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ABSTRACT

The upper bound 1limit analysis of perfect plasticity is
applied to obtain a formulation for the critical height of a
seismic-infirmed earthslope. The variation of the force
magnitude and direction along the slope elevation is accounted
for through two orthogonal seismic profiles. Based on earlier
work for the dead-weight case, a rotational logarithmic spiral
surface is again shown to be the most critical shape of
sliding surface for any seismic profiles. Results for dead-
weight induced instability obtained from the present model
agree well with existing values. Also in good agreement with
published values are the data for the constant and linear
seismic profiles. Appreciable reductions in critical heights
for a more general horizontal seismic profile are observed.
The reductions caused by a vertical seismic profile of similar
shape but with relative magnitudes of 0.1 and 0.5 times that
of the horizontal profile d;é shown to be rather insignificant.
The determination of the location of the most critical slip-
surface for a slope of specific géometry and height has also

been demonstrated with this model.
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CHAPTER I, INTRODUCTION

Earthquakes continue to be a subject of intensive studies.
The damage to properties and the widespread deaths that may be
traced back to earthquakes as the main cause are well-recorded.
In many instaﬁces, the severest destructions and greatest
number of casualties result from earthquake-induced landslides,
Records show that landslides occur most frequently on sloping
earthmasses. They are observed on the slopes of dams,
embankments and other man-made cuts; on the banks of rivers,
lakes, reservoirs, and along coasts as well as on mountain
slopes. For simplicity, such sloping earthmasses will be
referred to as 'earthslopes' throughout this report.

Because of the potential threats associated with these
landslides, there is an urgent need to advance the state of
the art to develop more effective methods for the assessment:
of such dangers. Common practice in such analyses involves
the neglecting of the more complex soil behaviors and
properties, as well as the simplification 6f the seismic
forces as being constant, While at the present, attempts
are underway by other investigators [Ref. 18 & 21] to more
precisely formulate the critical soil behaviors, this study

will be limited to the improvement of the analysis through



the incorporation of non-constant seismic forces throughout
the slope height. This 'study will not only allow for the
refinement of results, but would also shed light on the
possibility of incorporating the nonhomogeneity of some soil
properties. To this end, more realistic estimation on the
earthslope stability can be made with relative easé.
Historically, the study of an earthslope's potential
for collapse under its own weight has been the main concern of
the earth-structure engineers. Because of its geometrical
configuration, density, and strength properties, a slope with
a height above certain critical value may become too weak to
support the weight of its own mass. This soil mass is then
assumed to move downslope by the gravitational pull along a
well-defined failure surface., Practices have been to approach
the problem in a phenomalistic way, where the variety of post-
elastic soil behavior is replaced by a model of perfect
plasticity [Ref. 4 § 11-15]. The idealized homogeneous and
isotropic soil is further assumed to yield under the well-
known Coulomb criterion and its associated flow rule. Then
methods were derived to predict the existence of a slip
surface, which would yield without restrictions, carrying the
soil mass above it downslope. Among the more famous methods
are the slip-line method, the limit-equilibrium methods, and
the limit analysis approach. Of these, the limit analysis
approach is relatively easier and have applications to a

larger range of slope geometries.



The extension of the 1limit analysis method for the static
case to the case of seismic loadings is a logical step forward.
The existing approach involves eséentially adding to the dead-
weight of the potential collapse mass a pseudo-static force
simulating the seismic load. This force acting through the
center of gravity of the soil mass is expressed as the product
of the soil mass and a "seismic coefficient'". As shown in
Fig. 1, mYT is the soil mass and Ky is the seismic coefficient.
The choice of such a coefficient is to reflect the maximum
force exerted on the slope for the time history of an earth-
quake,

The criticism on this rather crude approach are: (i)The
seismic coéfficient of a slope is not a constant value during
any instant of an earthquake, Owing to the non-rigidity of
the soil layers, the reactive forces developed throughout the
height of the slope as a result of the movement of the ground
always vary. (ii)Because of the granular nature of the soil,
it is reasonable to expect the density and strength properties
to vary along the height as the consequence of different
degrees of water saturation inside the inter-granular voids
of the soil.

To get around the first problem, a more recent effort
[Ref. 17] was made to incorporate zones of different seismic
coefficients along the height to approximate the actual

variation (Fig. 2). While such approach is a definite

improvement over the earlier ones, there are also restrictions



to its applications, A conceivable difficulty is the case
where the variation of the seismic coefficient is so sharp
that a large number of thin zones have to be used. In the
presence of a secondary slope as shown in Fig. 2 with «>0,
the analysis will necessitate the handling of two different
slope geometries. In this case, rather than considering the
original slope with one knee (section BEDB in Fig. 2a), one
will have to consider a fictitious slope with two knees
(FEDGF). With the need to prepare a map of coefficient zomnes
for each profile of seismic forces at each instant, it would
be quite time-consuming when investigating the hazard of the
slope at intervals within the duration of the earthquake.

The next logical step towards a better analysis of the
earthslope is to develop formulations to account for a more
accurate seismic profile. The seismic coefficient as a
function of the elevation above the ground level must be
recognized, The vertical component of the seismic force,
neglected in earlier works, must be included. Through
appropriate interpretation, the vertical seismic profile
can a4lso be used to represent the variation of density along
the height as well., With more rigorous and general formulat-
ions, further implications of the possibility of incorporating
the profiles of strength parameters into the model can be made.

All these are undertaken in this study.



Since every mathematical model has its limitations, it
is the wise application of a model to different situations
that determines its usefulness and efficiency. The slight
chénges of the model for the analysis of the location of the
most critical slip surface in a given slope are demonstrated.
Further directions for the applications of the model, as well

as improvements for the future, are also discussed.



CHAPTER I1. THE UPPER BOUND THEOREM OF THE PERFECT
PLASTICITY LIMIT ANALYSIS

One of the most effective method of analysis of slope
stability is that of 1imit analysis. The theorems of limit
analysis were developed during the fifties. These theorems
are based on the generalized perfect plasticity model of
material behavior. With such a model, a material deforms
indefinitely or yield flows under a constant collapse load,
The stress-strain response curve beyond the elastic range
is represented by a horizontal line. Generally speaking,
the post-elastic strain behavior of soil can be approximated
by this model (Fig. 3). By such an idealization, work-
hardening or work-softening, which are usually not too
prominent at the onset of yielding, are neglected.

Another important assumption is that the changes in the
geometry of the yielding material are insignificant. The
direct consequence of this assumption is the result that
"when the 1imit (collapse) load is reached and the deformation
proceeds under constant loading, all stresses remain constant;
only plastic (non-elastic) increments of strain occur."

Subsequently, a number of theorems were established
through the consideration of virtual work and energy. These

theorems, when applied appropriately to analyze the limiting



state of the passing from the elastic to the plastic range,
have been used by several investigators [Ref. 4 & 11-15] to
determine the lower and upper bounds on the actual critical
load. The determination of the lower bound involves the
assumption of a stress state for the material body studied.
The stress field in a slope is usually complicated. This
presents a problem in calculating the lower bound. On the
other hand, it is with relative ease that one may apply the
upper bound 1limit analysis.

The upper bound limit analysis is based essentially on
two of the limit theorems, namely:

i) Initial stresses or deformations have no effect on the
plastic limit or collapse load, provided that the geometry
is essentially unaltered; and _ |
ii) The Upper Bound Theorem --- If a compatible and
kinematically admissible mechanism of plastic deformation
‘P* ‘p* p*

(Eijs ulj i

) is assumed, which satisfies the condition uf =0 on
the displacement boundary; then the loads T, & F;, determined
by equating the rate of external work to the rate of internal
energy dissipation, will be either higher than or equal to
the actual limit load.

In other words, the Upper Bound Theorem states that collapse
must impend or have taken place if a path of failure exists.

The external work rate is given as

W, = [T.ubtdA + [F.of’d
E = [Ty f iy dv 1
'



and the rate of internal energy dissipation is

. % o *
W = [o?.-e‘.’. av (2)

In the Upper Bound Theorem, a reference is made to a
kinematically admissible mechanism of plastic deformation. It
is often useful to consider discontinuous velocity fields as
such mechanisms. By discontinuous velocity field, it is meant
not an actual fracture type of discontinuity across a fixed
surface. Rather, this discontinuity is simply an idealization
of a continuous distribution in which the velocity changes very
rapidly across a thin transition layer (Fig. 4). Such
idealization is permissible provided that the stresses on. the
assumed discontinuity surface are chosen as the limiting
values of the stresses on the surfaces bounding the transition
layer as the thickness of this layer approaches zero. It
should be noted that the rate of internal energy dissipation
in this transition layer will approach a finite value in the

limit as the thickness of the layer approaches zero,

In the application of the 1limit analysis to soil by
approximating the stress-strain curve as an inclined and a
horizontal line (Fig. 3), the yield stress level used should
be chosen to represent the average stress in an appropriate
range of strain. As in all stability problems, the maximum
average stress mobilized over the whole of the failure

surface in a real soil will be less than the peak value and

-



more than the residual value, Its relative position between
these two limits is being determined both by the properties
of the soil and by the geometry and boundary stresses in the

problem to be analy:zed.

Like metals, soil as an engineering material can be
described by a yield criterion of its transition from an
elastic state to the state of plastic flow. It is genérally
assumed that plastic flow occurs in soil when, on any plane
at any point in a mass of soil, the shear stress T reaches an
amount that depends linearly upon the cohesion stress ¢, and

the compressive stress o (Fig. 5):
T =cCc + g°"tan¢ (3)

This is the Coulomb's criterion, in which ¢ is the angle of
internal friction of the soil. The two constants ¢ and ¢

can be looked upon as the parameters that characterize the
total shear resistance of the soil media. It should be noted
that for a purely cohesive soil (¢=0), Coulomb's criterion

is identical to Tresca's criterion for metal.

In dealing with plastic strain rates of an ideally plastic
and isotropic material, the principal axes of strain rate and
stress are assumed to be coincident. The direct consequence
of this assumption for a granular material like soil, whose
shear strength depends directly on the normal stress, is the
associated flow rule. The associated flow rule asserts that

any plastic deformation of a Coulomb material must be



10

accompanied by an increase in volume, or dilatancy, provided
that ¢#0. The result of this dilatancy is the inclination
of the strain or displacement vector at an angle of ¢ to the

shearing surface (Fig.6).

Since real soils are quite complex and theories proposed
to characterize them do not exactly describe their physical
behavior, discrepancies between theoretical and empirical
results should be expected. An example is the excessive
dilatancy predicted by the perfect plasticity theory.
Clearly, to account for the complexity of the problem with
more elaborate models will mean a trade-off of the convenience
for the physical reality. However, in certain circumstances,
such as the stability problems in soil mechanics, the
deformation conditions are often insufficiently restrictive:
for the soil deformation prqperties to affect the collapse
load to a great extent, The adoption of the limit analysis
based upon Coulomb's criterion and its associated flow rule

is justified. It is, therefore, used in the present study.
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CHAPTER III. FAILURE SURFACE

- ITI.A. The Neccessity for a Failure Mechanism

In the analysis of slope stability, the determination of
the critical height of the slope, the height at which the slope
is at the verge of collapse, yields an important criterion.
According to the Upper Bound Theorem, failure can occur if a
compatible failure mechanism exists in the body. A convenient
way to approach the problem is to assume that a single, well-
defined slip surfaée exists for the slope. If alvirtual
displacement is induced along the surface, the rate of the
input of work energy due to the applied forces would be equal
to or in excess of the rate of internal dissipation of energy.
This results in an indefinite or unrestrained shear deformation
along the length of the slip surface. The soil mass resting
immediately upon the slip surface is carried along and can be
treated as a rigid block undergoing rigid-body motion. The
soil mass beneath the failure surface is viewed as being
stationary (Fig. 7).

The velocity field in the sliding block is significantly
different from that of the stationary block, with an extremely
thin shear flow soil layer separating the two. Thus, the

earthslope is considered to have a discontinuous velocity
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field with the shear flow layer treated as a surface of
discontinuity.

With a Coulomb material like soil, the associated flow
rule requires a separation or overlap of the material on the
two sides of the layer to accompany a tangential velocity
discontinuity. The actual transition layer must have
appreciable thickness, but the idealization to a discontinuity
surface may still be useful. This is the case as long as the
very small thickness of the layer remains uniform throughout

its entire length.

II1.B. The Kinematically Admissible Mechanisms

Since the motion of the sliding block above the failure
surface is caused by the shear flow of the surface along its
entire length, the type of motion acquired by the sliding
soil mass then reflects the shape of the sliding mechanism
that carries it. Thus, for a translational failure mode, the
slip surface is neccessarily an inclined straight layer. For
the rotational failure without dilatation, the mechanism
would be circular in shape. However, this is only true in
the case of a purely cohesive soil (¢=0).

For most soils, where internal friction is significant,
a dilatation equal to tan¢ is observed according to the
associated flow rule (Fig. 6). With this, then the only

admissible failure mechanisms are the straight (plane) layer
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surface for translation, and the ¢-logspiral surface for
rotation (Fig. 8). The qualification for these two kinds of
surface is that they are the only ones that insure the
uniformity of the thickness throughout the surface length
during yielding.

That the plane surface of translational displacement is
admissible ié rather obvious. The shear strain rate vector,
inclined at an angle ¢ to the surface as a result of dilatat-
ion, is constant along the length of the surface. This
insures that every point on one side will displace the same
amount at a small time interval, thereby preserving the
uniformity of the thickness.

For the case of the rotational mechanism, an examination
of the geometry at the onset of yielding and at a small
interval later is neccessary (Fig. 9). Suppose the angular
displacement is d6; then the radius OA of an arbitrary point A
on the surface is moved to the new position OA'T. However,
this new position of the radius OAT will coincide with the
old position of the radius OB of the point B before the
displacement. From the geometry, AAT (=rd8) is neccessarily
perpendiculér.to OA7. Now, since AAT coincides with the
Velocity\vector, which forms an angle ¢ with the surface
according to the associated flow rule, then radius OB must

be greater than OA by an amount of rdé(tan¢). In other words,

OB - OK = rdo(tan¢) , (4
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or
r(6+d8) - r(6) = dr = retand-de. (5)

By integration, and noting that 0 and L stand for the initial
angle and radius, the equation for the only admissible rotation-

al failure mechanism is

T €

fE% = Itan¢de (6}
To %

or

tn(r/r)) = (e—eo)tan¢. (7)
Thus,

r = roexp{(e~eo)tan¢]. (8)

II1.C. The Most Critical Type of Mechanisms

In the discussion of Section III.B. above of the straight
and ¢-logspiral surfaces as the translational and rotational
mechanisms, the arguments were essentially based on the
geometric compatibilities., The question that remains is that
of these two types of mechanisms, which one would.be more
critical? That is, which one would be developed with the
least input of external work? For the earthslope under the
static loads, the ¢-logspiral has been shown to be the most

critical [Ref. 15]. However, it is still neccessary to find



15

out, for more complicated loading situations, whether this
type of failure mechanism is still the most likely to occur,

Since different shapes of failure surface will result in
earthslopes of different soil masses, the stress state along
the slip surface is mechanism-dependent. The process of
determining the most critical surface is thus controlled by
the consideration of the shape function and the stress-
distribution function. The problem is then reduced to one in
which both the shape of the mechanism and the resulting
stresses along the failure surface must be chosen in such a
way that the external loads from the soil mass above this
surface will be just balanced by the stresses developed at
the surface. At the incipience of any collapse, when the
stress state satisfies Coulomb's criterion, the flow of the
velocity discontinuity will then carry the block it supports
along. Of all the possible shapes that satisfy the above
requirement, the one that needs the minimum of applied load
would be the most critical. This then is the criterion of
optimization.

