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ABSTRACT

Analytical prediction of damage in reinforced concrete frames
has commonly been based upon peak ductility demands. In this
study a more rigorous model for member damage is developed. The
model for inelastic member behavior is tested by comparison with
a sample of cyclic load tests reported by others. Various damage
indicators, such as dissipated energy and cumulative plastic rota­
tion, are computed for each test up to the point of failure. These
results are then used to develop a stochastic model of damage for
reinforced concrete members based upon analytical predictions. Final
results are in terms of probabilities of local failure in a building
frame subjected to a given earthquake. A model for computing the
system reliability as a function of correlation between member
resistances is also presented.
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PREFACE

This is the third report prepared under the research project
entitled IISeismic Behavior and Design of Buildings," supported by
the National Science Foundation under Grant ENV-7714174. It is
also the thesis submitted by Hooshang Banon in partial fulfi'11ment
of the requirements for the degree of Doctor of Science in the
Department of Civil Engineering at M.I.T.

The general purposes of the project are: j.o perform a more compre­
hensive evaluation of various definitions of ductility used at pres­
ent in dynamic analysis programs, assessing their physical meaning
and their relation to expected structural damage, and to evaluate
different design procedures in terms of the behavior of the resulting
frames and the expected level of damage during earthquake motions.

The first two reports of the project were:

No. Biggs, John M., Lau, Wai K., and Persinko, Drew, IISeismic
Design Procedures for Reinforced Concrete Frames,1I M.LT.
Department of Civil Engineering, Publication No. R79-21,
July 1979.

No.2 Irvine, H.M., Kountouris, G.L, IIInelastic Seismic Re­
sponse of a Torsionally Unbalanced Single-Story Building
Model, II M. 1. T. Department of Civil Engineeri ng, Publ ica­
tion No. R79-31, July 1979.

,
The project was initiated by Professor Jose M. Roesset and is

supervised by Professors John M. Biggs and H. Max Irvine. Dr. John
B. Scalzi is the cognizant NSF Program Officer.
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CHAPTER I - INTRODUCTION

1.1 Objective

The objective of the present work is to identify local damage in

reinforced concrete frames on the basis of an inelastic dynamic analysis.

Since the prediction of damage has an inherent uncertainty associated

with it, probabilistic models have been used for this purpose. Final

results are then presented in terms of probabilities of local damage for

each member which shows inelastic behavior. In this study, damage is

defined in terms of the ability of a member to carry loads. Thus, the pre­

diction reveals if a member is able to carry loads after it has gone

through several inelastic cycles. Results of experimental cyclic load

tests are used to set up a stochastic model of damaqe. This modp.l

would allow the engineer to check the safety of a building frame using

parameters other than peak ductility.

The immediate application of this work is in probabilistic inelastic

dynamic analysis of structures. The models of local damage may be used

to modify the stiffness matrix of a structure during an inelastic dynamic

analysis. A simulation technique will then result in probability distri­

butions of displacements or member end forces.

1.2 Scope

Analytical techniques which can predict the behavior of reinforced

concrete structures under earthquakes have been continually refined over

the past few years. There are also many experimental results, either

static or dynamic, which can be used to verify existing models. However,
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little attention has been given to the prediction of damage in reinforced

concrete structures. There are two main obstacles to the prediction of

damage. First, it is difficult to quantify damage in a structure, and

secondly, the prediction has an inherent uncertainty associated with it.

It is obvious that one has to use a probabilistic approach to carry out

such a task. Whitman et al. (58, 59) attempted to quantify damage into

six different states. Then from observations after the San Fernando

earthquake, a "Damage Probability Matrix" was set up. This matrixrela­

ted the damage states with Modified Mercalli Intensity (MMI) of an earth­

quake, thus assigning probabilities to each element of the matrix. Blume

et al. (10, 11) presented a relationship between damage in a member, in

terms of the total replacement cost, peak computed ductility, and the

member ultimate ductility (at failure). Using the random vibration ap­

proach, Lai (33) calculated the probability of exceedance of a ductility

level, and then used Blume1s results to estimate damage. Unfortunately,

very little further research has heen done on the subject.

This work is an attempt to set up a more rigorous model of damage

in reinforced concrete frames. Only one state of damage, namely the

failure state or excessive damage, is considered in this study. It has

long been 'realized that peak ductility alone can not explain damage in

concrete structures. However, up to now, peak ductility has been used

as the most widespread measure of damage in practice. Other parameters,

such as cumulative ductility and energy dissipation, have received atten­

tion also (12). But the question still remains as to what these para­

eters mean in terms of predicting damage in structures. Chapter II

reviews analytical models which are used to study the inelastic behavior
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of reinforced concrete frames. A set of experi.mental cycl ic load tes.ts

is then chosen as a sample. Analysis of each test, and comparisons be­

tween analytical and experimental results, are presented in Chapter III.

Chapter IV uses the resul ts of the tests to set up a stochastic model of

failure in members. The method is then employed in inelastic dynamic

analysis of reinforced concrete frames in Chapter V. Chapter VI draws

up a set of recommendations and conclusions based on the results.

1.3 Previous Work

Reinforced concrete frames and shear walls have long been used as

lateral load resisting elements in seismic areas. During the past two

decades, researchers in earthquake engineering have focused heavily on

studying the behavior of reinforced concrete structures under earthquake

loads. Because of the development of new computers, it has become pos­

sible to employ more complex numerical techniques to model the behavior

of reinforced concrete elements under seismic loads. In the meantime,

the experiments on reinforced concrete frames and shear walls have become

more sophisticated, and the results of such experiments enable researchers

to refine the analytical models. It is now widely accepted that rein­

forced concrete structures are suitable for seismic zones, if they have

been designed and built according to the codes and procedures developed

for seismic areas. These new seismic codes attempt to use analytical and

experimental research to set up aseismic design procedures. Although the

codes specify an equivalent static load to design the structure, the new

ATC recommendations have realized the need for carrying out a dynamic

analysis. It seems that an elastic dynamic analysis will be integrated
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at the design stage in the near future. In studying the behavior of

reinforced concrete structures under cyclic loads, researchers have

long realized the need for employing inelastic models. Although such

models have limited value to the designer, they are valuable analytical

tools once the design stage is completed.

Two of the characteristics of reinforced concrete elements are loss

of stiffness and strength, which can be explained only by relatively

sophisticated inelastic models. Most of the early work in inelastic

analysis of concrete structures was based on bilinear systems. However,

it was soon realized that reinforced concrete elements do not offer the

large energy dissipation capacity which is inherent in a bilinear system

(17). A more general stiffness-degrading model for reinforced concrete

was first introduced by'Clough (14). This model has the advantage over

the bilinear model that the loading stiffness is modified as peak rota­

tion increases. Anagnostopoulos (1) suggested changes to Clough's model

to reduce the unloading stiffness. He also compared peak ductilities

of single-degree-of-freedom systems having different inelastic charac­

teristics. Takeda (54) developed a nonlinear model which can closely

reproduce the behavior of reinforced concrete elements in flexure. The

model has a trilinear envelope curve, and it is designed to dissipate

energy at low cycles once the cracking point is exceeded. Takayanagi

(53) and Emori (18) later introduced modifications into the Takeda model

to take into account the slippage and shear pinching effects. Saiidi

(51) introduced a nonlinear hysteresis model which is designed to follow

the behavior of a reinforced concrete frame if it was modeled as a single­

degree-of-freedom system.
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One of the most widely used methods of stiffness formulation to study

the inelastic behavior of structures is the shear beam model. This model

has a serious shortcoming, and that is the lack of interaction between

story levels. Takizawa (55) has compared three different shear beam

models with a more generalized model, which raises questions about the

accuracy of shear beam models. Pique (49) used an incremental lateral

static load to find the stiffness characteristics of each story. It was

discovered that the shape of the lateral load does not alter story load­

deflection curves significantly. Although the method is a refinement of

the shear beam model, the problem is much more complex when a building

is subjected to cyclic loads.

For a more complete analysis of reinforced concrete structures, four

classes of models are available for setting up the stiffness matrix of

each element. These models are the Single Component Model, the Dual Com­

ponent Model, the Fiber Model, and various Finite Element Models. The

Dual Component r1ode1 was first introduced by Clough and Benuska (15), and

uses an elastic element and an elasto-plastic element in parallel. Giber­

son (21) studied the Single Component Model, in which the inelastic be­

havior is lumped at the two ends of the member. He also compared the

Single Component ~1ode1 and the Dual Component Model, and outlined the

advantages and limitations of both models. Because of the fact that the

Dual Component Model can reproduce only bilinear behavior, it has not been

used in inelastic analysis of reinforced concrete structures. Anderson

et al. (2) used the Single Component Model in conjunction with four dif­

ferent degrading hinge hysteresis models to analyze' ductility levels of

a ten-story reinforced concrete building. Aziz (5) employed both the
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Single Component Model and the Dual Component Model and compared ductil­

ity levels for selected buildings. Otani (41) developed an inelastic

beam element which takes into consideration the location of the point of

contraflexure. Assuming that the member is made up of two cantilevers,

he applied the Takeda model to load-deflection curves for each cantilever.

He also modeled slippage of the reinforcing bars as flexible springs at

the two ends of the member. Kustu (32) used a set of cyclic load tests

to study inelastic shear deformations of reinforced concrete columns.

He used flexible springs at the two ends of the member to incorporate

the shear deformations.

The other class of analytical models used for stiffness formulation

of reinforced concrete members is the so-called "Fiber Model." In this

case, the section is divided into many fibers, and from the constitutive

laws for steel and concrete momentacurvature of the section at any load

level may be determined. Then, by integration along the member length,

its stiffness matrix is formulated. Park et al. (45) used the Fiber

Model for a simple reinforced concrete member under cyclic loads. Latona

(34) applied the Fiber Model to steel frames, and Mark (39) extended its

application to reinforced concrete frames. One of the major considera­

tions in using the Fiber Model is the high cost of an analysis.

Finally, Finite Element Models have been used to analyze reinforced

concrete walls, panels, or slabs. However, because of the large number

of degrees of freedom in a fini:te element analysis, the cost of an in­

elastic dynamic analysis is high. Thus, use of the Fiber Model or Finite

Element Models in inelastic dynamic analysis of reinforced concrete

frames has been rather limited.
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Analytical models which are developed for analysis of reinforced

concrete structures can be substantiated only on the basis of experimen­

tal test results. Many static cyclic load tests on frame subassemb1ages

and walls have been used for such purposes. Although there may seem to

be many differences in the response of a member under dynamic loads and

under static loads, static tests have provided researchers with valuable

information about the stiffness characteristics of reinforced concrete

beams and columns. Many such tests are used in this work, and each test

is discussed in detail in Chapter III. Dynamic tests of structures on

the shaking table can also reveal information about the inertia and damp­

ing forces generated under earthquake motions. Many dynamic test re­

sults of reinforced concrete frames have become available during the past

few years (16, 22, 25, 26, 40, 41). However, it should be realized that

it is much more difficult to extract information from dynamic tests.

The models used in this work are limited to the two-dimensional (2~D)

analysis of reinforced concrete frames. In recent years, attention has

been given to the response of reinforced concrete members under biaxial

states of stress. Some tests on biaxial loading of members have been

carried out (4, 28, 44), and these results may be used to develop 3-D

analytical models for inelastic analysis of reinforced concrete frames,

although this is not pursued herein.
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CHAPTER II - ANALYTICAL MODELS

2.1 Introduction

Modeling the inelastic behavior of reinforced concrete elements is

a difficult task. Both stiffness and strength degradation are usually

observed in beams and columns. Other phenomena, such as pinching of

hysteresis loops, may occur because of high shear forces or slippage of

steel bars. In modeling the inelastic behavior of reinforced concrete

elements, it is important to take all of these effects into account. As

previously discussed in Chapter I, there are many models available for

the stiffness formulation of a member. Excessive cost of analysis makes

the Fiber Model and various Finite Element Models less attractive. If

one is interested only in peak ductility levels, a simple' bilinear point

hinge (Single Component Model) may be used. However, it is felt that if

damage in a member is to be predicted by just a few parameters, it is

imperative that those parameters be accurately calculated. Since the

stochastic models of failure presented in Chapter IV use damage indicators

described in Section 2. 7, the inelastic models used are intended to give the

best estimates of these parameters. A Single Component Model (21)

was chosen for this purpose, and an extension of the model was developed

to analyze non-symmetric reinforced concrete sections.

There are three main components of deformation in a reinforced con­

crete element which are due to flexure, shear, and slippage of bars. Each

one of these components is considered separately in this work. Hysteresis

curves for shear and slippage are set up, and they are introduced as

flexible springs at the two ends of a member. Reinforced concrete is a
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rather unpredictable material, and the objective here is to use models

which can reproduce inelastic behavior of elements after many cycles.

However, modeling is only a means to the end, which is the prediction

of damage in a given member.

The general-purpose computer program DRAIN~2D, written by Kanaan

and Powell (30), is used in this study. The program is intended for 2-D

analysis of structural frames and walls. The Single Component Model with

stiffness-degrading Takeda model at its two ends was added to DRAIN-2D

by Litton (36). In this study many modifications were made to the pro­

gram to allow both static and dynamic analysis of frames. Also, the

extended Single Component Model (Section 2.3c) and the shear and slippage

hysteresis curves were added as new elements to the computer program.

