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FOREWORD

Realizing the importance of the undrained cyclic shear strength
of soils, particularly marine clays, this report sets out to analyzg
and hopefully improve the use and the interpretatiom of results of the
Norwegian Geotechnical Imstitute direct simple shear device modified
for eyclic loading. Specifically, the text quantifies the effects of
variations in sample size. Part 1 of this text summarizes the need
for this information and covers stress conditions necessary for the
interpretation of results.

Equipment used in this investigation is discussed in Part 2, while
testing procedures and soil characteristics are discussed in Part 3.
Part 4 discusses and analyzes the test results with respect to variation
in Sampie size and soils. Part 5 completes the body of this text by
drawing conclusions from the results and summarizing.

Appendix A is a collection of additional data not analyzed in the
body of the report.

Details of testing procedures are presented in Appendix B through
D, so further investigation can utilize experiences obtained during this
research. Sample preparation is discussed in Appendii B, instructions
for cyclic and static shearing procedures with the Norwegian Ceotechnical
Institute direct simple shear device are given in Appendix C, and
Appendix D covers the calibration of strain gauged equipped reinforced

membranes used to measure lateral strains.
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ABSTRACT

The contents of this report include a comparison of direct
simple shear test results for variations in sample size and for two
different soils. Soils tested were undisturbed samples of Gulf of
Alaska and Gulf of Mexico clays. Testing was performed on the Nor-
wegilan Geotechnical Institute Direct Simple Shear Device and included
both static and cyclic loading applications. The emphasis was on
cyclic loading results.

The parameters varied were sample cross section and sample height.
Two cross-sectional sizes and three heights are compared.

Test data included lateral strain measurements from which horizontal
normal stresses and subsequently Ko values were calculated. These cal-
culations and results are discussed as affected by sample size, with
special attention to KO values.

The main conclusions from this investigation were: fKO iz affected
by changes in height; the smaller cross~sectional sample size produces:
higher static and cyclic shear strain resistance, but a much‘gréater
degree of scatter; and sample height had little obvious and consistent
effects on cyelic shear results.

Appended are detailed step by step imstructions on the use of the
Norwegian Geotechnical Institute direct simple shear device in both
static and cyclie functions; the use of the Norwegian Geotechnical Insti-
tute sample trimming apparatus; and methods for calibrating the Norwegian
Geotechnical Institute calibrated reinforced membranes using calibration

cylinders.
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PART I

INTRODUCTIION

A. Background

In recent years, the importance of soil strength characteristics
under cyclic loading has become recognized and accepted. Increasingly,
designers have sought to incorporate these characteristics in their
analyses. A recent notable example is the controversy concerning the
possible shutdown of the Indian Point Nuclear Power Plant in southern
New York#* (1) .

Actually, cyclic loadings are quite common, effecting all geographical
areas. These loads can take the form of wind and wave action, traffic
activity, blasting, pile driving, machinery vibrations, and of course,
earthquakes.

The failure of soil resulting from cyclic loading is a common des-
tructive mechanism. Earthquake damage to every conceivable structure,
including pipelines, buildings, and dams, have at times been attributed
to soil failures. For many structures, such as pipelines, the effects of
dynamic soil strains cause more failures than any other single force (22).
Besides the relative frequent cccurrence of soil failure when exposed to
cyclic loading, the results of such failures can also be catastrophic as

‘well. Failure of earth gravity structures, such as dams, embankments and

retaining walls, have resulted in losses of both life and property far

#*The Indian Point Power Plant reactors are situated within 1 km of a major
branch of the Ramapo fault system, a branch previously thought inactive.
More people (21 milliom) live within 80 km of this nuclear power plant than
any other in the U.S.



exceeding acceptable limits.

With petroleum interest in offshore areas heightening, knowledge
of soil strength characteristics is essential. 0il drilling platform
structures are particularly susceptible to soil failure from cyclic
loadings, both because of the physical characteristics of the platforms,
and because of the sensitive soil often found beneath the platform
(2,7,14,18,24).

Often failures occur becauses of rapid increases in stress from
seismic accelerations by loss of soil strength and increased pore pres-
sures. An extreme form of this type of failure, where the soil essen-
tially loses all of its strength, is called "liquefaction" (20). Much
of the research designed te study this mode of soil strength deteriora-
tion has been limited to cohesionless soils. There has been much less
accomplished in the way of studying clays and otﬁer fine grained soils
for these conditions (24).

Increaéingly, direct simple sheér devices are being utilized to
study fine grained scil characteristics, particularly under cyelic load-
ing conditions. This report concentrates on the more effective use of
the Norwegian Geotechnical Institute (NGI) direct simple shear device.
The NGI device is an accepted and appropriately sophisticated apparatus
for the measurement of cyclic strength characteristics of fine grained
cohesive soils.

Recently, an investigation was completed by Zimmie and Floéss (24)

using the NGI direct simple shear apparatus and associated sémple trimming



equipment, on Gulf of Alaska and Concord Blue Clays. One problem
encountered was the inability to obtain exact or consistent sample

heights. In all, nine Gulf of Alaska samples were tested with heights
ranging from 1.40 cm to 1.91 cm and a mean, variance and standard devia-
tion of 1.69 cm, 0.0142 cm and 0.1193 cm, respectively. Twenty-one
Concord Blue samples were tested with heights ranging from 1.42 to 2.05 cm,
and a mean, variance, and standard deviation of 1.73 cm, 0.0371 cm,

and 0.1927 cm, respectively. The recommended height was 1.5 em (8). The
purpose of this research was to investigate the effects of variationms.

Specifically, this research was directed to the study of soil
sample size and the refinement of sample preparation and cyclic test-
ing procedures. An analysis of the former is contained within the body of
this report while the latter two are appended. io a lesser degree, strength
characteristics of undisturbed clay samples of the Gulf of Alaska and the
Gulf of Mexico were studied and compared.

The NGI direct simple shear device, modified for cyclic loading capa-
bilities, has been used by a number of researchers for cyclic loading
studies (24). Overall it is an excellent device, although it does have
some limitations (23). This device, with modifications, allows for repe-
titive loadings in alternate directions in an attempt to more closely -

simulate in situ cyclic loading conditions, such as for earthquakes.

B. Stress Conditions

The NGI direct simple shear device subjects a cylindrical sample

of soil to a shearing displacement of the top of the sample relative to



the bottom, Normal compressive stresses can be applied parallel to the
sample vertical axis, and a reinforced rubber membrane restrains the
lateral expansion of the soil., Such a pattern of loading involves dis-
tributions of stress that are not symmetrical about the axis of the
cylinder (13,16). The lack of complementary shear stresses on the ver-
tical sides of the sample, coupled with the relatively small sample size,
complicates stress and strain assumptions, since in a small sample no
element will be far from the boundary conditions (24).

Figure 1 shows the stress conditions imposed on a soil element in
the field, and on the boundaries of the NGI direct simple shear sample
(24). The lack of complementary vertical shear stresses are illustrated.
Although not ideal, it has been concluded (13,16,21) that the distribu-
tion of stresses on the NGI sample is better than in coenventional direct
shear devices. Lucks et al (13) found, for NGI direct simple shear
samples, that approximately 70 percent of the sample (the center 70 per-—
cent) exhibits fairly uniform stress conditions, while stress concentra-
tions at the edges were quite local. Roscoe (17}, in his analysis of
a Cambridge simple shear sample, found that though the magnitude of shear
stress 1s zerc at the outer edges, the shear stress increases rapidly with
distance from the outside boundaries and is quite uniform in the middle
third of the upper and lower boundaries of the sample for small strains.
For larger strains these assumptions were felt to be reasonable.

Considering the above, this study of sample size was initiated to

investigate the effects of nonuniform stress distributions on experimental
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results that assume a uniform stress.

Consolidated constant volume (CCV) static and cyclic tests were
performed. Samples were tested after application of stress histories
resulting in normally consolidated specimens.

Three stresses were measured during testing. The vertical normal
stress and the horizontal shearing stress wers directly monitored.
Horizontal normal stresses were computed from lateral strains measured
by strain gauge equipped reinforced membranes. Changes in normal verti-
cal stress, necessary to maintain a constant volume during testing, were
equated to the changes in excess hydrostatic pore pressures which would
have cccurred in undrained testings.

Since the reinforced rubber membranes maintain the sample at essenti-
ally a constant cross—sectional area, constant volume tests were conducted
by adjusting the normal verticél load to keep the sample height constant.