Using the techniques of variational calculus, the applied
load on a potential slip surface can be defined by a
functional (Fig. 10):

] 2, car 1214
W i[(dF") +(ar)21%, (9)

where de and dFy are the orthogonal force components of an
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infinitesimal soil layer at an arbitrary elevation. They are

defined as

de

YK Edh, and (10)

dF
y

YKyﬁdh. (11)

Here, Y is the specific weight, Kx and KY are the loading
coefficients, & is the length of the infinitesimal soil layer,
and dh is its thickness. For the static case involving the
gravitational force only, Kx=0 and Ky=1. For seismic loading,
both Kx and Ky are non-zero. The present formulation permits
the consideration of cases where the seismic load has a
vertical component; for this case, Ky#l.

To account for the variations of loadings along the
vertical and horizontal distances from the toe of the slope,
K, and Ky are allowed to be any functions of r and 6, the

X
reference polar coordinates, as

K .= Kx(r,e), and , (12)

K
y

Ky(r,e). (13)

The function § depends on the shape of the slip surface, the
geometry of the slope, as well as their relative positions with

respect to each other. (See Appendix B.) Thus,
£ = g(r,6,a,8). (14)

From the consideration of the geometry along the slip line,
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dh = ds.cos(6-7), (15)

where ¢ is the angle between the perpendicular to the radius

and the surface element ds, which is

ds = r.de/cosg. (16)
Therefore,
dh = f(r,0,z)de. (17)

With respect to the polar coordinates, and with 8, and oy,
being the initial and final angles of the slip surface, the

functional W may be expressed as

h

YE(T,0,0,8) [K,Zc(r,e)ﬂgz,(r.e)]l‘f(r,e,c)de- (18)
o]

=
]
D'y D

The additional equations are the equations of equilibrium:

ZFx =0 =3 f[rcoss-csind]ds - [YKxgdh = 0; (19)
XFY =0 = J[Tsin6+acosa]ds + [YKygdh = 0; and - (20)
XMO =0 = I[rcsing-rTcos;]ds + IY[ergsine+KYg(rcose-%g)]dh

= 0, (21)

These three equations can be simplified from the geometry, in
addition to the requirement that Coulomb's criterion of

t=c+otan¢ be satisfied everywhere along the slip surface to
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assure the onset of yielding. Thus, they become

%4

ZF - J (R,-B,)dO = 0; (22)
go
6h

Zr, - f (R,+B,)d6 = 0; and (23)
O
el‘l

EMO = J (Rg+Bz)de = 0, (24)
8o

with

R, = -g{(rcosg) 'tang+(rsing)']-c(rcoss)' = R (6,7,1',¢,c,0};

(25)
R, = o[(rcos6)'-(rsing)’'tan¢]-c(rsine)}' = R,(8,r,1',$,C,0);

(26)
R3 = o(rr'-rztan¢)-cr2 = Rs(r,r',¢,c); | (27)
B, = ye(e,r,a,8)K (0,r)f(8,r,5) = By(0,r,C,0,8,7); (28)
B, = yE(6,7,0,B)K (0,r)£(0,7,2) = B,(8,7,¢,0,8,7); (29)

By = v£(0,r,0,8) {(rsine)K, (0,r)+[rcose-4£(6,r,0,8) 1K (8,7))
= Bz(0,7,0,8,Y); (30)
where the R's are the reaction forces from the stress state of

the slip surface, and the B's are the applied forces contribut-

ed by the soil block supported by the surface.
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In minimizing the functional

®h
W = I P(0,T,0,8,7)de, ‘ (31)
8

0 .

subjected to the three constraints, it is neccessary to make

use of the Lagrangian multipliers:
I = P+A3(Ry-B1)+A,(R+B,)+A3(R3+B3). (32)

By the Buler-Lagrange differential equation for multi-variable

variational calculus, we get

1]

30 30738 ° 3o07a0 ©

ol 321 v 921 , 921 _ .

3T ~ 37756 T 37757 ¥ 37T - 0 and (33)
. |

ol 3?2l 921, 9?1 0. (34)

90100

From the fact that P, B,, B,, and B, are independent of ¢, it

is obvious that

oB; _ 3B, _ 3B, _ 3P
80 T4 A 0

= 0. (35)
With these, and the condition that

I
-0, (36)

Equation (34) becomes

3R, ., 8R, .., 3Rs _
CAaggt Phaggt *tAsyg 0. (37)
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Substituting into Equation (37) the expressions for R,, R,,

and Ry from Eqs.(25)-(27), we obtain

AM{-[(r'cosg-rsing)tan¢g+(r'sine+rcosa) ]}+r,{[(r'cosp-rsing)

-tan¢ (r'sing+rcosg) }1+rs{(rr'-r2tang)} = 0. (38)

To convert the coordinates to the cartesian system, the

following transformation indentities are used:

X = TCOS0; . (39)
Y = rsing; (40)
dx _ r'cosg-rsineg; (41)
ag 3

g% = r'sing+rcosg; (42)
x%-yg% = r?; and (43)
xg%*y%% = rr'. (44)

Equation [38)'is then reduced to

A [-tangdS-G3en, (- tang@L]+a, [xForyL-tano FL-yID)] = o.

(45)
Knowing that

X = (&, (46)

we get



21
Ai«tan¢~§§J+Ag[1-taﬁ¢g§]+Aa[x+y§§-tan¢(x§§-y)] =0. (47)
By collecting terms, it becqmes
(Y‘%)%*(X+%)+tan¢[($f'%)'(X‘*%\%J%] = 0. (48)

Translating the origin (0,0) of the x-y system to (-%%,%%) of

the new X-Y system (Fig. 11), the differential equation evolves

into:

Y& exstans(v-xqp) = 0 (49)
or

(Y-Xtan¢)dY+{(Ytan¢+X)dX = O. (50)
Substituting

Y = vX and (51)
dY = vdX+Xdv (52)

into Eq.(49), we obtain the following
(v2X+X)dX+(vX2-X2tan¢)dv = 0, (53)

Integrating Eq.(53), we get

dxX _ dv . vdv
,(-T(_ = tand)J—ler 'I-——z'l_‘_v +C0 R (54)

or
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&nX = tan¢[arctan(v)]-%2n(1+v2)+c0 . ‘ (55}
Since v=Y/X, then obviously

® = arctan(v) (56)

and
(r/X)2 = 1+v2, (57)

Therefore,
gnX = Btang-+4n(T/X)*+c | (58)
or  4nr = §tan¢+co (59)

From the boundary condition, where ?b corresponds to §5-

for the initiation of the slip surface curve,

gnr = D tangrc, - (60)

or C, = INT -6 tang. (61)

Substituting Eq.(61) back into Eq.(59), we finally get
T = roexp[(e*eo)tan¢]. : (62)

This is the equation for a ¢-logspiral. The ¢-logspiral is
then the most critical slip surface,

From the solution of Eq.(34), it is obvious that the
process of sblving the Eq.(33) will be even more tedious.
The solution will be very complicated, and will only result
in the profile of the normal stress distribution along the

slip surface. Since the normal stresses along the entire



23

surface are directed toward the center of fotation, they have
no contribution in the internal dissipation of energy for our
rotational mechanism. It is therefore sufficient to know
from the examination of Eq.(33) that the normal stress
distribution along the slip surface varies with different
loadings. |

Note that by means of similar derivations, the following
statement can be obtained: For the case where body forces as
well as soil non-homogeneity and anisotropy in cohesion are
considered only, the most critical failure surface is still

the ¢-logspiral.
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CHAPTER IV, DETERMINATION OF THE CRITICAL HEIGHT FOR
- “SEISMIC STABILITY

IV.A. General Formulation of the Seismic Force Profile

As shown in Chapter III, the ¢-logspiral surface may be
used as the failure mechanism in the stability analysis of an
earthslope under seismic loading situations. Following
traditional approach in slope stability analysis, we predict
the critical height of the slope rather than the critical
" load itself. Such a prediction is an upper bound on the
actual value, It is quite useful in providing insight to
the evaluation of the slope stability as well as guidelines
for the design of earth-projects.

Pertinent to the analysis of the stability of an earth-
slope under seismic loads is fhe development of a suitable
representation for the loads. In earlier works (e.g. Ref.
[20]), the seismic load is considered constant and in the
horizontal direction only. More recent studies (Ref.[7] to
[10]) considered the seismic load to increase with height.
In addition, studies have taken into consideration the
vertical component of seismic loads.

More realistically, the seismic profile is non-linear.

A convenient representation is to treat profiles of the



25

vertical and horizontal components as polynomials of the

elevation, as follows:

2 m
ao+a1h+azh f ... a_h

]
[}

m .
Jy.
Kx(h) jéo[ajh 1; and. (63)

it
]

o .
K, (h) b0+b1h+b2h2+ ... b h" .Eo[bth]. (64)
J=

However, to conform to the polar coordinates used to
describe the failure spiral surface, these must be expressed
in terms of ¢ and r. If the spiral is to pass through the

toe of the slope, then the height of any horizontal layer of

soil is (Fig. 12):

h = n-y, (65)
where

n = rpsinb, = roexp[(ﬁh-eo)tan¢]sin9h, and (66)
y = rsing = r-exp[(e-eo)tan¢]sine, (67)
with 8o S 6 5 6y (68.)‘

Substituting Eq.(65) into Eq.(63) for Kx(h), we obtain:
2
Kx(y) = a0+a1(n-y)+a2(n-y) + ... am(n-y)m, (69)
which expands to
K _(y) = a_+a n-a.y+a nz-Za +a 2+a n3-3a nz +
X e s DAL 2tagy *ag 3Ny

(m-k)yk.

2 m
3agny ~a3y3+ oo +amnm+amk21[§]n (70)
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Eq.(70) may be rewritten as

2 3 m 2 3
K (y) = (ag+tayn*a n+agn™+...a:mn )-(a;+2a,n+3an"+4a,n+

m, m-1 2 m, . m-2, 2
...am[l]n )y+(az+5a3n+6a4n +...am[2]n Jy©-
- -y M
(agrtagns...ay (310" Dy e (ag I Ty (D)
If we set
T riya.ni-] j
\)j = j;o[j]ain -(-1)°, (72)
Eq.(71) can be expressed as
mo m ;
K.(y) = 'Zovjy = _Zovj(r51ne) = K, (r,90). (74)
= J= _
Similarly, for Ky(y) with
7 (i, ni-d j (75)
. = . 1b. M (-1
UJ jzo[J] i (-1)/,
we have
n ; n 3
K - yd = ¥ M. (rsi = . 76
y ) jzouJY J_Z()}(:rs,lne) K, (r,6) (76)

IV.B. The Critical Height of a Toe-Spiral

A spiral that begins somewhere in the a-portion and
terminates at the base of the B-portion of the slope shall be
referred to as a toe-spiral. With the toe-spiral prescribed

as the failure surface, together with the seismic profiles
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specified along the slope, the critical height of the slope
may be derived.

The critical height of a toe-spiral is the height of the
slope at which such a failure mechanism can be developed so
that the soil mass resting upon the failure surface will be
carried down in the fashion of pure rotation. Yielding
impends when the loads from the rotating mass perform external
work at a rate equal to the internal rate of energy dissipat-
ion in the mechanism, It is then only neccessary to impose a
virtually small rotational velocity to the rotational block,
and require that the energy rate equilibrium be observed.
Equating of the external work rate tc the internal dissipation
rate will provide the basis for the calculation of the
critical height.

By means of superposition, the rate of external work
done contributed by the rotating soil mass DBED (Figs.12,13 §&
14} can be found as the rate of work done by ABEFA ( the
gross work rate), minus the work rate by ABDCA and CDEFC
(the fictitious work rate). Considering the region of ABEFA

first, we have (Fig.14):

W, = [dwlx + fdwly = Index +Il§QxdFy , (77)

with dF, = YK, (y)dA, (78)
dF. = YK ‘

y y(y)dA, (79)

X = rcose, and (80)
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y = rsing. (81)

Noting that

dy = (dr/de)sing+rcosgds
= sined[roexp{(e—eo)tan¢}]/de+rcosede
= (sinftan¢+cos6)rdd, (82)
and
_ - . 2 ,.2
dA = xdy = (singcosgtang+cos”g)r-de, (83)
we have
eh
Idwix = [ YQKx(y)r3[sinzecosetan¢+sinecosze]d6, and (84)
o O
. h . J 2 3
[dWly = gYQJ Ky(y)r [singcos“etan¢+cos g]da. (85)
8o '
For region ABDCA, we have:
. . . ¥p ¥p 2
Wy = [y ay, - l vﬂxx(y)[y(xzdy)1+£ YK, () [xGdy].  (86)
B B

From the geometry, the expression of x, can be derived from

tana =(y-yg)/(x3-x,) , (87)
so0 that

Xy = (xB+yB/tana)-y/tana = gz-y/tana (88)
for

Yp2 Y zp, (89)
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Thus,
A
dezx = JYQKx(y)[(Ez-y/tana)y]dy, and (90)
b4
AN
. 2
fdwzy - [aygxy(y)[(gzuy/tam) 1dy. (91)
7B
Similarly, for region CDEFC:
) YE A )
Wy = fdw3x+de3 - IyQKx(y) [y(xsdy)]‘+f LYK (y) [x3dy],  (92)
I Ip
where from
tang = (yg-y)/(xz-Xg) (93)
Xz is derived:
X5 = (xgtyp/tang)-y/tang = gg-y/tang, (94)
for
yg2Y 2z7Vp (95)
Thus,
. A
[ais, = [Y9, 01 1(E5-y/tang)y1dy, and (96)
¥
Ve
ahy, = [srar ) [(5-y/tane) 14y (97)

p
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The above six equations, Eqs.(84,85,90,91,96,97), can be
expanded by substituting the expressions for K (y) and Ky(y)
into them:

. %h
fawlx ny
0

m - - -
) [vjr3+3(sin3+1ecosze+sin3+zecosetan¢)]de; (98)

0 J 0
% n . . .
rdwlY - 5JYQ.Z [ujr3+3(sin3ecosse+sin3+1ecoszetan¢)]de; (99)
¢ p m 541 342
dWox ~ JYQ,XO[VJ-(EZY -y? "4/ tana) 1dy; (100)
o J=
7B
. YJp n 2 41 542 )
dezy = %[YQOEO[uj(EZYJ‘ZEZYJ /tano+y’ “/tan“a)ldy; (101)
3:
7B
. YE m ‘el a2
[dwsx = IYQ’EO[Vj(€3yJ -y3*%/tang) 1dy; and (102)
J=
Ip
. ¥ n 5 541 s )
fdwft)f ) %[Yﬁ.zo[“j(gsyj'zﬁgy /tang+y? " “/tan“g)1dy.  (103)
J=
y
D

Eqns. (98) & (99) are expressed into more consistent forms

with the application of the following identities:

cosze = 1-sin26, | (104)
and

r = plexp(®tand)j, (105)
where

p = roexp(-eotan¢). (106)
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Thus, we have

3
. . h . . <
delx -va § [Vj93+3f eOUI*3)tane o553 g gind* 3 gs
j=0 3
o -
cosesin3+26tan¢)de], (107)
and
n eh
Idwl = 5YR ) [“-PJ+3J 66(3+3)tan¢(cosesin3e~cosesin3+ze+
y j=0 J 5
O
sin3+1etan¢~sin3+39tan¢)de1. (108)

Each of these two equations involves two integral forms,

namely:

]
[eAesinBBcosede, and JeA sinBede.

Their solutions are:

eAesinBe[Acose+(B+1)sine]

A%+ (B+1) 2

8
IeA sinBecosede =

__1752__?—JéAesinB-1ede, and (109)
A+ (B+1

B-1

g(Asing-Bcosg)  B(B-1)

Ages.

8 6

IeA sinBedg = & sin las L
~A°+B A*pB?

feAesinB'zede. (110)

After some manipulation, the iterative formulas can be

shown (App.C) as:

1

0 . int (3B) PR (R emtes B-25-1
JeA 51nBede eAe. 2 [gs](zs)![Aslng (B22$)c059151n 8
I [A“+(B-2t)°]
t=0
I{A,B]; and (111)

s=0
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A8 . B , .
JeAesinBBcosBdB _ e sin 8[Acos6+(B+1)sin6] AB I[A,B-1]

A2+ (B+1)2 A%+ (B+1)?