2.2 Material Constitutive Laws

a) Steel

The steel stress-strain relationship may be approximated in differ­

ent ways. The strain-hardening characteristic of steel and the Baushinger

effect can best be represented by the Ramberg-Osgood model (29). Since

the steel stress-strain relationship is used to find the moment-curvature

of a section, use of the Ramberg-Osgood model is not warrented. Instead,

a more simple multilinear approximation has been used. The curve in

Fig. 2.1 represents an elastic portion, a flat segment, and the strain

hardening, respectively.
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FIG. 2.1 - STRESS-STRAIN RELATIONSHIP FOR STEEL REINFORCEMENT

(J = E E:
E: < E: (2.1a)s o s s - .Y

(J = (J E:h>E> E:y (2.:1b)s y s s

(J = (j + Esh (£s - £Sh) E:u > E: > E: h (2.lc)s y - s - s

In reality, the curve has an unloading portion, and also steel fails at

its ultimate strain. Steel reinforcement in a section will not usually

undergo such large deformations, and, in any event, the concrete would fail

before that stage could be reached. So ultimate strain in this study

corresponds to the point of peak stress of experimental stress-strain

curves. The same relationships apply both in tension and compression.

b) Concrete

Unlike steel, concrete shows very different behavior under tension

and compression. Although concrete has roughly 10 percent of its com­

pressive strength in tension, its tensile strength can be safely neglected.
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It is obvious that a section will crack after the first few cycles, and,
there would be no tensile contribution after that point. Concrete also

shows a different behavior when confined (Fig. 2.2). Behavior of confined
I

and unconfined concrete, up to peak concrete stress (f ) is almost the same,
c

but their unloading slopes are different (31). In general, the unloading

slope depends on the degree of confinement by web reinforcement (Fi~.2.2b).

Confined

Hoop__

(a)

fc
f~

Unconfined

(b) .

FIG. 2.2 - STRESS-STRAIN RELATIONSHIP FOR CONFINED AND UNCONFINED CONCRETE
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If a more elaborate analysis is to be carried out~ contributions of un­

confined concrete cover and the confined concrete in a section must be

calculated separately. Concrete when properly confined can carry com­

pressive forces well beyond its unconfined ultimate strain. However~ it

is important to note that the overall behavior of a section is dominated

by steel~ and any reasonable approximation in concrete stress-strain curve

will have little effect on moment-curvature relationships. Adopted stress­

strain relationship for concrete is shown in Fig. 2.3.

FIG. 2.3 - STRESS-STRAIN RELATIONSHIP ADOPTED FOR CONCRETE
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8 C ~- 80 (2.2a)

£0 £0

I

fc = fc [1 - Z (E - E )] £u <; EC <: 8m (2.2b)c 0

I

fc = 0.2 fc EC 2: 8m (2.2c)

Thus a uniform curve is assumed, and concrete is allowed to carry com-

pressive forces beyond its ultimate strain. The parameter Z defines the

unloading slope, and a method of estimating it is suggested by Kent and

Park (31). In this work, Z is assumed to have a constant value of 200.

As mentioned before, such an approximation will not affect the calculated

moment-curvature relationship of a section appreciably.

2.3 Flexural Deformation

a) Moment-Curvature Behavior of a Section

Once concrete and steel stress-strain curves are determined, it is

then possible to calculate the moment-curvature relationship for a section.

Fig. 2.4a shows a reinforced concrete T section with longitudinal steel

bars at top and bottom. The section is divided into many longitudinal

fibers. Equilibrium is satisfied by

I:T-I:CtP =-0a ' (2.3)

where T and C are tensile and compressive forces, and P is the axial
a

load. Assuming that plane sections remain plane, strain distribution

over the section is drawn (Fig. 2.4b). Then from material constitutive
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t c
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Ts- _0 __
00 __

---------

---+- - - - +---
b( h)

(c)

FIG. 2.4 - CONCRETE AND STEEL STRESS AND STRAIN DIAGRAMS
FOR A REINFORCED CONCRETE T-SECTION

laws, stresses are calculated. Finally, tensile and compressive forces

are determined (Fig. 2.4c).

(2.4a)

(2.4b)

(2.4c)

Since equilibrium is not automatically satisfied, a trial and error pro­

cedure is needed. Analysis is started by assuming values for strain in

the concrete (sc) or steel (ss)' and modifying the distance c in Fig. 2.4b

until equilibrium is satisfied. The external moment acting on the section

is then calculated

(2.5)

where e is eccentricity of the axial load (Pa). The curvature is simply
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cj> =
£ + £

S c
d (2.6)

The first point of interest in the moment-curvature diagram (Fig. 2.5) is

yielding of tensile reinforcement. The curve usually exhibits a relation­

ship which is nearly linear up to yield point. If there is more than one

layer of steel, yield point is defined to be when tensile steel yield

strain is reached at an average depth. Section stiffness (EI) is the slope

of the M-cj> curve. Other points on the curve may be defined by setting

concrete strain (£c)' Various values of concrete strain have been sug­

gested. Key point is that if a bilinear moment-curvature relationship for

a section is assumed, the second slope becomes very sensitive to the

assumed concrete peak strain (Fig. 2.5). Also, a bilinear assumption does

not hold at high concrete strains, because the curve starts to drop off

after reaching its peak. Axial load in a member also greatly modifies

M

--

FIG. 2.5 - MOMENT-CURVATURE RELATIONSHIP FOR A REINFORCED
CONCRETE SECTION
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the shape of the moment-curvature relationship (Fig. 2.6). Moderate

axial load on a member increases its yield moment and initial section

stiffness, but it limits the capacity of a member to sustain high strains.

When a building is subjected to dynamic loads, axial loads in the columns

change at each time step. Variations of axial load around the average

axial load (which is equal to the dead load) may be quite significant for

perimeter columns. The calculated moment-curvature relationships repre­

sent an average behavior for members with axial load.

M
~;o

FIG. 2.6 - MOMENT-CURVATURE RELATIONSHIP FOR SECTIONS WITH
AXIAL LOAD (Pa ) AND WITHOUT AXIAL LOAD
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b) The Single Component Model

The Single Component Model is used in this work for the stiffness

formulation of reinforced concrete elements. The model consists of an

elastic element with two hinges at its two ends. Thus, all inelastic

rotations within a member length are lumped at these two points. In

order to estimate the characteristics of these two hinges, moment distri­

bution along a member must be predetermined. The assumption is that dead

loads are negligible, and member end moments are of the same magnitude

and opposite signs. This assumption is not always justified, but we em­

ploy it anyway. In reality, the yield condition at one end of a member

depends on rotation at the other end. In fact, curvature distribution

along a member changes for different loading conditions. Consider the two

loading conditions shown in Fig. 2.7a (43). In Case I the two end moments

are equal, and the point of contraflexure is in the middle, and in case II

there is moment only at one end of the member. Figures 2.7b and 2.7c show

curvature diagrams along the member for cases I and II respectively. It

~CPB
CPA~n

(c)

FIG. 2.7 - MOMENT AND CURVATURE DIAGRAMS FOR TWO DIFFERENT
LOADING CONDITIONS
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may be observed that inelastic rotation at one end of the member is

very much dependent on curvature distribution and loading condition at the

other end.

The anti symmetric moment distribution assumption is fairly accurate

for girders. It may be argued that even if one end of a member reaches its

yield condition, the moment at that end can not increase at the same rate,

and this gives the moment at the other end the chance to reach yield also.

The assumption is less valid for columns where the effect of axial load

becomes important.

Figures 2.8a and 2.8b show the two end moments, and the assumed mom­

ent distribution shape for the Single Component Model. Since the point of

contraflexure is in the middle, each half of the member may be viewed as a

cantilever (Fig. 2.8c). Assuming a bilinear M-~ diagram for the section,

j~----,l
(a)

M~ .

(b~MB
~pJ_L-

(e)

FIG. 2.8 - MOMENT DISTRIBUTION AND CANTILEVER ANALOGY
FOR THE SINGLE COMPONENT MODEL
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it is possible to match the end displacement of the half-length canti­

lever with that of the model. The model in this case is an elastic element

with a hinge at its end. This approach is discussed in more detail in

Appendix A. This may be viewed as an approximation to the true behavior

of an element, and the following illustrates some of the factors which

affect our results.

i) Plane sections do not remain plane, and the assumption may
be justified only for segments of a member in between perpendicu­
lar flexural cracks.

ii) If shear is relatively high, interaction between shear and flex­
ure in hinging zones adds to the complexity of member behavior.

iii) The M-~ diagram is not bilinear, and the unloading portion of
the curve becomes important at higher ductilities.

iV) Even the assumption of a bilinear M-~ diagram does not mean that
the P-o curve of the half-length cantilever is bilinear (Appen­
dix A). The second slope of the P-o curve is very sensitive to
the peak strain assumed for concrete.

After analyzing many cyclic load tests of cantilevers, it was found

that the above approach results in a second slope on the P-o curve which

is too high and can not be reached in experiments. This is especially

true if a member is subjected to increasing levels of cyclic loads. On

the basis of experimental evidence, it was decided to put a 3 percent lim­

it on the second slope of the cantilever P-o curve (see Chapter III).

The two hinges at the two ends of an elastic element in the Single

Component Model represent flexural inelastic behavior of a member. Hystere­

sis curves for moment-rotation of these hinges are assumed to follow the



37

Takeda model (54). The model is described in Appendix B. A modified

version of the Takeda model with a bil inear primary curve is used in this

study. Thus the bilinear primary curve is completely defined by yield

point and second slope of the p-o curve for the half-length cantilever.

Flexural hinges in a Single Component Model are initially infinitely

stiff, so they do not affect the behavior of a member before yieldinq.

Once they yield, their flexibilities are added to the rotation flexibility

matrix of the elastic member.

j/, 1 -j/,

3EI + K
i 6EI

F = (2.7)
j/, J!, 1

-6EI 3EI + K
j

where K; and Kj are stiffnesses of the flexural hinges.

One advantage of the Single Component Model is that the stiffness

matrix of an element is modified only when there is a change of stiffness

in one of the two hinges. This means that the global stiffness matrix is

not necessarily modified at each time step, and this greatly reduces the

computational time.

c) Non-symmetric Reinforced Concrete Sections

In design of earthquake-resistant reinforced concrete frames, codes

usually specify that the positive moment capacity of a girder has to be no

less than 50 percent of its negative moment capacity. This means that,

unlike many experiments which use symmetric concrete sections, most mem-

bers in a real building have different areas of steel at top and bottom.
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Furthermore, both yield moment and stiffness of a non-symmetric section

differ in the two loading directions (Fig. 2.9). This is also true of

T-sections, which are commonly used in reinforced concrete structures, and

in beam-slab construction, where the slab would partly contribute to moment

resistance of the beam in both directions.

M

------+------cp

FIG. 2.9 - MOMENT-CURVATURE RELATIONSHIP FOR A
NON-SYMMETRIC SECTION

A simple method of analyzing such sections is to use an average stiff­

ness, and to have different yield moments in negative and positive direc­

tions for the Takeda model. This results in an overestimate of stiffness

in the positive direction and an underestimate in the negative direction.

The difference may be drastic for T-sections. A different element was
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developed in this work to model such members. This element is a single

Component ~1odel, but it has different properties, as explained below.

Consider a member acted upon by two end moments (Fig. 2.10a) of oppo­

site signs. The point of contraflexure divides the element into two seg­

ments. Consider what happens before any yielding has taken place. The

two segments denoted by ~l and ~2 would exhibit different stiffnesses

(Fig. 2.10b). The model consists of two elements connected at point C and

two hinges at its two ends. Neglecting cracking, this element's behavior

would be very similar to actual behavior of the member. Once yielding

occurs, our analytical model deviates from the real behavior because the

effect of the point of contraflexure on hinge properties is not taken into

account. The Takeda model for two end hinges is also modified to have

different stiffnesses in the two directions. A more consistent approach

would be to apply the Takeda model on the two segments, assuming that each

one acts as a cantilever. Such an approach has been-used by Otani (41).

(EO+2At-----------.;~----=:.-...---.

(a)

....- --t-..J Hinge
----------'

(b)

FIG. 2.10 - MOMENT DISTRIBUTION AND STIFFNESS FOR A
NON-SYMMETRIC SECTION.



40

In order to set up the stiffness matrix of this element, length of

each segment is computed from end bending moments. Here it is assumed

that the point of contraflexure does not move in a small time step, (~t).

Otherwise an iteration procedure has to be used to find its exact loca­

tion. However, changes in the location of the point of contraflexure

may be very large when the two end moments are small, which would make

the iteration non-convergent. Once length of each segment and its stiff­

ness properties are known, it is possible to condense out the degrees of

freedom of point C and to find the stiffness matrix of combined element·

Assuming segments of lengths ~l and i2 and stiffness values of (El)l and

(El)2' the flexural stiffness matrix of this model may be written as fol-

lows.

4(E1)1
0 Kl1 K12~l

K= 1 (2.8a)
4(E1)2 Det

0
~2

K21 K22

Kll
48(EI)i

+
144 (EI )i(E1)2

+
144 (EI )i(EI)2 48 (EI)i(EI) 2

(2.8b)= + 2 35 ~3~2 4
~l 1 2 ~l ~2 ~1 i 2

K12 =
-24(EI)i(El)2 72(EI)~(EI)2 72(EI)1 (EI)~ 24(El)1 (El)~

(2.8c)4 ~3~2 ~2~3 4
~1~2 1 2 1 2 ~li2

144 (E1)1(E1)~
4

~1~2

{2.8d)

K21 = K12 (2.8e)

12(El)i 12(El)~ 48(El)1(El)2 48(El)l(El)2 72(El)l(El)2
Det = + ~4 + 3 + 3 + 2 2 (2.8f)

~~ 2 ~1~2 ~1~2 ~1~2
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The 2 x 2 stiffness matrix is easily inverted to find the flexibil­

ity matrix. Finally, the effect of two end hinges is added to the diagon­

als of the flexibility matrix (Eq. 2.7). One advantage of this method

over the Connected-Two-Cantilever Method is that the stiffness matrix is

symmetric. However, in both cases the stiffness matrix of an element has

to be assembled at each time step, which adds appreciably to the cost

of analysis.

2.4 Slippage of Reinforcement

a) Physical Characteristics of Slippage

One of the components of element deformation in reinforced concrete

members is due to slippage of main longitudinal reinforcement. Figure

2.11 shows the mechanism of rotation. A vertical crack at the joint cros-

ses the tensile reinforcement, and the section rotates around its neutral

axis. Loss of bond between steel and concrete in the joint causes any

---------------

----------------

FIG. 2.11 - FIXED END ROTATION DUE TO SLIPPAGE OF
LONGITUDINAL REINFORCEMENT
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steel elongation to be transferred to the crack. Also, concrete in the

compression zone starts to crush once any fixed end rotation has occurred.