The following assumptions were necessary for tHe interpretation of
test results (24):

-~ Undrained conditions were simulated in the NGI direct simple
shear device by maintaining a constant sample volume.

—— Measured changes in vertical normal stress were equal to
pore pressures which would have been generated in an undrain-
ed test.

-— All measured normal stresses were effective stresses.

-— Stresses acting on an infinitesimal element at the center
0of the sample were uniform and complementary.

-~ Vertical shearing stresses were equal to the horizontal

shearing stresses.



Figure 2 illustrates the measured stresses acting on the NGI
direct simple shear sample and the assumed stresses acting on an
infinitesimal element at the cemter of the sample (24).

As explained in an earlier report by Zimmie and Floess (24),
by utilizing the three measured stresses, a Mohr's circle of stress
can be drawn for the soil element at any stage during the test as shown
in Figute 3. The variables indicated in the figure can be determined
from the geometry of the Mohr's circle along with the known values of
the vertical effective normal stresses E;, the horizontal effective

normal stress o,, and the horizontal shear stress T.,as follows:

h’ I'¢
_ O’V+O'h O'l+0'3
p= =

2 2

(5 -3.)° 1/2 5, -3

v h 2 1 3
q = ( 4= "[h) =
4 2

where E-and q define the uppermost point of the Mohr's circle or the
effective stress point. The major and minor effective principal stress-

es are o, and o..
1 3

o = sint (%)

P

where ¢m is the mobilized friction angle of the soil,
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where Gp is the angle between the horizontal plane and the plane on

which the major principal stress acts,
B =45 -8
q P

where Gq is the angle between the horizontal plane and the plane on

which the maximum shear stress acts,

where Bf is the angle between the horizontal plane and the plane

of maximum obliquity, and

qu
]
e

i
fim

Note that the above equations are valid for no cohesion, i.e., ¢ = 0.
All tests performed during this study were analyzed on the basis
of the assumptions and equations presented here. Actual test results

are presented in Part 4.



PART 2

EQUIPMENT

The quwegian Ceotechnical Institute (NGI) direct simple shear
apparatus, model number 4, modified for cyclic loading capabilities,
was used for this investigation. The device was develeped by NGIL and
manufactured by Geonor. Detailed discussions of this apparatus and
associated equipment are available (8,24). This report will attempt
to summarize the above, deviating where appropriate for the portrayal
of this investigation. Moreover, fully detailed laboratory procedures
are appended. -

The basic principle of this device is to apply a shearing force
to a cylindrical soil sample, confined in the radial directiom by a
wire reinforced rubber membrane; so as to cause a shearing displacement
of the top of the sample relative to the bottom. The reinforcement of
the membrane allows for a constant cross—-sectional area during consoli-
dation and shearing. As shearing occurs the upper and lower ends of
the sample are maintained parallel to each other.

Consolidation is performed by applying a vertical normal stress to
the sample while allowing drainage. During shearing,a constant volume
is maintained by wvarying the vertical normai stress, thus simulating un-
drained shear cenditioms.

A. Shear Apparatus

The NGIL direct simple shear device consists of the sample assembly,

the vertical loading unit, and the horizontal loading unit. Figure 4

11
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shows the sample assembly, Figure 5 presents the shearing apparatus with-
out cyclic loading modifications, and Figure 6 shows it with cyclic load-
ing capabilities.

The sample assembly consists of the pedestal, upper cap, iower cap,
wire reinforced rubber membrane, and O-rings. At this point sample height
and cross section are defined since they were the sample size variables
studied in this investigation. The height and diameter are shown in
Figure 4, where the cross section is the circular area. The sample assembly
unit is available in either the standard 50 cm2 sample cross section or
17.81 cmz cross section (1.875 inch diameter). These two sample sizes
constituted the variation of cross—sectional area. The sample heights for
this study were varied from 10 to 25 millimeters (a height of lSvmillimeters
is recommended).

The upper and lower caps have recesses for porous stones, and were
equipped with drainage tubes which were connected to an external water source.,
The O-rings provided a water tight seal between the wire reinforced rubber
membrane and the caps.

The vertical loading unit consists of the base, the tower, the 10:1
lever arm, the proving ring load gauge, the piston, the sliding shear
box, the vertical dial gauge, and the adjusting mechanism. A counter-
weight balances the weight of the lever arm, the proving ring load gauge,
the pistom, the sliding shear box, and the top cap.

The horizontal loading unit for static strain controlled testing

includes the electric motor and gear box, the proving ring load gauge,



4
6
N | 2l |
3 ] ’&4_______._——"""7
\-. JL \.
-—ESY\V‘;\\\\\\\\\\ °
- A
2 ‘—"6
-
1
/9
Pedestal 6. Drainage Tube
Lower Cap 7. Porous Stone
Sample 8. Reinforced Rubber
. Membrane
a, Sample Height
b. Samnple Diameter 9. Plastic Cylinder

O-Ring

Upper Cap

SAMPIE ASSEMBLY

" FIGURE 4. THE NGI DIRECT SIMPLE SHEAR DEVICE

13



14

13 15
\
| we}
;35%: :
&
=
15;@

(Adapted from Ref. 8)

FIGURE 5. THE NGI DIRECT SIMPLE SHEAR DEVICE



1. Counter Weight
2. Sliding Shear Box
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the horizontal piston, the locking clamp, the connection fork, the slid-
ing shear box, and the horizontal dial gauge. A constant rate of shear
strain is applied to the sample by the gear box and electric motor.

The gear box has a stepless speed adjustment with a range of 10 minutes
per mm to 300 minutes per mm of travel. For this investigation 75
minutes per mm was used during static testing.

With cyclic loading modifications, stress controlled tests with a
square wave loading were performed. The cyclic loading mechanism is
illustrated in Fig. 6. The hydraulic piston travels up and down at
controlled frequencies. Weight hangers were attached by wires to the
connection fork. The hanger which would come into and ocut of contact
with the piston will be referred to as the active side hanger., When
the piston was in the down position, the active side hanger and weights
hung free; when the piston was up, it supported this weight. Providing
that exactly twice as much weight (including the weight of the hanger)
hung from the active side as from the dormant side, equal shear forces
were alternately transmitted in opposite directions to the sample. Thus,
the mechanism induced a stress controlled square wave loading on the
sample.

Zimmie and Floess (24) observed that shear strains were generally
larger on the active side as opposed to the dormant side. This is
attributed to the impact loading of the active weight as it is relieved
of support by the piston. This is an inherent problem with this load-
ing system, and a compensational reduction of weight was administered

to produce approximately svmmetric shear strains. A weight reduction
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equivalent to 0.005 kg/cm2 shearing stress was found appropriate and
used for stresses in the range (0.07 kg/cmg to 0.08 kg/cmz) applied to
gsamples of this investigation. As some data obtained from Zimmie and
Floess' research is in this report,the reduction is the same as used
by themn.

The control unit for cyclic loadings consists of a counter and
a timer. Half period frequencies from 1 to 99 seconds wexre possible.
For this investigation the period was maintained at 10 seconds. The
timer controlled a2 4-way solenoid operated air wvalve that actuated the
piston motion.

The connection between the top cap of the sample assembly and the
lower part of the sliding shear box was made by two adjustable lugs.

The lugs were brought into contact with the cap by means of two allen-—
head secrews. The sample was sheén:ed by moving the top cap while hold~-
ing the bottom cap and the pedestal stationary.

The fine adjustments in the wvertical load, needed to maintain
constant volume conditions, were made by the adjusting mechanism. After
consolidation, the lever arm was pinned to the adjusting mechanism, pro-
viding the desired consolidation stress. COnce pinned into positiom, the
vertical load was changed by controlled movements of the lever arm up-
wards and downwards. This was accomplished by rotating a worm gear connect-

ed to the adjusting knob.
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B. Trimming Apparatus

The trimming apparatus was designed for use with the soft
sensitive clays that are common in Scandinavia. The basic design
principles are that the sample should be completely and rigidly
supported at all times, with a minimum of handling.

The trimming apparatus consists of a base, and a set of three
vokes. The base has two vertical columns on which the yokes slide.

The yokes are positionable at any point on the columns.

The first yoke used in the trimming procedure guides a stain-
less steel cutting cylinder. 1t contains provisions for attaching the
lower sample assembly cap to the bottom of the sampla. The second yoke
acts as a guide for attaching the upper cap to the sample. The final
yoke acts as the guide for the reinforced rubber membrane expander.
When vacuum is applied to the expander, the diameter of the reinforced
rubber membrane inserted within the yoke is increased. The membrane is
then mounted on the sample with a minimum of disturbance.

