Seismic Response

of a

Rigid Steam Generator

suspended from a

Simplified Supporting Structure

Prepared by

J.L. Bogdanoff, H. Lo, and G. Guthrie

School of Aeronautics and Astronautics Purdue University West Lafayette, Indiana

Submitted to

THE NATIONAL SCIENCE FOUNDATION

February 1978

### Abstract

It is shown by means of a linear model that the dynamic loads in the vertical support rods of a steam generator under horizontal seismic disturbance may be significant and are dependent upon how the steam generator is braced laterally. The limitations of a linear analysis are discussed. The main conclusion is that the dynamic loads in the vertical support rods receive study during the design process.

# Acknowledgement

The support of the National Science Foundation under Grant No. GI-41897 is gratefully acknowledged.

> , г 11 - ј

#### 1. Introduction

This report continues the investigation started in [1]. We observed in [1] that finite element computer codes such as SAP IV and NASTRAN do not take into account the potential energy of the pendulum type motion encountered in a SG supported by a set of vertical support rods. Recall that in a simple pendulum the vertical rise in the bob is of second order in small lateral displacements; a linear analysis omits this effect on which pendulum motion depends. This may be a significant omission when estimating the response of a SG to a seismic disturbance. In [1], we made a detailed analysis of the potential energy stored in the vertical rods under small displacements of the SG relative to the structure from which the supporting rods are suspended. The rods were treated as The axial elasticities of the rods can be adjusted to elastic. contain local elasticities at either or both ends; thus, the fact that some rods are spring supported at their upper end can Bending potential energy was neglected be taken into account. because the rods have very small diameters relative to their lengths, and because little bending restraint is provided by the boundary conditions at the ends. Rods of different lengths due to different attachment elevations both at the top support and on the SG were considered. Hence, individual properties of each vertical support rod can be taken into account in forming the potential energy stored in these rods in an arbitrary, small displacement of the SG relative to the top of its supporting structure which is regarded as rigid. The kinetic energy of the

I

SG treated as a rigid body and moving relative to the structure from which the vertical rods are attached was then derived. From the two expressions for the energies, the equations of motion were obtained. The natural frequencies (nf's) and normal modes follow in the usual manner, and, with them, an equivalent system of vertical supporting rods giving the same nf's and normal modes was constructed for use in the computer codes.

It became apparent in carrying out the work reported in [1] that during motion the dynamic loads at any time t in the vertical support rods could be very different from their static values because of the geometry of the system. An example which helps illustrate this possibility is the bifilar pendulum; in torsion the strings at the ends of the horizontal member cause the rod to lift vertically and any strings in between the ends would thereby cease to carry any load. Since the SG is suspended by hundreds of support rods, the possibility of unloading some and overloading others during motion becomes readily apparent. Further, it becomes clear that the geometry of the lateral attachments of the SG to SS could significantly influence the loads in the vertical support rods during motion and visa versa. An investigation of the loads in vertical support rods and horizontal tie rods during response to seismic disturbances thus becomes of some interest.

We shall investigate in this report the loads in the vertical support rods and in the horizontal tie rods as a function of their geometric configuration when the base of a simple supporting structure is subject to a set of earthquake accelerograms

suitably normalized. In order to focus on this problem, we shall only consider a very simple supporting structure. Three dimensional linear equations of motion are derived assuming that the vertical support rods can carry compression, the SG may be treated as a rigid body, and the top girder system forms a rigid body. Numerical results are presented in a two-dimensional example. As the number of possible arrangements, even in the two-dimensional case, is vast, results obtained must be considered as an indicator of a possible problem area.

We first describe the simple system considered; next, a procedure for deriving the three-dimensional equations of motion is presented; a two-dimensional numerical example is then considered; we close with a discussion and conclusions.

A word of caution on the interpretation of numerical results is in order. The analysis is a linear one. This means, for example, that during the motion the vertical support rods will carry compression; since the upper ends of the rods can freely lift up from their supports, compressive loads actually cannot be carried; thus, the actual distribution of loads in the vertical support rods will be different from what is obtained by our analysis. Additional comments on the limitations of a linear analysis will be given below at the appropriate place.



Figure 2.1

## 2. Equations of Motion

Figure 2.1 is essentially the same as Figure 1.1 of [1], except that the top 1234 of the SS and its supporting columns 11', 22', 33', 44' are shown. The top 1234 of the SS is the girder-beam system of the actual structure; we assume 1234 is rigid. The base of the SS is 1'2'3'4'; we assume 1'2'3'4' is rigid. The rectangular cartesian coordinate system OXYZ with unit vectors  $\vec{I}$ ,  $\vec{J}$ ,  $\vec{K}$  is fixed in space, with the OXY plane horizontal. The base 1'2'3'4' is subject to seismic disturbances in its horizontal plane. The columns 11', 22', 33', 44' can only deform in lateral shear; they remain straight throughout the motion, each is of length L, and they do not deform vertically; this assumption is made to simplify the computation of the lateral displacement of a point of attachment to the frame of a horizontal tie rod. Thus, the top 1234 only can move in its horizontal plane. The O<sub>1</sub>xyz rectangular cartesian coordinate system is fixed in 1234; at rest, O, lies on the line containing  $\vec{k}$ ;  $O_1 xy$  is parallel to OXY; and  $\vec{i}_1$ ,  $\vec{j}_1$ ,  $\vec{k}_1$  are unit vectors along the Oxyz-axes. G<sub>1</sub> is the mass center of the top 1234. G is the mass center of the SG; at rest, G lies on the line containing  $\vec{K}$ . Thus, O, O<sub>1</sub>, G lie on the same vertical line when the system is at rest. The rectangular cartesian coordinates  $G\xi\eta\zeta$  with unit vectors  $\vec{i}$ ,  $\vec{j}$ ,  $\vec{k}$  are fixed in the SG.

We show only the j<sup>th</sup> vertical support rod in Figure 2.1 in order not to clutter the figure. For simplicity, we show that point of attachment  $A_{j_0}$  of the j<sup>th</sup> rod to the top is in the  $0_1xy$  plane with coordinates  $(x_j, y_j, 0)$  relative to the  $0_1xyz$ -axes, and the point of attachment  $A_j$  to the SG is in the top of the SG. The length of the j<sup>th</sup> rod is  $l_j$ . Actually, the rod geometry we will use is shown in Figure 1.1 of [1] (See Appendix A). We assume n rods.

The horizontal displacement of the base 1'2'3'4' due to a seismic disturbance will be denoted by  $x_0(t)$ ,  $y_0(t)$ ; these displacement components are along  $\vec{I}$  and  $\vec{J}$ , respectively.

The displacement of the top 1234 with respect to the base 1'2'3'4' is denoted by  $x_1$ ,  $y_1$ ,  $\psi_1$ , where  $x_1$ ,  $y_1$  are the component displacements of  $0_1$ , and  $\psi_1$  is the rotation about a vertical line through  $0_1$  parallel to  $\vec{k}_1$  or  $\vec{k}$  and positive in the right-hand sense.

The displacement components of G of the SG with respect to 1234 will be denoted by u, v, w,  $\phi$ ,  $\theta$ ,  $\psi$  where u, v, w are the translations parallel to the axes and  $\phi$ ,  $\theta$ ,  $\psi$  are the rotations about the axes. The coordinates u, v, w,  $\phi$ ,  $\theta$ ,  $\psi$ are taken with respect to 1234 since the results in [1] are with respect to the top supporting structure.

The absolute displacement components of O1 are

(2.1) 
$$x_0 + x_1, y_0 + y_1, \psi$$
;

and the absolute displacement components of G are

(2.2)  $u + x_0 + x_1, v + y_0 + y_1, w, \phi, \theta, \psi + \psi_1$ 

Let the coordinates of  $G_1$  with respect to the Oxy-axes be  $\overline{x}$  and  $\overline{y}$ . Then, the kinetic energy  $T_1$  of 1234 is given by

(2.3) 
$$2T_1 = m_1 [(\dot{x}_1 + \dot{x}_0 - \bar{y}\dot{\psi}_1)^2 + (\dot{y}_1 + \dot{y}_0 + \bar{x}\psi_1)^2] + C_1 \psi_1^2,$$

where  $m_1$  is the mass and  $C_1$  is the moment of inertia about a line through  $G_1$  parallel to  $\vec{k}$  of the rigid mass 1234. The kinetic energy of the SG is taken from [1] with suitable modification; it is

(2.4) 
$$2T_{SG} = a_{11}(\dot{u} + \dot{x}_{0} + \dot{x}_{1})^{2} + a_{22}(\dot{v} + \dot{y}_{0} + \dot{y}_{1})^{2} + a_{33}\dot{w}^{2}$$
  
+  $a_{44}\dot{\phi}^{2} + 2a_{45}\dot{\phi}\dot{\theta} + 2a_{46}\dot{\phi}(\dot{\psi} + \dot{\psi}_{1})$   
+  $a_{55}\dot{\theta}^{2} + 2a_{56}\dot{\theta}(\dot{\psi} + \dot{\psi}_{1})$   
+  $a_{66}(\dot{\psi} + \dot{\psi}_{1})^{2}$ 

where  $a_{11} = a_{22} = a_{33} = m$  the mass of the SG,  $a_{44} = A$ ,  $a_{55} = B$ ,  $a_{66} = C$ ,  $A_{45} = -H$ ,  $a_{46} = -G$ ,  $a_{56} = -F$ , and A, B, C, F, G, H are the moments and products of inertia of the SG with respect to the G $\xi$ n $\zeta$  - axes. The kinetic energy of the system is

(2.5) T = T<sub>1</sub> + T<sub>SG</sub>

The potential energy of the SS excluding the horizontal tie rods will be taken as

(2.6) 
$$2V_1 = k_{11}x_1^2 + 2k_{12}x_1y_1 + 2k_{13}x_1\psi_1 + k_{22}y_1^2 + 2k_{23}y_1\psi_1 + k_{33}\psi_1^2;$$

this form only depends upon the deformation of the SS with respect to the base. The potential energy of the SG including the vertical support rods and excluding the horizontal tie rods depends only upon the deformation of this system with respect to 1234; thus it is exactly the same as derived in [1], and is

$$(2.7) \quad 2v_{SG} = c_{11}u^{2} + 2c_{15}u\theta + 2c_{16}u\psi + c_{22}v^{2} + 2c_{24}v\phi + 2c_{26}v\psi + c_{33}w^{2} + 2c_{34}w\phi + 2c_{35}w\theta + c_{44}\phi^{2} + 2c_{34}\phi\theta + 2c_{46}\phi\psi + c_{55}\theta^{2} + 2c_{56}\theta\psi + c_{66}\psi^{2}$$

where for the j<sup>th</sup> supporting rod t<sub>j</sub> is it's static tension, c<sub>j</sub> is the vertical distance above  $G\xi\eta\zeta$  plane of point A<sub>j</sub>, where the rod attaches to SG, l<sub>j</sub> is its length, (x<sub>j</sub>, y<sub>j</sub>) are the x,ycoordinates of A<sub>j</sub>, k<sub>j</sub> is the spring constant of the rod and it's attachments, and

$$(2.8) \begin{cases} c_{11} = c_{12} = \sum_{i=1}^{t} \frac{1}{j}, -c_{15} = c_{24} = \sum_{i=1}^{t} \frac{1}{j}, \\ c_{16} = -\sum_{i=1}^{t} \frac{1}{j}, c_{26} = \sum_{i=1}^{t} \frac{1}{j}, \\ c_{33} = \sum_{i=1}^{t} \frac{1}{j}, c_{34} = \sum_{i=1}^{t} \frac{1}{j}, c_{35} = -\sum_{i=1}^{t} \frac{1}{j}, \\ c_{44} = \sum_{i=1}^{t} \frac{1}{i} \frac{1}{j}, c_{55} = \sum_{i=1}^{t} \frac{1}{i} \frac{1}{j}, c_{45} = -\sum_{i=1}^{t} \frac{1}{i} \frac{1}{j}, \\ c_{46} = \sum_{i=1}^{t} \frac{1}{i} \frac{1}{j}, c_{55} = \sum_{i=1}^{t} \frac{1}{i} \frac{1}{i} \frac{1}{j}, c_{56} = \sum_{i=1}^{t} \frac{1}{i} \frac{1}{j}, c_{66} = \sum_{i=1}^{t} \frac{1}{i} \frac{1}{i} \frac{1}{j}, c_{66} = \sum_{i=1}^{t} \frac{1}{i} \frac{1}{i} \frac{1}{j}, c_{66} = \sum_{i=1}^{t} \frac{1}{i} \frac$$

The potential energy of deformation of a horizontal tie rod depends upon the relative displacement of its points of attachment to the SG and SS. This means we need the horizontal displacement components of any point of the SG and on the SS relative to the base 1'2'3'4'.

