DERIVATION OF EQUATIONS OF MOTIONOF A
FREE RIGID BODY STEAM GFNERATOR
SUPPORTED BY
VERTICAL ELASTIC RODS
Prepared by
H. Lo and J.L. Bogdanoff
School of Aeronautics and Astronautics Purdue University West Lafayette, Indiana
Submitted to
THE NATIONAL SCIENCE FOUNDATION
October, 1977

SG: steam generator treated as a rigid body;
OXYZ: rectangular cartesian coordinates fixed in space;
$\overrightarrow{\mathrm{I}}, \overrightarrow{\mathrm{J}}, \overrightarrow{\mathrm{K}}$: unit vectors along OXYZ coordinates in usual order; gravity in \vec{K} direction; in equilibrium position, c.g. G of SG is on OZ axis.
0_{1} is point at which $O Z$ axis intersects roof of $S G$ in equilibrium position;
$\overline{0_{1}}=\ell_{0} ;$
$\overline{0_{1} G_{1}}=c ;$
Gxyz: rectangular cartesian axes fixed in $S G$ and parallel to OXYZ axes in equilibrium position;
j th rod is attached to fixed space $A_{j o}$ with coordinates x_{j}, y_{j}, ρ_{j} relative to OXYZ axes;
j th rod is attached to $S G$ at A_{j} with coordinates x_{j}, y_{j}, $\left(c+\lambda_{j}\right)$ relative to Gxyz axes.
ℓ_{j} : length of j th rod;
t_{j} : tension (force) in jth rod in equilibrium position;
k_{j} : spring constant (force/unit length) of j th rod;
e_{j} : extension in j th rod measured from equilibrium position;
$c_{j}=c+\lambda_{j} ;$
m : mass of SG ;
G $\ddagger\rceil$: rectangular cartesian axes fixed in $S G$ that coincide with Gxyz axes used to specify mass distribution of SG;
$A, B, C, F, G, H: \quad$ moments and products of inertia of $S G$ with respect to $G \xi \eta \zeta$ axes;
$e_{j o}$ initial extension of jth rod in equilibrium position;
$u, v, w:$ displacement components of G, with respect to oxYz axes, from equilibrium position;
$\phi, \theta, \psi:$ angular rotations of $S G$ about $G x y z$ axes in order given;
A_{j} ': displaced position of A_{j}.
λ_{j} : distance $j^{\text {th }}$ vertical rod attachment point is above top of $S G$
ρ_{j} : distance $j^{\text {th }}$ vertical rod attachment point is below reference plane of top girder system
$\vec{R}_{A_{j}}:$ position vector of $A_{j_{O}}$
$\vec{R}_{A_{j}}: \quad \vec{R}_{A_{j}}-\vec{R}_{A_{j}}$

The purpose of this report is to derive the linear equations of motion of a rigid body (steam generator) supported by a number of vertical elastic rods attached to a fixed top support. Three dimensional motion is considered. The vertical rods are considered as pin-ended; their lengths and axial spring constants may be different; and the arrangement of the supporting points in the plane of the top fixed support is arbitrary. Gravity acts. A schematic of the system considered is shown in Figure 1.1.

The free motion of the rigid body is obviously of a complex pendulum-bifilar type. The principal task is to get the potential energy V in terms of the three components of the linear motion of the mass center G and of the three components of rotation of the rigid body. These six coordinates are assumed small. To obtain V requires that the geometry of the motion be considered in some detail as the usual straight forward first order analysis is not adequate.

The principal reason for this derivation is that current computer codes do not account for the type of potential energy encountered in this probalm. We have found no prior derivations up to this time.

FIG. 1.1

FIG. 1.1

2. Some Preliminaries

We need the formulas connecting $\vec{i}, \vec{j}, \vec{k}$ in the displaced position with respect to $\overrightarrow{\mathrm{I}}, \overrightarrow{\mathrm{J}}, \overrightarrow{\mathrm{K}}$.

