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Abstract

A system of equations governing the nonaxially symu1etric motion of a

circular cylindrical shell embedded in an infinite elastic medium is devel-

oped in this paper taking into account the transverse shear and rotary

inertia. nle object here is to model the general motion of a long straight

buried pipeline due to seismic waves. Tne special case of the axially sym-

metric motion of a pipeline excited by a travelling longitudinal wave is

solved under the assumption that the inertia effects can be neglected.
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L o Introduction

Dynmaic response of lifelines excited by seismic waves is a subject of

considerable interest. Examples of lifelines are highways, bridges, tunnels,

pipelines, etc" Earlier studies (see the review article by Wang, et al. [1J)

have shown that buried pipelines have been severely damaged by earthquakes.

It has been found that d@nage to underground pipelines is caused by landslides,

liquefa~tion of soil, faulting and also due to shaking by traveling seismic

waves [2J.

Several investigators have recently studied the dyu&uic response of

buried pipelines to seismic excitation. References to these works can be found

in the review articles [3, 1J (see also [4J). Most of these works have treated

the pipeline as a continuOu3 or segmented beam.

The departure from the be~a model is in a recent work by Muleski, et al.

[SJ. The authors have investigated the axisy~~etric response of a cylindrical

shell on an elastic foundation. The motion of the shell was assumed to be

governed by FIUgge's equations (which neglects transverse shear and rotatqry

inertia effects) and the spring constants of the foundation were taken to be

known constants.

rhe full problem of the interactions between the shell and the surround

ing elastic medium has been considered recently by EI-Akily and Datta [6,7].

In these papers the plane strain problem of vibration of a shell embedded in

an elastic half-space excited by incident plane waves has been considered.

The shell equations were taken to be Flugge's. It has been found that the

interaction of the shell with the surrounding medium, which is significantly

influenced by the depth of the shell, plays an important role in the displace-

ment of the shell and stresses in it.
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In this connection mention should be made of the paper by Parmelee and

Ludtke [8], who considered the plane strain problem of a buried pipe in an

elastic semi-infinite medium. In this analysis the pipe is treated as rigid

and on an elastic foundation. The spring constant of the foundation was cal

culated from the ratio of the point force and the average static displacement

around the pipe-wall obtained from the static solution given by Mindlin. The

dynamic interaction problem of the shell and the elastic half-space was not

considered.

In the present paper we have examined this interaction problem for the

three dimensional motion of the shell. Our object here has been threefold:

(1) to develop the three dimensional equations of motion of the shell taking

into account the effects of transverse shear and rotatory inertia~ (2) to

formally solve these equations of motion coupl~d with those of the surrounding

medium, and finally (3), to use the low frequency approximate expression of

the traction force on the shell due to the surrounding medium for evaluating

the spring constants of the elastic £oundation approximating the infinite

surrounding medium. It is shown that these spring constants are dependent on

the wavelength of the exciting waves, the mean radius of the shell and the

material constants of the surrounding medium. In order to facilitate our

analysis we have considered the surrounding medium to be infinite in extent

and the interaction problem has been solved for the case ofaxisymmetry. In

a subsequent paper we will present the solution to the nonaxisymmetric problem

of motion of a shell in a semi-infinite elastic medium.
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2~ EsuatioTIs of ~ion of the Shell

In chis section the equations of motion of a shell element are developed

following the aGalysis of Mirsky and Herrmann [9J.

Consider an. infinite circular cylindrical shell of mean radius Rand

thickness h. Let x, 8, z be the coordinates measured in the axial, circum-

ferential and normal to the middle surface directions, respectively. We shall

also consider a cylindrical polar coordinate system r, e, x ·with r measuring

the distance from the axis of the shell. Thus

r = R -I- z , (1)

The components of the displacement of a point in the shell are denoted

which will be approximated by the following equations.

u (r,e,x,t)
x

u (:r,8,x~t)e

u (r,8,x,t)
2

= u (6, x, t)

= v (8, x, t)

w (8, x, t)

+ Z'Y (8 x t)x ' ,

(2)

Here t is the time and u, v, ware the displacement components of a point on

the middle surface, z = 0 • 'Y 'Y measure the angles of rotation of a normalx' 8

to the middle surface in the xz- and z8-planes, respectively.