Let  $Q_i$  be a point of the SG; let its coordinates relative to the  $G\xi\eta\zeta$ -axes be  $(\xi_i, \eta_i, \zeta_i)$ . Then, the horizontal components of its displacement relative to 1'2'3'4' are

(2.9) 
$$a_{i} = x_{i} + u - \eta_{i}(\psi + \psi_{1}) + \zeta_{i}\theta, b_{i} = y_{i} + v + \xi_{i}(\psi + \psi_{1}) - \zeta_{i}\phi.$$

A horizontal tie rod may connect to any point on the SS; it may connect to one of the supporting columns; it also may connect to some point between columns. If it connects to a point between columns, we will assume that this point has horizontal displacement components that are of the same form as thos on a column at the same elevation with suitable xyz-coordinates. Thus, we need the horizontal displacement components of a point  $P_i$  on a column (as shown); we then use this form of the displacement components if  $P_i$  is not on a column. We assume moment free boundary conditions for the rods. Let  $L_0$  be the column length; let  $(\underline{x}_i, \underline{y}_i, \underline{z}_i)$  be the coordinates relative to  $O_1$ xyz-coordinates of a point  $P_i$ . The horizontal components of the components of displacement of  $P_i$  relative to 1'2'3'4' are

(2.10) 
$$c_{i} = x_{1} \frac{L_{0} - \underline{z}_{i}}{L_{0}} - \underline{y}_{i}\psi_{1} \frac{L_{0} - \underline{z}_{i}}{L_{0}}, \quad d_{i} = y_{1} \frac{L_{0} - \underline{z}_{i}}{L_{0}} + \underline{x}_{i}\psi_{1} \frac{L_{0} - \underline{z}_{i}}{L_{0}}$$

The components of the change in length of  $\overline{Q_i P_i}$  are

(2.11) 
$$a_i - c_i$$
,  $b_i - d_i$ 

Let  $l_i$  denote the length of  $\overline{Q_i P_i}$ ; then the direction cosines of  $\overline{Q_i P_i}$  before deformation are

(2.12) 
$$\lambda_{i} = (\xi_{i} - \underline{x}_{i})/l_{i}, \ \mu_{i} = (\eta_{i} - \underline{y}_{i})/l_{i};$$

Let  $K_i$  denote the spring constant of the horizontal tie rod  $\overline{Q_i P_i}$  and its connections to the SG and SS. The potential energy of deformation of  $\overline{Q_i P_i}$  is then

$$\frac{1}{2} \kappa_{i} [\lambda_{i} (a_{i} - c_{i}) + \mu_{i} (b_{i} - d_{i})]^{2}$$

Hence, the potential energy of all the horizontal tie rods is

$$(2.13) \quad 2V_{\text{TR}} = \sum_{i=1}^{K} \left[ \lambda_{i} \left\{ \frac{z_{i}}{L_{o}} \times_{1} + y - \eta_{i} \psi + \zeta_{i} \theta + \left( y_{i} \frac{L_{o} - z_{i}}{L_{o}} - \eta_{i} \right) \psi_{1} \right\} \right] \\ + \mu_{i} \left\{ \frac{z_{i}}{L_{o}} y_{1} + v + \xi_{i} \psi - \zeta_{i} \phi - \left( \underline{x}_{i} \frac{L_{o} - z_{i}}{L_{o}} - \xi_{i} \right) \psi_{1} \right\} \right]^{2}$$

The potential energy of the system is

(2.14)  $V = V_1 + V_{SG} + V_{TR}$ 

We take for the dissipation function F the following form

$$(2.15) \quad 2F = \alpha V_{1} + \alpha V_{SG} \\ + \sum_{i} \beta_{i} [\lambda_{i} \{ \frac{z_{i}}{L_{o}} \dot{x}_{1} + \dot{u} - \eta_{i} \dot{\psi} + \dot{\zeta}_{i} \dot{\theta} + (\underline{Y}_{i} \frac{L_{o} - \underline{Y}_{i}}{L_{o}} - \eta_{i}) \dot{\psi}_{1} \} \\ + \mu_{i} \{ \frac{z_{i}}{L_{o}} \dot{y}_{1} + \dot{v} + \xi_{i} \dot{\psi} - \zeta_{i} \dot{\phi} - (\underline{x}_{i} \frac{L_{o} - \underline{z}_{i}}{L_{o}} - \xi_{i}) \dot{\psi}_{1} \} ]^{2}$$

where  $\alpha > 0$  is a constant and  $\beta_i$  is the damping parameter for  $Q_i P_i$ . The last term in the dissipation function was selected because it permits the possibility of a tie rod being replaced by a viscous damper.

The equations of motion are found using Lagrange's equations. For example, the Lagrange equation corresponding to the u-coordinates is

(2.16) 
$$\frac{d}{dt} \left(\frac{\partial T}{\partial u}\right) - \frac{\partial T}{\partial u} + \frac{\partial F}{\partial u} + \frac{\partial V}{\partial u} = 0$$

The equations for the other coordinates are identical in form to this one with u replaced by the other coordinates in turn. T, V, and F are defined in (2.5), (2.14) and (2.15), respectively.



Figure 3.1

### 3. Two-dimensional Example

We consider the two dimensional version of the general problem shown in Figure 3.1. The coordinates of interest are

u, w, θ, x<sub>1</sub>,

with base motion  $x_0$ ; thus, there are four degrees of freedom. We assume several horizontal tie rods. Using the results of Section 2, we find

$$\begin{cases} 2T = m_{1}(\dot{x}_{1}+\dot{x}_{0})^{2} + m[\dot{u}+\dot{x}_{1}+\dot{x}_{0})^{2} + \dot{w}^{2}] + B\dot{\Theta}^{2} \\ 2V = c_{11}u^{2} + 2c_{15}u\Theta + c_{33}w^{2} + 2c_{35}w\Theta + c_{55}\Theta^{2} \\ + k_{11}x_{1}^{2} + \sum K_{i}(\frac{z_{i}}{L_{o}}x_{1} + u + z_{1}\Theta)^{2} \\ 2F = b_{11}\dot{u}^{2} + 2b_{15}\dot{u}\dot{\Theta} + b_{33}\dot{w}^{2} + 2b_{35}\dot{w}\dot{\Theta} + b_{55}^{*2} + 11\dot{x}_{1}^{2} \\ + \sum \beta_{i}(\frac{z_{i}}{L_{o}}\dot{x}_{1} + \dot{u} + z_{i}\dot{\Theta})^{2} \end{cases}$$

where  $b_{ij} = \alpha c_{ij}$ ,  $\beta_{11} = \alpha k_{11}$ . The equations of motion are



Figure 3.2

The change in the tension in the j<sup>th</sup> vertical support rod is (3.3)  $T_j - t_j = k_j(w - x_j\theta) + \alpha k_j(\dot{w} - x_j\dot{\theta})$ and the force in the i<sup>th</sup> horizontal tie rod is

(3.4) 
$$F_i = K_i (u + \zeta_i \theta + \frac{z_i}{L_o} x_i) + \beta_i (\dot{u} + \zeta_i \dot{\theta} + \frac{z_i}{L_o} \dot{x}_i)$$

The specific numerical two-dimensional example is sketched in Figure 3.2. There are seven equally spaced vertical support rods with the center one directly above G. G is at the geometric center of the SG. There is one horizontal tie rod with three sets of values for  $\zeta_1$  and  $\underline{z}_1$  given in the figure. The numerical data not given in the figure are as follows:

$$m = 750M$$
,  $m_1 = 250M$ ,  $B = 3 \times 10^6 ML^2$   
 $t_1 = 3,428F$ ,  $\alpha = 0.001$ 

Case a) Vertical support rods are of the same length

$$c_{11} = 631F/L, c_{15} = -63,100F, c_{33} = 2,8x10^{5}F/L,$$

$$c_{35} = 0, c_{55} = 3.19x10^{8}FL, l_{i} = l = 38', c_{j} = c = 100'$$

$$k_{11} = 1.65x10^{5}F, K_{1} = 2x10^{5}F, k_{j} = 4x10^{4}F, \beta_{1} = 0$$
Case b) Same as a) except,  $K_{1} = 5x10^{4}F, \beta_{1} = 0$ 
Case c) Same as a) except,  $K_{1} = 0, \beta_{1} = 1.6x10^{4} FT/L$ 
Case d) Same as a) except,  $K_{1} = 0, \beta_{1} = 8.10^{3} FT/L$ 
Case e) Vertical support rods are of variable length
$$c_{11} = 965F, c_{15} = -1.09x10^{5}F, c_{33} = 4.27x10^{5}F, c_{35} = 0,$$

$$c_{55} = 3.829x10^{8}FL$$

$$l_{j} = 38', 26.9', 20.2', 18', 20.2', 26.9', 38',$$

$$c_{j} = c = 100', K_{1} = 2x10^{5}F, 1 = 0$$

$$k_{11} = 1.65x10^{5}F, k_{j} = 4x10^{4}F, 5.65x10^{4}F, 7.5x10^{4}F,$$

$$8.4x10^{4}F, 7.5x10^{4}F, 5.65x10^{4}F, 4x10^{4}F$$

The units are

F = force in kips
M = mass in kips second<sup>2</sup>/foot
L = length in feet
T = time in seconds



The computations are made for the five cases each with the three sets of  $\zeta_1$ ,  $\underline{z}_1$ .

The fact that  $c_{35} = 0$  means the vertical motion w of G does not couple with the motion described by u, 0,  $x_1$ . In recording natural frequencies, we only consider the u, 0,  $x_1$  motion; the natural frequencies are given in Table 3.1.

Thirty six earthquake accelerograms normalized to the maximum absolute value of one g are used for  $\ddot{x}_0$ . The thirty six accelerograms are identified in Table 3.2. They come from [2].

We compute for each normalized accelerogram the extreme of  $x_1$ , u,  $\theta$ ,  $T_1-t_1$ , and  $F_1$  for the five sets of data. The extremes of  $T_1-t_1$ , and  $F_1$  are listed in Table 3.3. We record the theoretical line [3] of  $|T_1-t_1|$  and  $|F_1|$  in Tables 3.4. One set of extreme value results and the corresponding theoretical line is shown in Figure 3.3.

Table 3.1

.

|     |                                         | lst  | 2nd      | 310     | £    |
|-----|-----------------------------------------|------|----------|---------|------|
| a)  | $\zeta_1 = -70, \ \underline{z}_1 = 68$ | 1.00 | Hz 2.88  | Hz 6.00 | ) Hz |
|     | $\zeta_1 = 0, \ \underline{z}_1 = 138$  | 1.64 | Hz 2.24  | Hz 4.75 | 5 Hz |
|     | $\zeta_1 = 70, \ \underline{z}_1 = 208$ | 1.07 | Hz 3.75  | Hz 4.46 | 5 Hz |
| b)  | $\zeta_1 = -70, \ \underline{z}_1 = 68$ | .87  | Hz 2.24  | Hz 4.49 | Ηz   |
|     | $\zeta_1 = 0, \underline{z}_1 = 138$    | 1.26 | Hz 1.64  | Hz 4.23 | Ηz   |
|     | ζ <sub>1</sub> =70, <u>z</u> 1=208      | .92  | Hz 2.36  | Hz 4.12 | Ηz   |
| e)  | $\zeta_1 = -70, \ \underline{z}_1 = 68$ | 1.07 | Hz 2.93  | Hz 6.01 | Hz   |
|     | $\zeta_1 = 0$ , $\underline{z}_1 = 138$ | 1.75 | Hz .2.24 | Hz 4.76 | Hz   |
|     | $\zeta_1 = 70, \ \underline{z}_1 = 208$ | 1.16 | Hz 3.78  | Hz 4.48 | Ηz   |
| C & | d)                                      | .144 | Hz 1.64  | Hz 4.10 | Ηz   |

,

Table 3.2

. .

| Earthquake No. | Earthquake Name                                                                   |
|----------------|-----------------------------------------------------------------------------------|
| 1              | Imperial Valley Earthquake COMP SOOE El Centro<br>Site Imperial Valley Irrigation |
| 2              | Imperial Valley Earthquake COMP S90W El Centro<br>Site Imperial Valley Irrigation |
| 3              | Northwest California Earthqucomp S44W Ferndale<br>City Hall                       |
| 4              | Northwest California Earthqucomp N46W Ferndale<br>City Hall                       |
| 5              | Kern County, California Eartcomp N2lE Taft<br>Lincoln School Tunnel               |
| 6              | Kern County, California Eartcomp S69E Taft<br>Lincoln School Tunnel               |
| 7              | Eureka Earthquake COMP N11W Eureka Federal Bldg                                   |
| 8              | Eureka Earthquake COMP N79E Eureka Federal Bldg                                   |
| 9              | Eureka Earthquake COMP N44E Ferndale City Hall                                    |
| 10             | Eureka Earthquake COMP N46W Ferndale City Hall                                    |
| 11             | San Francisco Earthquake COMP N10E San Fran-<br>cisco Golden Gate Park            |
| 12             | San Francisco Earthquake COMP S80E San Fran-<br>cosco Golden Gate Park            |
| 13             | Hollister Earthquake COMP N89W Hollister City<br>Hall                             |
| 14             | Lower California Earthquake COMP S <b>00</b> W El Centro<br>Imperial Valley       |
| 15             | Lower California Earthquake COMP S90W El Centro<br>Imperial Valley                |
| 16             | Helena, Montana Earthquake COMP S00W Helena,<br>Montana Carroll College           |
| 17             | Helena, Montana Earthquake COMP S90W Helena,<br>Montana Carroll College           |
| 18             | Western Washington Earthquakcomp N04W Olympia,<br>Washington Hwy Test Lab         |
| 19             | Western Washington Earthquakcomp N86E Olympia,<br>Washington Hwy Test Lab         |
| 20             | Puget Sound, Washington Eartcomp S04E Olympia,<br>Washington Hwy Test Lab         |

.

# Table 3.2 (cont.)

.

.

.

.

| Earthquake No. | Earthquake Name                                                                       |
|----------------|---------------------------------------------------------------------------------------|
| 21             | Puget Sound, Washington Eartcomp S86W Olympia,<br>Washington Hwy Test Lab             |
| 22             | Parkfield, California Earthqcomp N65E Cholame,<br>Shandon, California Array No. 2     |
| 23             | Parkfield, California Earthqcomp N05W Cholame,<br>Shandon, California Array No. 5     |
| 24             | Parkfield, California Earthqcomp N85E Cholame,<br>Shandon, California Array No. 5     |
| 25             | Parkfield, California Earthqcomp N50E Cholame,<br>Shandon, California Array No. 8     |
| 26             | Parkfield, California Earthqcomp N40W Cholame,<br>Shandon, California Array No. 8     |
| 27             | Parkfield, California Earthqcomp N65W Temblor,<br>California No. 2                    |
| 28             | Parkfield, California Earthqcomp S25W Temblor,<br>California No. 2                    |
| 29             | San Fernando Earthquake COMP S16E Pacoima Dam,<br>California                          |
| 30             | San Fernando Earthquake COMP S74W Pacoima Dam,<br>California                          |
| 31             | San Fernando Earthquake COMP N00W 8244 Orion Blvd.<br>1st Floor, Los Angeles, Cal.    |
| 32             | San Fernando Earthquake COMP S90W 8244 Orion Blvd.<br>1st Floor, Los Angeles, Cal.    |
| 33             | San Fernando Earthquake COMP N2lE Castaic Old<br>Ridge Route, Cal.                    |
| 34             | San Fernando Earthquake COMP N69W Castaic Old<br>Ridge Route, Cal.                    |
| 35             | San Fernando Earthquake COMP NllE 15250 Ventura<br>Blvd., Basement, Los Angeles, Cal. |
| 36             | San Fernando Earthquake COMP N79W 15250 Ventura<br>Blvd., Basement, Los Angeles, Cal. |

.