Proper use of the trimming apparatus ensures that the sample stands
vertical, and the ends will be horizontal and parallel. A photograph

of the trimming apparatus is shown in Figure 7.%

C. Reinforced Rubber Membranes

The calibrated reinforced rubber membranes used for the measurement
of lateral stress were manufactured by Geonor. These mewmbranes, shown

in Figure 7, operate on a strain gauge principle; the change in resis-

%A more detailed discussion of sample preparation is appended.
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FIGURE 7.

NGI TRIMMING APPARATUS AND REINFORCED RUBBER
MEMBRANES
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tance of the wire windings is measured. The entire height of the wire
reinforcement windings is 3 cm; the middle centimeter acts as the strain
gauge. These membranes are calibrated by applying known hydrostatié
stresses and by measuring the resulting change in resistance. The resis-
tance changes are measured by a strain gauge indicator calibrated directly
in micro~inches pex inch. Calibration of the 50 cm2 sample membranes

were completed by Geonor, while the smaller diameter sample membranes

were calibrated at Rensselaer Polytechnic Institute explicitly for this
investigation.*

The active strain monitoring wire and the remaining membrane rein-
forcement had the same physical properties. They consisted of constantan
wire with a diameter of .15 mm, a Young's Modulus E of 1.55 x 106 kg/cmz,
and a tensile strength of 5,800 kg/cmz. The wires were wound at 20 turns
per centimeter of height. The rubber material was natural latex. The
membranes were manufactured in two sizes, the standard 50 cm2 size and
the 1,875 in. (4.76 cm) diameter size. The recommended maximum lateral
stress for these membranes is l.4_kg/cm2.

The membranes provided adequate lateral strength to maintain a con-
stant cross—sectional area during consolidation and shear. The wire
reinforcement was very slightly deformed as the lateral stress increased,
producing only minor error (8). In addition, the mewbranes also allowed

for vertical strains in the sample during consolidation and shearing.

*A more detailed discussion of membrane calibration is appended.
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The resistance of the standard size reinforced rubber membranes
to shear has been determined to be small (11).

Difficulties can be encountered in the use of these calibrated
membranes. During this investigation, water came into contact with the
active wire of one membrane resulting in a partial short circuit. Con~
sequently, decreasing resistance and erroneous microstrain readings were
obtained. It is essential that the rubber material (butyl latex or
neoprene) used for these membranes form a watertight seal around the
active wire. Additionally, two other tests were performed without the
ability to mounitor lateral strains, since total malfuncfion of the strain
gauge capabilities of these membranes occurred.

Because temperature variations can result in resistance changes that
can be mistzken for changes in lateral stress, a matching "dummy" membrane
and the active membrane were connected in a bridge arrangement to compen—
sate for temperature changes. The active and dummy membranes were placed
as close to each other as possible (within cne foot). Under these condi-

tions, microstrain readings were not affected by small temperature changes.

D. Data Acquisition

To facilitate data acquisition, some modifications were made to
the direct simple shear apparatus as supplied by Geonor.

The vertical load proving ring was replaced by a Schaevitz FTD-1U-200
load cell. This load cell had a capacity of 200 1b (90.5 kg) in tensicn
oY compression. Thé linearity and resolution were better than .2% and

.1%, respectively.



23

A Hewlett Packard 7DCDT-050 Linear Variable Differential Trans-
former (LVDT) was used for measurement of horiéontal displacements.
The range of this LVDT was + .050 in. (1.27 mm). This range provided
excellent resolution at small strains. The LVDT was connected in
series with the original dial gauge by a special aluminum mounting
block. Horizontal displacements could therefore, be measured by either
the LVDT or by the dial gauge. Typically, the LVDT and the dial gauge
were used together, providing a convenient crosscheck at all times.

Both the LVDT and the load cell had integral signal conditioning
for DC operation; both were powered by separate constant DC voltage power
supplies. The wvoltage outputs of the LVDT and the load cell, plus the
square wave loading pattern were recorded on a Gould Brush 2400 four -
channel recorder. Microstrain readings from the calibrated reinforced
rubber membranes were measured by a BLH 120C strain gauge indicator.

The data for each individual test was put into computer files. The
data was processed and reduced at RPI's Interactive Computer Graphics
Center. Appropriate plots were then produced and were used in developing

the data graphs in this report.

E. Equipment Calibration

Proving Ring Load Cells

Proving ring load cells with ranges of 50, 100, 200, 400, and 800 kg
were supplied and calibrated by Geonor. All were linear throughout their

ranges.
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Load Cell

The Schaevitz load cell used for measurement of vertical load was
calibrated directly on the direct simple shear apparatus, While support-
ing the bottom of the siiding shear box, loads were applied to the load
cell through the lever arm, and the corresponding voltages measured.

The voltage output was linear throughout its range.

LVDT

The Hewlett Packard LVDT used for measurement of horizontal dis-
placements was also calibrated on the direct simple shear apparatus.
Voltage outputs were recorded for displacements measured by the dial gauge.

The voltage output was linear for + 3.0 mm displacement,

Friction

Friction in the verfical load unit and the horizomtal load unit
originated primarily in the ball bearing bushings. This friction was
measured by the 50 kg proving ring load cell and by the Schaevitz load

cell. It was found to be negligible.

False Deformation

Vertical deformations of the soil sample were measured between two
reference points, the top half of the sliding shear box and the base.
Because the parts of the direct simple shear apparatus between. these two
points deformed under the action of a vertical stress, it was important

to distinguish this deformation from the deformaticon of the sample itself,
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especially since constant volume tests were performed.

These false deformations were measured by inserting a steel dummy
sample between the sample caps. Vertical loads were incrementally
applied until consolidation loads were.reached, and then unloaded
while vertical deflections were measured and recorded.

It was assumed most of the vertical deformation was due to the
seating and compression of the porous stones. Hence, the same porous
stones were maintained in their same relative positions for each test.

Average deformation cuxrves for loading and unloading were obtained
for the consolidation history used for each sample size (50 cmz and
17.81 cm2 cross—-sectional sample sizes). An example is shown in Figure 8
for 50 cm2 diameter samples normally consolidated to ,510 kg/cmz.

During constant volume testing, the equipment deformation curve
was entered as the appropriate change in vertical normal stress was
reached, and the normal load was then further compensated to adjust
the sample height for the expected equipment deformations. Thus, sample

volume remained constant.
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PART 3

TESTING SPECIFICS

A. SOIL

The soils tested in this investigation were stored in an environ-
mentally controlled room. The room was maintained at 3° £ and 97 to 99
percent humidity to simulate in situ conditioné and preserve the sample
undisturbed. The two clays used were core samples from the Gulf of
Alaska and Gulf of Mexico.

Because of the sensitivity of marine clays, special care was taken
to control sample disturbance. As discussed by Berre, et 3l (3), core
sample size is an important parameter in obtaining consistent testing
results. A 95 mm core sample was recommended. The core sample size
for both soils used in this investigation was four inches, approximately
equivalent. Although studying wvariations in consolidation test results,
the data of Berre, et al (3) also suggested the smaller the specimen
size in testing the greater the variation of results. This aspect will

be considerad later as it applies to the results of this study.

Gulf of Alaska Clay

The clay samples used in this study were obtained from the Copper
River prodelta area in the Gulf of Alaska (5,9,24), and provided by
the United States Geological Survey. Development of pore presgsures lead-
ing to liquefaction has. been a major cause of Instability of these

submarine slopes. Complicated by the intense seismic activity in this

27
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area and the common occurrence of storms with large waves (6), the

determination of the behavior of these submarine soils under cyclic

loading became important.

Table 1 portrays the geotechnical data for this soil.

Gulf of Mexico Clay

The core sample of Gulf of Mexico (lay was taken at a location
approximately 175 miles southeast of Houston, Texas and approximately
225 miles due east of Corpus Christi, Texas by the U.S. Geological
Survey, Corpus Christi office. The ocean depth at this point was approx-
imately 1000 feet. The top five feet of the core sample, minus the
top seven inches of surface crust, was received from the U.S.G.S. The
first specimen used for this investigation was approximately seven inches
down from the top of the sample core received or about 1% inches below
the ocean floor. The last specimen tested from this core was an addi-
tional 20 inches deeper.

Table 2 includes the geotechnical data for this soil.