The following treatment of the problem makes two simplifying assumptions.

First, a section is assumed to rotate around its compressive steel. In

most reinforced concrete sections the location of the neutral axis will

not be far from compressive reinforcement. Seconrl, any cracking and

crushing is assumed to occur outside the joint area; thus no damage in

the joint is allowed. This implies that satisfactory detailing of the

joint has been achieved. In order to estimate any fixed end rotation,

steel development 1enqth has first to be calculated. Figure 2.12 is a

diagram of concrete bond stress and steel stress along steel development

length (Ld). Bond stress (u) is assumed to be constant along development

length, whereas steel strain (crs ) changes linearly (41). An inherent

assumption in this approach is that the embedment length is long enough

Bond stress
,---~~~~-~~-------.U

=:::;;;::::=======~~--Asas

FIG. 2.12 - CONCRETE BOND STRESS AND STEEL STRESS
ALONG THE DEVELOPMENT LENGTH



43

so that steel development length can be obtained. This is the basis of

the IIjoint problem" in reinforced concrete. For equilibrium to be satis-

fied, the following relationship must hold:

{2.9}

where 0 is the diameter of steel reinforcement. An approximate formula

is used to estimate the bond stress (u).

u =6.5 «c
(2.l0)

Assuming that all steel elongation is transferred to the crack, the open­

ing length (~L) at the level of tensile steel is computed.

(2.11)

Substituting for development length Ld, and the area of steel (As) in

Eq. (2.ll), the crack opening length is written as follows:

(2.l2)

where Es is Young's modulus for steel. Fixed end rotation of the member

is simply
~Le = .-

d - d
(2.13)

Assuming the following relationship between steel stress and member end

moment,
(2.14)

Fixed end rotation at the yield point of tensile reinforcement is com-

puted by
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(2.15)

Using the steel stress-strain diagram (Fig. 2.1), steel stresses and steel

strain along the new development length at ultimate steel stress (cr ) may
u

be determined. Figures 2.13a and 2.13b show such diagrams, where area

under the strain curve represents the crack opening.

(2.16)

IlL
e = u

U d - ct'
(2.17)

(a)

Strain
1-------10"".:::

t u

t ah

t, .
f,---------..;;:::~

(b)

FIG. 2.13 - ULTIMATE STEEL STRESS AND STRAIN
ALONG THE DEVELOPMENT LENGTH
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Figure 2.14 represents the moment-rotation relationship for a mono­

tonically increasing load. Since there is no crack opening up to crack­

ing moment (Mer)' the curve has infinite stiffness in the beginning. Two

other points on the curve are determined by yielding and ultimate stress

of tensile reinforcement. In this study, a bilinear approximation to

this trilinear curve is used.

The moment-rotation primary curve (Fig. 2.14) may then be used to set

up a hysteresis curve of slippage. The proposed hysteresis curve is based

on experimental results in Chapter III, and also on physical consideration

of slippage.

M

M u I--------,---------__=::~

au e

FIG. 2.14 - MOMENT-ROTATION PRIMARY CURVE FOR SLIPPAGE
OF REINFORCEMENT

b) Hysteretic Behavior under Cyclic loads

Using yield and ultimate points of tensile reinforcement, a bilinear

curve for fixed end rotation of a member under an increasing monotonic
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load may be set up. If the load is then reversed, initial unloading stiff­

ness will be very high. However, as moment passes through zero the crack

stays open, mainly due to residual plastic strain in steel. Little moment

can be applied in the opposite direction until the crack is fully closed,

except for what the compression steel may take. This is why a pinched

behavior is observed when there is considerable steel slippage. The pro­

posed hysteresis model is shown in figure 2.15. Slippage hysteretic behavior

is defined by a set of 8 rules, which are identified in the figure by their

corresponding numbers.

M

+ L--r-_~2-----{
My

-rr-o~~~- ..e

FIG. 2.15 - MOMENT-ROTATION HYSTERETIC BEHAVIOR FOR SLIPPAGE
OF REINFORCEMENT
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1 - Moment-rotation due to slippage is elastic up to the yield point.

2 - Once the yield point is exceeded, loading proceeds on the second slope
of the primary bilinear curve.

3 - Unloading from the second slope is parallel to the elastic slope.

4 - Once the unloading stage is finished, the crack has then to be closed.
Stiffness of this part may be taken as a percentage of the second
slope of the primary curve. A 50-percent value is used in this study.

5 - If the direction of moment changes while closing the crack (rule 4),
an unloading slope equal to the elastic slope is used.

6 - If the direction of moment changes while in rule 5, loading will
on the same curve until the previous point in rule 4 is reached.
it will continue according to rule 4.

be
Then

7 - Once the crack is closed, loading will be towards the previous maxi­
mum point in the opposite direction. In addition, a strength degrada­
tion feature has also been built into the model. Thus, instead of
loading towards the point of maximum rotation, a new maximum rotation
is defined as follows:

e
e = max
max a (2.18)

Parameter a is an input to the model. A value of a equal to 0.8 is
used for some of the experiments, resulting in strength degradation
which is typical of such hysteresis curves. (See Chapter III).

8 - If the direction of the moment changes while unloading (rule 3), load­
ing will be on the same curve until the previous intermediate point
is reached.
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2.5 Shear Deformation

In most analytical studies of reinforced concrete structures, shear

deformation is assumed to be elastic. This means that a modified shear

stiffness (GA) is used to correct the stiffness matrix of a member. Recent

tests of reinforced concrete members where shear deformations were meas-

ured reveal that shear deformation has an inelastic behavior which is

quite different from flexural behavior (32, 38). These tests show that

most of the shear deformation occurs at both ends of a member where flex-

ural deformation is also important. This is mainly due to propagation of

inclined cracks at the ends of a member. The mechanism of opening and

closing of such cracks is very similar to the slippaqe of reinforcement

at joint interface.

Shear forces are transferred across cracks (Fig. 2.16) by three

mechanisms (27). The most important mechanism of shear transfer in

(a)

45 Shear Crack
1/ --

//

II

/
/

1/
'/

/,

I;
?!

/

II-----""'l/,../~~-_-_-_--

I ----------

(b)

FIG. 2.16 - 45 0 CRACK OPENING AND STRAIN DISTRIBUTION FOR
STIRRUPS ACROSS CRACK
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reinforced concrete members is by web reinforcement and its contribution

to shear resistance, may be estimated with reasonable accuracy. The

contribution of concrete to shear resistance may be divided into two cate-

gories. The first is frictional and bearing forces across cracks genera-

ted by tangential shear displacement, and the second is contribution of

concrete to shear resistance in the compression zone. The former cate-

gory is generally known as interface shear or aggregate interlock. Fin­

ally, dowel action, which is activated by relative movement of the two

ends of steel, also contributes to shear resistance.

The model that is adopted here was originally proposed by Kustu (32).

This model is a simplification of real behavior, because it neglects the

contribution of dowel action to shear resistance. Only minor changes to

the original mdoel were made in this study. However, it is felt that

better estimates of the contribution of concrete, and the inclusion of

dowel action, would result in a fairly accurate model.

Figure 2.l6a shows an inclined crack opening at the end of a rein-

forced concrete member. Such cracks are initiated when the resultant of

flexural and shearing stresses exceeds~he tensile strength of concrete.

Here, it is assumed that a 45-degree crack propagates through the member,

and there is a rotation around compressive reinforcement. Assuming that

the crack opens linearly, strain distribution of stirrups along the crack

will also be linear. Taking strain in the farthest stirrup from the joint

as the control point (s ), crack opening may be estimated by
n

where Ld is development length on each side of the stirrup. As in the
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slippage model, a linear steel stress along the development length is

assumed. Shear rotation (Ysr ) is thus given by

!'lLY _ n
sr - ~

Distance Xn is from joint interface to the control stirrup (Fig. 2.l6b).

Strains in all other stirrups and their contribution to shear resistance

may also be estimated.

X.
si = -' s (2.21)Xn n

X.
F. = -' s Est(Ast)i (2.22), Xn n

where F; is the contribution of the i th stirrup, Est is Young's modulus,

and Ast is the area of each stirrup. Total resistance offered by stir-

rups is then

(2.23)

It is more difficult to estimate interface shear transfer. In

fact, concrete transfers most of the shear before any cracking occurs.

However, most of the load is transferred to stirrups and the dowel mech-

anism once inclined cracks propagate across a member. Axial load in a

member affects opening of the crack and increases interface shear trans-

fer. It may be noted that aggregate interlock will be markedly reduced

after a member is subjected to load reversals. This is a primary cause

of strength degradation observed in shear hysteresis curves. In order to

estimate the contribution of concrete to shear resistance, the elastic
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cracking load is calculated. Figure 2.17 shows Mohr's circle for con­

crete at the cracking stage. At this point, tensile stress is equal to

cracking stress (rr t ). Knowing the magnitudes of axial stress (G a ) and

tensile stress (rr t ) , the cracking shear stress (Tcr ) may be calculated:

(2.24)

T

FIG. 2.17 - MOHR'S CIRCLE AT SHEAR CRACKING STAGE

Assuming a parabolic distribution of shear across the section, cracking

shear stress is related to average shear stress (Tavg )'

v = ~ I F2 - P F .
cr 3 tat

(2.25)

(2.26)

where Pa is axial load on the member and Ft = Agrrt is the value of the



52

splitting force. The following relationship is used to determine at:

at = - 1.5 « . (2.27)

It may be observed that this is only 20% of the suggested code value

of concrete tensile strength. This is to take into account the fact that

most of the shear is transferred to steel once there is any crack opening.

Total shear resistance may be written as

(2.28)

Using the yield point of the control stirrup, one point on the shear de-

formation curve is identified. In order to locate another point on such

a curve, the ultimate steel strain for the control stirrup is considered.

Using the steel stress-strain diagram (Fig. 2.1), the crack opening at

the control point is computed.

(2.29)

It is also possible to find strain and thus stress in eaah one of the

stirrups using the linear crack opening assumption. Again, a trilinear

shear-rotation curve would result which may be approximated by a bilinear

curve. Assuming that the point of contraflexure is in the middle, it is

possible to use a moment-rotation curve instead of a shear-rotation curve.

Thus, inelastic shear deformations may be lumped at the end of the member.

In this study, the same hysteresis model was used for both slippage

and shear deformations (Fig. 2.15). Shear hysteresis curves usually show

more pinched behavior and strength degradation than slippage curves. In
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order to refine the proposed hysteresis model, more experiments on members

with high shear forces must be carried out. Because of the interaction

of shear and flexural deformations in the hinging zone, it is difficult to

isolate shear deformations in cyclic load tests.

2.6 Method of Analysis

a) Assumptions

The following set of assumptions were made in the analysis of rein­

forced concrete subassemblages or frames. Some of these items are dis­

cussed in more detail in the next few sections.

A member is idealized by an elastic element with two hinges repre­
senting flexural deformation at its two ends. Other springs repre­
senting slippage of reinforcement or inelastic shear deformation
are also added to the ends of the member when necessary. Different
components of deformation (flexure, shear, and slippage) are assumed
to act independently.

Only the two-dimensional deformation of members is considered, and
all members lie in the plane of loading.

Axial deformation in girders is neglected, causing all nodes in one
floor to have the same horizontal displacement.

Secondary P-O effects are taken into account (2.6e).

The effect of finite joint size has been considered by transforma­
tion of the element stiffness matrix. Joints themselves are taken
to be infinitely rigid.

Masses are lumped at the nodes only (2.6b)

The base of the structure is assumed to be infinitely rigid.
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b) Mass Matrix

Although mass in a structure is distributed along each one of the

members, for practical reasons masses are concentrated at the nodes. Only

translational masses were considered here, and rotational inertia has been

ignored. Furthermore, since all the nodes in one floor are assumed to have

the same horizontal displacement, the mass matrix may be written as follows:

M =
M

n

(2.30)

[M] is the diagonal mass matrix, and the elements of the matrix represent

story masses. These assumptions should have less effect on lower modes

of the structure.

c) Stiffness Matrix

Since a 2-D analysis is being considered, each node has two trans­

lational and one rotational degrees of freedom. Once the member stiffness

matrix is set up, and it is modified for finite joint size, it must then

be transformed into a global coordinate system. This is done using the

transformation matrix T.

(2.31)

This matrix can be readily inserted into the global stiffness matrix.

Since all the elements in this work have symmetrical stiffness matrices,

only half of the total stiffness matrix needs to be set up. Springs repre-
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senting shear or slippage deformations were treated as individual elements

in this study. In fact, it is possible to condense out all the degrees of

freedom at mid-points, and assemble a 6 x 6 stiffness matrix including

effects of flexure, shear, and slippage.

During an inelastic dynamic analysis, the change of stiffness within

a time step results in unbalanced loads at some of the nodes. This means

that equilibrium at these nodes is not satisfied. An iteration procedure

may be used to converge to an equilibrium condition, but convergence to

the right results can not be guaranteed. In this study, unbalanced loads

are added, with an opposite sign, to the load vector at the next time step.

If magnitudes of these unbalanced loads are not high, results will be satis­

factory.

d) Damping Matrix

Viscous damping forces are added to the equations of motion to model

non-structural damping, friction, and other damping effects. On the one

hand, damping in a structure is not necessarily of viscous form, and this

is done only for convenience; and on the other hand, it is very difficult

to estimate a value of viscous damping for reinforced concrete structures.

It is usually assumed that the structure's damping matrix is propor­

tional to mass matrix, or stiffness matrix, or a combination of the mass

and stiffness matrices. After studying many dynamic tests of structures

on shaking tables, it was found that most of the response of these proto­

type structures is in the first mode. This is in part due to the fact

that higher modes are more heavily damped than the first mode of the struc­

ture. Thus it was decided to use a damping matrix which is proportional

to the stiffness matrix only, because this produces higher damping in the
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higher modes.