21

*.* 

Table 3.4

\$

a) 
$$\zeta_1 = -70, \ \underline{z}_1 = 68$$
  
 $|F_1|_y = 32300 + 16900 \ y$   
 $|T_1 - t_1|_y = 14400 + 6400 \ y$   
 $|T_1 - t_1|_y = 65300 + 43000 \ y$   
 $|T_1 - t_1|_y = 169 + 110 \ y$   
 $= +70, = 208$   
 $|F_1|_y = 35100 + 12500 \ y$   
 $|T_1 - t_1|_y = 12200 + 5800 \ y$   
b)  $\zeta_1 = -70, \ \underline{z}_1 = 68$   
 $|F_1|_y = 26200 + 16300 \ y$   
 $|T_1 - t_1|_y = 14700 + 9710 \ y$   
 $= 0, = 138$   
 $|F_1|_y = 30000 + 19400 \ y$   
 $|T_1 - t_1|_y = 870 + 636 \ y$   
 $= +70, = 208$   
 $|F_1|_y = 28000 + 12300 \ y$   
 $|T_1 - t_1|_y = 14600 + 6190 \ y$   
c)  $\zeta_1 = -70, \ \underline{z}_1 = 68$   
 $|F_1|_y = 10700 + 4910 \ y$   
 $|T_1 - t_1|_y = 6550 + 3820 \ y$   
 $= 0, = 138$   
 $|F_1|_y = 15070 + 3190 \ y$   
 $|T_1 - t_1|_y = 104 + 76 \ y$   
 $= +70, = 208$   
 $|F_1|_y = 11000 + 4760 \ y$   
 $|T_1 - t_1|_y = 6680 + 3630 \ y$   
d)  $\zeta_1 = -70, \ \underline{z}_1 = 68$   
 $|F_1|_y = 8600 + 4250 \ y$   
 $|T_1 - t_1|_y = 5300 + 3200 \ y$ 

Table 3.4 (cont.)

\*

•

. .....

$$= 0, = 138 \qquad |F_1|_y = 11200 + 3300 y |T_1 - t_1|_y = 200 + 150 y |F_1|_y = 8520 + 4100 y |T_1 - t_1|_y = 5200 + 3060 y e)  $\zeta_1 = -70, \ \underline{z}_1 = 68 \qquad |F_1|_y = 32200 + 15800 y |T_1 - t_1|_y = 13300 + 6400 y |T_1 - t_1|_y = 13300 + 6400 y |F_1|_y = 360 + 210 y |T_1 - t_1|_y = 360 + 210 y |T_1 - t_1|_y = 11900 + 6100 y$$$

.

4

.

.

•,

.

.

|    |                                         | F <sub>1</sub>  2.25 | T <sub>1</sub> -t <sub>1</sub>  2.25 |
|----|-----------------------------------------|----------------------|--------------------------------------|
| a) | $\zeta_1 = -70, \ \underline{z}_1 = 68$ | 70,300               | 28,800                               |
|    | = 0, = 138                              | 162,000              | 417                                  |
|    | = 70, = 208                             | 63,500               | 25,300                               |
| b) | $\zeta_1 = -70, \ \underline{z}_1 = 68$ | 62,900               | 36,500                               |
|    | = 0, = 138                              | 73,700               | 2,300                                |
|    | = 70, = 208                             | 55,700               | 28,500                               |
| c) | ζ <sub>1</sub> =-70, <u>z</u> 1=68      | 21,700               | 15,100                               |
|    | = 0, = 138                              | 22,200               | 275                                  |
|    | = 70, = 208                             | 21,700               | 14,800                               |
| d) | ζ <sub>1</sub> =-70, <u>z</u> 1=68      | 18,200               | 12,500                               |
|    | = 0, = 138                              | 18,600               | 538                                  |
|    | = 70, = 208                             | 17,700               | 12,100                               |
| e) | $\zeta_1 = -70, \ \underline{z}_1 = 68$ | 67,800               | 27,700                               |
|    | = 0, = 138                              | 169,000              | 838                                  |
|    | = 70, = 208                             | 64,450               | 25,600                               |

•

The variable y determines the theoretical cdf (cumulative distribution function) of  $|F_1|$  and  $|T_1-t_1|$ . Thus,

$$(3.5) P\{|F_1| \le |F_1|_y\} = p_y = P\{|T_1 - t_1| \le |T_1 - t_1|_y\}$$

where

| У | Py   | or | У     | РУ   |
|---|------|----|-------|------|
| 0 | .368 |    | .356  | .50  |
| 1 | .692 |    | .672  | .60  |
| 2 | .873 |    | 1.03  | . 70 |
| 3 | .951 |    | 1.50  | . 80 |
| 4 | .982 |    | 2.25  | .90  |
| 5 | .993 |    | 2.967 | .95  |
|   |      |    | 4.60  | .99  |
|   |      |    | 5,30  | 995  |

since

(3.6)  $p_y = e^{-e^{-y}}$ 

is the theoretical cdf. [3]

Let us consider y = 2.25; this corresponds to  $p_y = .90$ . The values  $|F_1|_{2.25}$  and  $|T_1-t_1|_{2.25}$  are such that the probability of remaining below them is .90. Put another way, the values  $|F_1|_{2.25}$  and  $|T_1-t_1|_{2.25}$  are such that in 10 earthquakes having max |accel.| = lg only one on the average will produce  $|F_1|$  and  $|T_1-t_1|$  that exceed these values. Other choices of y of  $p_y$  yield similar statements. Table 3.5 records for the five cases  $|F_1|_{2.25}$  and  $|T_1-t_1|_{2.25}$ . If earthquakes have max  $|accel.| = \Upsilon g$ , where  $0 < \Upsilon$ , the numbers in Tables 3.4 and 3.5 must be multiplied by  $\Upsilon$ .

The first thing to notice about Table 3.5 is the magnitude of  $|T_1-t_1|$ . The static tension  $t_1$  in vertical support rod 1 is 3,428k. Since the maximum compressive load in  $T_1-t_1$ is either equal to  $|T_1-t_1|$  or slightly below the value  $|T_1-t_1|$ , it is clear that rod 1 will have to carry a substantial compressive load for earthquake accelerograms normalized to a max. absolute value of lg; this is impossible in the physical situation. Thus, to keep  $T_1$  from becoming negative,  $\gamma$  must be adjusted in each case in Table 3.5 so that  $|T_1-t_1| \leq 3,428k$ . Hence, the analysis is physically meaningful, strictly speaking, for such  $\gamma$ . If we take the max.  $|T_1-t_1|$  in each case, we find

| ¥ <u>&lt;</u> | Case |
|---------------|------|
| .117          | a)   |
| .094          | b)   |
| .227          | c)   |
| 274           | (D   |
| .122          | e)   |

Another point needs mention. The analysis is linear and, in the numerical example considered, there is no vertical displacement w. Due to the inclination of the vertical support rods at the extreme lateral displacement of the c.g. G of the SG there is a small vertical displacement of the lower end of each rod. The loads in the vertical support rods are not adjusted for this small vertical displacement. Let us proceed with an examination of the results in Table 3.5 with these restrictions in mind.

The most striking results in Table 3.5 is the fact that  $|T_1-t_1|_{2.25}$  is relatively small when  $\zeta_1 = 0$ ,  $\underline{z}_1 = 138$ . Even for earthquakes normalized to max |accel.| = lg these values are below static tension  $t_1 = 3,428$  whether an elastic spring or a dashpot is used for the lateral support. Thus, in this configuration, the vertical support rods all remain in tension according to this model. The reason  $|T_1-t_1|$  is so small in this arrangement of the lateral tie rod is that max  $|\theta|$  is very small in comparison to the max  $|\theta|$ 's encountered with the other two arrangements of the tie rod.

Next observe  $|T_1-t_1|_{2.25}$  for  $\zeta_1 = -70$ ,  $\underline{z}_1 = 68$  and  $\zeta_1 = 70$ ,  $\underline{z}_1 = 208$ . Here we see that even for earthquakes with max  $|accel.| = .3g |T_1-t_1|_{2.25}$  exceeds the static tension  $t_1 = 3,420k$  for all cases. For case b), we note  $|T_1-t_1|_{2.25} = 10,950$ . Thus, on the average in one earthquake out of 10 with max |accel.| = .3g, the extreme vertical support rod will have to carry a very substantial compressive load according to this model. Since the physical vertical support rods cannot carry any compressive load as noted above, the model does not represent the physical situation. This means that to obtain a correct evaluation of vertical support rod dynamic loads a model must be used in which compressive loads cannot occur. We note that these observations hold for a horizontal tie rod that is either an elastic spring or a viscous dashpot.

The max value of  $|F_1|_{2.25}$  occurs when  $\zeta_1 = 0$  and  $\underline{z}_1 = 138$ , and is largest for cases a) and e). The weight of the SG is 23,884. Cases c) and d) (viscous dashpot for horizontal tie rod) have  $|F_1|_{2.25}$  fairly close to the weight 23,884 of the SG for earthquakes with max |accel.| = lg and all configurations of the horizontal tie rod. For cases a), b), and e),  $|F_1|_{2.25}$ exceeds by a substantial amount the weight of the SG for all horizontal tie rod configurations. This suggests that there is considerable dynamic amplification in this case. Examination of Table 3.1 suggests that  $|F_1|_{2.25}$  becomes large when the first nf exceeds 1.10 Hz.

Damping is fairly small in the numerical results shown so far; specifically, the fraction of critical damping in the first mode is approximately 0.31%. This is a small value. However, in a steam generating plant which consists mainly of open steel frames, etc. there are not the usual mechanisms for introducing damping encountered in office buildings. To obtain some appreciation for the significance of damping, let us set  $\alpha = 0.01$ ; this gives as fraction of critical damping in the first mode approximately 3.1%. Numerical results for Case a) of Table 3.5 now becomes

Table 3.5a

|    |                                         | F <sub>1</sub>  2.25 | T <sub>1</sub> -t <sub>1</sub>  2.25 |
|----|-----------------------------------------|----------------------|--------------------------------------|
| a) | $\zeta_1 = -70, \ \underline{z}_1 = 68$ | 54,400               | 24,000                               |
|    | = 0, = 138                              | 106,700              | 282                                  |
|    | = 70, = 208                             | 51,800               | 20,500                               |

Higher damping produces a reduction in  $|F_1|_{2.25}$  and  $|T_1-t_1|_{2.25}$ for all configurations as is seen by comparison to the results in Table 3.5 a). The reduction is not dramatic for a ten-fold increase in damping. Thus, for damping in the range considered the conclusions already reached still stand.

#### 4. Discussion and Conclusions

Section 2 shows how the three-dimensional equations of motion are constructed. A simple model of the SS is used. The SG is regarded as a rigid body. The vertical support rods are treated as elastic and pin-ended. The lateral support rods may be purely elastic or viscous or a combination. For more complex models for the SS and/or an elastic SG, the same general procedure for constructing the equations of motion can be followed.

A three-dimensional numerical example was not presented because a substantial number of choices of configurations would have to be considered to explore fully the significance of all the factors. Such an investigation must be deferred to the future.

A numerical two-dimensional example is considered in Section 3. The equations of motion are a special case of threedimensional equations of motion. One horizontal tie rod is considered and it is either purely elastic or purely viscous; this rod can take one of three configurations. Seven equally spaced and centered vertical support rods are considered; in one configuration, the rods have the same length and in the other the lengths vary with the shortest in the center and the longest on the two ends. The extreme responses of the motion, the change in force  $T_1-t_1$  in the end vertical rod, and the force  $F_1$  in the horizontal tie rod were computed using as ground acceleration thirty six earthquake accelerograms normalized to have a max |accel.| = lg. The extreme responses for  $T_1 - t_1$ ,  $F_1$ ,  $|T_1 - t_1|$ and  $|F_1|$  are tabulated, and the theoretical lines for  $|T_1 - t_1|$ and  $|F_1|$  are listed. The nf's for the various configurations are also given.

The main conclusions which can be drawn are a) that the dynamic loads in the vertical support rods are dependent upon the configuration of the horizontal tie rod with some configurations producing much smaller dynamic loads than others; b) if the max |accel.| of ground excitation is in the range of .3g, then the influence of the unloading of some of the vertical support rods should be accounted for in the equations of motion including deformation of the top support 1234 if a reasonable picture of the dynamic loads in the vertical support rods is to be obtained; and c) attention should be given in design to the dynamic loads the vertical support rods must carry.

The conclusions are based upon a simple two-dimensional model subject to only horizontal ground motion. The extrapolation of specific numerical results to an actual structure is not warrented. However, the general conclusion just stated must have some validity for real structures.

The two-dimensional linear model considered restricts the SG motion to translation in the plane of the model and rotation about a line perpendicular to that plane. The extreme loads in the vertical tie rods occur in the rods on the outside. In three-dimensional motion, torsion can occur. The bifilar pendulum supported by several strings suggests what will happen in this case. When the bifilar pendulum is in torsion, the two outside strings carry the vertical load while the inside strings carry no load. This observation suggests that when the SG is in torsion relative to the top of the SS, the vertical tie rods near the four horizontal top corners of the SG will carry the major share of the vertical load while the inside rods will carry very little of the vertical load if any, and some of the inside rods may be unloaded. Again, to get an accurate estimate of the loads in the vertical support loads it is necessary to limit the compressive loads to zero. Further, the configuration of the horizontal tie rods may have a substantial influence on the dynamic loads in the vertical support rods.

It is reasonable to state in summary that the dynamic loads in the vertical support rods of a steam generating plant merit examination during the design process.

### References

- Lo, H., and J.L. Bogdanoff, "Derivation of Equations of Motion of a Free Rigid Body Steam Generator supported by Vertical Elastic Rods," Submitted to NSF, Oct. 1977.
- 2. Digital form of Earthquake Accelerograms, California Institute of Technology, Pasadena, CA.
- 3. E J. Gumbel, <u>Statistical Theory of Extreme Values and</u> <u>Some Practical Applications: A Series of Lectures</u>, <u>US Government Printing Office</u>, Washington D.C., 1954.