Figure 2.2a shows the rotation ϕ about $G x$; we see that

FIG. 2.2a

$\vec{i}_{1}=\vec{I}$
(2.1) $\vec{\jmath}_{1}=\cos \phi \vec{J}+\sin \phi \overrightarrow{\mathrm{K}}$
$\overrightarrow{\mathrm{k}}_{1}=-\sin \phi \mathrm{J}+\cos \phi \overrightarrow{\mathrm{K}}$, where $\overrightarrow{1}_{1}, \vec{j}_{\underline{1}}, \vec{k}_{1}$ are intermediate unit vectors after rotation ϕ about $G x$

We next have the rotation θ about j_{1}; the next diagram shows that

$\vec{i}_{2}=\cos \theta \vec{i}_{1}-\sin \theta \vec{k}_{1}$
(2.2) $\vec{j}_{2}=\vec{j}_{1}$
$\vec{k}_{2}=\sin \theta \overrightarrow{\mathrm{I}}_{1}+\cos \theta \overrightarrow{\mathrm{k}}_{1}$
The unit vectors \vec{i}_{2}, \vec{j}_{2} \vec{k}_{2} are the second set of intermediate unit vectors.

FIG. 2.2b

Finally, we have the rotation ψ about \vec{k}_{2}; we see from Figure $2.2 c$ that

$$
\begin{aligned}
\overrightarrow{\mathbf{I}} & =\cos \psi \overrightarrow{\mathrm{I}}_{2}+\sin \psi \vec{j}_{2} \\
(2 \cdot 3) \quad \vec{j} & =-\sin \psi \overrightarrow{\mathrm{I}}_{2}+\cos \psi \overrightarrow{\mathrm{j}}_{2} \\
\overrightarrow{\mathrm{k}} & =\overrightarrow{\mathrm{k}}_{2}
\end{aligned}
$$

Here, $\vec{i}, \vec{j}, \vec{k}$ are the final displacement position of the Gxyz axes.

The formulas we want connecting $\vec{i}, \vec{j}, \vec{k}$ in the displacement position with $\overrightarrow{\mathbf{I}}, \vec{J}, \vec{k}$ are

$$
\begin{aligned}
\overrightarrow{\mathrm{I}} & =\ell_{11} \overrightarrow{\mathrm{I}}+\ell_{12} \vec{J}+\ell_{13} \overrightarrow{\mathrm{~K}} \\
(2.4) \vec{J} & =\ell_{21} \overrightarrow{\mathrm{I}}+\ell_{22} \vec{J}+\ell_{23} \overrightarrow{\mathrm{~K}} \\
\overrightarrow{\mathrm{k}} & =\ell_{31} \vec{I}+\ell_{32} \vec{J}+\ell_{33} \overrightarrow{\mathrm{~K}}
\end{aligned}
$$

where the direction cosines $\ell_{\text {rs }}$ are given by
$\ell_{11}=\cos \theta \cos \psi$
$\ell_{12}=\cos \phi \sin \psi+\sin \phi \sin \theta \cos \psi$
$\ell_{13}=\sin \phi \sin \psi-\cos \phi \sin \theta \cos \psi$
$(2.5) \ell_{21}=-\cos \theta \sin \psi$
$\ell_{22}=\cos \phi \cos \psi-\sin \phi \sin \theta \sin \psi$
$\ell_{23}=\sin \phi \cos \psi+\cos \phi \sin \theta \sin \psi$
$\ell_{31}=\sin \theta$

FIG. 2.3

$$
\begin{aligned}
& l_{32}=-\sin \phi \cos \theta \\
& l_{33}=\cos \phi \cos \theta
\end{aligned}
$$

The special arrangement of the various sets of vectors and axes is shown in Figure 2.3.

If ϕ, θ, ψ are assumed small, then to within 2 nd order of small quantities, (2.5) became

$$
\begin{aligned}
l_{11} & \stackrel{2}{=} 1-\frac{\theta^{2}+\psi^{2}}{2} \\
l_{12} & \stackrel{2}{=} \psi+\phi \theta \\
l_{13} & \stackrel{2}{=} \phi \psi-\theta \\
l_{21} & \stackrel{2}{=}-\psi \\
(2.6) l_{22} & \stackrel{2}{=} 1-\frac{\phi^{2}+\psi^{2}}{2} \\
l_{23} & \stackrel{2}{=} \phi+\theta \psi \\
l_{31} & \stackrel{2}{=} \theta \\
l_{32} & \stackrel{2}{=}-\phi \\
l_{33} & \stackrel{2}{=} 1-\frac{\phi^{2}+\theta^{2}}{2}
\end{aligned}
$$

It can be shown that the angular velocity of the body is given by
(2.7) $\vec{\omega}=(\dot{\phi} \cos \theta \cos \psi+\dot{\theta} \sin \psi) \vec{i}+(-\dot{\phi} \cos \theta \sin \psi+\dot{\theta} \cos \psi)$

$$
+(\dot{\phi} \sin \theta+\dot{\psi}) \vec{k}
$$

3. Derivation \# 1 of Potential Energy V of System

Let us first determine the potential energy V_{j} of the $j t h$ rod. The position vector of $\mathrm{A}_{\text {jo }}$ is
(3.1) $\vec{R}_{A_{j O}}=x_{j} \vec{I}+y_{j} \vec{J}+\rho_{j} \vec{K}$