Scil Preparation®

Specimens were sliced from the sample cores stored in the environ-
mental room described previously, and moved to a second environmentally
controlled room. This second room was maintained at 20° C and approxi-
mately 92 percent humidity. While sample drying was still prevented in
this room, the temperature was more conducive for personnel during the

trimming operations.

#Gample preparations are discussed in greater detail in Appendix B.
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GULF OF AIASKA SAMPIES

SITE: COPPER RIVER PRODELTA

TYPE: 4™ DIAMETER UNDISTURBED CORES

GEOCTECHNICAL DATA

WATER CONTENT 57 - 65 %
LIQUID LIMIT L8 %
PLASTIC LIMIT 25 %
SPECIFIC CRAVITY 2.84
* & 24°
SENSITIVITY (FALL CONE) 4.0
CONSOLIDATICN HISTORY UNDERCONSOLIDATED
% SAND 1
% SILT 5.
% CLAY 65
* SEDIMENTATICON RATE 10-15 m/1000 years

* Data obtained from Hampton, et al (9).

TABLE 1. GEOTECHNICAL DATA FOR THE GULF OF ALASKA CIAY
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GULF OF MEXICO SAMPLES

SITE: 225 MIIES EAST OF CORPUS CHRISTI, TEXAS

TYPE: 4" DTAMETER UNDISTURBED CORES

GEQTECHNTCAL DATA

WATER CONTENT 100 - 120 %

LIQUID LIMIT 105 %

PIASTIC LIMIT 30 %

SPECIFIC GRAVITY 2

SENSITIVITY (FALL CONE) 2.50

CONSOLIDATION HISTORY NORMALLY CONSOLIDATED
% SAND 2

% SILT 28 .

% CLAY ' 70

TABLE 2. GEQTECHNICAL DATA FCR THE GULF OF MEXICO CLAY
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The trimming apparatus, as supplied by Geonor, was designed for
undisturbed preparation of samples to be used in the NGI direct simple
shear device. The procedures prescribed by Geonor (8) for trimming were
followed in general. However, some improvements to these procedures
for the soils tested were employed.* The average trimming time was approxi-
mately 75 minutes.

From the leftover trimmings, four water content samples were taken,
and undrained shear strength was measured by using the Swedish fall cone
method. The shear strengths were too low for the use of either pocket
penetrometers or torvane devices. Although sensitivity values were supplied
by the U.S5.G.S. with the core samples, further tests during this investiga-
tion confirmed the U.S5.G.S. values,

Initial vertical sample heights, although difficult to obtain with a
great deal of precision, were previously selected and purposely produced,.
Geonor recommends an initiai height of 15 mm for both the standard 50 cm2
sample size and the smaller 1.875 in. diameter size. To determine the
gensitivity of cyclic test results to variations from this recommended
height, three sample heights were selected for study; one at the recommend-
ed height, one 10 mm, and one 25 mm. Trimming limitations prevented the
production of samples shorter than approximately 10 mm, thus 10 mm was
used as the lower height limit. The actuél heights obtained were not
always 10 mm, 15 mm, or 25 mm, but varied due tec accuracy limitations in
the trimming process. Nevertheless, the actual heights were close to the
desired values. Static tests were performed with a height at or near

the recommended height (15 mm).

*#Sample preparations are discussed in greater detail in Appendix B.
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B. Test Procedures

After sample trimming was completed, the sample was carefully
moved from the environmentally controlled room to the NGI direct simple
shear apparatus for consolidation and shearing. The sample was now
sealed in its membrane, thus sample drying was not a problem. Drainage
hoses leading to water supplies were connected to the upper and lower
caps of the sample. A sea water solution (obtained from a local aquarium
supply store) was used as the water supply. The water was circulated
through the caps and the enclosed porous stones to flush out any air
which may have been trapped during the trimming process.

The sample was next clamped to the direct simple shear device. The
sliding shear box was brought into contact with the top of the sample,
and the normal load lever arm was leveled. A small weight (10 grams) was
placed at the end of the lever arm to ensure contact between the sample
and the shear box. The initial vertical dial reading was recorded. The
calibrated membrane was connected to a strain gauge indicator, and after
one hour (to allow for temperature stabilization and equipment warm up)
an initial reading on the strain gauge indicator was taken. Consolida-
tion was begun.

Consolidation loads were applied in increments similar to the standard
laboratory consolidation test. The time between each load increment was

approximately twice the time for 100 percent primary conselidation. The
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final consolidation load was applied for a minimum of 24 hours. The
sample was then ready for shearing.

All shear tests were run as constant volume tests. Changes in
vertical stress in the sample necessary to maintain a constant height
wag equated to the change in excess pore pressures which would have
occurred in an undrained test (16).

Static tests were performed at a sufficiently slow rate to minimize
strain rate effects. Typically, static tests were performed in seven
hours, Stress controlled cyclic tests were performed at a frequency
of 0.1 Hz with a square wave loading application. This frequency was
selected primarily to simulate storm wave loading applications. Fluctua-
tions in pore pressure per cycle were not measured but were monitored
by observing changes in height and lateral strains. The change in pore
pressure per cycle was not excessive, Permanent pore pressufe build up
was measured as the change in vertical normal stress necessary to main-—
tain a constant height., Because cyeclic loading causes slight fluctuations

in the:vertical height dizl readings, the mean height was used for measurements.

Lateral strains, changes in vertical normal stress, horizontal shear
stress, and cycles (or time, as applicable) were monitored. The vertical
stress was adjusted to maintain a constant sample height, including

corrections for false deformations as discussed previously.



PART 4

TEST RESULTS AND ANALYSIS

A. Introduction

Testing was designed to study the effects of sample size on the
results obtained for ecyclic loading of clays ﬁsing the NGI direct
simple shear device. A schedule was followed such that three categories
were tested. The categories allowed for the comparison of two different
clays, two sample cross-sectional sizes, and three variations in sample
height. Specifically, the first category tested was three standard size
(50 cmz) Gulf of Alaska clay samples, the second tested was three standard
gize Gulf of Mexico clay samples, and last four small size (17.81 cm2
cross-sectional) Gulf of Mexico samples were tested. Each category was
composed of three separate cyclic tests for the selected initial sample
heights of 10 mm, 15 mm, and 25 mm.

Static tests were performed for each category, at the recommended
height (15 mm), prior to ecyclic testing. Although the static test data
for the three categories were analyzed and compared, the major purpose of
the static tests were to establish a static strength as a base to deter-
mine the cyclic stresses to be used. All cyelic tests were run at 50
percent of the tested static shear strength for each category. Fifty
percent was chosen after analyzing data on the Gulf of Alaska clay from
a previous investigation. At this level the Gulf of Alaska clay reached
test terminating strainé (about 20 percent) after approximately 150

cycles (24).
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A total of 13 tests are included in the succeeding presenta-
tion and are cataloged in Table 3. Of these, three are stétic tests
—— one Gulf of Alaska standard sample size, and two Gulf of‘Me#ico -
one standard sample size, and one 17.81 cm2 cross—sec£ional sample;
and ten are cyclic —— three Gulf of Alaska standard sample size at
the selected various heights, and seven Gulf of Mexico ; three standard
sample size and four small sample size, similarly at the selected various
heights. The following discussion of the results will progress in the
order: 1) static test, comparing sample cross-sectional size and soils;
2) cyclic test, comparing sample cross—sectional gize; and 3) cyelie
test, comparing the various heights. Additional data from these teéts,
not included in the body of this text, is appended.

After consolidation, KO values were calculated for all samples using
lateral strain measurements. This was accomplished for each consolida-
tion loading interval and the Ko from the last interval used for the

purposes of this investigation. Values obtained are contained in Table 1.

