix of the system, {R(t)}p is the vector
of applied external forces, and all other symbols are as defined in
Chapters 2 and 4.

According to the discussion in Sec. 5.2, the solution to this re-

duced equation of motion is of the form

q,} = [S] z'} (6.6)

where [S] is the 2Np X 2Np matrix of the complex eigenvectors of the above
mentioned primary subsystem and {Z'} is the vector of its normal coordi-
nates. By substitution of Eq. 6.6 into Eq. 6.1 and by premultiplication
of this latter equation by [S]T the reduced equation of motion of the

system under consideration may be therefore expressed as
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[s1TA] [S] (7'} + [s1'T61 [s1 12 = 8] ¢k (t)} (6.7)

which in view of the orthogonality properties of the wmatrices [A] and

[B] (see Sec. 5.2) results in the following set of independent equations:

* ) * (i)T . .
Aj Z; + By I, = {SPV{F(t)Y, 1=1,2, ..., My (6.8)

* *
where the generalized parameters Ai and Bi are of the form

AT .
= 53 a7 531 (6.9)

u -]
1

- 53 ey 5301, (6. 10)

(v
|

However, according to Eq. 5.59‘{5}(1) may be written as

X Py
s - m (6.11)
topti)

where Ap. and {¢}(1) are, respectively, the ith complex natural frequency
i
and ith complex mode shape of the primary system under study. Using
i1
Eqs. 6.4 and 6.11 the product {S}(1) {F(t)} may be therefore expressed

as

T T
s ey ='{¢}(1)'{R(t)}p (6.12)
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or if it is considered that

R.(t)
(1)}, = L . (6.13)
Ry(t)
as
T
s3IV ER(E)3 = 0q (1) Ry + a5(1) Ry(t). (6.14)

Similarly, if it is considered that {qp} also represents the primary
system part of the solution to the homogeneous reduced equation of motion
of the assembled system of Fig. 6.1 and that, as a result, this vector

may be a]ternatiVely written as

: At
EERERCRCAS | (6.15)

where {cp} is the primary part of one of the complex eigenvectors of the
aforementioned assembled system and A is the corresponding eigenvalue, then

in view of Eq. 6.6 the vector (z'y may be expressed as
'y = {273 ™ (6.16)

where {Z} is a vector of .unknown amplitudes. Thus, in the light of Egs.
6.14 and 6.16 and since according to the discussion in Sec. 5.2 B: may be

written as

B, = - A (6.17)
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Eq. 6.8 may be put into the form

* t . : .
(=2, ) Ay e* = o ()R (t) + 2,(1)Ry(t), =1, 2,..., MNp.  (6.18)

1

Consequently, if Eqs. 6.15 and 6.16 are substituted into Eq. 6.6,

one has that the eigenvector'{op} may be expressed as

My _
{opb = [s1 3= ] sy Z, . (6.19)

i=1

In the same fashion, if R](t) is solved from the Ith component equation

of Egs. 6.18,and if R3(t) is expressed in terms of the relation

Ry (t)
n = ﬁ{rff , {6.20)
one obtains
{(» - Ap ) A?
R](t) ; I ‘Zi ext, (6.21)

@1(1) + n@a(l)

and hence by substituting Eqs. 6.20 and 6.21 into Eq. 6.18 and by solving
for Z; from this latter equation one arrives to the following relation

for the Z; factors in Eq. 6.19:



Z; = ;; Zps =1, 2, o, A (6.22)
o(I) A~ xpi ;
where as before
5(1) = 0,(3) + no (i), i=1, 2,..., 2N . .
(1) = 29(1) + neg(d) N (6.23)

Notice thus that in general the primary system part of the rth

complex eigenvector of an assembled system with nonproportional damping

is given by
i
w7 = 12 5 {0) (6.24)
i=1
where
A *
e (i) A - Mp; A
z{r) - X e 1L g, 11,2, 2 (6.25)
¢r(1) Ap - Api A1

in which A is the rth natural frequency of such an assembled system and
Np and the general expression for $r(1) are as defined in Chapters 2

and 4.

Primary System Part of Complex Mode Shapes

Since according to Eq. 5.59 the eigenvector {cp} is of the form

Aw )
{c.} = P (6.26)
P {wp}
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where {wp} represents the primary system part of a complex mode shape
of the assembled system described in Fig. 6.1 (i.e., the amplitudes
and phase angles of its primary masses in one of its modes), this
vector {w } may be obtained directly from the lower half of Eq. 6.19.
1f it is considered, however, that the mode shapes and natural frequencies
of a system with nonproportional damping always occur, when underdamped,
in pairs of complex conjugates and that, by assumption, the primary
system herein being considered has by itself proportional damping, a
simplified expression for'{wp} may be developed as follows:

Explicitly in terms of the compiex mode shapes {S}(i) and the .

corresponding complex conjugates {§}(TZ Eq. 6.19 may be expressed as

Pli), Lo
[{s} Ly + {8} I3 ] (6.27)

He— =

{cp} =

i=1

where Z; is the coordinate corresponding to,kpi, the complex conjugate

of Ap . Then, if Eq. 6.11 is substituted into Eq. 6.27, one obtains
i

(1) = (i)
N Api {0} Api{®}
{o }= 7} 7.+ 1z (6.28)
i=1 {@}(1) {5}(1) !

which, after rearranging terms and taking into consideration that in

this case {Q}(i) is real and hence {E}(1) = {@}(12 may also be written

as

(1) T 7-
{9} [Api Z; ¥ Xpi 73 ]
- 6.29
{op} : ( )

N~ =
©

1 {@}(1)[zi + 25 ]
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But in view of Eq. 6.22 the sum Zi + Z; may be put into the form

AU S W ar. - *
3(1) p; A (i) A7 Pp A

Zi + z; = — — - ZI + = — :;'ZI {6.30)
(1) * - 3 A o(1) X - xpi A

which,if it is considered that for a system with proportional damping A:
and ﬁ? result as

Ay =20 M+ Cr=2 * i
_i = 2).p. _i -i = (-Ep.w Tw

* * 1 *
. . = i : 6. 31
i i Ps Pi)M1 e F’FJ-L“P'M1 21mp-Mi ( )

T 1 1

—* - * * 9 Lot * * . *
Aj = 2k M+ €= 20, o) - T )M+ 28, o M= - 2iey M, (6.32)

Ape A *
o(1) “pp M L !
Z'i + Z:l- = T_I_ — ;1—*— - — ()\ - )\p ) ZI (6.33)
A -2 A=A
o(1) mp-i j b P, p; I
or as
3 _ *
o) Eop e 10 )y
21 + Z; = - — 5 ZI . (6.34)
A - A Xo- A M.
o1} p1)( pi) ;

Similarly, by means of Eq. 6.22 the sum Ap Zi + ;b 'Z;- may be
j i

written as



*
.+ 2 0 7 T A ey S0 e i (6.35)
A + A = A = L.+ — Z 6.35
Py P ! P (1) A - Af I P; (1) A - ﬁf I
pf 1 i 1
.which after substituting Eqs. 6.31 and 6.32 becomes
.. - % _ %
M Lyt R I3 = A I W = I (6.36)
i ) PR X - .
i i (1) ( b, Api) M
and hence by virtue of Eq. 6.34 it results as
A Zyk R Zj=a(Zy+Z3) . | (6.37)

In the 1ight of Eqs. 6.26, 6.29 and 6.37, {cp} may be therefore

expressed as

(i) =
Mol N Moyt (Zs + Z3)
{o,} = = )

{w.H 1

: .
) oDz, + Z5) (6.38)

and thus from either the upper or Tower half of this equation one may

conclude that

{qs}(i)(z_i + Z;) . (6.39)

e 2
kel

{wp} =

i=1

Then, if a new variable Yi is defined as

Y, =27, + 13 | (6.40)
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and if it is observed that in accordance with this definition and

Eq. 6.22 YI may be written as

D D
Y, = . : Z; (6.41)
A - ApI
from which Z; results as
A=y
77 = Ly
I . by T » (6.42)
Pt P
{wp} may be written as
! (1)
_ i
s 121 e} Y, (6.43)
where
Y i) O R L
i S (6.44)

3(I) (A - Api)(A - ibi) M.

In general, therefore, the primary system part of the rth mode shape

of an assembled system with nonproportional damping is givén by
N

p .
E]{é}(1)Yi(r)

w3 (") - (6.45)
P i
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where the Yi(r) factors are of the form

’ y () (6.46)

I

~ . — %
yeE o, (1) (- API)(xr - pr) My
i - *
i

8.(1) O - Api)(ir - Kbi) M

in which A, 1is the rth complex natural frequency of such an assembled

system and 5r(i) is given by Eq. 4.10.

Secondary System Part of Complex Eigenvectors

Consider now the independent secondary system shown in Fig. 6.2(b).

This system is an unrestrained four-degree-of-freedom system whose reduced

equation of motion is

[alta ) + [bl{q.} = -{f(t)} (6.47)
where
-
(o] [m]
[a] = (6.48)
[m] [clJ
[n] [o] | |
[b] = (6.49)
[o] [li
{o}
F(t)r= > (6.50)
(R(t) 3 |
. {k?
g} = o (6.51)
'fxs}
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in which [¢] is the damping matrix of the system, {R(t)}S represents the
‘vector of external forces applied to the system, and all other symbols
are as denoted before,

Now, according to the component mode synthesis technique (Hurty,
1965) the response of any linear system to given external forces may be
represented by a linear combination of its rigid-body modes, a constraint
mode for each of the redundancies of the system, and a set of fixed modes
whose number is equal to the number of degrees of freedom of the system
when its supports are held fixed. By extending this concept to the solu-
tion of the reduced equation of motion of a system with nonproportional
damping and by considering that, if the system is underdamped, this solu-
tion may always be written in termsof the complex eigenvectors of the
system and their respective complex conjugates, such a soTutibn may then
be expressed as a linear combination of the system's compliex rigid-body,
constraint and fixed eigenvectors and their corresponding complex
conjugates.

Thus, if the complex rigid-body, constraint and fixed eigenvectors of

the secondary system under consideration are defined respectively as

A {¢}(0
(530 . ° (6.52)
13(0)
)\S {¢}(C)
C
(c) _
(sp¢ = (6.53)
S )
\
{s}(j) = ’ {6.54)

13 ()



163

where {¢}(OZ {¢}(C) and {¢}(J) are the rigid-body, constraint and

fixed modes described by Egs. 4.13, 4.14 and 4.15, respectively, and
Asg,
solution of Eq. 6.47 may be written as

*
Ase and Asj are the corresponding complex natural frequencies, the

o = 53 v (12 v (38 4 156D,

+'{§}(0)Z-'O- + {'5'}(]) z;— + {E}z‘t‘z'-l' {g}(c)zé (6.55)

or as

tq ) = [s] {2} - (6.56)

where [s] is the 2(Ng + 2) x 2(N; + 2) matrix of the complex eigenvectors
of the system ahd {zt} is a vector of unknown independent generalized
coordinates,

Upon substitution of Eq. 6.56 and premultiplication by [s]T,

Eq. 6.47 may be therefore expressed as
T P | T i _ T
(s1'[allsl{z } + [s] [bl[sHz } = - [s1 {f(t) % (6.57)

One may note, however, that the fixed complex eigenvectors of [s] are the
normal complex eigenvectors of the secondary system herein being considered
and consequently the following orthogonality relations are applicable (see

Egs. 5.17 through 5.20):

*Note that because the matrices [a] and [b] in Eq. 6.47 are positive
definite, the complex natural frequencies corresponding to the complex
rigid-body and constraint modes (AO and xc) are different from zero.
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AT .

