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A system of equations governing the nonaxially symmetric motion of a
circular cylindrical shell embedded in an infinite elastic medium is devel-
oped in this paper taking into account the transverse shear and rotary
inertia. The object here is to model the general motion of a long straight
buried pipeline due to seismic waves, The special case of the axially sy~
metric motion of a pipeline excited by a travelling longitudinzl wave is

solved under the assumption that the inertia effects can be neglected.
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Dynamic response of lifelines excited by seismic waves is a subject of
considerabie intervest. Fxamples of lifelines are highways, bridges, tunnels,

pipelines, etc, EHarlier studies {(see the review article by Wang, et al. [1])
have shown that buried pipelines have been scverely damaged by earthguakes.

It has been found that damage to underground pipelines is caused by landslides,

soil, faulting and alsgo due to sheking by traveling seismic

Severel investigators have recently studied the dynamic response of
buried pipelines to seismic excitation. References to these works can be found
ia the review articles [3, 1] {see also [4]). Most of these works have treated
the pipeline as a continuous or segmented beam.

The departure from the beamlmodel is in a recent work by Muleski, et al,
{5i. The authors have imvestigated the axisymmetric response of a‘cylindrical
shell on an elastic foundation. The motion of the shell was assumed to be
zoverned by Fligge's equations {which neglects transverse shear and roitatory
inertia effects) and the spring constants of the foundation were taken to be
known constants.

The full problem of the interactions between the shell and the surround-

3

ing elastic medium has been considered recently by El-&kily and Datra {6, 7].
in these papers the‘piane strain problem of vibration of a shell embedded in
an elastic half-space excited by incident planc waves has been cousidered.
The shell eguations were taken te be Filigge's. It has been found that the
interaction of the shell with the surrounding medium, which is significantly
influenced by the depth of the shell, plays an important vole in the displace-

ment of the shell and stresses in it
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I, this connection mention should be made of the paper by Parmelee and
tudtke [8], who considered the ﬁlaﬁe strain problem of a buried pipe in an
elastic semi-infinite medium, In this analysis the pipe is treated as rigid
and onm an elastic foundation., The spring constant of the foundation was cal-
culated from the ratio of the point force and the average static displacement
around the pipe~-wall obtained from the static solution given by Mindiin., The
dynamic interaction problem of the shell and the elastic half~space was not
considered.

'In the present paper we have examined this interaction problem for the
three dimensional motion of the shell, Our object here has been threefold:
(1) wo develop the three dimensional equations of motion of the shell taking
into account the effects of transverse shear and rotatory imertia, (2) to
formally soclve these equations of motion coupled with those of the surrounding
medium, and finally (3), ©o use the low frequency approximate expression of
the traction force on the shell due to the surrounding medium for evaluating
the spring constants of the elastic foundation approximating the infinite
surrounding medium, It is shown thaﬁ these spring consténts are dependent on
the wavelength of {he exciting waves, Che mean radius of the shell and the
material constants of the surrounding medium. In order to facilitate our
analysis we have congidered the survounding medium to be infinite in extent
and the interaction problem has been solved for the case of axisymmetry. In
a subsequent paper we will present the sclution to the nonaxisymmetric problem

of motion of a shell in a semi-infinite elastic medium,
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Z, Peguatioos of Moution of the Shell

In this seciion the egquatiocns of motion of & shell clement are developed
following the azalysis of Mirsky and Herrmann [9].

Censider an infinite circular cylindrical shell of mean radius R and
thickness h. Let x,86, z be the coordinates measured in the axial, circum~
ferential and wormal to the middie surface directilons, respectively. We shall

also consider a cylindrical polar coordinate system ¥,9, x with r measuring

wn

the distance from the axis of the shell. Thu

r = R+z, -r--%<z<—§~ (1)

The components of the displacement oI a point in the shell are denocted

by Uy Vg U which wiil be approximated by the following equations.
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Here ¢ is the fime and u, v, w are the digplacement components of a point on
the middle serface, z = 0., VYV , ‘ife measure the angles of rotation of a normal
to the middle surface in the xz- and z0-planes, respectively.

