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ABSTRACT

The following report describes an analytical investigation
into the effect panel zone flexibility has on the seismic response
of typical welded open steel frames. General methods for incorpor-
ating the connection behavior, assumed to be a tri-linear shear
mechanism, into a structure's stiffness matrix are developed. This
ircorporation requires that four deqrees of freedom be provided at
each nodal point, and that these DOF's be geometrically transformed
so that connection size {s properly modeled.

Modal analysis results illustrate that connection flexibility
significantly affects a structure's vibrational properties, and
that under certain circumstances conmon analysis procedures lead to
an inaccurate prediction of the frequencies of vibration.

Inelastic analysis results indicate that connection behavior
directly affects the frame's energy-dissipating mechanism, and that
less beam/column damage will occur when more flexible connections
are employed.
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CHAPTER 1 - INTRODUCTION

1.1 General Background

Dynamic analysis of moment-resisting steel frames is generally per-
formed without consideration of connection flexibitity. This assumption
naturally simplifies the constitutive relations involved, and permits
well-known matrix formulations to be used directly in the analysis. It
is conceded, however, that connections do not behave in a riqid fashion
with unlimited strength. The assumption of infinitely strong rigid con-
nections is a particularly poor ane for frames subjected to lateral earth-
quake forces, as antisymmetrical bending of the frame has a tendency to
exploit both connection flexibility and strength. Specifically, a welded
connection can be expected to develop significant internmal elastic shear
deformation that will influence the overall response of the frame to small
ground accelerations. Larger ground motions can force an underdesigned
connection into premature yielding and prevent surrounding beam and column
elements from participating in the energy-dissipating mechanism.

The purpose of this study is to develop the stiffness equations of
a general welded steel frame with shear deformation in the connections,
and to determine the connection's influence on the overall elastic and
jnelastic sefsmic response of the frame by investigating several design

examples.

1.2 Previous Investigations

Shear deformation in a beam-to-column connection, often called panel
zone {PZ) distortion, has been well documented in pseudo-static cyclic
tests of beam-column subassemblages (5,6,16,19,28,29,30,31,33). These



14

studies demonstrate that typical beam-column panel zones are capable of
developing extremely stable hysteretic load-deformation curves with duc-
titities sometimes in excess of 100, Kato and Nakao {16) have suqgested
an empirically derived tri-linear model of the P2 hysteretic behavior
based upon tests of Japanese H-shapes. Krawinkler, et al, (18,19) have
also modeled the PZ behavior as trilinear, but have considered the elas-
tic framing action of the column flanges in determining the second slope,
and have allowed a strain-hardening term to replace the zero slope in the
Xato model. The Krawinkler model was justified experimentally with a
variety of wide flanae shapes. In addition, Pinkney (25) has compared
krawinkler's formulation with an elaborate finite element representation
of the joint, and found reasonable agreement between the two.

Several research investigations (12,21,21,22,41,44) have demonstra-
ted that connection behavior can significantly alter the stiffness and
strength characteristics of open steel frames. Lionbergeyr and Weaver (20,
21) considered the flexibility of bolted connections in the formulation
of the structure's stiffness matrix, but ignored PZ deformation. Fielding
and Chen {12) modified the general slope-deflection equations to inctude
both PZ shear deformation and finite connection size in the formulation.
They concluded that the elastic lateral stiffness of a three-bay frame
with rigid panel zones can be up to 78 percent greater than that of the
frame with unstiffened PZ's. Doubling the panel zone thickness was found
to double the lateral strenath of the frame, although this was a result
of the author's assumption that the panel zones were the only elements in
the frame of limited strength. Naka, et al, (22,41), developed a similar

formulation, but employed the Airy stress function in determining the
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stress-strain relationship of the panel zone. These results were found
to agree well with the Fielding formulation, particularly in the elastic
range.

Yasquez, Popov, and Bertero (44) have illustrated how a structure's
stiffness matrix can be modified to account for panel zone flexibility,
This presentation, however, failed to develop the general matrix trans-
formations that are required to include the effect of finite connection
size, Using a b -linear stress-strain relationship for the panel zone,
they subjected a ten-story four-bay frame to a base excitation of 1.5
times the NS conponent of the 1940 E1 Centro earthquake. The maximum
story sway of the frame with rigid joints was found to vary from 1.79 to
0.674 times the sway resulting from the use of unreinforced PZ's,

The dynamic analysis computer program DRAIN-2D (15), developed by
Kanaan and Powell, is capable of modeling PZ deformation by connecting
intersecting beams and columns through a bi-linear rotational spring. The
rotational spring is the physical analog of the matrix formulation pre-
sented in ref. 44, and hence is not capable of modeling the physical side
of the connection. Some attempts (40} have been made to model connection
size by adding rigid Tinks to the rotational springs and thus improve the
analysis, but this procedure is not entirely satisfactory, as it implies
a deformed shape of the connection which is not physically possible.
Full-scale tests (9,40) have been analytically modeled with reasonable

accuracy using this technique, however.
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1.3 Scope and Orqanization

The scope of this report may be divided into three general categor-
jes:
1) Analytical development of the panel zone shear mechanism, and
its incorporation into the stiffness matrix of a general moment-
resisting steel frame.

2} An investigation of the effect this incorporation has on both
the elastic and inelastic seismic response of the structure.

3) A discussion of the implications these results have on the future

analysis and desiqgn of open steel frames.

Chapter two is devoted to the analytical development of the connec-
tion model, such that, {in contrast to earlier works, both connection size
and PZ shear deformation are included in a more rational way in the formu-
lation. Chapter three describes the frames on which this model was em-
ployed, and discusses thelr design rationale. Included are four- and ten-
story three-bay frames with various connection properties. The lateral
stiffness matrix of these frames is formed directly using the model devel-
oped in chapter two, allowing medal anmalysis results to be compared in
c¢hapter four. Although the connection model is fully.applicable in the
inelastic range of the structure, it was not considered feasible at pres-
ent to incorporate the formulation directly in an inelastic dynamic analy-
sis program. A single four-node finite element placed at each connection
and constrained to have only shear deformation provides an equivalent
model, however. This 1s an excellent alternative to the complex and costly
substructuring required by the Pinkney (25) formulation. The four-story
frame was analyzed using this technique, and the results are elucidated

in chapter five, showing that beam and column damage 1s highly sensitive
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to connection properties. Chapter six summarizes the report's findings,
discusses the implications of ignoring connection deformation in a dynamic

analysis, and provides suggestions for future research.
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CHAPTER TWO - ANALYTICAL DEVELOPMENT

2.1 Connection Deformation

2.1.1 Connection Behavior

The true load-deformation relationship of a welded beam-to-column
connectfon cannot be determined in closed form due to the complexity of
the continuum. However, numerous experimental studies (5,6,16,19,28,29,
30,31,33) have demonstrated that shear distortion of the column web (Fig.
2.1) is the predominate form of deformation, implying that a simple shear
model can accurately represent the connection behavior, Connections suyb-
jected to antisymmetric moments generate shear farces in the panel zone
which are largely responsible for this shear distortion (Fig. 2.2). Since
lateral earthquake or wind loads produce antisymmetric bending of the frame

elements, thkis type of loading can qreatly accentuate PZ distortion.

2.1.2 Tri-Tlinear Connection Model
Krawinkler, et al. (18,19) developed an empirically verified tri-

Tinear model of the full-range hysteretic PZ behavior. This model is con-
sidered the most realistic developed to date of the true curvilinear rela-
tionship, and hence is adopted for use in this study. A chief advantage
of this formulation is the ease with which it may be incorporated intc a
piece-wise lirzar inelastic dynamic analysis program. As with most con-
nection models, the Krawinkler formulation is facilitated by assuming the
beam/column flanges transmit all the moment to the connection, while their
webs transmit the shear.

Ignoring the influence of axial load in the beams, the shear force

at the top of the panel zone (Fig. 2.2) is given by:
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vpz ® a = vco] (2-])

where: v

shear at top of the PZ

M, M] = beam moments to the right and left of
the connection, respectively

beam depth

-
=8
o
1} n

= ¢olumn shear force

When the frame is subjected to lateral forces, the stress induced in the

panel zore by the column shear, V will be opposite in direction to

col’
that induced by the beam moments; hence a negative sign appears in Eq.
(2.1). Column shear force, therefore, is considered a beneficial effect.
The shear force given by Eq. (2.1) is assumed to be uniformly distri-
buted over an effective shear area of (dc - f:)t (Fig. 2.3), resulting in

an average shear stress of:

c= vpz . M - p)

T f
(dc = tc)t (dc - tc)tdb

(2.2)

where:
T = PZ shear stress
dc = ¢olumn depth
tf = thickness of a singie column fiange
t = thickness of column web (PZ)
AM = sum of beam moments, M.+ M,

P = Vegrdp/AM

The PZ shear stiffness is defined in terms of the beam moments and

the PZ shear distortion, y. For a connection behaving elastically, this
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stiffness is found by solving Eg. (2.2) for &M and dividing the result by
1/G:
f
G(d_ - t )td

oM ¢ ¢ b .

2 ) (2.3)
where G is the shear modulus of steel. Ignored in the equation is the
elastic framing action of the surrounding connection stiffeners, an effect
which is normally quite small (19).

This elastic stiffness remains valid until the panel zone reaches a

state of general shear yielding, which is affected by column axial load

and may be determined through the octahedral shear stress failure criteria:

1 - (N/N.)
vy o, | —5—— (2.4)
where: Ty = yield strets in shear of the PZ
ay = yield stress in tension of steel
N/N. = ratio of the column axial lecad to the column

Y yield 1oad.

Normally, N/Ny is small enough so that the yield stress in shear is simply
given by cy/Jf.

Once the panel zone has yfelded, the elastic framing action of the
surrounding column flanges and horizontal stiffeners is assumed to carry
any additional connection load. An approximate expression for this tan-

gent stiffness was found from a finite element analysis to be:
f
AM - AM I
- y _ 1256 ¢
R ks rr i (2.5)
c
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where: My = beam moments creating shear yielding
in the panel zone
Iz = moment of inertia of a single column flange.

This stiffness is assumed valid until a ductility of four is reached, at
which time the connection resists additional loads with a strain-hardening
stiffness given by:

E
=———l= S
KT Ay KZ T (2.6)
where: AM4 = beam moments at four times the yield
Yy  strain
Es = strain hardening modulus of steel
E = elastic modulus of steel.

Since the aforementioned experimental studies show that panel zones are
capable of generating extremely stabie hysteretic loops with very large

ductilities, no upper-bound strain is given for Eq. {2.6).

2.1.3 Model Conversion to Stress-Strain

To facilitate incorporation of Krawinkler's model into a general
matrix formulation, it is convenient to express the connection stiffness
in terms of the PZ shear stress. In the elastic range this is accom-
plished by solving Egq. (2.2) for AM and substituting the result into
Eq. (2.2), which after rearranging simply results in:

t=Gy , 0<]|t]< (2.7)

Ty

Equations (2.2) and (2.5) are used to determine the secondary slope:
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f
Ty 12.5 GIC

&y (d, - tI]tg td,

vy < vl 4y, (2.8)

where Yy is determined from Eqs. (2.4) and (2.7). The tertiary slope
is found from Eqs. (2.2) and (2.6):

T = T4Y Es
—5L - i Il sy, (2.9)

Graphically, this tri-1inear model is illustrated in Fig. 2.4.
At this stage it is useful to introduce an adjusted panel zone thick-

ness:

- f
tadj = t(dc - tc)/dc .2.10)

which will simplify the notation in the forthcoming matrix formulation.
Essentially this adjustment is used to compensate for the overestimation
of the effective shear area by using the full column and beam depths in
the analysis. The ratio (dC - t:)/dc is simply taken as 0.95 in the AISC

specification (1), but here it is included for completeness.

2.2 Matrix Formulation

2.2.1 Transformation of PZ Degrees of Freedom

Four degrees of freedom (Fig. 2.5) are needed at each connection
to describe the PZ model presented in section 2.1. These DOF's provide
the three required rigid-body modes of translation and rotation plus a
single shear deformation mode determined by the difference of the beam and

column rotations (eb and ec’ respectively). These degrees of freedom
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imply displacements at the beam/column connection inter "ace (Fig. 2.6)

which can be determined through the transformations:

Yp = Lip Yy
Uig = Lyg Yy (2.11)
Y117 Lin %y
YUip = Lip Y

where Uip, Yipr Ygp0 Y4p BTE the displacements on the right, top, left
and bottom of connection i; Iir' I%t’ ]3], Iib’ are the corresponding
transformation matrices; and uy is the vactor of the four panel zone dis-

placements., The displacement vectors take the form:

. T
4 ° (“b Ve & Hb)i

Ugp = (0, v 8]
Ui = (up v 8y)

. T
Uig = (U v 8y);

) T
Ui = (Upy Ypp Ope)y
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r
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2.2,2 PZ Stiffness Relations
The incremental shear stress in the panel zone itz related to the
incremental shear deformation through the relations developed in section
2.1.3:
dr = oy Gdy (2.12)
where ay is the tri-1inear stiffness coefficient taken to satisfy Eqs.
(2.8), (2.8) and (2.9), such that:

( 1 ] o<yl < vy
12.5 1 {
& ch Ty < Iyl f_"‘(y
(d, - tc)tctdbl1
E./E ly] > 4,

The incremental shear force at the top of the panel zone, dQ,, may be
written in terms of the incremental beam an' column rotations using Egs.
{2.10) and (2.12):

dq

= t = = -
dt t—ad_j-ac_ aiG dy ﬂiG(de dec)



28

Solving for th.

The remaining incremental PZ shears (Fig. 2.7} can be found in a similar

way and assembled into matrix form:

dg, = K, du (2.13)
T
where: 91 = (Qr' Q1. Qb’ Qt)i
- -
0 o -db db
0 0 dc -dc
0 0 -dc dC
L. Ji

Note that the panel zone shears are not related to the translational de-
grees of freedom, and that Eq is rank deficient by three, suggesting that

the PZ is totally unconstrained and has only one deformable mode.