C = a K
~ ~t

, (2.32)

where ~t is the tangent stiffness matrix of the structure. The method

is shown to cause more damping as natural frequencies of the structure

become higher. It also takes into account softening of the structure

and the increase in natural period of a building.

e) P-8 Effect

Axial loads on a member produce secondary moments which tend to in­

crease inelastic deformations. Since the two ends of girders in this

study are assumed to have the same horizontal translations, no axial

force is induced in girders. However, axial loads may become important

for lower columns of a building. A more complete theory of stability of

columns may be found in the work by Aziz (5). Here, a linear solution

to the problem has been used, and it is also assumed that axial load on

columns stays constant during the strong-motion duration. A more complete

analysis would be to allow axial loads to change, but this requires that

the stiffness matrix of the structure be modified at each time step. Here,

corresponding shear terms in the element stiffness matrix are modified

by the following matrix ~a'

K =~ [1
~a L

-1

(2.33)

It is also necessary to take axial load into account when considering

equilibrium of the element. Thus, shear at each end of the member is modi-

fied for the P-O effect. (Fig. 2.18).
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FIG. 2.18 - ELEMENT END FORCES

(2.34a)

(2.34b)

2.7 Damage Indicators

When a reinforced concrete building is subjected to strong ground

motions, it is expected that some members will undergo considerable in­

elastic behavior. Then, the important issue is not the prevention of such

an inelastic behavior, but rather the prediction of damage given that some

members have behaved inelastically. A parameter which is frequently used

in practice to identify damage is peak ductility. There are many defini­

tions of ductility. Even assuming that peak ductility can be computed

without uncertainty, it is obvious that this parameter by itself can not

predict the state of damage in a member. Other parameters such as cumu­

lative ductility and energy dissipation have recently been given atten­

tion (12). Since the present work is intended to develop an alternative

method of damage prediction, a survey of different definitions of damage

indicators and their applicability in analysis of reinforced concrete

structures is presented.
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The most widely used definition of ductility is the ratio of maxi­

mum rotation (emax ) to yield rotation (ey) (Fig. 2.19).

M

.
11 _ 9 maxre- 9.y

fJp= 1+ 9p
9y

FIG.

...._......_-~-----!-----99 y 9 max
2.19 - DEFINITIONS OF ROTATION DUCTILITY AND

PERMANENT SET DUCTILITY

(2.35)

In order to estimate ey, anti-sYmmetric bending of a structural element

has to be assumed.

(2.36)

The shortcomings of assuming the point of contraflexure to be at midspan

have been discussed before (Section 2.3b). Ductility may also be defined

as the ratio of permanent plastic rotation (e p) to yield rotation plus one

(Fig. 2.19). ep
~p = 1 + e

y
= (2.37)

If the element does not have a well-defined yield point, such as the
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one shown in Fig. 2.20, then both of these definitions fail. Also in

many stiffness degrading systems, permanent set, which is used in the sec­

ond definition (8 p)' may only slightly increase, while the rate of damage

is increasing (Fig. 2.20). This is due to degradation of the unloading

stiffness. In light of such an observation, ~8 seems to be superior to ~p'

M

----~.....--...--~~..,..-----e
9 max

FIG. 2,20 - HYSTERESIS CURVE FOR A CURVILINEAR SYSTEM

The third definition of ductility is based on curvature, and it is

intended to eliminate the need for assuming antisymmetric bending of an

element. Figure 2.21 shows the moment-curvature relationship for the end

section of a member. Curvature ductility is defined as the ratio of mom-

ent that would be developed if the member had remained elastic (Mel) to

yield moment (My)'

(2.38)

If a bilinear moment-curvature relationship is assumed, then curvature

ductility may be written as follows.
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FIG. 2.21 -CURVATURE DEFINITION OF DUCTILITY

r1 - M
~ = 1 + max -- y
¢ pMy

(2.39)

where p is the ratio of second stiffness to initial elastic stiffness.

This eliminates the need for computing curvatures which are not accessible

in the Single Component Model. Using Eq. (2.39), curvature ductilities

were estimated for all the experiments in Chapter III. For non-symmetric

sections, the ratio (p) may be quite different in the two loading direc­

tions. Although the method is expected to give good estimates of curva­

ture ductilities, the utility of this definition of ductility in predict­

ing damage is questionable. The fact is that curvature ductility is valid

only for the worst section of the member, and it does not reflect the ex­

tent of inelastic rotations along the member length.

Another interesting idea for prediction of damage was first proposed

by Sozen (37). A reduced secant stiffness (Kr ) at maximum displacement is

computed, and the ratio of initial stiffness (Ko) to this reduced stiff­

ness is called "damage ratiolB (DR). (Fig. 2.22).
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FIG. 2.22 - DEFINITION OF DAMAGE RATIO

(2.40)

This definition eliminates the need for computing yield displacements.

The definition may be applied to the half-length cantilever of the Single

Component Model. Therefore, the initial slope of the P-o curve of a canti-

lever of length L/2 including shear and slippage flexibilities is as fol­

lows:
(2.41 )

where Ki is the stiffness of slippage or shear springs. One advantage of

damage ratio over other ductility definitions is that both load and dis~

placement are taken into account. For example, if there is any strength

degradation in the model, DR would reflect that, but other definitions of

ductility will not.
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In this study, a modified definition of damage ratio was adopted.

This is called "flexural damage ratio" (FOR) and it is the ratio of initial

flexural stiffness of the member (Kf ) to its reduced secant stiffness.

where flexural member stiffness is simply

K = 24EI '
f 3·

L

(2.42)

(2.43)

The reason for excluding effects of shear and slippage from the dam­

age ratio definition is the uncertainty in modeling those deformations.

Flexural stiffness (EI) of the section can be estimated with a higher

degree of accuracy (Section 2.3a). It may be noted that the stochastic

models of failure which are presented in Chapter IV can use either one of

the two definitions of damage ratio. However, it is felt that the flex-

ural damage ratio introduced here has less uncertainty associated with it.

All parameters introduced to this point lack one important feature,

and that is the cumulative effect of inelastic behavior on the state of

damage in a member. It must be realized that (low cycle) fatigue type dam-

age is possible under earthquake excitations. Two other useful parameters

may be added, namely, cumulative plastic rotation and dissipated energy.

Normalized cumulative rotation (NCR) is defined as the ratio of the

sum of all plastic rotations in a hinge, except for unloading parts, to

yield rotation

NCR
Leo ESo (2.44)=T= M;L/6EI

Dissipated energy in a Single Component Model may also be easily computed
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by integrating the area under the moment-rotation curve for each inelastic

spring
(2.45)

This energy is then normalized in terms of the maximum elastic flexural

energy that may be stored in a member when it is subjected to anti symmetric

bending.
(2.46)

Even though this definition of normalized dissipated energy (En) is depend­

ent on the location of point of contraflexure, it is especially useful in

terms of indicating the overall cyclic inelastic rotations in a member.

Once energy is evaluated for each inelastic spring, a backward pass is

made to ensure that it is a non-decreasing function, i.e., local fluctua-

tions in the function are eliminated.

This chapter has dealt with models of inelastic behavior of rein­

forced concrete members. Flexure, shear, and slippage of reinforcement

were identified as main sources of deformation, and models of their hystere­

tic behavior were presented. A Single Component Model with the Takeda

model for hysteretic behavio~ of its hinges was used for flexure. An

extension of the model was developed for non-symmetric reinforced concrete

sections. Making simplifying assumptions, hysteresis models were also

introduced for shear and slippage. Next, parameters which are used for

prediction of damage were identified. Among them peak ductility is the

most commonly used parameter. Others, such as dissipated energy and cumu­

lative plastic rotation have recently been given attention. Flexural dam­

age ratio is thought to be a useful indicator of damage. Chapter III deals
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with analysis of a set of static cyclic load experiments. Models de­

scribed in this chapter are used for this purpose. All of the damage

indicators introduced in this chapter are calculated for each experiment.

Results are then used to develop q stochastic model of damage in Chap­

ter IV.
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CHAPTER III - INVESTIGATION OF CYCLIC LOAD TESTS

3.1 Introduction

Along with the development of better analytical techniques to model

inelastic behavior of reinforced concrete structures, there has also been

a growing interest in experiments simulating earthquake loads on these

structures. Both static tests and dynamic shaking table tests of rein­

forced concrete structures have been used to check or develop models of

inelastic behavior. The purpose for developing analytical models in this

study (see Chapter II) is twofold. First, the models are necessary to

compute the damage parameters for each test; and second, the models are

needed to apply the method of predicting damage in a real frame.

The experiments which are reported in this chapter are all cyclic

load tests on single members or frame subassemblages. The idea is to iso­

late one part of a frame and then simulate the same type of deformations

that it might experience under earthquake loads. Although some of the

tests reported here also include analytical results, no effort has been

made to compare them with analytical results of this study. Reasons for

choosing cyclic load tests rather than dynamic shaking table tests are as

follows:

Static cyclic load tests are usually controlled by displacement mag­
nitudes. In these tests, it is possible to measure both loads and
displacements at various points accurately. Stiffness and strength
variations in a specimen are recorded in static tests, and the
accuracy of analytical models is easily checked. On the other hand,
dynamic tests can not be closely controlled, and they do not offer
accurate results.
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Quantities such as shear deformations, fixed end rotations due to
bar slippage, and steel strains which are measured in most static
cyclic load tests are not easily accessible in dynamic tests.

There are many cyclic load tests available, but the number of dynamic
tests is still limited.

However, it should be kept in mind that inertia and dam~ing forces

are absent in cyclic load tests. These tests provide us with information

on hysteretic behavior and energy dissipation capacity in a member. Also,

there are other aspects of loading, such as the rate of loading in static

tests, which are not compatible with true earthquake environment. Thus,

when one extrapolates the results of cyclic load tests to inelastic dynamic

behavior of buildings, some uncertainty is being introduced. Although many

static cyclic load tests are available in the literature, most of them do

not represent the true behavior of reinforced concrete buildings under

earthquake loads. One problem with many of these tests is the scale of a

specimen, and it was decided to use only large-scale specimens in this

study. Integrity of the beam-column joint is another important considera­

tion. Joints must be designed to withstand all combinations of loads trans­

mitted to them by adjoining members with minimum damage. Analytical models

used to study inelastic behavior of frames usually assume that the joint

is infinitely stiff. Some members in the experiments were excluded from

the sample because either they were not tested to failure or the specimen

did not meet one of the above requirements. A total of 32 specimens from

eight different sets of experiments were included in the sample. The sam­

ple is rather small, and a bigger sample size would help to better estimate

the parameters of the stochastic model of failure which is developed in
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the next chapter. It is also possible to include some more specimens

from the experiments which are described in the next section. In particu­

lar, five more specimens in the experiments by Atalay and Penzien (3) may

be added to the sample.

All experiments in the sample are described in the next section. It

is important that analytical models yield good estimates of damage indica­

tors which are used to develop a stochastic model of damage. This is dis­

cussed for each experiment, and also experimental and analytical results

are compared when possible. Since the goal of the present work is to pre­

dict damage in a member, the state of lIexcessive damage" had to be defined.

This is done in terms of load-carrying capacity of a member. In most of

the experiments, failure was a rather sudden phenomenon; i.e., the load­

carrying capacity dropped very fast once excessive damage had occurred.

On the other hand, some of the laboratory tests of the specimens showed

a slow failure process. In these cases, a member is assumed to be badly

damaged when there is more than 80 percent deviation between the experi­

mental load and the computed analytical load. This method assumes that

a member follows the analytical model until an unexpected mode of failure

causes a deviation between the two results. Some judgement has been used

to define failure point for specimens which showed gradual failure. How­

ever, computed values of damage indicators at failure are not expected to

be too sensitive to definition of failure. Even though some members were

able to carry several more cycles of load past their theoretical failure

point, for all practical purposes these members may be assumed to have

fa il ed.
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3.2 Experimental Data

a) Atalay-Penzien

These sets of tests were designed to study behavior of reinforced

concrete columns under high axial and flexural loads (3). A total of 12

specimens were built and tested for this purpose. All specimens had a

length of 11 ft and 12 x 12-inch cross sections (Fig. 3.1). Variables

in these tests were magnitude of axial load, percentage of transverse rein­

forcement, and rate of loading. The specimen represents two columns of a

high-rise building in between their inflection points, which are assumed

to be at their mid-points. Although seismic loads in a building would

cause columns to deform in double curvature, this type of test setup was

used for simplicity. Longitudinal reinforcement for each specimen con­

sisted of two #7 bars at top and bottom with an average yield stress of

55.2 ksi. These bars were welded to two steel plates in the joint to

limit their slippage. Transverse reinforcement was #3 bars with a spacing

of three inches for odd-numbered specimens and five inches for even-number­

ed specimens. Axial load on members was 60 kips for specimens 1-4, 120

kips for specimens 5-8, and 180 kips for specimens 9-12. These represent

25 percent, 50 percent, and 75 percent of the balanced point axial load,

respectively.

Two sets of displacements of 20 cycles each were applied to the joint

of each specimen. Because of high span-to-depth ratio, shear deformations

were not important. Only five specimens were considered in this study

(4, 7, 8, 11, 12). These five specimens were tested under higher strain

rates. Experimental and analytical load deflection curves for these speci­

mens appear in Figs. 3.2 - 3.6. In the following figures, {a)-figures
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Fig. 3.1 - Test Set-up and Section Properties for the
Expetiment by Atalay-Penzien
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are laboratory test results and (b)-figures are analytical curves. These

columns, in general, exhibited stable hysteretic behavior up to their fail­

ure points. The P-8 effect for these specimens is very pronounced. Com­

puted damage parameters for these specimens are listed in Table 3.3 (speci­

mens A4 - A12). The damage indicators are computed according to their

definitions in Chapter II. The last two columns in the table are the ratio

of peak shear stress (T) over square root of concrete strength (~), and

the ratio of axial load (Pa) over the balanced point axial load (Pb). An

examination of damage indicators for these specimens shows that columns

with higher axial loads dissipated less energy and also had lower values

of flexural damage ratios at failure. Displacement ductilities, which are

equal to rotation ductilities in this case, were measured to be 5.5, 3.4,

3.6, 2.9 and 2.1 for these five specimens. A comparison with ductilities

in Table 3.3 shows that these are somewhat less than computed ductilities.

