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CHAPTER 1
INTRODUCTION

Wind loads are one of the principal loads acting on above ground
structures. Accurate and detailed analysis of the structures subjected
to wind effects, therefore, is important for safety, human comfort and
economy.

Until rather recently wind loads were considered as static loads.
As design practices have resulted in more slender, taller and lighter
buildings, the dynamic effect of the wind has become more important.

In recognition of this fact, Davenport introduced the concept of the
gust loadings factor through which the dynamic part of a building's
response is calculated [3]. Using the principles of random vibration
analysis, an expression for the ratio of the total response of a build-
ing to its static response was developed and was called the gust
factor. The design equivalent static wind loads were then obtained by
multiplying the static wind load by this gust factor. Significant
research has been done concerning the gust factor method over the past
twenty years [6], [34], [37]. [27]. An extensive discussion of differ-
ent approaches and the review of design codes can be found in reference
[30].

The work on the gust factor methods and the majority of the
research to develop other, more sophisticated, methods of analysis has
been directed toward predicting the expected maximum along-wind
translational response of structures due to buffeting by atmospheric

turbulence. Many buildings designed and constructed, however, are not
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perfectly symmetric. Thus, under the influence of dynamic wind loads
they would vibrate in three directions, along-wind, -cross-wind and
torsional, and not just in the along-wind direction. Torsional
vibration of a building would clearly develop in a structure whose
center of mass and center of resistance do not coincide at every point
along the height. They should also be expected in a symmetric struc-
ture whose axis of symmetry is not parallel to the direction of the
flow. In this case nonsymmetric pressure distributions on the faces
of the buildings would produce a torque. As will be shown in this
study, even a perfectly symmetric structure under symmetric flow would
experience torsional vibrations due to the spatial randomness of fluc-
tuating wind pressures. |

Full scale measurements and boundary layer laboratory tests have
shown that the cross-wind and torsional vibrations of buildings can be
very large. In an experimental study of the vibration of a cubic body
in a steady flow, Huh found that for angles of attack of 15°-25°
almost pure rotational oscillations resulted [14]. Koten reported that
the measurements of wind excited movements of the top of seven differ-
ent buiTdings in the Netherlands clearly showed that cross-wind dis-
placements and torsion were an important factor [17]. In some cases,
stresses due to torsion were as large as due to along-wind vibrations.
The ambient wind induced vibrations of buildings, measured by
G. T. Taoka, et. al. [32] and by G. C. Hart, et. al. [11] in two
separate investigations, also showed torsional response as being of
great importance. The measured cross-wind vibrations of the buildings

presented in reference [17] were also quite large. The root-mean
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square (rms) values of cross-wind vibrations were larger than these of
along-wind vibrations in all of the cases, except one. The same kind
of behavior was observed in the John Hancock Building in Chicago [8].
Measurements under 40 mph. wind showed that the r.m.s. value of cross-
wind vibrations at the top was nine times larger than that of along-
wind vibrations. Wind tunnel tests of aeroelastic prismatic building
models led Saunders to conclude that the cross-wind motion for
rectangular buildings is primarily due to vortex-shedding [25].
Vickery investigated vortex-shedding earlier and presented different
spectra for along-wind and cross-wind forces using two dimensional
models [35], [36]. More recently Kareem illustrated the independence
of along-wind and cross-wind forces, and reached conclusions similar to
those of Saunders [16].

A1l of those findings clearly show that there is a need for a
better model of building behavior for wind analysis. Hart presented
a procedure for the dynamic analysis of three-dimensional multi-story
buildings subjected to multiple stochastic wind forces [10]. He
assumed story floors to be rigid in their own plane and specified three
generalized coordinates, two orthogonal translations and a rotation, at
the center of mass of each floor. Due to the lack of measured data on
full scale and model buildings pertaining to cross-spectral densities
of wind forces His procedure was not applicable to practical problems.
Patrickson and Friedmann studied the coupled lateral and torsional
vibrations of buildings using both deterministic and probabilistic

methods of analysis [24]. Their results showed that for realistic
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values of offsets between the mass center and the elastic center and/or
the aerodynamic center, the torsional effects are comparable to those
due to the lateral response. They also found that the increase on
velocities and accelerations due to torsional vibrations was higher
than that for displacements. Their study based on the results of the
experiments done by Vivekananda [40] on square section beams. They
did not consider the horizontal variation of the wind pressures around
the building systematically, instead they assumed a hypothetical point
which the total pressure vector was applied. More recently Sidarous
and Vanderbilt introduced an analytical methodology for dynamic build-
ing response to wind Toading using a model similar to that of Hart
[26].

In this study a methodology for analyzing the coupled along-wind,
cross-wind and torsional vibrations of wind excited structures is
presented. The method is based on random vibration concepts and yields
the expected maximum translational responses and the torsicnal response.
The main objective was to develop a model for analyzing coupled
along-wind, cross-wind and torsional response of structures that
paralleled those used for analyzing along-wind responses. Thus, the
approach would have the advantage both of being able to more
thoroughly utilize the existing body of knowledge regarding wind struc-
ture and its effects and of being familiar to many design engineers.

A description of tHe structure of the wind near the ground is
given in Chapter 2. The turbulence parameters, wind velocity profiles
and suggested spectrum curves of the horizontal qgustiness of the wind

are introduced.
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In Chapter 3, a discussion of wind loads on buildings is presented.
The force mechanisms of along-wind and across-wind vibrations, wake
buffeting and galloping are explained.

The responses of several single-mass type structurés are investi-
gated in Chapter 4 in order to identify which wind and structural
properties significantly influence the torsional response and to
determine whether the predicted torsional response is large encugh
to warrant extending the method to building-type structures. The
results clearly indicate that torsional vibration can contribute a
significant amount to the total motion of a wind excited structure.

Finally, the vibration of building type structures subjected to
wind is formulated in Chapter 5. The structures are modeled as either
shear beams or flexural beams with varying cross-sectional properties
along the height. The response values of this analytical model are
compared with those of full scale measurements and are found to be
very satisfactory. Then, the effects of various structural parameters
on the expected maximum transiational responses and the rotational
response are investigated.

A summary of the results and conclusions of the investigation are
presented in Chapter 6. Recommendations for further research are also

given.
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CHAPTER 2
STRUCTURE OF THE WIND NEAR THE GROUND

2.1 - Introduction:

In this Ehapter a description of the forces in nature that gener-
ate the wind is given. Several of the properties of the wind near the
ground that are of interest to engineers are also discussed. Suggested
formulas to describe the structure of the wind mathematically are
presented. These discussions will summarize the more complete descrip-

tions which can be found in references [21], [9], [13], [31], [7].

2.2 - Structure of the wind:

The wind derives its energy from solar radiation which is strong-
est at the equator and weakest at the poles. This, and the radiation
away from the earth, produces temperature differences and consequently
pressure differences. The air in the atmosphere accelerates under the
influence of these pressure gradients. The rotation of the earth
about its own axis gives an additional acceleration, which is called
Coriolis acceleration. In the free atmosphere away from the ground,
the pressure gradient is balanced by the inertial effects and the motion
is not affected by the earth's surface. The direction of the wind is
not perpendicutar but parallel to the isobars because of the effect of
the rotational and centrifugal forces.

The layer in which the movement of the air is influenced by the
surface friction is called the planetary boundary layer. The thickness
of this layer, so-called gradient height, varies depending on the

roughness of the terrain and is higher for rougher terrains. The wind
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velocity at the gradient height is not influenced by the surface
roughness and is called the gradient velocity. In this layer the air
movement is not steady but qusty and the direction of the flow is no
longer parallel to the isobars. This sort of activity in an air stream
is called turbulence, and can be described as a random motion super-

imposed on a steady flow.

2.3 - Intensity and scale of turbulence:

The structure of turbulence is defined by two parameters, the
intensity of turbulence and the scale of turbulence. The intensity of
turbulence is a measure of the amplitude of the velocity fluctuations
and is defined as the ratio of the r.m.s. value of the fluctuating
velocity components to the mean velocity component. The longitudinal
scale of the turbulence is a measure of the average size of the turbu-
lent eddies in the direction of the mean flow. If it is assumed that
the velocity vector, V(t) at time t is the sum of a mean component, Vo’
and fluctuating component, w(t), {(i.e. V(t) = vV, t w(t) ), the
mathematical expressions for the intensity, I, and the scale factor,

Lx’ are [31]

I-= s (2-])

and

L, =V ' (2.2)
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where bar denotes the time average. Rw(r) is known as the auto-

covariance function which is given by

1 T/2
(t) = lim = w(t) . w (t+ 7) dt (2.3)
Rele) = 1im 5 |
-T/2

1t provides a measure of the independence between the values of w
at times t and t+ t . A schematic representation of

V(t)s Vs w(t) and R (x) is given in Figure (2.1)

2.4 - Velocity Profiles:

As given in the previous section, the total velocity of the wind at
a point may be written as the sum of two components. In cartesian coor-
dinates, assuming that the mean wind flow is parallel to the x axis it

may be written

Vy,z,t) = Vv (z) +w (y,2,t) (2.4)

where V, (z) is the mean wind velocity which varies only with height
above the ground and w(y,z,t) is the fluctuating wind velocity which
varies randomly in space and time. For the purpose of estimating the
response of structures to wind leading it is useful and convenient to
assume that the boundary layer flow is horizontally homogeneous. This -
assumption implies that the terrain is considered to be horizontal and
the roughness of the terrain is assumed to be uniform over a sufficient-

ly large fetch. In earlier structural analysis methods the mean wind
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profile in horizontally homogenous terrain was represented by a power

law model [5] , which is given by

[3]
2) = : (2.5)
where VG = gradient wind velocity
zg = gradient height
a = the exponent.

z. and o are dependent on the roughness of the terrain and their ap-
proximate values are zp = 900, 1300, 1700 feet and « = 0.16, 0.28, 0.40
for open country, suburban terrain and for the center of large cities
respectively. The relationship between the velocities over two

adjacent terrain can be found by eliminating the constant gradient wind

velocity, VG' Thus

, %1
=)
v
0](z) ] ZGT -
Vo (2} ay .
2_ 2z '
( Gy )

A more recent model for the profiie of the mean wind velocity was
suggested by Simiu [28] for use in structural design. It assumes a

logarithmic profile which is given by:
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z - Zd
Vo(z) = 2.5 uy &0 — (2.7)
0
" where z4 = zero plane displacement
z, = roughness length
ue = friction velocity
The expression for friction velocity is
vV (z,)
iy = —2 R (2.8)
2.5 tn £
0

in which Zp is any given reference height. The flow parameters z,
and z4 are determined empirically and are the functions of the nature,
height and distribution of the roughness elements. As noted in refer-
ence [28], zy may in all cases be assumed to be zero, except that in
centers of large cities the smaller of the values zy = 65.5 feet and
z4 = 0.75h where h s the average height of the buildings in the
surrounding area may be used. The values of roughness length z, vary
from 0.016 feet for coastal areas to 2.620 feet for the centers of
large cities. The standard reference height is zp = 33 feet. The
relationship between wind velocities over two adjacent terrains can be

found through the relationship between the friction velocities, which

is approximately given by

w( 0 ) 2.0



n

2.5 - Spectrum of turbulence:

Random vibration techniques have been found to provide the most
powerful techniques to deal with structure-flow interaction problems.
One of the classical methods is the spectral analysis téchnique. In
order to use this method first the power spectrum of the input, which
is the wind velocity in this case, needs to be determined.

The power spectrum is a representation of the distribution of the
energy of the fluctuations in the wind with frequency. The spectrum of
horizontal wind speed near the ground over an extended frequency range
was calculated by Van der Hoven at Brookhaven, New York (Figure 2.2).

A distinctive feature of this spectrum curve is that energy appears to
be distributed into two frequency region separated by a large gab. The
lower-frequency side of the gap corresponds to movements of air masses
on a large-scale (weather map fluctuations) and the high frequency side
of the gap corresponds to gustiness of the wind which is a consequence
of the mechanical stirrings of the lower layers of the atmosphere by
the roughness of the terrain. Thus, from these observations, it would
seem that the components of a high-wind of most significance to the
dynamics of structures are contained in the high frequency part of the
wind spectrum. In this part the period of the contributions is less
than an hour.

After analyzing numerous measurements at various sites, Davenport
sugges ted the following empirical formula for this part of the

spectrum curve, the so-called spectrum of horizontal gustiness [2]
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4Kv§ (33) G

n (] + X2) 4/3

Sw(n) = (2.10)

n
where X = 4000 in feet, n is the frequency in cps.,
V_(33)
0
and V0(33) is the mean wind velocity at the reference height of

33 feet. K is the surface drag coefficient which varies from 0.005 for
open country to 0.050 for city centers. Davenport's spectrum is a
single curve in nondimensional form as shown in Figure (2.3). In order
to maintain the consistency that the energy in any frequency interval
is represented by the area under the spectrum curve, at the logarithmic
scale the vertical axis was taken n.Sw(n) rather than Sw(n) (i.e.

f Sw(n)dn = f n.Sw(n). d{Logn} ). The spectrum curve is independent
of height and it has a peak at a wave length 2000 feet {i.e.

VO(33)/n = 2000). The area under the curve is equal to 6.0 KVE(SB) and
has the dimensions of energy as it should. Davenport's expression is
currently used in building codes in many countries [1], [22].