The equations used were:

- (Asm)k
h 1 - e
and,
Ao
Ko = Acv

where: Aamris the change iIn microstrain reading for the loading interval,
k is the calibration factor for the membrane strain gauge, ey is the
vertical strain of the specimen, on is the change in normal vertical stress,

and Ach is the calculated change in normal horizontal stress.
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COTUMN EXPTANATION 38

1. Test Number
2. Sample Cross-Sectional Area: 5Ocm2 5 standard size
17.8cm™ = small size
3. Water Content of Trimmings
L, Void Ratio of Trimmings
5 Sample Height
6., Undrained Shear Strength (Swedish Fall Cone)
7. Sensitivity (Swedish Fall Cone)
8. Vertical Consolidation Siress
9. Static Shear Siress (Horizontal Applied)
10. Maximum Consolidation Stress
i1, Qverconsolidation Ratic
1z, Saﬁple Height Following Consolidation
13. Vertical Strain
14, KO - Calculated From Consolidation Strains
15, Cyclic Shear Stress (Horizontal Applied)
16, Cyclic Shear Stress as a Percent of Static Strength
17. Number of Cycles Tested
18, Shear Strain at N Cycles
i9. Pore Pressure at N Cycles
20, Frequency of Loading
21, Static Undrained Shear Strength (Peak of SfreSs-Strain Curve)
22. Shear Strain at Peak of Stress-3train Curve
23. Pore Pressure at Peak of Stress-Strain Curve
24, Strain Rate
25. Water Content of Sample (After Test)
26. "~ Void Ratio of Sample (After Test)

TABIE 3, (CONTTNUED)
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A relationship between Ko and size is apparent in Table 3.
The calculated KO Valges for the Gulf of Mexico samples tended to
be directly proportional to sample height. Additionally, the 17.81 cm2
cross~sectional samples tended te have higher KO values than the larger
50 cmz samples. Other investigations of stress conditions occurring
in simple shear test samples indicated neither horizontal normal stress-—
es nor vertical normal stresses acting oﬁ the samples were distributed
uniformly (10,21). The nonuniformity waé found to depend om sample
size (height and diameter), the amount of vertical displacement, and the
percent of membrane wire reinforcement (21). This nonuniformity of stress
could cause disproportionate lateral strains in different size (height
or diameter) samples. Another possibility could be small eccentricities
in vertical loading caused by less than absolutely vertical samples resulg-
ing in greater moment effects on the smaller diameter and taller samples.
Nonetheless, all calculated Ko values for the Gulf of Mexicoc samples
were quite close, ranging from 0.44 to 0.60, with a mean of 0.50. Only
two Gulf of Alaska samples possessed the correct recorded data to faci-~
litate the calculation of KD, therefore, the average KO value obtained
by Zimmie and Floess (24) in tests on the same soil were used in this

study.

B. Static Test Comparisons

The stress strain curves for the three static tests are shown in
Figure 9, The shear stress was normalized by dividing by the conseclida-

tion stress S These curves are cconsistent with existing iliterature
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(12,15,24). The smaller Gulf of Mexico samﬁle required more stress per
strain or, in other words, was stronger than the larger Gulf of Mexico
sample.

Figure 10 is a plot of normalized pore pressure against percent of
shear strain. This plot did not act in exactly the opposite manner from
the stress—strain curve, as might be expected from effective stress
principles. The pore pressure was higher in the small size Gulf of Mexico
sample than in the large, although the small sample had a higher shear
strength in Figure 9. Differences between the two sample sizes were small
in both figures (Figures 9 and 10). The pore pressure differences between
the Gulf of Alaska clay and Gulf of Mexico clay were predictable from
effective stress thecry after having obsarved Figure 9.

The normalized shear modulus versus shear strain curves are presented
in Figure 11. The difference between the three are relatively small
but the small size Gulf of Mexico samplé was slightly higher than the
other two, and the Gulf of Alaska sample was slightly lower. Shen et al
(21), indicated shear modulus results from the NCI device tend to be
lower than the soils real modulus.

The stress paths for a t - ¢ plot for the three tests are shown
in Figure 12. The failure line, Kf, for 20 percent®* strain and 3 percent
strain were mearly identical for the small Gulf of Mexico sample and
the standard Gulf of Alaska sample., TFrom the slope of thisz line an angle

of internal friction, ¢, for the two samples was calculated to be 30°

*The Kf line at 20 percent strain was calculated and shown because shear-
ing forces started to drop off near this strain and the test was shortly
terminated. The three percent strain was thought to be a more practical
strain value for working failure.
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for 20 percent strain and 20° for 3 percent strain. The standard size
Gulf of Mexico sample was calculated to have a 26° friction angle for
20 percent strain and 17° for 3 percent strain.
The p - q stress plots in Figure 13, for the two Gulf of Mexico
samples are quite similar, and the plot for the Gulf of Alaska sample
is lower. Connecting the p -~ ¢ points associated with 20 percent and
3 percent strain resulted in Ke lines for the respective strains. Cal-
culating ¢ angles for these lines resulted in considerably higher values
than obtained from the results shown in Figure 12 where it was assumed
that the horizontal plane is the theoretical plane of failure. The ¢
values obtained from the p - q plots were all quite close, the average
being 40° for 20 percent strain and 30° for three percent strain. These
results are consistent with values obtained by Zimmie and Floess (24).
The ratios of horizontal normal stress to vertical normal stress are
exhibited in Figure 14. The ratio, beginning at the initial lateral stress
ratio, Ko’ increases throughout the test. The plots increassd in an
opposite manner to the stress—strain plots and similar to the pore pressure~
strain plots. While the ratib remained below 0.6 for the standard size
Gulf of Mexico sample and below 1.0 for the other Gulf of Mexico sample,
it increased rapidly and exceeded 1.0 for the Gulf of Alaska sample. The
values for normal horizontal stress were cbtained from lateral strain
measurements.

*

The ratio 63/01 also gtartiag at KO, decreased throughout the tests

*Values for o, and ¢, are based on the assumptions and equations presented
in section B, "StresS Conditiomns', Part 1 of this report, and by Zimmie
and Floess (24).
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but the three plots are very similar, as shown in Figure 15.
It appears that if the initial KO values (diséussed in section
A of Part 4) for the Gulf of Mexico samples were equal, as would be
expected, little difference would have existed between their plots
in the p - q, Gh/cv, and 03/01 graphs. This would indicate the static

results for the two sample sizes are compatible.

C. Sample Cross Section Size Comparison for Cyclic Tests

Cyclic tests were carried out at a frequency of 0.1 Hz, using
50 percent of the static shear strength for the cyclic shearing stress.
The plots shown in this section utilize an average of the test results
from various sample heights tested for =ach of the sample size groups.
Cyclic shear strain versus the number of lcading cycles is plotted
on Figure 16.% Shear strains given are one-half the peak-~to-peak shear
strain. The Gulf of Mexico samples were far more resistant to cyclic
loading than the Gulf of Alaska samples. This appears reasonable, con-
sidering the lower static shear strength of the Gulf of Alaska soil,
plus its higher sensitivity. A difference between the two Gulf of Mexico
sample size; was observed. The smaller cross—sectional sample size
yieldeﬁ less per cyele than the larger. This was consistent in the
seven Gulf of Mexico samples tested (three standard size samples and four
smaller size samples) shown in later graphs. A possibility that could
account for part of this apparent strength difference is differences in
resistance to shear of the two reinforced membrane sizes. The smaller

‘membrane may offex more resistance than the larger membranes.

*After the first few cycles, shear strains were about 1/2%. Therefore,
it falsely appears that Fig. 16,22,23,24 do not pass through zero percent
strain.
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Pore pressure versus number of cycles, illustrated in Figure 17, is
consistent with the above in respect to the comparison of Gulf of
Alaska soil to Gulf of Mexico soil. However, the Gulf of Mexico stand-
ard cross-sectional sample size would have been expected to exhibit
greater pore pressures per cycle,relative to the smaller size sample,
accounting for its more rapid loss of ‘strength.

The shear modulus (Figure 18) for both Gulf of Mexico sample
sizes are nearly identical. The Gulf of Alaska soil exhibited a higher
initial shear modulus which decreased more rapidly with the number of
cycles than did the Gulf of Mexico clay.

The p - q diagrams in Figure 19 have the same basic shapes. The
smaller size Gulf of Mexico sample fell below the others and barely
crossed the three percent strain Kf line from the static test. This is
contrary to results obtained by Zimmie and Floess (24), who found the
three percent cyclic shear strains to fall near or on the three percent
static Kf line.

The ratio of ch/cv (Figure 20) is similar for the twe standard
samples but the shape of the curve is almost the mirror image of the
small sample which reached 1.0 by test termination. Until failure became
imminent, all three curves maintained nearly KO conditions. Near failure,
the ratic of oh/cv increagsed for the small sample,while the ratic de-
creased for the two standard size samples.

The plot of the ratio 03/01 is contained in Figure 21. The small
sample exhibited a ratio higher than the two standard size samples.

The three curves are similar in shape with the ratic staying relatively
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level until failure approaches.

As in the static test, if the initial KO for the Gulf of Mexico
samples were equal, the p - g, Gh/dv, and 03/01 plots would probably
- have been more identical for a large portion of the test. The differ-
ence in direction at failure of the ch/dv ratio plots for the two

sample sizes is unexplained.