W 04551, 590, ¢ (6.58)
T .

s sy 20, i 25,4, 570, ¢ (6.59)

Additionally, it may be observed that since: (a) [s]T{f(t)} may be

written as

s erte)r = D153 53 (1 63020 (63 (€d 5y (0) iy (M) 1 (2) (3 (e Tty 3,

(6.60)
(b) {R(t)}s is given by [see Fig. 6.2(b)]
R1(t)‘
R(t) 1 = ’ ; (6.61)
0
Ry(t)

and (c) in the light of Eqs. 6.50 and 6.52 through 6.54 each of the

)
products {s}(J)'{f(t)} in Eq. 6.60 may be expressed as

R](t) + R3(t) ifj=20
AT AT
519 (00 = (e, = (0 if G#0, ¢ (6.62)

0o (CIR4(E) iF § = c

then [s]T{f(t)} may be written as

R, (t) + R
0

0
[s10F(t)) = (o (e)Ry(t) ) (6.63)
0

0

L g (R (t)

5(t)
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Hence, under the transformation indicated by Eq. 6.56 the reduced equation

of motion of the system in Fig. 6.2(b) results as

)

= el

bz,

0

bzy

25
;
4
%

Ry(t) + Rg(t)

Rl(t) + R3(t) F

¢C(c) R3(t) )

(6.64)
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where for i = 0, c, and j =0, 1, ..., NS, Cs

T .
a,, = dy. ='{s}(1) [a]‘{s}(J)

, T .
ax. = a.q = {5tV [a]'{s}(J)

AT .
= 5310 121 59

AT
biy = by = {S}(i)T[b]'{s}(j)
SFI SIRNRN)
by = b33 ” &0 1 )
and where according to the discussion in Sec. 5.2 a; and b;,

=1, 2""’2Ns’ are of the form

|

AT .
¥ = (53l [a]{s}(J)

AT X
= 1s383) b1y (9),

o
}

Thus, . 1f it is considered that:

(6.

(6.

(6.

(6.

a) by the same argument used for the primary system'{qs} may be

expressed as

tqg} = o ) ™

(6.

.65)

66)

67)

.68)

.69)

.70)

71)

72)

73)
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where {cs} is the secondary system part of the complex eigenvector
with frequency » of the assembled system in Fig. 6.1;
b) in the light of Eqs. 6.56 and 6.73 the vector {zl} may be

put into the form
(z'y = {z} et (6.74)

where {z1}is a vector of unknown amplitudes; and
c) by virtue of Eq. 6.74 and since
*

b} = —’Asj ag, §=T2, ., 2N | (6.75)

the jth (j#0, 0, c, C) component equation of Eq. 6.64 may be written as
*
(2 '.Asj) a3z5 * (Aajo + bjo) Zg* (Aajﬁ + bjﬁ) 26 +

+ (mJ.c + bjc) z. + (AajE + bjE) zz = 0, (6.76)

one may conclude that the secondary system part of a complex mode shape of

an assembled system may be expressed as

2N

. - 1s300); 4 (500 L0 IR (o M (O I
log} = [slz} = {5377z, + (337725 + jZ]{S} 2y + {1z 4 (51 2z

(6.77)

where according to Eq. 6.76 the z. factors (j=1, 2, ..., ZNS) are

J
given by
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= - . + . . - . .
z [(Aajo + bw)zo ,(AaJD + bJO) z5 + (>\aJc + bJC) z, +

+(agp*rbig) 251/ (- ag ) ay (6.78)

J

in which Z;s aji

from compatibility requirements as follows.

and by;, 1=0, 0, ¢, ¢, are factors that may be determined

Compatibility Conditions

When the primary and secondary subsystems shown in Figs. 6.2(a) and

(b) are interconnected to form the assembled system in Fig. 6.1, one has

that
xso= XP1 : ‘ (6.79)
" e, (6.80)
iso = kpl (6.81)
isc . kP3 _ (6.82)

Therefore, if in the light of Egs. 6.6, 6.11, and 6.52 through 6.55

{qp} and'{qs} are expressed as
(i)
A, . M P, 103
= Vo= Z,
topr = Lestg = 1 ; (6.83)

ray(1)
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A {J} . {J}
2N, + 2) o 5 . 5 .
{qs} = z {s} Zj = ‘ 7z o+ . 7~ +
i=1 {J} g @y | O
A {f} T (f) L
sC ' sC . ZNS Sj ' :
+ z 4+ Z- + . z, , 6.84)
(Fy | © fr | ¢ §=1 (eytd) J

and if it is considered that by virtue of these two equations, Egs.6.5
and 6.57, and the lower halves of Eqs. 6.15 and 6.73 one may write
{xp}, {xp}, {x} and {x.} as

2N
L LN (1)
{xp}—A{xp} 1:21 Xf’i {e} L, (6.85)
™,
{x;} = .21 @iz, (6.86)
":‘.
{Xg} = Mxg} = (Asoz0 + ASOZG){J} + (ASCZC + ASCZE){f} +
ZNS s
e Tt (6.87)
g1 7
2N i) ‘
{x;} = (zg + z5) 10} + (2 + z7) {f} + PERLY; Zy (6.88)

j=1
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{ i
“in terms of the coordinates Zi and zj the above compatibility equations
may be expressed as (see Eqs.'4.13, 4.14 and 4.15 to recall the defini-
tions of {J}, {f} and {¢}(3))

, 2N
1 1 p . I
+ 7= = ,
zy * 23 121 2 (1) Z; (6.89)
ZNp
zy* z + fcc(zC + ZE) = iZ] ¢3(i) Zi (6.90)
2Np
e za v A ozm = A T e, ()Z. (6.91)
Sg 0 g 0 j=1 | i '
2Np
N Zq b A zm b F (O Z . z2) = A Y en(i)Z, (6.92)
Sy 0 S, 0 ccts e S. © R i

which lead, after introducing Eqs. 6.16 and 6.74, to the following

compatibility relations:

2Np
zZ, +z- = ¢ (i)Z, (6.93)
2N
1 p
z_+z==— 7 de(i)Z; (6.94)
L U ) !
ce
A, Z +X_z-= 2z + z=) (6.95)



= Az + ZE) . (6.96)

Simplified Expressions for'{s}(O)z0 +{§}(0)za, {S}(C)zc + {g}(C)ZE \

and Z .
e L]
If in the Tight of Egs. 6.52 and 6.53 the sums (s)')z, + (g}(O)zb
and {s}(c)zc + {E}(C)ZE in Eq. 6.77 are expressed as
(A 2 *T 7 HB
—_ Sn 0 s,°0
(s34 + {s}(o)z6 -{ 07 %o (6.97)
(z5 + z5) 19}
O z+ Xz ){f}
— s ¢ s ¢
{s}(c)zc + {s}(c)za = ¢ ¢ , (6.98)

(Zc + Ze)‘ {f}

then it may be seen that by virtue of the compatibility relations indicated

by Eqs. 6.95 and 6.96 these two sums may be written as

A{d}

5340+ 90z - (25 + 27) (6.99)
{J}
A{f}

{s}(c)zc + {5}(C)ZE = (z  + z;) | (6.100)

{f}
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where the factors (z + z5) and (z_ + zz) are given explicitly by
Egs. 6.93 and 6.94.
Similarly, using Eq. 6.95 and since according to Eqs. 6.52 through
6.54 and 6.65 through 6.70 one has that

J 0

355 = (AS. + g ) My; | | (6.102)
J 0 :

J 0
beox = ~ A A Mns (6.104)
jo 55 7S 0J
where

(1)

m.. = {6397 [m] 133, (6.105)

0j
the sum (Aajo‘+ bjo) zy+ (Aajo + bjb) zg in Eq. 6.78 may be expressed

as

(AajO + bj(p Zy* (AajD + bjb) zy =

= mns [AA, {244 2a) + A, Zo t h zp) ~ A, (A zZ +X, z2) =
0j L S5 0“0 So ] S [4] S; 0 SQ 0 $g° 0

2]

2
A Mys

i (ZO + ZO) (6.106)
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whereas by means of Eq. 6.96 and because

a5~ ,(ASJ_ + xsc) Mej * e (6.107)
bjc = . }\sj Asc mcj | (6.109)
b= == 2A_ A m, (6.110)
jc sj sC cj
where
T
Mo = {cp}(J) [m] (f} (6.111)
and
NG
Cej = 19 [c] (F) (6.112)

+

the sum (Aajc bjc) z. + (Aa.E + bjE) zz in the same Eq. 6.78 results

of the form

(Aajc + bjc) Z, + (Aaje + bjE) 7 = lccj (zc + ZE) +

+m._. + z- + % z=) - + 2 z=)] =
mCJ [Aks.(zc Zc) * A(As 2. T Ag Zc) A (As et g Zc):I

J c c J c c
2

= (A Mej + Accj) (zC + ZE) . (6.113)
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Consequently, by substitution of Eqs. 6.106 and 6.113 into Eq. 6.78,

the factors zj of Eq. 6.77 may be expressed as

2 - 2

] A mOj(ZO + zO) + (2 mes * Accj) (zC + ZE)

] SO )
| 23 s

(6.114)

One may consider, however, that
(a) The damping matrix of the secondary system under study is

proportional to its own stiffness matrix and thus, according to Egs. 6.112

and 4. 14, Cej results as

.
- (J) (F] =
Cej = 8g 163777 [K] {Fy =0 (6.115)

in which a is simply a proportionality constant.
{b) In view of Eqgs. 5.63, 5.67, 6.71, 6.52, 6.54 and 6.65 the

parameter aﬁ may be expressed as

* =
aj YSJ' moj

(6.116)
where Vg is the jth complex participation factor of the secondary

J
system in Fig. 6.2(b) when both of its ends are fixed,

{c) The factors (zO + zﬁ) and(zC + zE)are given directly by

Egs. 6.93 and 6.94.
Therefore, such z\j factors may be alternatively written as
2N m.. 2N
) mOj[.sz 2(1) 2.1+ 2L [ 2P de(d) z.]
s v A — ce =] (6.117)
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or as
A -
Z. & =Y ra (6.”8)
J 5 A=A ¢
J
where 20 is defined as
QND ‘
Zy* Z @0(1,J) Z (6.119)

in which ¢O(i,j) is given by Eq. 4.34.
In the general case, therefore, the secondary system part of the
rth complex eigenvector of an assembled system with nonproportional

damping may be expressed as

2N .
{cs}(") = zo{s}(0)+zb—{§}(0) + Z S z§r){s}(3) + zc{s}(°)+zc{"§}(°)

i=1
(6.120)
where
{J}
751 (0) 4 )5, (0) -{A oy (28T 2, (6.121)
x {f}
z((:r){s}(c) + ZE{E}(C) ={ r{f} (zér) + zc‘")) (6.122)
N
zg") + z%") = 1‘2 3, (1) zg‘”) | (6.123)
(r), L0 = §p de(i) 4(r) 124)
2.0 vz = .Z £ Zi (6.
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and
Z
(r) e aln)
2: =y, T2
J
in which

2N
1P e (i) z§r>.
i=1

)

Secondary System Part of Complex Mode Shapes

(6.125)

(6.126)

The secondary system part of a complex mode shape of the assembled

system in Fig. 6.1 may be determined directly from the lower half of

Eq. 6.77 since according to the discussion in Sec. 5.2 the eigenvector

{os} may be written as

Aw_} ,
{Gs} ={ s } s
.}

(6.127)

where {ws} represents the secondary system part of the complex mode

shape with frequency X of such an assembled system.