The shell stress-resultants and displacements are then connected by the

approximate eguations (see Zgns. (3)) of [9]. There is & misprint in the equa=-
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¥ is the Young's modulus, G the shear modulus and y the Poisson's ratio of
the shell, kx R éce are the shear correction factors and will be taken as 1w /12,
although for a2 shell vibrating io an elastic medium these may be somewhat dif-
ferent. The corrections, however, will not be significant for long wavelengths,
Substituting the stress~displacement relations (3) into the equations of

motion we obtain the displacement equations of motion of the shell as
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Here each '53,* is composed of two paris. One part is due to the forces
i
exerted by the surrounding medium on the shell. This part will be denoted

1%

by P s which is given by

1% by« I _ B 1k
R GO PR 7 Py
1% . £ % 1% _ ..?3... 1%
Py = AF iy s By z P3
1% b % .
Ps = @+ ZR)Trr (3)

PS is the density of the shell material, T;; ) T;é and T:; are the compoanents
A

of the traction force of the surrcunding medium on the outer surface of the
shell, ¥ = R + h/2. These are to be obtained by solvimg the equations of
motion of the surrounding medium simultaneocusly with Egns. (&) and satisfving
the appropriate displacement boundary conditions on the cuter surface of the
shell., The other part of ;9? will be due to the extermally applied forces.
Al
. ) 2%

This part will be denoted by P, -

Assuming that the shell is perfectly bonded with the survounding medium

the displacement boundary conditions at r = R + h/2 are

%
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where u¥® ;4 o e ‘ - . ,
27 is the displacement of a point of the survounding medium adjacent

to the shell, i.e,

ke )
ET"E(RT?pe,X,t) (7)
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The surrcunding medium will be assumed to be homogeneous, isotrepic and

linearly elastic with Lamé constants A, u and demsity p . Then the dis-

placement u {r, 9, %, t) of a point saiisfies the equatiocn of motion

2
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s ratio and ¢, is the shear wave speed.

Since the object of this paper is to study the dynamic response of the

shell to seismic waves originating f{rom scurces ocutside the shell the dis-

placement field outside the shell will be composed of two paris, the ground

. .. i : . . - - P .
displacement field, u( ), in the abgence of the shell and the scattered field,
s
NON
i ’ s . , . -iwt
If u< ) and u( ) are assumed to have harmonic time dependence, e w 5
g . ; . . e e
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in the w-direction the func-
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Further, assuming traveling wave solutic

tions £, g3 and 81 will have the forms
- i€fx N i€x - i€x
Ex, x) = f{¥)e s 8T, ®) =g (X)e™T g {r, x) = ogal)e

(14)
where c(= w/E) is the wave speed of the traveling disturbance in the xz-directiom,

The functions f».gl and g3 will be given by

o = JG;?~ g2

Ex) = AH (o)

P 3 B sz L2 .
glkr) - bﬂn"‘“l (Br ] B A 5 -5 (}-5)
83 (r> = L AZR KBr)
where Hﬁ(z) is the Hankel function of the first kind.
(s can now be obtained

The components of the scattered displacement u' ’,

from {9}. These are
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5. 5 R * i N 3 Ed
The components of displacement, u, » Y and w

, of a point of the sur-
rounding medium adjace‘n'i: to the sheli outer surface will be cobtained by putting
r =R + /2 in {i6) - (18) and adding to them the contributions from E(S) .
Substitution of these in equation (6) gives three equations for the determina-
tion ©f 4,3, C in terms of the components of displacement and rotation of
the middle surface of the shell and the amplitude of the ground displacement
field, Stresses at any point of the outer medium can now be determined. 1In

*

s - . . 2 . - Tooa e R
particular the traction components 1 s T and T

at r =R + h/2 can
Y r rX

be expressed in terms of u,vgwa,wX; and We . Substituting these in Egs. (&)
one obtains a set of five linear eguatiouns in these five unknown quantities,
which then can be determined for particular values of E,w, n and particular
material and geometrical parameters of the shell and its surrounding medium.

in thig paper attention wili be Ifocused on the éase of axisymmetry (n = (),
Further, the interest here is to obtain a set of simpiified equations when

k1R and RZR are very small.
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L, pxisvemetric Vibration

Egs. (&) simplify considerably for axisymmetric motions. In that case
motions iu the axial plane and transverse to if are indepeadent. In the

former case Uy = 0 and u and u  are given by

@)

w, = w7 - @A H, {ar) - iEB Hy {B1) (19)
u o= u(i) + iEAH {ar) + BBH,. (Br) (20)
X X b 4]

«ipt +18x

The factor e has been supvpressed in the above expressiouns.