= J[A,B]. (112)

Ultimately, Eqs.(107) and (108) can be reduced to the

final forms:

1

. 3
delx yﬂroflx(r
[aw,,,

where

o,eo,eh), and (113)

It

YT S (70, 80, 0), (114)

oz om 8
r0 ..

j=0

1°-11(j+3) tand,
e0

143 . .
£1,.(1559,,6) vij {I[(j+3)tan¢,j+1
fn Oh
j+31 +tan¢J[(j+3)tang,j+2] }, (115)
8

[o] eC)
and

.3 N - 6h 9h
ros'.20“503+3{J[(j+3)tan¢,5é -J[(j+3)tang, j+2]
J=

fly(ro’eo’eh)

o 9o

6 6
+tan¢I{(j+3)tan¢,j+l]h-tan¢I[(j+3)tan¢,j+3]h}. (116)
Oo 8o

Next, the coordinates of the points B, D, and E of the
soil mass DBED are seen to be
Ygp < rosineo , ' (117)

Yp = rosineo+Lsina, and (118)

Yg = rhsineh-=.roexp[(eh-eb)tan¢]sin9h. (119)
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Therefore, from Eqs. (88) and (94):

1

£, = XB+YB/tan“ ro(coseo+sineo/tana) s and; (120)

£z vxE+yE/tanB =.roexp[(eh-eo)tan¢](coseh+sineh/tan3). (121)

The variable L, like H, is the geometric parameter
describing the rotating socil mass DBED. From the geometrical

configuration of the slope, we have the following relations:
rocoseo-rhcosah-H/tanB-Lcosa = 0; and (122)
rhsineh-rcsineo-H-Lsina= 0. (123)

The solution of these two simultaneous equations gives

explicit expressions for both L and H:

|
i

[rosin(eo+6)-rhsin(9h+8)]/sin(3-a); and (124)

Ja o
1

[rhsin(eh+a)-rosin(eo+a)]sinB/sin(B—a). | (125)

Then, Eqs.{(100) to (103) are all in integrable forms,

and can be expressed formally as

- _ 3 .
deZX = Yﬂrosz(ro,eo,eh), (126)
y 3
dey = %Yﬂrofzy(ro,eo,eh); (127)
3 .
YQrOfSX(ro’eo’eh); and (128)

ja ¥l
z.
|}

S—, T —
=
(%]
~
i}

3
= BYOr fq (r,0,0,), (129)
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where
j+2 j+3
.3 m ;Y ¥y b )
£, (r,29:8,) = 7 JEOV J+2 '(j+3‘)tanu]}rB ’ (130)
o n E).2 J*l 4 yJ+2 yI*3 .
Fay(Tgs00s &) = T, J_Zouj[ TGS Gravean allv (31
j+2 +3
_ -3 m -53)"34. : YJ
ey (P59 %) = Tg jZOVj[ 777 (3%3)tan31$ (132)
£4,(Ty, 04,0 5 Y [ggy.j*l A 115 33
3y‘Tor Y0’ n) T To j=0uj J+l (J+2)tan8 (J+3)tan B ;

The total rate of external work done is now expressed as

=
(]
=.
1
=
)
=.
]

3 de1X+dely-de2x-[dW2Y-jdw3x—IdW3y, or (134)

=.
I

3 :
= YQro[f1x+1§f1y—f2x %fzy %f ] (135)

The next step is to calculate the rate of internal energy
dissipation along the velbcity discontinuity surface BE, where
yielding occurs. From Eq.(2), this dissipation rate for an

infinitesimal surface element 1is:

dW; = (tT-cTtan¢)dads, (136)
where
f = rQcosé/t, (137)

with t being the extremely small thickness of the velocity
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transition zone resulting from the dilatation (Fig. 6). The
negative sign for the second term is neccessary because ¢
represents the compressive normal stress while ftan¢ stands
for the outward dilatation. Since the Coulomb's criterion

must be satisfied, from Eq.(3), we have
-otan¢ = c-rT. (138)

Substituting this into Eq.(136) and integrating over the

entire region of the mechanism results in

. t t

Ide = fj(crﬂcos¢/t)dAds = Eﬂ%EéierdAds. {139)
0 [«

v

Here, dA is the differential thickness of an element. The
extremely small thickness of the transition zone is constant

throughout. Noting that

ds = rd6/cos¢, (140)

we have for the total internal energy dissipation rate the

expression:
8
. cﬂeh 2 h 2
WI = -ff r'tde = cQ {roexp[(e-eo)tan¢]} de
€0 6o

mear’-{expl2 (e, -0 )tang]-1}/(2tang). (141)

Equating the external work rate to the internal rate of
dissipation:

We = Wo, | (142)



36

we have

. expf2(9, -0 )tan¢]-1 :
r, =S Pl ) (143)
ztang[(£),~£5, ~£5, ) *(E) £, ~f5 )]

-

By the Upper Bound Theorem, this means that any toe-spiral
satisfying the above equation will be a surface along which
yielding impends. Substitution of Eq.(143) into Eq.(135)
gives an expanded expression for H, the vertical distance of

the knee D above the ground, or the height of the slope:

_ C
H = 7-F(ro,eo,eh), {144)
where
F(ro,eo,eh)
(eh-eo)tan¢ Z(Gh-eo)tan¢
sinB[e . sin(6h+a)-sin(60+a)][e -1]

2tandsin(B-a) [flx-fzx—fsxﬂf(fly-fzy-fsy) ]
(145)

The critical height of instability is then the minimum value
of H attainable for a combination of ¢, o, and B, as well as

Kx(y) and Ky[y). It may be written as

H g%.N , (146)

® . * & & ' _
N = mln[F(ro,eo,eh)] = F(ro,eo,eh) , (147)
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x % *
such that r_, 9_ § 6, satisfy the conditions of

o] 0o

(148)

*
The dimensionless number N is the seismic stability factor

*
of the earthslope., The value of N is a pure number, and is

dependent on ¢, a, B, K (y) and KY(Y)'

Note that when the loading force is a constant (i.e.
zeroth degree polynomial in y), the function F becomes

dependent on 60 and eh oniy, and

F(Kx=Ky=constant) = F(9_,0;). (149)

Iv.C. Earthslope of Purely Cohesive Soil

A purely cohesive soil is one in which there is no
internal friction (¢=0). It is also called the Tresca
Material.

It is observed from Eq.(145) that

_ g(9)
F g-(w, | (150)

where

(6, -6 )tang 2(8,.-6 )tan
g(o) = single P O sin(e,+a)-sin(era)lfe P O -],
{(151)

and
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q(¢) = 2tan¢sin(8-a)[f1x-f2 ~f3x+%(f1y—f fSy)]' (152)

X 2y~

For $=0, function F becomes

g%%;%% - % ) (153)

By the 1'H8pital rule, we have

- {(¢) _ g'(0)
Lim &6y~ ooy (154)

Differentiating functions g(¢) and q(¢) from Egs.(151) and

F(9=0)

1

F(¢=0)

(152) with respect to ¢, collecting terms, and evaluating at

¢=0, we have

g'(0) = 2(6y-8.) [sin(8 +a)-sin(8 +a)]sinB, (155)
q'(0) = Zsin(B-a)[(flx-fZX-f3x)+%(fly-f2y-f3y)ilo. (156)
Accordingly,

(eh-e )[sin(6h+a)-sin(8 +a)]sing
F(r,,8,,0,)] = — < ° . (157)
¢=0 31n(8-a)[flx-fZX-f3x+%(flyjfzy-fsy)ilo

IV.D. Physical Ranges and Constraints

Since the problem concerned has been associated with
certain geometries, it is neccessary to identify the physical
constraints corresponding to the geometrical restrictions.
Applicability of the analysis to physical situations are
discussed in this section.

A total of eleven constraints, stemming from physical

considerations, can be identified. These are:
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CONSTRAINT

NO. .

. . c. exp[2(6h~ﬂo)tan¢]rl......... C o (158)
ii) rhsineh-rosineo—Lsina >0 (159)
iii) L > 0 : (160}
iv) flx-fzx-f3x+%(fly-f2y-fsy) >0 (161)

v) L/H > 0.1 (162)
vi} H/L > 0.1 (163)

vii) {exp[(eh-eo)tan¢]sin(eh+a)-sin(eo+a)}sinB/sin(B-a)> 0

viii) 6, > m-28-8, ' (165}
ix) 00 < m-2a-8, ; for purely cohesive soil only (166)
x) 8 > 8 (167)

xi) H_, > H ; for the determination of the location
of the most critical spiral for a slope
of given height only

(168)

The first constraint is the only equality constraint. It
is the same as Eq.(143), which must be satisfied for spiral
failure mechanisms.

The second constraint is similar to the second of the

two simultaneous equations for the slope geometry, Eq.(123)}.

Its inclusion in this list imposes the restriction that the
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spiral must terminate in the B-portion of the slope.

The third constraint requires that the spiral be started
out in the g-zone of the slope. Thus, the second and third
constraints assure the condition that tﬁe spiral traverses
both zones of the slope under investigation.

A close examination of the equation for the critical
height as formally stated in Eq.(146) reveals that the value
for the critical height can still be illusively positive yet
physically unrealistic. This is the case when both the
numerator and the denominator expressions are negative-valued.
In order to rule out such a possibility, the constraints
number 4 § 7 are introduced., As it may seem quite redundant
to use both expressions as constraints instead of just either
one of these, it must be pointed out that using both can
safeguard the function from assuming negative values. This
is extremely important as long as the optimization process
is concerned.

The fifth constraint essentially requires that the
spiral not be skewed towards and along the height of the
slope (that most part of it lies in the B-zone; Fig.1l5)},
whereas the sixth constraint specifies that a spiral skewing
out of proportions towards and along the top 6f the slope
(with most part inside the o-zone;Fig.15) is not acceptable.
Such skewing tendencies are observable when the slope angle o

is equal or close to the internal friction angle ¢, in
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addition to a small B angle. The presence of these skewness
usually results in critical height values that are very low,
Two reasons are given to dispell such skewing spirals. The
first being that for such spirals, the geometry is quite
different from the ideal picture on which the derivations

are based, So, results obtained may be questionable,
Secondly, even if these skewed spirals are perfectly alright,
the degree of hazard associated with them may not be as great
as the less-skewed ones. Based on these considerations, the
ratios are set as shown. Of course, they are subject to
relaxations or further restrictions, according to the
judgements of the investigators.

Constraint number 10 assures that the spiral does not
go backward.

The eleventh constraint is only applicable when the
problem is to locate the most critical failure surface in a
slope of given height (Refer to Chapter VI). It assures the
spiral height is not higher than the allowable height, that
of the slope.

Constraints 8 § 9 are related to the physical ranges of
the spiral angles 60 & Sh. The first of these two is more
general. It is derived from a consideration of thevexpression
for the length L, Eq.(124). For the length to be greater

than zero, the following must be true:

sin(60+8)-eXp[(Bh-eo)tan¢]51n(8h+ﬂ) > 0. (169)
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Since exp[(eh-eo)tan¢] > 1, (170)
then Sin(8o+6)-sin(9h+6] > 0. (171)
This can only be satisfied if

8, > %m-B, (172)

and
8,8 > LT or 6o*B < Lt o, (173)

The result is then for the first case:

h 8, (174)

which is reflected in the tenth constraint. For the second

case, it is

60+B > w—(eh+3), (175)

which is Constraint number 8. As for the ninth constraint,
the expression for the slope height H, Eq.(125), is used. In

order that it is positive, the following must be true:
exp[(6} -0 )tan¢]lsin (6, +a)-sin(B +a) > 0. (176)

If the slope under investigation is composed of purely

cohesive soil, then Eq.(176) becomes

sin(8,+a) > sin(e_+a), (177)
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or |6h+oe-35'n| < Hm- (8 +a). (178)
This gives

8, < ﬂ-Zd-eh (179)

and 6 < B

0 < B s (180)

which are Constraints number 9 and 10,

While much have been said of the constraints, the
importance of the ranges of the independent variables Tos 60,
and Gh must not be overlooked., Although no specific statement
has been made in the derivations, the validity of these

formulations can be easily seen to rest on the following

implied variable ranges:

0 <r <=, (181)
6, > 0, and (182)
6, < 7. (183)

However , to provide greater insight into the
applicability of these formulations as well as to expedite
the optimization process, better refining of these ranges 1is
neccessary. These narrowing down of the ranges can be
achieved by geometric and algebraic considerations. The
geometry of the model requires that the spiral be confined

within the slope by the perimeter of the slope. This results
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in the upper and lower limit for eo'and B, » respectively

(Fig.16):
8, < Hm+o-0, (184)
0 > HT+6-B (185)

The upper limit for 8 can be further refined by next
considering the expression for the slope height again,
Eq.(125). To satisfy the fact that H is positive, the

expression is reduced to

T .
sin(eh+a) > ?§Sin(eo+a)’ (186)
with 0 <r /ry <1, (187)

and the implied and established limits for 6, . It is obvious

that

sin(e,*+a) > 0, or (188)
0 < gp+a < m, or (189)
-0 < eh < M-Q. (190)

Accounting for the above refinements, the ranges now becomes:

0 < Ty < =, : (191)
0 <8, < km+$-a, and (192)
$T+¢-B < B, < T-q. (193)

These restrictions should further reduce the efforts needed

in the optimization.
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CHAPTER V. SPECIAL SPIRAL-SLOPE CONFIGURATIONS

The discussions presented in Chapter IV pertain
essentially to failure mechanisms with the ending at the toe
of the slope. However, for special cases, it is possible
that the spiral may terminate at some distance vertically
above the toe, or even stretched horizontally away from the

toe.

V.A. Sagging Spiral

Before discussing the special cases mentioned above, it
is worth noting yet another possibility, the case of a sagging
spiral (Fig.17). A spiral will be termed '"'sagging" if its
point vertically farthest away from the origin (M in Fig.l17)
is not its endpoint E. This point of the largest

vertical distance is a stationary point in the spiral:
y = rsing = roexp[(e-eo)tan¢]sin8. (194)

This point which corresponds to the maximum of y, is determined

by solving the equation:
dy/ds = 0 = roeXp[(e-eo)tan¢](tan¢sin6+cose). (195)

The solution is

em = L+, (196)
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From this, a criterion can be set to determine whether a given

spiral is sagging or not. Clearly, we have

&

ordinary spiral : N n

A

sagging spiral : eh > Bm

In view of the possibility of having a sagging spiral
failure surface, it is important that the analytical procedure
developed for ordinary spiral failure surfaces be re-examined
to determine its applicability to the case of sagging spirals.
That the procedure is equally applicable to both cases is
easily demonstrated. We note that the evaluation of the
external work rate contributed by the soil block BMEDB
(Fig.17), defined by the spiral and part of the perimeter of
the slope, is equivalent to the evaluation of the area inside
two curves Wl(y) and Wz(y). See Appendix B, 1In the case of

the ordinary spiral, the external work rate is calculated

formally:

W, o= de1x+de1y ; for yp 5y g yg » with boundary ¥, (y).
(197)

W, = de2x+[dw2y ; for yp < ¥ 2 ¥y

. . . with boundary ¥,(y).