The position vector A_{j} ', the displaced position of A_{j}, is given by
(3.2) $\vec{R}_{A_{j}}=u \vec{I}+v \vec{J}+\left(\ell_{o}+c+w\right) \vec{K}+x_{j} \vec{I}+y_{j} \vec{J}-\left(c_{j}\right) \vec{k}$ $\vec{i}, \vec{j}, \vec{k}$ are related to $\vec{I}, \vec{J}, \vec{k}$ through (2.4); thus (3.3) $\vec{R}_{A}^{\prime}=\left(u+\ell_{11} x_{j}+\ell_{21} y_{j}-\ell_{31} c_{j}\right) \vec{I}+\left(v+\ell_{12} x_{j}+\ell_{22} y_{j}\right.$

$$
\left.-\ell_{32} c_{j}\right) \vec{J}+\left(\ell_{0}+c+w+\ell_{13} x_{j}+\ell_{23 Y_{j}}-\ell_{33} c_{j}\right) \vec{k}
$$

The vector $\stackrel{\rightharpoonup}{R}_{A_{j}}$ from $A_{j_{0}}$ to A_{j}^{\prime} is
(3.4) $\quad \vec{R}_{A_{j}}=\vec{R}_{A_{j}^{\prime}}-\vec{R}_{A_{j}}$
$=\left(u-x_{j}+\ell_{11} x_{j}+\ell_{21 Y_{j}}-\ell_{31 c_{j}}\right) \vec{I}$
$+\left(v-y_{j}+\ell_{12} x_{j}+\ell_{22} y_{j}-\ell_{32} c_{j}\right) \vec{J}$
$+\left(\ell_{o}+c+w-\rho_{j}+\ell_{13} x_{j}+\ell_{23} y_{j}-\ell_{33} c_{j}\right) \vec{k}$
To within 2 nd order of small quantities

$$
\text { (3.5) } \begin{aligned}
\quad \stackrel{\rightharpoonup}{R}_{A_{j}} & \stackrel{2}{=}\left(u-\frac{\theta^{2}+\psi^{2}}{2} x_{j}-\psi y_{j}-\theta c_{j}\right) \vec{I} \\
& +\left(v+\{\psi+\phi \theta\} x_{j}-\frac{\phi^{2}+\psi^{2}}{2} y_{j}+\phi{c_{j}}_{j}\right) \vec{J} \\
& +\left(w+\{\phi \psi-\theta\} x_{j}+\{\phi+\theta \psi\} y_{j}+\frac{\phi^{2}+\theta^{2}}{2} c_{j}+\ell_{j}\right) \vec{k}
\end{aligned}
$$

Let e_{j} be the extension of the j th rod due to motion from the equilibrium position. Then,
(3.6) $\left(\ell_{j}+e_{j}\right)^{2}={\stackrel{\rightharpoonup}{R_{A}}}_{A_{j}} \cdot \stackrel{\vec{R}}{A}^{j}$

In what follows, we only need e_{j} to within list order of small quantities; we obtain, on combining (3.5) and (3.6)

$$
\begin{equation*}
e_{j} \stackrel{1}{=} w-x_{j} \theta+y_{j} \phi \tag{3.7}
\end{equation*}
$$

The magnitude of the tensile force in the j th rod is $t_{j}+k_{j} e_{j}$, where t_{j} is load supported by the j th rod in the equilibrium position and k_{j} is the spring constant of the j th rod. Clearly, in equilibrium
(3.8) $\sum t_{j}=m g, \quad \sum x_{j} t_{j}=0, \quad \sum y_{j} t_{j}=0$

The force acting on the body due to the fth rod is
(3.9) $\quad \vec{F}_{j}=-\left(t_{j}+k_{j} e_{j}\right) \frac{{\stackrel{\rightharpoonup}{R_{A}}}_{A_{j}}}{l_{j}+e_{j}}$