Simiu proposed another equation for the spectrum of horizontal
gustiness that is believed to be better founded in theory and reflects
the dependence of the spectrum on the height [29]. Simiu's spedtrum
is given by the following expreésion

uf 200f

Sw(n) = — . T eor )5/3 (2.11)
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n.z: . (2.12)

in which f =

and u, is the friction velocity given by equation (2.8). This curve is
slightly conservative for high frequencies. A more accurate and compli-

cated form of it is given in reference [29].
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CHAPTER 3
WIND FORCES ON BUILDINGS

3.1 - Introduction:

In this chapter a discussion of wind Toads on buildings is
presented. The force mechanisms of along-wind and cross-wind vibra-
tions, wake buffeting and galloping are explained. Mathematical
expressions for the forces used in the analysis are discussed.

Wind excited vibrations of buildings are due to individual or
combined effects of the following dynamic force mechanisms in the
wind: buffeting in the along-wind direction due to turbulence, buffeting
in the across-wind direction due to vortex shedding, wake buffeting,
and galloping. Each of these will be discussed in the following

sections.

3.2 - Buffeting in the along wind direction due to turbulence:

As noted earlier, the wind velocity vector in the planetary boun-
dary layer is composed of a steady mean part and the superimposed
random fluctuating part (gust). The mean velocity is assumed to be
constant over a long period when compared to the periods of vibration
of the structure. This produces a static wind force and the random
fluctuating part produces the dynamic wind force.

The pressure acting at a point of a fixed body in a turbulent flow

is given by [31]

C.. Vz(t) +p.C W, — : (3.1)

-1
P(t) = 2 °p mtUC o dt
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where p = density of the air (0.0024 s]ugs/ft3 or 1.25 kg/mg)

Cp = pressure coefficient
y(t) = total wind velocity

C, = added mass coefficient

W = width of the body

This somewhat simplified representation of wind loads is catled the
quasi-static representétion. Implicit in this expression are the
assumptions that the aerodynamic force develops instantaneously and
the disturbance in the oncoming flow by the object can be neglected.
In the absence of a more complete theory this quasi-steady representa-
tion has been used throughout this studv. The pressure coefficient Cp,
and the added mass coefficient Cm are determined experimentally and
depend upon the geometry of the object, the Reynolds number and the
frequency of the velocity fluctuations. The velocity V(t) in equation
(3.1) is the relative velocity of the flow with respect to the object;
therefore, the vibration velocity of the object should be included in
the calculations. For building type structures this velocity is very
small in comparison to the velocity of the wind and may be neglected.
The second term in equation (3.1) is called the added mass term and can
be significant if sudden changes in the velocity vector are Tikely to
occur, such as in a tornado [41]. For strong wind flow conditions,
Vickery and Kao examined the relative importance of the added mass term
and concluded that it may be neglected for the purpose of determining
pressures on bluff bodies [39]. With this and dividing the velocity

into its mean and fluctuating components eguation (3.1) can be written
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2
P(t) = 5 0 €, [V + w(t)] (3.2)
or
P(£) = 30 CVg + 0 CyVo(t) + 5 o Cul(t) (3.3)

The first term is the static mean wind pressure and the second and the
third terms represent the dynamic wind pressure. For tall buildings,
the intensity of turbulence which is the ratio of the r.m.s. value of
the fluctuating wind velocities to the mean wind velocity, may vary
from 0.05 to 0.30 depending upon building height and roughness of
terrain. Therefore, the last term which is proportiohal to wz(t) is
much smaller than the other terms. The contribution of this term to
the total along-wind response of a tall structure was calculated using
numerical simulation techniques by Vaicaitis and et.al. and found to be
in the order of 3% [33]. Wind tunnel measurements have also showed
that the contribution from non-linear terms to measured pressures were
negligibly small [39]. Thus, it would be permissible and also conve-

nient to linearize equation (3.3) as shown below.

P(t) = P, + p(t) (3.4)
with
-1 e
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and p(t) = o Cp.Vo.w(t) (3.6)
where P0 is the static mean wind pressure and p(t) is the randomly
fluctuating wind pressure. Since P0 is not time dependent, the
structure's response to it can be found through the static analysis.
The response for p(t) will be determined using spectral analysis
techniques. The convenience of having linear relationship between

w(t) and p(t) is clear when it is remembered that w(t) is customarily
assumed to be a stationary Gaussian random variable with zero mean.
Thus, the fluctuating pressure, p(t), and the resultant response of a
linear structure would also be Gaussian random variables with zero
means. Thus, their spectral density functions and average values could

easily be calculated in terms of those of w(t).

3.3 - Buffeting in the across-wind direction due to vortex shedding:

Recent laboratory tests on dynamic models have confirmed that vor-
tex sheddings are the main reason for across-wind direction vibrations
[25]. The mechanism of vortex shedding is shown in Figure (3.1).

When a bluff body is exposed to wind, eddies form at the points of
separation and a reguiar pattern of vortices moving clockwise and
counterclock wise (so-called Karman Vortex Street) develops. The
formation of vortices cause velocity differences, and consequently
pressure differences, between the upper and lower sections of the wake.
Consequently, a fluctuating 1ift force acts perpendicular to the mean
flow and changes its direction at the shedding frequency. For a fixed

mean stream velocity, the frequency of vortex shedding is rather regular
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{nearly constant in many cases) and depend upon the shape and size of
the body and the Reynoids‘number. If the cross-section of the body is
noncircular, it also depends on the wind direction. This regular
pattern of the vortex shedding is characterized with a dimensionless

constant, the so called Strouhal number, which is given by

s - (3.7)

where ng is the dominant frequency of the vortex shedding. For a body
having a rectangular or square‘cross section the Strouhal number is
almost independent of the Reynolds number. For square cross-sections
with wind blowing perpendicular to a face it can be taken S = 0.11 [9].
The 1ift force per unit length at height z of a building for normally

incident wind can be written as
Fz,t) = Louv? (2). ¢ (t) (3.8)
L' 2% % e :

where CL(t) is the randomly fluctuating Tift coefficient. The spectra
of CL(t) is concentrated around the vortex shedding frequency and has
a very small bandwidth (Figure 3.2) [35]. This spectrum curve can be
approximated by the following Gaussian type curve which has a sharp
peak at n =n

2

2 1 T - n/ps
S. (n) = . —_— - | ——— 3.9
C G /T Bn, o { ( B ) } - 39
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where op = \/ CE (f) , the standard deviation of CL(t) and B
L

is the bandwidth. When it is normalized by ag the area under the
L

spectrum curve is constant, such that

2
o 1 -n/

,.f; exp {~(—§—£§) } dn = 1.00 (3.10)
o ™ Bn

S

The value of GCL is given oc = 0.60 for buildings with square cross-
section and normally incident wind [9]. This value which is given for
the centerline of the side face represents the total 1ift force at

that height. Thus, the sidewise correlation (also called chordwise

correlation) of the 1ift force is automatically included in the value.

3.4 - Wake Buffeting

Wake buffeting occurs if one structure is located in the wake of
another structure. Vortices shed from the upstream structure may
cause oscillation of the downstream structure. These oscillations may
be very significant for the downstream structure if the two structures
are similar in shape and size and less than fen diameters apart [9].
Since wake buffeting is a rather special and complex phenomenon.wind

tunnel tests are required for this type of analysis.

3.5 - Galloping:

Galloping is an oscilliation induced by the forces which are
generated by the motion itself. These forces, in general, oppose the

motion and produce positive aerodynamic damping {stabilizing effect).
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Sometimes, in structures like transmission lines or long slender
towers with sharp eadged cross sections these forces with the continuous
change in the angle of the approach of the wind result in negative
damping which may be larger than the positive structural damping. The
reason for this is the peculiarity of the }elationship between 1ift
and drag coefficients of the cross-section for.different values of the
angle of approach.

To understand the mechanism of galloping consider a body, as
shown in Figure (3.3), in a flow with velocity V. As the body moves
with a velocity y perpendicular to the direction of the flow, the
angle of attack, o, of the relative wind velocity, Vrez,’ can be

written
a = artan <+ (3.11)

The drag and 1ift forces produced by the relative velocity are given by

2
= 1
D - CD . 2 p-'A' vrez (3.12)
1 2
L=C -7.0.A Vg, (3.13)

where CD and CL are the drag and 1ift coefficients at angle of attack
as respectively, and A is the frontal area of the body. The sum of the

components of these forces in the direction of y is
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2

- R | P
Fy = -(CD.s1n o +-CL. cos o) 70 AV. sec o (3.14)
- 1 2
or Fy = CF 5 P AV (3.15)
Yy
where CF = -(CL + CD tan o) sec « {3.16)
Yy

As can be seen from Eq. (3.11) o increases with increasing y. In order
to have a stable system, therefore, Fy should decrease as o increases.

This can be satisfied if

___y_daF <0 (3.17)
a =10
or
dC
ot >0 (3.18)

p < 0 (3.19)

This condition is known as “Den Hartog's Criterion” and a necessary
condition for aerodynamic instability [31]. It is also sufficient when

the left hand side of the Eq. (3.19) becomes small enough to offset

structural damping forces.



22
Tall buildings with the values of damping, height and cross-section
that they may have in current design practice are not susceptible to
galloping. Davenport and Novak indicated that hurricane size wind
velocities for a smooth flow (possibly much higher velocities for
turbulent flow) would require to start galloping oscillations in a

tall building [26].
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CHAPTER 4
VIBRATION OF SINGLE~MASS STRUCTURES

4.1 - Introduction:

In this chapter the vibration of a single-mass structure under
"wind loads is formulated. The method is based on random vibration
concepts and yields the expected maximum translational and torsional
responses. The objective of this chapter is to identify which wind and
structural properties significantly influence the torsional response
and to determine whether the predicted torsional responses were large
enough to warrant extending the method to building-type sturctures for

use in design.

4,2 - Equations of vibration:

Consider the schematic of an idealized single-mass structure with
approaching wind shown in Figure (4.1).‘ The center of the coordinate
system is Tocated at the mass center; W is the frontal width and D is
the vertical depth of the structure. WT and wz denote the distances
from the edges of the structure to the center of the coordinate system
(w] Uy = W) and W, 1s the distance between the elastic center and the
mass center. It was assumed that the structure is symmetric in cross-
wind direction and the along-wind dimension of the structure,‘L, is
small in comparison to W. Therefore the effect of the cross-wind
forces on torsional vibrations was neglected. With the coordinate
system and notation shown in Figure (4.2), the equations of motion of

the system may be written
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mx + cxi-+ kX + kW 0 = F(t) (4.1)
N . ?
I8+ cd+ kMU x+ (kg * kxwe)e = T(t) (4.2)
where m : total mass of the structure
_ Im : mass moment of inertia
kx’ kg : translational and rotational stiffnesses
Cys Cg transTational and rotational dampings

F(t), T{t) : fluctuating force and torque

Since F(t) and T(t) are random variables in space and time, the dynamic
responses x(t) and 6(t), will also be random variables. Therefore the
solution procedure requires the application of the random vibration
theory. Using classical spectral analysis technique the relationship
between forces and responses in the frequency domain may be written
{20] _
* T
[5,.(n}] = [H(n)1 [S¢(n)] [H (n)] (4.3)

where
n : frequency in cycles per second
[Sr(n)] : spectral density matrix of the response vector {r}
[Sf(n)] : spectra1 density matrix of the force vector {f}
[H(n)] : system Ffrequency response matrix and (*) denotes the
complex conjugate.
The response and force vectors, from Eqs. (4.1) and (4.2), may be

written
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x(t) , .
{r} = ' (4.4)
8(t)
and ‘
F(t)
{f} = (4.5)
T(t) |

Therefore, the explicit forms of [Sr(n)] and [Sf(n)], from App.(A),

are
r

Sxx(n) Sxe(n)w

[Sf(n)] = (4-6)
LSex(n) See(n)_

 Sprln) SFT(")W

[Se(n)] = : (4.7)
STF(n) Syp(n)

]

A typical term Sij(") of the matrices given above is the cross spectral
density function of the random variables (i) and (j). Definition of
the cross spectral density function is given in Appendix (A). The
derivation of the system tranfer matrix is well known and may be

written [20]

[H(M)T = { -w? [M] + 40 [C] + (K]} (4.8)

where [M], [C] and [K] are respectively the system mass, damping and

stiffness matrices and v is the frequency in radians per second (v = 2mn).
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The explicit forms of [M], [C] and [K], from Eqs. (4.1) and (4.2), are

m 4] 1
M] = . (4.9)
o g,
CX 0
{cl]= ' (4.10)
0. Ce '
Ky Kye, ,
(kK] = (4.11)
kaw ky + kxwg

Thus, [H(n)] is a 2x2 matrix and may be written
r .
H o () er(n)

[H(n)] = (4.12)