For torsional oscillation, u_ = u, = 0 and Uy is given by

&~

?e(i) + i@c&l Br) (421}

(¥4
8
In the following we shall consider these twe cases separately.

“a., Motion in the axial plane. Using (20) and {(21) in the first two equations

of (6) and solving for A and B we obtain

A = Ay uy + AZ‘FX + A3 Yy {22)
B =By ug+B,Y  + By W (23)
where
| i€H, (BRY) o BH, (BR*)
Ay T TTETT s A T AL Ay S (24)
Bmozﬁl(aR; 'Bz-h~B
1 A ? 2 2 1
i€ 4. (@R™)
B, = 9
3 A
A =ot 2, sy kel den oo L
=- {8 4y @R H, BR") B Hy @RT) H, (BRT)]
_ (i) N (1)*
Uy u - oug 5 WO = W - u {(25)
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Here & = R + b/2.

The expressions for p: (i=1,2, ...,5) are given by

- . by 2 2. . %o
p; = w{-2iE0 AN, @R™) + (& -B) BH;(BRT)] X
(L +h/2R) + 7, (26)
pf o= o pX 275
Py’ = p, = O , (28)
*oa oy 2 2 Ty _2_3 5 e '
PS = #‘[{(g - B ) HO (QR ) t R“}; hl RO-/R )1 A ~
o - *\ - 1 ] -, __E_ 5 )
218 {HO (BR™) - Hl(BR 3Bl (1 + ) T I (29)

Here T1 and ’[‘3 are due both to the externally applied forces and the

(L)

stresses avising from the displacement field u .
s b3 o X . - , N .
Since pg = pz:‘ =0 , p* can be considered as a three dimensional vector

whose componentcs will be labelled as P, - Using (22}, (23) in {(26) - (29) Py

can be written as

P, = P, U, 7 T, (30)

where
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o
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rof;
i
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ol

Pa; = T3 Pyy
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Substitution of the expressions for A, and B, from {24) and {25) in

(31) gives

L@+t on, @B ERDIL -0

Pip 7 2R
Y = = B
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n 2
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(32)

For the motion under consideration the third and fourth equations of (4)

are identically satisfied. The remaining three equations can be written,

using Eq. (30), as

2 .. (1)

A, + . . = p,,U; -

{ TRl Blj) UJ P 5 JJ T, (33)
where

Ul = u , Uz = 'Ly’x 5 U3 = W
and

(iy _ () (i) L _ &)

Ul = s Uz o, U3 = Uy



The matirix slements Aij and Bij are
Ail = -ngp + Py
By = by 7 ”%§2+ "%“ P1y
E v
Biy = -y = g iR ey,
By, = =E°D-k’ch+ o,
Agg = “hgy = -k Chif +5 By
A33 = ""15:'2" (Ep + D/Rz)“ kxz Gh§2 -+ Pyg (34)
Biy = egh
Big T By = 8 /R
Byp = Pl
Byy = Byp = By = By =0
B3»3 N p-sh (33)

Equations of free vibrationms of the shell in vacua are obtained Irom (33)

by settiag pij =Ty 7 0. This problem was discussed by Herrmann and Mirsky
[11], who obtained the frequencies of vibration as functions of §(0). These
frequencies are real and correspond to the first three flexural modes. When

the shell vibrations freely in an elastic medium the frequencies will no longer

be real for finite £ and are obtained by soclving the transcendental eguation

|A +m2‘5‘| = 0 (36)



The solutions to Egs. (33) and {(36) for finite § and kz will be discussed
in a later communication. This paper will be concerned with the case of

small kZR. Section 5 of this paper is devoted to this case.