The shell stress-resultants and displacements are then connected by the

approximate equations (see Eqnso (3» of [9J. There is a misprint in the equa-

tion for Nex .)'
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Eh
2

1 - 1)

I =:
Eh3

D =: -....;;;.;;;;;....-:::,-
2

12 (1 - 1) )

E is the Young is modulus> G the shear modulus and 1? the Poisson is ratio of

the shell, kx ' ke are the sb.ear correction factors and will be taken as TI
2

/12 ,

although for a shell vibrating in an elastic medima these may be somewhat di£-

ferent. The corrections, however, will not be signi.ficant for long wavelengths.

Substituting the stress-displacement relations (3) into the equations of

motion we obtain the displacement equations of motion of the shell as
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Here each p: is composed of two parts. One part is due to the forces
1.

exerted by the surrounding mediu~m on t~e shell. This part will be denoted

1*by p. ) which is given by
~

lic
(1 + h) ic 1* h 1*

PI == - 'f P T PI2R rx 2

1* h * 1* h 1 -Ic

P3 (1 + -) 'f P4 2 P3-2R r8

(1 + ..h..) 'T'
k

2R rr (5)

is the density of the sh~ll mat~rial) and 1" ~'c
rr are the components

of the traction force of the surrounding medium on the outer surface of the

shell) r == R + h12. These are to be obtained by solving the equations of

motion of the surrounding medium simultaneously with Eqns. (4) and satisfying

the appropriate displacement boundary conditions on the outer surface of the

shell. The other part of will be due to the externally applied forces.

2~'c
This part will be denoted by p"

1.

Assmning that the shell is perfectly bonded,with the surrounding mediunl

the displacement boundary conditions at r ::: R + h/2 are

, h
1-'

'"k
U .- == u

2 x x

.'.
W ::: U .- (6)r

. h t!.fV oj- - I2 8

h *w ere ~ is the displacem€~nt of a

to the shell) i.e.

POl."nt· of -;-<ne • . ,
~ surrOUnd1.ug meaium adjacent

(7)
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Outer Ivlediurn and Solutions

The surrounding medium will be assUIfled to be homogeneous·, isotropic and

linearly elastic with La..'1le constants A., f1 and density p • Then the dis-

placement ~ (r> e, x, t) of a point satisfies the equation of motion

where

2
T 77· u

,-..,...JsM<c.1 rv
(8)

'T /
1..(1 - 0'1

\ 1 - 20-

0' is the Poisson's ratio and c
2

is the shear wave speed.

Since the object of this paper is to study ~he dyna..'1lic response of the

shell to seismic waves originating from sources outside the shell the dis-

placement field outside the shell will be composed of t~JO parts, the ground

displacement field,

(s)
u •

( i)u ,in the absence of the shell and the scattered field,

(i) (s) -iwt
If u and u are assumed to have harmonic time dependence, e

then u(a) can be expressed in cylindrical coordinates as [10]

u (s) =
r

1
.L+
r

oR
x

08

/ s) 1 ""Qi oR oR
u" 0_

+ r x= ae -e r oX ar (9)

,fs)
u'

x = 0<:2 -:- 1
oX r (rR ) e

1
r 08
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._ , \ hie - iw t
ijj == :r 'i.r, x) e (10)

ine - iwt
- gl (r > x) e (11)

H
x

(12)

The functions f, g'l' and g3
are solutions of the equations

Here

(7
2

-
2

k 2) f ('72
2

'I 17'2
! ,.) 2

k 2)n + 11. , k "") ,ll"~ 1_ + 02: == ."" "2 -.- g == " - gl ==
1 2 3 2 2

r r r
(13)

7
2 0

2
1 0

2
-;- 0- -2 +--- -ior r or ox.

k == w/c2 2
k~ == k /'1

1 2

Further, assmnlng traveling wave solutions in the x-direction the £unc-

tions f, g3 and gl will have the forms

fer, x) == fer) e iSx , g3(r, x)
Fx== g (r) e ';,

3
(14)

where c (= wi'S) is the wave speed of the traveling disturbance in the x-direction.

The functions f, g and g" will be given by
1 .)

fer) = A H (Ciir)
n

g (r) == C H (j3r)
3 n

(15)

where H, (z) is the Hankel function of the first kind.n

The components of the scattered displacement

from (9). These are

can now be obtained
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L~A l..E... R (0:':1:') - erR +' (err) } - SB H +1 (Sr) +
1. r 11. 11. .L n

in C --. (Q )., is (x - ct) + inS
- J:i f-Jr J e
r 11.