Wy = de3x+de3y » for yp 5 ¥ 2 vy

(198)

For the case of a sagging spiral (Fig.17), it is

convenient to truncate the portion of ¥1fy)xat point M, and
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add the remaining portion of the curve to Wz(y), such that

(Wl)1 =‘de1 ; for yg 2

A
~
A

Y » with boundary Tl(y);

(W), = faW, ; for yg £y £y, » with boundary ¥,(y);
with Wy o= (W) +(H), . (199)
W, = fdW, ; for yg $Y S yp » with boundary ¥,(y)
(200)
Wy = fdWy ; for yp <y ¢ yg » with boundary ¥,(y)
Therefore,
. ®n . % . ¥ YE
iy - [y e,
0o Bh B D
. %, Y. Y&,
= J dW1+f dWl—l dwz-l dW3
Bo Om B D
°% . I . Y& .
- [ dwl-l dwz-l aw, (2019
o B D

Formally, this is the same as Eq.(134). Thus, the same
formula may be treated for both the case of the sagging
spiral and the ordinary spiral. In these cases, the formula
is applicable only when the entire length of the spiral is
above the ground level. |

The exception taken in the last statement is justified
by the constant seismic force beneath the ground level; in

contrary to the variation of the seismic coefficient above
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the ground, with the elevation. This essentially divides the

seismic coefficients into two regions (Fig.17):

Jao ; for h < 0
Ke(h) =< o 5 (202)
(a0+ y a.h’ ; for h > 0
j.—.l J
b, ; for h ¢ 0
K (h) = (203)
Y n
b+ 7§ b.hJ ; for h > 0
j=1
or
a, ; for y z n
K (y) = (204)
m .
J .
v:Y ; for y < n
520 J
b0 ; for y 2z n
Ky(y) = (205)
n .
J
Wiy ; for y < n
jzo J

A close examination of the geometry of the earthslope
and the possible combinations of relative position between
the slope and the spiral failure surface reveals that there
are basically four major categories of spiral failure

mechanisms. These are illustrated in Fig.18 and are
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categorized as follows:

i) normal --- (a) the spiral terminates at the toe and there
is no sagging (Ghéem,n=rhsineh).
(b) the spiral ends some elevations above the
ground and there is no sagging (6h§6m,
n>rhsineh).

(c) the spiral is sagging, but its end is
raised and it has no point below the
ground (6,>8_, n>rmsin6m).

ii) partially sunken --- the spiral is sagging; despite the
elevation of its end above the
ground, part of its length is below
the ground (6h>6m, rhsineh<n<rmsinem).

iii) sunken --- the spiral is sagging, ends at the toe, and

the portion between the end and a certain
point is completely below the ground (eh>em,
rhsin9h=n<rmsin6m, d=0).

iv) stretched --- the spiral is sagging, ends some horizontal

distance d from the toe, and the portion
between the end and a certain point is

completely grounded (6h>9m, d>0,

rh51n6h=n<rm51n6m).
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V.B. ~Raised Spiral

A spiral which has its end at an elevation above the toe
of the slope is hereby referred to as a raised spiral.
Typical slopes are shown in Fig.18,i.b,i.c and ii. For such
a spiral, the two simultaneous equations, Eqs.(122) and (123),
governing the dimensions of the rotating block are unchanged.
In fact, only minor modification of the formulations need be
made.

The modified expression for n is
n= roexp[(eh-eo)tan¢]sineh+HT , (206)

where HT is the height of the raised spiral terminal.

*
Corresponding changes in the expression for H are:

_C
H = Z-F(r,,0,,0,,Hp), (207)
with
F(ro,eo,eh,HT) = HT +
(6,,-6 )tang 2(6, -0 _)tang
singfe h "o sin(8h+a)-sin(eo+a)][e h_ 0 -11
2tan¢s,ir_1 (BTO‘)'[flx"fzx'f:’,‘x"%(fly' f‘zy'fgy) 1
(208)
% c *
such that H = =N (209}

-Y 2
* . : * % ® %
where N =_m1n[F(ro,eo,eh,HT)] = F(ro,eo,eh,HT). (210)
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® * L] *
In addition, s 80, eh, I-IT must satisfy the conditions:
3F OF " 9F 3F
= 0 . - 0 . —— 0 . = 0 . (211)
Ero ! G *o00y ! SHT

These modifications are sufficiently general and would include
the toe spiral as a special case (HT=0). When the raised
spiral qualifies for the first category as a .normal spiral,
no modification is needed.

For the spiral of the third category, (Fig.18.iii), the
sunken spiral, the raised height is zero, but the spiral
cuts through the ground level once. Referring to the angle
corresponding to the ground level point G (Fig.17) of the

spiral as eg’ the external work rate {gross) can be modified

as
O 8, 8,
J dwl = J dW1A+f dWlB s (212)
B, 8o 0g
where
% . 3 % _eg
[ dW1A = Yﬁro[flx(ro,eo,eh)\+%fly(r0,60,eh) ], (213)
8o 8o 8o
% %
f dWlB = [ Y9a0r3[sinzecosetan¢+sin6cosz6]&9 +
Bg Gg Gh
3, . 2 3
%f Yﬂbor [sinBcos™6tan¢+cos 61do (214)
5.5 2 g o
= Yﬂro[flero,eo,eh) +%fly(ro’eo’eh) 1, (215)

% °g



52

with
0 . On 8,
fB-(r 28,50 )|h = r 3 pS{I[Ztan¢,1]| ~I[3tang,3}| +
Ix*"0?"0*"h o "o
g bg 6g
On
tangJ[3tang,2]| 1}, (216)
Og
B eh _ -3 3‘ : eh eh
fly(ro’eo’eh)é =T, bop {J[Stan¢,0]ég—J[3tan¢,Z]ég+

n Oy
tangI[3tan¢,1]| -tan¢I[3tan¢,3]| , (217)
Og fg

Thus, the earlier equations for ﬁ Eqs.(113) and (114}, can

1!
still be used, as long as the Eqs.(115) and (116) are

modified as

£ L V8.8 it 218
lx(ro’GO’eh)I - 1x(r0,90,6h)[ 1x(r0’60’eh)l b ( )
8o 04 Og
6 ) )
h _ g B h
fly(ro’eo’eh)! - fly(ro ’eo’eh)! +f1y(r0’80,eh)| ’ (219)
eO 60 eg

The ground point angie eg can be found from the follow-

ing equation derived from the geometry:

(Gh-eo)tan¢ (eg-eo)tan¢

G1 =7r.e 51neh-roe 51n6g = 0 (220)

The elevation is to be carried out with Newton's iterative

root finding method:

o) = e g /6y, (221)
(eg-eo)tan¢

G = dGl/deg = r,e (tan¢sin9g+coseg). (222)
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The superscripts stand for the iteration number. For the

initiation of the iteration process, or at the zeroth

iteration, eéO) can be estimated by assuming that
0y _ . - .0

Since the possibility of divergency exists in Newton's
method, the following bounds will assure that such possibility

will be eliminated:

For the spiral of the second category, the partially
sunken spiral (Fig.18.ii), the raised height is non-zero and
the spiral cuts through the ground level twice. Referring
to the angles corresponding to the ground level points G1
and G, as egl and BgZ’ respectively, we have the following

expressions for the functions flx and f associated with

1y
the gross external work rate:
0 - 0 0
h €1 B g2
flx(ro’eo’eh)] - flx(ro’eo’eh)] "'flxcro’eo’eh)l *
60 eo Ggl
0y
£1x o208 (226)
g2
0 0 8
h 81 B g2
fly(ro,eo,eh)l = fly(ro,eo,eh)| +f1y(r0,eo,eh)| +
eo 6o Og1
n
£1y (T 0550) [ (227)
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The angles egl and Bgz can be found from the following
equation of geometric consideration:

(eh-e Jtang (6_-6 )tan¢
0 ; - B 0 i =
r e 51neh+HT T e smﬁg 0. (228)

Gz—

As before, the evaluation formula is Newton's iterative

formula:
(n+1) (n)
= - '
01,2 = 0412 "C2/C} » (229)
where Gy = 6y . (230)

The initial estimation for egl and egz are made in a similar

procedure as before:

() d 231

egl m eh s 81 ( )
(0)

02 = 20,70g1 - (232)

Their safety range for convergency are

8, < egl < g, » and (233)
8 < ng <8 . (234)

V.C. ~ Stretched Spiral

When the end of a spiral is stretched a horizontal

distance d away from the toe, the two simultaneous equations
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for geometry are changed to
rocoseo-rhcos6h~H/tanB-d-Lcosa =0, (235)

- - . - -' x = 2
ry sing -r sing, H-Lsina = 0, (236)

Solving these equations simultaneously, we obtain

L = [rosin(eo+3)-rhsin(eh+8)-d'sinB]/sin(B-a), CZST)

and

H = [rpsin(e;+a) -rosin(eo+d)+d'sinoasinB}sinB/sin(B-cx), (238)
h < T-0, (239)

with 0 £d <= 8y < ©

Accordingly, for the formulation of Xp» used in Eq.(121),

modification is neccessary:
Xp = rycosf +d, (240).

wherg it is noted that rhcoseh is negative because by is
larger than %m,

Also, since the spiral is sagging, the formulation for
ﬁl must be modified as in Bqs.{212) to (219) for the sunken

spiral. Eq.(144) now becomes

C .
H = V'F(ro’eo’eh’d)’ with

(241)
| _ d-sinysing
F(ro’eo’eh’d) sin(B-o) *
(8y,-8 Jtang , 2(0, -6 )tand
SinBIE.'hﬁl?ﬁ"'lSithh*ﬂ)‘Sin(eo+a)]{e, h "o - -1]

2tan¢sin(6-a)[flx-fzx—f3x+%(f1y-fzy-fsy)]
(242)
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®
The critical height H of the stretched slope is

*

H ‘N, where (243)

A

<0

=
H

% & % =

* * ] % - -
such that T 60, Gh; d satisfy the conditions:

_ o . OF COR

Eoag; F=0; om0 gt O (246)
0

or_

0

In addition, since a stretched spiral is neccessarily a

sagging spiral, the range for 9h must be restricted as
B < Bh < T-a. (247)

The other ranges and constraints for the simple toe spiral

still apply.
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CHAPTER VI, THE MOST CRITICAL SLIP SURFACE FOR A GIVEN
EARTHSLOPE

The determination of the critical height for a slope
of given geometry and soil properties is useful in that it
provides valuable criteria for the safety design of earth-
slope structures. However, for an existing earthslope, it
would be more vital to be able to predict the most critical
failure surface under a given seismic load. Investigations
of the cumulative so0il mass displacement of a slope during
an earthquake, similar to those suggested in Ref.[7] and
[10], may be carried out.

To accommodate the analysis of the critical slip
surface, in particular to determine the location of the
probable failure of the existing slope, only a few
modifications have to be made to the analysis presented in

the preceding chapters. Foremost, we have to set:
n = r051n60+L51na+HS , (248)

where Hg is the'height of the given slope and L is as defined
in Eq.(124). In addition, HT’ the elevation of the end point
of the spiral above the ground, is now no longer an

independent variable, but is given as

Hy = Hs-rhsineh. (249)
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With these changes introduced, the rest of the formulations
for the critical height of a toe-~-spiral can be used as
discussed in Chapter V.

As for H*, it is now defined as the vertical distance
between the knee of the slope and the end of the most
critical spiral. It can thus be used to specify the
dimension of the most critical rotating block of sc¢il mass.

In addition to the modifications to the formulations,
an additional physical constraint must be recognized,
namely:

H, 2 H (250)

Adding this extra constraint to the original constraints
assures that the height of the potential failure surface 1is

not higher than the physical height of thebslope.
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CHAPTER VII. CALCULATED RESULTS AND DISCUSSIONS

In order that the formulations developed in this study
can be readily applicable to related investigations,
computer coding has been implemented. A listing of the
computer program and some selected sample outputs are
included in the appendices for easy references. An in-house
optimization subroutine BIASLIB, developed by the Purdue
University School of Mechanical Engineering, Ref,[23], has
been used in the program. The program itself has been
subjected to testings and debuggings, and should contain a
minimum of residual errors.

A total of nine cases were investigated. Their results
are tabulated in this thesis.

The first two of these cases deal with a static
situation, with gravity as the sole influencing.force‘ The
stability factors associated with dead-weight induced
collapse were calculated. For the static case, the loading

profiles for the vertical and horizontal components are

K, (h)

K, (h)

1.0 (251)

0.0 (252)

Data for this simple loading are in abundance. The purpose
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here is to provide an indication on how good results from the
new model agree with the existing ones. Such a comparison
is possible because the present model is quite general and
that the dead-weight collapse is but one special case. As
shown in Tables 1 and 2, the stability factors are in good
agreement with the published values (Ref.[15]), both for the
non-stretched and the stretched spirals,

Also listed in these two tables are the coordinates and
dimensional parameters of the spirals., These parameters are
useful because they provide valuable insight into the
estimation of the coordinates of the most critical spifal
for a slope of similar geometry and properties. The
estimation corresponds to the choice of a feasible starting
point for the optimization process. This optimization
process can be quite sensitive to the choice taken.

Tables 3 and 4 present the results for the cases of
constant and linear pseudo-seismic profiles. The constant

seismic profile is taken so that

Ky(h) 1.0 (253)

K (h) = 0.325 (254)

Again, the stability factors obtained from our analysis are
in good agreement with the published wvalues (Ref.[17]).

It should be noted that for the linear profile, the
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profile itself is not the same for each slope. Instead,
shorter slopes have steeper profiles as tall slopes have more
gentle ones. This is due to the fact that the first
published data (Ref.[17]) for a linear profile were obtained
by imposing on the slopes a maximum of four zones of equal
thickness. These zones are of different seismic coefficient
values (K ,=0.25, K ,=0.30, K_,=0.35, K ,=0.40) to approximate
the original profile of linear variation (Fig.2). Such a
zone-restricting technique, which distributes the seismic
load linearly through the slope height, tends to subject
shorter slopes to heavier seismic loadings.

While it is neccessary to ascertain the validity of the
philosophy underlying this technique, we dispense with the
philosophical arguments and still use the published data to
check the results of our study. For this comparative study,
we first identify the equation of the seismic profile for
the slope configuration for a published critical height.

Thus, if the seismic coefficients for the slope are of the

form
Ky(h) = 1.0, and (255%)
kx(h) = b0+b1h, (256)

we may use equivalent data from the published data by

arbitrarily fixing as conditions the following:
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at H'/8 : K _(H'/8) = b_+b (i /8) = 0.25 (257)

*
at 7H'/8 1 K (7H'/8) = b +b (7H'/8) = 0.40 (258)

Solving these equations simultaneously, the coefficients bO

and b1 are determined:

%

it

0.225, and
(259)

by

[}

*
0.20/H

This, of course, reflects the inverse relationship between
the height of the slope and the seismic loading intensity.
With the loading profile for each slope calculated as
indicated above, the critical height can be analyzed using
the new model formulated. Calculated results compare well
with the previous published data as shown in Table 4.

The data in Table 5 reflect the reductions in critical
heights resulting from a more realistic seismic profile
{Fig.19). This profile was given in Ref.{8) and [10] for
earthdams up to 300 feet tall. The equation of the profile

can be approximated, between 0 and 50 feet of height, as

Ky(h) 1.0 : (260)

0.0057+0.0084h~0,000076h2+0.00000032h°, (261)

1}

kK ()

which is sufficiently accurate for the slope configurations
studied. The data obtained are shown to be larger (from 1.5

to 2.5 times) than those for the constant profile of 0.325
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in Table 3. On the other hand, they are less than those for
“the static case, as expected.
Tables 6 and 7 exhibit data corresponding, respectively,

to the following loading profiles:

K, (B) = 1.0+0.1K, () (262)
K, (h) = 0.0057+0.0084h-0.000076h%+0.00000032h° (263)
and

K, (h) = 1.0+0.5K (h) (264)
K, (h) = 0.0057+0.0084h-0.000076h%+0.00000032h° (265)

These calculations were made to understand the effect of a
weak vertical seismic component on the critical height. The
results indicate that while there are decreases in the values
for an increase of the vertical component, these decreases
are generally not too significant. This insignificant effect
can be observed for a vertical component as strong as half
the magnitude of the horizontal one. There are also
relatively no significant change in the spiral coordinates.
These small changes may be due to the fact tﬁat the two
component profiles were assumed to be similar. Therefore

any statements extracted from these two tables may not be
general enough to warrant the omission of the vertical
component profile in future works, as they might be quite

different in real life, More detailed investigations
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concerning the vertical loadings should be made in the future
when such profiles are available.