Hgx(n) Hee(")J

The physical meaning of a typical element, for instance Hex(")’ of the
frequency response matrix is that it is the ratio of the steady state
response 8{t) to the harﬁonic excitation fx(t) = et Since all of the
elements of [H(n)] are readily determined from the properties of the
structure, one needs only to derive the elements of the inpui spectral
density matrix to be able to determine the spectral density matrix of

the response.
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The along-wind fluctuating pressure at a point on the structure's

face, as explained in Chapter 3 and given by Eq. (3.6), may be written
plys2z,t) = o € ly,2) Vy(2) wly,z,t) (4.13)

where Vo(z) and w(y,z,t) are respectively the mean and fluctuating wind
velocities and Cp(y,z) is the pressure coefficient at that point with
p being the mass density of the air. These fluctuating pressures pro-

duce the randomly varying force and torque which can be approximated

F(t) = oCp H Vo(z) w(y,z,t) dydz : (4.14)
A

T(t) = oCp Jf y V (2) wly,z,t) dydz (4.15)
A

where A is the area of the frontal face and CD is the sum of the aver-
aged pressure coefficients of the windward and 1eeward'faces. The use of -
of CD in this manner implies that it can be assumed constant for every
point and the pressure fluctuations on the windward and leeward faces
are perfectly correlated. Even though experiments have suggested that
the latter assumption is not usually true [18], it results in conserva-
tive estimates of displacements [29], it greatly simpiifies the following
derivations, and this simplification is probably not unwarranted in
light of all the other assumptions that are made. The entries in the

2x2 spectral density matrix of the forces are given in Eq; (4.7) and
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they are the Fourier transforms of the correlation functions of the
force and.torque and of their cross-correlation function as explained
in detail in Appendix (A). They may, from Eqs. (4.14), (4.15) and
App.(A), be written in terms of the cross-spectra of the fluctuating

velocity

Spp(n) = (pcD)ZHH V(2 Wy (2y) S, (¥7525Y9s25u0) dyydypdzidz,  (4.76)
syr(n) = (62 [[[ 13, Vo2 )g(25) 8079521 ,v025sm) vy d2,(4.17)

- 2f _
Ser(n)= (oCp) ][Jf Yo Vo () Vo (2,0, (¥ 5215¥50255n) dy dy,dz,dz,  (4.18)
A'A

Based on experimental evidence, the cross-spectra of the wind velocity
may be written as the product of the spectrum of the wind velocity and
the coherence function [37]

1/2 1/2 :
Sw(y],z],yz,zz,n) = 51/ (z],n)S / (z 2,n) Coh(y1.zl,y2,22,n) (4.19)

W
The suggested expressions for Sw(z,n) are given in Chapter 2 by the

equations (2.10) and (2.11). Note that Davenport's model, Eq. (2.10),
is independent of z. The coherence function may be represented by the

following expression [37]
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2 2, .2 2. 1/2
Cohly»2s¥p2gon)= exp {- nlC, (yyyp)" + Cy(7-2p) ] J (4.20)
Vo(z1) + Vo(zz)
where Cy and CZ are called the exponential decay coefficients for the
y and z directions respectively. The approximate values of the exponen-
tial decay coefficients used in wind analysis are Cy=16, and CZ=1O.
However experiments show that those values may differ depending upon
terrain roughness,‘height above ground, and wind speed, and therefore
represent a source of uncertainty [31]. As seen from Eq.(4.20) the
coherence function is dependent upon the relative distances between the
points rather than fhe location of the points.

Thus far, tﬁe development of the random along-wind forces on a
structure has been general and would apply to any structure that is
rectangular in plan. The computations may be greatly simplified for the
simple two-degree-of-freedom structure of Figure {4.1). Since the mean

wind velocity varies slowly with height
Vo(z]) = Vo(zz) 5 VO(H) = VO (4.21)

where H is the height to the center of the structure. The coherence
function given in Eq.(4.20) can be separated into its y and z components
by using the approximation suggested in reference [7]. Also using the
approximation given above for the mean velacity and introducing the

nondimensional variables
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o

=k

(4.22)

N

and n

Eq.(4.20) becomes

COh(ﬁ]sezﬂl'l :ﬂzsn) = exp [' %f' [Cyw | E]-Ezl + CZD ]ﬁ]-nzl]] (4-23)

Vy..2 C W :
where b = }I: with r = Exﬁ_ (4,24)
, z

Using Eqs.{4.19) and (4.21) and changing the variables of the integrals
as given by Eq.(4.22), Eqs.(4.16) - (4.18) may be put in more compact

form
aF2
SFF(n) = Vz S (n) Jxx(n) (4.25)
5
arl u?
STT(n) = 2 Sw(n) Jee(n) (4.26)
0
4F% W
SFT(n) = V2 Sw(n) Jxe(n) (4.27)
0

where Fo is the mean static wind force on the structure given by the

following equation
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WD (4.28)

H
and Jxx(n), Jee(n) and Jxe(n) are the nondimensional aerodynamic

admittance functions which are defined as shown below

1 N1/w .
JJ[I COh(ET’EZ’nl’nZ’n) de]dezdn]dn2 (4.29)

W

it

Jxx(n)
0

1 %

Jee(n) = JJJJ 1€ Coh(e],ez,n1,n2,n) deldEZdn]an ‘ (4.30)

1 ¥ u

Jx (n) = JJIJ €n Coh(e1,52,n],n2,n) ds]dezdn]dnz (4.31)
0 “wz/w

Since coherence function is symmetric with respect to €1%Eps

Jxe(n) = Jex(") and consequently SFT(n) = STF(n). Using Eq.(4.23) the

admittance functions can be evaluated analytically. Their final forms

are given by the following expressions and their variations with fre-

quency for different values of W] and NZ are given in Figure (4.4).

-D -D
ggm=[%§wy+qfn}{§(ez+%qﬁ (4.32)
Y z
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2
2 2|2 o oWy 4 2T
W Jee(“) = { BQy (We- 3w1w2) - 02 (N] + wz) + 1
Yy y
-D =D .
2wl e 2 u)e Y2 e 24, 1) (4.33)
0¥ y y "1 Y
Yy z
(w] - W )
_ 2
WJxe(") = 5 Jxx(n) (4.34)
: nc W nC_W .
where D = —*Y— ‘and D, =—= (4.35)
y Vo z V0

As seen from Figure-(4.4)‘dyy(n) is invariant with respect to coordinate
center and Jee’ Jye increase as the geometric offset increaﬁes. The
spectral density matrix of the excitation is now defined and the input-
output relationship givén by Eq.(4.3) can be written more.exp1icit1y as

shown below

) - 1 T * * WT
SXX Sxe HXX HXQ JXX WJXQ HXX er
] 4F%s, (n) |
2
s s HoH ° W Wl T
L ox “o8 L 6X 68 L BX 80 | [ X 08
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where all of the S, H and J terms are functions of frequency n. Note
that for W = 0 (mass center and elastic center coincide)
Hex = Hxs = 0. Thus, the equations of motion for free vibration . are
uncoupled. However, as long as w] # N2 (mass center is not at the
geometric center), they are statistically coupled (correlated) due to
the fact that Jxe = Jex # 0 1in equation (4.36). If both Ne = 0 and
Wy =¥, all the off diagonal terms of the matrices in Eq.(4.36) are
zero. In other words the equations are uncoupled and the excitatioﬁs

F(t) and T{t) are uncorrelated; therefore, the responses x(t) and o(t)

are also uncoupled and uncorrelated.

4.3 - Maximum values of the response

Once the functions of the spectral density matrix of the response
have been formulated, the mean square translational and rotational

motions as well as their correlation coefficient may be computed

o«

o f 5., (n) dn (4.37)
0 ,
ot = OJmsee(n) dn (4.38)
and
oo = cyle ofmsye (n) dn (4.39)

Since the fluctuating wind velocity, and consequently F(t) and T(t),

have been defined as zero-mean Gaussian random variables, the responses
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x(t) and 6(t) of this Tinear system are also zero-mean Gaussian random
variables. Thus, the standard deviations and the correlation coeffi-
cient given by Eqs.(4.37)-(4.39) are sufficient to describe the response
stat{stics. |
If it is assumed that the total displacement of a point on the
structure, x{y,z,t), is independent of heighf, z, the translation of

any point may be written

x(ysz5t) ® x(y,t) = x, + x(t) +y [8, + o(t)] - (4.40)

where Xo and 60 are respectively the static displacement and the rota-
tion of the center of the structure due to the static mean wind force.
The spectral density function of x(y,t) may, from Eq.(4.40) and App(A),

be written

S,(y>n) = S, (n) + y®S, (n) + 2y.Realls, ()] -

" The mean square value of x(y,t) is

=]

oi (y) = [ §,(ysn} dn ‘ | - (4.42)
. _
The expected maximum value of x(y,t) in a time interval T can be
written as the sum of its mean value plus a factor of its standard
deviation. That is

E Dy t)] = x5 +yoo + 9.0, (y) (4.43)



35
The factor g is called the peak factor and for a Gaussian random
variable it is approximated by the following expression which was

developed by Davenport [4]

- Y 0.577 .
g = ‘2en(vT) t = (4.44)
“2£ﬂ<st
where
OJ nZSx(y,n) dn |
voE o~ (4.45)

f Sx(y n) dn

The expected maximum value can be taken as the most probably value

due to the fact that the bandwidth of the maximum probability distri-
bution function is very narrow. The time interval, T, is taken

T=3600 seconds in wind analysis. Thus, an estimate of the most probable
maximum displacement including torsion of any point on the structure

can be made.

4.4 - Numerical Examples:

The equations derived above were used to analyze the responses of
several variations of the structure in Figure 4.1, The basic structure
has a width, W, equal to 20 feet and a depth, D, equal to 20 feet for
an exposure area of 400 sq. ft. The reference wind velocity of 80 miles
per hour and the translational natural frequency, ny, of 1.0 Hz were held

constant for all examples. The effects of magnitude of the torsional
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natural frequency, the structure's width, and the location of the
centers of mass and rigidity on the maximum probable response values
were examined. For each example where the structure is nonsymmetric,
the expected maximum edge displacement, max,YA, computed using

equation (4,43) is normalized by the expected maximum displacement that
would be computed if the dynamic torsional motion were ignored., The
latter quantity is simply the expected maximum along-wind displacement
for the center of a symmetric structure plus the displacement due to
the static rotation, X0, The normalization was done this way because
designers would normally compute the mean rotétion in their calculations.
Thus, the results reflect the consequence of ignoring only the dynamic
torsional response in design.

The examples may be divided into three classes according to the
form of equation (4.36). For a perfectly symmetric structure the
centers of mass and resistance both lie on the vertical centerline of
the structure's face. For this case all of the off-diagonal terms in
equation (4.36) are identically equal to zero. Thus, the equations of
motion are uncoupled. This means that the transiational and rotational
motions are statistically independent and may be evaluated independently.
~Note that torsional vibrations will still be excited, however, due to
the spatial randomness of the wind.

The effects of varying the structure's torsional natural frequency
on the expected maximum displacement of point A are shown in Figure (4.3)

As n, decreases with respect to n , the motions at the edge of the struc-

Y
ture due to torsional vibrations become large and may actually be
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substantially larger than those due to translation. Most of the effect
associated with lowering the torsional frequency results from the shape
of the wind spectrum which increases with decreasing frequency in this

region of the spectrum. This is also demonstrated in Fiéure (4.3)

where results are shown for the 20' x 20' structure which was assumed
to be excited by an artificial wind with a “white noise" spectrum, but

with the same spatial correlation as the natural wind.

It should also be expected that increasing the width of the struc-
ture would increase the rotaticnal response, This should result because
pressures at the extreme edges of the structure would be less correlated
and would lie further from the elastic center. Both of these effects
would produce greater dynamic torque. This is demonstrated in Figure
(4.3) for a structure with a width and depth equal to 30.0 and 13.33 ft.
respectively. These values were chosen so that the total exposure area
would remain constant.

The second class of structures has only one type of asymmetry,
either geometric or structural. Geometric asymmetry occurs if a
structure has its centers of mass and rigidity on the same 1ine, but not
on the centerline of the exposed face. The equations of motion for
this case are still uncoupled (e.g. H = Hey =0}. However, the cross

yo

aerodynamic admittance functions, J__ and Jey’ are no longer zero.

v
Therefore, the correlation coefficient for the responses is also non-
zero and coupling of the responses results. The aerodynamic admittance
functions for 20' x 20' structures with their center of the coordinate

system located 10, 12, 14 and 16 feet from point A are shown in
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Figure (4.4). HMNote that Jyy is invariant with respect to the coordinate

center and that Jeeand J, . increase as the geometric offset increases.

yo
Thus, the correlation coefficient is coordinate-system dependent. Also,
as was mentioned above, Jye(n) is identically eaqual to zero for w1 =10
feet which corresponds to the coordinate system located at the geometric
center of the structure. The corre]afion coefficients for these same
structures with varying torsional frequency are shown in Figure {4.5).
The highest correlation in the responses occurs when n, = ﬁy as should
be expected. This value approaches 1.0 as the geometric offset
increases. In general, the response correlation increases as N, approa-
ches ny and as NT/W increases.

The effects of varying the rotational natural frequency and w1/w on
the maximum displacement at point A are shown in Figure {4.6). The
results show the same trend as for the perfectly symmetric structures.
The torsional natural frequency has the largest effect on the rotational
response. -In addition, the rotational response increases as wi/w
increases. Note that for a structure with its centers of mass and
resistance offset only 10% of its width from the geometric center
(w]/w = 0.6), if the dynamic part of the torsjonal displacement of the
edge of the structure is not computed the maximum displacement will be
underestimated by about 25% for Ny = ny and by about 80% for
n, = 0.5 ny.