The virtual displacement of A_{j}^{\prime} is obtained from (3.5);
we find that
(3.10)

$$
\begin{aligned}
\delta \vec{R}_{A_{j}} & =\left(\delta u-y_{j} \delta \psi-c_{j} \delta \theta-\{\theta \delta \theta+\psi \delta \psi\} x_{j}\right) \vec{I} \\
& +\left(\delta v+x_{j} \delta \psi+c_{j} \delta \phi+\{\phi \delta \theta+\theta \delta \phi\} x_{j}-\{\phi \delta \phi+\psi \delta \psi\}\right) \vec{J} \\
& +\left(\delta w-x_{j} \delta \theta+\delta \phi y_{j}+\{\phi \delta \psi+\psi \delta \phi\} x_{j}+\{\theta \delta \psi+\psi \delta \theta\}_{j}\right. \\
& \left.+\{\phi \delta \phi+\theta \delta \theta\} c_{j}\right) \vec{K}
\end{aligned}
$$

The virtual work δW_{j} of the force F_{j} acting on the body due to
the j th rod in the virtual displacement $\quad \overrightarrow{\mathrm{R}}_{\mathrm{A}_{j}}$
(3.11) $\delta W_{j}=-\left(t_{j}+k_{j} e_{j}\right) \frac{\stackrel{\rightharpoonup}{R}_{A_{j}}}{l_{j}+e_{j}} \cdot \delta \vec{R}_{A_{j}}$

We have from (3.5)
(3.12) $\frac{{\stackrel{R}{A_{j}}}^{l_{j}+e_{j}}}{2} \frac{u-c_{j} \theta-y_{j} \psi}{l_{j}} \vec{I}+\frac{v+c_{j} \phi+x_{j} \psi}{l_{j}} \vec{j}+\vec{K}$

Equation (3.11) now becomes
(3.13) $\delta W_{j}=-\left\{\left(\frac{t_{j}}{l_{j}} u-\frac{t_{j} c_{j}}{l_{j}} \theta-\frac{t_{j} y_{j}}{l_{j}} \psi\right) \delta u\right.$

$$
+\left(\frac{t_{j}}{l_{j}} v+\frac{t_{j} c_{j}}{l_{j}} \phi+\frac{t_{j} x_{j}}{l_{j}} \psi\right) \delta v
$$

$$
+\left(k_{j} w+k_{j} y_{j} \phi-k_{j} x_{j} \theta+t_{j}\right) \delta w
$$

$$
+\left[\frac{t_{j} c_{j}}{l_{j}} v+k_{j} y_{j} w+\left(t_{j} c_{j}+\frac{t_{j} c_{j}^{2}}{l_{j}}+k_{j} y^{2}\right) \phi\right.
$$

$$
\left.-k_{j} x_{j} y_{j}+\left(t_{j} x_{j}+\frac{t_{j} c_{j} x_{j}}{l_{j}}\right) \psi\right]
$$

$$
+\left[-\frac{t_{j} c_{j}}{l_{j}} u-k_{j} x_{j} w-k_{j} x_{j} y_{j} \phi+\left(t_{j} c_{j}+\frac{t_{j} c_{j}^{2}}{l_{j}}\right.\right.
$$

$$
\left.\left.+k_{j} x_{j}^{2}\right) \theta+\left(t_{j} y_{j}+\frac{t_{j} c_{j} y_{j}}{l_{j}}\right) \psi\right] \delta \theta
$$

$$
\begin{aligned}
& +\left[-\frac{t_{j} y_{j}}{l_{j}} u+\frac{t_{j} x_{j}}{l_{j}} v+\left(t_{j} x_{j}+\frac{t_{j} c_{j} x_{j}}{\ell_{j}}\right] \phi\right. \\
& \left.\left.+\left[t_{j} y_{j}+\frac{t_{j} c_{j} y_{j}}{\ell_{j}}\right)+\frac{t_{j}\left(x_{j}+y_{j}\right)}{\ell_{j}} \psi\right] \delta \psi\right\}
\end{aligned}
$$

The total virtual work W_{t} of the forces acting on the body in the virtual displacement is
(3.14) $\delta W_{t}=m g \delta w+\Sigma \delta W_{j}$