Tables 8 and 9 are the tabulations of the locations of
the most critical slip surface in slopes of different
configurationé. The height of the slope was given as 30 feet
in Table 8 and 50 feet in Table 9. Under loadings specified
by Eqs.(260) and (261), the soil near the top of the slope
experience the worst conditions and is the most likely place
for a spiral to develop. The two tables refiect this fact
and also the reductions in spiral heights as a result of the

more intense loadings of a taller slope.

In all these tables, some more or less common features
can be observed. They are:
i) stretched spirals are present only in slopes with low
angle of internal friction, ¢, and small slope angle B;
ii) sagging spirals are also found only when ¢ and g are
small, but their ranges are usually larger than those of
the stretched ones;
iii) partially sunken spiralé have not been studied completely

so far.

A close examination reveals a relatively general pattern
for the variations of the spiral coordinates for similar
configurations and loading conditions. This may be helpful
in choosing the feasible starting points for future analyses

with the computer coding.
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L ®
Table 1. Stability Factor N =H (y/c) for Dead-Weight Induced
Failure, Through Non-stretched Spirals.

¢

B ¢

B

(degrees)

0

10

15

20

25

0

i0

10

10

20

10

20

30
60
90

30
60
90

30
60
90
30
60
90

K. =0.
Loading Profiles: X
K, = 1.
Y
* * L % * *
N N Lo Yo e, 8y 0,
(publ.)* ( radians )]
6.43 ( 6.51) 6.54 11.70 0.288 2.156 0.986
5.25 ( 5.25) 4.37 7.73 0.327 1.581 1.561
3.83 ( 3.83) 3.50 10.02 0.479 1.003 =-----
9.14 ( 9.13) 5.75 14.98 0.427 2,048 1.259
6.16 ( 6.16) 4.17 8.41 0.386 1.563 -----
4.19 ( 4.19) 3.47 10,77 0.529 1,026 -----
13.50 (13.50) S5.58 21.31 0.571 1.986 1.497
7.26 ( 7.26) 4.04 9,25 .0.447 1.561 -----
-4.58 ( 4.58) 3.44 11.56 0.579 1.062 ~-----
12.99 (12.89) 11.89 27.67 0.671 1.942 1.544
6.99 ( 6.99) 5.17 9.96 0.445 1.562 -----
‘4,47 ( 4.47) 3.92 10.45 0.521 1.105 ~-----
21.67 (21.69) 5.77 34.93 0.732 1.939 1.725
8.63 ( 8.63) 3.96 10.31 0.512 1.568 ~-----
5.02 ( 5.02) 3.42 12.35 0.630 1.081 -----
21.16 (21.14) 9.26 36,60 0.730 1.945 1.718
8.38 ( 8.38) 4.87 10.86 0.506 1,580 -----
4.91 ( 4.91) 3.82 11.19 0.577 1.122 ~-----
41.22 (41.22) 6.46 73.65 0.917 1.891 -----
10.39 (10.39) 3.91 11,68 0.581 1.580 ~-----
5.51 ( 5.50) 3.40 13.30 0.684 1,110 -----
40.69 (40.69) 8.93 73.61 0.904 1.896 -----
10.16 (10.16) 4.68 12.13 0.573 1.587 ~-----
5.40 ( 5.40) 3.75 12.01 0.634 1.144 -----
38.81 (38.64) 18.63 76.15 0.887 1.909 -----
9.79 ( 9.74) 7.31 '16.01 0.669 1.570 ~-----
5.24 ( 5.24) 4.38 11.18 0.586 1.188 -----
120.64 (119.9) 11.74 300.15 1.160 1.820 -----
12.74 (12.74) 3.89 13.55 0.655 1.595 ~----
6.06 ( 6.06) 3.39 14.30 0.739 1.141 -----
119.33 (119.4) 12.02 286,17 1.139 1,824 ~-----
12.52 (12.52) 4.57 13.92 0.647 1.599 -----
5.95 ( 5.95) 3.68 12.91 0.692 1.169 ~-----
117.28 (117.4) 22.88 294.68 1.138 1.823 -----
12,14 (12.14) 5.91 14.74 0.646 1.605 -----
5.80 ( 5.80) 4.22 11.95 0.647 1.203 ~-----



Table

¢ o

1.

8

b Sevem— e——

(degrees)

30 0
10
20
30

35 0
10
20
30

‘40 0
10
20
30
40

Data

60
90
60
90
60
90
60
90

60
90
60
90
60
90
60
90

60
90
60
90
60
90
60
90
60
S0

published by Chen et al.,

(cont'd)

[14] and [15].

* [ ] n ]
N N 1 %L %ro 6" of
(publ.) ( radians
16.04 (16.04) 3.90 16.24 0.735 1.612
6.69 ( 6.69) 3.37 15,42 0.794 1.173
15.82 (15.82) 4.50 16.54 0.727 1.614
6.59 ( 6.59) 3.63 13.99 0.754 1.195
15.47 (15.47) 5.64 17.20 0.724 1.617
6.44 ( 6.44) 4.09 12.86 0.711 1.222
14.78 (14.78) 8.41 19.09 0.737 1.623
6.22 ( 6.22) 4.95 12.20 0.672 1.258
20.94 (20.94) 3.94 20.43 0.822 1.630
7.42 ( 7.42) 3.36 16.70 0.851 1.205
20.73 (20.73) 4.49 20.69 0.815 1.631
7.32 ( 7.32) 3.58 15.26 0.816 1.222
20.40 (20.40) 5.51 21.22 0.811 1.633
7.19 ( 7.19) 4.04 15.27 0.800 1.234
19.78 (19 78) 7.67 22.57 0.814 1.635
6.98 ( 6.89) 4.70 13.08 0.739 1.272
28.92 (28.91) 4.03 27.69 0.918 1.647
8.29 ( 8.29) 3.33 17.84 0.906 1.239
28.71 (28.71) 4.56 27.91 0.913 1.648
8.19 { 8.19) 3.54 16.58 0,878 1.252
28.39 (28.39) 5.50 28.37 0.908 1.649
8,06 ( 8.06) 3.90 15,41 0.847 1.268
27.82 (27.82) 7.35 29.40 0.907 1.650
7.87 ( 7.87) 4.55 15.42 0.830 1.279
26,46 (26.45) 12.05 31.82 0.908 1.654
7.56 ( 7.56) 5.73 13.69 0.779 1,320

)
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Table 2., Stability Factor N ={(y/c)H for Dead-Weight Induced
Failure, Through Stretched Spirals,

: K. = 0.
Loading profiles:
K 1.
y
6 o 8 N N B 6 e o N N -
— e < - c o 0 h g
(degrees) (publ.)t (- radians )
0 015 5.60 ( 5.53) 42.85 56.64 0.349 2.688 0.456
340 5.56 ( 5.53) 32.81 39.77 0.332 2.657 0.484
45 5.53 ( 5.53) 51.48 57.75 0.352 2.685 0.456
5 015 14.38 (14.38) 10.15 45.67 0.627 2.242 1.053
30 9,13 ( 9.13) 6.09 15.21 0.402 2,119 1.184
45 7.35 ( 7.35) 4.69 9,97 0.372 1.817 1.498
515 13.71 (13.71) 18.49 50.97 0.646 2.239 1.056
30 8.83 ( 8.83) 8.76 16.93 0.407 2.174 1.126
45 7.18 ( 7.18) 5.62 10.52 0.379 1.825 1.490
T Data from Chen, [15].

. 34
.05

.80
.30
.00
.42

680
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Table 3. Stability Factor N =(y/c)H for Constant Seismic

Horizontal Component.

0.

325

K
Loading profiles: X
K 1.
b4
% % * # % )
X X ' ’
_f _3 —E N N CL Cr 90 Sh &
(degrees) (publ.)t ¢ radians )
10 0 30 4,98 ( 4.98) 12.80 16.86 0,882 2.107 1.367
60 4.32 ( 4.32) 5,26 9.40 0,781 1.669 -----
90 3.22 ( 3,22) 3.56 13.57 0.839 1.178 -----
20 0 30 8.83 ( 8.83) 6.94 17.32 0.949 2.058 1.776
60 5.63 ( 5.63) 4.53 10.26 0.885 1.665 -----
90 3.65 ( 3.65) 3.35 17.53 0.962 1.217 -----
30 0 60  7.44 ( 7.44) 4.20 11.78 1.008 1.697 -----
90 4,13 ( 4.13) 3.14 18.65 1.058 1.284 -----
40 0 60 10.25 (10.25) 4,01 14.19 1.142 1.743 -----
90  4.66 ( 4.65) 2,93 21.31 1.166 1.349 -----
T Data from Chen et al., [17].
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Table 4. Stability Factor N =(y/c)H for Linear Seismic
Horizontal Profile.

K. 0.225+b,h

Loading profiles: 1
K, = 1.
y
+ * ® I* I* * * * l*
e _B. ®1 N N cl <o % °h b
(degrees) (pub. ( radians )

10 0 30 .0388 5.24 (5.16) 10.96 18.26 0.941 2.005 1.478 0.0
60 .0468 4.25 (4.27) 5.50 10.91 0.856 1.635 -----
90 .0635 3.13 (3.15) 3.59 16.39 0.888 1.168 -----

20 0 30 .0221 9.09 (9.06) 8.25 22.49 1.064 1.
60 .0362 5.50 (5.53) 4.83 12,29 0.970 1.638 -----
1

90 .0562 3.54 (3.56) 3.35 18,95 0,990 1.222 -----
30 0 60 .0275 7.22 (7.28) 4.55 14.67 1.101 1.673 -=---
90 .0500 3.98 (4.00) 3.12 19.47 1.080 1.292 -----
40 0 60 .0201 9.87 (9.97) 4.44 18.65 1,243 1,720 -----
90 .0447 4.47 (4.47) 2.88 18.42 1.166 1.369 -----

.f.
Imposing four equi-thickness zones of different coefficients

(0.25, 0.30, 0.35, 0.40) indiscriminate of slope heights in
effect results in the variation of seismic profile with the
size of the slope.

¥

Data from Chen et al., [17].
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Table 5. Stability Factor N =(y/c)H for the General Average
Horizontal Profile.

Kx=0.0057+0.0084h-0.000076h2

Loading profiles:

+0,00000032h

3

K =
Yy
*
1* x* * % *
_2 _E _E N CL <To eo eh eg comment
(degrees) ( radians )
0 0 30 6.12 7.00 12,02 0.349 2,123 1.019 *
5.15 36.97 44.02 0.365 2.648 0.494 (y/c)d=34.0
60 5.07 4,55 8.03 0.377 1.523 =----- %
5.07 46.96 53.53 0.380 2.658 0.484 (y/c)d=47.2
90 3,75 3.53 10.33 0.504 1,008 -----
5.06 50.05 53,54 0.380 2.660 0.481 (y/c)d=47.2
10 0 30 11.63 6.29 20.65 0.647 1,663 1.522
60 6.87 4,24 9.61 0.509 1.555 ~-----
90 4.45 3.48 12.29 0.616 1,055 ~-----
20 0 30 23.67 8.04 48.55 0,985 1.904 -----
60 9.48 4,16 12.08 0.658 1.575 -----
990 5.28 3.44 14.69 0.733 1.111 -----
20 30 9.55 98.29 122.15 1.124 1.922 1.919 see nQte #1
10.59 100.0 144,37 1.174 1.921 1.919 (y/c)d=8.46
60 8.72 7.60 14.70 0.681 1.608 -----
90 5.00 4.54 11.74 0.631 1.202 ~-----
30 0 60 13.58 4.25 16,39 0.831 1.611 -----
30 6.31 3.40 17.55 ©6.851 1.174 -----
20 60 12,88 6.70 18.21 0.835 1.623 -----
90 6,06 4.22 13.87 0.766 1.232 -----
40 0 60 20.58 4.57 25.15 1.035 1.656 --~---
90 7.63 3.37 22.26 0,981 1.239 -----
20 60 19.84 6.82 27.05 1,037 1.661 -----
90 7.39 4.02 17.24 0.913 1.278 -----
40 60 7.64 76.23 80.73 1.197 1,819 ----- see note #2
380 6.84 6.42 15.16 0.855 1,350 -~--~
*
notes: #1 --- (y/c)HT=0.00022

#2 --- (y/c)H;=0.00001
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Table 6, Stability Factor N =(y/c)H for the General Profile
Oriented at a Direction of Arctan(0.1) with the

¢

o

B

———— pp— ——

(degrees)

0

20

40

0

40

30
90

30
90
30
90

60
90
60
90

Horizon.

=0.0057+0.0084h-0.0000761'12

K
X 3
Loading profiles: +0.060000032h
K =1.+0.1K
y X
* * * * * * % *
Y =Lq: o
N %L Lr 0, oy, eg d Cd or & %HT
{ radians ) ( comments )
6.10 6.97 .11.98 0.349 2.123 1.019
5.15 35.20 42.34 0.362 2.646 0.495 d=32.73
3.74 3.53° 10.33 0.505 1.008 =-----
23,51 7.93 47.94 0.982 1.905 -----
5.27 3.43% 14.57 0.732 1.112 -----~ _
9,27 100.8 136.42 1.168 1.891 ----- h=0.773%
4.99 4,54 11.74 0.632 1.202 -----
20.45 4.51 24.84 1.032 1.656 -----
7.60 3.36 22.34 0.982 1.238 ~-----
7.61 76.08 79.81 1.195 1.821 ----- h=0.0021
6.81 6.41 15.15 0.856 1,350 -----



*
Table 7. Stability Factor N
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*
=(y/c)H for the General Profile

Oriented at a Direction of Arctan(0.5) from the

Horizon.

Loading profiles:

Kx=0.0057+0.0084h-0.000076h2+0.00000032h3
K =1.+0.5K
y X
L * * ® % * £ 3 — *
X X T=X =X
_f _ﬁ _E N cL clo _eo eh eg d cC or h cHT
(degrees) ( radians ) ( comments )
0 0 30 6.02 6,89 11.82 0,349 2.124 1.018
5.14 31.13 37.74 0.352 2.639 0.502 d=28.47
90 3.70 3.50 10.33 0.508 1.006 -~----
20 0 30 22.91 7.49 45,53 0.970 1.911 -----
90 5.20 3.38 14.40 0.731 1.111 -----
20 30 9.02 98.15 122.05 1.129 1.920 ----- h=0.011
a0 4.92 4,48 11.61 0.633 1.202 ~-----
40 0 60 19.97 4.32 23,731,024 1.658 -----
g0 7.48 3.31 21.91 0.981 1.238 -----
40 60 7.53 75.46 78.23 1.192 1.823 =-----
90 6.69 6.33 14.96 0.858 1.351 -----



Table 8. Location of the Most Critical Slip Surface for a

Slope of 30 Feet in Height.

Loading profiles:

KX=0.0057+0.0084h-0.000076h2+0.00000032h3

K =10
y

Height of the slope: HS=30ft'

3, * i, % Y % Y % % * *

_f _2 _E CH‘ 'CHT cL c'o eo eh eg
(degrees) ( radians )
0 0 30 3.10 26.90° 27.87 21.74 0.602 2.353 ------
90 3.20 26.80 3.73 11.30 0,643 1.081 ------
20 0 30 17.17 12.83 7.05 32.34 0.943 1.960 ------
90 4.32 25.68 3.41 16.99 0.872 1.162 ~------
20 30 4.89 25.11 49.09 43.78 0.966 2.046 ------
90 4.03 25.97 4,99 11,20 0.741 1.308 ------
40 0 60 16.22 13.78 4,30 19.85 1,055 1.686 =------
90 5.86 24.14 3.19 24,79 1.097 1.288 ------
40 60 4.65 25.35 46.24 34.82 1.084 1.894 ------
S0 S5.05 24.95 8.10 13.97 0.959 1.487 ------

* yalues calculated for a (c/y) ratio of 1.
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Table 9. Location of the Most Critical Slip Surface for a
Slope of 50 Feet in Height.