2.2.3 Equilibrium Requirements of Surrounding Elements
Referring to Figs., 2.7 and 2.8, the shear force at the top of the
panel zone, Qt can be written in terms of the surrounding beam/column ele-

ment forces:

M M1 M
= r v
G=-Mr-q, St Mr-q, g

The remaining PZ shears follow from equilibrium considerations on the

other sides of the connection. In matrix fomm,
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= s -
dQ; = B, d0j - dM,, (2.14)

where:

M Mt

Mys = (;E T TN
cC ¢ b b

Here, g? is the vector of loads at comnection i induced by the surrounding
beams and columns, Nxf is that portion of the axial load in a single
beam/column flange to the "x" side of connection 1. ﬂti is the vector of
torsional moments of beams framing into connection i such that their axis
of bending is parallel to the main frame. Mu and Mv are the torsional
moments of beams framing into the connection so that their webs are paral-
lel to the u and v axes, respectively. For an accurate representation

of each torsional moment, the depth of the beam by which it is carried
must be approximately the size of the connection; that is, the depth of
the beam inducing Mu or Mv must be approximately equal to dc or db' re-~

cnectively.

Equation {2.14) is not valid for beams with unsymmetrical cross-
sections. The _B___I matrix can be modified to account for this, but any
manipulation should be undertaken with caution, as the PZ model is based
upon experimental work that did not consider this effect.
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At this stage it is convenient to define two moments that correspond
to the PZ rotational degrees of freedom, ebi and eci' They are, respec-

tively:

dy

Mo 1 = (O - Q) 5
{2.15)

d

Mcl i° (Q‘_-O])-ZC-

Equations (2.13} and {2.14) can be expressed in terms of Eq. (2.15)

and equated, thus reducing to:

aMEs = B 00T ¥ K] duy (2.16)

in which H;1 is the reduced external moment vector; g: is the reduced

equilibrium matrix; Q?ris the reduced beam/column force vector; and E;
is the reduced PZ stiffness matrix; and where

ro. T
!ti (Mu Hv)i

S _ T
9{ = (Sr Mr St "t S1 H1 Sb Mb)1

d
C C
. ¢ o 1 0 0 1
r 7 2
& " d d
01-2'-’-001--2'10
1y
0 0 1 -1
r'
Ki aGdbdctadj
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Hence the beam/column axial flange forces drop out of the formulation,
suggesting, as should be expected for symmetrical cross-sections, that
they play no role in the shearing distortion of the pane! zone. Equation
(2.16) is the statement of panel zone rotational equilibrium and compati-
bility.

2.2.4 Incorporation into Structure's Stiffness Matrix

The four degrees of freedom needed to model the PZ behavior of
each connection require that four displacements be provided at each node
in a structure's stiffness matrix, rather than the customary three. Fig-
ure 2.9 illustrates a substructure in a general moment-resisting steel
frame. Equation (2.14) can be combined with expressions of horizontal
and vertical equilibrium at node i to give the total equilibrium expres-
sion for this node in terms of panel zone displacements, surrounding ele-

ment forces, and external loads:

[} )
dfy = By dQy + Ky dyy (2.17)
where T
51 = (H V Mu Mv)i
H = external horizontal load at node
V = external vertical lcad at node
1 0 0 1 0 1] 1 0 0 1 0 6
g - |0 1 o0 0 1 0 0 ¢ o0 1 0
- de de
0 - > 0 0 1] 1 0 > 1] 0 0 1
d d
o 0o 1 P 0o 0o 0o 0o 1 -F 0 o

.
M Ny Sy My Sy Ny M)y
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¢ 0 G 0
0o 0 0 0
Ky=adddtygslo 0o 1 -
6 0 -1 1

It can be seen from Eq. (2.11) that 5% is simpiy a matrix of transposed

PZ transformations; that is,

- T T T T
By = (T Tje Ty Iy

The beam/column forces, Q;, can be expressed in terms of the PZ displace-
ments at node i and the surrounding nodes j, k, 1, m, by using Eq. {2.11)

and well-known stiffness relations:

dd; = €,y dug + €4y, dun (2.18)

where:

LY I, 0

[F=)
iy
»
-
b
(= o
o (o
o 1o

C
9 Khv hir

9 9

=

=]
o
[=]

=}

—im Imt

dwy = (du, du  du, dum)T
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js the incremental stiffness matrix of beam n rotated
into global coordinates, representing forces at node x
resulting from displacements at node y

0 is a3 x4 null matrix

Equation (2.18) can thus be substituted into Eq. (2.17) yielding:

dfi = (El St I_(.') duy + By Ein dl:n (2.19)

which completes the stiffness equations representing node i. This expres-

sion can be expanded:

T ,b

. T
OF ;= (T Kiy Ty * Tig Ky Typ *+ Ty K44 T

11 =il

+ TT T
Db "?i Tip * Ky) duy + T "?3 Ty duy

Kik Tup Uy + Iy K5y Iy

T
*Lip E?m Tnt dUn

T b T
*Tit KS, T d'l'J

For exterior connections in the frame, Eq. {2.19) still applies, but the
stiffness submatrices, K:y. are taken as zero matrices for the beams and/or
columns that no Tonger frame into the node. The procedure for assembling
Eq. (2.19) into a structure's stiffness matrix is i1lustrated by Fig. 2.10
and Eq. (2.20).

The computer program JAN, prsented in Appendix A, assembles the stiff-
ness matrix of frames with finite connection size and PZ shear deformation
automatically, and will condense out any degrees of freedom specified by
the user. Rigid connections of finite size can also be handled by speci-
fying the two rotational degrees of freedom at each node to be identical
through the Equal Displacement Command. This allows quick comparison of
the lateral stiffness properties of typical building frames with differ-

ent connection properties, as is done in chapter four.
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2.3 Effect of PZ Reinforcement

2.3.1 Elastic Properties

2.3.1.1 Doudbler Plates

The addition of plate stiffemers to a panel zone will increase
both the strength and stiffness of the connection. The magnitude of this
increase depends on the size of the stiffeners, their yield strength, their
physical placement in the connection, and how effectively they are welded.
The upper bound of the increase is found by assuming the doubler plates
are simply an extra thickness of column web, The connection behavior can
be modeled in this fashion, as is done in refs. 17 and 19, and adjusted
with an effectiveness factor, kl' to correct for any over-estimation of
strength and stiffness that the assumption implies. For plate stiffeners
welded directly to the column web, k‘ > close to unity. Ignoring the
influence of beam/column axial load on the strength of the connection,

the model can be expressed:

1]

Kyt (4, - tF)e

av pst'c c''ps

ps (z.21)
av

ps . -
¥ kltpss(dc t

S
AKPS

f)

c (2.22)

y . _.f
AVps k1tps(dc tc)cy//§ (2.23)

where; AV

ps shear resisted hy plate stiffeners

= plate stiffener effectiveness factor < 1.0

(2
F
-—
" W

ps total thickness of plate stiffeners

lal
"

ps shear stress in plate stiffeners
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AK® = additional shear stiffness, defined in terms
of the PZ shear, provided by the plate stiff-
eners.
avY_ = additional shear strength provided by the plate
stiffeners.
2.3.1.2 Diagonal Stiffeners
A second common method of connection reinforcement is the use of
diagonal stiffeners, a model of which is shown in Fig. 2.11. Consistent
with the assumption that the connaction undergoes only shear deformation,
the column flanges and horizontal stiffeners are considered to be rigid
to axial loads. Once again, the elastic framing action of these elements
is ignored. Diagonal stiffeners carrying a total force Fd canh be expected

to resist a connection shear force above that carried by the panel zone

of:
F, d
. ¢ d7¢
Avds = (2.24)
& * 9
with a stiffness equal to:
2
av k,A_Ed_d
Mgy = = ety (2.25)
(dc + db)
where: Avds = shear resisted by diagonal stiffeners

k, = diagonal stiffener effectiveness factor < 1.0
Fd = total axial load in diagonal stiffeners

Ast = additional shear stiffness providea by diagonal
stiffeners

A_ = total area of shear stiffeners.

Ignoring the influence axial load has on the strength of the connection,

and assuming elasto-plastic behavior of the diagonal stiffener, the
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maximum additional shear the comnection can carry as a result of rein-
forcement is:
avY, = oyl (2.26)
dc * db

Should the connection be designed upon a strength criteria, the use
of diagonal stiffeners will always produce a more flexible connection than
the use of doubler plates. Consider a connection subjected to an addi-
tional shear force, aV, above that causing yield in the column web. The

required doubler plate thickness is given by Eq. (2.23):

RS ) (2.23a)

ps . f
k'I(dc tc)o_y
while the same connection reinforced with diagonal stiffeners would require

a stiffener area as given by Eq. (2.26):

AVA‘GC + db2

—d o (2.26a)
2%

r
AS

Substituting these vaiues into Eqs. (2.22) and (2.25) permits calculation
of the additional stiffness provided by the two options:

&V 63

Ak, = > (2.27)
y
AVEdb dc
and AKdS = (—dz:—dz-)c— (2.28)
c by

Hence the relative additional stiffness of the two designs becomes:

8Rgs _2(1+1) _»
Akbs /3 140¢¢

(2.29)
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where: u = Peisson's ratio

r= db/dc = aspect ratio of the PZ .

For steel, this reduces to:

A-R—Kd-" =1.5 T . (2.29a)
8Rps 1410

The relative total stiffness of the two designoptions is found by adding
Egs. (2.27) and (2.28) to the elastic shear stiffness of the column web,
Gdctad

i and dividing the result. For steel this ratio becomes:

141,55 —TF
Koz * 8Kyg —2‘(

Z 1+r
e - (2.30)
Z ps 1+S§

where: S = V/V¥ = increase in shear strength over un-
reinforced connection .

Equations (2.29a) and (2.30) are plotted in Figs. 2.12 and 2.13, respec-
tively, and illustrate that a connection reinforced with diagonal stiffen-
ers reaches its maximum stiffness with an aspect ratio of one. Equation
(2.29a) has a maximum value of 75%, suggesting the additional stiffness
provided by diagonal stiffeners will be at least 25% less than that pro-
vided by doubler plates. The total relative stiffness of the two options
depends on additional strength that the connection is expected to develop,
as shown in Fig. 2.13. These figures also imply that if the two designs
are based upon an equal stiffness criteria, the design with the diagonal
stiffeners will always be the stronger.
The elastic stiffness of a connection reinforced with diagonal

stiffeners can be defined in terms of a PZ with an egquivalent thickness
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found by equating:

- - s
Keqv = Gdcteqv sz + Ade {2.31)
For steel:
togv = tadj * e (2.32)
(dZ + dp)

2.3.2 Inelastic Properties

References 17 ahd 19 suggest that the analytical tri-linear model
presented in section 2.1,2 is applicable in the inelastic range of connec-
tions reinforced with doubler plates, and experimental work presented in
those references justifies this to some extent. It is felt, however, that
the model may prove inaccurate for connections with shear stiffeners
placed a distance away from the column web, as the web and stiffener may
not yield simultaneousty {as implied by ky < .

The yield behavior of a connection reinforced with diagonal stiffen-
ers is also uncertain, and it would be presumptuous to extend the results
presented in section 2.3.1.2 into the inelastic range without experimental
justification. It must be noted, however, that a reinforced connection
will normally be designed not to yield, making the post-yield behavior
only of academic concern, although there may be some advantage to inelas-
tic energy dissipation occurring within the connection. This topic will

be addressed further in chapter five.



45

CHAPTER THREE - FRAME SELECTION AND DESIGN

3.1 Frame Design
In order to establish the role panel zone flexibility and strength

characteristics play on the seismic response of typical building struc-
tures, two illustrative frames—with three sets of connection properties—
were considered in this study. Both of the frames were designed accord-
ing to 1973 Uniform Building Code {UBC) standards by Pigué (26), and were
presented as part of his doctoral dissertation. These same frames were
later used in a study by Robinson {35). The connection properties of the
example frames ranged from totally rigid to completely unreinforced, with
one case considering the behavior of a reinforced connection, the design
of which {s presented in sec. 3.2.

Considered here are four- and ten-story three-bay frames {Figs. 3.1
and 3.2), as it was felt that their dynamic behavior would be fairly typ-
ical of most modern open steel frames. The four-story frame (4UBC) was
designed for a typical floor 1ive load of 40 psf, while the ten-story
frame {10 UBC) was designed for a floor live load of 50 psf. Both frames
were designed for roof live loads of 20 psf and for dead loads of 80 psf.
The earthquake loads on the structures were taken as those satisfying
U.B.C. zone 3 requirements. Wind loads were taken as a uniform 20 psf
over the height of both structures. Only in-plane effects were considered
in the design of the frames, and each frame was considered responsible for
carrying loads twenty feet perpendicular to the frame itself.

Standard elastic analysis procedures were used to design the frames,
such that the connections were considered infinitely small with no flexi-

bility. The frame elements were designed for the most severe of:
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1) Dead plus 1ive load (D+L) combinations,
2) Dead, 1ive, and wind load (D+L+W) effects,
or 3) Dead, live, and earthquake load (D+L+0) effects.
Interstory drift limitations were taken as 1/350 and 1/500 for wind and
earthquake toadings, respectively. The section properties of the frames'
beams and columns varied at story intervals in a way that was felt to

reflect current economic practice.

3.2 Connection Design

Typical frame analysis procedures do not consider beam-to-column con-
nections as structural elements—they are designed only after the frame
analysis is complete., This somewhat erroneous, albeit convenient, proced-
ure creates an inaccurate design on two fronts. Firstly, the beams and
columns ave not designed for the proper distribution of forces throughout
the structure, and secondly, since the connection design is dependent upon
these forces, they too may become improperly proportioned.

Conventional design of horizontal connection stiffemers is straight-
forward and is aimed at prevention of column flange bending and beam flange
weld fracture that can occur under the intense localized beam flange forces
at the beam/column interface. AISC specification sec. 1.15.5 and ASCE Manual
41 art. 8.6 provide the appropriate desiyn criteria.

In addition to the horizontal stiffeners, shear reinforcement is re-
quirved, according to AISC specification, whenever antisymmetric connection

moments induce a connectfon shear force greater than (17):
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Vmay = 0-40 I d. t (3.1)

for working stress design, and

vmax = 0.55 oy dc t {3.2)

for plastic design.

The ASCE plastic design manual 41 states that connection shear rein-
forcement is required when the connection shear is greater than:

o}
=X
Vmax 7 dc t. (3.3)

A1l three equations ignore the influence of column axial load, and assume
that the column web can qenerate its allowable shear without buckling,
Implicit in Eq. (3.2) is an effective P7 shear area of 0.95 dct; the
other equations assume an unreduced shear area of dct.