If the mass center is located at the structure's geometric center
but the elastic center {is not, structural nonsymmetry results and

Hye(n) is no longer zero. The cross-aerodynamic admittance functions

will again be zero, however, since the reference system is located at
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the geometric center of the structure. Results for structures with
different torsional frequencies and eccentricities are shown in Figure
(8.7). These results are very similar to those for structures with only
geometric nonsymmetry shown in Figure (4.6) Neglecting the dynamic
part of the torsional displacement for a structure with an eccentricity
of 10% of its width will once more lead to underestimates of the maximum

total displacement of 25% for n_ = ny and 80% for Ny = 0.5n

8 ¥y’

The most general case occurs when the centers of mass, resistance
and geometry lie on different 1ines. This results in all of the
matrices of equation (4.36) being full. Shown in Figure (4.8) are the
results for structures with their mass center offset 10% of the struc-
ture's width (w] = 12 feet) from its geometric center. As expected,
these motions increase with decreasing torsional natural frequency.
Figure (4.8) 1is somewhat misleading since it shows decreasing torsional
response with increasing eccentricity for we/w tess that 0.1. In this
region, the elastic center moves from the mass center for we/w =0 to
the geometric center for we/w = 0.1. The fact that the torsional motion
decreases in this region indicates the distance between the elastic
center and the geometric center where the average pressure center lies
is more influential than the distance between the elastic and mass
centers. For a structure with we = 2 feet the elastic center
is at the geometric centér. By ignoring the dynamic torsional response
for this case, the maximum displacement of the edge of the structure
would be underestimated by about 25% for n, = ny and 50% for

8
n, = 0.5 "y'
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4.5 - Discussion and Conclusions:

A method for estimating the expected makimum dynamic torsional
response of a wind-excited two degree-of-freedom structuré was presented.
Aerodynamic- admittance functions‘were derived which were used to estimate
the spectral denéity function of the random torque and cross-spectral
density function of the force and torque acting on the structure. These
are required for estimating the structure's translational and torsional
mean square responses. Results for several examples indicated that, in
genaral, the dynamic torsional response increases as the width of the
structure's exposed face increases, as the structural or geometric
eccentricity increases and as the torsional natural frequency decreases.
It was shown that for an eccentricity of only 10% of the structure's
width, the total response of a structure can be significantly under-
estimated if the dynamic torsional response is not included in the

analysis.
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CHAPTER 5
VIBRATION OF BUILDINGS

5.1 - Introduction:

Structurally, the buildings of the current design practice can be
categorized as frame systems, frame-shear wall systems or for very tall
buildings, tubular systems. Vibration tests indicate that fundamental
mode shapes of buildings under dynamic loading are about midway between
the fundamental mode shape of a shear beam and of a flexural beam. For
buildings with moderate heights and frame type structure it can be
assumed that the change of the length of the columns due to the axial
load is negligibly small and the story floors remain approximately
horizontal during the displacements. Therefore, the lateral load is
carried by the shear resistance of the frames and the behavior is
similar to that of a shear beam. As the height of the building in~
creases the axial displacements of the c61umns become more significant
and the floor planes are no longer horizontal during the vipration of
the buildings. Also, some buildings are designed to carry lateral loads
only by shear walls. In these cases the behavior of the buildings
can be predicted better by assuming a flexural beam mode shape. In
this chapter equations for the coupied vibrations of a building are
derived for a shear beam model while the final forms of the equations

for flexural beam model are given in Appendix(B).

5.2 - Equations of Motion:

Consider the schematic of a building in Figure (5.1) with the wind

blowing parallel to the x akis in a cartesian coordinate system.
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The lateral displacements of the center line of the structure are denocted
by u(z,t) and v(z,t) in the directions of X and y respectively; and the
rotation by e(z,t), positive in the counterclock wise direction. For
simplicity the parameters z and t of the displacements and of the rota-
tion were not written in most of the equations and theyv were simply
denoted as u, v, 6. The coordinate center was assumed to be at the center
of geometry. Therefore the z axis is at the center of the rectangular
cross-section at every level along the height. Consider a small particle
of the structure at height z as shown in Figure (5.1). Let the coordi-
nates of this particle in the undeformed structure be x, y, z and the
mass density o(x,y,z). As the structure displaces u, v, & in the

corresponding directions the new coordinates of the point become

x'=x+ U - Y6 (5.1)
y'=y+ v+ xs (5.2)
2t =z (5.3)

and the relative displacements are

AX = U - YD (5.4)
AY = v + X8 (5.5)
Az =0 (5.6)
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The kinetic energy gained by the particle located at that point 1is

| 2 2
%0 (%,y,2) [(a(ﬁ )_+ (a(gt) :‘ (5.7)

ke

or

tyr %—p(x,y,z) [(G - yé)2 + (v + xé)2 ] (5.8)

where o(x,y,z) is the mass density of the particle and () denotes
the partial derivative with respect to time. The total kinetic energy

of the structure is obtained by integration

TKE = %. f JJ o (X.¥,2) [(ﬁ - yé)2 + (v + xé)z] dxdydz (5.9)
0 .
A(z)
where H is the height of the building and A(z) is the cross-sectional

area at height z. Noting that

JJ p(Xyy,z) dzdy = m(z) {(5.10)
Alz)
([ 6@y oleya) axay = 102) (5.11)
A(z)

where m(z) and I(z) are the mass and moment of inertia per unit length
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at height z, respectively. Also, if xg(z) and-yg(z) denote the

coordinates of the center of the mass at height z

H LdﬂﬁﬂdMy=%&mu) (5.12)
A(z) ‘
M y.e(x,y,z) dxdy = yg(Z)m(z) (5.13)

A(z)

Thus, the total kinetic energy of the structure is

H
Te =3 | (@ i n2) ¥+ 102) &+ (5.14)

KE
0

. ) xg(z)m(z)Qé - Zlyg(z)m(z)ﬁé] dz

The strain energy of the same particle due to the displacements

Axs Ay and Az = 0 can be written [32]

| . )
%E=%%Huddwﬂ%?)+aﬂud¢)i%9)J (5.15)
or
Uep = l{ﬁ (x,y,2) (u'- yé‘)2 + G, (x,y,2) (v'+ xe')z] (5.16)
SE 2 Xz \hes yz I

where Gxa(x,y,z) and Gyz(x,y,z) are the modulus of rigidity in x-z and
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y-z planes at height z, respectively, and ( )' denotes the partial
derivative with respect te z. The total strain energy of the structure

may then be expressed as

H
Ugp = % JM [G,,(x>y,2) (u'ye')? 6, (X,y,z) (v'+ x8')%] dxdydz
A(z) (5.17)
introducing the following notation
[{ ze(x,y,z) dxdy = kx(z) (5.18)
A(z)
JJ Gyz(x,y,z) dxdy = ky(z) (5.19)
A(z)
[ L6, 000.2) + y%8, (00s2)] dxdy = Ky(2) (5.20)
A(z)
H X 6, (.y,2) dxdy = x,(2) K (2) (5.21)
A{z}
ff y ze(x,y,z) dxdy = ye(z) kx(z) (5.22)

A(z)
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where kx(z), gy(z) and ke(z) are the translational stiffnesses and the
rotational stiffness at height z and xe(z) and ye(z) are the

coordinates of the center of rigidity. The total strain energy of

Eq.(5.17) becomes

H

Uep = %— f [kx(z)u'2 + ky(z)v'2 + ke(z)e‘2 + 2xe(z)ky(Z)V'9' -

o]

Zye(z)kx(z)u'e'] dz (5.23)

The potentiaT energy of the structure is equal to the sum of the strain
energy and the potential energy of the conservative external forces.

If Px(y,z,t) is the sum of the pressures at points y,z of the faces
perpendicular to the x axis and Py(x,z,t) is the sum of the pressures

at points x,z of the faces perpendicular to the y axis, the work done

by these forces is

H W/2 H D/2
Q= H p, (¥,z,t)(u-yo) dxdydz - ” by (X258} (v + xo)dxdydz
T-hr2 Y (5.24)

Introduce the following notations:

W/2
p (y,z,t)dy = f (z,t) (5.25)
-W/w
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D/2 o

J py(x,2,t) dy = f (2,t] | (5.26)
-D/2

D/2 W/2

j xpy(x,z,t)dx - j yp(ysz,t)dy = £ (z,t) (5.27)
-D/2 . -W/2

where fx(z,t) and fy(z,t) are the forces per unit length at height z
acting in the x and y directions, respectively and fe(z,t) is the

torque, positive is counterclock wise, Eq. . (5.24) now be written

H :
0= [ If (2t + f (2t + Flzt) ] & (5.28)

o]

The potential energy of these forces is equal to - 9. Therefore, the

potential energy of the structure can be written
Vpg = Ugp - @ | | | (5.29)

If the structural damping is assumed to be of the viscous type and

uncoupled, the nonconservative damping forces can be written

R = -c.(z) G (5.30)

(5.31)

ol

1]

]
e)
Caain}
N
b
<
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Ry = - ¢,(2) 9 (5.32)

Lagrange's equations for a nonconservative system are

4ol s . g (5.33)
dt 50 su u

Lok L. g (5.34)
dt 3v  av '

_tL_B_.L___a.L_ = Ry (5.35)
dt 98 96

in which L is called the Lagrangian function and is equal to

L = Tye - VPE - (5.36)

Application of these equations results in the following equations of

vibration

m(z}u - yg(z)m(z)é - [kx(z)u' - ye(z)kx(z)e'] - fx(z,t) = —cx(z)ﬂ
n(2)i + xg(2Im(2)8 - [k (22v' + x (2 (200D = (2.t) = ~c (2]

—yg(z)m(z)ﬁ + xg(z)m(z)V + 1(z)6 ~[~ye(z)kx(z)u[+xe(z)ky(z)v'+ke(z)e']I -

—fe(z,t) = —ce(z)é (5.37)
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Rearranging and putting them in matrix form gives

[mld} + [c1(d - ([kJ{d'}) = ¢}

(5.38)

where [m], [c], [k] are the mass, damping and stiffness matrices,

respectively; {d} is the displacement vector and {f} is the force vector.

Their explicit forms are given below

[m] =

-

[c] =

[kl =

- ‘m{z) -0

0 m(z)

—yg(Z)m(Z) xg(Z)m(Z)

cx(z) 0
0 cy(z)
0 0
kx(z) 0
0 ky(z)

-yg(Z)m(Z)

xg(z)m(z)

I(z)

0

OA

c,(2)

-ye(Z)kx(Z)7

ke(z)ky(z)

-¥el2)k, (2) x,(2)k (2} K, (2)

o

(5.39)

(5.40)

(5.41)
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u{z,t)

{d}

b

v(z,t} (5.42)

o{z,t)

fx(z,t)

i

{f} fy(z,t) (5.43)

fe(z,t)

5.3 - Solution of the Equation System:

Eq. (5.37) is a set of coupled partial differential equations with
variable coefficients. For deterministic forms of the excitation an
analytical solution can be found only for special cases of the structure
such as perfectly symmetric and constant mass, stiffness and damping.
Also, for small values of nonsymmetry and separate natural frequencies
approximate close form solutions can be obtained using perturbation
theory. More information on that may be found in reference [12].

The excitation in this case is wind and can be best described as a
stochastic process. Therefore Eq; (5.37) is a set of stochastic differ-
ential equations of the vibration and the solution requires application
of the random vibration theory. Finding a solution to the above form of
the equations 1s not possihle so an approximate soltution must be
obtained. First, using the Galerkin method as given in reference [15]
Eq. (5.37) will be transformed into a set of linear differential equa-

tions with constant coefficients; then the standard spectral analysis
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techniques of the random vibration theory will be performed as it was
done in Chapter 4.
let's assume that the displacements and the rotation can be

approximated as shown below

‘ k

u(z,t) = ‘21 #4(2) q5(t) (5.44)
":
£

v(z,t) = ‘21 $3(2) g1 (t) (5.45)
j=
m .

8(z,t) = 'Z'l 4’1(2) qk.‘.“i(t) (5.46)
1=

This approximation is valid if ¢i(z)'s satisfy the forced boundary
conditions which are u=0, v=0, and 6=0 at z=0 (no displacement and
rotation) and u'=0, v'=0, ¢'=0 at z=H (ﬁo'shear and torque). An
appropriate choice for ¢i(z) in this problem is the ith vibrational
mode shape of the symmetric uniform Shear beam. This mode shape is the
same both for translational vibrations and the rotational vibration and
is given by

0:(2) = sin SEZA T, (5.47)

This is the reason for using the same index for ¢(z) in Eqs. (5.44) -

(5.46). The approximate values of the displacements given above become
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closer to exact solutions as the indexes of the sums, k, £, m in

Eqs. (5.44) - (5.46) approach infinity.