Case a)

\*

.

|                                                                                              |                                                                                              |                                                                                                                                                                                              | Tl                                                                                                                                                                         |                                                                                                                                                                            |                                                                                                                                                                                                                              | X1                                                                                                                                                                            |                                                                                                                                                                               |    |                                                                                                           |
|----------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----|-----------------------------------------------------------------------------------------------------------|
| <u>у</u> 1                                                                                   | Ll                                                                                           | Norm<br>Min                                                                                                                                                                                  | Norm<br>Max                                                                                                                                                                | Norm<br>Abs                                                                                                                                                                | Norm<br>Min                                                                                                                                                                                                                  | Norm<br>Max                                                                                                                                                                   | Norm<br>Abs                                                                                                                                                                   | Ea | rthquake<br>Number                                                                                        |
| У <sub>1</sub><br>70<br>70<br>70<br>70<br>70<br>70<br>70<br>70<br>70<br>70<br>70<br>70<br>70 | L <sub>1</sub><br>68<br>68<br>68<br>68<br>68<br>68<br>68<br>68<br>68<br>68<br>68<br>68<br>68 | Norm<br>Min<br>-27160<br>-22650<br>-10500<br>-20470<br>-19860<br>-17690<br>-25870<br>-11270<br>-21600<br>-29210<br>-6149<br>-6190<br>-21110<br>-19060<br>-24020<br>-5073<br>-19580<br>-24950 | Norm<br>Max<br>24780<br>21740<br>11090<br>18980<br>20560<br>16130<br>30320<br>14650<br>20540<br>27380<br>5185<br>6797<br>20750<br>17920<br>22380<br>5421<br>21730<br>24380 | Norm<br>Abs<br>27160<br>22650<br>11090<br>20470<br>20560<br>17960<br>30320<br>14650<br>21600<br>29210<br>6149<br>6797<br>21110<br>19060<br>24020<br>5421<br>21730<br>24950 | Norm<br>Min<br>- 43360<br>- 45440<br>- 20700<br>- 28720<br>- 56420<br>- 39880<br>- 70000<br>- 39480<br>- 39480<br>- 37330<br>- 38340<br>- 19600<br>- 15710<br>- 41990<br>- 52330<br>- 49050<br>- 19020<br>- 54360<br>- 63050 | Norm<br>Max<br>38660<br>55410<br>23050<br>29570<br>46880<br>46710<br>71950<br>50350<br>36470<br>38110<br>19860<br>17130<br>35030<br>49440<br>51730<br>18120<br>52130<br>58930 | Norm<br>Abs<br>43360<br>55410<br>23050<br>29570<br>56420<br>46710<br>71950<br>50350<br>37330<br>38340<br>19860<br>17130<br>41990<br>52330<br>51730<br>19020<br>54360<br>63050 |    | l<br>Number<br>2<br>3<br>4<br>5<br>6<br>7<br>8<br>9<br>10<br>11<br>12<br>13<br>14<br>15<br>16<br>17<br>18 |
| 70<br>70<br>70<br>70<br>70<br>70<br>70<br>70<br>70<br>70<br>70<br>70<br>70<br>7              | 68<br>68<br>68<br>68<br>68<br>68<br>68<br>68<br>68<br>68<br>68<br>68<br>68<br>6              | -17790<br>-15370<br>-17610<br>-18230<br>-9773<br>-13080<br>-17440<br>-10770<br>-10540<br>-13360<br>-17040<br>-14110<br>-17010<br>-40590<br>-17400<br>-23740<br>-11040<br>-22730              | 17430<br>13950<br>16960<br>17560<br>8955<br>13550<br>16140<br>10650<br>10600<br>12740<br>19520<br>16060<br>15310<br>41830<br>17060<br>26490<br>14700<br>21820              | 17790<br>15370<br>17610<br>18230<br>9773<br>13550<br>17440<br>10770<br>10600<br>13360<br>19520<br>16060<br>17010<br>41830<br>17400<br>26490<br>14700<br>22730              | - 30470<br>- 29190<br>- 35430<br>- 29930<br>- 24000<br>- 41730<br>- 24670<br>- 22610<br>- 28210<br>- 28210<br>- 45890<br>- 29190<br>- 38790<br>- 41440<br>-112200<br>- 51390<br>- 49040<br>- 38930<br>- 81700                | 30100<br>29030<br>37250<br>30580<br>24470<br>48390<br>26410<br>21730<br>27120<br>41080<br>29370<br>39300<br>36490<br>114800<br>52640<br>46610<br>38250<br>79320               | 30470<br>29190<br>37250<br>30580<br>24470<br>48390<br>26410<br>22610<br>28210<br>45890<br>29370<br>39300<br>41440<br>114800<br>52640<br>49040<br>38930<br>81700               |    | 19<br>20<br>21<br>22<br>23<br>24<br>25<br>26<br>27<br>28<br>29<br>30<br>31<br>32<br>33<br>34<br>35<br>36  |

|    |     |             | <u> </u>    |             | X <sub>1</sub> |             |             |                      |  |
|----|-----|-------------|-------------|-------------|----------------|-------------|-------------|----------------------|--|
| Уl | L1_ | Norm<br>Min | Norm<br>Max | Norm<br>Abs | Norm<br>Min    | Norm<br>Max | Norm<br>Abs | Earthquake<br>Number |  |
|    | 130 | _245 0      | 249         | 240         | -117700        | 114700      | 117700      |                      |  |
| 0  | 130 | -452 7      | 1249        | 110         |                | 163200      | 162200      |                      |  |
| 0  | 130 | -175 7      | 184         | 1940        | - 89780        | 95720       | 95720       | 3                    |  |
| 0  | 138 | -273 4      | 210 9       | 233 4       | -119400        | 120000      | 120000      | 4                    |  |
| ñ  | 138 | -378 2      | 385 6       | 385 6       | - 70200        | 69400       | 70200       | 5                    |  |
| 0  | 138 |             | 298 6       | 7           | -192900        | 191500      | 192900      | 6                    |  |
| 0  | 138 | -219 5      | 201 3       | 219.4       | - 92100        | 74450       | 92100       | 7                    |  |
| ñ  | 138 | -424 3      | 432 2       | 432.2       | -187800        | 195500      | 195500      | 8                    |  |
| Ő  | 138 | -224        | 222.5       | 225         | - 88500        | 73410       | 88500       | ) g                  |  |
| õ  | 138 | -166.3      | 157.6       | 166.3       | - 33640        | 39080       | 39080       | 10                   |  |
| ō  | 138 | - 38.63     | 45.90       | 45.90       | - 18750        | 24320       | 24320       | 11                   |  |
| Õ  | 138 | - 73.15     | 70.52       | 73.15       | - 45760        | 45910       | 45910       | 12                   |  |
| Ō  | 138 | -184        | 181.3       | 184         | - 90140        | 100600      | 100600      | 13                   |  |
| Ō  | 138 | -405.5      | 374.6       | 405.5       | -131200        | 130700      | 131200      | 14                   |  |
| Ō  | 138 | -217.8      | 220.9       | 220.9       | - 98580        | 100500      | 100500      | 15                   |  |
| 0  | 138 | -107.4      | 101.4       | 107.4       | - 50880        | 46750       | 50880       | 16                   |  |
| 0  | 138 | -100.2      | 105.6       | 105.6       | - 67800        | 58530       | 67800       | 17                   |  |
| 0  | 138 | -515.7      | 504.7       | 515.7       | -168700        | 171700      | 171700      | 18                   |  |
| 0  | 138 | -361.1      | 375.3       | 375.3       | - 71180        | 73270       | 73270       | 19                   |  |
| 0  | 138 | -252.5      | 275.2       | 275.2       | - 55300        | 59550       | 59550       | 20                   |  |
| 0  | 138 | -180.1      | 180.4       | 180.4       | - 43870        | 41150       | 43870       | 21                   |  |
| 0  | 138 | -324.6      | 303.7       | 324.6       | -103000        | 93280       | 103000      | 22                   |  |
| 0  | 138 | -141.1      | 150.8       | 150.8       | - 80380        | 81550       | 81550       | 23                   |  |
| 0  | 138 | -109        | 111.2       | 111.2       | - 53740        | 52470       | 53740       | 24                   |  |
| 0  | 138 | -129.5      | 128.8       | 129.5       | - 73870        | 73570       | 73870       | 25                   |  |
| 0  | 138 | -102.3      | 109.7       | 109.7       | - 48770        | 50020       | 50020       | 26                   |  |
| 0  | 138 | -119.4      | 112.6       | 119.4       | - 79360        | 79070       | 79360       | 27                   |  |
| 0  | 138 | -110.3      | 108.7       | 110.3       | - 73340        | 68060       | 73340       | 28                   |  |
| 0  | 138 | -139.2      | 129.7       | 139.2       | - 80230        | 85520       | 85520       | 29                   |  |
| 0  | 138 | -181.3      | 164.6       | 181.3       | - 79440        | 77640       | 79440       | 30                   |  |
| 0  | 138 | -481.7      | 465.6       | 481.7       | -153300        | 148600      | 153300      | 31                   |  |
| 0  | 138 | -385.4      | 362.2       | 385.4       | -153100        | 164900      | 164900      | 32                   |  |
| 0  | 138 | -113.8      | 109         | 113.8       | - 75880        | 77830       | 77830       | 33                   |  |
| 0  | 138 | -319.8      | 341.9       | 341.9       | -173900        | 169000      | 173900      | 34                   |  |
| 0  | 138 | -132.5      | 133.3       | 133.3       | - 55590        | 66940       | 66940       | 35                   |  |
| 0  | 138 | -298.1      | 275.5       | 298.1       | -184100        | 189400      | 189400      | 36                   |  |

.

.

Case a)

|                |                |             | Tl             |             |             | x <sub>l</sub> |             |                      |
|----------------|----------------|-------------|----------------|-------------|-------------|----------------|-------------|----------------------|
| y <sub>l</sub> | L <sub>1</sub> | Norm<br>Min | Norm<br>Max    | Norm<br>Abs | Norm<br>Min | Norm<br>Max    | Norm<br>Abs | Earthquake<br>Number |
| -70            | 208            | -25700      | 22040          | 24700       | 45720       | 57550          | 57550       |                      |
| -70            | 200            | _10030      | 20830          | 20830       | -40720      | 57550          | 60210       |                      |
| -70            | 200            | - 7925      | 8340           | 8340        | -34170      | 35340          | 35340       | 4 3                  |
| -70            | 208            | -16280      | 15590          | 16280       | -40280      | 32780          | 40280       |                      |
| -70            | 208            | -25300      | 27120          | 27120       | -55670      | 56650          | 56650       | 5                    |
| -70            | 208            | -15980      | 18720          | 18720       | -54260      | 47590          | 54260       | 6                    |
| -70            | 208            | -22410      | 22190          | 22410       | -54010      | 60820          | 60820       | 7                    |
| -70            | 208            | -11580      | 9572           | 11580       | -37810      | 28960          | 37810       | 8                    |
| -70            | 208            | -24250      | 19590          | 24250       | -44680      | 42580          | 44680       | 9                    |
| -70            | 208            | -24110      | 25340          | 25340       | -47340      | 34610          | 47230       | 01                   |
| -70            | 208            | - 7435      | 7945           | 7945        | -43020      | 46870          | 46870       |                      |
| -70            | 208            | - 6266      | 6323           | 6323        | -25920      | 30590          | 30590       | 12                   |
| -70            | 208            | -16940      | 15910          | 16940       | -35190      | 36280          | 36280       | 13                   |
| -70            | 208            | -14150      | 15240          | 15240       | -66620      | 64120          | 66620       | 14                   |
| -70            | 208            | -14630      | 13210 _        | 14630       | -68380      | 75600          | 75600       | 15                   |
| -70            | 208            | - 3466      | 3236           | 3466        | -21450      | 20870          | 21450       | 16                   |
| -70            | 208            | -19000      | 19 <b>0</b> 10 | 19010       | -51710      | 53370          | 53370       | 17                   |
| -70            | 208            | -21460      | 23260          | 23260       | -53640      | 59450          | 59450       | 18                   |
| -70            | 208            | -12820      | 13900          | 13900       | -47090      | 47470          | 47470       | 19                   |
| -70            | 208            | -22350      | 21250          | 22350       | -59390      | 52750          | 59290       | 20                   |
| -70            | 208            | -17780      | 14390          | 17780       | -42940      | 39270          | 42940       | 21                   |
| -70            | 208            | -14760      | 14590          | 14760       | -31160      | 29880          | 31160       | 22                   |
| -70            | 208            | - 6963      | 10090          | 10090       | -22010      | 30150          | 30150       | 23                   |
| -70            | 208            | - 7825      | 6161           | 7825        | -23060      | 19900          | 23060       | 24                   |
| -70            | 208            | - 8826      | 8653           | 8826        | -45310      | 43600          | 45310       | 25                   |
| -70            | 208            | -13210      | 12100          | 13210       | -23660      | 22510          | 23660       | 26                   |
| -70            | 208            | - 6395      | 7540           | 7540        | -30890      | 34400          | 34400       | 27                   |
| -70            | 208            | - 3016      | 8411           | 8411        | -30280      | 24040          | 30280       | 28                   |
| -70            | 208            | -16570      | 17540          | 17540       | -42350      | 42500          | 42500       | 29                   |
| -70            | 208            | -10390      | 10470          | 10470       | -28950      | 29020          | 29020       | 30                   |
| -70            | 208            | -16560      | 17630          | 17630       | -37900      | 35770          | 37900       | 31                   |
| -70            | 208            | -32830      | 31290          | 32830       | -72100      | 65780          | 72100       | 32                   |
| -70            | 208            | - 7853      | 10520          | 10520       | -29500      | 30510          | 30510       | 33                   |
| -70            | 208            | -24870      | 21730          | 24870       | -48920      | 38600          | 48920       | 34                   |
| -70            | 208            | -13680      | 15700          | 15700       | -32750      | 33860          | 33860       | 35                   |
| -70            | 208            | -16760      | 17130          | 17130       | -56070      | 55100          | 56070       | 36                   |