The connection shear force is determined by:

¥ = —BH-; - CO] N (3.4)

where 8 = (1,95 if designing in accord with AISC specification or g8 = 1
{f designing with regard to ASCE 41. Should Eq. {3.4) exceed Eq. (3.1),
(3.2), or (3.3), as appropriate, connection reinforcement is required.

As was mentioned in section 2.3, connection reinforcement may take
the form of either doubler plates or diagonal stiffeners. Plastic design
equations (2.23a) and (2.26a) can be used to determine the required
doubler plate and diagonal stiffener dimensions, respectively. These
equations are believed to be more realistic than those suggested in AISC

Commentary sec. 2.5 and ASCE 41 arts, 8.2 and 8.6, which differ in how
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they treat the effective PZ shear area, and simply assume k] and kz to
be unity. It should be noted, however, that these effectiveness factors
are uncertain quantities, and furtner research is needed to determine
appropriate values for their use in design.

The philosophy of the codes is to produce a connection that will
remain elastic, forcing the beams and columns into the role of enerqy
dissipators. Conversely, {t 1§ possible to underdesign a connection so
that all the energy dissipation will occur within the panel zone. It is
difficult to achieve both effects, however, as plastic behavior in a giv-
en element necessarily 1imits the forces that can be transferred to adjac-
ent elements. Nevertheless, Krawinkler (17) has suggested that the sec-
ondary slope of the PZ stress-strain behavior be taken advantage aof in
the design of doubler plates, and has proposed that the connection shear
strength be taken as that value of shear corresponding tn four times the
yield strain of the iri-1inear model presented in section 2.1. This pro-
cedure will theoretically force the panel zones to be the first elements
of the frame to yield and relies upon their secondary hardening slopes to
eventually yield the beams and/or columns, thus creating as many energy-
dissipating mechanisms as possible. To fully achieve this effect, the
beam/column forces and PZ thickness must be delicately balanced during
the frame design, and approach requiring nonlinear dynamic analysis with
connection behavior considered in the formulation. Even with this sophis-
tication, it would be difficult to obtain reliable values of the design
moments and shears, since they would be earthquake dependent and also
quite sensitive to the assumed hysteretic behavior—e relationship

that 1s not known with confidence.
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In any event, localized inelastic deformation can occur even in a
connection designed to remain elastic, since the true shear stress at the
center of the panel zone sides is somewhat higher than the constant-stress
moedel implies (Fig, 2.3).
For purposes of this study, reinforced connections were proportioned
to remain elastic according to the following simplified criterion for de-

termining the connection design moment, M

d:
M. = min (£M°, §MC). (3.5)
d] p; p.' -
where: Mdi = Design moment at connection i;
Mgi, M;i = Plastic moment capacity of beams and columns

framing into connection 1.

The inflvence of beam/column shear is conservatively ignored, and hence

the required doubler plate thickness follows from Eq. (2.23a),
VI M
e d

te

v -t (3.6)
b7y i

ps 1 ZE___
Here is has been assumed that the plate stiffeners are welded directly to
the column web, and thus k] was taken as unity. It was also assumed that
db(dc - tg) 3 dc(db - t;), as was done implicitly in the matrix formulation
of section 2.2. Initially the panel zone yield stress was determined con-
sidering the interaction of column gravity loads, but the effect was smalj
enough that the shear yield stress was taken as cy/J?_ The results of

the connection design for the four- and ten-story frames are summarized in
Tables 3.1 and 3.2. Although the connections were reinforced with doubler
plates, the equivalent elastic stiffness of connections designed with diag-

onal stiffeners would be somewhat less, and may be determined by referring

to Figs. 2.12 and 2.13.
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CHAPTER FOUR - MODAL ANALYSIS

4.1 Implementation of Elastic Connection Model

The four- and ten-story frames discussed in Chapter Three were analyzed

with three different connecticn properties, as follows:

1) Assuming that the PZ's were totally rigid but of finite size;

2) Designing the PZ's to remain elastic according to Eqs. (3.5)
and 3.6%;

3) Using unreinforced connections with shear stiffness provided
solely by the column web.

These three cases were alsc compared with an analysis performed by Robin-
son (35) on the same frames in which the connections were assumed totally
inflexible and of no physical dimensions. The Robinson analysis, there-
fore, overestimates the flexibility of the beams and calumns by using
center-to-center connection distances in calculation of the beam/column
lengths, and ignores the flexibility of the connection itself. With
regard to lateral frame stiffness, the errors produced by this simplified
analysis can, in some cases, be self-compensating.

The lateral stiffness matrix of the frames representing the three
cases were assembled using the program JAN (Appendix A), which takes into
account finite connection size, PZ shear distortion, and beam/column flex-
ural, axial and shear deformation. This program was developed directly
from the matrix formulation presented in section 2.2. For consistency
with the Robinson analysis, oniy horizontal dynamic deyrees of freedom at
each story level were considered, and axial beam deformation was assumed
negligible—as will be the case when rigid floor diaphragms are present

in the frame. For cases 2) and 3), the panel zone thicknesses as shown
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in Tables 3.1 and 3.2 were adjusted according to £q. (2.10) before being
input to the program, thus correcting for overestimation of the effective
shear area implied by using the full column and beam depths in the analy-
sis. Case 1) was implemented by constraining the column and beam rota-
tions to be identical at each connection by using the Equal Displacement
Command.

Once the lateral stiffness matrix representing horizontal floor dis-
placements was obtained, the program STRUDL (38) performed a standard
eigenvalue/eigenvector analysis to determine the first four mode shapes
and periods of the three cases. This was accomplished by iterating to

find non-trivial solutions of:
2
Kby =uy My (4.7)
where: EL = Lateral stiffness matrix of frame,

obtained from program JAN

¢; = Mode shape vector corresponding to
= mode 1

wy = Frequency of mode 1

M = Diagonal mass matrix corresponding to
~  horizontal floor masses.

Following this analysis, the modal participation factors were calcu-
lated for synchronous horizontal base excitation:

LK .2)
r -—T—-—“ .
Ty ny

Since ¢1 was normalized for a unit mass matrix, this becomes:

ry = o M (4.2a)
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where ry = Participation factor of mode i

{1) = Column vector of unity corresponding to
~  the dimension of M.

-T
Hence the quantity —1} ;4 becomes the equivalent relative static displace-
m A
i

ment of mode i corresponding to a constant unit horizontal ground accel-
eration.

The results of the modal! amalysis are presented in Figs. 4.1 through
4.8 and in Tables 4.1 and 4.2. In order to illustrate the relative lateral
stiffness properties of the frames, the mode shapes for graphing purposes
were normalized with respect to the maximum equivalent static displace-
ment occurring in the frame with unreinforced connections; that is:

2
Ty ¢5 9§ yr

Normalized Static Displacement =
wy Ty 04 maxyr

where: ri ur - Participation factor of mode i for the frame
with unreinforced connections
¢i max ur - Maximum eigenvector entry of mode i for the
frame with unreinforced connections
Wy yp = Frequency of mode 1 for the frame with ur-

reinforced connections.
The relative participation of higher modes, as expressed in Tables 4.1
and 4.2, is defined as:

r
Relative Participation = loolfil. (4.4)

b )



4,2 Discussion of Results

4,2.1 Four-Story Frame

Table 4.7 illustrates that the mode shapes of the various design
options are roughly equivalent. The differences in lateral stiffness and
vibrational period, as shown in Figs. 4.1 through 4.4, are more signifi-
cant, with variations as much as 237 and 12%, respectively. For the low-
est modes, as expected, the use of unreinforced connections produces the
most flexible frame, while the use of rigid PZ's creates the stiffest.
For the fundamental mode, reinforcing the connections with doubler plates
produces a frame with lateral stiffness characteristics between these two
extrames, and almost identical to that found by Rabinson. The reason for
this similarity is that Robinson's overestimation of the true beam/column
lengths implied an extra lateral frame flexibility, fictitious in nature,
that was very close to the true additional flexibility provided by panel
zone shear deformation.

During higher modes of vibration, the frames of finite connection
size had a tendency to merge to a common vibrational period and stiffness,
while the Robinson analysis diverged to have the longest period and the
most lateral flexibility. This result ¥s explained by the realization
that PZ shear deformation is largely induced by antisymmetrical bending
of the frame elements. Since higher modes create less antisymmetrical
bending, the PZ shear flexibility is not of great concern in determining
the lateral frame stiffness, but rather, this stiffness is controlled by
the beam and column elements themselves. Because Robinson sfgnificantly
overestimates the flexibility of these controlling elements, the result
is an analysis that significantly overestimates the highest period of

vibration,
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4.2.2 Ten-Story Frame

Similar results were found for the ten-story frame, but since only
the first four modes of vibration were obtained, the divergence of the
Robinson analysis was not found, Presumably, this effect would have ap-
peared 1f the highest modes of 10 UBC were calculated.

Again, in the fundamental mode, the use of reinforcement produced
a frame stiffness almost identical to that found by Robinson. The results
of the ten-story frame analysis are illustrated in Figs. 4.5 through 4.8
and in Table 4.2,

4.2.3 General Interpretation

For structures with heavily reinforced connections, a good approxi-
mation of the lowest mode shapes and periods can be obtained by ignoring
the size of the connection and its flexibility, and by using center-to-
center connection distances in calculation of the beam and column lengths.
For structures left without connection reinforcement, or reinforced less
heavily with either thinner plate stiffeners or by using more flexible
diagonal stiffeners, a standard analysis such as that performed by Robin-
son can lead to an overestimation of the frame stiffness by 14%, and an
underestimation of the period by 7%, Assuming that the connection is
totally rigid but of finite size, as is sometimes done in a frame analysis,
leads to an unrealistically stiff structure in the fundamental mode of
vibration.

Conversely, for an accurate analysis of the highest modes, it is
not necessary to model carefully the panel zone shear stiffness, but it
is necessary to account for the physical connection size so that the true

beam and column lengths are used in the analysis.
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More substantial variations in the response of structure are found
when the inelastic behavior of the frame is investigated, as in this case
the full-range load-deflection behavior of the connection and beam/column

elements become a factor. This topic will be addressed in Chapter Five.
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FIRST MODE
Case Unreinforced Reinforced Rigid Robinson
Period (sec) 1.040 0.960 0.915 0.967
Participation
Factor 0.886 0.894 0.8497 0.830
Relative Partici- 100 100 100 100
pation (%)
Story Mode Shape
4 1.4351 1.4262 1.4153 1.4311
3 1.1962 1.1952 1.1969 1.2008
2 01,8051 0.8145 0.8246 0.8081
1 0.3523 0.3694 0.3829 0.3517
SECOND MODE
Period (sec) 0.330 0.312 0.300 0.320
Participation _ _ -
Factor -0.321 0.317 0.31N 0.319
Relative Partici- 36.2 35.5 34,7 35.8
pation (%)
Story Mode Shape
4 1.2158 1.2193 1.2154 1.2121
3 -0.2640 -0.2386 -0.1986 -0.2455
2 -1.3245 -1.309 -1.2996 -1.3347
1 -0.9769 ~(J. 9996 -1.0252 -0.9721

TABLE 4.1 - 4 UBE MODAL PROPERTIES
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THIRD MODE
Case Unreinforced Reinforced Rigid Robinson
Period (sec.) 0.179 0.175 0.171 0.186
Participation
Factor 0.184 0.175 0.168 0.181
Relative Par- 20.8 19.6 18.7 20.3
ticipation (5)
Story Mode Shape
4 0.8052 0.8162 0.8370 0.8278
3 -1.3652 ~-1.3706 -1.3670 -1.3965
2 0.0319 0.0054 -0.0386 0.0766
1 1.311 1.3051 1.2953 1.2667
FOURTH MODE
Period (sec) 6.122 2.121 0.121 0.134
Participation .
Factor 0.109 -0.105 -0.100 -0.118
Relative Par- 12.3 11.7 11,2 13.3
ticipation (%)
Story Mode Shape
4 0.31566 0.3151 0.3252 0.2987
3 -0.9363 -0.9365 -0.9488 -0.8859
? 1.355% 1.3652 1.3677 1.3417
1 -1.1949 -1.1840 -1.1685 -1.2507

TABLE 4.1 - 4 UBC MODAL PROPERTIES

(Continued)
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FIRST MODE

Case Unreinforced Reinforced Rigid Robinson

Period (sec) 2.487 2.320 2.189 2.322

participation 1.484 1.450 1452 1.492

Relative Partici- 100 100 100 100

pation (%)

Story Mode Shape

10 0.9335 0.9224  0.9284  0.9393
9 0.8864 0.8817 0.8828 0.8913
8 0.8107 0.8077 0.80NM 0.8094
7 0.72982 0.7299 0.7289 0.7280
) 0.6301 0.6334 0.6316 0.6262
5 0.5276 0.531 0.5317 0.5239
4 0.4159 0.4220 0.4212 0.4108
3 0.3066 0.3133 0.3146 0.3034
2 0.19831 0.2049 0.2083 0.1966
1 0.0956 0.1013 0.1054 0.n954

TABLE 4,2 - 10 UBC MODAL PROPERTIES
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SECOND MODE
Case Unreinforced Reinforced Rigid Robinson
Period (sec) 0.880 0.820 0.779 0.835
Participation - - - -
Factor 0.543 0.539 0.544 0.548
Relative Partici- 37.6 37.2 37.%5 38.0
pation (%)
Story Mode Shape
10 0.9886 0.9860 0.9796 0.9918
9 0.6467 0.6520 0.6531 0.6531
8 0.1604 0.1686 0.1685 0.1359
7 -0.2381 -0.2202 -0.21N1 -0.2509
6 <0.5701 -0).5832 -0.5505 -0.5794
5 -0.7519 -0.7420 -0.7386 -0.7521
4 -0.7954 -0.7955 -0.7939 -0.7895
3 -0.7074 -0.7168 -0.7198 -0.7009
2 -0.5160 -0.5312 -0.5398 -0.5112
1 -0,2670 -0.2821 -0.2934 -9.2656