Introducing the following:

¢1 (z). . ¢’k(z)

[4] = o ...0.
0 ...0
and .

a7() |

q£(t)
N

Gpug (t)

an(t)

with k+2Z+m=n

0 ...0 0

#9(2). . .9,(2) O

O . o 0 (b](z)co

0o |
0 (5.48)
o (2)
(5.49)
(5.50)

“where [¢] is 3xn mode matrix and {q} {5 n dimensional generalized

displacement vector; Eqs. (5.44) - (5.46) can now be written

{d} = [¢] {a}

(5.51)
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Since this is an approximate solution, Eq. (5.38) becomes

[ml0e] (81 + [clle] &} - (CKI'D) 1qy = {F) + {R) (5.52)

where {R} is the 3 dimensional residual vector. The residual {R} of
this approximation can be thought of as the difference between the actual
loading {f} and the loading for which {d} = [¢](q} is the exact solution.
The goal is to make [R] small in some sense. One approach is to maké
the generalized displacement vector {q} satisfy the following condition
.
j [N JRY dz = 0 (5.53)
o g

where [wg] is the matrix of the "weighting functions". This method of
minimizing the error is called "the weighted residual method". A widely
used weighted residual method is the Galerkin method which uses the
mode matrix as the weighting matrix. Therefore, Eq. (5.53) becomes
.
f [61(R} dz = O (5.54)
o

or with Eq. {5.52)

|

H H

H 1
Lol [mI[¢]{qrdz + J L1 LIl ol(dpdz - [ [61" [KI[¢'] {qidz

Q

H
- f [¢]T{f} dz = 0 (5.55)
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The integral over the stiffness matrix can be simplified by partial
integration as shown below
H _ z=H H
T ] ' t [ 1
[t waren e = ('mared | - [ relTate1 e (6.56)
[+] : 0

z=0

Since [¢] = 0 at z=0 and [¢'] = 0 at z=H from the boundary conditions,
the first term on the right-hand side of the equation is zero.

Furthermore, with the new notations defined below

. |
f [617ImlCe] dz = [M] . (5.57)
H ' .

{ [o1'CcIls] dz = [C] (5.58)
H

J (417 [KI0e'] dz = [K] (5.59)
H .

J [614F} dz = (F) | " (5.80)

0

Eq. (5.55) becomes

[MI{q} + [CI{q} + [Kl{q} = {F} | (5.61)
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where [M], [C], [K] are the an generalized mass, damping and stiffness
| matrices, reSpectiveiy'and'(F} is the generalized force vector. With
this expression the equations of vibration are now reduced to n Tinear
differential equations with constant coefficients. |
If it were possible to express {F}'analytica11y,'{q} would have

been obtained using the conventional methods of deterministic analysis.
Since {F} is not deterministic but probabilistic with known statistical
properties the solution procedure requires the application of the random
vibration theory. »One of the c]aésica] approaches is the spectral
analysis technique. The relationship between the input and output

spectral density matrices of the above set of equations can be written

[5, (1)1 = THM)ILsE()I0H ()17 (5.62)

where [Sq(n)] is nxn spectral density matrix of output vector {q} ,
[sF(n)] is nxn spectral density matrix of input vector {F} , and [H(n)]
is the frequency response function of the system with ( )* denoting the
complex conjugate. The definition of [H{n)] is such that if the

excitation is

(F(t)} = {F.} e bt (5.63)

in which'{FO} is a vector of constants, the response is

]

{q(t)} = [H(n)] F(t) : (5.64)
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With this definition, from Eq. (5.67), it can be written
- 2 . . ~1-1 '
[H(n) = [ -o’TM] + 4 [C1 + [K] ) (5.65)

where « is the radial frequency (i.e. m=26n). The remaining of the

formulation follows the same steps as given in Chapter 4.

The spectral density matrix of the displacement vector {d}, from Eq.

(5.51) and App.(A), is
[S 4(21,2500)] = [#(27)] [ (n)] [a(z,)]' (5.66)
or with Eq. (5.62)

[$4(215255m)1 = [6(z))7 [H(m)T [Sp(m)T [ ()17 [o(z,)1

(5.67)

[Sd(z],zzn)] can be written more explicitly as

( Suu(z1’22’") Suv(zl’ZZ’n) Sue(zi’ZZ’n)

[Sd(ZPZZn)] = SVU(ZT’ZZ’n) SVV(Z'l’ZZ’n) SVG(Z] :Zzsn)

Lseu(z1’22’”) Sey(215Z9an}  So(245255n) ]

(5.68)
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A typical term, Sue(zi;zz;n) for exahp]e; is the cross spectral density
function of the randem variables u at height Z; and 6 at height z,. The
covariance matrix of the response is the integral of the}spectra1 density

matrix [Sd(z],zz.n)] over the frequency. That is

o0

[cﬁ (z952,)] = ‘f [S4(z1s25,0)] dn - (5.69)

For z472, the diagonal terms of the covariance matrix are the mean square
values of the response at that height and the correlations coefficients
may be obtained from the off-diagonal terms. At the top of the

building, for instance, those values become

]

ok (H) = o[ S (Hon) dn (5.70)

o2, (H) = JwSW(H,n) dn (5.71)

of, (H) = ofmsee(u,n) dn (5.72)
and : stuv(H,n)dn

p. (H) =2 (5.73)

v 7y (o (H)
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..J.Sue(ﬂ?n)dn
pyy ) = F—— (5.74)
g,y (Hog o (H)

o]

J sesttman

(H) (5.75)

0
v o,y (Mo, e(H)

The spectral density matrix of accelerations can be obtained from the

spectral density matrix of displacements by the following relationship:
4
(s, (z2:2p0n)] = (2m0)* [S4(zq52550) (5.76)

The covariance matrix for accelerations, therefore, is

(=]

(62 (27,2)] = | [5,(zq.2um)]dn (5.77)

Because it was assumed that the input forces were stationary Gaussian
random variables with zero means, the response components of this linear
structure are also Gaussian and have zero means. Therefore, the

covariance matrix is sufficient to define all the response statistics.

5.4 - Maximum values of response:

Critical values of displacements occur at the corners. At the top

of the building the along-wind and across-wind displacements of a corner,
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X = g-and Y = %« for eXampIe; can be found

The spectral densities of uc(t) and vc(t), from App. (A), are

uc(t) = u(H,t) ?-% o(H,t)

Vo(t) = v(H,t) + g- o(H,t)

Wa
Suc(n) = Suu(H’") 2 See(H'") -

= ' -D-
FORENCDRS SR

2

and the mean sqaure values

!
™~
=

+2-'2”

2 § R, [S,,(Hun)]

D

Rg [S,(Han)]

"Oyu %

"Oyy o0

(5.78)

(5.79)

(5.80)

(5.81)

(5.82)

(5.83)
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The expected maximum values of these dfsp1acéments can be calcuTated‘

max u

1
=
+

«
e}

o= T, (5.84)

max v (5.85)

O
1

(9]
j=]

<
Q

<

where EE and VE are the mean displacements of the corner due to the
static mean wind load. Their values are

Iy =T () - § 5 - (5.86)

V.=V )+ D s | (5.87)

with u(H), v(H) and B(H) being the mean displacements and rotation at
the top of the building. The parameters 9y and g, are called the peak
factors discussed in Chapter (4). Applying the results to this

problem it can be wirtten

0.577
g, s\f2Tog v, T + e (5.88)

\/2 log v, T

..0.877 . .
g, =\f2Tog v, T + ————— (5.89)

\/2 Tog vy T
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where

v, = < ’ (5.90)

[ n? s, ()

vy = O'm (5.91)

j 5 c(n)dn

o

and T 1s the averaging time interval in seconds (generally T=3600
seconds).' Tﬁe expected maximum values of the accelerations can be found
similarly by replacing the displacements with accelerations in Egs.
(5.78) through (5.91). The mean values of accelerations are always

zero.

5.5 - Spectral density matrix of the excitation:

To complete the formulation the evaluation of [SF(n)] will be
given in this last part. From Eq.(5.60) and App.(A) it can be

written

~H
5] = [[ Tolz) 1L (a2l e(zp)] gz, (5.92)

o

where [Sf(z1,22,n)] is 3 x 3 spectral density matrix of the force vector

{f} and can be written explicitly
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o

Sxfx Cfxfy  fxfo

[Se(zpazpomd] = | Sevee  Seyry  Styfe (5.93)

S S

fefy  “fofe

Stofx
in which a typical term Sfifj = Sfifj(zl’ZZ’") represents the
cospectrum of the forces f; at height z, and fj at height z,.

Since the recent investigations have indicated that the across-wind
and along-wind forces are uncorrelated [16], it can be assumed that

S 0 o (5.94)

Sﬂw= Wﬂ=

The remaining terms of [Sf(zl,zz,n) can be determined as shown below.

1. Sfxfx(z1’22’n) :

From Eq.(5.25) and App.(A)

w/2
Starx(11o22o) =[] 5, 5 (a21ampeen) drgiry (5.95)
-w/2

Using the expression for Sp b “given in Eq.(4.16) with Eqs.(4.19,4.20)
xtx

Eq.(5.95) can be written
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1/2 172
2 .
Sfxfx(zl’ZZ’n) = (pCD) VO(Z1)V0(22). Sw(z1,n). Sw(zz,n) (5.96)
W/2
2ng
. || exp|- (c ly—yI+Clz-Zl)dedy
fj [ Vo(z1)+vz(zz) ytv1 72 z!'°1 "2 172
-W/2 ‘
After the integration
Sfxfx(zl’ZZ’n) -
1/2 1/2

_ 2
= (oCp) .Vo(z1)vo(22) Sw(zl,n)sw(zz,n) JyT(Zl’ZZ’") J,1(24525.0)

(5.97)
where
2 -E C
20 :
J. (29.2,50) = (e Y+ EC -1) (5.98
g 1*°2 (EC )2 4 vy )
Y
E.CZ )
JZ](Z1,22,H) = exp ( - _TT""lzl - zzl J (5.99)
with
E = — 2Nl (5.100)

B VO(Z]) + VO(ZZ)
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2. Seoelzy52500)

From EqQ(B.B) and App;(A) it can be written

= (1 in? 2 e :
. sfyfy - ('2"9“) VO(Z]) VO(ZZ) SCL(n) QXZ(Z]’ZZ’H) ‘Jzz(z] ’ZZ’n)
(5.101)

where SC (n) is the spectral density of the 1ift coefficient CL and is

L .
given in Eq.(3.9) As mentioned in Chapter 3, the given values of ¢ and
its spectrum includes the horizontal (chord-wise) correlation of the

vortex pressures on the side faces; thus

3o (Z12gem) = 1.00 | ~ (5.102)

For correlation along the height (spanwise correlation) there is no
analytical expression currently available, but the labortary tests

show that it can be approximated as

Jzz(z],zz,n): d(z] - zz). 2 L, (5.103)

where L. is the correlation length (LC = 3 U for square sections)
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3. Spop {2ysZ,.0) 2
£ f 12

From Eq.(5;27), App;(A) and with the assumption that Py and Py

are uncorrelated it can be written

W/2

Sfefe (21,2,.n) = fj ¥1¥2 prpx(y1,z1,y2,zz,n) dy,dy, +
-W/2

. D/2
+ {J x]xzspypy(xT,21,x2,22,n)dx1dx2 (5.104)
-D/2 ‘

The first integral, 11, can be determined using the similar procedure

given in part (1). Thus,

W/2
» 1/2 1/2
L= ©Ch)™ V{2V (2,)8, (245n).5 (2,,0) J{ ¥9¥o
~-D/2

exp [- E(Cy[y1-y2|+CZ[z]-zzl)] . dyy. dy,. ( )
5.105

or after integrating

I, = (pCD)2 Vo (29 V(255 (n) 35(z1,250n) 9 4(27.25,n) (5.106)
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where
2

| EC. -EC
Jy3(z1,zz,n)+w4\:1 S S [1—(1+—fy—)-e yH

2 4
GECy Z(ECy) (ECy)

(5.107)

‘ E CZ
J23(21’22’n) = exp {- - |z1—z?[ (5.108)

The second integral, IZ’ shows the influence of the distribution of the
vortex shedding pressures on torsional moment. Since it was assumed that
the total vortex shedding force acts at the middle of the side face and
the 1ift coefficients include the sidewise correlation it may be taken
12=0. Implicit in this approximation is that the pressures on the side
faces due to the vortex shedding are fully correlated in the horizontal

direction. This is a nonconservative assumption for torsional motions.

4, Sfxfe(zI’ZZ’n) :

From Eqgs.(5.25) and (5.27}, App.{A) and the assumption of Py and Py

being uncorrelated it can be written

W/e
SfoB(Z'! :Zzan) = - ff .yz prpx(y],Z.Pyz,zz,n)dy]dyz (5]09)
-W/2
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SfoG(ZT’ZZ’n) = ,(F’CD) VQ('Z'])VO('ZZ)SW‘(‘H) Jy4(21322,ﬂ)dz4(21,229n)

(5.110)
where _
W/2
Jy4(z},zz,n) = fj Yo €XP [ -Ecy lyl-yzley1dy2 (5.111)
-W/2
and
ECZ
qu(z1,zz,n) - exp [~ o [Z]-szJ (5.112)
It can be shown that for above boundaries of the integration
J, (z4.2,5n) =0
Yg 142
Therefore
Sfxfe(ZT’ZZ’n) =0 {5.113)

5. Sfyfe(zl’ZZ’n) :

From Eqs.(5.26) and (5.27), App.(A) and with the assumpticns made
earlier it can be written
D/2

Seyfa(2qsZgon) = ff X spypy (X722¢2X522Z550) dxqdx, (5.114)
-D/2
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If 1t is assumed that the chordwise correlation of-py is the function
of Ix1-x2[ . for every z; it can be shown; then, that with the

boundaries given ahove this integral is zero; Therefore

Sfyfe(zl,zz‘,n) =0 _ ' (5.115)

5.6 - Numerical Examples:

Using the formulation given above a computer program was deve]oped
to analyze buildings of rectangular cross-section under wind loads. The
program allows a linear variation of the mass, stiffness and damping
along the height as well as variations of the coordinates of the mass
center and the elastic center.