Case b)

|                |          |             | Tl          |             |    |             | xl             |             |  | ļ                    |
|----------------|----------|-------------|-------------|-------------|----|-------------|----------------|-------------|--|----------------------|
| y <sub>l</sub> | Ll       | Norm<br>Min | Norm<br>Max | Norm<br>Abs |    | Norm<br>Min | Norm<br>Max    | Norm<br>Abs |  | Earthquake<br>Number |
| 70             | 6.0      | 00000       | 04000       | 00000       |    | 45080       |                |             |  |                      |
| 70             | 58<br>69 | -28680      | 24280       | 28680       |    | -45270      | 46420          | 46420       |  |                      |
| 70             | 68       | -10840      | 10610       | 10940       |    | -20/10      | 10130<br>010CC | 20150       |  | · 2                  |
| 70             | 68       | -21120      | 20440       | 21120       |    | -20430      | 25300          | 20450       |  |                      |
| 70             | 68       | -16990      | 19820       | 19820       |    | -20430      | 32250          | 37030       |  | 4                    |
| 70             | 68       | -23090      | 24040       | 24040       |    | -48580      | 51160          | 51160       |  | 5                    |
| 70             | 68       | -33060      | 30030       | 33060       |    | -60540      | 46380          | 60540       |  | 7                    |
| 70             | 68       | -21990      | 19160       | 21990       |    | -36770      | 37260          | 27260       |  | 8                    |
| 70             | 68       | -44950      | 41770       | 44950       |    | -70010      | 69570          | 70010       |  | 9                    |
| 70             | 68       | -24480      | 26890       | 26890       |    | -43090      | 45980          | 45980       |  | 10                   |
| 70             | 68       | - 3546      | 2517        | 3546        |    | - 7032      | 10380          | 10380       |  | 11                   |
| 70             | 68       | - 7380      | 6935        | 7380        |    | -14420      | 12360          | 14420       |  | 12                   |
| 70             | 68       | -17190      | 17940       | 17940       |    | -27130      | 27140          | 27140       |  | 13                   |
| 70             | 68       | -18430      | 18870       | 18870       |    | -32750      | 33880          | 33880       |  | 14                   |
| 70             | 68       | -16200      | 16850       | 16850       |    | -33760      | 30500          | 33760       |  | 15 -                 |
| 70             | 68       | - 4958      | 5096        | 5096        | 11 | -12790      | 11820          | 12790       |  | 16                   |
| 70             | 68       | -19250      | 18610       | 19250       |    | -34500      | 36660          | 36660       |  | 17                   |
| 70             | 68       | -54880      | 50780       | 54880       |    | -84500      | 86170          | 86170       |  | 18                   |
| 70             | 68       | -12110      | 13280       | 13280       |    | -21740      | 21620          | 21740       |  | 19                   |
| 70             | 68       | -10800      | 10030       | 10800       |    | -16290      | 22180          | 22180       |  | 20                   |
| 70             | 68       | - 8516      | 2291        | 9291        |    | -14450      | 13100          | 14450       |  | 21                   |
| 70             | 68       | -20630      | 19380       | 20630       |    | -36170      | 37490          | 37490       |  | 22                   |
| 70             | 68       | - 9585      | 10710       | 10710       |    | -19380      | 20760          | 20760       |  | 23                   |
| 70             | 68       | -14380      | 13120       | 14380       |    | -23900      | 24710          | 24710       |  | 24                   |
| 70             | 68       | -15200      | 15310       | 15310       |    | -26010      | 24280          | 26010       |  | 25                   |
| 70             | 68       | - 9728      | 9626        | 9728        |    | -16150      | 15710          | 16150       |  | 26                   |
| 70             | 68       | -12330      | 11590       | 12330       |    | -20270      | 21580          | 21580       |  | 27                   |
| /0             | 68       | -13750      | 13560       | 13760       |    | -26720      | 23500          | 26720       |  | 28                   |
| 70             | 68       | -16290      | 1/180       | 17180       |    | -24840      | 27700          | 27700       |  | 29                   |
| 70             | 68       | -13510      | 13480       | 13510       |    | -20330      | 20360          | 20360       |  | 30                   |
| 70             | 60       | -33550      | 29480       | 33550       |    | -5/480      | 50530          | 60630       |  | 31                   |
| 70             | 60       | - 12000     | 0102010     | 11100       |    | -00820      | 74000          | 14000       |  | J∠<br>22             |
| 70<br>70       | 60       | -25760      | 21330       | 25760       |    | -23430      | 41420          | 41420       |  | 23                   |
| 70             | 60       | -25760      | 1/310       | 15250       |    | -37330      | 4142U<br>25200 | 28040       |  | 24                   |
| 70             | 68       | -29400      | 25250       | 29400       |    | -45670      | 45040          | 45670       |  | 35                   |
|                |          | 1 22 400    |             | 22 200      | E  | 40070       |                | 12010 1     |  | 50                   |

•

.

.

x

•

Case b)

|            |     |             |             |             |             | x <sub>1</sub> |             |                      |
|------------|-----|-------------|-------------|-------------|-------------|----------------|-------------|----------------------|
| <u>y</u> 1 | L1  | Norm<br>Min | Norm<br>Max | Norm<br>Abs | Norm<br>Min | Norm<br>Max    | Norm<br>Abs | Earthquake<br>Number |
| 0          | 138 | _1450       | 1485        | 1495        | _51550      | 53080          | 53080       | 1                    |
| 0          | 138 | -2374       | 2536        | 2536        | -72130      | 71230          | 72130       |                      |
| 0<br>0     | 138 | -6729       | 6787        | 6787        | -28650      | 27590          | 28650       | 1 3                  |
| õ          | 138 | -1421       | 1367        | 1421        | -67040      | 66970          | 67040       | 4                    |
| õ          | 138 | -2576       | 2756        | 2756        | -72950      | 71670          | 72950       | 5                    |
| õ          | 138 | -1361       | 1367        | 1367        | -61560      | 63680          | 63680       | 6                    |
| Ō          | 138 | -1183       | 1245        | 1245        | -36510      | 33140          | 36510       | 7                    |
| Ō          | 138 | -1602       | 1665        | 1665        | -38570      | 38670          | 38670       | 8                    |
| Ō          | 138 | -2298       | 2334        | 2334        | -86940      | 93220          | 93220       | 9                    |
| Ō          | 138 | -1550       | 1628        | 1628        | -67240      | 65260          | 67240       | 10                   |
| Ō          | 138 | - 346.1     | 346.0       | 346.1       | -16970      | 16120          | 16970       | 11                   |
| 0          | 138 | - 197.0     | 217.7       | 217.7       | - 9493      | 13220          | 13220       | 12                   |
| 0          | 138 | -1150       | 1174        | 1174        | -46020      | 47770          | 27770       | 13                   |
| 0          | 138 | -1911       | 1849        | 1911        | -39690      | 36490          | 39690       | 14                   |
| Ō          | 138 | -1075       | 1059        | 1075        | -33040      | 34810          | 34810       | 15                   |
| 0          | 138 | - 423.4     | 439.3       | 439.3       | -13910      | 13340          | 13340       | 16                   |
| Ō          | 138 | - 710.0     | 740.7       | 740.7       | -34340      | 30500          | 34340       | 17                   |
| Ō          | 138 | -1859       | 1928        | 1928        | -36510      | 38890          | 38890       | 18                   |
| 0          | 138 | -1750       | 1786        | 1786        | -39970      | 38700          | 39970       | 19                   |
| 0          | 138 | -1523       | 1378        | 1523        | -40030      | 40100          | 40100       | 20                   |
| 0          | 138 | -1092       | 1186        | 1186        | -31620      | 31850          | 31850       | 21                   |
| 0          | 138 | -1927       | 1997        | 1997        | -55750      | 55890          | 55890       | 22                   |
| 0          | 138 | - 546.2     | 554.1       | 554.1       | -25470      | 25370          | 25470       | 23                   |
| 0          | 138 | - 471.4     | 488.2       | 488.2       | -15690      | 13150          | 15690       | 24                   |
| 0          | 138 | - 546.6     | 562.4       | 562.4       | -17860      | 19330          | 19330       | 25                   |
| 0          | 138 | - 546.0     | 570.3       | 570.3       | -22620      | 24820          | 24820       | 26                   |
| 0          | 138 | - 260.9     | 249.6       | 260.9       | - 9677      | 9337           | 9677        | 27                   |
| 0          | 138 | - 248.8     | 279.0       | 279.0       | -13260      | 10060          | 13260       | 28                   |
| 0          | 138 | - 405.4     | 421.5       | 421.5       | -19410      | 20820          | 20820       | 29                   |
| 0          | 138 | - 589.4     | 573.5       | 589.4       | -16630      | 20070          | 20070       | 30                   |
| 0          | 138 | -2114       | 2067        | 2114        | -65750      | 61620          | 61620       | 31                   |
| 0          | 138 | -2098       | 2194        | 2194        | -79850      | 84150          | 84150       | 32                   |
| 0          | 138 | - 561.4     | 544.8       | 561.4       | -28250      | 28650          | 28650       | 33                   |
| 0          | 138 | -1787       | 1620        | 1787        | -57670      | 61840          | 61840       | 34                   |
| 0          | 138 | - 822.6     | 732.4       | 822.6       | -32380      | 32020          | 32380       | 35                   |
| 0          | 138 | -1031       | 984.7       | 1031        | -33650      | 32320          | 33650       | 36                   |

Case b)

|                |     |             | т <sub>1</sub> |             |             | x <sub>1</sub> |             |                      |
|----------------|-----|-------------|----------------|-------------|-------------|----------------|-------------|----------------------|
| y <sub>l</sub> | L   | Norm<br>Min | Norm<br>Max    | Norm<br>Abs | Norm<br>Min | Norm<br>Max    | Norm<br>Abs | Earthquake<br>Number |
| -70            | 208 | -18160      | 21300          | 21200       | -35090      | 21220          | 25000       | ,                    |
| -70            | 208 | -27150      | 28950          | 28950       | -53480      | 56510          | 56510       |                      |
| -70            | 208 | -10840      | 12330          | 12330       | -24650      | 23750          | 24650       | 4                    |
| -70            | 208 | -22290      | 20750          | 22290       | -40650      | 43110          | 43110       | 4                    |
| -70            | 208 | -23830      | 20930          | 23830       | -34420      | 38830          | 38830       | 5                    |
| -70            | 208 | -21460      | 21540          | 21540       | -42670      | 47390          | 47390       | 6                    |
| -70            | 208 | -28630      | 30020          | 30020       | -57560      | 51200          | 57560       | 7                    |
| -70            | 208 | -15880      | 15870          | 15880       | -34280      | 35490          | 35490       | 8                    |
| -70            | 208 | -22090      | 23790          | 23790       | -41940      | 36810          | 41940       | 9                    |
| -70            | 208 | -22760      | 23650          | 23650       | -47020      | 40460          | 47020       | 10                   |
| -70            | 208 | - 4116      | 3984           | 4116        | - 8100      | 9760           | 9760        | 11                   |
| -70            | 208 | - 7804      | 7450           | 7804        | -15450      | 15030          | 15450       | 12                   |
| -70            | 208 | -21300      | 20180          | 21300       | -42750      | 42020          | 42750       | 13                   |
| -70            | 208 | -17190      | 18070          | 18070       | -33080      | 32860          | 33080       | 14                   |
| -70            | 208 | -22120      | 21360          | 22120       | -45320      | 47540          | 47540       | 15                   |
| -70            | 208 | - 6321      | 6417           | 6417        | -13940      | 15080          | 15080       | 16                   |
| -70            | 208 | -20130      | 20340          | 20340       | -38000      | 36380          | 38000       | 17                   |
| -70            | 208 | -28040      | 27600          | 28040       | -29790      | 50580          | 50580       | 18                   |
| -70            | 208 | - 9926      | 11880          | 11880       | -18710      | 19550          | 19550       | 19                   |
| -70            | 208 | -12250      | 11540          | 12250       | -23770      | 21760          | 23770       | 20                   |
| -70            | 208 | -12200      | 12370          | 12370       | -20130      | 21010          | 21010       | 21                   |
| -70            | 208 | -17330      | 16190          | 17330       | -29400      | 28180          | 29400       | 22                   |
| -70            | 208 | -12090      | 12310          | 12310       | -26560      | 25200          | 26560       | 23                   |
| -70            | 208 | -12000      | 11700          | 12000       | -25730      | 22250          | 25730       | 24                   |
| -70            | 208 | -10990      | 11370          | 11370       | -20880      | 20910          | 20910       | 25                   |
| -70            | 208 | -14090      | 12990          | 14090       | -26210      | 26400          | 26400       | 26                   |
| -70            | 208 | -10050      | 10210          | 10210       | -19790      | 19400          | 19790       | 27                   |
| -70            | 208 | -12380      | 12670          | 13280       | -29180      | 27990          | 29180       | 28                   |
| -70            | 208 | -16630      | 15670          | 16630       | -29120      | 33700          | 33700       | 29                   |
| -70            | 208 | -15540      | 14800          | 15540       | -30230      | 32030          | 32030       | 30                   |
| -70            | 208 | -26290      | 23230          | 26290       | -45600      | 46300          | 46300       | 31                   |
| -70            | 208 | -32370      | 28080          | 32370       | -61560      | 72190          | 72190       | 32                   |
| -70            | 208 | -15150      |                | 15150       | -27550      | 27930          | 27930       | 33                   |
| -/0            | 208 | -22920      | 23090          | 23090       | -45840      | 47940          | 47940       | 34                   |
| -/0            | 208 | -13220      | 121/0          | 13220       | -31510      | 25640          | 25640       | 35                   |
| -70            | 208 | -23650      | 25540          | 25540       | 48500       | 51500          | 51500       | 36                   |

Case c)

.

.

.