(16)

n

(5) in -
Ue [-AH (0:':1:') + iSB H '1- «(3r) + c ts R " «(3r) -r n ni~ ni'-.l

H Cl3r)}] e iS (x - ct) + in8
r n

u(S) 0:: [i~AH (cn) _ iSBR (I3r)J eiS(x- ct) +in8
x ~ n n

(17)

(18

The components of displacement) and u.,(, of a point of the sur
x .

rounding medium adjacent to the shell outer surface will be obtained by putting

r == R + h/2 in (16) - (18) and adding to them the contributions from u (8) •

Substitution of these in equation (6) gives three equations for the determina-

tion of A~ B, C in terms of the components of displacement and rotation of

the middle surface of the shell and the amplitude of the ground displacement

field. Stresses at any point of the outer medium can now be determined. In

~f_ .{( . * /
Particular the traction components 'T '. T and 'r at r == R + h 2rr r8 . rx can

be expressed in terms of u, v, w ~ 1fx and 1f8 • Substituting these in Eqs. (4)

one obtains a set of five linear equations in these five unknown quantities,

which then can be determined for particular values of S, tal, n and particular

material mid geometrical parmneters of the shell and its surrounding medium.

In this paper attention will be focused on the case ofaxisy~~etry (n = O)Q

Further, the interest here is to obtain a set of simplified equations when
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1+. Axisym.metric Vib:catioE'

Eqs. (4) simplify considerably for aXisy~netric motions. In that case

motions in the axial plane and transverse to it are independent. In the

former case ue = 0 and u
r

and Ux are given by

The factor

(1. )
U "" U - ciA H1 (o!r) - is B fL (S r )r r .J.. 1

-iwt + if; xe has been suppressed in the above expressions.

(19)

(20)

For torsional oscillation, ur = U x = 0 and ue is given by

In the following we shall consider these two cases separately.

(21)

4a. Motion in the axial plwle. Using (20) and (21) in the first two equations

of (6) and solving for A and B we obtain

where

B=Bu +B1jf +Bw
10 2 x 3 0

is H (SRi,)
h S HO

(SR*)1
Al AZ

;; Al AF , =A 2
,

j A

Ci HI (Q'R*)
h

B - B = B1 A 2 2 1

is H (Q.!R*)o

(22)

(23)

(24)

w = w _ U (i)i,
a r (25)
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R*Here ;:; R i- h/2 •

The expressions for p: (i;:; 1,2, ••• ,5) are given by
~

. 2 2 ~.
:;:: f.L [-2iSQ' A H. (CiR~') + (s - ~ ) 13 H" (I3R")] X

l L

(1 +- h!2R) + 'T 1 (26)

*pZ
h
2

-'.0"
'" 1

(27)

.,.
p" :;::

3
(28)

Here 'T 1 and.

2iS~ { H
O

([3R""') - -l... H
1

CI3R*)} 13] (1 + Zh
R

) + T~ (29)
[3R* ~ 3

7
3

are due both to th~ externally applied forces and the

stresses arising from the displacement field ~ (i) •

Since p; :;:: P4*= 0 , :£* can be considered as a three dimensional vector

whose components will be labelled as

can be written as

p .•
~

Using (22), (23) in (26) - (29) Pi

P :;:: p .. U. + 'T"
i ~J J i

where

U, = Uo Uz = .¥ U :;:: wo1 X 3

'-11
'T

2
'T

12

(30)

P - 'i r - 2ii"'Q' A H (CiR*)Ii - i-" L '.;> I 1 1
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,..; l-r (~2_ (2) H'O C"JR'*") , ..~ r ok 1 •p~. _; - " 1. ,-.. - I-' - '-" .• T ,.cL (CiR ).i Ii,! -
oJ;" R'~ i J..

(31)

Substitution of the expressions for A. and B from (24) and (25) in
~ i

(31) gives

PZ2
z

(..h. )= 2 PI1

(32)

Fo~ the motion under consideration the third and fourth equations of (4)

are identically satisfied. The remaining three equations can be written,

using Eq. (30), as

? /. )
(A .. +W-Bij)U j = p.. U~1. _ 'T. (33 )1.J 1.J J 1.

where

U u , Uz '¥ U
3

w1 x

and

U(i) =
(i) U(i) = 0 UCi) (i)

1 U x :> 2 • 3 Ur
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The matrix elements A.. and E.. are
~J

ll'i
~..J

2
All ::: - ~ E + Pnp

A
Z1

D g2 +
h

A
I2

::: ::: - 2 PHR

E v
A

I3
::: - A31

-p- is +. P13R

2 k Z Gh h
A

22
::: - g D - + 2: P12x

A A - - k 2 GhiS + h p23 - 32 - x 2 I 13

1 2 k 2 GhS2A
33

:::

- R2 "E + D/R )- + P33\,. P x

Ell ::: Ps
h

B12
::: E21

::= Pc I/R
0

B22
::: Ps I

B23
::: B32

::: B31 B"3
::: 0

J.