Using (3.8) and (3.13), we find
(3.15) $\delta W_{t}=-\left\{\left(\sum \frac{t_{j}}{l_{j}} u-\sum \frac{t_{j} c_{j}}{l_{j}} \theta-\sum \frac{t_{j} y_{j}}{l_{j}} \psi\right) \delta u\right.$
$+\left(\sum^{t_{j}} l_{j} v+\sum \frac{t_{j} c_{j}}{\ell_{j}} \phi+\sum \frac{t_{j} x_{j}}{\ell_{j}} \psi\right) \delta v$
$+\left(\sum k_{j} w+\sum k_{j} y_{j} \phi-\sum k_{j} x_{j} \theta\right) \delta w$
$+\left[\sum \frac{t_{j} c_{j}}{l_{j}} v+\sum k_{j} y_{j} w+\sum\left(t_{j} c_{j}+\frac{t_{j} c_{j}{ }^{2}}{l_{j}}+k_{j} y_{j}{ }^{2}\right) \phi\right.$

$$
-\sum k_{j} x_{j} y_{j} \theta+\left[\frac{t_{j} c_{j} x_{j}}{l_{j}} \psi\right] \delta \phi
$$

$$
\begin{aligned}
& +\left[-\sum \frac{t_{j}^{c_{j}}}{\ell_{j}} u-\sum k_{j} x_{j}^{w}-\sum k_{j} x_{j} y_{j} \phi\right. \\
& +\sum\left(t_{j} c_{j}+\frac{t_{j} c_{j}^{2}}{\ell}+k_{j} x_{j}^{2}\right) \theta+\left[\frac{t_{j}^{c_{j} y_{j}}}{\ell_{j}} \psi\right] \delta \theta \\
& +\left[-\sum \frac{t_{j} Y_{j}}{\ell_{j}} u+\sum \frac{t_{j} x_{j}}{\ell_{j}} v+\sum^{t_{j} c_{j} x_{j}} \frac{\ell_{j}}{} \phi\right. \\
& \left.\left.-\sum \frac{t_{j} c_{j} Y_{j}}{\ell j} \theta+\sum \frac{t_{j}\left(x_{j}^{2}+Y_{j}{ }^{2}\right)}{\ell_{j}} \right\rvert\, \delta \psi\right\}
\end{aligned}
$$

Since
(3.16) $\quad \delta \mathrm{V}=-\delta W_{t}$
we find from (3.15) that

$$
\text { (3.17) } \begin{aligned}
2 \mathrm{~V} & =\mathrm{c}_{11} \mathrm{u}^{2}+2 \mathrm{c}_{15} \mathrm{u} \theta+2 \mathrm{c}_{16} \mathrm{u} \psi \\
& +\mathrm{c}_{22} \mathrm{~V}^{2}+2 \mathrm{c}_{24} \mathrm{~V} \phi+2 \mathrm{c}_{25} \mathrm{~V} \psi \\
& +\mathrm{c}_{33} \mathrm{~W}^{2}+2 \mathrm{c}_{34} \mathrm{~W} \phi+2 \mathrm{c}_{35} \mathrm{w} \theta \\
& +\mathrm{c}_{44} \phi^{2}+2 \mathrm{c}_{45} \phi \theta+2 \mathrm{c}_{46} \phi \psi \\
& +\mathrm{c}_{55} \theta^{2}+2 \mathrm{c}_{56} \theta \psi+\mathrm{c}_{66} \psi^{2}
\end{aligned}
$$

where

$$
c_{11}=c_{22}=\sum_{\ell_{j}}^{t_{j}},-c_{15}=c_{24}=\sum \frac{t_{j} c_{j}}{\ell_{j}}
$$

$$
\begin{aligned}
c_{15} & =-\sum \frac{t_{j} y_{j}}{l_{j}}, \quad c_{26}=\sum \frac{t_{j} x_{j}}{l_{j}} \\
c_{33} & =\sum k_{j}, \quad c_{34}=\sum k_{j} y_{j}, \quad c_{35}=-\sum k_{j} x_{j} \\
(3.18) \quad c_{44} & =\sum\left(t_{j} c_{j}+\frac{t_{j} c_{j}^{2}}{l_{j}}+k_{j} y_{j}^{2}\right), c_{45}=-\sum k_{j} x_{j} y_{j}, \\
c_{46} & =\sum \frac{t_{j} x_{j} c_{j}}{l_{j}}, \quad c_{55}=\sum\left(t_{j} c_{j}+\frac{t_{j} c_{j}^{2}}{l_{j}}+k_{j} x_{j}^{2}\right. \\
c_{56} & =\sum \frac{t_{j} y_{j} c_{j}}{l_{j}}, \quad c_{66}=\sum \frac{t_{j}\left(x_{j}^{2}+y_{j}^{2}\right)}{l_{j}}
\end{aligned}
$$

The potential energy V of the system can be written as
(4.1) $V=\frac{1}{2} \sum k\left[\left(e_{j}+e_{j o}\right)^{2}-e_{j 0}{ }^{2}\right]-m g w$

However, now e_{j} must be evaluated up to 2 nd order terms since $k_{j} e_{j o} e_{j}$ appears in V. Thus, the form of e_{j} given by
(3.7) cannot be used.