However, for a

secondary system with proportional damping, and by following the pro-

cedure used for the primary system,asimplified expression for this

vector {ws} may be obtained as follows:

In the Tight of Egs. 6.55, 6.52 through 6.54, 6.73, and 6.74 {cs}

may be expressed as
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(e A0) 1, (J} i (s34 3, )
%0 %0 N %5 i
{o} = 4 zy + zg + .21 z;+ 3 |+
‘ J= v . _ .
LW ) () )
(g (1) g ()
+ ZC+ ZE (6.]28)
() ()

which, in view of the fact that the mode shapes {¢}(j)are real, and thus

{Q}(j) = {¢}(jl may also be written as

- - (1)
[Asoz0 + xson]{J} " [>~szj + Asjzj 14}
{US} = . ot .Z? (.) *
- J= - N
[z0 + Zo]{J} [zj + Zj]{¢}
[As z + is zE]{f}
c c
+ (6.129)

[ZC + ZE]{f}

But by virtue of Eq. 6.118, and since according to Eq. 5.140 and to the

assumption that each {¢}(J) is a mode shape with a unit participation

factor the complex participation factors T3 and v, result in this case as

ki
1
Yo = T (6.130)
J 21ws_
J
= o=l , (6.131)
53 2iuw)
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one has that the sum zj + 23 may be expressed as

2
gl [ 1 ! - (6.132)
. : R 2 - - ZO ]
b 2wy LA - ag - X

J J J

or as
22 ) |

2.+ 79 = — 7, (6.133)

and that, by the same arguments, the sum A Zj + Xs z} may be
J J
written as
- ')\2 AS )\S R
hg 23 * Xg 25 = St g zy s (6.134)
J J 21m. A-)\s ;\_S
J J J
or as
_k3
A Z.+ A zZT = 5 )
5% a3 )0 (6.135)
J 3

In 1ike manner, the sums [zO + za], [ASO zg + ASO 25], [ZC + ZE]’ and

[hgz. # XS ZE] are given by the compatibility relations indicated by
c c

Egs. 6.93 through 6.96. Therefore, Eq. 6.129 may be put into the form



179

A{d} oN N - AZ k{¢}(j)
) P /s s -
{og} = Loz + ] - z, *+
i=1 =1 (- -5 ) .
(3} J J {¢}(J)
Mt} 1 2N
+ . Zp dq’('l) (6°136)
cc i=1
{f}

which in combination with Eq. 6.127 leads one to conclude that

2
N -2 .
Y = (3 zp 0, (1)2; + zs 2q (18] 4
= Tl )00 5 )
J J
2N d¢(1)
+ {f} Z Z; . (6.137)
CC

Then, since by introducing Eq. 6.40 one has that

2N N N
EP o (1)1 = WP (i)z, + 253 = P o, ()Y, (6.138)
i=1 1 i 1 i=1 ! 1
N .
zp da(d Z zp d$§12 [Zi + Z‘ - ZP dali Y, (6.139)

j=1 i=1 cc i=1 cc
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and since by means of Eq. 6.119 and the same Eq. 6.40 one similarly

obtains that

=

N
s 2 YP g (id -1 3P .. (6.140)
zo = 3o (1,02 +231 = 1P o (i,3) Y. ,
0~ ;% o LI R oLisd) Yy
by defining the following new variables as.
Np .
yO = izl @1(1)Yi (6.141)
Y. o= %lp da(i) (6.142)
= (i)Y, 6.142
¢ e i1 !
n Np
yO = iz1 ¢0(1, J)Yi (6.143)
il v (6.144)
yi = ~ y 6.
N CNEE V TC N VD
J J
ﬁws} may be written as
w Y = {Jly, + %5'{ 13y v (6.145)
W .YO i1 $ .VJ' yc ’ .

It may be inferrad, thus, that the secondary system part of the rth
complex mode shape of an assembled system with nonproportional damping

may be expressed as
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N .
{wg(r) = {J}yé") + .ij(s)yér) " {f}ygr) (6.126)
J:
where
(r) N :
Yo = ‘I”—Z: @kh)Ygr) (6.147)
(v Np . (r)
TF Ly el 14
Ye fee izl Y (6.148)
. N (r) |
‘y((Jr) - .Z:"I’o(i: j)Yir (6.149)
'I:
2
: - A
ygr) " — %r) (6.150)
(Ar - ;\sj)()‘r - ASJ-)

and where all other symbols are as defined before.

Summar
In summary, the rth complex mode shape of an assembled system with
nonproportional damping and whose secondary system is attached to the kth

and 2th masses of its primary system may be written as

Py (o3 (1) | (6.151)
1
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N .
{ws}(r) = yér){d} * .Zj y§r){¢}(3) * yir){f} (6.152)
J=

where {wp} and {w 1} are the parts of such a complex mode shape correspond-
ing respectively to the primary and secondary systems, and where the ygr)

(r)
and yj factors are given by

(Y‘) CI)Y‘(I)(AY' - API)(AY' - API) M; (Y‘) )
i = R - * YI ’ T=], 2, cees Np (6.]53)
@r(I) (Ar - Api)(xr - xpi) Mi
N (r)
yér) = 122 2 ()Y, (6.154)
(r) _ o)
v ;—;dq>(1)v1 (6.155)
i Ai (r)
yir) - Y. ', 3=1, 2, ... N (6.156)
J G- ), -1 ) 9 s
r Sj r SJ-
in which
~(r) Np .y
7 I LN G PN D) PR (6.157)

=1 1
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A, is the rth complex natural frequency of the system, and {f3}, fcc,
2,(1), o (i, §), and do(i) are as indicated by Eqs. 4.48, 4.53, .

4,54, 4,56, and 4.35, respectively. a_, i=1, 2, ..., N, and A_ ,
Py p Sj
=1, 25 vy NS, stand for the complex natural frequencies of the

independent primary and secondary systems, i.e.,

= o -'-’l .
lpi gpimpi i mpi (6.158)

(6.159)

-
[}
i
vy
‘e
+
i
e
L)

and Np and NS denote their respective number of degrees of freedom.

Notice thus that the major differenée between these expressions and
those found for systems with proportional damping is that in the expres-
sions for systems with nonproportional damping if is necessary to
consider the complex natural frequencies of the independent primary and
secondary systems instead of just their circular natural frequencies.

It is important to note, however, that since Aps A and A, are complex

Pi
parameters, in the case of nonproportional damping the Yi(r) and ygr)

factors are complex scalars, and as a consequence the vectors {wb} and

{ws} are complex vectors.

Convergence to the Case of Proportional Damping

The equations derived aboved represent the generalization of those
developed in Chapter 4 for systems with proportional damping, and hence,

if the conditions that transform a system with nonproportional damping to
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one with proportional damping are introduced, these general expressions
should converge to the particular ones for proportional damping. To

prove, then, that this is indeed so, one may proceed as follows:

The condition for obtaining an assembled system with a damping
matrix proportional to its stiffness matrix whenkthe damping matrices
of its independent primary and secondary systems are proportional to
theif respective stiffness matrices s that the constants that relate
the proportionality between the damping and stiffness matrices of these
two independent $ystems be the same. In other words, an assembled
system and its primary and secondary components have proportional damp-

ing if the damping ratios of these systems may be written as

- 1
. T T W, (6.160)
8. T ‘;‘ awg (6.161)
J h|
e = 1 oay (6.162)
r 2 r *

where a is a constant. For the particular case of proportional damping,

{r) factors given by Egs. 6.153 and 6.156 result therefore

(r)
the Y1 and yJ

as follows:

(r)

14 factors. Since in view of Eq. 5.112 the complex frequency Ap

may be written out as
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A= - Bt il (6.163)

and, simi]ar]y,.kp. may be expressed as indicated by Eq. 6.158, the
; ‘

differences (i, - xp_) and (A, - ip_) in Eq. 6.153 may be put into the

1 1
form
. 1 !
AY‘ - hpi = - (Ermr - Epiwp-i) + 9 (NY‘ - wpi) (6.164)
- 1} I
- %X = - - + 4 + . . 165
A, s (g0, Epiwpi) (o, mpi) (6.165)

and as a consequence the product of these two differences may be

expressed as

e L e G A (.

+12w; (6w - Ew) (6.166)

\ . . ' 2 T _ ‘2
which after considering that w_ = u_ /1 - £, and wpi = wpi / 1‘- Epi

may also be written as

£

- _ 2 P 2 2
(Kr - xpi)(xr - Ap_) iy (1 - Zgrmr ) u, (1 - Zgr ) +
i i P;
+ Ziwr 1-¢ (¢ w - Euw. ). (6.167)
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But, if the constant a is eliminated from Eqs. 6.160 and 6.162, in the

case of proportional damping £ may be expressed in terms of Ep and

r
W

p.
1, (6.168)
Py T oy

Iﬁ such a case, therefore, Eq. 6.167 may be alternatively expressed

as

2

Gy = 205 Y00 = By ) = b (1= 260 -l (1 - 26)

Py P
i 2 | 169
+ 215'{, 1 -¢ {w - o, ) (6.169)
or as

GV YD | O WEEESY ‘) = (w. - mi) [1 - Zgi + 2L 1 -gi ki (6.170)

which by substitution into Eq. 6.153 leads to

2 2 2 *
(r) 3(1) (wpI - wr) L1 - ZEE + 2ig, [1- £ ] M (r)

Y, = — Y (6.177)

N 2_2 *
¢(1) (wpi wr) (1 - zgi + 2ig, / 1 - ai ] M,
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and thus, after setting I=1 and selecting Y] to be equal to unity,

one has that

c 20 2k
(r) o(1) mp] o M]
@(]) (.up‘i - wr Mi

xér) factors. By simply replacing the subscripts P; in Eq. 6.170

by subscripts sj, it is easy to show that for an assembled system with
proportional damping the product (Ar - AS.)(kr - is.) in Eq. 6.156

J J
results of the form

G- A )0 =5 )= G =D - 28+ 2i, [1-¢2 ). (6.173)

J J J
Then, since according to Eq. 6.163 Ai may be expressed as

> 2 2 2 2 2 7
3e = Er W, - W (1 - Er) - 21grmr T -¢

= - wi [ - 25 ) *2g, /1 -g. T, (6.174)

in the case of proportional damping the factor‘ygr) given by Eq. 6.156

o L1 - 25 + 2ig, /1 ] {r)

g (6.175)

Y

J (m - w ) [1 - 25 + 215 ] 0
f - £
Sj r

becomes
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or

A T A | (6.176)

gr) and yér)

by Egs. 6.153 and 6.156 converge to the particular ones for proportional

It may be seen, thus, that since the Y factors given
damping given by Eqs. 4.49 and 4.50, and since Eqs. 6.151 and 6.152
are identical to the corresponding ones for proportional damping, in
the case of an assembled system with proportional damping the general
formulas introduced in this section converge to the particular ones

derived in Sec. 4.2.

6.3 Complex Natural Frequencies: Resonant Modes

It is shown in Appendix B that Rayleigh's principle may be extended
for the case of a system with nonproportional damping. This means,
therefore, that the compiex natural frequencies of a system with non-
proportional damping are also stationary in the neighborhood of their
corresponding complex mode shapes and that, as a conseguence, it is
also possible to derive approximate expressions for these complex fre-
quencies by following the procedure used to derive approximate expressions

for the natural frequencies of systems with proportional damping. In

this section, then, such a procedure is employed to develop an approxi-
mate formula for dete}mining the complex natural freguencies of an
assembled system with nonproportional damping whose primary and secondary

components are in resonance.*

*In this chapter, it will be understood that two systems are in
resonance when they have a common natural frequency, not a common
complex natural frequency.
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Consider the reduced equation of motion of the assembled system
in Fig. 6.1, In terms of this assembled system's mass, damping, and

stiffness matrices, such an equation of motion may be expressed as

[01 [M] | Jix} - 101 | ix {0} (6.177)

(M3 [l | Hxy [0] [k] [x} (0}

where [M], [C], and [K] are respectively such mass, damping, and stiff-
ness matrices and {x} is, as before, the displacement vector of the

system. But since [M], [C], and [K] are of the form

M2 | 0
M3 |
I e (6.178)
| ™
0
N I M
Cy+ Gy + gy -C, 0 I~ < 0
- G C+Cy -Cy ] 0 0
0 =Ly Cytogg | 0 - €3
[Cl=s— e m o — — |m T (6.179)
- CT 0 0 | c] + c2' - c2
i 0 0 - Cq -G <y + c3 i
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————————————————— T

0 | - kq 0 ]
l
Ky + kg 0 - kg
(6.180)
0 lk] + k2 - k2
Ky -ky Kyt kg

these matrices may be written in terms of the corresponding ones of

the independent primary and secondary components of the assembled

system under consideration as

[M1 [0]
[M] =
[0l [m']
[ [c][07 ]
[c] =
| [0] [c]]
1K1 [0] |
[k] =
| [0 [k'1]

[F1 [D]
[01'[0]
[H] [6]

[617[0]

(6.181)

(6.182)