TABLE 4.2 - 10 UBC MODAL PROPERTIES

(Continued)
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THIRD MODE

Case Unreinforced Reinforced Rigid Roebinson

Period (sec) 0.514 0.484 0.461 0.496

participation 0.339 0.323 0.321 0.330

Relative Partici- 21.5 22.3 22.1 22.9

pation (%)

Story Mode Shape

10 0.9045 0.9039 0.8968 0.8914
9 0.1166 0.1330 0.1475 0.1226
8 -0.6653 -0.56519 -0.6503 -0.6945
7 -0.8538 -0,8520 -0.8544 -0.8586
6 ~0.5685 -0.5849 -0.5909 -0.5450
5 -0.0452 -0.0750 -0.0866 -0.0256
4 0.4797 0.4566 0.4467 0.4955
3 0.7579 0.7507 0.7446 0.7592
2 0.7219 0.7309 0.7340 0.7143
1 0.4257 0.4428 0.4548 0.4198

TABLE 4.2 - 10 UBC MODAL PROPERTIES
{Continued)
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FOURTH MODE

Case Unreinforced Reinforced Rigid Robinson

Period (sec) 0.346 0.329 0.315 0.339

Participation _

Factor -0.231 0.224 -0.220 -0.229

Relative Partici- 16.0 15.4 15.2 15.9

pation (%)

Story Mode Shape

10 0.7521 0.7546 0.7516 0.7442
9 -N.4642 -0.4560 -0.4390 -0.4791
8 -0.8870 -0.8864 -0.8915 -0.8811
7 -0.2156 -0,24%9 -0.2623 -0.2007
6 0.6386 0.6180 0.6146 0.6694
5 0.7984 0.8096 0.8154 0.7994
4 0.2743 0.3052 0.3166 0.2444
3 -0.4205 -0.3921 -0.3763 -0.4348
2 -0.7707 -0.7637 -0.7575 -0.7638
1 -0.5693 -0.5820 -0.5917 -0.5568

TABLE 4.2 - 10 UBC MODAL PROPERTIES
{Continued)
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CHAPTER FIVE - INELASTIC ANALYSIS

5.1 Implementation of Inelastic Models

5.1.1 Methodology
In order to assess the effect that connection flexibility and

strength 1imitation have on the full-range inelastic seismic response
of a typical building frame, the four-story three-bay frame (4 UBC)
was analyzed with the three sets of connection properties using two
records of artificial horizontal ground acceleration. Both ground
motions were of ten-second duration scaled to a peak acceleration of
1/3 g, and were derived from the standard Newmark-Hall response spec-
trum. Consistent with the previous modal analysis, only horizontal
dynamic denrees of freedom at each story level were considered.

Inelastic analysis was accomplished using the program DRAIN-2D
(15), fitted with an isoparametric finite element constrained to have
only shear deformation to model the individual connection behavior.
This finite element representation, rather than the use of infinitesi-
mal rotational springs attached to rigid 1inks as was done by Tang (40},
is believed to be a superior model, since it does nat imply a deformed
shape of the connection that is physically unreasonable.

For comparative purposes, damping was taken as five percent of
critical in the first and second modes, and was assumed to be of Ray-
Teigh form:

Gy = ap M+ 2y Ky (5.1)

where ‘
a . %A ‘T1‘T2)
o
T1-T
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T.ITZA (T.I -T2)
7
ﬂ(T] - T2)

- 4
—
i

gq = Incremental viscous damping matrix

Kgy = Incremental stiffness matrix of frame

Diagonal Mass Matrix

P
N

0.05, assumed damping of the first and
second modes

T1. T2= Periods of vibration of the first and
second modes, respectively, as determ-
ined in Chapter Four.
This form of damping implies progressively larqger dissipation in the

higher modes given by:

ﬂoT,' a.l'[r
NT &R YT (5.2)
where: Ayt Proportion of damping in mode i

T1 = Period of mode { .

The damping properties of 4 UBC as determined by Eqs. (5.1) and (5.2)
are summarized in Table 5.1.

The integration time-step for use in DRAIN-2D was taken as 0.015
sec., a figure believed to be reasonable in view of the natural frequen-
cies of the frame. Robinson (35) had previously obtained good results
using & time-step of 0.02 sec. on the same frame; hence no further vali-
dation of the chosen increment was felt necessary.

DRAIN-2D incorporates the P-A effect by adding linearized geometric
stiffness terms to the column shears, but this effect should not be of

great importance for a frame the height of 4 UBC.
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Case A ao(s_] ) a, (x'IO'Zs) Ay X
Unreinforced 0.050 0.459 0.399 0.076 0.107
Reinforced 0.050 0.494 D.375 D.074 0.102
Rigid 0.050 0.%17  0.3%9  0.073  0.N99

TABLE 5.1 - 4 UBC DAMPING PROPERTIES

Panel Zone by by ry(ksn')
1, 2, 3, & 0.0365 0.0233 2n.78
5,8 0.0360 n.0233 20.77
6,7 0.0360 0.0233 20.71
9,19 0.0486 n.0233 20,73
10,11 0.0486 0.021%3 20.58
13,16 0.0486 n.0233 20.66
14,15 0.,0436 0 J233 20,33

TABLE 5.2 - SECONDARY AND TERTIARY SLOPES
OF UNREINFORCED PZ'S
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5.1.2 Cornection Mode!

Figure 5.1 il1Tustrates the finite element representation of a
typical interior frame connection. Similar models were used throughout
the frame, and were given material stress-strain properties according
to the tri-linear formulation presented in Sec. 2.1. Since the ‘inrein-
forced connection was the only connection type found to yield, as mighf
be expected, the secondary and tertiary slopes of the reinforced connec-
tions became inconsequential, The shear yield of the unreinforced con-
nections was adjusted for column gravity load interactfon through Eq.
(2.4).

Standard DRAIN-2D allows material properties to be modeled in a bi-
1inear fashion; hence two bi-linear finite elements were superimposed to
achieve the required tri-Tinear unreinforced connection behavior, as is
shown in Fig. 5.2. Actually, any piece-wise 1inear relationship of dimen-
sion n (n-1fnear) can be expressed through (n-1) bi-linear superpositions,
the procedure for which is illustrated in Appendix B.

The tri-linear stress-strain relationships for the unreinforced con-
nection case are summarized in Table 5.2. For reinforced connections,
only the elastic shear stress-strain relationship is relevant, and for
the rigid ctnnection case all connection constitutive relations are dis-
regarded. Once again, the panel zone thicknesses were adjusted using
Eq. (2.10), thus permitting the full column and beam depths to be used

in determining the physical connection size,
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5.1.3 Beam/Column Models

The true hysteretic behavior of steel, as shown by Peterson, Oritz
and Popov (23, 32), is quite complex and requires sophisticated mathemat-
ical techniques to model even simple tension specimens—techniques well
beyond what can be incorporated into present non-ltinear dynamic analysis
programs. Nevertheless, reasonable results can be obtained for purposes
of comparison by using a simple bi-linear relationship to represent the
plastic hinge moment-rotation behavior. One method of determining the
plastic hinge properties is to first determine a suitable bi-linear approx-
imation of the curvilinear moment-curvature relation at the cross-section
under consideration. An assumption on the shape of moment diagram in
the member then allows calculation of the plastic hinge behavior. This
behavior may then, once again, be approximated as bi-linear, allowing
easy incorporation into the computer program,

Although it is realized that the virgin moment-curvature relation-
ship is not completely indicative of the full-range hysteretic behavior,
it was used as the basis of the bi-linear approximation menticned above.
This virgin curve was determined for a given wide-flange section from
the tensile stress-strain diagram of steel, assumed to be tri-linear (Fig.
3.3), by intearating across the cross-section to detemmine the value of
moment corresponding to various values of strain and curvature.

Figure 5.3 illustrates the bi-linear approximation of the moment-
curvature relationship. As was done in Ref. 40, the start of the secon-
dary slope was taken as that value of moment corresponding to the yield
moment of the cross-section, as this procedure has produced a good match

with experimental results of full-s:ale dynamic frame tests.
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The shape of the moment diagram (for purposes of calculating hinge
properties) was assumed to be that of a beam of length L in pure anti-
symmetrical bending (Fiq. 5.4), a reasonable assumption in view of the
dominant form of frame deformation. Since this assumption implies a
noint of contraflexure at mid-span of the beam, a cantilever of length
L/2 can be used to calculate the lvad-deflection properties. A canti-
lever of this length subjected to a load at the tip will underdo a
deflection found by double-inteqration of the curvature diagram. From

the moment-area theorem, the tip deflection is found to be:

1 PL .
7% T TN
§ = 3 » (5.3)
o 1,2 Lo 3 p3
[%‘T’“Tl Gy =" * G,
7o,
where: 4 = L6/2 = Deflection at cantilever tip
P = 2M/L = Load at cantilever tip
I = Moment of inertia of cross-section,
strong axis in bending
¢y = Hy/EI = Yield curvature
o, = Second slop: of moment-curvature relation,

¢ as proportion of EI.

The load-deflection relationship, as determined by Eq. (5.3), is
found to be somewhat curvilinear in the inelastic range (Fig. 5.5), but
may be approximated with gocd accuracy as linear. This linearization

assumption implies a *ip deflection in the inelastic range given by:
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3
P L 3
= % L
§ = 34E + (P- Py) 33 Ta “e P > Py (5.4)

where: py Tip load corresponding to My
o Secondary secant slope of the load-
deflection relation, as proportion of
24€1/L3

=2
"

Since Pyle = My= EI¢y »this expression reduces to

o.L% 3

- PL

8= Fp (- Vag) + ey -

Equating this result with the portion of Eq. (5.3) valid for the inelas-

tic range permits an expression for ag to be obtained. After introduc-

ing the curvature ductility factor u¢ = ¢m/¢y, this expression becomes:

W o 2ay(u®-1) + 1)
P omt-n) ea @ - 3040

{5.5)

This function is plotted in Fig. 5.6, and can be seen to be quite linear
over the range of interest. Ideally, the values of u¢ and a¢ would be
obtained through an fterative process—by first assuming appropriate
values and then carrying out the non-linear dynamic analysis to cbtain a
revised estimate of the curvature ductility demand. This revised value
would permit an improved estimate of the bDi-linear moment-curvature approx-
imation, and then from Eq. (5.5) a better estimate of N could be ob-
tained for use in the next analysis. This iteration technique, however,
could be quite costly in view of the expense of non-linear dynamic analy-

sis. For purposes of this study, the assumed curvature ductility for use

in Eq. {5.5) was simply taken as thirty and %, was found corresponding to
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this ductility from the aforementioned virgin moment-curvature diagram,

and no iteration was performed. This simplified procedure will be con-
servative in the calculation of beam/column ductilities and damage
ratios, as g is 1likely ta be underestimated, thus resulting in more
inelastic deformation for any required amount of enerqgy dissipation. The
bi-linear properties of the beams énd columns comprising 4 UBC are sum-
marized in Table 5.3.

The moment capacity of the columns was reduced corresponding to the
instantaneous axia} Yoad present in them as determined by the ASCE inter-
action criteria of Art. 7.2 in Ref. 2 (Fig. 5.7). Only axial cross-
sectional effects were considered; thus shear interaction and column
buckling were ignored. Beams were assumed to have no axial deformation;
thus they were nermitted to develop their full moment capacitv; again,
buckling effects were ignored. Plastic hinges were assumed to form only
at the beam and column ends, in keeping with the assumptions used to cal-

culate the bi-Tinear hinge properties.

5.2 Measures of Damage

There is considerable debate over what parameters provide good mea-
sures of structural damage. For purposes of this study, however, abso-
lute quantities of damage need not be determined with precision, as only
comparative measures are needed. Hence the common definitions of beam
and column damage, namely curvature and rotation ductility demand, were

adopted:
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Member

Hy(k- in) oy ay
10 x 39 1519 0.0167 0.0375
10 x 33 1260 0.0164 0.0372
16 x 31 1699 0.0176 0.0383
16 x 26 1379 0.0173 0.0380

TABLE 5.3 ~ PLASTIC HINGE PROPERTIES OF BEAMS AND

COLUMNS (MATCHED @ u® = 30)
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Myl - M
+ 1 M M
o 4 —rrl%,y Mal 2 M,
v E;' ' (5.6)
Myl M, Mol <M,
|e
NI Lol (5.7)
8
Y
where: u¢ = Curvature ductility demand
ue = Rotation ductility demand
By = Maximum plastic hinge rotation

g = MyLiGEI = Yield rotation of a member

in antisymmetric bendinn, adjusted for
gravity loads via Fig, 5.7

Mm = Maximum end moment,

VYalues greater than one suggest that inelastic behavior has occurred in
the member, with values greater than ten typically considered to imply
extensive damaae, The yield roments used in these definitions, in the
case of column ductility calculations, were adjusted for the presence of
axial gravity loads in accordance with Fig. 5.7. This procedure, though
debatable, provides an adjustment for the aoproximate average axial column
load experienced during the earthquake excitation.

Two further measures were used to express beam and column damage,
those being: Normalized Peak Plastic Rotation (NPPR) and Normalized
Cumulative Plastic Rotation (NCPR), whera:

6p + 1651

NPPR = —— (5.8)
Y
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*

6, + |16 .]
NCPR = —2! pi

O

(5.9)

where: e+. 9. = The maximum positive and neqative
P plastic hinae rotations, respectively

ze;i. Ee'i = Sum of all plastic hinge rotations in
P the positive and negative directions,
respectively,

Any values of NPPR and NCPR greater than zero indicate inelastic behavior,
while identical values of NPPR and NCPR sugqest that only one inelastic
hinge excursion has occurred.

The definfitions of panel zone damage are analogous to the beam/column

parameters, and take the form:

Mpz = |ym/yy| (5.10)
Y; * vl
Y

+ -
. Iy pi + £1p.‘
Yy

NCPD (5.12)

where: upg = Panel Zone Ductility Demand

NPPD = Normalized Peak Plastic Deformation

NCPD = N?rmalized Cumulative Plastic Deforma-
tion

Ym = Maximum shear deformation occurring
in the P2

y;,-y; = The maximum positive and negative
plastic panel zone deformation, respec-
tively

* Ty, = Sum of all plastic PZ deformations in the
pi Pi  positive and negative directions, respec-
tively.