D. Sample Height Comparisons for Cyclic Tests

The following is a presentation of the results of individual tests
as a function of sample heizht. As explained earlier, three sample
heights (approximately 10 mm, 15 mm, and 25 mm) were compared. Since
trimming imprecisions restricted the ability to obtain samples at exactly
precise heights, the actual heights varied somewhat. Actual sample
heights are noted on each graph.

A1l remaining graphs are plotted in the following sequence - the
Gulf of Alaska standard size samples are plotted on the first graph of
each group, the standard size Gulf of Mexico samples are plotted on the
second graph, and the small GCulf of Mexico sample size is plotted on the
last graph of each group.

Figures 22 through 24 compare the percent of shear strain to number
of cycles., Where differences were apparent, as in Figure 22 and 24,
the shortest sample tended to fail more rapidly. As sample height was
varied the results of the tests on standard size samples shown in Figures
22 and 23 were quite consistent, but the plots of the small size samples
(17.8 cmz cross section), in Figure 24, were much more scattered. Similar

results for consolidation test samples were observed by Berre et al (3).
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As expected larger diameter soil samples vield more consistent results
and are preferred in practice.

Pore pressures in Figures 25 to. 27 behaved as one might expect,
with larger build ups of pore pressure for the tests that failed more
rapidly. The scatter in Figure 26 is greater than that for the tightly
grouped strain versus cycles plots of Figure 23.

The shear modulus plots of Figures 28, 29, and 30 were well grouped
with the exception of the short sample of Figure 30. The 10.9 mm height,
17.8 cm2 cross section Gulf of Mexico sample also exhibited the greatest
rate of strain and larpgest pore pressures for its sample size group.

Figures 31 through 33 represent the p.w q stress path plots for
these tests. The p - q plots coincide quite closely in Figure 31 despite
height variations. Figure 32, if Ko was adjusted, would become more
closely grouped. 1In Figure 33 the plots are all of similar shape, and
converge at failure. If this figure was adjusted for Ko the plots would
still remain closely grouped. The three percent shear strain points
from cyclic tests are indicated by the apex of the triangles. No consis-
tency with the statiec failure lines (Kf = 3 percent) is evidenced in any
of the three graphs. 1In Figure 33 three of the four paths never cross
the three percent static failure line. Even shifts in the paths due to
adjustments in Ko would not change this situation significantly.

Presented next, in Figures 34, 35 and 36, are the ratiocs of Gh/cv
for the ten tests. If, as in Figure 34, all plots started with equal
Ko values, the grouping of these curves would be very tight, again, with

the exception of test MEX08C (shortest height-small diameter Gulf of
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Mexico sample).
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The ratios o./a in Figures 37 to 39, are grouped quite closely.

3"71

Adjusting KO values would produce somewhat more consistent plots in

Figures 38 and 39.
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PART 5

DISCUSSTION AND CONCLUSTIONS

A. Discussion

The purpose of this investigation was to study sample size
effects on cyclic and static shear tests performed on clays, using the
Norwegian Geotechnical Institute direct simple shear device. To a
lesser degree undrained strength characteristics of Gulf of Alaska
and Gulf of Mexdico clavs were investigated and compared. To accom-
plish these goals the Culf of Mexico samples tested were of two diam-
eters and three different heights. The middle height was at or near the
15 mm recommended by Geonor (8). Culf of Alaska samples were restricted
to one diameter but varied in height. OStatic tests for the Gulf of
Alaska soil and for both diameters of the Gulf of Mexico samples were
conducted using the recommended height. All tests were run as consoli-~
dated coustant volume tests tu simulate undrained conditions. All were
consolidated to the same vertical normal stress. Lateral strains were
measured, and horizontal normal stresses calculated. All cyclic tests
were perfcrmed with cyclic stresses equal to 50 percent of the static
strengths obtained. KO values were calculated by using lateral straius
measured during consclidation of the samples.

During the static teste, normal vertical stress, horizeontal shear
stress, horizontal shear strains, and lateral strains were monitored and

recorded. During cyelic tests the same was true, however, the horizontal
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shear stress was constant, since the tests were constant stress tests.
Using these known and measured values, and with the assumptions and
equations presented in Part 1 of this text, calculations were performed
to obtain the data presented in Part 4.

One effect of sample size noticed was the direct relation of the
calculated KO values to sample heights for the Gulf of Mexico samples¥*.
The mean values were 0.446 for the Jarge diameter sample and 0.554 for
the small diameter sample. For the large diameter samples the value
ranged from 0.43% to 0.453 for the shortest and tallest samples, respec-
tively. For the swall diameter sample the range was 0.487 to 0.608 fox
tﬁe shortest and tallest samples, respectively. The variances and
standard deviations were: large diameter samples —- si = (,0001, S, 7 0.01;
for the small dicmeter samples —— si = (0.0032, and s, = 0.056. The KO
values are fairly well grouped considering the varigbilities normally
agssociated with soil investigations and seem reasonable for the soil tesg~-
ed, The use of lateral strain measurement may offer a viable method of
cbtaining Ko for future studies, but adjustments will be necessary to
compensate for differences due to height wvariations,

Static tests comparing sample cross—sectional variations showed the
smalier diameter sample was slightly more resistant tc shear than the 50
cm2 sample. However, only one test was run for each size, and normal

experimental variations could easily account for the difference,

*KO values for the Gulf of Alaska soil were not calculated during this
investigation because of lack of recorded data. Instead, the average KO
value obtained by Zimmie and Floess (24} was used.
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Differences in cross—sectional sample size for cyclic tests were
more defined, at least for resistance to shear strain per cycle. Con-
current with static test resuits, the smaller sample was more durable.
However, the disparity in strength was considerably greater with the
small sample, ﬁveraging almest twice as many cycles for strains of three
percent or greater. This is & significant difference and perhaps partly
attributable to greater support from sample membranes. Ladd and Edgers
{11) found the resistance of the membranes tc shear increased with in-
creasing shear strain and with decreasing normal loads. The normal
load required was much less for the small diameter samples to maintain
a vertical mormal stress equal to the larger cross section samples. The
resistance of standard sample size membranes were measured to be less
than .01 kg/cm2 for stresses up to .3 kg/cmz. Small membranes were not
tested by Ladd and Edgers (11).

Additionally, the smaller samples evidenced much more scatter of
results than did the larger samples, although sample heights were wvaried
equally. This is consistent with data obtained on consolidation tests
by Berre et al (3).

Intuitively, one might expect that shear strain resistance would be
inversely proportional tec sample height and pore pressure build up would
be directly proportional to sample height, since the greater the distance
to the drainage surfaces the greater the pore pressures are likely to
be (3,4). Additionally, a larger moment could be developed as sample
height increases, resulting from the greatey distances between shearing
surfaces. However, the data indicates random variation in test results

due to differvences in sample height.
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Common to the three categories {stztic test, cyclic test with sample
cross section varied, and cyclic test with sample height varied) discussed,
was the effect of the calculated KO value. Where this value was used in
calculations to obtain data plots, it was noticed that if the KO value had
been equal for all samples, the plots would have compared much more con-
sistently. Obtaining KO as was done in this investigation could be of
value, but the effects of sample height must be considered.

The Gulf of Alaska clay was somewhat weaker than the Gulf of Mexico
clay undexr static loading conditions (approximately 20 percent) but was
far less resistant to shear strains during cyclic leadings. After only
one~-sixth the number of loading cycles of the 50 cm2 Gulf of Mexico
samples, the Gulf of Alaska samples evidenced equal or even higher strains.
Pore pressures built up at a much faster rate in the Gulf of Alaska samples,
indicating a reduction in effective stress. Comparisons have been made of
a direct relationship of soil sensitivity walues and behavior under cvclic
loading {19). This relation is apparent for the two scils tested as the
sensitivity wvalue for the Gulf of Alaska scil was 4.0,nearly twice the

2.5 value for the Gulf of Mexico clay,

B. Summary

The findings of this investigation suggest some effects of sample
size on results obtained frem the use of the Norwegian Geotechnical Insti-
tute direct simple shear device. The following list summarizes these

findings:
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- KO values calculated using measured lateral strains were directly
proportional to sample height and inversely proportiomal to sample
diameter. The calculated values for the large diameter samples
ranged from 0.439 to 0.453, with a mean value of 0.448 and a
variance and standard deviation of 0.0001 and 0.01, respectively,.
The small diameter samples yielded values varying from 0.487 to
0.608 with a mean of 0,554 and a variance and standard deviation
of 0.0032 and 0.056, respectively.