Several aspects of the numerical solution of the above equations
should be mentioned. The {inversion of the comh1ex matvrix in Eq. (5.65)
and the double integrations in Eq. (5.92) were performed by using the
library subroutines of the Digital Computer Library at the University
of I1linois, Urbana-Champaign. A1l single integrations were evaluated
by using Simpson's method. Using only ten points to evaluate the inte-
grals over the height was found to be satisfactory when the integrals
.involved along-wind and torsional force spectrums. To evaluate the
integrals involving the across-wind force spectrum as many as thousand
integration points were required for a reasonable accuracy. The reason
for this is the fact that the across-wind force spectra has a very sharp

peak at Strouhal frequency which varies with height while the spectra
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and correlation functions of along-wind and torsional forces vary rather
smoothly with height. It was also necessary to use a frequency interval
that was very small in order to accurately define all the sharp peaks of
the response spectra. After a few test runs a frequency increment of
0.005 cycles per second was found to provide an accuracy of the integra-
tion with an error less than one percent. For the uncoupled cases, the
peaks of the response spectra are at the natural frequencies of the
structure; therefore, a frequency sequence with very small increments
around the natural fregquencies and with ]arger increments in the other
parts would be an appropriate choice. When the equations of motion are
coupled the exact Tocation of the peaks of the response spectra are
unknown; therefore, the freguency sequence described above is not
applicable. In this analysis the frequencies were started from zero and
increased by 0.005 cycles per second up to the frequency which is two
times that of the largest natural frequency of the structure; then, the
the increment was increased to 0.05 cycles per second and was stopped
when the frequency reached the five times that of the largest natural
frequency.

The significance of the frequency spacing becomes evident when one
considers that for each frequency the complex matrix of Eq. {5.65) must
be inverted and the double integrations of Eq. (5.92) are evaluated;
then, through EQ. (5.67) the spectrum curves of the responses are
obtained. In a structure with the highest natural frequency of 0.4 cps,
for example, the frequencies up to 2,0 cps are considered and the number
of the frequency points is 250 in the first mode approximation. For

the two mode approximation, however, the upper bound of the frequencies
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considered was 6 cps, three times that of the first mode approXimation
and the number of the frequency points was 750. In addition to that,
the size of the matrices that are dealt with becomes 6x6 for two mode
~approximation whereas it is 3x3 in first mode approximation. Thus, the
second mode approximation involves inversion and double integration of
6x6 matrices 750 times while the first mode approximation involves
inversion and double integration of 3x3 matrices 250 times. The cost of
the two mode analysis was five times that of the first mode analysis for
above structure. Only first modes were considered for each direction
of the vibration in most of the buildings analyzed below.

One might reduce the cost by using a modal analysis technique
whereby the first and second mode responses would be calculated sepa-

rately and the results combined in an appropriate manner. This means
a further reduction in accuracy, however. Computationally, this is
equivalent to two first mode analyses. This approxfmation and the
contribution of the second modes will be investigated in an example
later, It should be noted, however, that theoretically, the response
statistics of the building is not only the sum of those of the
individual modal responses but also depends on the correlation between
them. This can be shown mathematically if the statistics of one of
the responses, u(z,t) for instance, is investigated. Using only two

terms Eq. (5.44) is

U(Z,t) = ¢](Z)q1(t) + ¢2(Z)q2(t) (5-”6)

In terms of the spectral densities it can be written
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S,(zn) = ¢8(2) 5, () + 45(2) S, (n)

1 D%

+ ¢](z)¢2(z) [Sq1q2(n) + S q1(n) ] (5.117)

9

The first term on the right hand side is the first mode effect and the
second term gives the second mode effect. The third term represents

the correlation between two modes and in general will not be zero. Thus,
it is quite clear that the results would not be as accurate if modal
analysis were used. This will also be shown in an example.

In order to test the method of analysis given above, three struc-
tures were analyzed for which full scale measurements of responses were
avatlable. The first structure analyzed was the John Hancock building
located in Chicago, I11linois. The dimensions, natural frequencies and
damping values of the building and the direction and velocity of the
wind during the measurements were taken from reference [8] and are given
in Figure (5.2). The natural frequency and damping percentage for
torsion were assumed to be 0.25 ¢ps and 0.60 percent respectively.

These values are higher relative to the translational ones than what
would normally be expected in a rectangular building. The reason for
using higher values was the tapered shape and tube nature of the building
in which all the Tateral stiffness i1s located at the exterior of the
building. Since the building is very tall and slender it was modeled

as a flexural beam with varying cross-section. Only first mode shapes

for each direction of the vibration were used in the analysis.
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The reference wind velocity measured at nearby Midway Airport
during the test was 20 mph at a reference height of 40 feet. Simiu's
models were used for the velocity profile and the gust spectra. The
calculated mean wind velocity at the top of the building was 35 mph.
The results of the analysis and full scale measurements are also given
in Figure (5.2). The responses calculated using Davenport's velocity
profile and gust spectrum models were about 30 to 40 percent smaller
than those calculated above. The main reason for this was that
Davenport's velocity profile mode1 resulted in smaller velocities than
those of Simiu's for the same reference wind velocity. In this example
the tapered shape of the building represents a source of uncertainty
due to the fact that the structure of the pressures over the faces of
the building and their correlations are probably different than those
given earlier for rectangular buildings. In addition to that, the given
wind velocity is not the site velocity. It is a reference velocity
taken far away from the site. The latter one makes this example a
test not just of the modeling of the building behavior but also of the
modeling of the turbulent flow structure. In Tight of all these, the
results are remarkably good since the computed values of root-mean-
square displacement are within 10% of the measured quantities.

The other two buildings analyzed were studied by Van Koten in the
Netherlands [17]. The caracteristics of the buildings and the wind
direction and velocities are given in Figures (5.3) and (5.4). The
measurements of the along-wind and across-wind dynamic displacements

were made for the corners of the top of the buildings. Therefore given
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values of the standard deviations automatically include the effect of
the torsional vibrations. The ratio of the standard deviation of the
across-wind vibrations to that of the along-wind vibrations is also given
in Figures (5.3) and (5.4) for each bu11ding: The reason for giving
the ratios instead of the absolute values is that the measured values
given in reference [17] are not the absolute values but relative ones.
Again, the calculated responses agree quite well with the measured ones.

An interesting fact confirmed by the measurements and also found
through the analysis is that the amplitude of the cross-wind vibrations
is in many cases substantially larger than the along-wind vibration;
and thus too large to neglect in the wind analysis of a building. The
results also show that in spite of the gross simpliifications made in
defining the across-wind forces the suggested method of analysis gives
a very good prediction of the building's behavior under wind loading.
The current wind code does not give any provision for across-wind
vibrations. Thus, there has been no available method for designers to
use to estimate the across-wind vibrations of buildings.

The second part of the numerical work was directed towards inves-
tigating the effects of various structural parameters of a building on
its response. In these examples two basic buildings were considered.
The first building had the dimensions of W=80 ft, D=80 ft and H=400 ft
with the translational natural frequencies of nx=0.40 cps. and
ny=0.40 cps. The dimensions of the second building are the same as the
first one in plan, but with H=200 ft. The translational natural

frequencies for this case were n,=0.80 cps., ny=0.80 cps. The damping
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percentages were taken as 2% far all difections in both buildings. It
was assumed for both structures that the center of the mass was at the
center of geometry at every level along the height. The mean wind flow
was assumed parallel to the x axis and the reference wind velocity was
taken as 80 mph. which is the design wind velocity for I11inois measured
at 33 ft. height in an open field. Both buildings were assumed to be
in the center of a large city. Simiu's models for both velocity profile
and gust spectrum were used in the analysis. The most probable maximum
values of the displacements and accelerations of the corners of the top
of the buildings were calculated and then normalized by those which
would have been obtained by not including the torsional and across-wind
vibrations. The static rotation due to the static wind force was inclu-
ded in the latter quantities which were denoted by u_ and ﬂo in the
figures since it would normally be considered in the design. Therefore,
those normalized values show only the effect of dynamic across-wind and
torsional wind forces on the response. They were denoted by y and ry
for displacements and by &7 and i for accelerations. Three values of
the torsional natural frequency were considered for each case: smaller
than translational frequencies (ne=0.875 nx), equal to them (ne=nx) and
larger than them (ne= 1.125 nx).

The effect of nonsymmetry in the y direction (xe # 0) was investi-
gated for the first case. The center of rigidity was moved along the
x axis. Then, the variation of the normalized responses of the corners
on top of the building for the above values of n, were computed for each

buiiding. The results are shown in Figure (5.5) for the first building

and in Figure (5.6) for the second building.
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The results clearly indicate that the response ratios increase
significantly as the nonsymmetry increases and the torsional natural
frequency decreases. In the first building (H = 400 ft), for instance,
for ten percent nonsymmetry (i.e. x,/D = 0.10) and g = My =Ny the
expected maximum values of the corner displacements would be 1.26 and
2.01 times larger than those that would be predicted by neglecting
torsional and across-wind forces for u and v directions, respectively.
The values for accelerations are re = 1.20 and vy T 1.83. The ratios

are higher for smaller values of n, and smaller for higher values of n

0

The increases in the displacements and accelerations with increasing

g

nonsymmetry are almost equal in this building. Because the structure
is nonsymmetric only in y direction, the effects of cross-wind and
torsional vibrations are higher for the'y direction than they are for
the x direction.

For the second building, the variations of iy and ry with X, are
similar to those of the first building for the displacements. The
curves for accelerations, however, are quite different in this building.
While ry increases slowly with increasing Xgs o decreases and becomes
almost constant. Again, for ten percent nonsymmetry and n, = n_ =n

) X y
the response ratios are ry = 1.17, ry = 1.86 and ra = T1.12 re = 0.96.
The difference between the shape of the response curves of two buildings
can be attributed to the effects of the building height on the spectral
density functions and on the correlation functions of the wind forces.
The second case deals with the effects of nonsymmetry in the

X direction. In this case the center of rigidity was moved along the

y axis and the response ratios of the corners of the top of the buildings
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were calculated. The results are given in figure (5.7) for the first
building and in figure (5.8) for the second building. Again, the
increase of the response ratios with decreasing Mg is clearly shown.
The increase of the responses with increasing non-symmetry is rather
regular for all the components of the responses and also similar for
both buildings. Because the non-symmetry is in the x direction, the
components of the response iﬁ that direction are influenced more from
the rotational and cross-wind vibrations. The typical values, for ten
percent nonsymmetry (ye/w =0.10) and n. = n_=n

9 X y’
ry © 1.45 and re = 1.71 v 1.40 for the building of H = 400 feet;

are r = 1.51,
u

and ry = 1.50, ry = 1.49 and re = 1.80, ry = 1.04 for the building of
H = 200 feet.

The third and more general case involves the variation of the
center of rigidity along one of the diagonals. In that case, since
both along-wind and cross-wind forces contribute to the torsion, the
respense ratios are much higher than those of the previous cases. The
ratios, for ten percent nonsymmetry along the diagonal (i.e. xe/D = 0.10
and ye/w = 0,10) and for Ng =N, = ny, are r, = 1.82, rV = 2.31 and
rE 1.55, re = 2.25 for the first building; and ru = 1.63, r = 2.07

v
and re = 1.38, re = 1.43 for the second building. The increase of the
response ratios with increasing non-symmetry is also much sharper. The
plots of the results are given in figure (5.9) for the first building
and in figure (5.10) for the second building. Similar to the first

case, the accelerations of the second building are not influenced by

the non-symmetry as much as the displacements are.
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For the fourth case, the effect of the building's width on the
along-wind response of the corners was studied. This was shown to be
very important for the simple structure of Chapter 4. Three values of
W were considered for both buildings in this case. They are W = 80 ft,
W=160 ft and W = 200 ft. In order to keep the cross-sectional area
and the mass constant the values of D are reduced proportionally with
the increased values of W. The transiational naturail frequencies and
the damping were kept the same as they were before. Only two values of
torsional natural frequency, n

=n, and n. = 1,250 Ny, were considered.

6 6
Since for the above vaiues of W and D the along-wind forces are more
dominant, the nonsymmetry was considered only in the x direction.

Only the alongéwind direction response ratios were plotted. The plots
are given in figure (5.11) for the first building and in figure (5.12)
for the second building. As it can be seen from these figures, the
increase of the width results in highef displacements and accelerations
at the corners of the buildings. This is due to the increase of the
torsional component of the fluctuating along wind forces. For the
symmetric case of the building of H = 400 feet the response ratios,
forn, = 1.25 n ., are ru = 1.01, ru = 1.12 for W = 80 feet; ry = 1.06,

8

ry = 1.48 for W = 160 feet; and ry " 1.06, ry = 1.54 for W = 200 feet.