(6.183)

where [M], [C], and [K] are the mass, damping and stiffness matrices of

the independent primary system; [m' ], [c'], and [k ] denote the mass,



191

damping and stiffness matrices of the independent secondary system

when both of its ends are fixed; and [D], [F], [G], and [H] are defined

as follows:
“C'l O

[D] = 0 0 (6.184)
0 -03
g 0 Q

[F] = 0 0 0 (6.185)
0 0 Cy ‘
-k] 0

fa] = 0 0 (6.186)
0 -k3
-k] 0 0

[H] = 0 0 0 . : (6.187)
0 0 k3

Consequently, in terms of the parameters of the independent primary and

secondary systems Eq. 6.177 may be expressed as



r—[O]EOJ} [[m[ogf r{fsap}}“ [1o300]] ‘[01[0]}j {{;ap}}“
[olfo]] [[010m 1] < (xS >+ ([0]fo]] |folfo] (%) >
_ - - ~ . +
[M][OJ} [cI[0] {{ip}} [oro1] [CFiLol {{xp}}
| |roatn'1] [roate’1) | { Lkt § | [ro3t0]] on'rel] | | LixgrS
- - 11 (r.» h Ny O T (r. h
[ [mIo] } [o3[0] ‘{{xp}}_ [0][0] [01[01} ‘{{xp}}_
[01[m 1] |[0J[0] || | lix} \ [03f01] {[ol[0l] | < Tk} -
r[0][0]] [K](0] ] {{xp}} Toire]] [IHlrel } {{xp}}
| Lrogcon ) Lroark'1) | (Lot | | Lronron ] (red'ron )] {Lixy S
A

{{0}
{0}
{{0}}

{0}

which after rearranging rows and columns may also be written as

(oo |orogen | (G ) [roamen Fopoaor | (6]
[Mitel | [o[o] ) [0ILF] | [01[D] i)
_____ L e T P Al I s
[olfo] | Collm'] | ) %) [01[0] | [oI[0] )
[Ifol | [m'Jc'd | | ik LCUDIANR It B B NN
—— ) = ~ " J
(o1 | ool | ’{&p}“ ‘rojrel |fojror | ()
[o1[k] | [03[0] 4{xp} .| [odd | Cole] oob |
“[olfo] |-[m'1[0] | ) k) [01f01_ | [01[0] x)
[oJ[0] | [OJK'Y | | txg) [omﬂl [01[0] (x.}
- ) - o — e 4

PR

{0}

{0}

= < »  (6.189)

{0}

{0}

L
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and thus, by virtue of Egs. 6.2, 6.3, and 6.5 and the relations analogous
to Egs. 6.48, 6.49, and 6.51 that correspond to the secondary system in
Fig. 6.2(b) when both of its ends are considered fixed,the reduced
equation of motion of the assembied system in Fig. 6.1 may be put in terms
of the parameters of the reduced equations of motion of its independent

subsystems as

(o) | g el | (e [raaed | (e
+ + +
[01la'l| f42)  [[0106'3] |fa,) U N
i1 | [ray) 0}
| = (6.190)
RUHOIRICE: (0}
where
[0][0]
[Pl = (6.191)
[01[0]
[ [01[0]
[al = (6.192)
| [0CF1 |
[ [0][0] |
[v] - (6.193)
| [010HT
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folfo]
[1] = : (6.194)
[o]le]

Now, it may be seen from the inspection of Egs. 6.19, 6.22, 6.77,
and 6.118 that, similarly to the case of proportional damping, the complex
eigenvector of an assembled system associated to a complex frequency »
may be estimated by considering that the only significant component eigen-
vectors in the summations in Eqs.‘6.19 and 6.77 are those whose compiex
natural frequencies are the closest (in the absolute value sense) to the
complex frequency x. Accordingly, the vectors {qp} and {qs} in £q. 6.190

may be approximated as

At

{9} (6.195)

(1)
D {5} ZI e

I

a,) {s}(‘”zJ o't (6.196)

where, using the notation of the preceding chapters, the subscripts I and

J identify, respectively, the parameters that correspond to the eigenvec-
tors of the primary and secondary systems herein under consideration whose
complex natural frequencies are the closest to the complex frequency A of
their associated assembled system. Then, if Eqs. 6.195 and 6.196 are
substituted into Eq. 6.190, and if the first and second component equations
of this Eq. 6.190 are premultiplied respectively by {S}(I)T and {s}(J)Ts

the reduced equation of motion of the assembled system in Fig. 6.1 may be

approximated by the following two equations:
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*

(xAI

* * * * *
+ B+ A + VI) ZI + ()\PIJ + TIJ) z;= 0 (6.197)

* * * *
(xay + by) zg+ OGPy, + Ty} Zp = 0 (6.198)

* * * *
where Ar, By, aj, and b, are complex generalized parameters of the primary
and secondary systems defined as indicated by Eqs. 6.9, 6.10, 6.71, and
6.72, and where

0 = 530 gy (1 (6.199)
vy = 530 sy (@ (6.200)
Pry = (11 [p1es1 ) (6.201)
T), = D@ (6.202)

Thus, since in matrix form Eqs, 6.197 and 6,198 may be written
as

m X % * % * * 1 . 0 h
XAI + BI + AQI + VI APIJ + TIJ ZI 0

(0 d={ ), (6.203)

* * * 0
+ T AaJ + bJ \ZJ
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after considering that

* *
* *
by = - ASJ 3y | (6.205)

those two equations lead to the following simplified eigenvalue problem:

* * * * %*
A (n - ApI) + (AQI + VI) Wyt Ty
= (6.206)
* * *
WPrg* TIJ a; (» - XSJ)
which after expanding the determinant resulis as
2 * % * % *2'
Ao lApay +Qpag - Py -
* % * * * * *
- MAp g ("pI + *sd) ta ()‘sJ Qp - Vp ) + 2Py Ty 14
* % * % * 2
+ [AI aj ApI ASJ - ASJ a; VI - TIJ 1=0 . (6.207)

To express this equation explicitly in terms of the dynamic properties
of the independent primary and secondary systems, one may then observe the

following:
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* % %
1) From the definition of QI, VI, pIJ’ and T?J one has that

Q; = ¢ ¢§ (1) + ¢y ¢§ (1) | (6.208)
Vi = Ky ¢§ (1) + k ¢§ (1) (6.209)
Pra = ey (Do) + eqealDe(a)] (6.210)
f;J=,.[k]¢](1)¢](J) + kyv(1)9,(9)7 . (6.211)

2) Since by assumption the independent secondary system has pro-
portional damping, the damping constants o and Cq in the above equations

may be expressed as

cC, = a ko, j = ‘[: 2: 33 (6.2]2)

S
a = —3 (6.213)

* *
0; = a ¥y (6.214)
* *
Pry= 2T (6.215)

13-



198

% 2 * *

3) According to Eqs. 6.211 and 4.65 and since kJ = w. My T
S J* ' 1J

results of the form

* 2 *
TIJ = - @0(1, J)mstJ . (6.216)

4) The complex frequencies A and Ag . are given by

P1 J

t
A, = - + 1 6.217
pI ) gpImpI ! wpI ( )

A o=~ E_ w, +t 1w . (6.218)

5) For a primary and a secondary system with proportional damping

* *
the generalized parameters AI and ay may be expressed as

* * * L
AI =2 APIMI + CI = 21mpIMI (6.219)
* * * . %
aj = 2 Ao Myt ocy T 21ws my - (6.220)
J J
6) For resonant modes
W, T . T oW . (6.221)
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7) For small damping ratios wé = wy -

Accordingly, Eq. 6.207 may be written as

*

2 '}
2 2 -3 1
A [1 + @0 (IsJ)gs YIJ 1 gs YIJ * ] -

J J kJ
* *
o2 o, N

- x[-(ap teg Y eg gy w0 (LA)Eg yyg v 21+ 5 (1425, Jypy = 1w+

I J J kJ J J kJ

* *
v 2 . v
. 1 d,1 i i 14 2.
+ [epIF,SJ =371 k: v ®O(F,J)YIJ 1(<zpI + ESJ) NFAINE k; Tu =0
(6.222)
where
* 2 2
Us k1@](l) + k3¢3(1)
— = - . (6.223)
K3 Ky
and, as before,
= (6.224)

Y19

h—iz*' C..aa *
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But since for small damping and mass ratios its second order terms and
* *
those multiplied by the ratio VI/kJ are comparatively small and may be

neglected, Eq. 6.222 may be approximated as

2 . 1 2 2
o= A[- + + 2 -[1 - - =0 {1, + i + =
M (apI ESJ) ilo -l %8s, 7 ol 19 1(&pI gsJ)]wo 0.
(6.225)
| Hence, after solving for . one obtains that
Zor ) + 2i]
A= —[-(g, +g_ )+ 2i] +
2 P15y
c 20/ e el )+ 2174 4 L o2 (1)y s + i(e. + £ )]
——— - 1 - - —— s
+ apI gSJ EPIESJ 7 % vpg * 1 5pI gsJ
(6.226)

or

-1 . “o 2
= - (£p1+ asJ) wy + Tug * ZV/ (gpI ESJ) - oLy, . (6.227)

Equation 6.227 is the sought approximate formula to determine the
complex natural frequencies of the resonant modes of the assembled system

under study. Its generalization for the resonant modes of an assembled
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system with any number of degrees of freedom and an arbitrary configura-

tion results simply as

i1

A
r

1 o ®y 2 2
- = + + + - - .

Z(EPI sSJ)mO fug + /(gpI gSJ) o (1d)yyy  (6.228)
where w, is the circular natural frequency that is common to the primary
and secondary components of such an assembled system and ¢O(I,J) is as
indicated by Eq. 4.34.

. 2
From the analysis of Eq. 6.228 one may observe that when (&p - Eg }
I J
2

is much greater than QO(I,J)YIJ, Ar results approximately as

W
8]

(g, + &) wy ¥ 1‘904;—2— (apI -E. ), (6.229)

J

and therefore in such a case the complex frequencies of an assembled
system in the two resonant modes that correspond to the rescnant fre-

quency w  are

(6.230)

>
1]
)
oY
=
o
-+
-
12
]

(6.231)

>
1
1
sl
v
£
+
mads
=4

This means that in such resonant modes the assembled system vibrates with

the same frequency, the resonant frequency Wy but in one of them it is
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damped with the damping ratio of its primary system while in the other it
is damped with the one of its secondary system. On the other hand, if

2 . 2
. h - s .
3,(1 J)YIJ is much greater than (gpI gsd) » 2. 1s given by

-1 - . Yo — .
N momp ey e dug ey 21 20 (1,0) Ay s (6.232)

hence, the resonant complex frequencies result as

N . 1 :
Ar] =-3 (sz + aSJ)wO tiu [T -7 (1,0) A ]' (6.233)
- _ 1 . 1
r, T 72 (EpI ¥ 55J)mo i D50 (1,0) Ay T (6.234)

In this instance, therefbre, the assembled system in the corresponding
resonant modes is damped approximately with the average of the damping
ratios of its primary and secondary systems and vibrates with the circular
natural frequencies of the resonant modes of a similar assembled system with
proportional damping (see £q. 4.67).

Thus, between these two extreme cases a system with nonproportional
damping in its resonant modes vibrates with a frequency that may not be
close to the frequency that the system would have if it were proportionally
damped, and is damped with damping ratios that may not be, neither, in the
proximity of the average of the damping ratios of its primary and second-

ary systems.