B33
::: Ps

h

(34)

(35 )

Equations of free vibrations of the shell in vacua are obtained from (33)

by setting p .. ::: T. ::: o. This problem was discussed by Herrmann and Mirsky
~J ~

[ll], who obtained the frequencies of vibration as functions of S(>0). These

frequencies are real and correspond to the first three flexural modes. 'VJhen

the shell vibrations freely in an elastic medium the frequencies will no longer

be real for finite S and are obtained by solving the transcendental equation

I 2 I

IA + w BI :::; 0 (36)
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The solutions to Eqs Q (33) and (36) for finite i; and kZ will be discussed

in a later communication. This paper will be concerned with the case of

small k2R. Section 5 of this paper is devoted to this case.

4B. Torsional Oscillation. From (21) and the last equations of (6) it is

found that

C

where

(37)

v == v -o (38 )

The traction components 'f * may then be written asr6

(39)

Substitution of (39) in the third and fourth equations of (4) then gives

(C1.0 JO + WZ D.. ) V. ==
1.J J

(i)
s .. V. - 'f.

l.J J 1.

(i, j :::: 1, 2)

where
k 2 G

Cll - S2 Gh 6 (h + I/R
2

) -.'- s11=:

7
2

c:Z GI k G
+ r/R2) 1:1

C
l2

CZl + 8 (h=: =:
-I;) R +- sllR 2

2
ke

2
G (h I/R

2
)

2
C

22
::: - S GI ,e. + ( ~ ) s. _,

lJ.

P I
D
ll

::: Ps
h D12 == DZI ==

s
DZ2 P I==R s

(i)-;< h h'T
l == 'Tr8 (1 + 2R) 'Tz :::: 2" 1'1

(40)

(41)

(42)

(4.3)
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VI = v ; V '±'2 = e •
(i'*= u )e o

In section 5 Eq. (41) will be specialized for low frequency and long

wavelength"
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5. Low Fre9uency-Lon~ Wavelength Approximation

Since Eqs. (33) and (40) are rather complicated it would be advantageous

to make certain simplifications suggested by observations made by several

workers. These observations and their conclusions have been summarized in [12].

It has been observed that in. earthquakes that originated far from the site the

long period components were predominant in ground motions and the pipelines

move nearly with the ground and that the inertia effects do not play significant

roles in this case. The neglect of inertia in ground and pipe motion simplifies

the p .. and C•••
~J ~J

If it is assumed that SR» k
2

R» k
1

R then

approximated by

H (Q'R) ~ H (I3R) may ben . n

H (Q'R) ~. H (I3R) 1'::1 - 2i (-if K (SR)
n n n n

(44)

If a further assumption is made that Sh is very small then the shear deforma-

tion may be neglected. This implies that \V = _ Wi '±' = 5L _ 1
·x ~ 8 R R

ow
08 • Thus

there will be three unknowns. u. v and w. For axisymmetric motion, the equa-

tion for v is obtained from Eqs. (L,<) and (4)4 by. setting neglecting rotatory

inertia and eliminating '1'e It is found that v satisfies the equation

(4.5 )

On the other hand the equations of axisymmetric bending motion of the

shell are
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D
~3 ElJ" pI_3
uno S d+ (_ -- -- + -J;;.... -- + -- -~-)w

R ~x3 R OX R Cl,2..,
U ot: ox

D 0
3

l_ -- _
\. R 3

OX

E 1) :;"
-'l?..-_o

R ox
P I 3 t.

S 0 0:' 1 D
-'"--) U - (D - ' -=- (E + -) +R 2 4 T 2 2at ax ox R P R

_ ~2 -J+ op'k
CJ a *?

P h -- - P I 2. i) VI -{- Pi· + --= = 0
s ot2 S at ox J OX

(46)

If the forcing terms are set equal to zero then these equations reduce to those

due to FIUgge [13J.

Following the same procedure as in section 4 a set of equations for the

solutions of u and w can be obtained from Eqs. ([,,6). As an illustrative
.,

example let

(i)
u

x
(47)

These have been chosen to satisfy the equilibrium equations. Then the solu-

tions of (46) may be taken as

u = u sin S (x - ct), w = w cos S (x - et) (4.8)

The equations for the determination of u and ware, in the matrix form

where A and Bare 2 X 2 matrices

u P
a (49)

F

Ds4 -j

D/R
2

) ~ (US 2
T 1!