Since the flexural deformation is by far the dominant mode of deformation,

the match between ductilities was the best among all experiments in the

sample. This is due to the fact that elastic flexural stiffness of a mem­

ber may be calculated accurately.

b) Bertero-Popov-Wang

These experiments explored the means of minimizing damage in rein­

forced concrete beams under very high shear forces (7). Two cantilever

beams, each 78 inches long, were built for this purpose (Fig. 3.7). Speci­

men 33 was reinforced with six #9 bars at top and bottom, and two #4

bars were put in the middle of the section along with cross ties to pre-

vent bulging. Shear reinforcement in this specimen ~onsisted of #3 bars
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Fig. 3.7 - Test Set-up and Section Properties for the
Experiment by Bertero-Popov-Wang
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at an interval of 3 inches. Specimen 351 was designed to resist ultim­

ate shear by means of eight #6 inclined bars (Fig. 3.7). The scheme

provided maximum efficiency for transfer of shear forces across inclined

cracks (48). Inclined bars were assembled together using short bars

which were welded to them. The result was a well confined concrete, and

also buckling of steel bars was prevented. Longitudinal steel for both

specimens was welded to a steel plate at the reaction frame, thus prevent-

ing any fixed end rotation due to slippage.

Loading was controlled by magnitude of peak ductility such that lar-

ger cycles would have an increase of 1 in displacement ductility. Because of

special design of specimen 351, no shear deformation was considered in its

analysis. Strength degradation was neglected in analysis of specimen 33.

Experimental and analytical curves for the two specimens (Figs. 3.8 and

3.9) are in good agreement. Specimen 33 shows pinching of hysteresis

loops due to shear deformations. Experimental yield moments are roughly

ten percent higher than analytical yield moments. Experimental ductili­

ties for specimens 33 and 351 were 5 and 6 respectively, which are much

lower than computed values (12.9 for specimen W33 and 16.8 for specimen

W3S1 in Table 3.3). This is a direct result of an overestimate in elas-

tic member stiffnesses which is observed in most experiments. Total ener­

gy dissipated in experiment~ was 6470 k-in (En = 377) for specimen 33,

and 9510 k-in (E = 555) for specimen 351. Since theoretical failure
n

points were reached before the end of tests, these may be viewed as upper

bounds on normalized energy values listed in Table 3.3 (269, 457). A

very fast progressive failure was observed in both specimens. Specimen

351 has the highest normalized dissipated energy in the sample.
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c) Fenwick-Irvine

These tests, carriedoutat the University of Auckland, New Zealand,

were designed to investigate the adequacy of existing codes for joint

design (19). Four beam-column joint specimens were built and tested

under simulated earthquake loads (Fig. 3.10). A useful discussion of

mechanisms of shear resistance in a joint appears in the paper. In this

study, only two of the specimens were considered. Unit 1 was designed

according to AC1 code and Committee 352 recommendations, and unit 4 was

designed to control yielding of steel in joint zones and to prevent slip­

page of bars. Bond plates were welded to longitudinal steel reinforce­

ment of unit 4, being designed to transmit all forces into the joint. To

prevent yielding of longitudinal bars in between the two bond plates,

additional bars were fillet-welded onto the reinforcement in between

plates. 51 units were used for the original report, and analytical re­

sults are also presented in the same units. Cross sections of beams and

columns for the two units is shown in Fig. 3.10. Deformed steel bars of

20-mm diameter (020) and 24-mm diameter (024) were used as main longi­

tudinal reinforcement. Additional 016 bars were also placed in columns.

Concrete strengths for units 1 and 4 were 42.9 MPa (6200 ksi) and 40.4

MPa (5860 psi), respectively.

Experiment was displacement controlled, and loads of equal magnitude

were applied at a distance of 1.425 m from the joint centerline in oppo­

site directions (Fig. 3.10). Displacements of beams were measured at a

distance of 1.25 m from the joint centerline. Two cycles of displacement

ductilities of 2, 4, 6, 8, etc. were applied o·n beams until member fail­

ure was reached. Experimental and analytical load-deflection curves are
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shown in Figs.3.11 and 3.12. The joint in unit 1 suffered more severe

damage, and this is clearly seen from its strength degradation. On the

other hand, hysteresis loops for unit 4 are very stable, and the specimen

did not fail until a displacement ductility of 8 was reached. Although

columns were designed to stay elastic, analysis indicated some yielding

in columns of unit 4. Measurements in the experiment also revealed some

yielding in unit 4 columns, which finally led to joint deterioration and

specimen failure. Peak loads were listed for each cycle and compared well

with analysis. Failure of unit 1 is very gradual, and the theoretical

failure point was reached long before the experimental failure point. On

the contrary, unit 4 had very fast progressive failur,e after a displace­

ment ductility of 8. The overall match between experimental and analyt­

ical results is fair for unit 1 and very good for unit 4. Computed values

of damage indicators for these two specimens are listed in Table 3.3

(specimens F1, F4).

d) Hanson-Conner

This is one of the early series of tests on full size reinforced con­

crete specimens carried out by Portland Cement Association (23). The main

purpose of the experiment was to study the adequacy of joint reinforcement

designs for cyclic loads. Three types of joints were chosen for testing,

namely, a corner joint, an edge joint, and an interior joint. The two

interior joints were not included in the sample, because one developed

serious joint cracking and the other one was not loaded to failure. Test

setup and section properties for the corner joint (specimen no. 7) and the

interior joint (specimen no. 9) appear in Fig. 3.13. Grade 40 reinforce-
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ment was used for all specimens. Concrete in beams and columns had dif-
I

ferent properties, and fc ranged from 3800 psi to 6000 psi.

After putting a load of 640 kips on columns, beams were subjected

to cyclic deflections. Because of high value of span length to depth

ratio, shear deformations were found to be negligible for all members.

Slippage of longitudinal reinforcement was considered in the analysis of

these specimens. Deflections of the beams were intended to produce dis­

placement ductility levels of 2.5 to 5.0. Computed beam ductility demands

are 6.5 and 10.5 for specimens 7 and 9 respectively (H7 and H9 in Table

3.3). Although specimen no. 7 showed some yielding in the negative load­

ing direction, the analysis did not indicate any yielding in that direc­

tion (Figs. 3.14 and 3.15). Comparison of energy dissipation and damage

ratio for these two specimens with the rest of the sample (Table 3.3) re­

veals that these specimens behaved poorly. The main reason is that the

overall design of these two specimens was less than satisfactory.

e) Ma-Bertero-Popov

This set of experiments was conducted at the University of California,

Berkeley (38). A total of nine members were tested to study behavior of

reinforced concrete members near the column face. The model (Fig. 3.16)

represents, in half scale, lower story girders of a 20-story ductile mom­

ent-resisting reinforced concrete frame. All specimens were cantilever

beams supported by a large block. Six rectangular sections (Rl-R6) and

three T-sections (Tl -T3) were tested. Cross-sectional characteristics

of these specimens are sketched in Fig. 3.16. Three pairs of beams (Rl
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and R2, R3 and R4, Tl and T2) were made identical to study the effect of

different loading conditions on inelastic behavior of specimens. All of

the specimens have four #6 bars at the top and four #6 bars or three #5

bars (All G60) at the bottom. Thus some of the sections had roughly 50

percent of their negative moment capacity in positive direction. Shear

reinforcement consisted of #2 ties at 3 1/2 inches, and in T-sections #2

deformed bars were also used in the top flange, representing the contri­

bution of floor slab to moment capacity of the section. All specimens

had a span length of 62.5 inches, except for specimen R5, which had a

length of 38.5 inches. Concrete strength (f~) for beams ranged from 4190

psi to 5070 psi. Material properties were found by testing both steel and

concrete.

Shear deformations only were considered for specimen R5. The Non­

Symmetric Single Component Model (Section 2.3c) was used to model flex­

ural deformations of specimens which had different amounts of steel at

top and bottom. It may be noted that in this case the point of contra­

flexure is fixed, and this model becomes the same as Otani's model (42),

i.e., the inconsistency between assumed location of point of contraflexure

and its actual location may be eliminated by adjusting the hinge charac­

teristics. Slippage of reinforcement was not included, because it was

felt that concrete block behind the cantilever and well-anchored longi­

tudinal steel would result in negligible slippage.

Experimental and analytical load-deflection curves appear in "Figs.

3.17 through 3.25. Except for specimens R4 and T2, all of the other beams

were subjected to increasing displacement ductilities. Failure of all

members was a rather quick event, i.e., all members showed progressive
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damage in terms of their load-carrying capacity once failure was initia­

ted and failed soon after. There is very good agreement between analyt­

ical and experimental hysteresis loops for all members. On the other

hand, even though there is good'matFh between yield loads, computed yield

displacements are much lower than experimental yield displacements. Some

of the damage indicators which were measured in these experiments are

shown in Table 3.1. A comparison of this table with Table 3.3 reveals

that computed ductilities are higher than experimental values. Curvature

ductility in these tests was measured in the critical hinging zone of mem­

bers, taken to be half the effective depth. Experimental energy dissipa­

tion values represent the total energy dissipated until each test was

terminated; thus they are upper bounds to the computed values of energy

dissipation. Except fqr specimen R5, there is very good agreement between

dissipated energy values. A comparison of computed energy dissipation and

damage ratio for these specimens with the rest of the sample (Table 3.3)

shows that these specimens behaved rather well. Specimens R4 and T2 did

not dissipate much energy because they were failed under high ductilities.

Specimen R5, even though it was subjected to high shear forces, has high

damage ratio and energy dissipation. This suggests that if a member is

well designed, it can perform well under both flexure and shear.

f) Popov-Bertero-Krawinkler

The objective of this experiment was to study strength, ductility,

and energy absorption capacity of reinforced concrete beams under high

flexural and shear loads (50). A total of three cantilever beams were

tested, but only one (beam 43) which had adequate shear reinforcement

was considered here. This cantilever beam had a length of78 inches and a
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cross-sectional area of 15 x 29 inches (Fig. 3.26). Main longitudinal

reinforcement consisted of six #9 bars (G60). Shear reinforcement con-

sisted of #4 bars at 3-inch spacing.

beam was 5000 psi.

Since the main longitudinal reinforcement was welded to a T-beam at

the fixed end of the cantilever, no slippage of bars was observed. On

the other hand, shear deformation was important, and it was considered

in analysis. Experimental and analytical load-deflection curves are

shown in Fig. 3.27. The computed peak load is 135 kips, which is 15 per­

cent lower than the experimental peak load. Peak rotation ductility (~e)

as measured in the experiment is 6.2, which is less than half the com­

puted ductility value (14.4 for specimen P43 in Table 3.3). Average

curvature ductility (~~) and normalized cumulative rotation for the crit­

ical section (hinging zone) were measured to be 11.0 and 185 respectively.

Normalized cumulative ductility is in good agreement with the computed

value (225, Table 3.3) from the Single Component Model. It may be noted

that the computed cumulative rotation takes into account not only the

hinging zone but also inelastic rotations along the rest of the member.

Failure of this beam was fast, and once the load started to decrease, only

one more cycle caused ultimate failure. Overall, there is good match

between experimental and analytical parameters and curves.

g) Scribner-Wight

The purpose of these tests (52) was to investigate effects of longi­

tudinal reinforcement at mid-depth on strength and stiffness degradation

of reinforced concrete members. A second objective of the experiments

was to study the beam-column joint behavior under high shear and flexural
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loads. A schematic representation of the test setup is shown in Fig. 3.28.

The assembly represents an exterior beam-column joint in a tall building.

A total of 12 specimens, 8 half size (Group I) and 4 full size (Group II)

were tested.

Beam and column cross sections are also shown in Fig. 3.28. Beam

cross sections were 8 x 10 inches or 8 x 12 inches for Group I, and 10 x

14 inches for Group II. Main longitudinal reinforcement for beams ranged

from 1.27 percent to 2.62 percent. Transverse reinforcement in beams

ranged from 0.63 percent to 1.1 percent. Grade 40 reinforcement was used

for all beams, except for specimen number 7, and Grade 60 reinforcement

was used for all columns. Intermediate longitudinal reinforcement was

used in half of the specimens, namely, the even-numbered specimens. This

is shown in beam cross-sectional areas in Fig. 3.28. It consisted of

four steel bars in two layers, and extra transverse reinforcement was used

to confine the concrete inside. The area of intermediate longitudinal

reinforcement (Ai) was roughly 25 percent of the total compressive and
,

tensile reinforcement areas (As + As). Intermediate reinforcement, shown

as dashed lines in Fig. 3.28, extended a distance of twice the effective

depth plus a development length of 12 bar diameters. Axial load (Pa) on

columns was 40 kips for group I specimens and 100 kips for group II speci­

mens. Axial load affected only the stiffness characteristics of columns,

but it had no effect on inelastic behavior of connecting beams.

In modeling the inelastic behavior of specimens, only flexural and

shear deformations were considered. Analytical and experimental load

deflection curves for specimens 3 - 12 are in Figs. 3.29 through 3.38.

Specimens 1 and 2 exhibited only flexural deformations, and since they
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did not fail, they were not considered in this study. The loading scheme

consisted of six cycles of displacement ductility four in positive direc­

tion and ductility three in negative direction. If the specimen sur­

vived these loads, then more cycles of higher ductilities were also ap­

plied. Pinching behavior due to high shear forces and slippage may be

observed in all of the specimens that were considered. Also, loss of

strength is seen in all of the experimental curves. Most specimens in

this experiment showed a gradual loss of load-carrying capacity, which

finally led to their Ultimate failure. However, failure in specimens 9

and 10 were more abrupt. Specimens 11 and 12 exhibited very drastic re­

duction in their load-carrying capacity after only a few CYcles-of in­

elastic rotations. This is in part due to very high shear forces acting

on these two beams.

Table 3.2 is a comparison of dissipated energies measured in each

test from the load-deflection curve and normalized values of energy com­

puted from analytical models. Both of these values represent the energy

loss in beams through flexural and shear deformations up to the theoret­

ical failure point. There is very good agreement between the two values

for Group I specimens, but results for Group II specimens differ by as

much as 30 percent. This is mainly due to the fact that computed yield

moments are lower than experimental yield values. Analytical yield dis­

placements were all much lower than actual yield displacements, which means

that computed ductility values are very high (specimen S3-S12 in Table 3.3).