203

6.4 Complex Natural Frequencies: Nonresonant Modes

The complex natural frequencies of nonresonant modes may be deter-
mined by following the procedure empioyed in Chapters 2 and 4 to obtain the
natural frequencies of the nonresonant modes of systems with proportional
damping. That is, it may Be assumed that each nonresonant eigenvector of
an assembled system with nonproportional damping is made up by only those
eigenvectors of the independent components of this assembled system whose
complex natural frequencies are the closest to its associated complex
frequency. “ |

Thus, since for the sssenbled system in Fig. 6.1 such an assumption

is equivalent to set in Egs. 6.6 and 6.55

i#1
Z, = z;=0 for{j#0,¢,9,0,¢ (6.235)
where, as before, I and J are respectively the subscripts of the closest
complex natural frequencies of its primary and secondary systems to its
complex frequency x, the system of equations given by Eqs. 6.8 and 6.64
may be reduced to an approximate system of six equations. If it is
observed, however, that by equating the first of Eqs. 6.64 to the negative
of the fifth and, similarly, the fourth to the negative of the eight one

may conclude that

0,d,¢c, 0, ¢ {6.236)

aij = a§j s =0, C; J

0, J, ¢, 0, 2, (6.237)

bij b;j y 1 =0, ¢35 ]
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such a system of equations may be reduced further to the following set:

E N -k,_
AI ZI + BI ZI =

aoo(z0 + 7=

6t 3%y

@1(I)R1(t) + ¢3(I)R3(t)

+ byZy + boo (2 + z2) = - [Ry(t) + Ry(t)]

024

P ._i_ + X o1
a50{zg * Zg) + 25 24
+b

.1 el »
3c0(zg * 25} + 2 2,

+ b

As a result, if it is considered that in the light of Egs. 6.

cd .

. 1 ot 1 1
*ag(zo +zg) + byolzg + z5) +

* ' i
32yt by (zo+zg) =0

t o 1 - ! t ]
* acc(zc + ZE)+ ch(ZO *zg) +

0

zy * bcc(z; + zé) = - ¢C(c)R3(t).

(6.238)

(6.239)

(6.240)

(6.241)

101 through

6.104 and 6.107 through 6.110 the relations indicated by Eqs. 6.236 and

6.237 are tantamount

to the following two equalities:

(6.242)

(6.243)
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and that in virtue of these two equalities and the assumption described
by Eq. 6.235 the compatibility relations expressed by Eqgs. 6.93 through
6.96 may be simplified as

Ig+15 = @1(1)z£ (6.244)
de(I) ,

ZC + ZC = ; ZI (6.245)
cc

AL =X = A (6.246)

S0 So

A =3 = A, ‘ (6.247)

SC SC

after eliminating the reactions R](t) and R3(t) from Eqs. 6.238 through
6.241 (by substituting into Eqs. 6.238 and 6.240 the expressions for

R1(t) and Rz(t) obtained from Egs. 6.239 and 6.241) and introducing Eqs.
6.16, 6.17, 6.74, and 6.75 the reduced equation of motion of the assembled

system in Fig. 6.1 may be approximated by

LA 0 = g ) 05 (1) (nagy + byg) + 28,(1) UL (rag + by +
+ 0§$Lll)2 (AaCC + bcc)] ZI + [Q](I)(AaoJ + bOJ) +
cC
" d;j;(ll (hagy + bey)1 25 = 0 (6.248)
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de(I) * -
[e(1)(xayq + byg) + o (hage + by I Zp + 2y (1 - ASJ)ZJ =0 (6.249)

which by virtue of Eqs. 6.219, 6.220, 6.101 through 6.104, and 6.107

through 6.110 may also be expressed as

A=A
2 1 p 2 m d@(I)m
W 2ie L 05(1) 204 24 (1) 2
I Pp )2 Vo ! FoomM
I cc I
d@(I)zm 2
+ ) -55:] Z; + 2 mj 2 (I,0) 25 =0 (6.250)
foe M
2 % .,
A my @D(I,J) Z;+ ZuustJ (n - ASJ) zy = 0. (6.2571)

For small mass ratios, therefore, the eigenvalue problem of the

assembled system under study may be written approximately as

A=A
o Py
21mp1(~———;2_—) ‘I’O(IQJ)YIJ
=0 (6.252)
L A= }\S
2,{1d)v, elag ( 2 )YIJ
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or as

A=A
P S ® (IQJ)Y .

( 21)%2J)=-H=0 . (6.253)
A A n W

from which it may be concluded that for small mass ratios the complex

natural frequencies of an assembled system with nonproportional damping

in its nonresonant modes are approximately given by
A, = A (6.254)
I

A= AL . (6.255)

6.5 Complex Participation Factors

Although the complex participation factors of an assembled.system
with nonproportional damping may be computed directly from the definition
of a complex participation factor introduced in Sec. 5.2, for convenience
these complex participation factors are here expressed in terms of the
parameters of the primary and secondary components of such an assembled
system,

According to Eq. 5.67, the rth complex participation factor of the

assembled system in Fig. 6.1 is given by

.
w7 o (5,256

Y. = T T :

' 22 o (M + 0 regan ()
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where [M] and [C] are its mass and damping matrices, respectively, and
{w}(r) repkesents its rth complex mode shape. Then, its rth complex
participation factor may be written as a function of the parameters of
its primary and secondary components if in Eq. 6.256 [M] and [C] are
expressed in terms of the mass and damping matrices of these primary and
secondary components using Eqs. 6.181 and 6,182, and if the mode shape

| {w}(r) is transformed into generalized coordinates by means of Egs. 6.151
and 6,152, Observe, however, that since the transformation indicated by
these two equations is very similar to the corresponding one for systems
with proportional damping (the only difference, indeed, is the complex
nature of Ygr)and Ygr)), from the results in Sec. 4.5 one may easily
infer that |

N (),

* *
My Ys b m (y0 Y.ty

1 ] ; (6.257)
J:

.
i) [M]{J} =

N~ =
o

T P » S |
i ot - _Z] M; Ygr) + 1 om, (Yér) + yir) + y{r) )2' (6.258)

In addition, observe that by substitution of Eq. 6.182 and by the parti-

T
tioning of {w}(r) into its primary and secondary parts {w}(r) [C]{w}(r)

may be expressed as

T T T,
wi M eron ) {wp}(”) [C]{wp}(r) RURNLNE Jow 300 4

(6.259)

T T
{wp}(r) [F]{wp}(r) + z{wp}(r) [D]{WS}(F)
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and hence, if it i$ considered that by means of the transformations given

by Egs. 6.151 and 6.152 one may write the following two equalities:

: | __— Ny
{wp}(r) [c]{wp}(r) - o3 L1 eae10va 1) .z: C; Ygr)' (6.260)
L |
O LN W ¢ LI R S RO O
w3 Lo My = T Dol e JeMyrt "= j§1 ey g *y5 +ye )+
2 2
x % (r) * (r) » % (r) {r)

*
*legg-er-lyg *tlege-cp-Gly, +2(ch -¢y-0lyy Y. +

* (r) (r) _ (l") (r)
+ 2 (CC] - C'[).V'l .Yc + 2 (CCZ = C;).Yz Ye {6.261)
where
* T ()
G = R Ielert s 4 =1, 2, LNy (6.262)
(1) re1ger @) .
cyy = Lot/ [elle}™’, 120, ¢5 §=0, 1, 2, ¢ (6.263)

(6.264)

. T AT |
s - o1 e 1001 = o) e e, 1, 2, g

(for the proof of this last identity, see Apendix C), and that according
to the definitions of [F] and [D] (Eqs. 6.184 and 6.185) one has that
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.
TRLLE IR c1w§](r) + e w§3(r)

(r)w, (r)]

T
{wp}(r) [D]{ws}(r) = f [c1wp1(r)ws](r) + c3wp3 )

in which.
N
P {ry (r)
.Wp_’(r) = 121 ‘I’}(])Yi =¥
R TN £ B CS B 1
wp3(r) = 121 o4(1) Yo = L lyg "+ Yo )

s (r) (.
wo (r) =y, + 21 03y +fyye .=l 2

after discarding second order terms one obtains that

N

T *

wi ey (- .Z:) )
'l:

. +
jZTCJ (o *¥; c

M2 Mmoo om
Y. .ty

(6.265)

(6.266)

(6.267)

(6.268)

(6.269)

(6.270)

Thus, it is easy to see that in terms of the parameters of its indepen-

dent primary and secondary systems the rth complex participation factor

of an assembled system may be expressed as



N ' N
P« (r) s () (v} (¥
Yr‘ = N (‘I")Z N-
p * * S * * 2
iz [ZAPM_i + C_i] Y_i + Z][Zhrmj + Cj] (y(()r) + ygr) + yf:r))

(6.271)

On the basis of this equation and by (a) writing Ay explicitly in
terms of its real and imaginary parts, (b) considering that for a
primary and a secondary system with proportional damping C: and c;

result of the form (see Eq. 5.80)

=2 M; 2
i° Epi mp1 i (6.272)
*_2 *

cJ = gsj wsj mJ , (6.273)

and (c) neglecting insignificant component modes one may therefore

write lr approximately as

(

g y(r) (r) ygr) . er)) Y4

1 r'1 (yO
Yv2

2
»

2
[-(gw -E wpl)mrlv}‘"’ +[- (g, - o )+mr](yé‘”)+yfj)+y§r)) .

rr DI rr SJJ

(6.274)
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where, as before, Br is defined as

B, = : | (6.275)

6.6 Maximum Modal Responses: Resonant Modes

It has been shown in Sec. 5.4 that the rth mode maximum response of
an assembled system with nonproportional damping may be calculated by
means of Eqg. 5.154, which when applied to its secondary system alone results

of the form

o 2esanl(a + v - vy Tlae 1 st )
i i i- i- i *
_ (6.276)
where
{]dwg e lvrl{ldwsl}(”) (6.277)
and {dws}(r) is of the form
(" - 3
ws](r) wpk(r)
wsz(r) - ws](r‘)
{dws}(r) = < : . (6.278)
wSNs(r) - wst_](r)
LWpQ(P) - WSN (r}

S
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Thus, it may be seen that a sjmplified formula for the maximum modal
responses of a secondary system may be obtained if a simple approximate
expression for its vector of complex modal distortions may be derived.
Also, since the formulation presented in Sec. 6.2 to compute the mode
shapes of assembled systems with nonproportional damping is very similar
in form to the one introduced in Chapters 2 and 4 to determine the mode
shapes of those with proportional damping, it is apparent that such an
approximate expression may be developed by applying the criteria employed
in the derivation of the corresponding one for systems with proportional
damping.

Accordingly, if it is assumed again that the rth mode of an assembled
system with nonproportional damping is composed by only those component
modes whose complex frequencies are, among all, the closest to the complex
frequency of this rth mede, and if {@}(I) and {¢}(J) are such closest com-

ponent modes, Egs. 6.151 through 6,157 lead to the following approximate

expressions for {wp}(r) and {ws}(r):
(r) {r)
URENESONS v, (6.279)
(r) (r) (3) (r) (r)
twed =y + (e} vy + {fly, (6.280)
where
() ()

Yo = 4 1) ¥ | (6.281)
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(6.282)

yg.r) = 0,(1,4) v, (6.283)
(r, = ag M, = A )
r sy r 53
On the basis of these equations and in similarity with the corresponding
derivation for systems with proportional damping presented in Sec. 4.6,
the rth vector of secondary element distortions may be therefore written
as

df — (r)  (r)  (J)

(r) _ o
{dws} = do(I) {fcc } YI + Yy {d¢}

{(6.284)

which, considering that when A is close tO'AS the first term in the
_ J

right-hand side of this equation is small when compared to the second

one, may be approximated as

(r) (r) (J)
{dws} = Y3 {d¢} ) (6.285)

and hence the vector of the absolute values of such secondary distortions

results of the form

(r) (r) (J)
Uaw |y =Ly, [{ldeld (6.286)
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Equations 6.276, 6.277, and 6,286 indicate thus that the desired
(r)

simplified expression for fxg} may be obtained by deriving approximate

relationships for the absolute values of the factor ygrz the complex
participation factor Y po and the vector of secondary modal distortions

r : l
{dws}( ) and by evaluating the sign furction sgn [lug 4 vs ) -
it oS

(uS + Vg )J. In what follows, then, such approximate relationships
i-1 i-1
are derived, and this sign function is evaluated,

xér) factors

According to Eq. 6.228, the resonant complex natural freguencies of

an assembled system are given by

. 0 2z 2
(gpI+ gSJ)mO +iwg i_ﬁf (gp1~ asd) - 05 (1,) gy - (6.287)