Iy
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Any value of y 2 less than one indicates elastic panel zone behavior,

P
values between one and four imply that the tri-linear stress-strain model
reached its secondary slope, while values greater than four suggest that
the final tertiary slope was achieved at some point in the earthquake ex-
citation. It should be noted that connections are capable of developing
very high ductilities without impairment of their load-carrying capabil-
ity—values in excess of 100 have been recorded in experimental pseudo-

static cyclic tests (16).

5.3 Discussion of Results

5.3.1 General Frame Response

The use of unreinforced panel zones in the connection design pro-
duced a frame that dissipated energy through inelastic connection deforma-
tion (Figs. 5.9 , 5.12 ) and prevented olastic hinges from forming in the
beams and columns at all locations except at the fixed supports of the
frame base. Conversely, reinforced or riqid connections dissipated no
energy, thus forcing inelastic behavior to occur in the beams and columns
(Figs. 5.10, 5.11, 5.13, 5.14). The greatest number of plastic hinges
formed in the frame with rigid connections. Nevertheless, inelastic be-
havior occurred extensively throughout the frame regardless of ine connec-
tion properties and earthquake excitation, and was most Severe in the
first and second stories on the interior of the frame. Somewhat surpris-
ingly, the maximum top story drift (Figs. 5.15, 5.16) was not appreciably
affected by the physical behavior of the connection. The computed dis-
placement envelopes illustrate that there is no clear relationship between

the lateral stiffness properties of the frames {a; determined in Chapter
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Four) and their maximum story drifts. The most riqid frame (i.e., with
riqid PZ's), for example, exhibited the softest first story of all the
cases examined. It is difficult to draw a meaningful conclusion from
this, however, as the maximum drifts occurred at different times depend-
ing upon the connection design.

Figures 5.17, 5.19, 5.21, 5.23, 5.25, and 5.27 display the time
history of the frames' top story horizon:ial displacement, and suggest
that the motion was domirated by the fundamental mode of vibration. The
erratic hystereses illustrated in Figs. 5.18, 5,20, 5.22, 5.24, 5.26 and
5.28, however, imply that higher vibraticnal modes influenced the frames'
base shear force.

Typically, in terms of ductility demand and normalized plastic dis-
tortion, the frame with unreinforced connections exhibited comparatively
higher measures of damage {in th PZ's) than did the frame with reinforced
and rigid connections (in the beams and columns). Since panel zoras are
capable of tolerating extremely large inelastic deformations—much larger
than beams or columns—this does not necessarily imply that the frame
as a whole was in any more danger when the connections were left unrein-

forced, however.

5.3.2 Behavior of Frame with Unreinforced PZ's

The behavior of the panel zones for this case is illustrated by
Figs. 5.35 and 5.36, for QKE no. 1, and by Figs. 5.49 and 5.50 for QKE
no. 2. The results indicate that the panel zones undergo significant
inelastic deformation, achieving the tertiary slope of the tri-linear
stress-strain model. Hysteresis loops for connections 4, 10 and 14,

which are typical of all connections undergoing inelastic deformation,
are shown in Figs. 5.29 through 5.34.
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Since a connection in a state of shear yield limits the forces that
can be transferred to the adjacent beams and columns, these surrounding
elements remained elastic during the excitation and thus experienced no
permanent damage. The sole exception to this were the plastic hinges
that formed at the fixed supports at the frame base, and even at these
locations damage was less severe when unreinforced connections were em-
ployed. This phenomenon is illustrated in Figs. 5.39, 5.40, 5.43, 5.44,
5.47, 5.48, 5.53, 5.54, 5,57, 5,58, 5.61, and 5.62.

The ductilities and normalized plastic deformations found in the
panel zones suggest that for these levels of earthquake excitation, 4 UBC

was in no imminent danger when the panel zones were left unreinforced.

5.3.3 Behavior of Frame with Reinforced and Rigid PZ's
The connection design procedure presented in Sec. 3.2, as expected,
produced a connection that remained elastic during plastic hinge forma-
tion in the surrounding beams and columns. The rigid connection case—
2 mathematical abstraction that cannot occur in reality—also forced all
inelastic behavior to occur in the beams and columns. Fiqures 5.35 and
5.49 illustrate the effect connection reinforcement has on the stresses
induced in the panel zone, and show that Eqs. (3.5) and (3.86) produced a
fairly efficient utilization of connection materials throughout the frame.
The ductility requirements of the beams and columns (Figs. 5.37
through 5.44 and 5.51 through 5.58) suggest that only moderate damage
at worst, was sustained by these elements. Again, the frame was in no
immediate danger of collapse. Fiqures 5.45 through 5.48 and 5.59 through
5.62 imply that only a few inelastic cycles, often only one, occurred

in the beams and columns as suggested by nearly identical or identical
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values of NPPR and NCPR, This {s {n contrast to the unreinforced connec-
tions that underwent several inelastic cycles.

In all cases, rigid connections induced more damage in the beams and
columns that did reinforced connections (Figs. 5.37 through 5.48 and 5.5]
through 5.62). This result was also shown experimentally by Bertero et al.
(6) in a test of frame subassemblages where beams and columns experienced
greater inelastic deformation when more riqid panel zones were used in
otherwise identical assemblies. This beneficial effect is believed to be
caused by elastic relaxaticn of the panel zone which better distributes
forces around the connection to elements in a better position to carry any

excessive loads.

5.3.4 General Interpretation

From the viewpoint of overall seismic structural response, the
use of unreinforced connections was not shown to be inherently inferior
to the use of reinforced connections in a frame destgn. The two design
options merely provide a choice of the energy dissipating mechanism—
either through inelastic Jatormation in the connection itself or via
plastic hinge rotation in the beams and columns., The first option will
require comparitively qreater inelastic excursions and ductility demands,
but since panel zones are by nature capable of tolerating greater demands
than beams and columns, this cannot be said to be necessarily bad.

The inelastic analysis has also shown that more elastically rigid
connections induce more inelastic deformation in the surrounding beams
and columns. This implies that if a non-l1inear dynamic analysis is per-
formed in which connection flexibility is ignored but the physical con-

nection sizn is modeled, the result will be a conservative estimation
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of the beam and column ductility demands. It alsu impiies that for a
connection designed to remain elastic, the use of more flexible diagonal
stiffeners—as opposed to the use of doubler plates—would produce even
fewer demands on the required energy dissipation of the beams and col-

umns.
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CHAPTER SIX - SUMMARY AND CONCLUSIONS

6.1 Principal Findings

This report has detailed an investigation into the effect that
panel 2one constitutive behavior has on the seismic response of walded
moment-resisting steel frames. The results of elastic modal analysis
suggest that connection flexibility will generally produce a structure
of greater lateral flexibility—and period—than the common analysis
procedure of ignoring connection size and flexibility would predict.
Inelastic analysis has demonstrated that connection behavior has & great
impact on the damage experienced by the beams and columns during an
earthquake excitation.

The connection was modeled as a tri-linear shear mechanism, and a
general matrix formulation was developed so that this effect can be in-
cluded in a structure's stiffness matrix. This incorporation reguires
that:

1) An additional rotational degree of freedom be provided at each
node in a structure's stiffness matrix where panel zone flexi-
bility is to be modeled, and that

2) General matrix transformations be performed at each node in
order to include the effect of finite connection size in the
formulation.

Modal analysis of two example frames was performed, using this

matrix formulation, which demonstrated that:

3) Ignoring connection flexibility and size in the analysis (i.e.,
by using only one rotational DOF at each node and by using the
full ¢-c connection distance in calculation of the beam/column
lengths) has a self-compensating effect that produced a good
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estimate of the fundamental mode of vibration of the struc-
tures with heavily reinforced connections.

The structures without connection refnforcement were up to 14%
more flexible in the fundamental mole of vibration than the sim-
plified analysis as performed in 3) suggested.

An assumption that the connection was of finite size but of no
flexibility lead to unrealistically stiff structures in the funda-
mental mode of vibration. However,

The assumption as stated in 5) leads to an accurate prediction
of the highast modes of vibration.

The inelastic response of one of the example frames was examined by

subjecting the structure to two records of artificial horizontal ground

motion.

Individual connections for this portion of the study were mod-

eled by single finite elements constrained to have only shear deformation.

The results of the analysis indicated that:

7)

8)

9)

The frame with unreinforced connections dissipated energy
through inelastic deformatio.s in the panel zone and prevented
plastic hinges from forminc i, 1he beams and columns at all
locations ather than at the fixed supports at the frame base.
Reinforcing the connections so that they remained elastic

forced the beams and columns intp the role of energy dissipators.

Rigid connections produced the largest inelastic deformation
demands on the beams and columns. This suggests that 1f a non-
linear dynamic analysis is performed in which panel zone flexf-
bility is ignored but the physical comnection size is modeled,
the result will be a conservative estimation of the beam and
column ductility demands.

For a connection designed to reman elastic, the most flexible
design is the preferable one, implying that reinforcement in the
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form of diagonal stiffeners is better than one employing
doubler plates.

10) The maximum story displacements did not vary with the connection
properties in a way that could be predicted from elastic analy-
sis, Furthermore, no one set of connection properties produced
appreciably larger lateral frame sway than another.

6.2 Recommendations for Future Research

The connection behavior for use in this study was assumed toc be one
of a2 simple shear mechanism, as this is the dominant form of connection
deformation and the one that most significantly affects the beam and col-
umn moments. Other forms of deformation, however, also occur within a
connection and should be included in the matrix formulation for a com-
plete description of the physical frame behavior. This is particularly
trie for frames with bolted moment connections.

Panel zone flexibility implies that common analysis techniques will,
to some extent, improperly predict the true distribution of forces in
the structure under the design loads. Research is needed to determine
the effect that connection flexibility has on the static load-carrying
characteristics of open steel frames.

Most importantly, frames of various heights and configurations
should be examined in greater detail under a larger varjety of earthquake
excitations, as this portion of the study was admittedly limited in scope.
Finally, the inelastic models should be improved beyond the simple bi-
and tri-linear formulations to more accurately emulate the full-range

hysteretic behavior of the frame elements,
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APPENDIX A - PROGRAM JAN

JAN is an interactive computer program that will assemble the stiff-
ness matrix of planar building frames with finite connection size and panel
zone shear deformation. In addition, JAN will statically condense any
degrees of freedom not specified in the DOF RCTAIN COMMAND, thus permit-
ting calculation of such properties as the frame's lateral stiffness matrix.
The program is directly based upon the matrix formulation of Chapter Two.
No claims are made as to the efficiency of the program—there is, for exam-
ple, a distinctly poor utilization of storage space—but the cost of a sin-
gle run is fairly low nonetheless. Being an interactive program, JAN does
not require much explanations what follows is a brief description of the
program‘s numbering and dimensioning requirements.

JAN requires a node numbering sequence as shawn in Fig, A.1. Nodes
that are supported in any manner are not numbered, The size of the global

stiffness matrix s calculated as:

NELC = 4(ND} (A.1)

where ND is the number of nodes in the structure. The program {is peculiar
in that it will not accept over-dimensioning of the stiffness matrix; hence
the size of GMAT (in the MAIN and subroutine ADDRS) and AV (in subrou-
tines PTAVC and SCON) must be carefully stipulated before each run. As
illustrated in the program listing, JAN is set up for an B-node structure.
The specific dimensioning requirements of the program are summarized in
Tatle A1,

Provision has been made for structures that will undergo antisymmetric

bending, as did the frames of this study during the modal analysis. The
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POSITIVE FORCES AND DISPLACEMENTS

_~
e

e "

e

A = NODE NUMBER
@ = INTERNAL BEAM NUMBER

@ = INTERNAL COLUMN NUMBER

/0\ = COLUMN WITH FIXED SUPPORT NUMBER

FIGURE A.1- ELEMENT NUMBERING REQUIREMENTS
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Description _ g?::;;?gn
of Variable Variable Array of Array
No. of NSTFT AQ,AIQ, > (NSTFT)
basic stiffness ALQ,ASQ
types
Total no. of JSFT APRP,AIPRP > (JSFT)
beams and columns ALPRe,ASPRP
Size of 9lobal NELG GMAT = (NELG,NELG)
matrix
NCON > {NELG)
AV = (NELGD)
No. of nodes ND PZD > (ND,2)
{(PZ's)
IGEOM > (ND,5)
No. of equal dis- NEDC NHOLD > (NEDC)

placement commands

TABLE A.1 - DIMENSIONING REQUIREMENTS OF PROGRAM JAN
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structural idealization and numbering for frames of this type are shown
in Fig. A.2.

Any members {including those with supports at an end) which differ
in cross-sectional area, moment of inertia, effective shear area, or
length must be specified as different STIFFNESS TYPES. Member lengths are
taken as center-to-center connection distances, as the program automatic-
ally adjusts these lengths for the true connection size. The lengths of
beams used to specify the antisymmetry condition (members [:} [:] (:)[:)
in Fig. A.2)} are again taken as their full c-c¢ dimensinn.

Member numbering is illustrated in Figs., A.1 and A.2. Beams, Columns,
Columns with Fixed Supports at the base, and Beams with Roller Supports
are all numbered independently beginning with 1.

The submatrix address of a beam is determined as the node number to
the left of the beam followed by the node number to the right. The sub-
matrix address of a column is determined as the node number above that
column followed by the node number below.

JAN will prompt the user for the panel zone thickness of each node.
No adjustment is made by the program for the effective PZ shear area; if
adjustment is desired, Eq. (2.10) may be used to determine an appropriate
thickness to be input. Specifying zerc as the PZ thickness will result
in a singular stiffness matrix.

The degrees of freedom in the stiffness matrix are arranged in
accordance with the formulation of Sec. 2.2. The address of any degree
of freedom (for use in the EQUAL DISPLACEMENT COMMAND and the DOF RETAIN
COMMAND) may be found from:

ADu s 4(1-1)+4§ , {A.2)
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()s BEAM WITH ROLLER SUPPORT NUMBER

PIGURE A.2- IDEALIZATION OF SYMMETRIC STRUCTURE
IN ANTI-SYMMETRIC BENDING

RETAINED DOF NO.

i SV
AV(1) AV(3) AV(6) 1
AV(2) AV(S5) 2
AV(4) 3

N ] INDFR _

FIGURE A.3- OUTPUT SEQUENCE OF REDUCED
UPPER-TRIANGULAR STIFFNESS MATRIX
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where: ADu = Matrix address of degree of f-eedom u

1 = Node number of degree of freedom u

{ =
] u=u
2 u-vci
j’i
3 "=8c1
L4 u=eM

Degrees of freedom may be stipulated as identical through the EQUAL
DISPLACEMENT COMMAND; a rigid connection, for example, can be modeled by
requiring the beam and column rotations at the node to be identical through
this command. Only two degrees of freedom may be specified as equal in a
single comand; more than two degrees of freedom may be constrained through
multiple commands. The first specified DOF is the location where the re-
sulting superimposed equations are stored; the second location is elimi-
nated from the system.