Overall match between the inelastic behavior of specimens and analytical

results is good. As mentioned before, computed ductility values are always

very sensitive to the modeling of the elastic stiffness of a member. On
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the other hand, inelastic behavior of reinforced concrete members is

rather insensitive to their elastic stiffnesses. A comparison of energy

dissipation and flexural damage ratio for this set of experiments with

the rest of the sample (Table 3.3) shows that these specimens dissipated

less energy, but their flexural damage ratios were higher. High values

of flexural damage ratio are a direct result of high ductilities and

strength degradation in these specimens.

Results of these tests showed that intermediate longitudinal rein­

forcement increased the energy dissipation capacity of beams. This was

partly due to better confinement of the concrete core by placing vertical

ties around intermediate reinforcement. Intermediate reinforcement also

improved the crack distribution in members, which also led to increased

energy dissipation. Although such effects are not directly considered

in analytical models, they are considered when failure of a member is mod­

eled in a probabilistic sense. Buckling of compressive reinforcement was

a significant factor in failure of these specimens. This again supports

the idea that analytical models follow the behavior of the member until

an unexpected event, such as buckling of compressive reinforcement, ini­

tiates the failure. This is described in more detail in the next chapter,

where a stochastic model of excessive damage is presented.

h) Viwathanatepa, Popov, Bertero

These tests were designed to investigate differences in the behavior

of reinforced concrete members in virgin state with repaired specimens

(57). Two identical subassemblages, representing half-scale models of a

section in the third floor of a 20-story building, were cast (Fig. 3.39).

Beam sections were 9 x 16 inches and column sections were 17 x 17 inches.
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Beams were reinforced with four #6 bars at top and three #5 bars at bot­

tom, and columns were reinforced with twelve #6 bars at top and bottom

(G60). Since the purpose of the present work is to study damage in mem­

bers when they are first subjected to earthquake loads, the repa-fred
I

specimen was not included in the sample. Concrete strength (fc ) for the

virgin specimen (Specimen BC3) was 4500 psi.

Test procedure consisted of first applying an axial load of 470 kips

to columns, and then subjecting lower columns to displacement reversals

(Fig. 3.39). Columns were modeled using the Single Component Model, and

beams were modeled using the extended Non-Symmetric Single Component Model

(Section 2.3c). Fixed end rotation due to slippage was considered only

for the beams. Experimental and analytical load-deflection curves appeartn

Fiqure 3.40. The P-8 effect is clearly seen in both curves. Only beams

had any inelastic behavior--the columns stayed elastic. Rotation ductil­

ity (~e) measured along the first nine inches of the beam adjacent to the

joint was 8, which is higher than ~e = 7.1 computed in the analysis.

Pull-out stiffness for slippage mechanism was measured to be 2.58 x 105

and is in good agreement with computed value of 4.8 x 105 when one con­

siders uncertainties in the slippage model. Total energy dissipated in

the experiment was 400 k-in or 110 when normalized. This is in good

agreement with the computed normalized energy (84 for specimen VBC3 in

Table 3.3), which is calculated up to the theoretical failure point.

There is rather poor aqreement between yield loads and qeneral shape of

the hysteresis load-deflection curve (Fiq. 3.40).
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3.3 Overall Comparison of Experimental and Analytical Results

Using the analytical models described in Chapter II, a total of 32

static cyclic load tests from eight sets of experiments were analyzed.

Damage indicators, such as ductility, were computed for each specimen.

All of the computed damage indicators are listed in Table 3.3. Since

inelastic flexural and shear springs in a member act independently (see

Chapter II), it is possible to isolate each one in an experiment. Fig­

ures 3.41 (a) anrl 3.41 (b) show analytical flexural and shear hysteresis

loops for specimen R5 in the experiment by Ma, Bertero, and Popov (Sec­

tion 3.2e). Figure 3.41 (c) is a plot of energy dissipation in flexure

versus normalized cumulative rotation for the same specimen. These plots

were produced for all specimens in the sample. Examination of energy

dissipation plots showed that there is a nearly linear relationship in

every case.

From the foregoing discussions of each test, it is apparent that

the Single Component Model is accurate in predicting inelastic deforma­

tions of reinforced concrete specimens. The match between experimental

and analytical results is especially good when flexural deformations are

dominant. Although it is more difficult to model shear and slippage

deformations in a reinforced concrete member, using the models described

in Chapter II it was possible to obtain good prediction of inelastic

behavior of members with high shear and slippage. On the other hand, some

of the damage indicators could not be computed accurately. This is es­

pecially true for peak rotational ductility and peak curvature ductility.

Since the definition of peak curvature ductility is based on inelastic

deformation of a section, it is not suitable for the Single Component Model.
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Computed peak rotational ductilities were always higher than exper­

imental rotational ductilities because computed elastic stiffnesses of

members were always higher than their actual elastic stiffnesses. Com­

parison of other computed damage indicators with experimental results

showed that dissipated energies and flexural damage ratios were accurate.

Although peak rotational ductility is the most widely used parameter in

practice, in view of the fact that it can not be accurately computed its

use as a damage indicator is seriously questioned. Based on the results,

flexural damage ratio seems to be a good substitute for peak ductility.

These issues are discussed in more detail in the next chapter, where ~

stochastic model of damage based on damage indicators is developed.
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* **
Specimen Curvature Rotation Energy

Ducti1 ity (11</) Ductility (116) Kip-In. Normalized

R1 8.3 4.3 335 123

R2 8.5 4.9 267 98

R3 8.3 4.9 583 215

R4 14.7 7.2 336 122

R5 10.5 4.4 349 160

R6 9.3 4.4 738 206

Tl 8.6 4.1 519 181

T2 20.2 5.5 234 81

T3 11.2 4.2 803 222

* Average value over d/2 from beam support.

** 0max/Oy in the strong direction = 118 in the strong direction.

Table 3.1 - Experimental Values of Ductility and Energy for
Specimens in the Test by Ma-Bertero-Popov (38).
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Experimental
Specimen Analytical

Kip-In. Normalized

3 168 179 158

4 408 381 325

5 217 456 415

6 260 490 441

7 262 285 240

8 291 260 245

9 1267 290 197

10 1358 294 197

11 723 210 146

12 792 215 140

Table 3.2 - Comparison of Experimental and Analytical Energy
Dissipations for the Tests by Scribner-Wight (52).
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CHAPTER IV - STOCHASTIC MODELING OF DAMAGE

4.1 Introduction

Previous chapters have focused on the modeling of reinforced concrete

members using data from laboratory experiments. While the models are be­

lieved to be accurate up to small levels of damage, they become inaccur­

ate as damage increases. Ordinarily, there is a level of damage beyond

which the strength of the member is drastically reduced. We refer to this

point as the "failure point" in this study. The goal of the present chap­

ter is to calculate the probability that a member has reached such a fail­

ure point as a consequence of a certain amount of inelastic action. For

this purpose, the experimental results are examined again to determine

which set of damage parameters is the most indicative of the state of

failure or survival of a member. A stochastic model of failure based on

knowledge of these parameters are then developed.

4.2 Damage Parameters

The damage parameters which are listed below have been previously

defined in Chapter II (Section 2.7). The present discussion is intended

to describe the basis for choosing energy dissipation and damage ratio as

the only parameters of the stochastic failure model.

Peak Rotation Ductility. This parameter is the one used most frequently

as an indicator of damage. However, peak rotation ductility alone does

not seem to be a good indicator of damage. For example, there are cases

in which members fail after a large number of cycles at low ductility

level. It should also be noted that peak rotation ductility conveys
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information on inelastic rotation but not on strength. From comparison

of experimental peak ductilities with analytical peak ductilities (Chap­

ter III), it was observed that there is usually a very poor match between

these two quantities. The reason is that the elastic stiffness of the

analytical model was always higher than the initial stiffness of the

actual member. On the other hand, the hysteretic behavior of the members

was insensitive to this stiffness parameter.

Curvature (Moment) Ductility. The definition is based on a bilinear mom­

ent-curvature diagram (see Chapter II) which is inaccurate after the mem­

ber has undergone a few inelastic cycles. The bilinear moment-curvature

assumption may be relaxed, but then the Single Component Model cannot be

used. Also, curvature ductility applies only to the member section with

highest inelastic rotation, and provides no information about inelastic

rotation along the member length. Therefore, it was decided not to use

this parameter in the model.

Dissipated Energy. In this study, dissipated energy has been normalized

with respect to the peak elastic energy that can be stored in the member

while it is under antisymmetric bending. (Section 2.7). Although normal­

ized dissipated energy is a good indicator of damage, it could be comple­

mented with some other parameter. It is true, for example, that dissi­

pated energy increases with the number of inelastic cycles, but members

often fail due to a large rotation ductility even if very little energy

is dissipated. Computed values of dissipated energy for the experiments

(Chapter III) compare very favorably with analytical results.
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Cumulative Plastic Rotation. A normalized value of cumulative plastic

rotation as defined in Section 2.7 is used here. Figure 4.1 shows the

relationship between this parameter and normalized energy for members

tested in the laboratory. The high correlation (0.98) between these two

parameters (to some degree due to the models of inelastic behavior) is

not unexpected and indicates that one of the two parameters is redundant.

In modeling failure, normalized dissipated enery has been retained, and

cumulative plastic rotation has been deleted.
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Flexural Damage Ratio (defined in Chapter II, Section 2.7), depends both

on peak inelastic rotation and on strength deterioration of a member. If

one uses flexural stiffness of the member as a normalizing factor, then

flexural damage ratio becomes independent of elastic stiffness. It is

convenient to perform such a normalization because it is difficult to

determine the elastic stiffness of a member with good accuracy. The advan­

tage of using flexural damage ratio in place of peak rotation ductility

is that the former parameter reflects strength degradation of the member.

All the above damage parameters are given in Table 3.3 for members

tested in the laboratoy. The last two columns give the ratios T/ vf~ and

Pa/Pb: the former is the ratio of peak shear stress divided by concrete

strength, and the latter is the ratio between axial load and the balanced

point axial load. Data on shear stress was found to be inconclusive. For

example, some members were able to dissipate large amounts of energy and

attain high ductility levels even though they were subjected to high shear

stresses (an indication of high overall strength). Although it is possi-

ble to fail members in shear, the frequent failure mode is a combination

of flexure and shear. The assumption made here is that all members are

designed to carry the ultimate shear load. Finally, data on axial load

indicates that both energy dissipation capacity and flexural damage ratio

decrease as the axial load in members increase. In spite of this trend

and due to the small size of the sample (only five members tested with

axial load), it was decided not to model this effect.

On the basis of the foregoing considerations, flexural damage ratio

and normalized energy dissipation are chosen as the best pair of damage
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indicators. Should one desire to include other parameters, the probabil­

istic models can be easily modified for that purpose.

4.3 Regression Model

Figure 4.2 displays all experimental failure data on a plane where the

horizontal axis (0,) is flexural damage ratio and the vertical axis (02)

is normalized energy. Each point is the terminal point of a damage trajec­

tory on the 0102 plane. Trajectories start at (01 = 1, 02 = 0) and are
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FIG. 4.2 - SAMPLE FAILURE POINTS ON THE 0102 PLANE



134

such that 01 and D2 are non-decreasing functions of time. The trajectory

is essentially controlled by the imposed displacement cycles, with some

erraticity due to peculiarities of member and section properties. For

each trajectory, one may define a failure indicator function Z(Dl ,02)' as

Z(01,02) = a if failure has not yet occurred at point (01'02) and Z(01,02)

= 1 otherwise. In laboratory experiments, the trajectory can be traced

only until Z first attains value 1. The two axes in figure 4.2 are scaled

such that one unit of damage ratio corresponds to thirty units of energy.

Most of the experimental failure points lie in the lower part of the fig­

ure, indicating that the sample does not include high-cycle fatigue exper­

iments. Indeed, the purpose of the experiments was to produce failures

at high levels of ductility, a condition that seems realistic in an earth­

quake environment. As a consequence, any extrapolation of the models

described in this study to high-cycle fatigue (e.g., from wind or sea-wave

loads) should be made with caution.

Within the present limitations on loading and failure paths, figure

4.3 represents a rather wide variety of cases. Specimen 8 in the experi­

ment by Atalay and Penzien (AS) failed under high flexural and axial loads.

Specimen R5 in the experiment by Ma, Bertero and Popov (38) was subjected

to high shear and flexure. Specimen R4 in the same experiment was failed

under flexure in just one cycle. Finally, specimen 43 in the experiment

by Popov, Bertero, and Krawinkler (P43) failed in flexure after many

cycles at increasing ductility levels. After examination of many experi­

mental damage trajectories, and for the purpose of simplifying the analyt­

ical probabilistic model, it was decided to approximate each trajectory

by a parabola of the type
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(4.1)

in which c is a constant parameter. An alternative representation of each

failure point is in terms of Xl = c and X2 =length of the parabolic path,

which is given by

X = JDf I d02 + d02 dOl
2 1 1 2

(4.2)

where Of = value of 01 at failure. Figure 4.4 shows the distribution
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of the experimental failure points on the X1X2 plane. For small values

of X2, the length of the failure path (X2) is not sensitive to Xl. There­

fore, for early failures, the distribution of distance to failure seem$

to be independent of path direction. On the other hand, the upper tail

of the distribution of X2 is sensitive to Xl. For example, if one ex­

cludes all values of X2 smaller than 10 and runs a regression of X2 on Xl'

one finds

X2 = 12.95 + 9.35 Xl (4.3)

The above regression is based on 21 data points. A regression with all

values of X2 larger than 13.0 gives
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X2 = 13.02 + 58.59 Xl (4.4)

The significance of the rapid increase in the coefficient of Xl from

Eq. (4.3) to Eq. (4.4) is that for longer damage paths, X2 is more depend­

ent on path direction. The positive value of the coefficient of Xl also

indicates that for a given length of damage path, the probability of fail­

ure is higher for high values of damage ratio than for high values of

energy dissipation. This trend is clearly displayed by the experimental

failure points in figure 4.2.