,

|                |                |             | Tl          |             | 1           | x           |             |                      |
|----------------|----------------|-------------|-------------|-------------|-------------|-------------|-------------|----------------------|
| y <sub>l</sub> | <sup>L</sup> 1 | Norm<br>Min | Norm<br>Max | Norm<br>Abs | Norm<br>Min | Norm<br>Max | Norm<br>Abs | Earthquake<br>Number |
|                |                |             |             |             |             |             |             |                      |
| 70             | 68             | - 8490      | 9488        | 9488        | -13150      | 13550       | 13550       | 1                    |
| 70             | 68             | -10310      | 11470       | 11470       | -17190      | 13920       | 17190       | 2                    |
| 70             | 68             | - 3268      | 3663        | 3663        | - 5831      | 3916        | 5831        | 1 3                  |
| 70             | 68             | - 5257      | 5472        | 5472        | - 7270      | 9313        | 9313        | 4                    |
| • 70           | 68             | - 7521      | 9147        | 9147        | - 8322      | 10990       | 10990       | 5                    |
| 70             | <b>~6</b> 8    | - 7992      | 8720        | 8720        | - 9016      | 10700       | 10700       | 6                    |
| 70             | 68             | -12420      | 7203        | 12420       | -12450      | 18970       | 18970       | 7                    |
| 70             | 68             | - 5464      | 5846        | 5846        | [- 8261     | 9116        | 9116        | 8                    |
| 70             | 68             | -15240      | 10930       | 15240       | -17400      | 25420       | 25420       | 9                    |
| 70             | 68             | -15830      | 8804        | 15830       | -15200      | 17970       | 17970       | 10                   |
| 70             | 68             | - 2673      | 1697        | 2673        | - 5195      | 6483        | 6483        | 11                   |
| 70             | 68             | - 2593      | 2378        | 2593        | - 7169      | 4479        | 7169        | 12                   |
| 70             | 68             | - 5178      | 5492        | 5492        | -10040      | 7622        | 10040       | 13                   |
| 70             | 68             | -10210      | 5554        | 10210       | -10750      | 14410       | 14410       | 14                   |
| 70             | 68             | - 5278      | 6803        | 6803        | - 8126      | 5782        | 8126        | 15                   |
| 70             | 68             | - 2720      | 1844        | 2720        | - 4637      | 4828        | 4828        | 16                   |
| 70             | 68             | - 8897      | 6695        | 8799        | -10610      | 16690       | 16690       | 17                   |
| 70             | 68             | - 7485      | 7668        | 7668        | -12050      | 15450       | 15450       | 18                   |
| 70             | 68             | - 4713      | 4839        | 4839        | - 6590      | 7271        | 7271        | 19                   |
| 70             | 68             | - 5748      | 5032        | 5748        | - 7562      | 8023        | 8023        | 20                   |
| 70             | 68             | - 5087      | 5345        | 5345        | - 8080      | 7728        | 8080        | 21                   |
| 70             | 68             | -10220      | 9854        | 10220       | - 9191      | 12940       | 12940       | 22                   |
| 70             | 68             | - 3652      | 2864        | 3652        | - 5046      | 6052        | 6052        | 23                   |
| 70             | 68             | - 2667      | 2847        | 2847        | - 7079      | 4423        | 7079        | 24                   |
| 70             | 68             | - 3945      | 2965        | 3945        | - 5674      | 6002        | 6002        | 25                   |
| 70             | 68             | - 2424      | 3231        | 3231        | - 5106      | 4276        | 5106        | 26                   |
| 70             | 68             | - 2612      | 2099        | 2612        | - 7729      | 6147        | 7729        | 27                   |
| 70             | 68             | - 3612      | 3694        | 3694        | - 5644      | 7838        | 7838        | 28                   |
| 70             | 68             | - 7259      | 5147        | 7259        | - 8335      | 10190       | 10190       | 29                   |
| 70             | 68             | - 5131      | 3427        | 5131        | - 5883      | 8810        | 8810        | 30                   |
| 70             | 68             | -10090      | 6999        | 10090       | -10360      | 12210       | 12210       | 31                   |
| 70             | 68             | -10160      | 13600       | 13600       | -17100      | 19530       | 19530       | 32                   |
| 70             | 68             | - 4201      | 3045        | 4201        | - 5335      | 7264        | 7264        | 33                   |
| 70             | 68             | - 9125      | 9386        | 9386        | -10340      | 13000       | 13000       | 34                   |
| 70             | 68             | - 4888      | 6011        | 6011        | - 9208      | 8999        | 9208        | 35                   |
| 70             | 68             | - 7195      | 5135        | 7195        | - 8316      | 13900       | 13900       | 36                   |

.

.

Case c)

|            |                | <u>   </u>  | Tl          |             |             | x <sub>1</sub> |             |                      |
|------------|----------------|-------------|-------------|-------------|-------------|----------------|-------------|----------------------|
| <u>у</u> 1 | L <sub>1</sub> | Norm<br>Min | Norm<br>Max | Norm<br>Abs | Norm<br>Min | Norm<br>Max    | Norm<br>Abs | Earthquake<br>Number |
| 0          | 138            | _335 5      | 280 8       | 335 5       | -11030      | 17030          | 17030       |                      |
| n          | 138            |             | 588 5       | 599 5       | -13020      | 19030          | 19030       |                      |
| ñ          | 138            | -164 6      | 156 2       | 164 6       | - 9546      | 0283           | 9546        | 2                    |
| ñ          | 138            | -188.7      | 184.8       | 188 7       | - 8805      | 13940          | 13940       | 4                    |
| õ          | 138            | -532.7      | 547.4       | 547.4       | -13210      | 12520          | 13210       | 5                    |
| õ          | 138            | -296.4      | 242.1       | 296.4       | -15540      | 14530          | 15540       | 6                    |
| õ          | 138            | -349.3      | 306.7       | 349.3       | -12570      | 18370          | 18370       | i ž                  |
| õ          | 138            | -350.4      | 379.2       | 379.2       | -14920      | 11920          | 14920       | 8                    |
| õ          | 138            | -416.5      | 333.5       | 416.5       | -19090      | 21530          | 21530       | 9                    |
| 0          | 138            | -275.3      | 284.3       | 284.3       | -14290      | 19510          | 19510       | 10                   |
| Ō          | 138            | - 61.85     | 67.56       | 67.56       | - 7234      | 7695           | 7695        | 11                   |
| Õ          | 138            | - 41.98     | 41.62       | 41.98       | - 7913      | 7749           | 7749        | 12                   |
| Ō          | 138            | -212.9      | 219.3       | 219.3       | -13690      | 11340          | 13690       | 13                   |
| 0          | 138            | -437.4      | 451.0       | 451.0       | -11350      | 13590          | 13590       | 14                   |
| 0          | 138            | -254.2      | 250.4       | 254.2       | -10220      | 10690          | 10690       | 15                   |
| 0          | 138            | - 93.21     | 105.3       | 105.3       | - 6556      | 8303           | 8303        | 16                   |
| 0          | 138            | 98.66       | 199.7       | 199.7       | -14030      | 14550          | 14550       | 17                   |
| 0          | 138            | -576.3      | 584.1       | 584.1       | -11460      | 14150          | 14150       | 18                   |
| 0          | 138            | -470.6      | 488.7       | 488.7       | -14460      | 7187           | 14460       | 19                   |
| 0          | 138            | -390.3      | 364.7       | 390.3       | - 9829      | 10350          | 10350       | 20                   |
| 0          | 138            | -221.7      | 244.5       | 244.5       | -10500      | 7071           | 10500       | 21                   |
| 0          | 138            | -369.0      | 487.6       | 487.6       | -17280      | 12320          | 17280       | 22                   |
| 0          | 138            | -110.0      | 113.6       | 113.6       | -13190      | 9280           | 13190       | 23                   |
| 0          | 138            | - 90.77     | 135.0       | 135.0       | -10670      | 6343           | 10670       | 24                   |
| 0          | 138            | -159.9      | 95.36       | 159.9       | - 6082      | 5876           | 6082        | 25                   |
| 0          | 138            | -129.8      | 107.8       | 129.8       | - 8262      | 6811           | 8262        | 26                   |
| 0          | 138            | - 78.38     | 67.34       | 78.38       | -11510      | 8637           | 11510       | 27                   |
| 0          | 138            | - 66.98     | 48.60       | 66,98       | - 8683      | 10990          | 10990       | 28                   |
| 0          | 138            | - 97.81     | 118.9       | 118.9       | - 7375      | 9127           | 9127        | 29                   |
| 0          | 138            | -168.3      | 143.9       | 168.3       | - 9633      | 10050          | 10050       | 30                   |
| 0          | 138            | -566.2      | 541.9       | 566.2       | -17690      | 12040          | 17690       | 31                   |
| 0          | 138            | -467.2      | 515.6       | 515.6       | -16530      | 16670          | 16670       | 32                   |
| 0          | 138            | - 99.82     | 97.79       | 99.82       | -347.7      | 366.1          | 366.1       | 33                   |
| 0          | 138            | -347.7      | 366.1       | 366.1       | -14720      | 12300          | 14720       | 34                   |
| 0          | 138            | -222.1      | 218.9       | 222.1       | - 9008      | 10980          | 10980       | 35                   |
| 0          | 138            | -198.3      | 262.8       | 262.8       | -14850      | 10930          | 14850       | 36                   |

à

.

|                   |                            |                            | Tl                           | 1                      |                                     | x                      |                         |                      |
|-------------------|----------------------------|----------------------------|------------------------------|------------------------|-------------------------------------|------------------------|-------------------------|----------------------|
| y <sub>1</sub>    | Ll                         | Norm<br>Min                | Norm<br>Max                  | Norm<br>Abs            | Norm<br>Min                         | Norm<br>Max            | Norm<br>Abs             | Earthquake<br>Number |
| -70<br>-70        | 208<br>208<br>208          | -11780<br>-13810<br>-4252  | 10140<br>11470<br>4059       | 11780<br>13810<br>4252 | -16550<br>-20590<br>-7330           | 17120<br>16580         | 17120<br>20590<br>7330  | 1 2 3                |
| -70<br>-70        | 208                        | - 8313<br>-13160           | 8068<br>10590                | 8313<br>13160          | -10310                              | 9692<br>15800          | 10310<br>15800          | 4 5                  |
| -70<br>-70        | 208<br>208<br>2 <b>0</b> 8 | -11220<br>- 7498           | 13690<br>6442                | 13690<br>7498          | -15010<br>-9033                     | 22000<br>11030         | 22000<br>11030          | 7                    |
| -70<br>-70<br>-70 | 208<br>208<br>208          | -15470<br>-14470<br>-2647  | 18680<br>3304                | 18680<br>3304          | -21230<br>-21110<br>-8519           | 27210<br>22470<br>8385 | 27210<br>22470<br>8519  | 10<br>11             |
| -70<br>-70<br>-70 | 208<br>208<br>208          | - 2865<br>- 6333<br>- 8121 | 6571<br>11920                | 3415<br>6571<br>11920  | -10410<br>-12610<br>-11500          | 8419<br>8821<br>19760  | 10410<br>12610<br>19760 | 12<br>13<br>14       |
| -70<br>-70<br>-70 | 208<br>208<br>208          | - 2250<br>- 8454           | 2816<br>10880                | 2816<br>10880          | -11800<br>-6645<br>-15630           | 8291<br>7091<br>21160  | 7091<br>21160           | 15<br>16<br>17       |
| -70<br>-70        | 208<br>208<br>208          | -6782<br>-8789<br>-7676    | 9986<br>6079<br>9126<br>7145 | 6782<br>9126<br>7676   | -10790<br>-9045<br>-13230<br>-11390 | 10270<br>12250         | 10270<br>13230          | 18<br>19<br>20       |
| -70<br>-70<br>-70 | 208<br>208<br>208          | -10740<br>-3326<br>-3147   | 11130<br>5045<br>3480        | 11130<br>5045<br>3480  | -11980<br>-6326<br>-8151            | 13420<br>6163<br>5893  | 13420<br>6326<br>8151   | 22<br>23<br>24       |
| -70<br>-70<br>-70 | 208<br>208<br>208          | - 4263<br>- 4496<br>- 2548 | 4867<br>4074<br>3306         | 4867<br>4496<br>3306   | -5791<br>-9337<br>-8648             | 7925<br>6120<br>6769   | 7925<br>9337<br>8648    | 25<br>26<br>27       |
| -70<br>-70<br>-70 | 208<br>208<br>208          | - 4170<br>- 7160<br>- 5060 | 3708<br>8566<br>6348         | 4170<br>8566<br>6348   | - 7030<br>-11070<br>- 8463          | 8946<br>12770<br>11030 | 8946<br>12770<br>11030  | 28<br>29<br>30       |
| -70<br>-70<br>-70 | 208<br>208<br>208          | - 7691<br>-14500<br>- 4168 | 11120<br>14160<br>6005       | 11120<br>14500<br>6005 | -10730<br>-22760<br>- 7680          | 14630<br>21320<br>8183 | 14630<br>22760<br>8183  | 31<br>32<br>33       |
| -70<br>-70<br>-70 | 208<br>208<br>208          | -13090<br>- 6079<br>- 6189 | 11010<br>5249<br>7821        | 13090<br>6079<br>7821  | -15600<br>-11290<br>-10330          | 16890<br>9221<br>13580 | 16890<br>11290<br>13580 | 34<br>35<br>36       |

.

.

٠

Case d)

|            |    |             | T <sub>1</sub> |             |             | x           |             | }                    |
|------------|----|-------------|----------------|-------------|-------------|-------------|-------------|----------------------|
| <u>у</u> 1 | Ll | Norm<br>Min | Norm<br>Max    | Norm<br>Abs | Norm<br>Min | Norm<br>Max | Norm<br>Abs | Earthquake<br>Number |
| 70         | 68 | - 9691      | 11350          | 11350       | -16190      | 17840       | 17840       | 7                    |
| 70         | 68 | -10560      | 13740          | 13740       | -20360      | 16820       | 20360       | 2                    |
| 70         | 68 | - 3465      | 4204           | 4204        | - 7089      | 5549        | 7089        | 3                    |
| 70         | 68 | - 6830      | 7656           | 7656        | - 9758      | 9513        | 9758        | 4                    |
| 70         | 68 | - 8717      | 11460          | 11460       | -11410      | 13470       | 13470       | 5                    |
| 70         | 68 | - 9692      | 9990           | 9990        | -12150      | 13450       | 13450       | 6                    |
| 70         | 68 | -15210      | 11060          | 15210       | -16920      | 22820       | 22820       | 7                    |
| 70         | 68 | - 5945      | 6734           | 6734        | - 8591      | 10130       | 10130       | 8                    |
| 70         | 68 | -16880      | 15220          | 16880       | -20700      | 28120       | 28120       | 9                    |
| 70         | 68 | -19180      | 13710          | 19180       | -21740      | 22560       | 22560       | 10                   |
| 70         | 68 | - 3251      | 2141           | 3251        | - 6871      | 7667        | 7667        | 11                   |
| 70         | 68 | - 3010      | 2796           | 3010        | - 8696      | 6833        | 8696        | 12                   |
| 70         | 68 | - 5800      | 6234           | 6234        | -11380      | 8581        | 11380       | 13                   |
| 70         | 68 | -12460      | 7203           | 12460       | -12220      | 19530       | 19530       | 14                   |
| 70         | 68 | 6459        | 8718           | 8718        | -11600      | 8418 .      | 11600       | 15                   |
| 70         | 68 | 2750        | 2132           | 2750        | - 5711      | 6629        | 6629        | 16                   |
| 70         | 68 | -11390      | 8605           | 11390       | -14680      | 20820       | 20820       | . 17                 |
| 70         | 68 | -10570      | 11200          | 11200       | -16720      | 19350       | 19350       | 18                   |
| 70         | 68 | - 6012      | 5707           | 6012        | - 9148      | 10660       | 10660       | 19                   |
| 70         | 68 | - 8280      | 7923           | 8280        | -12420      | 10960       | 12420       | 20                   |
| 70         | 68 | - 7200      | 6964           | 7200        | -10180      | 10080       | 10180       | 21                   |
| 70         | 68 | -11320      | 10720          | 11320       | -11840      | 14010       | 14010       | 22                   |
| 70         | 68 | - 4538      | 3377           | 4538        | - 5658      | 7060        | 7060        | 23                   |
| 70         | 68 | - 3657      | 3247           | 3657        | - 8455      | 5672        | 8455        | 24                   |
| 70         | 68 | - 4920      | 4026           | 4920        | - 6669      | 8177        | 8177        | 25                   |
| 70         | 68 | - 3842      | 4313           | 4313        | - 7919      | 6201        | 7919        | 26                   |
| 70         | 68 | - 3464      | 2525           | 3464        | - 8435      | 6667        | 8435        | 27                   |
| 70         | 68 | - 4400      | 4547           | 4547        | - 7077      | 9381        | 9381        | 28                   |
| 70         | 68 |             | 7704           | 9111        | -11740      | 12810       | 12810       | 29                   |
| 70         | 68 | 6503        | 5386           | 6503        | - 8779      | 11290       | 11290       | 30                   |
| 70         | 68 |             | 7681           | 10970       | 1-11880     | 13940       | 13940       |                      |
| 70         | 60 | = 15020     | 10/20          | 10/20       | -23220      | 23300       | 23300       | 32                   |
| 70         | 60 | 1 - 3572    | 4311           | 12200       | - 1231      | 8593        | 3593        | 23                   |
| 70         |    | -T0020      | 12390          | 12390       | 0066T-1     | 10300       | 02221       | 34<br>2E             |
| 10<br>70   | 60 | 9705        | 6220           | 9205        |             | 15670       | 15670       | 30                   |
| 10         | 00 | 11- 0303    | 0220           | 0000        |             |             | 172010      | 1 70                 |

.