Degrees of freedom to be retained in the reduced stiffness matrix
can be specified by the DOF RETAIN COMMAND. A1) other DOF's are eliminated
by static condensation. The reduced upper-triangular stiffness matrix is
output as a column vector corresponding to the order of the DOF's spect-

fied in this conmand, as i1lustrated in Fig. A.3.
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IMPLICIT REAL»8(A=-H,0-2)
C

(A L L TN Y R il L R L N L L LR T T L L L e oA s

Ce JAN=-= PROGRAM FQR STIFFNESS REDUCTION OF BUILCING

Ce FRAMES WITH FINITE CONNECTION SIZE AND P2Z .
C» SHEAR DEFORMATION -
Ce .
Ce DEVELOPED BY R.W. GRAVES DEPT. OF CIVIL ENGINEERIHNG =
Ce M.I.T. CAMBRIDGE, MA. 02139 -
Ce APRIL 199¢ -
CHt it e nu s e s TREcsaALsaarREsBERBsbttind (AL A R L R L I A R YO YT Y )

[
COMMON /STIFF/AQ{10) .AIQ( 10} ,ALQ{10),ASQ(10)
COMMON /BCPRP /APAP( 20} ,ATPRP{20).ALPRZ(20),ASPRA(20)
LOMMON/CLR/G(4,4)
COMMON /CONE /NCON(50)
COMMON/AD/GHAT(32,32)
DIMENSION NMOLD(50),IGEOM(10,5),P20(10.2)

PRINT &

JaNGIO10
JANQQOQ20
JANOQC30
JANCC Q40
JaNJNOSD
JANQQOGO
JANGOO70
JANQOORD
JANOG QG0
JANCO GO
JANDO 110
JANQQO1Z0
JANCD130
JANSC 120
JANDO 150
JANOD 160
JANGG1T0
JANQO 18D
JANGO190
JANJ0200

L] FORMAT(//,5X,'JaN-~ PROGRAM FOR STIFFNESS REDUCTION OF BUILDING',/JANOO210

1,11X, ' FRAMES WITH FINITE CONNECTION SIZE AND PZ DEFQRMATION',//)
PRINT 10
10 FORMAT (//,5X, 'ENTER SIZE OF GLOBAL MATRIX',/)
READ(S,.*) NELG
c
c INITIALIZE WORK SPACE
0O 20 I=t,NELG
DO 20 J=1,NELG
GMAT(I ,J}=0.
20 CONTINUE
NDaNELG/4
DD 30 I"!“D
OO0 30 Jw1,S
IGEOM( L ,J)=0
30 CONTINUE
JSFTs0
ICCHR=0

INPUT BASIC STIFFNESS TYPES

Nnon

PRINT 40

40 FORMAT(//,5X, 'ENTER ELASTIC MODULUS, SHEAR MODULUS',/)
READIS,.*) E, GS
PRINT S0

50 FOAMAT(//,5X, 'ENTER NO. OF STIFENESS TYPES',/)
REALC(S,%) NSTFT
DO 60 I=1 NSTFT
PRINT 70, 1

70 FORMAT(//,5K, ENTER A,1,L,ASHEAR, OF STIFFNESS TYPE',I13./)
READ(S,*) AQ(I).AIQII).ALO(I).ASQO(I)

60 CONTINUE

BEAM CATA INPUT

aono

PRINT 80

a0 FORMAT(///. 85X, "ENTEA NC, OF INTERNAL DEAM ELEMENTS',/)
READ({S,~) NO
IF{NG.ED.Q)G0 TO 140
20 130 I=t,NB
JSFTsdS5FT+1
PRINT 80, I

90  FCRMAT(//.SX,'ENTER SUBMATRIX ROW & COL OF BEAN',13,/)
READ(S,*} IR,IC
PRINT 100, I

100 FORMAT{//,.S5X,'ENTER STIFFNESS TYPE CF BEAM',13,/)
READ(S,*) ISTFT
PRINT 110

110 FORWAT(//,S5X,'ENTER COL DEPTH ON LEFT & RIGHT',/)
READ{S,*) DCL,DCR

JANDO220
JANDD230
JANDD240
JANDO25C
JANDQ 260
JAND0270
JANQQ 2680
JANDC 290
JANDQ300
JANCD319Q
JANGOJ20
JANOG330
JANQD 340
JANODISO
JANGOJ6O
JANODITO
JANQDOJIBO
JANOO 390
JANDQ&LOD
JANGOR10
JANQO0420
JANOO4I0
JANOQQ4Q
JANOO4SO
JANOGAED
JANOQ470
JANDODQ 280
JANOD490
JANQOSIQ
JAKDOS10

JANQOS20
JANODS3C
JANOOS40
JANOOESO
JANCCSE0
JANCGSTO
JAROQS80
JANOOS90
JANOQGQD
JANOIE10
JANOQS20Q
JANOSEI0
JANQOG40
JANDOESO
JANOGESO
JANOQETQ
JANOOSBO
JANOOS90Q
JANQOT70Q
JANOOT10
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SET uP SEAM GEOMETRY AND DETERMINE PI DIMENSIONS

1GEDM( IR, 4) 2 ySFT
1GECM( IC,2)=uSFT
PZD(IR,1)=0CL
PZ3(1C .1)sDCR

CALC BEAM SUBMATRIX AND LOAD INTO GLOBAL MATRIX

CALL CLEAR
CALL STFT (ISTFT,A,AL, AL ,AS)

CALL PROP (JSFT,A,Al,AL,AS,DCL,0CR, ICCHK)
CALL BEAM (E.GS,A.Al.AL,AS,.0CL,0CR)

CALL ADDRS (IR,1¢)

PRINT BEAM SUBMATRIX

PRINT 120, IR,IC
FORMAT (//.22X, 'BEAM SUBMATRIX® ,[3,13,/)

CALL PTSUD

COGNTINUE
CONTINUE

INPUT COLUMN DATA

PRINT 150
FORMAT[///.5K,"ENTER NO. OF INTERNAL COL, ELEMENTS',/)
READ{S,%) NC

1F(NC.EQ.0)GO TO 210

DO 200 l1=1,NC

JSFTsJSFTet

PRINT 160, It

FOAMAT(//.S5X,'ENTER SUBMATRIX ROW & COL OF COLUMN',I3./)
READ(S,*) IR,1C

PRINT 170, It

FORMAT (//,5X,"ENTER STIFFNESS TYPE OF COLUMN',I3,/)
READ(S.*) ISTFY

PRINT 180

FORMAT(//,5X ,"ENTER BEAM DEPTH ON TOP & BOTTOM',/)
REAC(S,+) DBT,DBE

SET WP COLUMN GEOMETRY AND DETERMINE PZ DIMENSIONS

TGESM( 1R, ) » YSFT
IGEQM({ 1C.1)mJySFT
PID(IR,2)}=DBT
PID(IC.2)=0BB

CALC COLUMNM SUBMATRIX AND LOAD INTQ GLOBAL MATRIX
CatL CLEAR

CALL STYFT (ISTFT,A,AL,AL,AS)

CALL PROP (JSFT,A AT ,AL,AS,DBT,D88, [CCHK)

CALL COLM (E,GS,A,AL,AL,A$,D8T,DEH)

CALL ADCRS (IR,IC)

PRINT COLUMN SUBMATRIX

PRINT 190, IR.IC
FORMAT(///,22X, 'COLURIN SUBMATRIX',I3,13,/)

CALL PTS5UB

200 CONTINUE
210 CONTINUVE

JANOOQ 720
JANDUDT 30
JANOU 740
JANOOTSO
JANDQTEQ
JANQQT70
JANQG 780
JANOOT790
JANDQEQOD
JANQQB10
JANCOB20
JANCO830
JANOCESD
JANQOES0
JANQQESD
JANQOB?72
JANOCEAO
JANGOG9O
JANOQ90QQ
JANOO910
JANDD 220
JANOOSI0
JANDO940
JANOCS 25D
JANJT 23D
JANDISTO
JANDCS3Y
JANOC 9SO
JANQ100D
JANO1010
JANQ1020
JANO1£30
JAKO10AD
JAND1050
JANQIQGO
JANQ1QTQ
JANO1080
JANQ1Q9Q
JANQ1 100
JANOT11C
JANQ1 120
JANO1 130
JANQ114Q
JANOT 150
JANQU 160
JANO1170
JAND1 180
JANGC1 160
JANG1200
JAND1210Q
JANQ1 220
JANG1230
JANQ1240
JANQ1250
JANO 1260
JANO1270
JARD1 280
JANQ1290
JANQG1 300
JAD1210
JAND1320
JANG1330
JANG 1330
JANG1389
JANO1380
JANO13T7D
JANOG1380
JANG1290
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INPUT SYRMETRY CONDITIONS

PRINT 220

FORMAT(//, 86X, 'ENTER NQ OF BEAMS WITH ROLLER SUFPURTS ON RIGHT',/)

READ(S,=) NSRS

1F{NIRS.EQ.D)GO TO 240

1CCHK= 1

DO 24C I[RSs! ,NBRS

USFT+ySFT+1

PRINT 230, 1&S ’

FORMAT(//,SK,"ENTER NODE TO LEFY OF ROLLER SuPPORTED BEAM', I,

1* AND STIFFNESS TYPE',/)
READ(5.*) LN,ISTFT

ADJUST RS BEAM STIFFNESS PROPERTIES
DCaPZD(LN,%)

CALL STFT (ISTFT,A,AL,AL,AS)
CALL PROP (JUSFT,A,AL,AL,AS,DC, DC, ICCHK)

ESTABLISH GEOMETRY OF RS BEAM AND SET FLAG FOR CONDENSATION

IGEQA( LN,4)s JSFT
1GEOM( LN,S )= LCCHK
CONTINUE

tCCHK=0

INPUT FIXED SuPPORT CONDITLIONS
PRINT 250

FORMAT (//,S5X,'ENTER NO QF COLUMNS WITH FIXED SUPPORT AT BASE'./)

READ(S,+) NCFS

60 270 1F%s1 ,NCFS
JSFTay5FTet

PRINT 280, IFS

VANU14GQ
JAtG1410
JANG1420
JAND1430
JANG 1440
JANQ 1450
JANO1460
JANO14TC
JAND Y 430
JAND1490
JANQ1 500
JAND1E10
JANQ1520
JANJ1530
JANDI1540
JANOI S50
JAND 1560
JANO15T0
JANG1S80
JANDISS0
JANO1600
JANQ1G1Q
JANO 1620
JAND1630
JANQ1640
JANO18SD
ARSI GGO
JANQTBT70
JAND1680
JANG1690
JANQ1 700
JANOITI10
JANDTT20
JVANQT 730
JANOT 740
JANQ1 7S50
JAND1 780

FORMAT (//,5X,'ENTER NODE ASBOVE SUPPCRTED COL',I4,' AND STIFFNESSJANO1770

1 TYPE',/7)
READ(S ,*) NA,ISTFT

ADJUST SUPPORTED COLUMN STIFFNESS PROPERTIES

DB=PZD(NA %)
oMBs=9.

CALL STFT {ISTFT,A,AI.AL.AS)
CALL PROP (JUSFT,A,ALl,.AL,AS,DB, DM3,ICCHK)

ESTABLISH SUPPORTED COLUMN GEQMETRY

1GEOM{NA 3)=ySFT
CONTINUE

INPUT PANEL ZONME THICKNESS

00 340 IRDa=t ,ND

PRINT 280, IRD

FORMAT(//,.5X, "ENTER PANEL 20NE THICKNESS OF NODE'.13./)
READ(S.») T

RECALL PZ DIMENSIONS

DE=P2D( IRD, 1)
DB=PZD{IRD,.2)

CALL CLEAR

JARQ1780
JANO1 790
JANO18QO
JANQ181¢Q
JAND1820
JAND1830
JANO1840
JAND18SD
JANQ1860
JANQ1870
JAND 1880
JANQ1830
JANO1900
JANQtS10Q
JANQT320
JANOT Q30
JAND1940
JANG1950
JANO 1960
JANQ 1970
JANG 1380
JANG1 990
JANG2OQOQ
JANO2010
JAND20Q20
JANO2030
JANG20O40
JANQICSD
JANCL060
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CALC NODE SUBMATRAIX

ORANCH IF NO COLUMN EXISTS ABOVE NQOE

IF{IGEQCM(IRD.1).£0.0)G0 YO 290
JSFreIGEOM(IRD, 1)

CALC ABV COLUMN COMPONENT OF NODE SUBMATRIX

CALL NASM (JSFT,A AL AL, AS)
CALL NCOLA (E,GS,A,AL,AL,A5,DC,D5)

CONTINUE
SRANCH I1F NO BEAM EXISTS TO LEFT OF NODE

LF{IGEON(IRD,2).EQ.9)GD TO 300
JSFT=IGEOM(IRD.2)

CALC LEFT BEAM COMPONENT OF NODE SUBMATRIX

CALL NASM (JSFT,A,AlILAL,AS)
CALL NBML (E,GS.A,AI, AL, AS5,0C,DB)

CONTINUE
CALC BELOW COLUMN COMPONENT OF NODE SUBMATRIX
JSFTeJGEOM{IRD.3)

CALL NASM (JUSFT,A,Al,AL,AS)
CALL NCOLB (E,C5,A,AL,AL,AS,DC,DB)

BRANCH IF NO BEAM EXISTS TO RIGHT JF NODE
IF{IGEOM(IRD .4}.EQ.0)G0 TO 320

BRANCH IF NO SYMMETRY CONDITION IS5 SPECIFIED
IF(IGEQWM(LIRD,5}.€3.0)80 TO 310

CALC CONDENSED BEAM COMPONENT OF NODE SUBMATRIX
JSFT=?GEOM(IRD, 4}

CALL NASM (JUSPFT. A,Al,AL,AS)
CALL BMCON (E,GS5,A,AI,AL,AS.DC,D8)