For a ten percent offset in the y direction (ye/w = 0.70) those values

become Py = 1.30, ru 1.48 for W = 80 feet; ry s 1.58, o = 2.04 for

2.11 for W = 200 feet. The response

W= 160 feet; and r 1.61, T
ratios of the second building are practically equal to those of the
first one. As can be seen from the figures the variation of the dis-

placement ratios with nonsymmetry is linear. The variation of the
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acceleration ratios is very close to linear for n_ = 1.25 ny but not

0

for Ng = Ny-
In order to investigate the accuracy of the first made approxima-

tion two symmetric cases, one with n, = n_ = n_ and the other one with

0 X y

ng = 1.125 Ny of the building of H = 400 were analyzed using two modes
for each direction of the vibration. The characteristics of each case
and the summary of the results are given in tables (5.1) and (5.2).

As can be seen from the tables the second mode contribution to dis-
placements is about one percent and may be neglected. The higher mode
contributions to accelerations are significant, however. The expected
maximum top-floor corner accelerations would be underestimated by about
15 percent if the higher modes are not included. For the normalized
values of which the plots are given the effect of the second mode
becomes less obvious since the normalizing quantity, toco, has

the second mode contribution.

It wés mentioned in the beginning of this section that the modal
analysis would not be as accurate for computing the response statistics
because the effect of the correlation between the modal responses would
be ignored. This was investigated in an example and the results are
given in table (5.3). A symmetric building with H = 400 ft and
Ng = hy = ny was analyzed by using the first mode only and the second
mode only for each direction. The results are combined by taking the
square root of the sum of the squares for standard deviations and by

taking the algebraic sum for the mean. Thus, in light of Eq. (5.87),

the expected maximum response, for x direction for instance, is
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approximated as

max u = a1st Mode " a2nd Mode *-/4guou)$st Mode (gucu)gnd Mode
Then, those results were compared to those of the two mode approxima-
tion. As can be seen from the'table, the maximum values obtained
through modal analysis are different, as much as 22 percent for i for
instance, than those of the two mode approximation because of the fact
that the modal analysis in this problem is equivalent to assuming zero
correlation between the modal responses. It is expected that for non-

symmetric buildings the effect of the correlation between the modal

responses would be even higher. The predictions of the maximum displace-

ments are quite close to the more accurate calculations because the
displacements are dominated by the first mode response. The accelera-
tions, U and ¥, are overestimated using_moda] analysis by 22 percent
and 6 percent, respectively. The eﬁgineer would need to decide if the
savings in analysis cost was worth the additional error.

In the last part of the analysis the résponses of the shear beam
model and flexural beam model were compared. Two symmetric buildings,
one with H = 400 feet and the other with H = 200 feet were analyzed
using a shear beam and a flexural beam model. The results for various
response characteristics are given in tables (5.4) and (5.5). As one
would expect the top-of-building responses of the flexural beam models
are higher, by about 30 percent, than those of the shear beam models.
The rotational responses were the same since the rotational mode shape

was assumed to be the same in both models. It would be expected that
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responses near the bottom of the structure would be larger for the

shear beam than for the flexural beam.

5.7 - Discussion and Conclusions:

A method for estimating the expected maximum dynamic response of
wind excited buildings was presented. The buildings were modeled as
either shear beam or flexural beam with varying cross-sectional proper-
ties. The along-wind, across-wind and torsional vibrations and their
couplings in nonsymmetric buildings were considered. The wind flow
was assumed to be perpendicular to one of the faces of the building and
only buildings with rectangular or square cross-sections were investi-
gated. Galerkin's method was used to solve the equations of motion.

The along-wind pressures and their correlations were represented
by the well known expressions that are already available in the liter-
ature, In Tight of the results of recent experiments the across-wind
forces were assumed to be mainly due to the vortex shedding [25], [16].
The spectrum of the across-wind force was represented by an expression
similar to that suggested by Vickery for tapered stacks [38]; except
different values of the Strouhal number, bandwith and correlation
length were used. Since the across wind forces on buildings have not
been as extensively studied as the along-wind forces they represent a
greater source of uncertainty in the analysis. The vertical and hori-
zontal variation of the cross-wind pressures, their correlations and the
variation of the force spectrum with different values of the aspect
ratio of the building need more research. Therefore, some approxima-

tions were required. The chordwise correlation was assumed to be
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included in the 11ff coefficients; then, the total across-wind force for
unit height was applied at the mid-point of the side face. This assump-
tion underestimates the torsional moment acting on the building. The
vertical correlation function of the side pressures was approximated
by a delta function and it was assumed that the total correlation length
remains equal to that of the test results. The along-wind and the
across-wind forces were assumed to be uncorrelated [16].

The torsional moment acting on the building was taken as fhe
sum of the torque due to the random pressures on the front face of
the building plus the torque of the across wind force due to the non-
symmetry of the building. Therefore, for a symmetric building the
across-wind force does not excite any torsional vibrations.

In spite of the assumptions that are given above the results of
the suggested method of analysis were found to be very satisfactory
when compared to those of the full scale measurements in three buitdings.
It was also found that using Simiu's models for velocity profiles and
gust spectrum results in a better approximation of the actual building
behavior than that which would have been found by using Davenport's
models. The results of both full scale measurements and model analysis
clearly show that the across-wind and torsional vibration of wind ex-
cited buildings can be important and should be considered in design.

In order to see the influence of the building characteristics on
the response, a parametric analysis was made on several model buildings.
The results of those examples indicated that, in general, the dynamic
response of the corners of the building increases as the torsional

natural frequency decreases and as the structural nonsymmeiry increases.
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Figures (5.5) through {5.10) show that neglecting the across-wind and
torsional vibrations, especially in the buildings which are non-symmetric
in the cross-wind direction, results in grossly underestimating the
corner responses. It was also shown in figures (5.11) and (5.12) that
the increase of the frontal width increases the magnitude of the
torsional vibrations as one would expect,

The first mode approximation for each direction of the vibration
was found to be satisfactory for calculating displacements but not for
accelerations. The contribution of the second mode was found to be
as high as 25 percent fof the root mean square value of the rotational
vibrations in one of the examples.

It was also shown mathematically and with an example that the
combination of the individual modal responses using modal analysis tech-
niques would not give as accurate of a prediction of the total response
as the more general method because the correlation of the responses
of the two modes would be ighored.

Finally, the comparison of the results of the shear beam model
and the flexural beam model was made. The flexural beam model was

shown to give larger top-story responses.
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CHAPTER 6

* SUMMARY AND CONCLUSIONS

A method for analyzing the three-dimensional dynamic response of
wind-excited buildings was presented. The wind and building models
used in the analysis are similar to those currently used for analyzing
along-wind reSpohse. The coupled along-wind, across-wind and torsicnai
vibrations are computed using random vibration techniques; and the
expected maximum translational responses and the torsional response
are obtained.

After discussing in Chapters 2 and 3 the structure of the wind
near the ground and the forces on buildings due to the wind, an investi-
gation of the response of several single-mass structures was presented
in Chapter 4. The objectives of this study were to identify which
wind and structural properties influence the torsional response and to
determine whether the predicted torsional responses are large encugh to
warrant extending the method to building-type structures. The fol-

lTowing conclusions may be made based on the results of this study.

1. Torsional response of a wind-excited structure can produce
displacements of the same magnitude as the total along-wind
response,

2, The dynamfc torsional response increases as the width of the
structure's exposed face increases, as the structural or geo-
metric eccentricity increases and as the torsional natural

frequency decreases.

3. The correlation between the torsional dynamic response

and the translational dynamic response is the highest
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when the torsional and the translational natural frequencies

are equal.

The method developed in Chapter 4 for computing torsional vibra-
tions of single-mass structures was extended to buildings in Chapter 5.
In addition a simplified model of the across-wind forces was also
included so that the three dimensional vibration of buildings could
be computed.

The along-wind pressures and their correlations were represented
by well-known expressions that are already available in the literature.
Across-wind forces were assumed to be mainly due to vortex shedding.
Since they have not been as extensively studied as the along-wind
forces some approximations in the mathematical modeling of the
across-wind forces were required. In the light of recent experiments,
the along-wind forces and the across-wind forces were assumed to be
uncorrelated. It was also assumed that the chordwise correlation of
the across-wind pressures is included in the Tift coefficients and the
total pressure for unit height acts at the mid-point of the side face;
the vertical correlation is quite local (i.e. correlation is zero
between to different point); and the spectrum of the across-wind force
can be approximated by a narrow banded Gaussian curve. The torsional
moment acting on the building was taken as the sum of the torque due to
random wind pressures on the front and back faces plus the torque of
the across-wind forces due to the nonsymmetry, if there is any, of the
building in across-wind direction. The simple two-degrees-of-freedom
structures of Chapter 4 were chosen in such a way that the across-

wind forces could be neglected.
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Only buildings with rectangular cross-section and normally incident
wind were considered. The buildings were modeled as either a shear beam
or as a flexural beam. Galerkin's method was used to solve the coupled
equations of motion.

Three buildings for which full-scale measurements were available
were analyzed. The calculated displacements were within 10 % of the
measured responses. This was believed to be very good agreement con-
sidering the nature of some of the simplifications required to complete
the analysis.

The next phase of the study was conducted to determine the influence
of various geometric and mechanical properties of a building on its
response. Expected maximum responses of the corners of the top of
the building were computed and normalized by those which would have
been obtained if the across-wind and torsional vibrations were neglected.
Thus, the importance of across-wind and'torsiona1 dynamic responses
could be ascertained. The results obtained for several buildings led

to the following conclusions:

1. The across-wind vibration of a wind-excited tall building
can be as much as several times greater than the
along-wind response and thus should be included in analysis
for design.

2. The torsional vibration of a building should be computed
for design if it is nonsymmetric or if it is symmetric and
its lowest torsional natural frequency is less than or

equal to either of the lowest transiational natural frequencies.
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3. The amplitude of the torsional vibrations increases as the
frontal width of the building increases, as the structural
nonsymmetry increases and as the torsional natural frequency
decreases.

4, Even a perfectly symmetric structure with normally incident
wind can experience significant torsional vibrations if its
frontal width is Targe and its torsional natural frequency
is Tow compared to the lowest translational natural frequencies.

5. The first mode approximation for each direction of the vibra-
tion is satisfactory for calculating displacements but results
in errors of approximately 15 percent for accelerations.

6. Computing first and second mode responses independently and
combining the responses does not give as accurate results as
the more complete method does because the correlation between
the modal responses is neglected. The error in the approx-
imation is on the order of 5 percent for displacements
and 20 percent for accelerations. This method is less
expensive, however. Thus, an engineering decision is re-
quired whether the savings in analysis cost is worth the
additional error.

7. The flexural beam model gives larger top-story responses than

the shear beam model by about 30 percent.

Due to the rather crude approximations made when defining the
wind forces on a structure, this should be considered as an interim
procedure. Further experimental research or full-scale structures is

required. The correlation between the pressures on the front face
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and on the back face of the structure is not fully defined. The avail-
able information on this problem involves the correlation between the
pressufes on two points which have the same horizontal and vertical
coordinates. In order to caiculate the torsional response more
accurately one needs to know the correlation between the pressures
on any arbitrary two points or the front face and on the back face of
the structure. The across-wind forces on buildings also need more.
research. The chordwise and vertical correlations of the across-wind
pressures and the variation of the across-wind force spectra for dif-
ferent ratios of the building's dimensions are not very clear and
represent the source of the greatest uncertainty in the above analysis.
The effect of the wind approaching the building at an arbitrary angle
also needs to be determined. It is believed that the worst case for
both along-wind and across-wind responses is for normally incident
wind. However, this is probably not thé case for torsional vibration.
When these problems have been investigated experimentally the results

may easily be incorporated into the above analysis procedure.
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Table 5.1 - Comparison of top-story responses of
one-mode and two-mode analysis

(ne =n, =n )

Yy

Displacements (ft) Accelerations (ft/secz)
One-mode  Two-mode One-mode = Two-mode
Approx. Approx. - Approx. Approx.
0.0862 0.0866 GU 0.2960 0.3404
0.1850 0.1890 oy 0.3110 0.3224
0.000756 0.000756 Gé 0.004274 0.005349
0.5818 . 0.5819 max Uc 1.3579 1.6532
0.7104 0.7287 max v 1.3742 1.5514

' 1.04 1.04 ra 1.15  1.18

1.02 1.02 rv 1.16 1.26
Building - I ‘ ny = ny, = ng = 0.40 cps

H = 400 ft
W=0D=80 ft



Table 5.2 - Comparison of top-story responses of
one-mode and two-mode analysis

(n8 = 1.125 n,=1.125n )

Displacements (ft)

One-mode = Two-mode

Approx. Approx.
0.0862 0.0866
0.1850 .1890

0
0.000564 0.000564

4]

0

0.5728 5749
0.7059 7244
1.02 1.02
1.01 1.01
Building - I

H = 400 ft

W=D=80 ft

Y

Accelerations (ft/secz)

=
1}

=
]

One-mode
Approx.

0.2960
0.3110
0.003968
1.3367
1.3553
1.14
1.14

n, = 0.40 cps
0.45 ¢ps

Two-mode
Approx.