N

;\r:.-

Consequently, since AS » the Jth complex natural frequency of the indepen-
J
dent secondary system of such an assembled system, may be written as

S NI I = .f oy 4 fo, (6.288)

the difference A = Ag in Eq. 6.283 results of the form
J

o W 2 2
A~ A, = - 7l (EpI' Esd)mof_‘z"‘ (Epl_ ESJ) - q’O(I:J)YIJ . (6.289)
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Similarly, the difference - i  may be expressed as
J

Ao = =l + 2w+ 0 2
AL - A = = EpI— ESJ)wO fn + = (gpl- gSJ) - ¢O(I,J)yIJ

~
w

<
Pf —

(6.290)

r S4

is

Ap - ASJ = 2w, . (6.291)
In addition, if Ar is written in its rectanguiar form as

Ap = -t e, (6.292)
it may be seen that 1Ar may be put into the form

(6.293)
ier
ir = -w_e (6.294)
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where

B, = tan  ———— (6.295)

ir, = - w, € s (6.296)

Ai may be expressed as

2 2 i2g .
o= we r. (6.297)

Upon substitution of Eqs. 6.289, 6.291, and 6.297, and by considering that

for resonant modes w, is approximately equal to w

, Eg. 6.283 may be there-

OS
fore written as

' i2¢

¢0(I,J) e T

vy 0

2 2
(EpI' ESJ) Iy V/(gpl- gsJ) - ¢0(IsJ) YIJ

(6.298)

In expressing this approximate expression in its polar form to find
an approximate relationship for ,yér)[’ one should note that the argument
of its square root may be positive or negative and hence its denominator
may be real or complex. Thus, the following two cases need to be considered

separately:
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Case I: lgpl

inator of Eq. 6.298 is real. Consequently, ygr) may be expressed as

- ESJ[ Z-I_EC(I,J) YY1 - In this case the denom-

. i2g :
AR Foll-d)e o) (6.299)
Yy o =1 . I :
o o<(1,d)y
(. -6 )F (g -6 )] 1901
p S p s 2
b L (g - &)
| Pr Sy
which by introducing the transformation
CIJO(INJ) VYIJ . .
E T = sin v, - (6.300)
Pr 5§ |
may also be written as
iZEr
y{r = ol l:9)e y{r) (6.301)
J (¢. -¢ J1+cosv | 1T )
p s - r
1 J
In such a case, then,lygr)l results as
le (1,d)]
Iygr){ = 0 yirdy, (6.302)

: (EPI Z gSJj[];; cos ¥ J''I
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Case II: |gp1 - gsJ[ < {0 (I.d) Ay ], When IgpI - ;SJI is
smaller than or equal to |¢0(I,J) V%IJ |, Eq. 6.298 may be put into the
form -
(1.9) iZEr
3 (I,d)e
yir) = - - — v{r) (6.303)
T/ (L) vy, - (g, -& )" -l - ) -
+*vyoo | 1d Pq 53 Pq Sy
which in polar form results as
~i{p~2g )
r “°r .
yf,r) e — Yg‘”) - | (6.304)
Y19
where
€y = &
- p S
wr = + tan 1 I J (6.305)
: 2 2
Jaayy - (e, = %)
Thus,it is easy to see that for the case under consideration lygr)l is
of the form
1 (r) |
Y
lyg [ Y. (6.306)
Y1 .

Participation Factors

r\
In the light of the above expressions for yS ) and Eqs. 6.274 and

6.275, simplified expressions for the complex participation factors may

be derived as follows:
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Case I: Algp - & _]2] o (1,d) /., . In this instance, if
1 > hd

1
y{r, 9, and 4§

and 6.301, and if it is considered that ¢0(I,J) = @k(I) B, do{1)}, the

sum ygr) r) (r) in Eq. 6.274 may be expressed as

are approximated as indicated by Eqs. 6.281, 6.282

iZgr

yér) * y(cr) ¥ ygr) {] " : - ]@k(x)vir) +
| | | (Epl_.isd)(T ¥ cosy, )

iZgr

Bje
'*[ f1 + 1 J - ] d¢(I)YI(P) : (6.307)
cc (g - asd)(1 + cosy )

from which it may be seen that for smali damping ratios

(r) (r) (r) . . ‘I’o(I!J) (r)
Yo *¥e *yy = - Yo (6.308)
(EpI - ESJ)(T + cosy )

Understandably, since for resonant modes the parameter Br given by
Eq. 6.275 1s very close to unity, the numerator of the right-hand side

of Eq. 6.274 may be written as

NG RO BN N N PR toll-9) g (r)
A (¥ Yo Ty 1 []+ 1 (¢ - & )(1 ¥ cosv.) "1
P Sy r
(6.309)
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or, if it is expressed in polar form and Eq. 6.300 is introduced, as

. L] 2
(r) (). (r), (r) (r) sin¥, ity
B.Y, + (y +y +yy My, Y 1+ (**:7*““""‘) Y e
ri 0 c J | IJ I 17 cosy, 1J
(6.310)
where L is such that
S‘in\i‘rv/YIJ
tang = — . : (6.311)
T+ cos\Pr

But the analysis of Eq. 6.311 with its plus sign shows that for small
mass ratios tang is always much smaller than unity because lsinwr]
and Icosar{ are always less than or equal to unity. In like manner, if

it is considered that by substituting into Eq. 6.311 the va]ﬁe of Y13

solved from Eq. 6.300 tangr may be alternatively expressed as

- . 2

gpI ESJ sin Wr

tang, = - , (6.312)
QO(I,J) 1% cosY,

it may be observed that in the limiting case when Y. approaches zero
(that is, when the denominator of the right-hand side of Eq. 6.312 ap-

proaches its minimum) this equation with its negative sign yields
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&, - & : €, ~ &
tang_ = P S4 Zsm‘?rcoswr ' P S J

{ i I
0 9,(1,3) siny ¥ =0 2,(1,J)

(6.313)

which indicates that for small damping ratios tangr is also always small
when the negative sign of Eq. 6.312 is considered, For small mass and
damping ratios, therefore, the second term within the radical of Eq.
6.310 may be neglected, e1€r may be set equal to unity, and, as a con-
sequence, the numerator of the right-hand side of Eq. 6.274 may be

written approximately as

(v) (r) {r) (r) . (r)

B.Y; "t lyy ¥y, tyy )vgV (6.314)

To write a simplified expression for the denominator of the same

right-hand side of Eq. 6.274, it may be observed that when lgp - £ | >
I

|¢0 (I,J)YIJI Eq.l6.287 leads to

(¢ £ w )= ) i € -c ) : (1,d)
- W= wo )= o (g - wo+ 5 - -9 W)y
rr P1 P; 2 "7 $5° 0 2 Py S5 0 1J
(6.315)
( = Zo 2 I
- gY‘wY‘ - ESJNSJ)_ E (Epl' gS )“’0 + 7 (‘Ep = E)SJ - q’o ( ’J)YIJ

(6.316)
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W, F W, s (6.317)

and therefore by virtue of Eqs. 6.308 and 6,300 one has that

(r)? (1), ,(r), ()7
- (e, - EplwpI)YI - (g0, - J ( Ye e
. 2 2
w ' N sin” v (r)
= 5 (apl- F,SJ) [(1+ cosy) + (1% cosy,) T Cosw:)z 1Y, =
. 2 2
w 2sin"y {r)
r r
= e - ——— Y
5 (apI aSJ)( s Coswr) I (6.318)

2

Lo}

0 (;’J)YIJ 2]
(gpI- gSJ) (1 % cosv,)

(r)?
YI =

2
2cosv,, (r)

7 mr[ ] v (6.319)

iy
i cos‘yr

Thus, by substitution of Eqs. 6.314, 6.318, and 6.319 into Eq. 6.274,
the complex participation factors in the case under study may be expressed
as |

] ¥‘cosw '
.1 (6.320)

Y(r) 1 (g - £, ) s1n2w ¥ i cosy,
P1 59
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and hence

¥
1 1 coswr

] .
el =3 A T — — (6.321)
U3 . .
r I /% (gpI - gSJ) sin’y + cos“y

Case II: [gpl -5 1 2] ¢O§I!J2 VXIJ |. In this case, by virtue
JJ rem—

(r) y(r)+-y§r)

of Egs. 6.281, 6.282, and 6.304 the sum Yo * Y. in Eq. 6.274

may be expressed as

-i (b, - 26)
(m, (), (). i) e r o0 (6.322)
+y + J CI’k(I)"' ¥ + ]Y
0 c cc r;;s-
which for small mass and damping ratiocs may be approximated as
| e (p)
r r r) .
yé ) yg ), y§ Yee v, (6.323)
"Y1y

Therefore, by substituting Eq. 6.323 and taking into account that
as in the previous case Br = 1.0,the numerator of the right-hgnd side of

Eq. 6.274 may be written as

S () L ()

y{ yﬁ“’)yld =[1+ Agye 1Y) =YL (6.329)

r)
TYe 1

BrY§r) ¥ (yO
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Similarly, since for the case herein being considered Eq. 6.287 yields

=1 -
- (g0, - aplmpI) =3 (t‘:pI ESJ)wO | (6.325)
1
-(ew, - Ecw )= -5 (e - £ ) (6.326)
rr 3 SJ 2 P 54 0
Wo [ 2 2
w. = wy t 5 foo(ld)ypg - (apI - asd) ; (6.327)

the terms of the denominator of the right-hand side of Eq. 6.274 result

as
(r)? (r) () ()2
- (e - gpI‘”PI)YI - (g - gstsJ)(yO YV ¥y Tyt
2
-i2y (r)
- § (e - 15 )01 - e MY (6.328)
(M2 (n) (n) (M2 , -izy, (r)?
fo [V, + g vy vyg ) ypl=de, (Tre Ty . (6.329)

Thus, if Eqs. 6.324, 6.328, and 6.329 are substituted into Eq. 6.274
- : -2

and if it is considered that the factors (1-e12wr ) and (1 + e1 wr) in

£qs. 6.328 and 6.329 may be written as

12y, . _
1 -e = i2simy, alvr (6.330)
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1+e L 2cosy,, € , (6.331)

the complex participation factors in the case under consideration may be

expressed as

: : 1¢r
e
v = {(6.332)
r g (r) 1 - Yo s
2in, 2YI 5 (gpl ESJ) ™ siny, + cosy,

which, in view of the fact that Wy, is approximately equal to ©, and since

according to Eq. 6.305 sinwr and cosy,, are given by

S )
J (6. 333)

simpr =

- 2
cosp,, = > (6.334)
QO(IQJ) ‘YIJ

may also be put into the form

I

. (6.335)
2ia 2Y§F)

Ty

1 - 2 — [2 _ - 2
RACRN FJo (g - (g, - & )
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Consequently, in this Case II iyrl may be written as

o (1,3} ]V
1 1 [ 0 | Y1g . (6.336)

vyl = Q)
20 2 YT 2 /z Z
I - - + fo (1 - -
r 7 (gpI ESJ) T 0( :J)YIJ (Epl SSJ)
Secondary Modal Distortions
Case I: }gpI - ESJ ) z,]go(l,d) 1 | . By virtue of Egs.
6.277, 6.286, and 6,302 one has that
, o (1] Y7
{Idwsl}(r) = vyl > —1 t]dg} 31V (6.337)
(EpI - ESJ)[1 + cosy, ]
which in combination with Eq. 6.321 leads to
, le (1,0)] 6))
fldo. 3= 11 0 (dold .
° 2w, vﬁl (¢ - & )4sin2W + coszw (¢ - ¢ )
4 Pr 7Sy r P TSy
{6.338)