GO 1O 320
CONTINUVE

CALC RIGHT BEiM COMPONENT OF NOGE SUCMATRIX
JSFT1GEOM(1RD,4)

CALL NASM (JSFT,A,Al,AL,AS)
CALL NBMR (E,GS,A,AI,AL,AS,DC,D8)

CONTINVE

ADD PANEL 20NE STIFFNESS TO NODE SUBMATRIX
ZD=GS=T08=0C

G(2,2)2G(3.3)+20

G(3,8)=G(3,4)-20
G(4,8)%G(4,8)¢2D

JAND2070Q
JAND2080
JANNZ2090
JANQ21Q0
JANO21 10
JANO2120
JAND2130
JANG21.40
JaNQ2150
JAND2160
JAND2170
JANO21B0O
JANDO2190
JANGZ200
JANS2210
JARG2220
JANO2230
JANQ2249Q
JANDZ 250
JANC2260
JANO2270
JANQ2280
JANO2290
JANQ23Q0
JANDZ310
JANO2320
vAND2330
JAND2340
JAND2350
JAKD2360
JANQ237Q
JANQ2380
JAND2390Q
JANO24020
JANIZI1Q
JAND2420
JANO2430
JANO2240
JANQ2450Q
JAND2480
JANGZ470
JAND2480
JAND249D
JAND2%20
JAND2%10
JAKD2520
JAND2539
JAND2S4D
JANQZ530
JAND2EBO
VAND2370
JANOZEDC
JANQ2E90
JANDZECO
VANC2810
JAND2820
JAN02430
JANG2G40
JANOZB5%0
JAND2680
JANO2670
JAND2680
JAND2690
JANDZ 700
JANOZ2710
JANQ2720
JAND2730
JANQZ74D
JANQ27%0
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OOO60O

Nnan

33c

340

350

380

370

380

3%0
490
410

420

430

G(2,1)s6(1,2) 142
G(3,1)%6(1,3)
G(4,1)=2G(1,4)
G(3,2)=6(2,3)
G(4,2)=6(2,4)
G(4,3)26(3,4)

LOAD NODE SUBMATRIX INTO GLOBAL MATRIX
CALL ADORS (IRD,LRD}
PRINT NOQDE SUBMATRIX

PRINT 330, IRD
FORMAT(//,21X,'NQDE"’ ,13,' SUBMATRIX',.//)

CALL PTSUB
CONTINLE

INPUT EQUAL DISPLACEMENT COMMANDS

PRINT 3%0

FORMAT(//.5X.'ENTER NO. OF EQUAL DBISPL. COMMANDS',/)
READ(S,*) NEOC

IF{NEDC.EQ.0)GO TO 410

DO 300 Ie1,NEDC

PRINT 360, I

FORMAT(//,5X, 'ENTER DOFS FOR COMMAND',13,/)
READ(S.+) LD1,LD2

SUPERIMPOSE ROWS AND COLS OF COMMAND, PLAGCE IN LDV

DO 370 Jsi . NELG
GUAT(LD1,J)=GMAT{ LDt ,J)+GMAT(LD2,J)
CONTINVE

CO 380 Ke~31,NELG

GHAT(K ,LD1 )= GMAT (K, LD1)«GMAT (K , LD2)
CONTINUE

NHOLD( I )=LD2

PLACE ZERCS IN ELIMINATED DOF, LD2

00 380 Il=1,NELG
GMAT(I1,102)0.
GMAT(LD2,11)40.
CONTINUVE
CONTINVE
CONTINUE

INPUT GLEGREES OF FREEDOM TO BE RETAINED,
OTHERS ARE ELIMINATED

PRINT 420

FORMAT (//,SX, 'ENTER NO. OF DOFS TO BE RETAINED',/)
READ(S.*) NDFR

IF(NCFR.EQ.NELG)GO TO 480

DO 470 JZst, NDFR

PRINY 430, J2

FORMAT (//.5X . 'ENTER DOF OF COMMAND', 13./)
READ(S.*) IDFR

REQRGANIZE MATRIX SO RETAINED DOFS ARE FIRST ENTRIES

JARNGLTER
JANQZT770
JANQZTRY
JANQ27S0
JANQZEQR
JANO2810
JANCZIB20
JANOZRAO
JANG2AR40
JANOZESE
JANOZE60
JAROZB7D
JANC2E80
JANO2890
JANO2S00
JANO2910
JANQ29290
JANDZ930
JANQZ QA0
JANO29S0
wih02560
JANC297G
JANQ2S580
JAND2590
JAMDJ0OC
JAND3016
JANO3O020
JAND3030
JAND 3040
JANQIQSO
JANQ3O060
JANOQJ3OTO
JANQ3 0BG
JANQ 3090
JANDQJI10C
JAKD3I110
JANO2129
JAKQD3I130
JANO314%
JANOI156
JAND3 160
JANC3 170
JANOJ180
JANO3130
JANQ3200
JANQI210
JAND3220
JANO3230
JANQI240
JANQ3250
JANQ3260
JANG3270
JANO3280
JANQ32G0
JANO3300
JANI33: S
JANO3320
JANS3330
JANOIILO
JANO 3350
JANO3380
JANQ33I70
JANO3380
JANOJ3I9O
JANO340D
JANOJ31Q
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DO 440 ICHKe 1  NEDC JANQ3420
IF(J2. EQ.NHOLD(ICHX ) )NHOLD(ICHK ) =IDFR JAND24530

440 CONTINUE JANO3 440
DO 450 KCEX={ NELG JANO3450
CRET=GMAT(KCEX ,u2) JANO3460
GRAT(KGEX.J2 )sGMAT (KCEX, IDFR) JANOJS&TOD
GMAT(KCEX,{0OFRA)=CRET JAND3480

480 CONTINVE - JAND3490Q
DO 480 WREXs1,NELG JANO3%00
RRET=GMAT(J2 ,XREX) JAND3S10
GMAT(v2,KREX )sGMAT (IDFR, KREX) JANO3S20
GMAT(TOFR XREX)=RRET JAND3S530

460 COMTINVE JANO3540
470 CONTINUE JANO3550
480 CONTINUE JANDISEO
JANO3S570

PLACE IERD ROWS AND COLUMNS TD END OF MATRIX JANOISBO
JANOIS590

NCLEG=s NELG-NEDC+1 JANO360C
IF(NEDC.EQ.0 )GO TO 530 JANDIE10

PO 520 JA=NCLEG.NELG JANC3620
JCNT=U3=NCLEG+1 JANGIE3D
NLCEXsNHOLD{ JCNT) JANOJ640

00 490 ICHK2=1,NEDC JANO2E50
IF(J3.EQ.NHOLD(ICHK2 ) )NHOLD( ICHK2 ) mNHOLD( JCNT) JANO3EEO

490 CONTINUE JANO36T0
0O %00 Jdas1,NELG JANOIGEBO
CHLO=GMAT(J4 ,NLCEX) JANOIGRO
GMAT(JANLCEX)mGHAT(JUS,ud) JANOI700

GMAT (U<4,43)sCHLD JANOGI 210

S08 CONTINUE JANOJI720
00 S10 USetl,NELG JANO3730
RHLO=GMAT(NLCEX ,uS) JANO3740
GMAT(NLCEX,J8)=GMAT(UY3,Jd5) JANOJI 750

GMAT (J3,JS)sRHLD JANG3760

$10 CONTINUE JANQ3770
830 CONTINVE JANG37890
330 CONTINVE JANO3790
; JANQ3800

PREPARE MATRIX FOR CONDENSATION JANG3810
JANQ3320

NMAXsNELG*NE DC JANG1830
NAVEsD JANO3Z4D

00 540 1=1,NEAX JANG3RS0
NAVESNAVE+] JANG3360

840 CONTINUE JANDIBTO
IC= JANQ3G80

IR=y JAND2E890

DO 850 J=1,NELG JANO3900

00 550 1=t ,NELG JANO3S1 O
GHAT(I,J)eGMAT(IR, IC) JANO3920
IRalR=1 JANDJ9I0
IF(IR.NE.Q)GO TO 550 JANO3940
IC=IC+1 JANO33S0
IF(1C.GY.NAX)GO TO S80 JAKOJ 960
IRsIC JANO3STQ

S50 CONTINVE JANO3$80
580 CONTINUE JANO2 99D
JANORQOQ

PRINT NO OF ENTRIES IN UPPER TRIANGULAR JANO4G10
UNCONDENSED STIFFNESS MATRIX JAND4Q 20
JANO4QAD

PRINT %70, NAVE JANO4&04D

§70 FCAMAT(///,SX,'NO. OF ENTRIES IN UNCONDENSED A-VECTOR=', S, //) JANO40SD
JANCAQ30

SET FLAG FOR OOF ELIMINATION AND CONOENSE MATRIX JANQ4OT0

a0n

JANQ4ADB0
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00 Sa0 I12=1,NMAX

NCQN(I12)=0

IF(112.GT.NOFRINCON(LI1T)}u

CONTINUE

CALL SCON (NMAX)

PRINT UPPER TRIANGULAR CONDENSED MATRIX

PRINT 590 )

FORMAT (//,12X, 'UPPER TRIANGULAR',/, 12X, 'CONDENSED MATRIX',//)

CALL PTAVC (NDFR)

END

JANOACSQ
JANO4100
JANO4110
JANO4120
JANO4130
JANO4140
JANCA1%0
JANO4 160
JANJ4170
JANGA1BO
JANO4190
JAN04200
JANOG210
JANDA220
JANQ4230

JAND4 240
JANQA2SQ

SUBRQUTINE FCR STORING BASIC STIFENESS TYPES

-

JAND 4260
JANQ4270

SUBROUTINE STFT {ISTFT,A,Al AL,AS)

IMPLICIT REALSB(A)

COMMON/STIFF/AQ(10) ,A1Q{10),2LQ(10) ,45Q(10Q)
AsAQ(1STFT)

AlsAIG(ISTFT)

AL=sALQ(ISTFT)

ASsASQ(ISTEY)

RETURN

END

JANDI 280
JANQS 290
JANQ4& 00
JANC4310
JANCA320
JANO4 330
JAND4 340
JANO4350Q
JANQ4 360
JANC4370Q

JANO4LIGO

SUBROUTINE FOR ASSENMBLING BEAM AND COLUMN PROPERTIES
AND ATJUSTING ¢-C CIMENSIONS

viN04399
JANO 3400
JANO441Q

SUBROQUTINE PROP {JSFT,A,.AL.AL,AS,CM(,DM2,1CCHK)
IMPLICIT REAL=@(A=H,0=-Z)

COMMON,/BCFRP/APRP(20) ,AIPRP(20),ALPRP(20),ASPRP(20)
APRP{ JSFT)ua

AIPRP(USFT)=AL

ASPRP (JSFT) =AS

IF(1CCHK.EQ.1)GD 70 10

ALPRP (USFT) sAL-(DMI+DN2)} /2.

GO 10 20

ALPRP (JSFT) w [AL=0M1)/2.

ALsALPRP(JSFT)

RETURN

END

JANQ 4420
JAND4430
JANG 4440
JANJQ4ED
JANQAASG
JANO4470
JANQ4480
JANQ4490
JANQ4S00Q
JANGAS1D
JANQ4S 29
JANDO4S30
JANO4 540
JANOASSD
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JAND4580

SUBROUTINE FCR RECALLING PROPERTIES COF BEAMS AND
COLUMNS FRAMING INTD NODE

JANO4STO
JANOA580
JANDASSO

SUBROUTINE NASM {JSFT,A,Al,AL,AS)

IMPLICIT REALsB(A)
CUMI0ON/BCPRP/APRP (20) ,AIPRP(20) ,ALPRP{20),ASPRP (20)
ARAPRP(JUSFTY)

Al=AIPRP({JSFT)

AS=ASPRP(USET)

ALsALPRE(JYSFT)

RETURN

END

JANQ4 600
JANO4B1O
JANDAS20
JANO4BI0
JANO4SBAD
JANO 4850
JANDABED
JAND 4670
JANGAGSB]
JANGC4 890

JANO4700Q

SUBROUTINE TO CLEAR SUBMATRIX WORK SPACE

JAKOST 10
JANO4720

SUBRQUTINE CLEAR
IMPLICIT REAL*B(G)
COMMON/CLR/G(4,4)
DO 19 I=1,4

DO 10 J=1 .4
G(1,y)w0.
CONTINUE

RETURH

END

JANOAT730
JANOATAD
JANCATS0
JANOATE0
JANO&TTO
JANOAT780
JANGA 780
JANOASCO
JANGAS10
JANCASZO

JANGA830

SUBROUTINE FOR LDADING SUBMATRIX INTO GLOBAL MATRIX

JALJIS484Q
JANO4ASO

SUBRQUTINE AODRS (IR,IC)
IMPLICIT REAL8{G)
COMMON/CLR/G(4,4)
COMMON/AD/GNAT(32,32)
IROWs4+{IR=1)+1
IC0Leds(IC~1)#1

IRMa! RON+3

ICM=1ICOL+3

00 10 K1=IROW,IRM

00 20 K2s1COL,ICM
IRGsK 1-IROW +1
ICGaK2-1COL+1
CMAT(K1,12) «G(IRG, ICG)
GMAT(K2,K1 ) =GMAT{K1,K2)
CONTINUR

CONT INUE

RETURN

END

JANO£86Q
JANCGBT0
JANO4080
JANOAB90
JANO4S0D
JANQ4 919
JANDA9D20
JANQA93Q
JAND4940
JANDASSO
JANO4DE0
VAND&STD
VANDADSEO
JANOASDO
JANOK0OO
JANQSO1O
JANOSO20
JANQS 030
JANOL 4G
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JANQSOQSQ

SUBRDUTINE FQR PRINTING SUBMATRIX

JANOSOED
JANDSO070

SUBROUTINE PTSUB

IMPLICIT REAL=8 (G)
COMMON/CLR/G(4,4)

0O 10 K3m1,4

PRINT 20, (G(K3,K4),Ka=1,4)
CONTINUE
FORMAT(/,4(5X,E10.3))
RETURN

END

-

SUBROUTINE FOR PRINTING CONDENSED STIFFNESS MATRIX

SUBROUTINE PTAVC (NDFR)
IMPLICIT REAL*B(A)
COMMON/AD/AV(1024)
JDEX=0D

DO 10 1s=¢ NOFR
INDX=NDFR=1 +1

DO 20 J=INDX,NOFR

JOEX= JDEX+1

PRINT 30, JDEX. AVIJDEX)
CONTINUE

CGNYINUE

FORMAT(10X, 'A(',12,')a" E14.T)
PRINT 40

FORUAT(///)

RETURN

END

JANOS080
JANOSO0S90
JANOS100
JANDS110
JANOS 120
JANOS130
JANOS 140
JANDS150
JANOS160
JANOS170

JANQS 180
JAKIS 190
JANGS200
JANCS210
JANOS5220
JANOS230
JANOS 240
JANOS250
JANGS26Q
JANOS270
JANOS 280
JANOS290
JANOS 300
JANQS31Q
JANGS320
JANOSI3Q
JANGS340
JANOS3%0
JANCS160
JANOSJTC

VANOS 380

JANQS 390
JANOS400

SUBRQUTINE BEAM (E,GS,A,AL,AL,AS,DCL.DCR)
IMPLICIT REALsB{A~H 0=-Z)
CCAMON/CLR/G(4,4)
PH1s12.+E=A1/AS/G5/AL/AL
PHITsPHI+T.