Let us write (3.5) as
(4.2) $\quad{\underset{-R}{A}}^{j}=u_{j} \vec{I}+v_{j} \vec{J}+\left(w_{j}+\ell_{j}\right) \vec{K}$
where

$$
\begin{aligned}
& u_{j} \stackrel{2}{=} u-c_{j} \theta-y_{j} \psi-x_{j} \frac{\theta^{2}+\psi^{2}}{2} \\
& \text { (4.3) } \quad v_{j} \stackrel{2}{=} v+c_{j} \phi+x_{j} \psi+x_{j} \phi \theta-y_{j} \frac{\phi^{2}+\psi^{2}}{2} \\
& w_{j} \stackrel{2}{=} w+t_{j} \phi-x_{j} \theta+x_{j} \phi \psi+y_{j} \theta \phi+c_{j} \frac{\phi^{2}+\theta^{2}}{2}
\end{aligned}
$$

Now
(4.4) $\quad \ell_{j}+e_{j}=\left[u_{j}^{2}+v_{j}^{2}+\left(w_{j}+\ell_{j}\right)^{2}\right]^{\frac{1}{2}}$,

$$
\approx \ell_{j}\left[1+\frac{w_{j}}{\ell_{j}}+\frac{u_{j}{ }^{2}+v_{j}{ }^{\tau}}{2 \ell_{j}^{2}}\right] ;
$$

Here we have neglected the term $w_{j}{ }^{2}$ in comparison with $2 \ell_{j} w_{j}$. Thus,
(4.5) $\quad e_{j}=w_{j}+\frac{u_{j}^{2}+v_{j}^{2}}{2 \ell}$

The substitution of (4.5) into (4.1) yields
(4.6) $V=\frac{1}{2} \sum k_{j} e_{j}+\sum k_{j} e_{j o} w_{j}+\sum k_{j} e_{j o} \frac{u_{j}^{2}+v_{j}^{2}}{2 \ell_{j}}-m g w$

However,
(4.7) $k_{j} e_{j 0}-t_{j}$

Thus, (4.6) may be written as
(4.8) $V=\frac{1}{2} \sum k_{j} w_{j}^{2}+\sum t_{j} w_{j}+\sum t_{j} \frac{u_{j}^{2}+v_{j}^{2}}{2 l_{j}}-m g w$

We use (4.3) to obtain
(4.9) $\begin{aligned} V & =\frac{1 / 2}{} \sum k_{j}\left(w+y_{j} \phi-x_{j} \theta\right)^{2}+\sum t_{j}\left(w+y_{j} \phi-x_{j} \theta+x_{j} \phi \psi\right. \\ & \left.+y_{j} \theta \psi+c_{j} \frac{\phi^{2}+\theta^{2}}{2}\right) \\ & +\sum t_{j} \frac{\left(u-c_{j} \theta-y_{j} \psi\right)^{2}+\left(v+c_{j} \phi+x_{j} \psi\right)^{2}}{2 l_{j}}-m g w\end{aligned}$

Remembering (3.8), we finally obtain

$$
\begin{aligned}
2 v & =\sum \frac{t_{j}}{\ell_{j}} u^{2}-2 \sum \frac{t_{j} c_{j}}{l_{j}} u \theta-2 \sum \frac{t_{j} y_{j}}{\ell_{j}} u \psi \\
& +\sum \frac{t_{j}}{\ell_{j}} v^{2}+2 \sum \frac{t_{j} c_{j}}{l_{j}} v \phi+2 \sum \frac{t_{j} x_{j}}{l_{j}} v \psi \\
& +\sum k_{j} w^{2}+2 \sum k_{j} y_{j} w \phi-2 \sum k_{j} x_{j} w \theta \\
& +\sum\left(t_{j} c_{j}+\frac{t_{j} c_{j}^{2}}{l_{j}}+k_{j} y_{j}^{2}\right) \phi^{2}-2 \sum k_{j} x_{j} y_{j} \phi \theta+\sum \frac{t_{j}^{c_{j} x_{j}}}{l_{j}} \phi \psi
\end{aligned}
$$

$$
\begin{aligned}
& +\sum\left(t_{j} c_{j}+\frac{t_{j} c_{j}{ }^{2}}{\ell_{j}}+k_{j} x_{j}{ }^{2}\right) \theta^{2}+2 \sum \frac{t_{j} c_{j} y_{j}}{l_{j}} \theta \psi \\
& +\sum \frac{t_{j}\left(x_{j}{ }^{2}+y_{j}{ }^{2}\right)}{l_{j}} \psi^{2}
\end{aligned}
$$

This is the same result as obtained in (3.17).