Loading profiles:

2

Kx=0. 0057+0.0084h-0.000076h"+0. 00000032h3

K _=1.
4

Height of the slope: H_=50 ft.

l*.- l* l* l* * * *

_E _2._E CH ‘CHT cL clo eo eh 8g
(degrees) ( radians )
0 030 2.03 47.97 21.49 14.92 0.491 2.489 ------
90 2.96 47.04 3.82 11.13 0.693 1.131 ------
20 0 30 11.18 38.82 6.78 21.06 0.936 2,023 ------
90 3.90 46.10 3.39 17.70 0.931 1.193 ------
20 30 3.44 46.56 34.03 26.29 0.878 2.111 ------
90 3.60 46.40 5.42 10.74 0.793 1.386 ------
40 0 60 12.22 37.78 4.12 16.09 1.107 1.719 ------
90  5.09 44.91 3.06 26.95 1.159 1.317 ------
40 60  3.49 46.51 34.77 22.26 1.020 1.933 ------
90 2.95 47.05 29.46 26.06 1.118 1.812 ------

* values calculated for a (c/y) ratio of 1.
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CHAPTER VIII. SUMMARY, CONCLUSIONS AND RECOMMENDATIONS

VIII.A. Summary and Conclusions

The main purpose of this study has been to develop a
more general and consistent mathematical model for the
analysis of the instability of earthslopes under seismic loads.
By recognizing the disadvantages of existing models and with
a better understanding of the nature of an earthquake's
influences, such a more involved model has been successfully
formulated. The treatment of several possibilities has been
categorized such that a better insight into the influence of
the slope geometry on the spiral failure mechanism can be
gained. By looking into the possible changes seismic loads
may have on the shape of the most critical slip surface,
far-readhing conclusions may be drawn. For instance, in the
derivation of the slip surface equation, it could be observed
that the inhomogeneity and anisotropy in the cohesion of the
soil has no effect on the critical shape. In fact, the only
controlling‘factor on the shape of the slip surface is the
internal friction angle ¢.

Most important of all is the flexibility inherent in
the present formulation to account for the variations of the

seismic forces along the height. In considering both
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vertical and horizontal components for the seismic loads, not
only is the variation of magnitude of the seismic force with
height, but also the variation of the direction of the seismic
force accountable. Such loading profiles, if interpreted
wisely and with care, can also be used to allow for the
variation of the specific weight of the soil along the height.

To facilitate the adaptation of this present model to
future analyses related to seismic-infirmed earthslopes,
computer coding of the tedious formulations has been
implemented, and results of fairly simple cases have been
studied. These data constitute two main functions: to
provide indicators of agreement between results of the present
model and previoﬁs established models, and to provide further
information relating to the seismic loadings that were not
available previously. Of importance are the tables of the
spiral coordinates for the different cases studied. They not
only show the general patterns of the variation of the
coordinates, but also provide good indications for estimating
the initial coordinates for the spiral optimization process.
Thus, the iterative algorithm of the optimization subroutine
(used in the computer program) can be initiated in the right
direction, resulting in the expedited énalysis, cutting down
on run time and cost, as well as preventing convergence onto
local minimum.

The ability to predict and estimate the relative location

of the most critical failure surface in an earthslope of given
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property, geometry, and height is even more significant It
allows for the cumulative displacement analysis proposed in
Ref.[7] and [10] to be carried out in the future.

A1l in all, the present model is a step forward in
recent efforts to understand better the seismic effects on
‘the stability of earthslopes. It is, nevertheless, quite
idealized with respect to the actual time variation feature
of the seismic forces, and the changes in soil properties.
The changes in properties are results of compaction, pore
water pressure variation, liquefaction, seepage forces,
non-linear post-elastic responses, hysteretic strain

behaviors, etc., caused by the loadings.

VIII.B.  Recommendations for Future Work

In view of the limitations of the model developed in
the present study, directions for future improvements and
further studies can be identified. Three of the more
important and yet reasonably attainable suggestions are

listed below:

i) The present formulation may be extended to account for
the inhomogeneity and anisotropy of the soil cohesion. It is
obvious from this study that the varying cohesion has no
effect on the spiral equation, and it does not enter in the
equations of external work rate. Thus, all is needed is a
modification of the internal energy dissipation rate equation

to account for two cohesion profiles, one with respect to the
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elevation, the other with respect to the orientation. Such
modification would be similar to that in Ref.[15], and should
not induce too much changes in the formulation or the

computer coding.

ii) An extensive computer program to incorporate the hazards
0f a slope at different time intervals during the occurrence
of an earthquake should be attempted. Such coding should
include the examination of the seismic profiles at different
intervals, to see if displacements along a well defined slip
surface are inflicted or not. The displacements at the end
of each interval should be integrated to determine the total
displacement after the quake. This is essentially the new
approach to the assessment of seismic slope hazards proposed
in Ref.[7] and [10]. However, no specific method of
identifying the slip surface was mentioned in these earlier
articles. The present study has provided part of the answer.
The method developed for identifying the most critical slip
surface for a slope of given height (such as those in Tables
8 and 9) can be used to determine the progressive development
and movement of the failure surface in the course of the

‘quake.

iii) In the case of dead-weight induced slope failure, the
slope can be treated as an infinite prism with the cross-
section of a slope. Such that the accompanying slip surface
can be assumed with reasonable accuracy as an incomplete

logspiral prism. However, in the case of seismic-infirmed
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slopes, the direction of the seismic load may not be on the
plane of the slope cross-section. Nor do the seismic loads
have to be distributed uniformly throughout the entire
stretch of the slope. Thus, a three-dimensional failure
surface will naturally result. A study of the family of

3-D slip surface can therefore be quite rewarding.
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transition zone

Fig. 4 Velocity Discontinuity.
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Fig. 5 Coulomb's Criterion for Soil.
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Fig. 10 Arbitrary Potential Failure Surface.
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Fig. 13 Logspiral Slip Surface for Seismic Loading, Calculation of
the Gross External Work Rate,
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Fig. 18 Four Major Categories of Spirals.

(I.a@) normal spiral

N =1, 8in

(i.b) normal spiral
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(i.c) normal spiral
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Fig. 18 (Cont'd)

(ii) partially sunken spiral
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(iii) sunken spiral

rhsinb, = ne rsing

8,>86,
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Appendix A

Computer Coding

For the easy application of the analysis developed here,
a computer coding of the model has been implemented. »Ample
demonstrations are included for references: Fig,Al shows the
complete listing of the program itself; TFig.A2 is a flow

chart of the subroutine-interactions; and Fig.A3 is a sample

output,
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C
C

PROGRAM LASSIECINPUT,OUTPUT, TAPES=INPUT, TRPEB=0UTPUT)

NMRNWN R M RNHENRNNENN L A G S I E 0005030002626 H 30303 3030 98 303 3306 16 36096 83 96 00 90 36 3 R e 90

LIMIT ANALYSIS ON STABILITY DF SEISMIC INFIRMED EARTHSLOPE

THIS IS A RESULT OF THE NATIONAL SCIENCE FOUNDATION FUNDED PROJECT
NO. PRF-7809326.

THIS PROGRAM IS THE CODING OF THE FORMULATIONS FOR THE SEISMIC
CRITICAL HEIGHT OF AN EARTHSLOPE BASED ON THE UPPER BOUND LIMIT
ANALYSIS OF PERFECT PLASTICITY.

WRITTEN BY S.W. CHAN, AT PURDUZ UNIVERSITY; LAST REUISION: 7-10-80.
FOR ANY FURTHER INFORMATIONS, PLEARSE CONTACT PROF. S.L. KOH OF
MECHANICAL ENGINEERING BEPARTMENT, OR PROF., W.F. CHEN OF CIUIL
ENGINEERING DEPARTMENT.

TO USE THIS PROGRAM, PLEASE PROVIDE THE FOLLOWING INFORMATIONS:
IWRITE = +1 : TABULATED OUTPUT UOF THE SLOPE HEIGHT FOR EACH
COMBINATION OF RO, THETAO, ~ THETAH DURING THE
PHASE OF FINDING THE STARTING POINT FOR OPTIMIZATION
0 ¢ NO TABULATED OUTPUT WHEMN FINDING THE STARTING POINT
=1 ¢ NO TABULATED OUTPUT BECAUSE THE STARTING POINT IS
TO BE INPUTTED.
M = THE DEGREE OF THE HORIZONTAL SEISMIC PROFILE POLYNOMIAL.
NN = THE DEGREE OF THE VERTICAL SEISMIC PROFILE POLYMNOMIAL.

AIN = THE INITIAL UALUE (DEG.> FOR S..OPE ANGLE ALPHA.
BIN = THE INITIAL UALUE (DEG.) FOR SLOPE ANGLE BETA.
PIN = THE INITIAL UALUE (DEG.) FOR INTERNAL FRICTION ANGLE PSI.

BB = THE ARRAY CONTAINING THE (M+1) COEFFICIENTS FOR THE
HORIZONTAL PROFILE.

R = ;SEF?EEQY CONTAINING THE (NN+1) COEFFICIENTS FOR THE UERTICAL

CRATE = THE RATIO OF C/GAMMA.

IFLAG = I ¢ FOR NON-STRETCHED SPIRAL

‘ 2 3 FOR STRETCHED SPIRAL.

A0 = THE INITIAL VALUES FOR THE 4 UARIABLES RO, THETADs THETAH,
(RADIANS)s ~ HTOE OR D; ONLY NEEDED FOR IWRITE=-1i .,

—-={THE FOLLOWING ANGLES IN DEGREES)---

XMIN = THE LOWER LIMITS FOR THE 4 INDEPENDENT UARIABLES.

KMAX = THE UPPER LIMITS FOR THE 4 INDEPENBENT UARIABLES.

DX = THE INCREMENTS FOR THE 4 INDEPENDENT UARIABLES IN THE
BRUTE FORCE SEARCH FOR THE STARTING POBINT, (IWRITE=C OR 1).

PSIM = THE FINAL UQLUE FOR PSI (AND ALPHA).

BETAM = THE FINAL UVALUE FOR BETA.

DPSI = THE INCREMENT FOR PSI.

DALPHA = THE INCREMENT FOR ALPHA.

DBETA = THE INCREMENT FOR BETA.

-9 3 3 3 233 T 36 I T I I W36 M6 T I I MK IR XX RN H R R EAEEETLTAERTR

DIMENSION SAUE(3, 33, XMINC4), XMAX(4), CONCLL), DX(3), K042, ¥M{4)
DIMENSION AC10),BB(10),2ZMUCL10),2ZNUCL0)

NAMELIST ~INFOL1/IWRITE,MsNNsRIN> BINs PIN, BBy As CRATE, IFLAG, HMAK
NAMELIST ~INFO2-X0s XMINs XMAXs DXs PSTMs BETAMs DPSTs DAL PHA, DBETA
COMMON ~AL1-TNPSI, BETA. ALPHA, SNALFA, SNBMAs THETAMs SNTMs CRATE s HMAX
COMMON ~A2/5NBETAs TNALFAs TNBETAs TNALSQs TNBESQs HTOE, TGL, TG2, C8TH
COMMON ~#A3-/NP1sA»2ZMU .

COMMON ~A4-MP1. BB, ZNU, TORGTL

COMMON ~R5/BC(9,9)

COMMON ~BR1-CF, IFLAG, NB

THE FOLLOWING PARAMETERS ARE FOR THE SUBROUTINE #BIAS® ONLYs FOR

Figure Al Program Listing.
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C THEIR MEANINGSs PLEASE CONSULT THE ~BIAS USER MANUALv.
c

C

COMMON/B1-B(100)

COMMON-B2-XMAK

COMMON/B3/XMIN

COMMON/B4/FRs MAXM» EPSLS

DATA IPRs IDATA, MAXM~1s 1, 1000~

DATA EPSI,EPSLS,FRsR/1.E-4»1.E-4,1.E~8,10.~

C INITIARTION OF UARRIABLES.

c

C
C THE
c

500

400
300
c

DATA ZMU, ZNU-20%#0.~
DATA BC-81%0,~

DATA A»BB-20%0./
DATA X0-4%0./
READ(S, INFOL)
HRITE(G, INFO1)
READ(S, INFO2)
HWRITE(E, INFO2)
NP1=NN+1

MP1=M+1

NB=NP1

IF(MPL .GT. NPLINB=MP1
CALL BINOM(NB)

DO 500 1I=1,3

UALUES OF DX, XMIN, XMAX ARE SAUVED FOR LATER USES.

SAUE(L, IT)=DX(II)
SAUE(2» IT)=XMINCII)
SAVE (3 IT)=XMAX(IL)
ANGP=PIN

ANGA=AIN

ANGB=BIN

C CHANGE FROM DEGREES TO RADIANS.
~

266

25
15

7og

Fig.

ALPHA=ANGA=0. 0174533
BETA=ANGB*0.0174533
THM=30.+ANGP
THETAM=THM=*0, 01743533
PSIA=ANGP*0.0174533
TNPSI=TAN(PSIA)
SNBETA=SIN(BETA)
SNALFA=SIN(ALPHA)
SNBMA=SIN(BETA-ALPHA)
TNALFA=TAN(ALPHA)
IF(BETA .LT. 1.5707S6)GOTO 25
TNBETA=1.

G070 18
TNBETA=TAN(BETA)
TNALSR=TNALFA*TNALFA
TNBESR=TNBETA*TNBETA
SNTM=SIN(THETAM)
CSTM=COS(THETAM)

DO 700 1I=1,3
DX(II)=BAVE(1,II)
¥MINCIT)=SAVE(2,1I1)
KMAX(IT)=8AVUE(3, I1)
IF(IFLAG .EQ. 13X0(4)=0.

Al (Cont'd)
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WRITE(Bs 10)ANGPs ANGAs ANGB
10 FORMAT(#1#, 50(#-#)7# FOR * PSI=#sF5.0s5Xs #ALPHA=, F5. 0y 5Xs
$ZBETA==»F5,0)
IFC(IMRITE .EQ. -1)GOTO 750
CALL BRUTE(IWRITE,ANGPs ANGAs ANGE, XMIN, XMAX, DX X0)
DO 600 I1I=1,3
XMINCII)=SAVE(2,11)
B00  XMAXC(II)=SAVE(3,1II}
7S¢  CALL RANGE(ANGE, ANGA» ANGPy XMIN. XMAX, DX}
D0 650 I1I=2,3
KMINCIT)=KMINCII)=0,0174533
B50  XMAR(II)I=XKMAX(II)*0.0174533
IF(ROCL) LT, XMAXC(1)IGOTO 800

IN CASE NO FESIBLE STARTING POINT IS FOUND, THE POINT OF MID-RANGES
15 USED AS THE STARTING POINT.

AOCL3=(XMINC1I+XMAX (1)) 72,

XO(2)=(KMIN(2) +XMAX(2) ) 2.

XO(3)=(AMIN(3I+XMAX(3) ) 2.
800 K=3

IF HMAX IS NON-ZERQ, THE SLOPE HEIGHT IS GIVEN: AND THE PROBLEM IS
TO LOCATE THE MOST CRITICAL SURFACE.

IF(HMAX .GT. 0.)K=10
CALLS #BIAS* FOR OPTIMIZATIONs SEE ~BIAS USER MANUALv.