- During static testing the smaller diameter sample showed 10 to
15 percent more resistance to shear strain than the larger sample.

-~ In cyclic loading the smaller sample was significantly more
resigstant to shear strain per cycle than the larger sample.
(Approximately twice as resistant).

— The smaller sample showed less repeatability of results with great-
er scatter of test results.

- No evidence was obtained toc suggest rhat variations in sample
height will effect c¢cyclic shear resistance.

-~ Adjusting KO values would produce more consistent plots of p - g
stress paths, and cfh/cfv and 63/61 ratios for samples of the same
soil.

In brief, KO ig effected by changes in height; the smaller cross-

sectional szmple size produces higher static and cyclic shear strain
resistance, but a much greater degree of scatter; and sample height had

little obvicus and consistent effects on cycelic shear results.
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The comparison of the behavior of the Gulf of Alaska clay with that
of the Culf of Mexico clay dillustrated a relaticn of soil semsitivity te
cyelic strength. Consistent with other investigations (19), the soil
with the higher sensitivity value showed much less resistance to cyclic
shearing stresses. In addition, although the static shear strength of
the Gulf of Alaska sample was less than 20 percent below the static shear
strength of the 50 cm2 Gulf of Mexico sample, it was almost six times

less resistant to shear strains under cyclic conditions.
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APPENDLX A

ADDITIONAL DATA

The succeeding pages are a collection of graphs based on the data
collected in the course of this investigation. Although pertinent and
useful, their analysis would not have served the purpcse of this report;
so theyv are appended here.

After having read the body of this text this additioral data may
further ones knowledge of the soil behavior, or might answer questions
the auvthor neglected in his analysis.

The following collection is presented but not discussed further.
Reference to the text, primarily Part 1 where stress conditions are
reviewed, should provide any necessary explanations.

This data, as in the text, is broken up into three categories:

A, Static Test Comparicons:
B. Comparison of Sample Cross-Sectional Size for
Cyclic Tests

C. Comparison of Sample Heights for Cyclic Tests
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C. Comparison of Sample Heights for Cyclic Tests
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APPENDIX B

SAMPLE PREPARATION —-- STEP BY STEP PROCEDURES

The study of soil requires the ability to analyze specimens in
conditions simulating as closely as possible those encountered under
real conditions. Maintaining soil samples undisturbed through storage,
sample preparation, and eventual testing is of utmost importance. The
marine soft clays studied during this research required extreme care so
as not to disturb their structures.

During the course of finalizing and then further refining the sample
preparation procedures to be discussed, it became acutely obvious that
sample preparatién is not only a science but an art.

These instructions are written with the user in mind. It is assumed
he has access to the Geonor Manual, "Description and Instructicn for Use
of the Direct Simple-Shear Apparatus - Model h-12" or is at least aware
of all the soil trimming equipment. A great deal of the procedures list-
ed here are based directly on the above mentioned Geonor Manual and should
be so noted.

Before the soil can be touched, all trimming equipment and other
apparatus must be readied so as not to subject the soil to prolonged times
for drving. These preparations include the oiling, with silicon oil,
of all NGI sample trimming equipment to incliude the columms of the base
but not to include the membrane expander unit. Also two small spatulas,

a very thin metal cutting plate, and a wire saw should be oiled. Four
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water content dishes should be cleaned, dried and weighed. The membrane
should be mounted in the membrane expander. After applying a vacuum,
ensure that the interior of the membrane is smooth. The inside of the
membrane should then be oiled. Filter paper should be cut to barely cover
the porous stone%®, The bottom sample cap (called filter holder by
Geonor) should be mounted in the mounting ring. The ring is used to
ensure that the lower sample cap and the top of the cutting cylinder are
flush. Be certain that the cap remains concentric while tightening the
ring screws. A saturated filter stone with filter paper should now be
installed in the lower cap. The trimming base should be positioned where
it will Be used for trimming, the pedestal placed on the base and the upper
cap on the pedestal. A circular glass plate is now positioned on top of
the upper cap.

At this point the sample may be obtained.

The soils were stored in an envirommentally controlied room, sealed
in the core tube in which they were obtained. Approximately four centi-
meters of soil is jacked slowly out of the top of the tube. A wire saw
is then used to cut through the cross section of the extended soil. After
passing once or twice through the socil, the saw is passed thrbugh again,
followed directly behind with the oiled, thin metal plate. The specimen
will now be resting on the metal pléte and is immediately transported teo

the environmental room for the trimming.

*Any filter paper protruding past the sample cap will bind the trimming
apparatus.
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Once in the trimming room the glags plate on the pedestal {is
placed on the upper side of the sample., The sample is gently flipped,
the glass is now on the down side {(in other words, the sample is
tﬁrned.upSide—down, cpposite to in situ conditions). The glass with
sample is replaced on the pedestal. The thin metal cutting plate is
gently and carefully slid off the sample top.

The cutting yoke is now positicned on the base’s columms, cutting
edge down. The yoke is pressed down gently, pausing to allow for trim-
ming of excess so0il from the sides with the oiled spatulas. Some of
the soil trimmings are used for water content measurements. This process
i3 continued until the cutting edge comes in contact with the glass at
the bottom.

The top surface is now trimmed using a wire saw. The top should be
smooth and even with the cutting yoke's top surface. 1If a sufficiently
thick slice ig removed it can be salvaged for f£all cone shear strength
testing.

The mounting ring with bottom cap and porous stone are now placed
on the top of the sample, ensuring correct seating, with drainage holes
facing forward. The mounting ring is then clamped to the cutting yoke.
Once again, care must ée taken to tighten the screws so the mounting
ring remains concentric.

The cutting voke with sample is now gently removed from the base,
the glass plate sealing the bottom. The top sample cap is removed from
the pedestal. The expander yoke with membrane is mounted, wvacuum applied,

and lowered to the bottom of the base. Note that the yoke should be
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mounted with the longer part of the bushings upward.
Mount the cutting yvoke on the columns with the cutting edge upward
and the drainage holes of the sampling cap facing forward. The upper
sample cap is lowered down gently until the lower filter cap rests
firmly on the pedestal.

The lower sample cap is then released from the mounting ring. The
cutting yoke is pushed downward until approximately 15 mm of soil is
exposed. A slice is made with the wire saw, through the soil, even with
the cutting yoke's edge. A second pass of the saw is made while carefully
1lifting the glass plate, with soil adhered, until the soil is freed. This
slice of soil is of sufficient height for fall cone testing. A water
content is also taken. This procedure usually leaves the sample with
a jagged top suriace s0 the cutting.yoke should he pressed down about 1 mm.
The remaining soil is trimmed from the top with the wire saw until a
smooth even surface is obtained. |

The porous stone and filter paper are placed in the top sample cap.
It is clamped to the upper yoke which is then mounted and locked on the
columns of the base. The cap is lowered by the center rod and seated
on the sample with the drainage holes facing forward. It is clamped into
place by the lever vise of the upper yoke.

The cutting yoke is raised above the upper sample cap's top. The
sample is now laterally unsupported.

The vacuum is applied to the membrane expander and the expander yoke

is raised to position the membrane. The membrane reinforcement should be
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centered on the sample. The vacuum is then released. The membrane is
glid onto the upper and lower sample caps.

The three yokes are removed and the upper yoke replaced to keep
the sample stable. The Initial sample height is now measured.

The O-rings are positioned on the non-reinforced portions of the
membranes so as to complete a tight seal between membrane and sample
caps.

The sample is now ready for transport to the NGI direct simple
shear device.

After cleaning, all equipment should be oiled with silicon oil,



APPENDIX C
INSTRUCTIONS FOR THE USE OF THE NORWEGIAN CEOTECHNICAL INSTITUTE

DIRECT SIMPLE SHEAR DEVICE - A STEP-BY-STEP APPROACH

The following is a list, in chronological order, of recommended
steps for the accomplishment of static and cyclic shearing tests as
performed on the Rensselaer Polytechic Institute modified Norwegian
Geotechnical Institute direct simple shear device. These steps are as
they were executed during the tests of this investigation. The list is
based on the Ceonor instruction manual (8) and the recommendations of
Mr. Carsten Floess, who completed the data acquisition modifications.

It will be assumed readers of these instructions are familiar with
the device and have access to the Geonor instruction manual {(8), Refer-
ence to the body of this report, specifically Part 2 - "Equipment", will

assist the reader with unfamiliar terms.