G(1,1)m=1 sEvA AL

5(2,2)9=12. vE*AL/PHIT/AL*eT,
G(2,3)e~6.+EvAL=DCR,/PHI1/ALne],
G(3.,2)e=1,+G(2,3}»0CL/DCR
G(2,4)s=6.9EsAl/PHIT/AL/AL
Gla,2)»=1,¢G(2,4)
G(3,3)e3.sEAL«DCLeDCR/PHII /ALR=],
6(3.,8)83.vE»AleDCL/PHII/AL/AL
G(4,31=G(3,4)=0CR/DCL
Gl4.4)8(2.-PHI)*E+AL/PHIT1/AL
RETUAN

END

JARQSA10
JANGS420
JANOSS 30
JANOS 440
JANOSASQ
JANOSA4GO
JANOS470
JANOS 480
JANOS3A99
JANOSS00
JANOSS1Q
JANOSS20
JANCGS530
JANDOSS40
JANOSS5Z0
JANQSSEO
JANOSST70
JANOSS80
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JANOSS90

SUBROUTINE TO OETEAMINE COLUWN ELEMENT SUBMATRIX

JAK(SG00
JANQSG10

SUBAOUTINE COLM (E,G5.A.AI,AL.AS,CBT,0BE)
IMPLICIT REAL*B(A~H,D~2)
COMI0/CLR/G(4,4)
PHI=12.+3~AL/GS/AS/AL/AL

PHl1s PNl r1

G{1,1)m=12, «EsAT/PMI ) /AL *+3.
G{2,2)m=1.8Esk/AL
Gi1,3)==6.EvAl/FHIT1/AL/AL
G{3,1)==1,4G(1,3)
G(1,4)=~6.0EsAI*DER/PHI1/ALve3,
G(4,1)s=t.+G(1,4)=DBT/0B8
G{3,3)2(2.~PHL)=E=Al/PHIY /AL
G(3,4)=3.«E«Al+DBB/PHIt /AL/AL
Gi4,3)sG(3,4)DBT/DBR
Gt4,4)-3.*!‘A!'DBT'DBE/PHII/AL-ta.
RETURN

END

JANJSS20
JANOS 630
JANDOSGAD
JANOSGS0
JANOSSE0
JINOS6T70
JANQSESO
JANOSE90
JANOST700
JANCS 710
JANOST20
JANOS 730
JANOS 740
wANOS7SQ
JANOS 760
JANDS 770
JANOS 780
JANOS 790

JANQSB800

SUBROUTINE TO DETERMINE NODE SUEMATRIX COMPONENT
OF COLUMN ABQVE NODE

JANQEB1Q
JANOSB20
JANQSE30

SUBRQUTINE NMCOLA (E.G5.A,AY,AL.AS,DC,D8)
IEPLICIT REALSH(A-N,0-2)
COMMON/CLR/G(4,4)
PHIx12.2B=A1/GS/AS/AL/AL
PHI1=PHI+Y,
G(1,1)812. s EsAL/PM_ ., AL#+3,
G(2.2)=E*A/ AL
G(1,3)s8.¢EsAl/PHIT/AL/AL
G{1.4)nT . wEsAlelB/PHI1 /ALee],
G(3,3)s(4.+PHL)#EwAL/PHI1/AL
G(3,4)m3 . sEwAlwDB/PHII SAL/AL
G(d,4)u3 sEvAleD8+DB/PHIT/ALs 23,
RETURN

ENO

JANOSB4A0
JANOSBS0
JANOSB860
JANOS870
JANOSB80
JANDS5890
JANOS800
JANDOS91D
JANDS 320
JANQS830
JANGS940
JANQSS5Q
JANCS3EQ
JANOSST0
JANOSO00

JANDS990

- - - -

SUBROUTINE rQ DETERMINE NODE SUBMATRIX COMPONENT
GF BEAM 7O LEFT OF NODE

JANSE000
JANDEBC 1D
JANCSO020

SUBROUTINE NEML (E,GS,A,AL,AL,AS,DC, DB}
IMPLICIT REAL*8(A=H.2=Z)
COMMON/CLR/G(4,4)
PHl=12.,~E=AL/AS/GS/AL/AL

FHIt=PHI+1,

G(1,1)2G(1.1)+EsA/AL
G(2,2)wG(2,2)+12.+E«AI/PHIT/AL*+3.
G(2.3)mG{2,3)148_+EvAleDC/PHITI /ALee],
G{2,4)5G(2.8)+8 . »E~AL/PHLI1/AL/AL
G(3,318G(3,3)+3.=E=AlsQCeDC/PHII/ALSe],
G(3,4)uG(3,4)+3. «E+AIDC/PHLY /AL/AL
G(4,4)nG(4,4)e(4.+PHI)nEeAL/PHI1/AL
RETURN

END

JANOSO30
JANOEO40
JANQGOSO
JANOG060
JANOGOT7C
JANOSOB8O
JANOGO90O
JANQS1QQ
JANCG 110
JANDS 130
JANOS130
JANOS 140
JANOB 1850
JANQOS 180
JANOS1TO
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SUBROUTINE TO DETERMINE NODE SUBMATRIX COMPONENT
OF COLUMN BELOW NODE

SUBROUTINE NCOLB (E.GS.A.AI AL.AS.0C,08)
IMPLICIT REAL*B{A-H,0-T)
COMMON/CLR/G(4,4)
PHIx12,+E»AI/AS/GS/AL/AL

PHIVaPHI+Y .,

G(1,1)sG(1,1)412,. E*AT/PHIT/AL#+],
G(2,2)=G(2,2)+EsA/AL
G(1,3)=G(1,3)-6.E=Al/PHI1/AL/AL
G(1,4)=G(1,4)~6.«EsAIwDB/PHIT/AL®=],
G(3,3)=G(3,3)4{4.«PHI)=EeAI/PHI1/AL
G(3.4)sG(3,8)+3.«Enal+DB/PHIT/AL/AL
GLa,4)sG(4,4)+3,.=E*AI*DB+DB/PHIt/ALee],
RETURN

END

SUBROUTINE TO OETERMINE NQDE SUBHATRIX COMPONENT
OF SYMMETRY 8EaM TQ RIGHT QF NOSE

JANQG180C
JANGS 199
JANCE200
JANDE21O
JANDE220
JANQE23Q
JANQE240
JANOGE250
JANGE260
JANQG2T70
JANGG2BQ
JANOG220
JANOE300Q
JANOE31OQ
JANOE320
JANGE330
JANQEISO
JANOE350
JANGEIEO

JANOG370
<AND6380
JANDE390
JANOGSOO

SUBROUTINE BMCON (E,GS,.A.AL,AL.AS,DC,DB)
IMPLICIT REAL*B(A=M,0-2)
COMMON/CLR/G(4,4)
PHIs12.%E«AI/AS/GS/AL/AL

PHI1=PHI+Y,

PHIZes(1.-(2.-PHI)/(4.+PH7))

PHI3=(1.-3, /{4.+PHI)})
PHISs(1.=((2.~PHI)/{4 . +PH1)}»~2.}
G(2,2)=G(2,2)+12,.sE-Al=PHI3/FPHI1/AL=a],
G(2,3)=G(2,3)~6.«E«AL+QC*PHII/PHI1/ALwn],
G(2.4)2G(2,4)~6.+E=ALlsPHIZ/PHI1/AL/AL
G(3,3)sG(3,3)+3.*E+AI+DC~DC PHISZ/PHI1/ALSn3,
G(3,4)=G(3,4)43.«E«AlDCePHIZ/BHIt/AL/AL
G(G,3)uG(4,a)+(Q.+PHL )} *EsAI=PHIS/PHIT/AL
RETURN

END

JANDE410
JANDE420
JANDE430
JANDGA4O
JANDE450
JANQGAEOQ
JANGE4ATO
JANOG480
JANO G390
JANQG500Q
JANQSE10
JANGE520
JANQESIO
JANQES40
JANQOS5S9Q
JANOE560
JANQGST0Q

JANOESEO

-

SUBRADUTINE TO DETERMINE NODE SUBMATRIX COMPONENT
OF BEAM TO RIGHT OF NOODE

vANQE5ED
JANGE600
JANQES 1D

SUBROUTINE NBMR (E.GS.A.AI, AL.AS.DC.,DB8)
IMPLICIT REAL+B(A-H,0~2)
COMMON/CLR/G(3,4)
PHI=12.%«E*A1/AS/GS/AL/AL

PHITePHI+Y.

G(1.1)sG{1,1)+Era/AL
G(2,2)15G(2,2)+12 . 4E0A1 /PHIT1/ALRe],
G(2.3)2G(2, 3)-.sE=Al+DC/PHIY /AL+»3,
G(2,8)aG(2.4)=6.E*AL/FPHIT/AL/AL
G(3,3)aG{3,3)+3.E+ALIsDC=DC/PHIV /AL w3,
G(3,4)=G(3,4)+3.+E+AL+DC/PHIT/AL/AL
G(a.4)=G(4,4)+ (4. +PHI)»E~AL/PHIV /AL
RETURN

END

JANQS620
JANQGG3Q
JANOEESO
JANOBE50
JANQBE60
JANOSET0
JANOGERQ
JANOGBEIQ
JANOET OO
JANOGT7 10
JANDS 720
JANOBT30
JANOG 740
JANOGT7S5Q
JANQS760
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SUBROUYTINE FOR STATIC CONDENSATION OF STIFFNESS MATRIX

JANOGTTO
JAkL6780
JANGE790

SUBACUTINE SCON (NMAX)
INALICIV REAL=B(A~H, 0=}
CONMON/AD/AV(1024)
COMIAN/COND /NCON(50)
DO 10 Nui,NMAX
NC=NCON(N)}*N
IF({NC.EQ.0)GO TO 10
IIAsNC*(NC=-1)/2+1

DG 20 I=t1,NMAX
KKeNCON(L)s 1

IF(KK . EQ.1.AND.KK.LE.NC)GO TQ 20
10=le(I=1)/24+1
IKnITASNC-]1
IF(10.GT.IIA}IK=LD+I-NC
Gi=AV{IK)/AV(IIA)

1Ds!

D0 30 J=ID, NMAX
IFLY.EQ.NC)GO TO 30O
JDsJe (J=1)/2+1
JE=1TA+NC=J
IF(JO.GT.ITA)JKnJD+J=NC
JusdDed-1

AV{JV ) sAV(JJ])=G1eAVUK)
CONTINUE

CONTINUE

CONTINUE

RETURN

END

JANGCEBQO
JANOSO 10
JANQGEZIQ
UANOEE630
JANOSB8A0
JANOGESO
JANG6360
JANOSBTO
JANOGBBO
JANOSE8SO
JANOBI00
JANDED1O
JANOGS920
JANQB930
JANOG94¢
JANO6I50
JANDE96Q
JANQEDT70
JANQ 6980
JANOE950
JANQT00Q
JANQ7010
JANOT7020
ANG 7020
JANQTO040D
JANO 2050
JANO 7060
JANCT070
JANOTQ8Q
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APPENDIX B - DECOMPOSITION OF N-LINEAR RELATIONSHIP TO N-1 BI-LINEAR
SUPERPOSITIONS

As illustrated by Fig. B.1, a general softening load-deflection rela-
tionship of n segments can be expressed as the sum of (n-1) bi-linear
relationships. At any level of deformation the force—and stiffness—of
the {n-1) parallel springs add directly to create the desired n-linear
result. The bi-linear rela’ionships represent 2{n-1) unknowns related
through only n equations, hence the system is underspecified by n-2. Energy
requirements of each inelastic spring, however, provide the additional re-

quirements that:

S; g_S; 1<i<n-l

S; >0 1 <1<n1 (B.1)
51 >0 t<1<nd

22 1<

If the third of these requirements is taken as an equality for the last

n-2 superpositions (i.e., S; =0, 2 <1 <n-1), then all of the require-
ments will automatically be satisfied and the system will have a unique

solution. This assumption implies that Sn = S; and:

e (8.2)

- T
Hhel"e. S - (S] Sz 53 «i 2 ® e sn-z Sn_])
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FIGURE B.1-(N-1} BI-LINEAR SUPERPOSTIONS -
TO CREATE N-LINEAR RESULT
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0 0 1 1
z- ‘
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e=(0 1 1. IR PL

Selving Eq. (B.2) for S, the desired bi-Tinear slopes are found:

1 * -1

§ = E § = l g sn (8'3)
where
[ h
-1 ] 0....0 0
0 ] 'I 0 LI Y 0 0
1 0 0 1 1. .0 ©

I~
]
* L] - -

Equation (B.3) can be expanded and combined with the inftial assumption
used to remove the underspecification to achieve the total solution:
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S, =0 2<1{<n-l

.l-

s2 Sn

1

Sy =8-S, +S, (B.4)
sias, -5 2 < §<nel

) i7 %0 =tz

As a result of the softening nature of the lcad-deflection relation-
ship, Si > Si+1’ 1 < 1 < n-1, hence the energy requirements of Eq.

(B.1) will be satisfied.