4.4 Stochastic Models of Damage

a) First fv10del

As mentioned earl ier, the failure points in figure 4.2 mark the loca­

tion of realizations of the damage process (Z) jump from value 0 to value 1.

Let s denote distance along the damage path, and denote by FS(s) the cumu­

lative distribution function (CDF) of distance to failure. If fS(s) is

the probability density function (PDF) of s along a given damage path, then

the IIhazard functionll (conditional failure rate) along that same path is

defined as
(4.5)

Inversely, given AS' the CDF of s can be found from

In general, AS depends not only on the point D = [~~J on the damage plane,

but also on the local direction of the damage path and on the previous
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trajectory. Fitting a nonparametric model to AS is clearly not possible

because of too limited experimental data. However, one can restrict the

family of functions AS by making parametric assumptions. First, we assume

that, scaling the damage axesasinfigure. 4.2,A S depends only on Q. and not

on path direction or past trajectory. Then with d and r as shown in f{gure

4.5 we generate models by making different assumptions about the form of

AS(Q). Specifically, the first and simplest assumption is that the hazard

function does not depend on r; hence that ;\:s(Q) =As{d). This can be done·

by projecting the failure points on the 45° line shown in Fig. 4.5 and by

then fitting a distribution to the projections.

~__-==:::"__-7',--- D2

FIG. 4.5 - DEFINITIONS OF d AND r FOR HAZARD FUNCTION, AS(Q)
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Figure 4.6 shows the histogram of the projections. It may be noted

that the minimin possible value of any projection is 12/2, which corres­

ponds to the point at which all damage paths start. It has been judged

desirable that the hazard function be an increasing function, i.e., that

the conditional probability of failure given that a member has not failed

increases as damage accumulates. A distribution model which satisfies

this property and also fits well the data is the Extreme Type III with CDF,

(4.7}
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and parameters u and k. Taking twice the logarithm of both sides of Eq.

(4.7) yields

Ln {- Ln [1 - Fo(d)J} = k Ln (d - 12/2) - k Ln (u - 12/2) (4.8)

The fitting of figure 4,7 refers to the last representation of the Extreme

Type III distribution and gives k = 2.60 and u = 12.73. The associated

hazard function has the form (20)

= k (d - 12/2)k-l
(u - 12/2)k

(4.9)
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(See Fig. 4.8). Using this result, contours of equal probability of fail­

ure in the damage plane are shown in figure 4.9.
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FIG. 4.8 - HAZARD FUNCTION FOR THE EXTREME TYPE III
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b) Second Model

Assuming that the hazard function does not depend on r (see Fig. 4.5),

results in erroneous calculation for the probability of failure if the

stochastic process Z(O,l) is path dependent. The regression analysis ln

Section 4.3 suggests that this is in fact the case. In the model devel-

oped next, we retain the assumption that damage paths are parabolic and

that the hazard function does not depend on the direction of the damage
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trajectory point. However, we assume that AS depends on both d and r in

a multiplicative way:

(4.10)

To be consistent with the first method, As(d) is taken to be the hazard

function of the Type III Distribution, (Eq.(4.9)). and AS(r) is parame­

trized as follows

Hence, for a = 0 this model reduces to that studied previously. The

probability density function of the location of failure is now
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f 5(sla) = exp [- I: \(i;la)d;;] ).5(sla) (4.12)

where integration is along a given path in the damage plane.

If the method of maximum likelihood is used to estimate the parameter

a, one needs to maximize the quantity

In general, also the distribution parameters k and u may be estimated by

the method of maximum likelihood. However, for the purpose of comparison,

k and u are here fixed to the values found previously. The likelihood,

now reduced to a function only of a, is shown in figure 4.10. The best
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estimate of a is 0.07, and using this value one finds the contours of equal

orobabilitv of failure in figure 4.11. Comparison with fiqure 4.9 shows

that the present contours penalize higher flexural damage ratios. This

characteristic of the present model is consistent with previous conclu­

sions in Section 4.3, where damage ratio was found to be more important

than energy in the case of long failure paths. In other words, the failure

path is expected to be longer if the member is dissipating energy rather

than undergoing higher ductility levels. Contours of the type in figure

4.11 can be used to estimate the probability of section failures in non­

linear dynamic analysis of reinforced concrete frames.
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c) Bayesian Approach

The likelihood of figure 4.10 is a rather flat function of a, indicat­

ing that the maximum likelihood estimator is affected by large statistical

uncertainty. A way to account for this uncertainty is by using a Bayesian

procedure which treats a as a random variable. If a has prior noninforma­

tive flat distribution, then the posterior density is proportional to the

likelihood function. From figure 4.10, one can see that in the neighbour­

hood of 0.07, the likelihood function behaves like a normal density func­

tion of the type
1 a - rna 2

fA(a) = l_exp [-2 ( 0
a

)]
0 a/27T

(4.1 4)

The mean (rna) and the standard deviation (0a ) were found to be approxi­

mately 0.07 and 0.127. The posterior Bayesian distribution of the dis­

tance to failure along a given path can be found from the total probabi1-

ity theorem, which gives

(4.15)
-00

In order to investigate sensitivity to uncertainty in a, 9 points with

probability of failure according to maximum likelihood FS (sla=O.07) =

0.1,0.5, and 0.9 were chosen and their Bayesian failure probabilities

were calculated using Eq. (4.15). Table 4.1 summarizes the results. Points

2,5 and 8 are on the damage path where ~s is not a function of a (Fig.

4.5); therefore Bayesian and maximum likelihood results are the same in

these cases. Figures 4.12 a, b, and c show the conditional CDF of fail­

ure, FS(sla) as a function of parameter a, for the points, with maximum

likelihood failure probabilities of 0.1, 0.5, and 0.9, respectively. The
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curves show that if one uses the Bayesian approach one should expect an

increase of failure probabilities over the maximum likelihood values if

Fs(sla) is less than or equal to 0.5. However, for higher values of

Fs(sla), Bayesian failure probabilities are expected to be smaller than

the associated maximum likelihood probabilities. Overall, one may con­

clude that the probability of failure is not sensitive to uncertainty

in a. This means that the maximum likelihood procedure may be employed

with good accuracy.
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Point Damage Ratio Energy FS(si a) FS(s)

1 7.0 27.8 0.10 0.10

2 6.1 60.2 0.10 0.10

3 4.8 111.4 0.10 0.104

4 11.9 90.5 0.50 0.513

5 9.8 177 .3 0.50 0.50·

6 7.2 299.9 0.50 0.516

7 14.9 245.7 0.90 0.896

8 13.2 340.6 0.90 0.90

9 10.4 493.5 0.90 0.878

TABLE 4.1 - MAXIMUM LIKELIHOOD PROBABILITIES OF FAILURE AND BAYESIAN
PROBABILITIES OF FAILURE FOR 9 SELECTED POINTS
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CHAPTER V - APPLICATION OF METHODS TO INELASTIC DYNAMIC
ANALYSIS OF FRAMES

5.1 Introduction

A methodology for computing probabilities of member failure under

inelastic load cycles is developed in Chapter IV. Applications of the

model to inelastic dynamic analysis of building frames is discussed in

this chapter. A 4-story and an 8-story building frame were chosen, and

inelastic dynamic analyses of these frames under several different earth­

quake motions were carried out. Probabilities of local failure were com­

puted for each case, and a method is also developed to compute the relia­

bility of the system.

5.2 Design of Building Frames in Accordance withU.B.C. Specifications

The two building frames which are extensively analyzed in this chap­

ter were designed by Lau(35). These are a 4-story frame and an a-story

frame designed according to the Uniform Building Code [1973 version].

Base shear for each frame is calculated by

where

V = ZKCW

V = the total base shear

(5.1)

Z = seismic coefficient depending on site. This parameter
is taken as 1 (lone 3) in these designs.

K= seismic coefficient depending on the type of structure.
K= 0.67 (moment-resisting frame) is used here.

C = 0.05 where T is the fundamental period of the structure.
~

W= total weight.
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Elevation and plan views of the two frames appear in figures 5.1 and 5.2.

Once the base shear is calculated, it is distributed along the height, assum­

ing a linear variation. In the 4-story frame, all girders have 12 11 x 20"

sections, and all columns have 12" x 18" sections. All girders in the 8­

story frame have 12" x 22" cross sections. Columns in the first three

stories of the 8-story frame have 12" x 25"sections,and all other columns

have 12" x 22" sections. A dead load of 120 psf is assumed for both frames;

live loads for these frames were 40 psf for the 4-story frame and 50 psf for

the 8-story frame. For dynamic analysis, 100 percent of dead load and 25

percent of live load were put on each floor.

Yield moment capacities of beams and columns for these frames are

listed in Tables 5.1 and 5.2. Concrete strengths for both frames is 4000

psi. Since detailed member designs were not carried out, it was assumed

that all beams and columns have equal stiffnesses in positive and negative

loading directions. Furthermore, the effective stiffness of each beam and

column is taken to be 45 percent and 60 percent of elastic stiffnesses,

respectively. Using these assumptions, natural periods of the 4-story

and 8-story frames were found to be 0.86 seconds and 2.0 seconds, respec­

tively.

5.3 Prediction of Local Damage in Building Frames

A building frame which is designed according to seismic codes is ex­

pected to withstand moderate earthquakes without substantial damage. It

is not only desirable to spread the damage in a reinforced concrete frame

throughout the members, but also catastrophic failure of columns must be

prevented. Damage prediction models developed in this study may be used to

assess the overall safety of a building under a given earthquake.
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Figure 5.3 shows the hinges formed in the 4-story frame when it is

subjected to the El Centro earthquake (Peak Acceleration = 0.35g). The

number on each hinge indicates the probability of local failure in accord­

ance with the second model presented in Chapter IV. For practical reasons,

all probabilities less than 0.01 are omitted, because they are too small

to be significant. Only one of the base columns and all three girders on

the first floor exhibit appreciable damaqe. Figures 5.4a,b show the dam­

age paths for one of the base columns and one of the girders on the 0,°2
plane. It may be noted that far less energy was dissipated in these mem­

bers compared to experimental cyclic load tests. Thus, most of the hazard

0.01

0.03 0.01 0.07 0.05 0.02 0.02
~ v IV ~

.~ 'y
,

Fig. 5.3 - Member Failure Probabilities for El Centro Earthquake
(Peak Acceleration = 0.35g)
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in local failures is due to damage ratio. If the same building frame is

subjected to the Kern County (Olympia) earthquake scaled"up to the same

peak acceleration, only one of the girders is damaged (Fig. 5.5). How­

ever, if the same earthquake motion is scaled up to a peak acceleration

of 0.59, damage spreads over all the structure (Fig. 5.6). Figures 5.7a,b

show the damage paths for two of the girders.

Local failure probabilities for the 8-story frame subjected to El

Centro (Peak Acceleration = 0,35g) are shown in figures 5~8a,b. In this

case there is a concentration of damage in stories 6 and 7. The reason

is that the second mode of this frame is important when it is subjected

to earthquake motions. Also, much higher probabilities of local failure

are observed in the columns compared to the 4-story frame, which is not

a desirable feature. Damage paths for one of the columns and one of the

girders of this frame are shown in figures 5.9a,b.

5.4 System Reliability under Seismic Loads

If the probability of failure of each member of a system subjected

to a given earthquake is known, then it is possible to calculate bounds

on the probability Ps that all members will survive. If member resist­

ances are independent, then the events (failure/survival) of various

members are also independent and the probability that no failure occurs

is simply

pL = 1]: (l - P.)s 1 1
(5.2)

in which Pi = failure probability for the i th member. On the other hand,

for perfectly dependent member resistances, the reliability of the frame
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equals the probability that the most-loaded member survives. This proba­

bility is

P~ =Min (1 - Pi).

LIn practice, one may take Ps and P~ as lower and upper bounds to Ps ' be-

cause in general member resistances display positive but not perfect de-

pendence.

A model is developed next to calculate system reliability in the inter­

mediate case of partial dependence. Using the first model of local fail­

ure in Chapter IV, the coordinate (d) of the failure point on the 0102

plane can be taken to have the Extreme Type III distribution (Eq. 4.7).

In order to introduce dependence between the values of d for different

members, it is assumed here that the mean value of di is uncertain but

identical for all i. It is further assumed that the mean value mdhas

Extreme Type III distribution and, given md, the conditional quantities

(dllmd), (d2Imd) ... (dnlmd) are independent, identical, Extreme Type III

variables. Specifically, let md have mean m and variance a2p and let

dilmd have mean md and variance a2(1 -pl. The parameters m and a2 are

the mean value and the variance of the marginal distribution of d, as

determined in Chapter IV. Quantity p measures the degree of dependence:

in the extreme cases when p = a and p = 1 the resistances di have the

same marginal distribution as d in Chapter IV (Extreme Type III) and are

mutually independent and perfectly dependent respectively.

It is easy to show that p has indeed the meaning of correlation coef­

ficient between any pair of resistances di,d j , and that for any value

of p, the marginal distributions of di have mean m and variance a
2

• In

fact
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E[d i ] = E 1 E [d;]J = E [md] = m
md di Imd md

t:[d~] E 1 E [d~]J
2 2 2 2= = E [md + a (l-p)] = m + a

md di Imd md

(5.4a)

(5.4b)

E[d.d.] = E
1 J md

(5.4c)

Uncertainty in the parameter md may reflect physical variability in

material properties; it is not unrealistic to assume that these factors

affect the resistance of all structural members in the same way. The

only unsatisfactory feature of the present model is that for prO, 1

the marginal distribution of di is not exactly Extreme Type III. On the

other hand, available multivariate extreme models which preserve the

marginal distribution are difficult to work with and express types of

dependence among the di which are not compatible with the physical prob­

lem. According to the present model, survival of all members occurs with

probability Ps ' where

(5.5)

where ~i is the length of damage path along d for member i, as measured

in the inelastic dynamic analysis. Figures 5.10 and 5.11 show the system

reliability as a function of the correlation coefficient for the 4-story

frame subjected to El Centro (Peak Acceleration = 0.35g) and Kern County
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(Peak Acceleration = 0.5g) earthquakes. Figure 5.12 is a sketch of

system reliability for the 8-story frame subjected to the El-Centro

earthquake. It may be noted that system reHabi 1ity for the first two

cases shows a decreasing trend for lower correlations. This is in part

due to the fact that the marginal distribution of di is not Extreme Type

III for intermediate cases. Although this effect is not investigated,

tentatively the curve may be assumed to be linear. This means that

integration is avoided and reliability of the system is easily calculated.
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5.5 Comparison of the Damage Model with Conventional Ductility Factors

Ductility demand has been the most widely used measure of damage

in structures. One shortcoming of ductility as a damage indicator is

that it is at best a qualitative measure. The second problem with peak

ductility is that it could not always be accurately calculated in an in­

elastic dynamic analysis. Computed ductilities for the laboratory tests

of members in Chapter III are much higher than actual peak ductilities

measured in experiments. This is one reason why peak ductil ities in tneorder

of 10 or 15 may sometimes be computed in an inelastic dynamic analysis,

and it is virtually impossible to achieve these high ductilities in lab­

oratory tests of members.