5. Derivation of Kinetic Energy T.

The principal moments and products of inertia of the body with respect to the $G \xi \Pi \zeta$ axes are defined as
(5.1)

$$
\begin{aligned}
& A=\sum m_{j}\left(\eta_{j}^{2}+\zeta_{j}^{2}\right) \\
& B=\sum m_{j}\left(\zeta_{j}^{2}+\xi_{j}^{2}\right) \\
& C=\sum m_{j}\left(\xi_{j}^{2}+\eta_{j}^{2}\right)
\end{aligned}
$$

$$
\begin{aligned}
& F=\sum m_{j} \eta_{j}^{\zeta} j \\
& G=\sum m_{j} \zeta_{j} \xi_{j} \\
& H=m_{j} \xi_{j} \eta_{j}
\end{aligned}
$$

where m_{j} is a generic mass particle, and $\xi_{j}{ }^{\prime} \eta_{j}$, ζ_{j} are its coordinates with respect to $G \xi \eta \zeta$ axes.

We shall assume that the supporting structure is fixed in space. The velocity of G is then

$$
\text { (5.2) } \quad \vec{v}=u \vec{I}+v \vec{J}+w \vec{K}
$$

The angular velocity ω_{1} of the body is found in the usual way making use of (2.5); we find that

$$
(5.3) \vec{\omega}=\omega_{1} \vec{i}+\omega_{2} \vec{j}+\omega_{3} \vec{k}
$$

where

$$
\omega_{1}=\dot{\phi} \cos \theta \cos \psi+\dot{\theta} \sin \psi \stackrel{2}{=} \dot{\phi}+\dot{\theta} \psi \stackrel{1}{=} \dot{\phi}
$$

(5.4) $\omega_{2}=-\dot{\phi} \cos \theta \sin \psi+\dot{\theta} \cos \psi \stackrel{2}{=}-\dot{\phi} \psi+\dot{\theta} \stackrel{1}{=} \dot{\theta}$

$$
\omega_{3}=\dot{\phi} \sin \theta+\dot{\psi} \stackrel{2}{=} \dot{\phi} \theta+\dot{\psi} \stackrel{1}{=} \dot{\psi}
$$

We now use the theorem on kinetic energy of a rigid body; keeping only 2 nd order term; we obtain
(5.5) $2 \mathrm{~T}=\mathrm{a}_{11} \dot{\mathrm{u}}^{2}+\mathrm{a}_{22} \dot{\mathrm{v}}^{2}+\mathrm{a}_{3} \dot{\mathrm{w}}^{2}$

$$
+a_{44} \dot{\phi}^{2}+2 a_{45} \dot{\phi} \dot{\theta}+2 a_{48} \dot{\phi} \dot{\psi}
$$

$$
+a_{55} \dot{\theta}^{2}+2 a_{56} \dot{\theta} \dot{\psi}
$$

$$
+a_{66} \dot{\psi}^{2}
$$

Here

$$
\begin{equation*}
a_{11}=a_{22}=a_{33}=m, \quad a_{44}=A, \quad a_{55}=B, \quad a_{66}=C \tag{5.6}
\end{equation*}
$$

$$
a_{45}=-H, \quad a_{46}=-G, \quad a_{56}=-F
$$

We use Lagrange's equation and T and V to derive the equations of free motion.

$$
\begin{align*}
& a_{11} \ddot{u}+c_{11} u+c_{15} \theta+c_{16} \psi=0, \\
& a_{22} \ddot{\mathrm{~V}}+\mathrm{C}_{22} \mathrm{~V}+\mathrm{C}_{24} \phi+\mathrm{C}_{26} \psi=0 \\
& \mathrm{a}_{3} \ddot{\mathrm{w}}+\mathrm{C}_{3}{ }_{3} \mathrm{~W}+\mathrm{C}_{34} \phi+\mathrm{C}_{35} \theta=0 \text {, } \\
& C_{24} V+C_{34} W+a_{44} \ddot{\phi}+c_{44} \phi+a_{45} \ddot{\theta}+c_{45} \theta \\
& +a_{46} \ddot{\psi}+c_{46} \psi=0 \text {, } \tag{6.1}\\
& C_{15} u+C_{35} W+a_{45} \ddot{\phi}+C_{45} \phi+a_{55} \ddot{\theta}+C_{55} \theta \\
& +\mathrm{a}_{56} \ddot{\psi}+\mathrm{c}_{56} \psi=0 \text {, } \\
& \mathrm{C}_{16} \mathrm{u}+\mathrm{C}_{26} \mathrm{~V}+\mathrm{a}_{46} \ddot{\phi}+\mathrm{C}_{46} \phi+\mathrm{a}_{56} \ddot{\theta}+\mathrm{C}_{56} \theta \\
& +a_{66} \ddot{\psi}+c_{66} \psi=0
\end{align*}
$$