4B, Torsionalbscillatione From {21) and the last equations of (6) it is

found that
0 + CZ‘e {37

where -

I E S L
Vg v - Uy {38)
The traction components Tre* may then be written as
1 Fo= -apgum, GRS + 1G0T (39
r{ 2 rh

Substitution of (39) in the third and fourth equations of (&) then gives

€.. +w’d, v, = s vy 4
ij i’

i3 3 i
(i,3 = 1, 2) (40
where 2
o ks G 2
Cll = 87 ¢h - —;—2— (h + I/% Yy + Sll
2
K. G <
.2 6T 2 n
- - _C. —— + 1 i 5"
c., Cyy §° = (b + I/R7) + -5 8.,
.2
22 .20 . &
Chp = =8 GI =k G+ IR + (5) s, (41)
. pSI
Py T PR s Dyp =Dy = Dy = I (42)
B {i)y* ; .EL _n
Tl Tre {1 -+ 7R ) T, = 3 11 {43)
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tHevre,

L @ _ @%@y _
V.- =V Vz Ye ) \71 ue » V2 O
h

s 2R

1= - iBEC)H, (BR*) (1 +

in section 5 Bg. (41) will be specialized for low frequency and long

wavelength.



5. Low Preguency-long Wavelength Apwroximation

Since Egs. (33) and (40) are rather complicated it would be advantageous
to make certain simplificatibnstsuggested by observations made by sevéral
workers. These observations and their conclusions have been summarized in [12].
It hae been ohserved that in earthquakes that originated far from the site the
long period components were predominant in ground motions and the pipelines
move nearly with the.ground and that the inertia effects do not play significant
roles in this case. The neglect of inertia in ground and pipe motion simplifies
the p,. and C.,.

ij i

N

if it is assumed that ER >> k2R>> k., R then Hn {aR) , Hn {BR) may be

1
approximated by

. ‘ 21 -
H (@R) & H_(BR) ~ - =5 (-1 K (ER) (4%)

If a further sssumptiocn is made that &h is very small then the shear deforma-
tion may be neglected. This implies that Vv = = w! B e T

ay gle nlie < W ‘i’e R R 30 Thus
there will be three unknowns, u,v and w . ¥For asxisymmetric motion, the egua~

tion for v is cobtained from Egs. (4) and (4), by setting neglecting rotatory
&

inértia and eliminating Ye . It is found that v satisfies the equation

BZV Bzv %
Gh =3 - P b =5 = -y (43)
% dt

On the other hand the equations of axisymmetric bending motion of the

shell are
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52 4 . op
ph—5=-pl—p—g5)wtp +3==0
g a‘_Z 2] 5&:28}{ > dx
{46

1f the forcing terms are set egual to zero them these eguatlons reduce to those

solutions of u and w can be obtained from Fgs. (46). As an illustrative
A

example let .

uf‘) = uy IO (Ex) sinE(x~ct) , uéi) = . Uy 3‘21 Ex)cos g (x=-ct)

(47)
These have been chosen to satisfy the equilibrium equations. Then the solu-
tions of (46) may be taken as
U o= G sinf (x-ct) , w = ”ﬁcosg {xeci) {48)

The eguations for the determination of u and  are, in the matrix form

@A +umyu = u P (49)

where A and B are 2 X 2 matrices

ro.4 . 1 2y o Lo el . ¥
? BT (B, + D/RT) = Ty g (5 FEV) - Tiod
o |
A = E
: g 2 2 5
L @ESvE vy - T, -7 i
L R 5 FE T, ES = g 4

o0 =3

IQSL‘I 0 ﬁ

B =

é

:

Lo -p h

E.. ps .ﬁ _ (3G)
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and U and P are 2 X 1 matrices

S

1 STy, T,GR) + T T GR) - BT @R)l
v= F i (51)
Ej - Typ I,(GR) + T , I, (BR) + € T, (R) j

i

In deriving Xgs. (49) - (51) inertia effects and terms of O(Nm/R) in the
expressions for the traction forces acting on the shell have been neglected.