Figure 5.13 shows ductility demand envelopes of the 4-story frame
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subjected to three different input motions. It may be noted that duc­

tility demands for the El Centro earthquake and the Kern County earth­

quake with peak acceleration scaled to 0.5g are comparable. On the other

hand, much lower ductilities are observed in the third case (Kern County,

Peak Acceleration ~ 0.35g). This figure may be compared with Figs. 5.3,

5.5 and 5.6, where local failure probabilities for critical members are

shown. Although peak ductilities are comparable for girders and columns

for each input motion, much higher failure probabilities are observed in

the girders. As was mentioned before, not much energy is dissipated in

these members compared to laboratory tests; thus most of the hazard in

failure of members is due to damage ratio. This is the reason why the

ductility demand envelope is a rather good predictor of concentration of

damage in this case. However, if dissipated energy proves to be impor­

tant in an earthquake, e.g., if the earthquake is a long duration station­

ary motion, then the ductility demand would be less effective in predict­

ing damage. Figure 5.14 is a sketch of peak ductility envelopes for col­

umns and girders in the 8-story building frame subjected to the E1 Centro

earthquake. Again, comparison of this figure with Fig. 5.8 reveals that

there is no clear relationship between ductility demands and probabili­

ties of failure for the members. Although this investigation is not thor­

ough, it seems to indicate that using ductility as a measure of damage

would result in erroneous conclusions, i.e., two members with the same

ductility demands do not necessarily have the same probability of failure.
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Column Beam
Story Level

Exterior Interior Edge Interior

+ 1600 + 2000 + 2400 + 1800
1

- 1600 - 2000 - 1200 - 900

+ 1900 + 2000 + 2400 + 1800
2

- 1900 - 2000 - 1200 - 900

+ 1400 + 2000 + 2400 + 1800
3

- 1400 - 2000 - 1200 - 900

+ 2100 + 2900 + 1800 + 1300
4

- 2100 - 2900 - 900 - 650

Table 5.1 - Yield Moment Capacities of the
4-Story Frame Members
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Column Beam
Story Level

Exterior Interior Edge Interior

+ 6200 + 5900 + 3600 3600
1

- 6200 - 5900 - 1800 - 1800

+ 5300 + 4000 + 3700 3700
2

- 5300 - 4000 - 1850 - 1850

+ 4000 + 3300 + 3700 + 3700
3

- 4000 - 3399 - 1850 - 1850

+ 4000 + 3300 + 3600 + 3400
4

- 4000 - 3300 - 1800 - 1700

+ 3000 - 3000 + 3400 - 3200
5

- 3000 - 3000 - 1700 - 1600

+ 2500 + 3000 + 3200 + 3000
6

- 2500 - 3000 - 1600 - 1500

+ 2000 + 2600 + 3000 + 2700
7

- 2000 - 2600 - 1500 - 1350

+ 2500 + 3600 + 2000 + -2000
8

- 2500 - 3600 - 1000 - 1000

Table 5.2 - Yield Moment Capacities of the
8-Story Frame Members
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CHAPTER VI - CONCLUSIONS AND RECOMMENDATIONS

This work is a first attempt to develop a rigorous model of damage

in reinforced concrete structures by integrating the reliability analysis

with relatively conventional inelastic analysis. The model that is pre­

sented is based on actual laboratory tests of members and subassemblages

chosen to represent realistic behavior of frames under earthquake loads.

A uniform method of measuring damage is defined for all experiments, and

damage indicators other than the conventionally used peak ductility are

used to set up a stochastic model of damage. One advantage of this model

is that it could easily be implemented in conventional inelastic dynamic

analysis of reinforced concrete frames. Since the model is based on

laboratory results, it is also expected to be accurate in predicting dam­

age for individual members.

The mechanical model used in this work is the Single Component Model,

in which all inelastic rotations along the member length are concentrated

at its two end sections. Independent inelastic springs at the two ends

of a beam element represent contributions of flexure, shear, and slippage

to total member deformations. Flexural inelastic springs are assumed to

follow a modified version of the Takeda model (54). The model of inelas­

tic shear deformations is that originally proposed by Kustu (32), and it

is based on physical characteristics of opening and closing of inclined

shear cracks at member ends. Loss of bond between steel and concrete in

the joint results in member free-body rotations which are known as slip­

page rotations. A model for slippage in reinforced concrete members is

suggested here. It may be noted that inelastic deformations in shear and

slippage are assumed to have the same hysteretic behavior. This inelastic
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model is used to study a total of 32 laboratory tests of members and

subassemblates from eight different sets of experiments. Although the

sample is rather small, it represents a wide variety of loading condi­

tions. Most of the members were failed under a combination of high flex­

ural and shear loads. Five specimens in the sample were failed under

combinations of flexural, shear, and axial loads. Each test is carefully

chosen, so that they represent the realistic behavior of reinforced con­

crete buildings under earthquake loads. All. specimens in the sample are

large-scale specimens, and they were all tested to failure.

Comparison of experimental and analytical load-deflection curves

show that the Single Component Model is indeed suitable for modeling in­

elastic behavior of reinforced concrete members. The match between exper­

imental and analytical results is especially good when flexural deforma­

tions are dominant. In other studies also, the Takeda model has proved

to be accurate in modeling inelastic flexural deformations of reinforced

concrete members. However, the Takeda model does not reproduce the

pinched behavior which is observed when high shear loads or slippage are

present. Although inelastic models of shear and slippage are based on

many assumptions, they proved to be successful in predicting the hystere­

tic behavior of laboratory tests in most cases. Interaction among flex­

ure, shear, and slippage and the P-O effect adds appreciably to the com­

plexity of the physical problem, and makes the modeling more difficult.

Overall, there is good agreement between experimental and analytical load­

deflection curves. In light of the fact that inelastic models must also

be practical for engineering practice, the use of the Single Component

Model is recommended.
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Member failure in this work is defined by setting a lower limit on

the load-carrying capacity of a member. Although the definition is rather

arbitrary, it is very useful in practice: i.e., the member behavior is of

no interest if it does not contribute much to the overall stiffness. Vari­

ous indicators of damage such as ductility, dissipated energy, and damage

ratio were computed for each laboratory test. Although there is good

agreement between load-deflection curves, computed peak ductilities are

found to be much higher than measured peak ductilities in each experiment.

On the other hand, computed dissipated energies are in good agreement with

experimental results. Flexural damage ratio is defined as the ratio of

elastic flexural stiffness to reduced secant stiffness. Since flexural

damage ratio also accounts for strength deterioration, it is found to be

a good substitute for peak ductility.

A stochastic model of damage using damage ratio and dissipated energy

as a pair of damage indices is developed. Assuming that the conditional

rate of failure (hazard function) on the plane of damage ratio-dissipated

energy is known, and also knowing the exact path that the process follows

on this plane, one can compute the probability of failure at each point

on this plane. Next, a parametric form of the hazard function is assumed

and, using the results of laboratory experiments, the model parameters are

computed. It is obvious that the suggested multivariate probability model

has many advantages over a univariate model. Dissipated energy in a rein­

forced concrete member is a useful measure of cumulative damage, and dam­

age ratio is an indication of damage which is due to large deformations.

If a large sample is available, more damage indicators may be included in

the model. However, as the number of damage indices increases, the damage
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model becomes more complicated and more difficult to work with. Curves

showing contours of equal probability of failure on the plane of dissi­

pated energy-damage ratio are presented. Thus, by computing dissipated

energy and damage ratio for a reinforced concrete member, the probability

of member failure can be easily estimated.

The model of damage can be easily implemented in conventional in­

elastic dynamic analysis of frames. A 4-story and an 8-story building

frame, designed according to the UBC Code, are selected. These building

frames are subjected to several earthquake motions, and probabilities of

member failure for each case are computed. A model to evaluate system

reliability is also presented. This model has the advantage that one can

account for correlation between member resistances. Although the main

purpose of the inelastic dynamic analysis has been to show the applica­

tion of damage model in conventional analysis of building frames, some

general conclusions may be drawn. Comparison of peak ductility demands

with probabilities of member failure shows that there is no clear rela­

tionship between ducUl1ty demands lind probabilities of member failure.

The 4-story frame, when subjected to the El Centro earthquake, exhibits

moderate damage. On the other hand, when the same frame is subjected to

the Kern County (Olympia) earthquake scaled up to the same peak ground

acceleration (0.35g), very little damage is observed. Damage spre~ds

throughout the building when the Kern County earthquake is scaled up to

0.50g. Thus the importance of input motion is clearly seen in this in­

vestigation. Since the dissipated energy accumulates throughout the

earthquake, the effect of earthquake duration on damage ;s accounted for.

The 8-story building frame is subjected to the £1 Centro earthquake, and
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it is found that the damage is concentrated in the 6th and 7th stories.

This reflects the importance of higher modes in response of taller build­

ings.

Future research in this field may be pursued in any of the following

areas:

Better mechanical models for inelastic behavior of retriforced con­
crete members may be developed. There is an especial need for re­
finement of shear and slippage models.

Definition of damage in this study is based on load-carrying capac­
ity of the member. Other definitions of damage may be investigated
in the future.

The sample of laboratory tests of reinforced concrete members and
subassemblages may be expanded. There are many more static cyclic
load tests available in the literature. A large sample would result
in better estimates of parameters of the damage model.

Several minor refinements may be applied in the stochastic models
presented in Chapter IV. For example, exact member failure paths
may be used to evaluate parameters of the hazard function.

The model of system reliability is restricted to a "ser ies" system
at the moment. One may think of applying the member failure model
in a probabilistic progressive failure model. Knowing dissipated
energy and damage ratio during each time step (6t) of the (determin­
istic) dynamic analysis, one can calculate the probability of fail­
ure in 6t of each member. Then the failure/survival event of each
member may be simulated by performing Bernoulli experiments (one for
each member). If a member is failed, the global stiffness matrix is
modified. One should repeat such an analysis a number of times to
determine the probability of total collapse Dr probability distribu­
tions of desired quantities (deformations, member end forces, time
of member failure).
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APPENDIX A - NONLINEAR BEHAVIOR OF A CANTILEVER

One of the assumptions made in the Single Component Model is that

the point of contraflexure of a member always stays at its mid-point. If

the member is under anti-symmetric bending, each half of it may be viewed

as a cantilever (Fig. 2.8). If the member has a bilinear moment-curva-
.

ture relationship (Fig. 2.5), it is possible to find tip deflections of

each half-length cnati1ever at different loads. Using slope-deflection

equations, tip deflections of the cantilever (length = ~) at yield and

ultimate conditions are

0y = t ct>y (t)2

1 9, 2
0u ="6 (2)[(1 +y)ct>y + (1- y)(2+y) ct>u]

where y is the ratio My/M u' The Single Component Model assumes that each

cantilever is an elastic element with a rotational spring at its end. The

rotational spring is initially infinitely stiff, and only becomes effect­

ive once the member yield moment is exceeded. Matching tip displacements

of the real cantilever and the model cantilever at ultimate bending mom-

ent, post-yield stiffness of the hinge is computed.

A typical load-deflection relationship for a cantilever with bilinear

moment-curvature curve is shown in figure A.l. The curve is elastic up

to the yield moment, and it has a decreasing stiffness past the yield.

Thus a bilinear assumption for a P-o curve introduces still another uncer-

tainty into the model.
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FIG. A.l - LOAD-DEFLECTION OF A CANTILEVER WITH A BILINEAR
MOMENT-CURVATURE RELATIONSHIP
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APPENDIX B - TAKEDA MODEL

This model was first proposed by Takeda (54) based on experimental

studies of reinforced concrete members. The original model has a tri­

linear primary curve for the hysteretic behavior of the member. The tri­

linear primary curve would be identified by cracking and yielding of the

member. In addition, energy could be dissipated once the yield moment is

exceeded. A simplified version of the Takeda model is used in this study.

Litton (36) implemented this element in the computer program DRAIN-2D.

The Moment-rotation relationship for the modified Takeda model is shown in

figure B.l. Hysteretic behavior of the hinge is completely defined by

eleven rules which are identified in figure B.J. The primary curve for the

model is a bilinear curve which changes slope at the point of yielding.

Two other modifications were also introduced by Litton. The first is for

stiffness degradation in the unloading part. This is shown in fiqure B.2(a).

Thus, instead of unloading with initial slope (Ko)' parameter a is used

to modify the unloading stiffness (Ku)' The second modification is for

reloading stiffness (K.Q,) and is shown fn fiqure B.2(bL Therefore, instead

of loading towards the point of maximum (B), another point, such as A

(which is set by parameter s), is aimed at. Parameter a decreases the

unloading stiffness and parameter S increases the reloading stiffness.

Values of Cl. ::: 0.3 and 8 = 0 were used throughout this study.
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FIG. B.1 - MOMENT-ROTATION HYSTERESIS CURVE FOR THE
MODIFIED TAKEDA MODEL
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FIG. B.2 - DEFINITION OF PARAMETERS a AND B FOR THE
MODIFIED TAKEDA MODEL