CALL BIAS(4,K»1,CON,sX0sR,EPSIs IPR» IDATAs XM)
IF(HMAX .GT. 0.)WRITE(E,ES)IHMAX
65 FORMAT(#0 THE HEIGHT OF THE SLOPE WAS GIUEN AS #Fr.2)
IF(IFLAG .EQ. 1)GOTO S00
URITE(G,30)1XM(4)
30 FORMAT(#0 THE SPIRAL IS STRETCHED #,F10.5,# UNITS#)
HRITE(B,35)TG1, TG2
GOTO 100
45 FORMAT(#0 TG1=+#,F10.5,# TG2=#,F10.5/
+# IF TG1=TG2=X(3)s SPIRAL IS NORMAL>/
+# IF TGIKTG2=X{3)s SPIRAL TS SUNKEN#~/
+# IF TGIKTG2<X{3}s SPIRAL IS PARTIALLY SUNKEN#)
800  WRITE(E,40)HTOE
40 FORMAT (#0 THE SPIRAL IS RAISED #,F10.5,# UNITS®)
URITE(B,45)TGL, TG2
35 FORMAT(#0 TG1l=#,F10.53:s# TGe=#,F10.3)
C
g TORBUE PER UNIT AREA IS CALCULATED.

106 TORATL=TORQTL#*XM(1)s#=3
HRITE(S,55)TORATL
55 FORMAT(#0 THE TOTAL EXTERNAL TORQAUE INTENSITY IS #F15.5)

C
E READY TO CONSIDER NEXT SLOPE GEOMETRY.

105  ANGB=ANGB+DBETA
IF(ANGB .LE. ANGAIGOTO 105
IF(ANGB .LE. BETAMIGOTO 200
© ANGA=ANGA+DALPHA
IF(ANGA .LE. ANGP .AND. ANGA ,LE, PSIMIGOTO 300
ANGP=ANGP+DPSI

aoaa

C
C
C
C
C
c
c
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IF(ANGFP .LE. PSIMIGOTO 400
STOP
END

FUNCTION F(X)

TO CALCULATE THE SAFETY FACTOR FOR THE SLOPE STABILITY.
THE FORM OF THIS SUBPROGRAM CONFORMS WITH THE REQUIREMENTS OF #BIAS#

DIMENSION X(4)
COMMON #A1-TNPSI, BETAs ALPHAs SNALF A, SNBMAs THETAMs SNTMs CRATE s HMAX

FOR THE USE OF #BIAS# ONLY.

Qo0 ooo

Qoo

COMMON LANF » NC
NF=NF+1

ICAkl=1

CALL SPIRAL(ICALLsXsEF, FNETy EXTRA)

F=EF*SIN(X(3)+ALPHA)-STIN(X(2)+ALPHA)

FACTOR=X(3)-K(2)

IF(TNPSI .GT. 1.E-4)}FACTOR=(EF=EF-1.)-2./TNPSI
THE STABILITY FACTOR:

F=F#FACTOR*FNET+EXTRA

THE ACTUAL CRITICAL HEIGHTS

aoa OO

F=F=CRATE
RETURN
END

3
-
.
-
.

" 8 & & 3 B P 0 % & & & % 2 & P 0 2 T 9 20 » E =

SUBROUTINE CONST(X,CON)

TO SPECIFY THE CONSTRAINTS FOR EFFECTIVE OPTIMIZATION.
THE SUBROUTINE FORM IS IN CONFORMATION WITH SPECIFICATION OF #BIAG#.

DIMENSION X(4),CONC11)

COMMON ~Al-TNPSI, BETR, ALPHA, SNALFA, SNBMAs THETAM, SNTMs CRATE, HMAK
COMMON ~BR1/CF, IFLAG,NB

COMMON ~C1/CLRs SNTHs RHs SNTO» CSTOy CSTH

FOR #BIAS# ONLY.

COMMON~1-NF, NE
NE=NC+1

ICALL=0
CONC10D=X(3)=-K(2)-0.01
IF(CONCLO) LGT. 1.E-4)GOTO 200
Dg 300 I=1,10
300 CON(I)=-10.
RETURN
200 CALL SPIRAL(ICALL,XsCE,FNET»EXTRA)

oo0oaa

o000

Fig.Al (Cont'd)



THE UERTICAL DISTANCE OF THE SLOPE KNEE FROM THE RUTATION CENTER.
CK=X(1)*SNTO+CLR*SNALFA
THE UERTICAL DISTANCE OF THE SPIRAL TERMINATION POINT FROM THE CENTER.

CH=RH#*SNTH

R=CRATE#*(X(3)~X(2))/FNET

IF(TNPSI .GT. 1.E-4)R=CRATE*(CE*CE-1.)-2./TNPSI/FNET
TOL=3.1415927-2.*BETA

TOU=7, .

IF(TNPSI .LE. 1.E-B>TOU=3.1413327-2.*ALPHA
C8=(CE#SIN(X(3)+ALPHAI-SIN(X{(2Y+ALPHA) y*#SIN(BETA)~SNBMA

THE SLOPE HEIGHT (OR THE SPIRAL HEIGHT IF HMAX>0):
CF=R=*C8+EXTRA

IF(HMAX .GT. 0.)CONCLI1)=HMAX-CF
CON(S)=TOU-X(3)=-K(2)
CON(B)=X(2)+X(3)-TOL

CON(73=C8

CON(BI=CF/CLR-0.1
CON(5)=CLR-CF-0.1

CON(4)=FNET '

CON(3)=CtR~-0.01
CON(2)=CH~CK-0.01

CON(13=KX(1}-R

THE MEANINGS OF THE CONSTRAINTS ARE :
COM NO. COMMENT

1 THE RADIUS IDENTITY FOR QUALIFYING SLOPE.

TOGETHER ASSURE THE SPIRAL CUTS THROUGH BOTH THE

ALPHA AND BETA REGIONS OF THE SLOPE.

TOGETHER RULE OUT UNREALISTIC UALUES FOR SLOPE HEIGHTS.

TOGETHER GUARD AGALNST SKEWED SPIRALS.

THE SPIRAL ANGLES INEQUALITIES FOR ANGLE RANGES.

10 THE SPIRAL MUST MNOT GO BACKWARD.

11 THE SPIRAL HEIGHT MUST NOT BE GREATER THAN THE SLOPE
HEIGHT» (FOR LOCATING THE MOST CRITICAL SPIRALJ.

C
c
C
C
c

0O 0Ono

~

~

~

outh N
wunN~N W

A
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RETURN
END

SUBROUTINE BRUTECIWRITEsANGP, ANGAs ANGEs XMINs XMAK, DXs X
THE BRUTE FORCE APPROACH TO LOCATE A ROUGH MINIMJM (AS THE FEASIBLE
STARTING POINT FOR #BIAS#) BY SEARCHING THROUGH THE RANGE DOF EACH
UARIABLE (ERWCEPT THE 4TH ONE) AT CHOSEN INCREMENTS.
DIMENSION CMC11),XMINC4),RMAKC(4),DX(3),K(4),0UT(2,100),REGC(3, 100)
CoOMMON ~BR1/CF» IFLAG»NB
DATA REG-/300%0.~
PRRAMETERS RELATED TO THE DECLARATIGN OF A MINIMUM.

CRITE=0.005

aoOoOOn OO0

00

Fig.Al {(Cont'd)
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COMPARE=1000.
DIFMIN=100000.

c .
E ITERATION NUMBER (MAXIMUM OF 5 ITERATIONS ALLOWEDD.

KOUNT=1
1200 CHECK=COMPARE
CALL RANGE (ANGB» ANGA» ANGP s XMIN» XMAX, IX)
IFCINRITE (EQ. LIWRITE(S,70)KOUNT
70 FORMAT (#0 ITERATION#,I3)
JK=0
KC1I=XMINC(1)
400  TH=XMIN(3)
IFCIWRITE (EQ. 0)GOTO 500

HRITE(G, 13IX(L)
10 FORMAT (#0#, 110{#$#) /# R=#,FS.1/)
WRITE(G,20)
20 FORMAT(#  TH =&y 10(4K, #TO#s 4%} /BXs #%#2s LO(3Xs #(FI#»4X) /1% 110
~(#-#)) ‘ ‘
500  J=0
c
C UARYING THETAO FIRST.
C
TO=XMIN(2)

D0 700 Ki=1,2
D0 700 K2=1,100
700  OUT(KI,K2)=1000.
#(3)=TH=0.0174533
IF(IWRITE .EQ. DHRITE(Gs40)TH
40 FORMAT (LXsFB.2s # »*#)
200  J=J+1
A(2)=TO*0,0174533

C
C FIRST DECIDE IF THE VALUE IS ACCEPTABLE.
c

CALL CONST(XsCMN)
D0 150 I=2s10
IF(CHCI) JLE. 0.)GOTO €00
150  CONTINUE
ACN=ABS(CN(1J)
C
C THE RADIUS IDENTITY IS USUALLY HARD TO SATISFY IN HERE, SO IF THE ERROR
C IS LESS THAN THE LAST REPORTED, THE UALUE IS QUALIFY FOR FURTHER
C CONSIDERATION.
c

IF(ACN .LE. 0.13)G0OTO 2250
IF(ACN .GT. DIFMINDGOTO 600
250 0ouT(l,N=T0
ouT(2, H=CF
C

C IF THE UALUE IS WITHIN THE TOLERABLE RANGE OF THE LAST REPORTED UALUE
C THEM THIS UALUE IS RECORDED.
c
2200 IF(OUT(2,J) .GE, COMPARE+CRITE)GOTO G00
3E(gUT(EoJ)+CRITE .GT., COMPARE)GOTO 1000
COMPARE=0UT (2, 2
1000 JK=JK+1
DIFMIN=ACN

Fig.Al (Cont'd)
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C REGISTER THE PGINT CORRESPONDING TO THE RECORDED URLUE.
c

REG(1, JKI=K(1)

REG(2, JK)=TH

REG(3, JK)=TO
c

E ADVANCE THE POINT ALONG THE THETAD AXIS.

600  TO=TO+DX(2)
IF(TO .LE. XMAX(2) .AND. TO .LT. TH)GOTO 200
IF(IWRITE EQ. 0J)GOTO 300
WRITE(G, 303 (0UT(1, I3, I=1,10), (OUT(R512,1=1,10)
IFcJd JLE. 10)GOTO 300
HRITE(G,30)(0UTC(1,1),I=11,20), (OUT(Z,1)yI=11,20)
IF(J .LE. 20)G0TO 300
HWRITE(6s30)(0UT(1,1),I=21,30)s (OUT(251),I=21,30]
IF(J ,LE. 30)GOTO 300
HWRITE(6,30)(0UT(1,1),1=31,40), (OUT(2+1),1=31,40)
30 FORMAT (8X, #%#, 10(1X, FB.2y 3X)/BRs ##5, L0 (#£(# FE.2»#) #))
c
C NEXT ADUANCE THE POINT ONE INCREMENT IN THE THETAH AXIS.
c

300 TH=TH+DX(3)
c IF(TH .LE. XMAX(3))GOTO S00

C THEN ADUANCE THE POINT ONE INCREMENT IN THE RO AXIS.
C .

XC1)=X(1)+DX(13
IF(X(L) LE. XMAX(1))GOTO 400

IF THE SMALLEST UALUE RECORDED IN THIS ITERATION DOESN#T IMPROVE
APPRECIABLY OUVER THAT OF THE LAST ITERATION, COMUERGENCY OF BRUTE
FORCE SEARCH IS DECLARED.

IF (CHECK-COMPARE .LE. CRITEIGOTO 2000
C IF 5 ITERATIONS HAS BEEM RUN, NO NEED TO GO ON ANY FURTHER.
c .

23800 IF(KOUNT .EQ. 5)GOTO 1400
c

E FOR THE NEXT ITERATION, INCREMENTS ARE HALUED.

DO 1300 I=1,3
1300 DX(I=DX(I)/2.
c
C IF NO FEASIBLE VALUES WERE RECORDED IN THE LAST ITERATION. CAN=T GO
C ON ANY FURTHER WITH BRUTE FORCE SEARCH.

0 ooocoo

IF(JX .EQ. O0)RETURN

IF THE INCREMENTS HAVE BECOME TOO SMALL, THEN CONDITIONAL CONUVERGENCY
OF THE BRUTE FORCE SEARCH IS DECLARED.

IF(DX(3) .LT. 0.01)G0TO 1600

THE SPACE OF SEARCH IS NOW SHRUNKEN IN ACCORDANCE WITH INFORMATIONS
FROM THE L.AST ITERATION.

XMIN(1)=REG(1,1)
KMARK(1y=REG(1, JK)

oo oo 0O
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AMINC3)=REG(2s 1)-DX(3)
XMAX(3)=REG(25 JK)+DK(3)
GREAT=-1000.
SMALL=1000.
B0 1100 I=1,JK
IF(REG(3»1) .GE. GREAT)IGREAT=REG(3s1)
IF(REG(3sI) JLE. SMALLISMALL=REG(3sI)
1100 CONTINUE
2700 XMIN(2)=SMALL~DX(2)
KMAK(2)=GREAT+DX(2)

C
C READY TO START THE NEXT ITERATION.
c

KOUNT=KOUNT+1

GOTO 1200
C
C THE FOLLOWING ARE SUMMARY STATEMENTS AT THE END OF BRUTE FORCE SEARCH
E IN ACCORDANCE WITH DIFFERENT OUTCOMES.

1400 WRITE(G,80)
80 FORMAT (#0 CONUVERGENCY NOT YET DECLAREDY#)

GOTO 20090
1500 WRITE(G,90)KOUNT
g0 FORMAT(#0 CONDITIONAL CONUERGENCY AT ITERATION#,I3)
2000 WRITE(B,30)COMPARE
30 FORMAT(#0 THE POSSIBLE CRITICAL UALUE IS#,F7.2//# ATHs LOXs#R#, 15

¥y #THs 15K #TOR/BXy 10(#-#)» 7Xy 10(#-#) s 7%y L0(#-#))

IF(JK .EQ. O0IRETURN

B0 1500 I=1,.K
1500 WRITE(B+60)(REG(IKs»1)sIK=14+3)
80 FORMATL4KX» 3(4XsF8.253%))

X(1)=REG(1,JK)

X(2)=REG(3,.JK)*0.0174533

X{(3)=REG(2, JK)*0.0174533

RETURN

END

C ----- ® & 4 s s s =+ 8 2 ® & & e " & @ 4 4 & 3 8 s & w4 2 2w &

SUBROUTINE RANGE{ANGEB, ANGAs ANGPs XMINs XMAXs DX

c

L THIS SUBROUTINE DEFINES THE ACCEPTABLE RANGES OF THETAO AND THETAH.
c .
COMMON ~BR1/CF» IFLAGsNB

BIMENSION DX(3),XMIN(4), XMAX(4}

TOMAK=30 . +ANGP-ANGA

IF(XMAR(2) JGT, TOMARIKMAR(2)=TOMAX

IFCAMINGE) (LT 0.0XMIN(2)=0.

IF(XMINCG3) LT, 90.-ANGB+ANGPIXKMIN(3)=80,-ANGB+ANGP
IF(IFLAG .EQ. 2)XMIN(3)=30.+ANGP

IF(XMINGI) (LE. XMIN(2))IXMIN(I)=XMIN(2)+DX(3)
IF(XMAX(3) .GT. 180,-ANGAIXMAX(3)=180.-RANGA
IF(XMAX(3) GE. 180.)XMAX(3I=XMAR-DR(3)

RETURN

END

C.. ------- e ® s ® ¢ & % B & B 8 e 3 s E© B 3 ¥ s W v e v s s

SUBROUTINE SPIRALCICALLsX,EFTHs FNETsEXTRA)

Fig,Al (Cont'd)



C THIS SUBROUTINE FINDS THE TORQUE INTENSITY AS WELL AS OTHER PHYSICAL
C ~ GEOMETRICAL INFORMATIONS OF THE SPIRAL.
£

COMMBN ~A1/TNPSI, BETA, ALPHA, SHALFAs SHBMA» THETAM, SNTHM» CRATE » HMAX
COMMON ~A2/SNBETAs TNALFAs TNBETAs TNALSAs TNBESQ, HTOE, TG1, TG2s C5TH
COMMON ~A3-NP1,As ZMU

COMMON ~A4-MP1, BB, ZNU, TORGTL

COMMON ~BRI1/CF, IFLAG,NB

COMMON ~C1-ZL» SNTH» RH, SNTOs CSTOs CSTH

COMMON ~S1-/THETAF, THETAI

DIMENSION %(4),A(10),BB(103,2MU(10),2NUC10)

RO=X(13

THETRO=X(2)

THETAH=X(3)

SNTH=SIN(THETAH)

CSTH=COS(THETAH)

EF TH=EXP { { THETRH~X(2) )*TNPSI)

SNTO=SIN(THETARD)

CSTO=COS(THETAO)

EFTO=1.