÷

.

Case d)

|                |      | 1 | 1           | T <sub>l</sub>      |             | x <sub>1</sub> |             |             |             |   |                      |
|----------------|------|---|-------------|---------------------|-------------|----------------|-------------|-------------|-------------|---|----------------------|
| y <sub>1</sub> | Ll   |   | Norm<br>Min | Norm<br><u>Ma</u> x | Norm<br>Abs |                | Norm<br>Min | Norm<br>Max | Norm<br>Abs |   | Earthquake<br>Number |
|                | 1.00 | T | 170.0       |                     |             |                |             |             |             | Π |                      |
| 0              | 138  |   | -178.8      | 149.1               | 178.8       |                | -13340      | 21660       | 21660       |   | 1                    |
| 0              | 138  |   | -288.6      | 278.0               | 288.6       |                | -16490      | 21110       | 21110       |   | 2                    |
| 0              | 138  | 1 | - 86.01     | 79.90               | 86.01       |                | -14620      | 12060       | 14620       |   | 3                    |
| 0              | 1738 |   | -100.5      | 98.43               | 100.5       |                | -12240      | 18240       | 18240       |   | 4                    |
| 0              | 138  |   | -2/2.6      | 286.4               | 286.4       |                | -15230      | 16660       | 16660       |   | 5                    |
| 0              | 138  |   | -153.1      | 124.2               | 153.1       |                | -18390      | 18750       | 18750       |   | 6                    |
| 0              | 138  |   | -178.8      | 155.0               | 178.8       |                | -14990      | 20790       | 20790       |   | 7                    |
| 0              | 138  | ĺ | -182.6      | 195.4               | 195.4       |                | -18370      | 15980       | 18370       |   | 8                    |
| 0              | 138  |   | -214.2      | 171.4               | 214.2       |                | -21780      | 23060       | 23060       |   | 9                    |
| 0              | 138  |   | -140.4      | 147.0               | 147.0       |                | -16870      | 21940       | 21940       |   | 10                   |
| 0              | 138  |   | - 28.78     | 32,68               | 32.68       |                | -11970      | 10660       | 11970       |   | 11                   |
| 0              | 138  |   | - 21.81     | 21.16               | 21.81       |                | -12240      | 11980       | 12240       |   | 12                   |
| 0              | 138  |   | -115.5      | 116.6               | 116.6       |                | -18970      | 14140       | 18970       |   | 13                   |
| 0              | 138  |   | -225.7      | 232.7               | 232.7       |                | -12970      | 17680       | 17680       |   | 14                   |
| 0              | 138  |   | -132.3      | 129.3               | 132.3       |                | -13730      | 14180       | 14180       |   | 15                   |
| 0              | 138  |   | - 48.13     | 54.39               | 54.39       |                | - 9668      | 11420       | 11420       |   | 16                   |
| 0              | 138  |   | - 49.98     | 102.9               | 102.9       |                | -17690      | 17080       | 17960       |   | 17                   |
| 0              | 138  |   | -294.4      | 303.1               | 303.1       |                | -16000      | 19460       | 19460       |   | 18                   |
| 0              | 138  |   | -244.0      | 252.6               | 252.6       |                | -18570      | 10800       | 18570       |   | 19                   |
| 0              | 138  |   | -202.7      | 187.9               | 202.7       |                | -12830      | 14320       | 14320       |   | 20                   |
| 0              | 138  | 1 | -113.3      | 129.3               | 129.3       |                | -13920      | 11210       | 13920       |   | 21                   |
| 0              | 138  |   | -192.1      | 249.9               | 249.9       |                | -21050      | 15260       | 21050       |   | 22                   |
| 0              | 138  |   | - 57.37     | 59.45               | 59.45       |                | -18010      | 13830       | 18010       | • | 23                   |
| 0              | 138  | 1 | - 46.26     | 69.64               | 69.64       |                | -14750      | 7946        | 14750       |   | 24                   |
| 0              | 138  |   | - 83.00     | 49.21               | 83.00       |                | - 7454      | 9089        | 9089        |   | 25                   |
| 0              | 138  |   | - 67.14     | 54.99               | 67.14       |                | -11420      | 10400       | 11420       |   | 26                   |
| 0              | 138  |   | - 40.78     | 34.31               | 40.78       |                | -16220      | 13480       | 16220       |   | 27                   |
| 0              | 138  |   | - 34.62     | 24.65               | 34.62       |                | -14510      | 13600       | 14510       |   | 28                   |
| 0              | 138  |   | - 50.23     | 60.51               | 60.51       |                | -10590      | 10810       | 10810       |   | 29                   |
| 0              | 138  |   | - 87.01     | 74.62               | 87.01       |                | -12280      | 13990       | 13990       |   | 30                   |
| 0              | 138  |   | -293.7      | 277.9               | 293.7       |                | -20970      | 13500       | 20970       |   | 31                   |
| 0              | 138  | 1 | -237.9      | 265.4               | 265.4       |                | -18870      | 20330       | 20330       |   | 32                   |
| 0              | 138  |   | - 49.78     | 51.94               | 51.94       |                | -14000      | 11020       | 14000       |   | 33                   |
| 0              | 138  |   | -176.9      | 192.2               | 192.2       |                | -18020      | 14900       | 18020       |   | 34                   |
| 0              | 138  |   | -114.2      | 111.4               | 114.2       |                | -12210      | 16150       | 16150       |   | 35                   |
| 0              | 138  |   | -103.3      | 134.9               | 134.9       |                | -19410      | 12650       | 19410       |   | 36                   |

Case d)

|                                                           |                                                                           | 1                                                                                                                                                                                                                                                                               | T1_                                                                                                                                                                                                                     |                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                       | x <sub>l</sub>                                                                                                                                                                                                                 |                                                                                                                                                                                                                                |                            |
|-----------------------------------------------------------|---------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------|
| y <sub>l</sub>                                            | Ll                                                                        | Norm<br>Min                                                                                                                                                                                                                                                                     | Norm<br>Max                                                                                                                                                                                                             | Norm<br>Abs                                                                                                                                                                                                              | Norm<br>Min                                                                                                                                                                                                                                                           | Norm<br>Max                                                                                                                                                                                                                    | Norm<br>Abs                                                                                                                                                                                                                    | Earthquake<br>Number       |
| У<br>-70<br>-70<br>-70<br>-70<br>-70<br>-70<br>-70<br>-70 | L 1<br>208<br>208<br>208<br>208<br>208<br>208<br>208<br>208<br>208<br>208 | Norm<br>Min<br>- 8887<br>-11440<br>- 3749<br>- 5622<br>- 9384<br>- 8783<br>- 7725<br>- 5801<br>-10700<br>- 9664<br>- 1862<br>- 2317<br>- 5181<br>- 5653<br>- 6875<br>- 1873<br>- 6209<br>- 7677<br>- 4898<br>- 5245<br>- 5178<br>- 5178<br>- 9714<br>- 2854<br>- 2783<br>- 2860 | Norm<br>Max<br>7952<br>9914<br>3079<br>5315<br>7948<br>7655<br>11440<br>5564<br>14330<br>15240<br>2685<br>2616<br>5158<br>9781<br>4980<br>2604<br>8414<br>6819<br>4708<br>6011<br>5073<br>10380<br>3731<br>2507<br>3929 | Norm<br>Abs<br>8887<br>11440<br>3749<br>5612<br>9384<br>8783<br>11440<br>5801<br>14330<br>15240<br>2685<br>2616<br>5181<br>9781<br>6875<br>2604<br>8414<br>7677<br>4898<br>6011<br>5178<br>10380<br>3731<br>2783<br>3929 | Norm<br>Min<br>-12290<br>-17310<br>- 5937<br>- 7500<br>- 8443<br>- 9880<br>-11750<br>- 7726<br>-16950<br>-14500<br>- 5872<br>- 7771<br>- 9679<br>-10150<br>- 8449<br>- 4979<br>-10600<br>-11780<br>- 6575<br>- 7929<br>- 8054<br>- 8884<br>- 4256<br>- 6508<br>- 4986 | Norm<br>Max<br>12170<br>13420<br>4300<br>8864<br>10810<br>11210<br>18120<br>9035<br>24300<br>18100<br>6719<br>5693<br>6958<br>15600<br>5946<br>4920<br>16930<br>15300<br>7069<br>8969<br>7966<br>12590<br>5103<br>4434<br>6182 | Norm<br>Abs<br>12290<br>17310<br>5937<br>8864<br>10810<br>11210<br>18120<br>9035<br>24300<br>18100<br>6719<br>7771<br>9679<br>15600<br>8449<br>4979<br>16930<br>15300<br>7069<br>8969<br>8054<br>12590<br>5103<br>6508<br>6182 | Earthquake<br>Number       |
| -70<br>-70<br>-70<br>-70                                  | 208<br>208<br>208<br>208                                                  | - 2860<br>- 3317<br>- 2051<br>- 3461                                                                                                                                                                                                                                            | 3929<br>2451<br>2468<br>3094                                                                                                                                                                                            | 3929<br>3317<br>2468<br>3461                                                                                                                                                                                             | - 4986<br>- 5692<br>- 7521<br>- 5526                                                                                                                                                                                                                                  | 6182<br>4324<br>5687<br>7241                                                                                                                                                                                                   | 6182<br>5692<br>7521<br>7241                                                                                                                                                                                                   | 25<br>26<br>27<br>28       |
| -70<br>-70<br>-70<br>-70<br>-70                           | 208<br>208<br>208<br>208<br>208<br>208                                    | - 4769<br>- 3274<br>- 6397<br>-12280<br>- 2789                                                                                                                                                                                                                                  | 6813<br>4908<br>9808<br>10110<br>4288                                                                                                                                                                                   | 6813<br>4908<br>9808<br>12280<br>4288                                                                                                                                                                                    | - 8384<br>- 5783<br>- 9226<br>-16130<br>- 5669                                                                                                                                                                                                                        | 9812<br>8645<br>12010<br>18380<br>6790                                                                                                                                                                                         | 9812<br>8645<br>12010<br>18380<br>6790                                                                                                                                                                                         | 29<br>30<br>31<br>32<br>33 |
| -70<br>-70<br>-70                                         | 208<br>208<br>208                                                         | - 9474<br>- 5390<br>- 4628                                                                                                                                                                                                                                                      | 9105<br>4526<br>6609                                                                                                                                                                                                    | 9105<br>5390<br>6609                                                                                                                                                                                                     | -10370<br>- 9129<br>- 8258                                                                                                                                                                                                                                            | 12390<br>8434<br>12960                                                                                                                                                                                                         | 12390<br>9129<br>12960                                                                                                                                                                                                         | 34<br>35<br>36             |

.