-+-
1.

(E + E 1)~
R

2 - Tll -:-p R '" 12"! e IA iJ ~

i ~ (Ds 2. + E v)- T12
E S2

'1"22
j

L R - Jp p

r -p h
! s

B = I
~l 0 (50)
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and U and P are 2 X 1 matrices

'I""

2jJJ~ 1 1' (SR)1fwl l- TJ.2 1 0 (SR)
+ T'll II (~R) -

U = P = I (51)

l~J + 'r12 II (~R) 2f,LS II (SR) J- T22 lO(sR) +

In deriving Eqs. (49) - (51) inertia effects and terms of O(h/R) in the

expressions for the traction forces acting on the shell have been neglected.

The elements T.. are given by
~J

~ [
(K

O
(sR»

2

1] T22
ZIJ,.

(K
1

(SR» 2

Tn = - ------
R c

2 n R c
2 n

2 2
(52)

= - 2f.J;S [ 1

where

Note that K (SR) is the modified Bessel function of the second kind.
n

The coefficients To. may be interpreted as spring constants of an effec
~J

tive spring replacing the surrounding medium. It may be appropriate to point

out here that a large number of papers has been published in which the problem

of a vibrating pipe in an elastic medium has been modelled as that of a pipe

restrained by springs, the stiffnesses of which have been taken to be constants

known a priori. However, as the preceding analysis has shown, these spring

constants depend on the wavelength and frequency, the elastic constants and

density of the surrounding medium and on the geometrical parameters of the

shell (in this case the radiu.s of the shell).

T. ,IS can be determined by considering the model problem of a shell of
l.J

the same geometrical parameters vibrating in a prescribed manner and measuring
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the resistive forces experienced by the shell. Once the T., I S are known as
~J

functions of frequency and wavelength they can be used in Eqs. (49) for the

determination of U.

The limiting values of T.. when the wavelength tends to infinity are
~J

T
11

(53)

It is seen that: for very long wavelengths T
12

and T
22

are negligible and

TIl becomes independent of the wavelength. Figure 1 shows the variation of

To. with SR for two different values of a •
~J

The matrix P given by Eq. (51) represents the total exciting force on

the pipe due to the ground movement in the axial direction. It shows that a

movement in the axial or radial direction generates both axial and radial

forces on the pipe.

Eqs. (49) have been solved for u/u and;;/u for different values ofo 0

M(= fj./G) and ~R. Two different values of a have been considered, viz.,

CJ = .25 and .4. 1) has been taken to be 0.3 and m(= h/R) has been taken

to be 0.05. Results have been plotted in Figures 2 - L". It is seen that for

a given Poisson is ratio o· both ~/uO and ;;lu
O

increase with increasing M.

It may be noted that the changes in I;lu
O

) and j"U:/u
O

J with (J is not very

- I -
pronounced. For small H both l~duO! and u/u

O
increase with increasing (J.

This is reversed as M increased. For large M the rate of increase of

,- I
I w/uOI and u/uO with t (= SR) accelerates as t increases. In fact, they

become exponentially large. However, for large t the inertial effects will

be important and would have to be taken into account. Note that for very

small t, u/u
O

""" 1 and W/uO ~ a . It is interesting to note that for small

M, u/uO decreases as t increases, the decrease being very sharp for very

small M. (see Fig. 4)



- 20 -

6. Conclusion

Formal solutions have been presented for the motion of a long cylindrical

pipe surrounded by an elastic isotropic homogeneous medium. Since these solu-

tions are rather complicated for arbitrary wavelengths and frequencies a par-

ticular simple case, that of quasi-static motion, has been examined in detail

for various axial wavelengths and soil properties. It is shown that the

deflection of (hence the state of stress in) the pipe depends critically on the

two parameters, (1) the radius to wavelength ratio: R
T =

sR .
2n '

(2) the rigidity

ratio of the soil and the pipe: M:;: ~/G; and to a lesser extent on the Poisson i s

ratio of the soil. It would appear that these parameters would play even more

important roles if dynamic (inertia) effects are included. A treatment of the

dynamic problem will be published later. In the quasi-static case it has been

found that large radial deflections may be caused by axial ground motion only

if M and SR are large. Now for a typical case of steel pipe in rocky material

M is about 0.3 •
-4For a steel pipe in sandy silt M is about 7 X 10 • It is

seen from the numerical results presented that in the former case large radial

deflections may occur as the wavelength decreases whereas, in the second situa-

tion radial deflections will not be appreciable.
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