Steps for Static and Cyclic Direct Simple

Shear Test on the NGI Device'

1. Set timer in recorder - 1 minute intervals for static
-~ 100 second intervals for cyclic.
(See "Operating Manual 2400 Series", pg. 3.4)

2. Place pins in sliding shear box. Pins must move freely up and
down while the lever arm is level. This can best be accomplished
by moving the sliding box via the hand crank on the static
shearing motor (the proving ring must be in and the loading clamp

must be open).

126
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¢ 3. Hook up dormant side hanger (right side).

s 4. Take the slack out of the horizontal chear assembly.
Hand crank the shearing motor until the dial in the proving
ring moves continually and smeoothly. Then back it off

slightly and zero gauge.

5. Lock the locking clamp.

6. Raise the lever arm as high as it goes. This réquires
turning the hand crank on top of the vertical assembly
all the way counterclockwise.

7. Ensure the water level is appropriate in the water supply
containers.

8. Open the top sample cap confining lugs :all the way.

9. Cut sample. See Appendix B, this text).

10. Sawmple is brought out and the base is attached to the
NGI shear device.

11. With upper yoke still in place (stabilizing sample assembly)
attach drainage hoses.

12, Raise one side of water supply well above sample top and
lower the other., Allow one-half hour for the water to
leach all air bubbles out. Level water containers at a
height slightly above the sample top.

13. Take upper yoke off.

14. $lide sample intc testing positicn.

¢ - for cyelic tests only s - for static tests only



15.

16.

18.
19.

20.

21.

22,

23.

24,

25.

25,

27.
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Clamp bottom of sample assembly in place. Note, a small
aluminum foil gasket is placed on one side of the bottom
clamp for the larger sample size assembly to eliminate
excess sliding.

Position the lever arm, It should be brought down so the
shearing box is in contact with the upper sample cap while
the lever arm is approximately 3 or 4 degrees above hori-
zontal.

Hook up left side hanger.

Put a 5 or 10 gram weight on the lever arm's hanger.

Record vertical dial reading.

Hook up calibrated membranes (dummy and active) to strain
gauge indicator.

After one-half hour take initial microstrain readings.

Place first consolidation load interval om.

Repeat as required taking microstrain and vertical dial
readings at the end of each interval.

After the last interval is ﬁlaced, allow 24 hours until next
step.

Turn power supplies and recorder on. Allow one-half hour warm
up time.

Take vertical dial and microstrain readings.

Turn sensgitivity and filter knobs on recorder, for each amplifier

in use, to the right.

¢ - for cyclic tests only s - for static tests only
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28. Zero recorder dial needles with top knobs,
Note: volts to off positiom.
c 29. Turn #1 amplifier to .1 x 100 and position needle 3.2 ecm
to the left,

30. Set #3 amplifier to ,025 x 1 and zero suppression.
{See "Operating Manual 2400 Series”).

31. Place pin in normal load hanger, being careful not to
disturb sample.

32. Start taking weights off lever arm hanger adjusting
the vertical position of the lever arm with the
adjusting mechanism to maintain the recorder needle at
zero (you must turn knob clockwise).

33. Take pins out of sliding sheax box.

34. Clamp upper sample cap with lugs.

s 35. Unlock shear locking clamp.

s 36. Set #2 amplifier to .025 x 1 and zero suppression.

¢ 37. Set #2 amplifier to .025 x 1 and zero chart needles
with the LVDT adjusting nuts. (Note: zero suppression
mode must be off.) This step requires patience.

38. Zero all dials (vertical deformation, horizontal shear
displacement, and horizontal shear fofce) and recheck
all needle zeros.

39. Run paper down.

s 40. Set chart speed to 5+100 (.05 mm/sec).

¢ = for cyclic tests only s - for static tests only
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s 41. Set voltage selectors to .5 volts on #2 and #3 amplifier,

s 42, Turn shear generator to on.

s 43, Put left-right switch on generator to left.

s 44, Turn‘generator top lever arm counterclockwise.

s 45, Select generator speed. (This investigation used 3.5 on the
dial which is 75 min/mm.)

s 46. After five minutes check for slack. If proving ring dial has

not moved yet, crank the generator by hand up to, but nct past,

5 on the proving ring dial.
Return the generator motor back to automatic mode.

s 47, Take readings every five minutes recording shear force dial,
shear displacement dial, and microstrain readings.

¢ 48, Set chart speed to 23 + 100 (.25 mm/sec).

¢ 49. Set voltage selector to 1 volt on the #2 and #3 amplifier.

c 50. Put weights on cyclic shearing hangers. Must have been previcusly
calculated to deliver desired strésses.

¢ 51. Set pump timer to half the desired period time.

¢ 52. Push counter buttonm to zero counter.

¢ 53. Turn air supply to piston pump on.

¢ 54. Plug in pump solenoid to AC supply.

¢ 55. Turn pump to on position.

¢ 56. When the piston is in the up positicn unlock shearing locking
clamp.

¢ 57. Record microstrain readings at the first cycle and then every

five cycles therecn.

¢ — for cyclic tests only s - for static tests omnly
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58. Maintain vertical dizl at correct reading by referring
to false deformation charts and monitoring vertical load
changes. This is done by adjusting the Adjusting Mechanism.
59. Change voltage selectors upward as necessary.,
s 60. When failure is reached the shear force levels off and
beégins to drop. Displacements should be between 300 and
350 on the horizontal displacement dial, Do not exceed
450.
s 61, Shut generator motor off, then hand crank until sample is
vertical.
¢ 62, Termination of testing at full scale pneedle deflections
while in the 10 v range (.1 x 100) is usually acceptable.
c 63, Shut air off, turn pump switch to off, and remove weights.
64, Run paper down and shut equipment off.
63. Open the lugs, releasing the upper sample cap.
66. Raise the lever arm all the way.
67. Unclamp sample bottom, and disconnect strain gauge wires.
68. Remove the sample assembly.
69. Dismember the sample assembly and remove the sample from
the membrane.
70. Take a water content of the sample.
¢ 71, Unplug the solenoid.

72. Clean up - You are done.

¢ - for eyclic tests only s — for static tests only



APPENDIX D
CALIBRATION OF STRATN GAUGE EQUIPPED MEMBRANES
FOR THE NORWEGIAN GEOTEHCNICAL INSTITUTE

DIRECT SIMPLE SHEAR DEVICE - A User's Approach

The calibration of the strain gauge equipped membranes supplied
by Geonor were accomplished on calibration cylinders, zlsc supplied
by Geonor. The procedure which is about to be presented assumes a cer—
tain degree of familiarity with the membranes and the cylinder. This
Appendix is based primariiy on a letter from Geonor to Dr. Thomas Zimmie

and on experience obtained during the course of this project.

Procedure

The membrane, which is to be calibrated, is mounted on the expander
voke, part of the trimming apparatus, and expanded by a vacuum. The
intericr should be smooth as if it were to be used on a sample. The
membrane is slid over the calibration cylinder. The midheight of the
membrane reinforcement must be positioned at the midheight of the
cylinder. This will ensure the active part of the windings have the
lateral stress applied to them. The windings should be straight and
horizontal.

The membrane is placed where it is to be calibrated. The strain
gauge leads of the membrane are attached to the microstrain indicator

device through a bridge which includes a dummy membrane for temperature

132
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compensation. The microstrain indicator should be turned on and
allowed to warm up for one-half hour during which the membranes will
adjust to the temperature.

A known pressure must be applied to the interior of the calibration
cylinder to expand its membrane and cause lateral stress to be transmitted
to the strain gauge membrane being calibrated. The source of this pressure
can be either water or air, air being recommended., This step was accom-
plished by comnecting a hose to thé top of the calibration cylinder from
the backpressure air supply of an Anteus Consolidometer located at the
Rensselaer Polytechnic Institute soils laboratory. The air supply to
the consolidometer must be turned on, then the main air pressure chamber
is opened until about 45 psi is registered on its dial. The back pressure
chamber may now be opened and pressure is applied to the calibration
cylinder and membrane under test. The back pressure dial is read directly
in psi.

The pressure is increased in small intervals and microstrain readings
recorded., After a sufficiently high pressure (15 to 20 psi) the pressure
is decreased in the same intervals and the microstrains are again recorded.

A number of tests should be run on each'membrane to be calibrated,
and the average values plotted on a microstrain reading versus pressure
graph. The slope of this curve in the form of microstrain per kg is
the calibration factor for the tested wmembrane.

Although several runs should be made for each membrane and the average

used, experience has shown the readings obtained are very closely repeated.