Thus, if Eq. 6.300 is considered, the vector of secondary modal distor-

tions when [g. - ¢ | > |8 (I,d) ¥, | may be expressed as
P 53 0 IJ
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e (1,3)]
{'d‘”;”m ) 2] 3 = - T2 a2,
" :
r \/V(gpl‘ 55‘]) - ¢0 (IsJ)YIJ[] -7 q)O(I’J)YIJ]
(6.339)
Notice that this equation is not valid when
2 2 1.2 2 _
(apI - ESJ) -0 (Ld)ygy - [z o) (Ldlyyyl” = 0. (6.340)
However, if this equality is rewritten as
£ -8 2
p s
[ L J ] =1 ~-% ®§ (I,J)YIJ > (6.341)
‘DO(I;J) VYIJ

it is evident that for the case under consideration Eq. 6.340 can never

be satisfied because e, (1,3) and Yig are always positive and because by

hypothesis
2
-
p S
g > 1.0. (6.342)

Therefore, £q. 6.339 is defined for all the possible relations between

lapl- gSJI and ]¢O(I,J)YIJ|.
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Notice also that since for small mass ratios the term

[1 --% ¢§(I,J)YIJ] in Eq. 6.339 is very close to unity, for the cases in

2 . '
which [(EpI - ESJ) - @g(lfd)YIJf is not very small {|dws[}(r) may be
approximated as
le (1,d)]
{|dm;[}(”)= 1 —;— 2 t1dg) 1), (6.343)

2w z 2
P gy - 5 P oLy

Case II: lgpI- £ Jl.i I@O(I,J) Mgl When this condition is

satisfied, (ygr)| is given by Eq. 6.306. In this case, therefore,

Egs. 6.277 and 6.286 yield

faw; |3 (1) - H—f—_‘f__el-- v ey, (6.344)

Y143

and hence, since Ile is given by Eq. 6.336, the vector of secondary modal

distortions results of the form

I1,0)]
L), 11 215 a3 (3)
{ldug|? 7 — 2 (1def 3™,
g (g - ) 1/éo(x,d)m - (5, - g )0
. 7 (6. 345)
Evidently, for small damping ratios and when I@i (I,J)yIJ - (Epl_ gsd)zl

is not very small these modal distortions may be approximated as
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)_ |‘I> (1,9)]

2
Jf(I dhv - px - asd)

It is interesting to note that in both cases the maximum values of

{|dog]) (r flao] 109, (6. 346)

the modal distortions of a secbndany system are obtained when

l@O(I,J) /yIJ [ = [gp - & | and that in both cases, too, such maximum
I .

J
values are
(r) 1 1 ). 1 11l (J)
{[dw [} = {[de]3'"/= 0 {|dg|}
max 20 2w A2
r l@O(I:J)YIJl r (Epi_ ESJ)

(6.347)

It is also interesting to note that when the values of ]gp - & | and
I J
{QO(I,J) 13 | are not very close to each other, the vector of secondary

modal distortions is given, independently of the relation between those

two values, by the following single expression:

. 1,J |
(o)M= 513 il (aof 24, (6. 348)

2 2
Jlegtarny - (g, - e )|

Evaluation of sgnAL(u; + v ) - (u + VL 2l
1 1 1-1 31“1

As pointed out earlier, the need for the evaltuation of the signs of
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the resonant modal responses of a system is because such signs indicate
if the cross-product terms in the established rule to combine modes (see
Eq. 5.168) are to be added or subtracted to the squared terms in it. It
may be observed, however, that what actually determines the positive or
negative nature of any of such cross-product terms is the relative sign
between its two associated resonant modal responses. On these premises,
therefore, the evaluation of the sign function in Eq. 6.276 will be here

limited to the determination of such a relative sign.

S
imaginary parts of w;, the argument of the sign function herein being

One may note that because u_ and v; are respectively the real and

evaluated may be put into the form

(ul+vi )= (u +v. )=Relydy 1+ Inly. dw 1. (6.349)
5§03 5i-1 34-1 " sy rsy

In view of Eq. 6.285, it may therefore be written approximately as

1 1 P . ()
(u5i+ Vsi) ) (usi_] * Vsi_]) = [Re(Yrygr)) + Im(Yrer )]d¢1(d) ;

(6.350) .

and thus, if it is considered that d¢i(d) is a parameter common to two
adjacent resonant modes (i.e., two modes whose natural frequencies lie
close to the same resonant frequency), the sign function in Eq. 6.276
may be expressed as

(r)

sgnllug + vg ) = (ug +vg 11 sonlRe(y v, + Infy yy )1 (6.351)
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On the basis of this equality and the approximate expressions for Ty and

gr) found above, such a sign function may then be evaluated as follows:

Case I:Igp - £ [ > |e (I,J} Yyrg-l. In this case, Eqs. 6.301 and

6.320 permit one to write the product vy y(r)

125
(r) . 1 (e 7 (6.352)
Yy = .
r’J 4o, 1 2 2
o -—(apI aSJ) sin"¥, ¥ icosy (sz - ESJ)
which after introducing Eq. 6.300 becomes
5 (1.0) 1'25r
1 io (1,d) e
Yry}”) = o . (6.353)

rl 2 - . 2 2
'i q)O (I’J)YIJ + 1 /(EPI - gSJ) - ‘DO(I:J)YIJ

Hence, since w,. and £, are always positive and ¢Q(I,J) is a parameter

common to two adjacent resonant modes, one has that

sgn[Re (v ygr)) + Im(YPY§r))] =

1

- T 7 2 1.2
= sgn[ + JQapI— ESJ) - 0 (Ldlyyy + 5 o (Ldhvyl (6.354)
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Thus, it may be seen that when

’ 2 _ .2 1 2
/(gpI - aSJ) - o (Ldhyyy > 5 o {Td)yyy (6.355)

or. what is tantamount, when

E

(1 J) 1 62 (1.0) vy, (6.356)

two adjacent resonant modes are always of opposite signs; otherwise, they

are of the same sign. That is,

sgn [Re(y Y{™) + 1n (v,y{™)1 -

— 2 2 1.2 2
sgn(+ 1.0) when (sz - ESJ) - 2, (Ld)vgy > [z oo (1]

i} (6.357)

sgn (+ 1.0) otherwise

Case II: Jgp -t | < ie.{1,d) VYTJ_| . According to Eqs. 6.304
I .‘JJ w 4

and 6.335, the product nygr) for the systems within this Case II may be

expressed as
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i2¢
(r) _ i ?(l0) e 7
Wi Ty (6.358)
role e )2 (1), - (6. - )R
2'%p; T Psyt fTo YYD p; sy
. . {(r) y(r) .']
Hence, in this. case sgn[Re(yryJ ) + Im(Yr J )] results as
sanfRe(y y{™) + In(y y{™1 =
gnLRety Yy (eh
B 1 2 2 } 2
= Sgn (apl - «SSJ) 1/¢0(I,J) (apl —gsd) (6.359)

which indicates that two adjacent resonant modes always have opposite

signs when

Sty - (g - e )F gy, s (5. 360)

J Pr 75y

- or

QO(I,J) "YIJ 2 1 2
G > 1+ e, - g ) (6.361)
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and the same sign in all other cases. In other words,
sanlre(y y{™) + Iy y§™)1 -

sgn(+ 1.0) when (£_ - & )2 - @2(1 3) > X )2]2
gn(+ 1. Py s, o\lsd) > g-EpI- ESJ
- (6.362)

sgn(+ 1.0) otherwise.

The results indicated by Eqs. 6.357 and 6.362 are somewhat expected,

because if it is considered that when [gpI - gsJ[ = ]QO(I,J)YIJ[

a system has two modes with the same complex natural frequency. (see Egq,
6.287) and therefore identical mode shapes, it is logical to expect that
in the neighborhood of that equality the same system have two modes with

similar mode shapes and, consequently, the same sign.

Maximum Modal Responses

In the light of Eqs. 6.276, 6.339, 6.345, 6.351, 6.354 and 6.359,
the maximum distortions of a secondary system in its resonant modes may be

thus expressed as follows:

Case I: [gpI - ESJI = [95(1,d) VYIJ_I
sgn{a;,) ¢ (I,d)
{Xs}(r)= % ' o - {d¢}(J)SD(mr, E)
v/ (& gsJ)2 - 4LV - 7 o(L)vy]

(6.363)
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where
Aoy = 4@l (1,0)yq F \/(a - )% - 62(1,J 364
13- 72 Yo \tig Py 5 2%, (1.d)vqy (6.364)
and, according to Eq. 6.287,
_ 1 _ 2
£, = Z(apl + g ) ty \/(a as = 9o (1,0)vy4 (6.365)
and
w, = mpI = mSJ = w, - (6.366)
Case II: le. - & | < ]e (1,3) A1y [
P1 733 o= -
sgner,) o (I,J)
o) - 5 °_ 0 1doy 9 sn(y e )
3 1 2 5 ? reor
7 {ey - &g ) 1/@0(I,d)ym - ey - g )
I J I 7 (6.367)
where
1 2 2 7
egg =7 (B - &) i\/@o(l vy - (&, - &) (6.368)
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and by virtue of Eq. 6.287

1
[ g—— +
£, =3 (spI ESJ) | (6.369)

Yo ) ?
Observe that in this case {XS}(F) may be written simpiy as
o (1,0)
a2l ° (do}Vsp(w_ € ) .
R T AT M o
2 gpI s;/ =VTor Y13 gpI gsJ
(6.371)

By the inspection of these relationships it is easy to show that for
an assembled system with proportional damping Eqs. 6.363 and 6.367
converge to the corresponding one derived in Chapter 4 for systems with
proportional damping. In fact, since for such an assembled system

gp - £ is zero (when the damping matrix of the system is proportional
I J

to its stiffness matrix, for example, Ep
I J
proportionality constant common to its primary and secondary components},

= gs = %-awg, where a is the

it is apparent that for systems with proportidna1 damping Case Il always

applies and that Eq. 6.371 is reduced to
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SD (£, w.) (6.372)

which, as it may be seen by comparison with Eq. 4.102, is the expression

for {XS}(r) derived in Chapter 4 for systems with proportional damping.

Similarly, it may be observed that in accordance with Egs. 6.348,
6.357, and 6.362 when |g_ - £_ | and e (I,0)vy;, | are not very close
P S 0 IJ
)2

to each other (i.e., when t(gp - £ - ¢§(I,J)YIJ] is greater than
I

3
J
1.2 2 1 _ 242 . . .

[§-®0(I,J)YIJ] and [7(5p1 gsd) 1%, the maximum distortions of a

secondary system in its resonant modes may be approximated, independently

of the relation between IgpI - gsJ[ and |¢0(I,J)JYIJ|, by

@0(1,0)

(r). . 1 {J)
X H= 5 {de3*"’sD{u €. (6.373)

/'Q(Z)(IsJ)YIJ = (gpl" E;SJ)Z!

For most practical purposes, this formula may be considered the
sought simplified expression to determine the maximum response of

secondary systems in resonant modes.

6.7 Maximum Modal Responses: Nonresonant Modes

Simplified relationships for the maximum distortions of a secondary
system in the nonresonant modes of its assembled system may also be ob-

tained by following the corresponding approach utilized in Chapters 2 and 4.
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These simplified relationships, therefore, are here derived separately

for those nonresonant modes in which the assembled system has natural
frequencies close to the natural frequencies of its primary system and
those in which it has natural fréquencies close to the natural frequencies

of its secondary system.