The elements Tij are given by

2 s 2
L w ®mED g wE)
11 R CéZD 22 R C;ZD

(52)
K (ER) K (5R)

T12=—2p,§[1+ ZD

ER 'Cz

where
_ 1 ] 2 - ) 2 . Loy ¢ . )
G0 =305 [ (K, ER)) (K, ERY) 4(L-0) thiR)Kl(iR)/gR]

Note that KH(ER) is the modified Bessel function of the second kind.

The coefficients Tij may be interpreted as spring constants of an effec-
tive spring replacing the survounding medium. 1t may be appropriate to point
out here that a large number of papers has beea published in which the problem
of a vibrating pipe in an elastic medium has been modelled as that of a pipe
restrained by springs, the stiffnesses of which have been taken to be constants
known a priori. However, as the preceding analysis has shown, these spring
constants depend on the wavelength and frequency, the elastic constants and
density of the surrouading medium and on the geometrical parameters of the
shell (in this case the radius of the shell).

Tij’s can be determined by considering the model problem of a shell of

the same geometrical parameters vibrating in a prescribed manner and measuring



the resistive forces experienced by the ghell. OCuce the T %"s are known as

ij
functions of freguency and wavelength they can be used in Egs. (49) for the
determination of U,

The limiting values of T.., when the wavelengih tends to infinity are

1]
e : :.L_. T = vd ® M 53)
= - i = = U T,, = oo
11 R 12 e 22 7 REaER (
It is seen that for very iong wavelengths T agg T are negligible and

Ti2 22

'1‘11 becomes independent of the wavelength. Figure 1 shows the variation of
Tij with ER for two different values of ¢ .

The matrix P given by Eg. (51) represents the total exciting force on
the pipe due to the ground movement in the axial directiom. It shows that a
movement in the axial or radial direction generates both axial and radial
forces on the pipe.

kR

Egs. {49) have been solved fox I{/u and w?/uo for different values of

O
M{= u/G) and €R. Two different values of ¢ have been considered, viz.,

= .25 and .4 . v has been taken to be 0.3 and wm{= h/R) has been taken
to be 0.05. Results have been plotted in Figures 2 -4, It is seen that for

a given Poisson's ratio o both u/uO and W/u. increase with increasing M.

0
It may be noted that the changes in }a/uol and ]E;’ueé with ¢ is not very
pronounced. For small M both ]E‘/uof and E/uo increase with increasing o .
This is reversed as M increased. For large M the rate of increase of
fxr;/uol anc Eiu@ with {4 (= §R) accelerates as 4 increases., In fact, they
become exponentially large. However, for large {4 the inertial effects will
be important and would have to be taken into account. Note that for very
small 4, E,’uo &~ 1 and ;F/GO ~ 0. It is interesting to note that for small
M, EIIUO decreases as 4 increases, the decrease being very sharp for very

small M. (see Fig. &)
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6, Conclusion

Formal solutions have been presented for the motion of a long cylindrical
pipe surrounded by an elastic isotropic homogeneous medium. Since these solu-
tions are rather camplicated for arbitrary wavelengths and frequencies a par-
ticular simple case, that of quasi-static wmotion, has been examined in detail
for various axial wavelengths and soil properties. It is shown that the
deflection of (hence the state of stress in) the pipe depends criticaily on the
two parameters, (1) the radius to wavelength ratio: %%‘-= %% 3 (2} the rigidicy
ratio of the soil and the pipe: M = W/G; and to a lesser extent om the Poisson's
ratio of the soil. It would appear that these parameters would play even more
important roles if dynamic {inertia) effects arve included. A treatment of the
dynamic problem will be published later. In the quasi-static case it has been
found that large radial deflections may be caused by axial ground motion only
if M and &R are large. Now for a typical case of steel pipe in rocky material
M is about 0.3. For a stecl pipe in sandy silt M is about 7 X 1074, It is
seen from the numerical results presented that in the former case large radial

deflections may occur as the wavelength decreases whereas, in the second situa-

tion radial deflections will not be appreciable.
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