Case e)

4

|            | -              |             | Tl          |             |             | x           |             |                      |
|------------|----------------|-------------|-------------|-------------|-------------|-------------|-------------|----------------------|
| <u>y</u> 1 | <sup>L</sup> 1 | Norm<br>Min | Norm<br>Max | Norm<br>Abs | Norm<br>Min | Norm<br>Max | Norm<br>Abs | Earthquake<br>Number |
| 70         | 68             | -22020      | 27320       | 27320       | -39760      | 47430       | 17430       | ,                    |
| 70         | 68             | -21300      | 21740       | 21740       | -42070      | 47430       | 13230       |                      |
| 70         | 68             | - 8930      | 9180        | 9180        | -16300      | 15920       | 16300       | . 3                  |
| 70         | 68             | -16300      | 15920       | 16300       | -28350      | 28600       | 28600       | 4                    |
| 70         | 68             | -28870      | 32390       | 32390       | -70090      | 67280       | 70090       | 5                    |
| 70         | 68             | -25520      | 18810       | 25520       | -51580      | 45780       | 51580       | 6                    |
| 70         | 68             | -20160      | 23610       | 23610       | -64540      | 68940       | 68940       | 7                    |
| 70         | 68             | -11950      | 15660       | 15660       | -34460      | 53640       | 53640       | 8                    |
| 70         | 68             | -20490      | 23600       | 23600       | -37480      | 43600       | 43600       | 9                    |
| 70         | 68             | -26150      | 23610       | 26150       | -46660      | 50760       | 50760       | 10                   |
| 70         | 68             | 6989        | 5937        | 6989        | -22360      | 21050       | 22360       | 11                   |
| 70         | 68             | - 6296      | 5994        | 6296        | -15790      | 16380       | 16380       | 12                   |
| 70         | 68             | -16630      | 17510       | 17510       | -40320      | 33390       | 40320       | 13                   |
| 70         | 68             | -17460      | 16900       | 17460       | -47150      | 47400       | 47400       | 14                   |
| 70         | 68             | -14710      | 18040       | 18040       | -41020      | 48490       | 48490       | 15                   |
| 70         | 68             | - 4727      | 5130        | 5130        | -16400      | 14360       | 16400       | 16                   |
| 70         | 68             | -17840      | 17560       | 17840       | -53990      | 49090       | 53990       | 17                   |
| 70         | 68             | -22830      | 24680       | 24680       | -65680      | 56220       | 65680       | 18                   |
| 70         | 68             | -15830      | 14220       | 15830       | -42150      | 37680       | 42150       | 19                   |
| 70         | 68             | -21720      | 21720       | 21720       | -34650      | 37830       | 37830       | 20                   |
| 70         | 68             | -15070      | 14060       | 15070       | -46350      | 44420       | 46350       | 21                   |
| 70         | 68             | -16400      | 123960      | 116400      | -30560      | 30740       | 30/40       | 22                   |
| 70         | 68             | - 8525      | 1062        | 8525        | -25320      | 18540       | 25320       | 23                   |
| 70         | 60             | - 7700      | 177010      | 110/0       |             | 34860       | 34860       | 24                   |
| 70         | 60             | -13540      | 17730       | 12540       | 21250       | 21000       | 210230      | 25                   |
| 70         | 68             | - 9601      | 8934        | 9601        |             | 25700       | 25700       | 20                   |
| 70         | 68             |             | 10954       | 11210       | -38150      | 31390       | 39150       | 27                   |
| 70         | 68             | -15320      | 15500       | 15500       | -32600      | 31730       | 32600       | 20                   |
| 70         | 68             | -13610      | 13730       | 13730       | -31090      | 36060       | 36060       | 30                   |
| 70         | 68             | -17390      | 18110       | 18110       | -37250      | 35320       | 37250       | 31                   |
| 70         | 68             | -36750      | 36240       | 36750       | -99480      | 103600      | 103600      | 32                   |
| 70         | 68             | -14690      | 14350       | 14650       | -45770      | 46700       | 46700       | 33                   |
| 70         | 68             | -21420      | 23390       | 23990       | -50200      | 53770       | 53770       | 34                   |
| 70         | 68             | -14650      | 14580       | 14650       | -40340      | 36000       | 40340       | 35                   |
| 70         | 68             | -18230      | 17400       | 18230       | -62990      | 62220       | 62990       | 36                   |

.

Case e)

|                |     |             | т <u>1</u>  |             |             |             |             |                      |
|----------------|-----|-------------|-------------|-------------|-------------|-------------|-------------|----------------------|
| y <sub>l</sub> | Ll  | Norm<br>Min | Norm<br>Max | Norm<br>Abs | Norm<br>Min | Norm<br>Max | Norm<br>Abs | Earthquake<br>Number |
|                |     |             |             |             |             |             |             |                      |
| 0              | 138 | -761.1      | 792.4       | 792.4       | -117300     | 114300      | 117300      | 1                    |
| 0              | 138 | -861.4      | 844.6       | 861.4       | -162200     | 163900      | 163900      | 2                    |
| 0              | 138 | -479.4      | 485.8       | 485.8       | - 89720     | 95700       | 95700       | 3                    |
| 0              | 138 | -424.9      | 416.7       | 424.9       | -119400     | 120000      | 120000      | 4                    |
| 0              | 138 | -358.8      | 348         | 358.8       | - 69820     | 68940       | 69820       | 5                    |
| 0              | T38 | -775.9      | 777.1       | 777.1       | -192900     | 191500      | 192900      | 6                    |
| 0              | 138 | -356.9      | 357.2       | 357.2       | - 91980     | 74440       | 91980       | 7                    |
| 0              | 138 | -798.9      | 817.4       | 817.4       | -187900     | 195500      | 195500      | 8                    |
| 0              | 138 | -371.9      | 337.4       | 371.9       | - 88500     | 73500       | 88500       | 9 -                  |
| 0              | 138 | -433.8      | 446.4       | 446.4       | - 33660     | 39090       | 39090       | 10                   |
| 0              | 138 | - 96.50     | 101.0       | 101.0       | - 18710     | 24290       | 24290       |                      |
| 0              | 138 | -200.8      | 191.2       | 200.8       | - 45610     | 45860       | 45860       | 12                   |
| 0              | 138 | -428        | 427.9       | 428         | - 90080     | 100500      | 100500      | 13                   |
| 0              | 138 | -717        | 754.4       | 754.4       | -131400     | 131000      | 131400      | 14                   |
| 0              | 138 | -576.8      | 586         | 586         | - 99520     | 101500      | 101500      | 15                   |
| 0              | 138 | -227.6      | 232.4       | 232.4       | - 50830     | 46730       | 50830       | 16                   |
| 0              | 138 | -219.3      | 226.3       | 226.3       | - 67820     | 58430       | 67820       | 17                   |
| 0              | 138 | -759.2      | 768.3       | 768.3       | -166900     | 170300      | 170300      | 18                   |
| 0              | 138 | -396.6      | 380.5       | 396.6       | - 71320     | 73420       | 73420       | 19                   |
| 0              | 138 | -472.3      | 455.2       | 472.3       | - 55140     | 59470       | 59470       | 20                   |
| 0              | 138 | -277.1      | 290.6       | 290.6       | - 43690     | 40980       | 43690       | 21                   |
| 0              | 138 | -568.8      | 588         | 588         | -102900     | 93180       | 102900      | 22                   |
| 0              | 138 | -433.6      | 438.1       | 438.1       | - 80180     | 81390       | 81390       | 23                   |
| 0              | 138 | -223.7      | 235         | 235         | - 53670     | 52360       | 53670       | 24                   |
| 0              | 138 | -324.9      | 323.6       | 324.9       | - 74140     | 73650       | 74140       | 25                   |
| 0              | 138 | -194.9      | 194.8       | 194.9       | - 48670     | 50150       | 50150       | 26                   |
| 0              | 138 | -218.7      | 221.3       | 221.3       | - 79260     | 78980       | 79260       | 27                   |
| 0              | 138 | -287.8      | 300.3       | 300.3       | - 73290     | 67990       | 67990       | 28                   |
| 0              | 138 | -290.7      | 289.3       | 290.7       | - 80380     | 85610       | 85610       | 29                   |
| 0              | 138 | -315.4      | 325.5       | 325.5       | - 79330     | 77560       | 79330       | 30                   |
| 0              | 138 | -815.4      | 849.4       | 849.4       | -153000     | 148500      | 153000      | 31                   |
| 0              | 138 | -866.4      | 930.6       | 930.6       | -153100     | 165000      | 165000      | 32                   |
| 0              | 138 | -357.8      | 375.8       | 375.8       | - 75710     | 77670       | 77670       | 33                   |
| 0              | 138 | -698.8      | 709.1       | 709.1       | -174200     | 168700      | 174200      | 34                   |
| 0              | 138 | -363.9      | 365.2       | 365.2       | - 55470     | 66940       | 66940       | 35                   |
| 0              | 138 | -767.4      | 751.1       | 767.4       | -184300     | 189700      | 189700      | 36                   |

•

ł

÷

٠

.

٠

- 🔍

Case e)

|                                                                          | _                                                                                    |                                                                                                                                                                                                                                                                                                                                                          | Tl                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                              | x <sub>1</sub>                                                                                                                                                                                                                                                                                                                                  | -                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                      |
|--------------------------------------------------------------------------|--------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------|
| <u>y</u> 1                                                               | Ll                                                                                   | Norm<br>Min                                                                                                                                                                                                                                                                                                                                              | Norm<br>Max                                                                                                                                                                                                                                                                                         | Norm<br>Abs                                                                                                                                                                                                                                                                                                                                      | Norm<br>Min                                                                                                                                                                                                                                                                                                                                  | Norm<br>Max                                                                                                                                                                                                                                                                                                                                     | Norm<br>Abs                                                                                                                                                                                                                                                                                                                                                                                                                                             | Earthquake<br>Number |
| У1<br>-70<br>-70<br>-70<br>-70<br>-70<br>-70<br>-70<br>-70<br>-70<br>-70 | L <sub>1</sub><br>208<br>208<br>208<br>208<br>208<br>208<br>208<br>208<br>208<br>208 | Norm<br>Min<br>-24920<br>-20570<br>-13620<br>-12570<br>-25210<br>-25080<br>-16530<br>-12170<br>-27470<br>-22200<br>-8031<br>-4962<br>-15070<br>-13300<br>-18260<br>-14550<br>-14550<br>-14550<br>-21980<br>-16160<br>-26190<br>-20140<br>-14920<br>-10270<br>-6273<br>-10300<br>-9476<br>-6295<br>-6221<br>-13490<br>-12180<br>-12940<br>-24700<br>-6417 | Norm<br>Max<br>26760<br>21990<br>13950<br>13630<br>25760<br>23340<br>15510<br>10740<br>28650<br>22040<br>7974<br>6052<br>14440<br>13910<br>17030<br>4039<br>14690<br>23920<br>16040<br>25030<br>20180<br>15670<br>10250<br>4867<br>10340<br>8582<br>6367<br>5625<br>14120<br>17280<br>25890<br>9669 | Norm<br>Abs<br>26760<br>21990<br>13950<br>13630<br>25760<br>25080<br>16530<br>12170<br>28650<br>22200<br>8031<br>5052<br>15070<br>13910<br>18260<br>4586<br>14690<br>23920<br>16160<br>23920<br>16160<br>23920<br>16160<br>25030<br>20180<br>15670<br>10270<br>6273<br>10340<br>9476<br>6367<br>6221<br>14120<br>12740<br>17280<br>25890<br>9669 | Norm<br>Min<br>-58680<br>-54360<br>-33870<br>-38990<br>-58740<br>-57220<br>-41720<br>-41720<br>-40600<br>-43210<br>-25120<br>-33160<br>-69240<br>-70400<br>-20190<br>-52370<br>-57780<br>-57780<br>-57780<br>-558230<br>-20190<br>-25030<br>-29190<br>-25030<br>-23260<br>-38530<br>-23180<br>-32160<br>-32160<br>-30250<br>-62290<br>-26400 | Norm<br>Max<br>55750<br>51480<br>30630<br>35500<br>60300<br>63670<br>52840<br>34360<br>46240<br>37250<br>44840<br>31620<br>31950<br>69860<br>76270<br>21500<br>53670<br>59240<br>47470<br>54260<br>47470<br>54260<br>47470<br>54260<br>49100<br>27460<br>23900<br>18650<br>37490<br>26790<br>35150<br>22280<br>42960<br>29900<br>62180<br>23940 | Norm<br>Abs<br>58680<br>53460<br>33870<br>38990<br>60300<br>63670<br>52840<br>38090<br>49090<br>40600<br>44840<br>31620<br>33160<br>69860<br>76270<br>21500<br>53670<br>59240<br>47470<br>59240<br>47470<br>59240<br>47470<br>59240<br>47470<br>59240<br>47470<br>59240<br>47470<br>59240<br>47470<br>59240<br>47470<br>59240<br>47470<br>59250<br>0<br>25030<br>23260<br>38530<br>26790<br>35150<br>27190<br>42960<br>32160<br>30250<br>62290<br>26400 | Earthquake<br>Number |
| -70<br>-70<br>-70                                                        | 208<br>208<br>208                                                                    | -22920<br>-10350<br>-9471                                                                                                                                                                                                                                                                                                                                | 21770<br>10590<br>10180                                                                                                                                                                                                                                                                             | 22920<br>10590<br>10180                                                                                                                                                                                                                                                                                                                          | -53450<br>-35590<br>-44000                                                                                                                                                                                                                                                                                                                   | 50860<br>38980<br>44460                                                                                                                                                                                                                                                                                                                         | 53450<br>38980<br>44460                                                                                                                                                                                                                                                                                                                                                                                                                                 | 34<br>35<br>36       |

50272 -101 1. REPORT NO. 3. Recipient's Accession No. 2. REPORT DOCUMENTATION PAGE NSF/RA-780751 4. Title and Subtitle 5. Report Date Seismic Response of a Rigid Steam Generator Suspended from a February 1978 Simplified Supporting Structure Б. 7. Author(s) J. L. Bogdanoff, H. Lo, G. Guthrie 8. Performing Organization Rept. No. 9. Performing Organization Name and Address 10. Project/Task/Work Unit No. Purdue University School of Aeronautics and Astronautics 11. Contract(C) or Grant(G) No. West Lafayette, IN 47907 (C) (G) ENV7401575 12. Sponsoring Organization Name and Address 13. Type of Report & Period Covered Engineering and Applied Science (EAS) National Science Foundation 1800 G Street, N.W. 14 Washington, D.C. 20550 15. Supplementary Notes 16. Abstract (Limit: 200 words) The loads in the vertical support rods and in the horizontal tie rods are investigated as a function of their geometric configuration when the base of a simple supporting structure is subjected to a set of earthquake accelerograms suitably normalized. Three dimensional linear equations of motion are derived assuming that the vertical support rods can carry compression, that the steam generator may be treated as a rigid body. and that the top girder system forms a rigid body. Numerical results are presented in a two-dimensional example. The main conclusions which can be made are that: (1) the dynamic loads in the vertical support rods are dependent upon the configuration of the horizontal tie rod with some configurations producing much smaller dynamic loads than others; (2) if the maximum acceleration of ground excitation is in the range of .3g, then the influence of the unloading of some of the vertical support rods should be accounted for in the equations of motion including the deformation of the top support; and (3) attention should be given in design to the dynamic loads that the vertical support rods must carry. 17. Document Analysis a. Descriptors Seismic waves Equations of motion Linear algebraic equations Earthquakes Boilers Dynamic loads Rigid frames b. Identifiers/Open-Ended Terms Earthquake Hazards Mitigation c. COSATI Field/Group 18. Availability Statement 19. Security Class (This Report) 21. No. of Pages 20. Security Class (This Page) 22. Price NTIS OPTIONAL FORM 272 (4-77) (See ANSI-Z39.18) REPRODUCED BY (Formerly NTIS-35) NATIONAL TECHNICAL Department of Commerce INFORMATION SERVICE U.S. SARTMENT OF COMMERCE

.