0.3404
0.3224
0.004943
1.6217
1.5210
1.16
1.24
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Table 5.3 - Comparison of top-story responses calculated
by approximate modal analysis technique and

by two-mode analysis

Response Tst mode 2nd mode Sum of Individual 2 mode
(ft, sec) Contribution Contribution st and 2nd mode  Analysis
Contributions
Urean 0.2313 -0.0028 0.2285 0.2285
y 0.0862 0.0058 0.0864 0.0866
o, 0,1847 0.0158 (0.1853 0.1895
%y 0.000756 0.000097 (.000760 0.000756
% 0.2961 0.2801 0.4076 0.3404
o 0.3110 ‘ 0.0251 0.3120 0.,3224
T 0.004274 0.005360 0.006860 © 0.005350
max u 0.5818 0.0265 0.5802 0.5819
max v 0.7104 0.0638 0.7133 0.7287
max G, ©1.3579 1.4929 2.0181 1.6532
max VC 1.3742 0.9134 1.6501 1.5514
Building - 1 n, = ny =ng = 0.40 cps
H = 400 ft

W=D= 80 ft
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Table 5.4 - Comparison of top-story responses of
shear-beam model and flexural-beam
model (H = 400 ft)

Displacements (ft) Accelerations (ft/secz)
Shear. Flexural Shear Flexural
Beam Beam : Beam Beam
Model Mode]l | Model Model

0.2313 0.3051 - .-
0.0862 0.1146 X 0.2961 0.4117
0.1847 0.2478 oy 0.310  0.417
0.000564 0.000564 oy 0.003968 0.003968
0.5278 0.7529 max ﬁc 1.3367 1.7546
0.7059 0.9436 max ¥ 1.3553 1.7219
1.02 1.01 U - 1.14 1.07
1.01 1,01 ry 1.14 - 1.08
Bui]diné- I Ny =Ny = 0.40 cps
H = 400 ft ng = 0.45 cps

=D =80 ft

. W
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Table 5.5 - Comparison of top-story responses of
shear-beam model and flexural-beam
model (H = 200 ft)

Displacements (ft) Accelerations (ft/secz)
Shear Flexural ' Shear Flexural
Beam Beam Beam Beam
Mode] Model Model Mode1

0.0427 0.0569 - -
0.0173 0.0230 oy 0.1829 0.2577
0.0382 0.0514 oy 0.0460 0.0619
0.000116 0.0007116 Gé 0.002928 0.002928
0.1135 0.1498 max i, 0.9005 1.1730
0.1453 0.1943 max VC 0.5221 0.5481
1.03 1.01 re 1.19 1.10
1.01 1.01 ry 3.01 2.35
Building - I1I n=n_ =0.80 cps

X y
H= 200 ft g = 0,90 cps

W=0D-=80 ft
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Figure 2.1 Mean and fluctuating wind velocities and
‘autocovariance function
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Figure 3.3 Rectangular cross-section in arbitrary wind flow
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- Y+ x v 16+ g0 - g .yn F2(0,¥0)" - (0y-90)"

+ cbyx('a' - Z(q)yxé)' + (q;yxe)" - (ke.e')' = fe(z,t) (B.15)

where

©-
il

o =k Tu" - (yg.e)"] (B.16)

=
"

ky [v" + (xg.e)”] ‘ (B.17)

If Xo = Yo = 0 the equations are greatly simplified as given below

. - . nwyn
mu - ygme teut (kxu o= fx(z,t) (B.18)
v o+ a8 + v 4+ nyn . .19
mv xgme ¢,V (kyv ) fy(z,t) (B.1 ?
- ygmu + xgmv + 1.6+ Cq-0 - (ke.e')' = fe(z,t) (B.20)

This simplified form of equations can also be obtained if the coordinate
axis is chosen in such a way that xe(z) = ye(z) = 0 along the z axis.
In this case, the boundaries of the integrals over X and y in section

(5.5) should be changed accordingly.
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APPENDIX-A
RANDOM PROCESSES

In this section, a definition of a stationary random process will
be given and the mathematical expressions which characterize the pro-
cess will be introduced, The characterization of functions of random
variables will also be presented.

A schematic representation of a random process X{t) is given in
Figure (A.1). Each Xf(t) is called a sample function of the ensemble.
The mean function of the process, X(t), is given by the following

formula

X(t) = E [X(t)] (A.1)

Where £ [ 1 denotes the ensemble average. The mean function
describes the first-order'statistica] properties of a random process.
The second-order statistical property is defined by the autocorrelation

function, Ry x? which is given by

Ry, (tpoty) = E [X(t).X(t,)] (A.2)

A random process is called stationary if

Rux(tyatal = Ry (tp-ty) (A.3)
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With this definition it may be concluded that the mean function of a
stationary random process is constant. By denoting t, - t] =T Eq.

(A.2) becomes

RXX(T) = E [X(t).X(t+1)] | (A.8)

A stationary random process is called ergodic if its time averages are
equal to its ensemble averages. Thus, only one sample function would
be enough to describe the properties of an ergodic process. If X(t)

is ergodic, RXX( ) can be calculated as

T/2
X(t).X(t+1) dt (A.5)
-T/2

1

(t) T

Ryl) = Jim

The correlation function between two stationary random processes, X(t)

and Y(t), is called the crosscorrelation function, and given by

ny(T) = E [X(t).Y(t+1)] (A.6)

If they are also ergodic

» 1/2
Ryyle) = Tim 1 ERIORICHET ()
-T72

Two important properties of the correlation functions are given below

R (1) = R (1)  (A.8)

ny(r) = ny(-T) (A.9)
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and

IRy (T 2 Ry, (0) (A.10)

Ry ()] < [R(O).R (017" A

If the mean value of the process is zero, it can be written from Eq.

(A.4) that

2 - <2
RXX(O) = E[X°(t)] = Tex (A.12)

where dix is the mean sguare value of the process.

Another important function to describe a stationary random
process is the spectral density function. The spectral density
functions are defined as the Fourier transform of the correlator func-

tions and are given by the following equations

_ -12mnt
5, (n) = j R (1) e dr (A.13)
_ -iZmrt
S,y (1) = J Ry (1) dr (A.14)
where n is the continuously varying cyclic frequency. Sxy(n) is called

the cross-spectral density function since it involves two different

random variables. The product Sxx(n).dn represents the contribution
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to the mean square value from the values of the random variable lying in

the frequency range (n, n+dn). The inverse relations to Figs. (A.13)

and (A.14) are

o

Ry (1) = J S, (M) glemt g4 (A.15)
ny(T) = I Sxy{n) eianT dn (A.16)

-C0o

From the properties of the correlation functions following properties

for the spectral density functions can be written

Sxx(n) = SXX(-n) (A7)
Sxy(n) = S;X(n) = Syx(-n) (A.18)

The physical significance of the spectral density function can be seen

by Tetting v = 0 in Egs. (A.15) and (A.16)

R, (0) = J 5, (n) dn = oix (A.19)
Ry (0) = j S,y () dn = cf:y (A.20)

where oix is the mean square value of the random variable, X(t), and

2

oxy gives a measure of the linear correlation between the random
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variables X(t) and Y(t). The correlation coefficient, ny, is defined
by

2
o = XY (A.21)

6.0
XY XX'yy
For real valued random processes Sxx(n) must be real and even in view

of Eq. (A.17). For this reason Eq. (A.13) can be written

(n) =2 J RXX(T).COSZHTdT (A.22)
0

The inverse relation, Eq. (A.15), then becomes

RXX(T) =2 j Sxx(n).cos2ﬂTdn (A.23)
¢

Spectral density functions, with above definitions, are called the two-

sided spectral density functions since the frequency n ranges over

(~w,o)}. The physically realizable spectral density functions, the

so-called one-sided spectral density functions are the ones where n

varies only over (0, »). They are defined by

S0

[}]

ZSXX(n) (A.24)

]

S;y(n) ZSxy(n) (A.25)

These are the quantities measured in practice. With this new definitions

Eqs. (A.22) and (A.23) become
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U, =

o+
|~

H |
[ ky(z) 0% dz (8.5)
0

where k (z) is given by
k (z) = 6.3{(z) ' (B.6)

J(z) is the polar moment of inertia of the cross-section of height z
and G is the shear modulus. The potential energy of the external

forces, as given by Eq, (5.28), is
H .
Q= - J [fx(z,t)u + fy(z,t)v + fe(z,t)e] dz (B.7)
0

The total potential energy of the structure, then, becomes

VPE = Ub + U,C + Q0 (8.8)

For simplicity lets assume, for now, that the system is conservative
(i.e. no damping forces). By applying Hamilton's principle the action

integral, Ac’ can be written as the definite time intergral of TKE-VPE'

Thus,

2 2

H
J im0+ movl o+ 1,62 4 2xg.m.Gé - 2yg.m.ﬁé
0

1l2 Ilz l2
- kx(u—ye.e) - ky(v+xee) - kg0

+2f ut 2fy.v + 2f,.0) dzdt (B.9)
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The dependence of the cross-sectional properties and the forces on z
is not written explicitly for clarity. By Hamilton's principle the

action integral is stationary, such that

§A, =0 (B.10)

This condition yields the Euler differential equations for the integrand
of Eq. (B.9). For direction, for instance, the Euler differential

equation is given by [19]

sF _ 5 (aFy _ 3 (of 3 (of
Su 5t (aﬂ) " 3z (au‘ T2 (‘au)
9t
2 2 :
) oF ) oFy _
81282 (3.') + 2 (aulr - O (8-1])

3z

where

@ e 8

Fo= F (t,2,uU,V,0,0,V,0,u',v',0",1,V,0,u",v",0",u',v',8") (B.12)

is the integrand of the double integral in Egq. (B.9)
Application of the Euler equation for u, v and 6 directions and also
including the viscous type symmetric damping the equations of motion

can be obtained as following:

my - ygmé + o U+ " fx(z,t) (B.13)

X

VEXxXmitcev+oe "= , B.14
my xgme ¢V * o, f (z,t) ( )
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{Z(t)} = {g}.x(t)

where {g} is n dimensional deterministic vector

[R (1)1 = ECLZ(8)].[2(t+0)17) = [gh.R  (x) (g}

[s,,(n)] = {g}.Sxx(n).{g}T

where [RZZ(T)] and [Szz(n)] are nxn matrices in this case.

4. If
{Z(t)} =,J [g(z)]. (X(z,t)} dz

where [g(z)] is a matrix of deterministics functions of z

R, (1 = |[ (a(2)I0R (252,07 10a(2)1 Tz

[5,,(M1 = [[ [a@ILs (2,2, m)la(2)1 ez 02,

(A.37)

(A.38)

(A.39)

(A.40)

(A.41)

(A.42)

More on random processes can be found in references [15], [20] and

[31].
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APPENDIX-B

EQUATIONS OF MOTION FOR FLEXURAL BEAM MODEL

The kinetic energy of the structure, from Eq. (5.14), is
H
Tor = o | [m(2)i + m(z)¥% + 1(z)82 + 2x_(z)m(z)%
KE 2 g
0

- 2yg(z)m(z)ﬁé] dz (B.1)

The strain energy of bending can be written as the sum of the strain
energy of bendings about x axis and about y axis. From elementary

beam theory [19]

H

Uy = %J (k (2).[u-y (201" + ky(Z).[v+xe(z)8]"2}dz (B.2)

0

where kx(z) and ky(z) are the stiffnesses for x and y directions and

are given by

(B.3)

>
—
N
S
n
m
-
N
Nt

k (z) = E .1 (z) | (B.4)

Ix(z) and Iy(z) are the moment of inertias of the cross-section at
height z with respect to x and y axis repsectively, Em is the modulus
of elasticity in bending, and xe(z) and ye(z) are the coordinates of

the elastic center at height z. The strain energy due to twisting is
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S;x(n) =4 JRXX(T).COSZWn.dT (A.26)
0

RXX(T) = J S;X(n).c052ﬂn.dn ' (A.27)
0

The mean square value of X(t) is now calculated by

R 0) = J' S! (n) dn = o2 (A.28)
0

S' (n) =2 I ny(T).e—iZTmT dt (A.29)

where n varies only over (0, ®). The real part of S;y(n) is called the
co-spectrum, ny(n), and the complex part is called the quad-spectrum
Qxy(n)' ny(n) is a real-valued even function of n where Qxy(n) is

a real-valued add function of n. The cross-correlation function,

(A.16), now can be calculated as

[o2]

ny(T) = i ny(n).c052wann + i Qxy(n).s1n2ﬂnt.dn (A.30)
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For « = 0
0) = j C,y(n)dn = ol (A.30)
0

Using the definitions given above the following can be written for the
correlation and spectral density functions of the functions of stationary

random variables X(t) and Y(t).
1. 1If

I(t) = g1.X(t) + gg.Y(t) (A.31)
where 9 and g, are deterministic constants or variables

Ry (1) = oR, (1) + ggR (1) * gy0,[R (1) + R ()] (A.32)

S,2(0) = 675, (n) + 035, () + 0y9,05, (n) + S, (] (A.33)

yy yX

Z(t) = j 9(z).X(z,t)dz (A.38)
where g(z) is a deterministic function of z

Rzz(T)

JJ g(z])g(zz)RXX(Zl;Zst)dZ-lez (A.?)S) '

Szz(n) = JJ g(zl)g(zz)sxx(z],zz,n)dz]dz2 (A.36)