7. Results for Unit \# 3, Paradise

Table 7.1 shows results obtained for Unit \# 3 of Paradise.

Table 7.1

Mode Numbers	1	2	3	4	5	6
N.f. in Hz	.125	.209	.214	3.17	3.96	9.83

Mode

u	30.4	0	15.9	0	-.03	0
v	0	64	0	-.36	0	0
w	0	-.08	0	16	0	-62
ϕ	0	0	0	-.97	0	.24
θ	0	0	0	-.97	0	.24
ψ	-1.87	0	.07	0	.019	0

The constants on which these results are based are as

follows:

$$
\begin{aligned}
& A=3.19 \mathrm{x} 10^{6} \mathrm{k} . \mathrm{ft} . \sec ^{2} . \quad, \quad \mathrm{m}=750 \mathrm{k} . \sec ^{2} . / \mathrm{ft} . \\
& \mathrm{B}=3.87 \times 10^{6} \mathrm{"} \mathrm{"} \mathrm{"} \\
& \mathrm{C}=2.75 \times 10^{6} \mathrm{n} \quad \text { " " } \\
& \mathrm{F}=.44 \times 10^{6} \mathrm{n} \quad \mathrm{n} \quad \mathrm{n} \\
& \mathrm{G}=\mathrm{H}=0 \\
& c_{11}=c_{22}=\sum \frac{t_{j}}{\ell_{j}}=1309.13=1.31 \times 10^{3} \mathrm{k} / \mathrm{ft} \\
& c_{15}=c_{24}=\sum \frac{t_{j} c_{j}}{l_{j}}=112,387.61=1.12 \times 10^{9} \mathrm{k}
\end{aligned}
$$

$$
\begin{aligned}
& c_{16}=-\sum \frac{t_{j} y_{j}}{l_{j}}=13,780.20=1.38 \times 10^{4} \mathrm{k} \\
& c_{26}=\frac{t_{j} x_{j}}{l_{j}}=0.00 \\
& \mathrm{c}_{33}=\sum \mathrm{k}_{\mathrm{j}}=2,712,163.40=2.71 \times 10^{6} \mathrm{k} / \mathrm{ft} \\
& c_{34}=\sum k_{j} y_{j}=39,964,044.78=-40 \times 10^{6} \mathrm{k} \\
& c_{35}=-\sum k_{j} x_{j}=0.00 \\
& c_{44}=\sum\left(t_{j} c_{j}+\frac{t_{j} c_{j}^{2}}{l_{j}}+k_{j} y_{j}{ }^{2}\right)=9.649 \times 10^{6}+1.590 \times 10^{6} \\
& +1.918 \times 10^{9}=1.929 \times 10^{9} \\
& =1.93 \times 10^{9} \mathrm{k} . f \mathrm{ft} \text {. } \\
& c_{45}=-\sum k_{j} x_{j} y_{j}=0.00 \\
& c_{46}=\sum \frac{t_{j} x_{j} c_{j}}{l_{j}}=0.00 \\
& c_{55}=\sum\left(t_{j} c_{j}+\frac{t_{j} c_{j}{ }^{2}}{l_{j}}+k_{j} x_{j}{ }^{2}\right)=2.35 \times 10^{9} \mathrm{k} . f t . \\
& \mathrm{C}_{56}=\sum \frac{\mathrm{t}_{j} \mathrm{y}_{j} \mathrm{x}_{\mathrm{j}}}{\ell_{j}}=-1,169,196.26=-1.17 \times 10^{9} \mathrm{k} . \mathrm{ft} . \\
& c_{66}=\sum \frac{t_{j}\left(x_{j}{ }^{2}+y_{j}{ }^{2}\right)}{\ell_{j}}=1,914,630.12=1.91 \times 10^{6} \mathrm{k} . \mathrm{ft} .
\end{aligned}
$$