Case I: X

= A
r —p;
According to the discussion in Sec. 6.4, the complex natural fre-
quencies of an assembled system in some of its nonresonant modes may be

approximated as

Ap = pr (6.374)

Y r
For such nonresonant modes, then, the Y§ ) and y§ ) factors of Egs. 6.151

and 6.152 result as

Y%”) ifi=1

Yg‘”) = (6.375)
0 ififl

yér) = @k<1>v§”) . (6.376)

Yo © di(l Yg'") (6.377)

cc
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- }\2
W)= e (1,1) 1 - y{r) (6.378)
J NI D 1 € N Y I '

and conseqdent]y the primary and secondary parts of their associated mode

shapes may be expressed as

e (1) = gDy {r) |  (6.379)
I

N

{ws}(”) = @k(x)v rlay + 21 y 11 3] 4 -——-—l (r iy (6. 380)
i |

from which it may be seen that the corresponding unit-participation-

factor secondary modal distortions may be written as

N

N O PRI E (6.381)
=1

Tdw, ) . Yy [d¢(I)Y(r f

where according to Eq. 6.274 Ty is of the form

(r), . (r)

MBSO RO RN I

) I (yg '+ ¥¢

=1
Yr 2

y(n)? (r), (1),2
mpIYIr + [-(gprDI ), ycr + er )

- & w, ) ¥ de. Ny ¥
S5 83 Pt 0 1J

(6.382)
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Thus, the maximum response of a secondary system in the nonresonant modes
under consideration may be easily calculated by means of Eqs. 5.154 and
6.381. It is convenient, however, to derive, based directly on the con-

cepts of Sec. 5.4, an alternative simplified expression as follows:

According to Eq. 5.150 and by considering that svr = mrSDr and

W, = w, un upper bound to the maximum modal distortions of a secondary
¥

system is given by

c (r) .
{xs}(”)i 2{Refdw ) '+ Im{dﬂs}(r)]wrSD(u}r’gr) (6.383)

which, by virtue of Eqs. 6.374 and 6.381 and assuming that Y%r) is real,

for the nonresonant modes herein being studies results as

{xs}(r) <2l (Rev,. + Imy ) d®(1)Y§r){;§£-} N

N

+ -E

? [Re(yry(r)) + Im(yry(r))]{d¢}(j)iwrSD(w £ I). (6.384)
i

Hence, since

(6.385)

3

Re(v, i)+ tty ¥47) < (Rey, 4 1my ) (Rey§T) + 1my{ ")
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one may consider that

o) < 2fRey, + Ty, | |d@(1)v§” {%c} .

) | (6. 386)

Wy SD(mp

N
S )
+ 7 (Re y{r) + Imy(r)){d¢}(3) E
371 J J 1’ P

and thus, if by adopting the less conservative approach introduced in

gr) + Im y§r) are replaced by the
square root of the sum of the square of their terms times their original

Sec. 5.4 the sums ReYr + Ier and Re y

signs, the vector {Xs}(r) may be written approximately as’

{xs}(’") = 2[v,| }d@(l)Y%r) {%} +

N

S
(r) (r)y 1, (r) (3) :
+ j§1 sgn(Re y; +.1myj ) Ly;" [ ded wpISD(wpI,mpI) . (5.387)

(r)

To obtain a simplified formula for {XS} , then, approximate expressions

(r)

, and sgn (Re 2 + Im y§r)) are derived next.

for lygr)l,[vrl

xér) factors. If Ap and Ay are written explicitly in terms of
I J
their real and imaginary parts, and if Ai is put into the form indicated
1
by Eg. 6.297, Eq. 6.378 may be alternatively expressed as



i2g
5 (i)l e PIy(r)
o p 1
y(r)= I
I e, w, - £ we )+ ile! - ol )I-le w - £, w, )+ 1lul F )]
" {6.388)
which for small damping ratios may be written as
= 5oL vi")
i - ( ) ) i 7 (6-3%9)
w. * o W, = + 1. w. -~ E_ W
Py S35 Pr S; PrPr 5;5;
In polar form, then, ygr) may be expressed as
-i6.
- @0(1,3')&% e Yg‘") |
(r) - I | \
yi' = 5 7 (6. 390)
J + - + - /
(mpI wsj)[(wpI wsj) (iprpI Esjwsj) ]
or as
.y 2
(r) _ @O(I:J)mpl C0S 0 e"'iej Y(r) (6 39])
Y A j I :
‘ P S ‘
where ej is such that
£ w - £ w
PrPr S3%
tan ej = — : (6.392)

pI SJ'
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or as

ygr) = A (J) coso; e Ygr) (6.393)

A

where according to Eq. 4.112 Ao(j) is of the form

¢ (x,mg

A = (6.394)
W ~- )
SJ pI

(r)

Thus, Y3 may be written as
[ygr)[ = {A,(3) cos oj{[v§r)| . (6. 395)

By examining Eq. 6.378, one may observe that ygr) is undefined when
A = AS . Observe, however, that for such a case Eq. 6.393 is not valid
J
because whenever the freguencies vy and &s get very close to each other
I .
the complex frequency kr approaches that of a resonant mode and conse-

quently the hypothesis Ay = Ap used in its derivation is no Tonger valid.
I
To establish, then, the range of validity of Eq. 6.393, it may be considered

that there exists an upper bound for [y(r)[ when w = w_ and £ = ¢
J Py 53 Py Sj
(see Eq. 6.298) and that thus for all other relations between @, and
1
we s and gp and E, > ]ygr)] should always be less than or equal to that
J I J
upper bound. Accordingly, since for wy = W and gp = g Eq. 6.298

I J I J
yields

A (6.396)
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from Eq. 6.395 one has that

1

]AO(J) cos ejl 5_/?33_ (6.397)
and therefore Eq. 6.393 is valid when
2 2
mp - U.)S'
—L—d sec o5 | 2 195(1:3) Al (6.398)
wpI

When given primary and secondary nonresonant modes do not satisfy this
condition, they should be considered as resonant modes.

Participation Factors. Based on the proof that for resonant modes

the term (yér) + yér) + ydr)) Y19 Tn Eq. 6.274 is negligibly smaib and by
(r)
J

than the corresponding ones for resonant modes, one may infer that the

considering that for nonresonant modes the factors y are always smaller

numerator of the right-hand side of Eq. 6.382 may be approximated as

Y%’”) ¥ (yor) + yﬁr) + ySr)) vig * Y§r) : (6.399)

Similarly, it may be observed that the term (y(r) + y(r)+y§r))2

0 c Y1J

in the denominator of the right-hand side of the same Eq. 6.382 may always

be written approximately as

2
i ey yfyz e yir) (6.400)

| Y1d
{(r)

is large, Yo

(r)

because if y + Yo ' are comparatively small and if,

(r)
J
on the other hand,-ygr) is small, the term in its totality is negligibly
small. Consequently, for the nonresonant modes under study the

participation factors may be expressed as



(r)
Y1
v =% 2 z
r 2 , (r) . (r) (6.401)
fw_ ¥ + [~{t w £ w. )+ iw. 1y Y
or as

1 1 Ygr)

- - ' . (6.402)
pp ¥ir)T Yy iy fe) Vgl vp Es s Ve,

Notice, however, that by introducing Eq. 6.393 one has that
2
yir)

cos ZeJ + 1 sin 28
1 + —=a—+— =1+

J
5 5 (6.403)
AO(J) cos” 85 ¥y

which by considering that

2 2

ej) cos” 8 (6.404)

cos Zej (1-tan

2 tan ej c052 aj (6.405)

sin 26.
J

may also be written as

2
Ygr) (1- tanzed) + 21 tane
1+ —— = 1+ 5 (6.406)
yér) Y1 AO(J)YIJ
Therefore, by means of Eqs. 6.393 and 6.406 Y. may be alternatively
expressed as
i20
1 (1+ ) e Y
Yy = ") — s (6.407)

2iw_ Y 2 2 p S
Pp T D ALy =53]+ 1 [2+ L A2 (0)vy, T 6,
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where, if j = J, GJ is given by

E. W w
Py Py — 5.°S.
5. = tan o, = —t— b I I (6.408)
J J W - W
S .
from which one obtains that
1 1+ 8]
byl = ~ '
r {r) 2 wp, ~ w§ , 1/2
2w, 1Y [{ 2 2 I J 2 2 2}
pI I []+A0(J)YIJ GJ] + [2+_-L:)——-—AO(J)YIJ] 6J
Py
(6.409)
sgn(Re<y£r) + Imyézl), Since Eq. 6.389 may be put into the form
o
- gLl Tlog = wg ) =1 (&) oo = £ v )]
y{r) - 1 - L1 G yin, (6.410)
2
(w, + w, M(w, - w )+ (5 o, =& o )]
Pt Sj P Sj Pr Py Sj Sj

it is easy to see that for the case under consideration the sign function

sgn (Re ygr) + Im ygr)) results as

(r) (r)y - _ . . - i,
sgn(Re 37+ Im Y ) sgn{cbo(I,J)[(mpI wsj) (EprpI ssjmsj)]}

(6.411)

which after introducing the parameter aj defined by Eq. 6.408 becomes
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sgn(Re yér) + Im'ygr)) = -sanLo6(T55) iy = wg (1 = 55)]
]
= -sgn [%(I,j)(wpI - ug )] sgn(1 - 55). (6.412)
J

Maximum Modal Secondary Distortions. By virtue of Egs. 6.395 and

6.412, the product sgn(Re ygr) + Im ygr))lygr)l in Eq. 6.387 may be

expressed as

sgn (Re ygr) + Im ygr ))Iygr)l =

= sgn [@O(I,j)(wpI =g 11 sgn{1 - 65)[A (5) | |cos BJIIY§P)I. (6.413)
J

But since in the light of Eq. 6.394 and by considering that wp and wg
I J

are always positive one has that

= sonlog (L) = g MR = A,(3), (6.414)
J

after expressing cos ej in terms of 5j such a product may also be written

as

sgn{Re yér) + Im y§r)){y§r)( = sgn{1 - Gj) | (6.415)
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By substitution of this equation into Eq. 6.387, the vector of maximum

modal secondary distortions may be therefore expressed as

df
X }(r) = 2]y IlY(")l de(1) {— 1} +
5 rtt'T £
cC
;S (1 ) A9 tdg ) sD( ) ( )
+ sgn(l - §. ¢ w W oF 6.416
= T AR
J
or as
N .
df s R
(r) . { : (i)
(X 1 = AFfr {z— 3+ Y r. {dé} SD(w_ » £ ) (6.417)
s ¢ fee ™ 551 I Pr’ Py
where
de(1) >
r_ = 1+ 6 (6.418)
¢ a (J) J
[¢]
A (3) 1+ 53
rj = sgn {1 - 35.) 5 (6.419)
J A,(J) 1+ 5

where by virtue of Eq. 6.409

AO(J) VARE R

A.F.= —— T+ (6.020)
. 2 p s 2
2 2 I J 2 2
[0+ )y, - 651 + [+ =2 2y T 65}

P1

L™

=4
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and where the outer absolute value bars indicated in Eq. 6.387 have been

(r)

ignored because the sign of‘{XS} is of no importance,

Equation 6.417 in combination with Eqs. 6.418 through 6.420 represents
thus the desired simplified expression to calculate the maximum response
of a secondary system in the nonresonant modes of its associjated assembled
system whose complex natural frequencies are nearly equal to those of its

supporting primary system. Notice that since |y§r)| is only valid for the

range indicated by Eq. 6.398, Egs. 6.416 and 6.420 are also only valid if

2 2

wp -ws_

-—I—_é-——il 1+5? 3.
@ v J
P1

2, (1:3) [vy5 I : (6.421)

By the inspection of Eq. 6.417, oné may also note that the maximum response
of a secondary system in the nonresonant modes under consideration is not,
in general, proportional to its response when it is mounted directly on

the ground. Rather, it is given by the product of an amplification factor,
a distortion configuration, and a response spectrum ordinate, where the
distortion configuration is a Tinear combination of the most significant
modal distortions of the independent secondary system (the significance
measured by the ratios e and rj). In the cases, however, in which one of
the complex frequencies of the independent secondary system is comparative-
ly close to the complex frequency ApI while all others are well separated
from it (that is, when rs =1 and r; <<1.0 for j # J),{XS}(F) may be

J
approximated as
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{xs}(r) = AF. {d¢}(J) SD(mp (6.422)

» £ )
1 P
where {d¢}(J) is the.vector of modal distortions corresponding to the
close secondary frequency.

To demonstrate that Eq. 6.417 converges to the corresponding one

derived in Chapter 4 for systems with proportional damping, one may observe

*
that for an undamped system

E w - w
P, P S: S,
§.= 4L 17J g, (6.423)
J Wy g :
P1 j

and consequently by setting 6, = 0 in Egs. 6.418 through 6.420 one obtains

3
d
r =—q:(—ll : (6.424)
© AW
r., = AoU) (6.425)
A 0)

* Actually, Eq. 6.417 converges to the one for proportional damping
whenever the damping matrices of the independent primary and secondary
components of an assembled system 