C
C A SPIRAL IS ASSUMED NORMAL UNLESS PROVEN OTHERWISE.
C

NIT=1

NCOUNT=1

RH=RO=*EFTH

c
€ THE TOP LENGTH OF THE SPIRAL:
C
ZL=(RO*SIN(THETAO+BETA)~RH*SINC(THETAH+BETA) } SNBMA
C
C ADJUSTMENTS FOR RAISED SPIRAL AND STRETCHED SPIRAL.

c
IF(IFLAG .EQ. 2)GOTO 120
HTOE=X{4)
EXTRA=0.
GOTO 130

120  EXTRA=X(4)*SNBETAsSNBMA
HTOE=0.

130 ZL=ZL-EXTRA

C

C THE VERTICAL DISTANCE OF THE CENTER FROM THE GROUMD:
c

ETA=RHxSNTH+HTOE

IF(HMAY .EQ. 0.)GOTO 140

ETA=RO*SNTO+2L #»SNALFA+HMAX

IF THE SLOPE HEIGHT IS SPECIFIED,» THEN HTOE, THE HEIGHT OF THE SLOPE
TERMINATION POINT, IS NO LONGER AN INDEPENDENT UARIABLE.

HTOE=ETA-RH*SNTH
140 fFix=0,
Fiy=0.

Ooaoe

C .
C EXPRESSING THE SEISMIC PROFILES IM THE SPIRAL COORDINATES.
C

CALL COEFF(ETAs BBs ZNUs MP1}
CALL COEFF(ETAsAs ZMUsNP1)

C
C THE GROUNDING ANGLE IS TAKEN TO BE THE TERMINATING ANGLE UNLESS

Fig.Al (Cont'd)
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C PROVEN DTHERWISE.
TG1=THETAH
TG2=THETAH
SNTG1=SNTH
CSTG1=CSTH
EFTG1=EFTH
IF(THETAH .LE. THETAM-0.0001)GOTO 110
IF THE SPIRAL IS SAGGING, IT MIGHT NOT BE NORMAL.

ETAN=RO*EXP ( (THETAM-THETAD) *TNPSI )*SNTM-0.0001
IFCETA .GE., ETAMIGOTO 110

AT LEAST PART OF THE SPIRAL IS SUNKEN, GROUDING ANGLE IS NOT THETAH.
NIT=NIT+1
LIMITS FOR SEARCHING FOR THE GROUNDING ANGLE, TG1 3

GLIM1=THETRO
GLIMZ2=THETAM

FIRST ESTIMATE OF TGi:

TG1=2.*THETAM-THETAH
CALL NEWTONCX(2)sROsETAsGLIM1,GLIMS, TG1s SNTG1, CSTG1,EFTGL)

oo

oo OoOon

O0nn

C
E THE BEGROUDING ANGLE IS TAKEN TO BE THETAH UNLESS OTHERWISE PROUEN.
SNTG2=SNTH
CSTG2=CSTH
EFTGR=EFTH
c IF(HTOE .LE. 1.E-3)GOTO 110
C IF THE TERMINATION POINT OF THE SPIRAL IS ABOVE THE GROUND, THEN THE
C SPIRAL IS PARTIALLY SUNKEN, AND THETAH CANNOT BE THE DEGROUNDING ANGLE.
c
c .
E LIMITS FOR SEARCHING FOR THE DEGROUNDING ANGLEs TG2 @

GCLIML=THETAM
GLIM2=THETAH

FIRST ESTIMATE OF TG2!
TG2=2.*THETAM-TGL
ﬁ?#LH?$NIDN(X(E>;RO,ETQ-GLIMI.GLIME:TGE,SNTGE,CSTGE,EFTGE)
= +- .

C
C FIRST ROUND, INTEGRATING FROM THETAOD TO TGl.
C

0oo0on

110 ARG1=SNTG1
ARG2=SNTQ
ARG3=LSTGL
ARG4=CSTO
ARGS=EFTG1
ARGB=EFTO
THETARI=THETAD
THETAF=TGL
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4200 NC=NP1
MC=MPL
C

T CALCULATING F1lYs
C

150  EFTHP=ARG5*ARGS
EFTOP=ARGE*ARGE
YAF=0.
YAI=0.
ROPR=1./R0
SNHITHR=1,
SNITOR=1.
SNITH=1.
SHITO=1.
STH=ARG1
STO=ARG2
D2 1000 iI=1,NC
ROPR=ROPR*R0
APSI=T+2 .
APSI=APST=>THPSI
SEA=APSI*APSI
EF THP=EF THP*ARGS
EF TOP=EF TOP#ARGE
IM2=I1-2
IF(IM2)1100, 12005 1300
1200 IF(APSI .GT. l.E-4)YAF=1.-APSI
IF(APSI .GT. 1.E-4)YAI=1.-APSI
GOTO 1400
1300 CALL SUMS{IMZ,APSI,S0AA, ARG3,ARG4s ARG1» ARGEy SNITHR. SNITOR, YAF, YAL)
SNITHR=SNITHR*ARG1
SNITOR=SNITOR*ARG2
1400 SNITH=SNITH*ARG]
SNITC=SNITO*ARG2
1100 ZI=1
COMPAF=APST*ARG3+ZI*ARG]
COMPARI=APSI*ARG4+2I*ARG2
COMPBF=COMPAF+2. #ARG1
COMPBI=COMPAI+2.*ARG2
DEN=S0R+2I%#Z1
COMPAF=COMPAF #*SNITH-DEN
COMPARI=COMPAI*SNITO/DEN
CORA=I-1
CORA=-CORA*APSI~DEN
CALL SUMS(I+APSI,S8As ARG3s ARG4s ARGLs ARGEs SNITH, SNITO. YBF,» YBI)
STH=STH#*ARG1
STO=STO*ARG2 "
Z2I=I+2
DEN=5QR+ZI*ZI
COMPBF=COMPBF *STH-DEN
COMPBI=COMPBI=STO/DEN
CQE; ?UTS(I+EsﬁPSI'SGH,ﬁRGByHRG4,ﬂRGl,HRGE,STH,STO,YCF,YCI)
CORB=1+
CORB=CORB*APSI/DEN+TNPSI
YF=(YAF *CORA+COMPAF +YBF *CORB-COMPBF —YCF *TNPSTI Y *EF THP
YI=(YAI*CORA+COMPAI +YBI*CORB~COMPBI-YCI#TNPSI ) *EF TOP
COEF=2ZMU(I)
IF(NCOUNT .EQ. 2)COEF=A(I)
1000 F1Y=F1V+COEF*ROPR*(YF-YI)
c
€ CALCULATING F1X:
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C
c
C
C
C
c
C
C
C
C
C THE
C

2100
2220

2200
2210

112

SNITHR=1.

SNITCR=1.

ROPR=1.-RO

EF THP=ARGS*ARGS

EF TOP=ARGE#ARGE

Do 1500 I=1,MC

EF THP=EF THP*RRGS

EF TOP=EF TOP*RRG6

ROPR=ROPR*RO

zIpe=I+2

APSI=2IP2*TNPSI

SBA=APSI#APSI

CALL SUMS(I,APSI,SAAsARG3s ARG4s ARGL» ARG2y SNITHRy SNITOR, XAF» XAT)
SNITHR=SNITHR*ARGL
SNITOR=SNITOR*ARG2
SNITH=SNITHR#ARG1
SHITO=SNITOR*ARCE

COMPAF = (APSTI*ARE3+ZIP2*ARG1 ) #*SNITH
COMPAI={APSI*ARGA+ZIP2*ARG2 ) *SNITQ
BEN=TNPSI/(5QA+Z2IP2*2IP2)
COMPAF=COMPAF #3EN
COMPAI=COMPAI*DEN

CALL SUTS(I+E,HPSI,SDQ,RRG3yﬂRG4,QRGI,RRGEySHITH,SNITD;XBF:XBI)
CORR=I+

CORR=1.~CORR*APSI*DEN

XF=(XAF *CORR+COMPAF ~XBF ) *EF THP
HI=(XAT*CORR+COMPAI-KBI)*EFTOP
COEF=2ZNU(I)

IF(NCOUNT .EQ. 2)COEF=BB(I)

F 1X=F 1 X+COEF*ROPRx* (XF-XI)
IF{NCOUNT ,GT. 1)GOTO 3300

NEXT CALCULATES F2R+F3X @

Y COORDINATE OF THE SPIRAL STARTING POINT:
UB=RO*SNTQ

Y COORDINATE OF THE SLOPE KNEE:

UD=UB+ZL*SNALFA

Y COORDINATE OF THE SPIRAL TOE (OR TERMINATING POINT):

UE=RH=*SNTH

IF(TNALFA .GT. 1.E-4)GOTO 2100
®Iie=0.

PARTB=0.

GOTC 2220
®I12=UB/TNALFA+RO*CSTO

IF(BETA .LT. 1.570736)COTO 2200
®I3=RH*CSTH

GOTO 2210
RI3=VE/TNBETA+RH*CSTH
ROG3=R0##3

IF(IFLAG .EQ. 2)XI3=XI3+X(4)
upsu=un

UBSU=UB
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2300
2310

2400
2000

UESU=UE

F23X=0.

DO 2000 I=1,MPi

ZIP1=1+1

2IP2=Z1P1+1,

VE=UE*UESU

PARTE=XI3/ZIP1

UB=UB#UBSU

Up=UD*UNsuy

IF(THNALFA .GT. 1.E-4)GOTO 2300
PARTD=-KI3/ZIP!

GOTC 2310
PARTB=UB*(XI12/ZIP1-UBSU/TNALFR/ZIP2)
PARTD=(K12-X13)-ZIP1~-UBSUW/ TNALFA/2IP2
IF(BETA .GE. 1.570798)GOTO 2400
PARTE=PARTE-VESU-TNBETA-/Z21P2
PARTD=PARTD+UDSU/TNBETA/ZIFP2
PARTE=PARTE*VUE

PARTD=PARTD*VUD

F23X=F23X+ZNU(I )*(PARTD+PARTE-PARTB )} ROG3

C
g NEXT CALCULATES F2Y+F3Y

2700
2800

2600

3000

2900
2500
C

E IF GPIRAL IS NORMALs THEN INTEGRATION IS COMPLETED, SO PRUCEEﬁ REGULARLY .

3300

IF(XI2 .GT. 1.E~4)GOTO 2700
X1280=0.

GOTO 2800
XI250=XI12#X12
XI3S0=KI3#X13
UE=1.

UB=1.

Un=1.

Fa23Y=0.

D0 2500 I=1,NP1
ZIP0=1
ZIP1=ZIP0+1.
Z2IPe=2IP1+1.
UE=UE*UESU
PARTE=XI35Q8-2IP0
PARTB=0,
UB=UB*UBSU
UD=UD=yDsy
IF(TNALFA .6T. 1.E~4)GOTO 2600
PARTD=-K135Q-2IP0
GOTO 3000

PARTB=UB*(XI2SQA 2IP0~ (2. #XI2-2IP1/TNALFA-UBSU/ZIP2-TNALSE) *UBSU)

BLOCKE2=UDSU/TNALSA-Z1IP2
BLOCKi=2.*XI2/TNALFA-ZIP1

PARTD=(XI1253-X1350Q) ~ZIP0+(BLOCKZ-BLOCK1)*UDSy

IF(BET& ,GE. 1.570796)GOTO 2300

PARTE=PARTE-(2. *XI3-ZIP1/TNBETA-VESU-ZIP2-TNBESQ) #UESU
PARTD=PARTD+(X13/TNBETA-/ZIP1#2.~UDSU/TNBESQ-ZIP2)»UDSU

PARTE=PARTE#VE
PARTD=PARTD*UD
Fa3Y=F23Y+ZMU(I)*(PARTE+PARTD~PARTB)/ROB3

IF(NCOUNT .EQ. NIT)GOTD 4400
NCOUNT=NCOUNT+1
IF(NCOUNT .EQ. 3)GOTO 4300
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4300

c

114

INTEGRATION OF TGl TO TGa:

ARGE2=SNTG1
ARG4=CSTG1
ARGS=EF T1
ARG1I=SNTG2
ARG3=CSTG2
ARG5=EFTG2
THETAI=TG1
THETAF=TG2
NC=1

MC=1

GOTO 150

INTEGRATION OF TG2 TO THETAH IF THE SPIRAL IS PARTIALLY SUNKEN:

ARG1=3NTH
ARG2=SNTC2
ARG3=CSTH
ARG4=CSTG2
ARGS=EFTH -
RRGEB=EFTGZ2
THETAI=TG2
THETAF=THETAH
GOTO 4200

C WITH ADDITIONAL ADJUSTMENTS, CALCULATIONS OF THE SPIRAL PARAMETERS

C ARE
C
4400
4500
4700

4600

C

COMPLETE.

TORQTL=F 1 X-F23x+(FlY-F23Y¥)/2.
FNET=TORQTL

IFCFNET JEQ. G IFNET=-1.E-B
IF(IFLAG .EQ. 2)CATO 4700
EXTRA=HTOE

IF(HMAX .GT. 0.)EXTRA=0.
GO0TO 4600
EXTRA=EXTRA*SNALFA

IFCICALL .EQ. 0)YRETURN
FNET=5NBETA-SNBMA-FNET
RETURN

END

C""".0!'..."'ll'll.l'l'll!'l'-'.

SUBROUTINE NEWTON(TO,RO,ETA,GLIM1,GLIM2, TGs SNTG»CSTG, EFTG)

C
C TO FIND THE GROUNDING THETA UALUE BY THE NEWTON METHOD

C
eng

Fig,

COMMON ~AL-TNPSI» BETAs ALPHAS SNALFA» SNBHAs THETAM» SNTHMs CRATE s HMAK
EFTG=EXP((TG-TOI*TNPSI)

SNTG=SIN(TG)

CSTG=COS(TG)

G=ETA-RO=*EFTG¥SNTG

IF(ABS(G) .LE. 0.0001)GOTOC 100
DC=-EF TG (TNPSI*SNTG+CSTG)*R0O
TGNEH=TG-G-DG

IF{TGNEN +LT. GLIML)TGNEW=GLIMI1+G.1
IF(TGNEW GT. GLIMB)TGNEW=GLIMZ2-0.01
IF(TG LT, 1.E-8)TG=1.E-8

Al (Cont'd)
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DIFF=(TGNEW-TG) TG

TG=TGNEW

IF(ABS(DIFF) .GT. 1.E-B)COTO 200
100  RETURN

END
C
Cill.l.0lCl.l'...l".l’!'lI'l!"""
C

SUBROUTINE SUMS(M»A» SBA» CSF» CSI, SNF» SNI» SNMF» SNMI» SUMF, SUMID
C

E ;UE TH§1$UMM5TIUH5 OF THE SEQUENCES IN THE ITEGRATION FORMULA FOR
1n ~ .

COMMON #S1/TF,TI
J=0
Li=H2
ASNF=A%SNF
ASNI=A%SN]I
SNeF=SNF#SNF
SN2 I=SNI=SNI
ZM=M
DENOM=5QA+2M*ZM
PD=1-DENGM
TERMF=SNMF/DENOM
TERMI=SNMIDENOM
SUMF=TERMF * (ASNF -ZM*CSF )
SUMI=TERMI*(ASNI-ZM*CSI)
IF(LL .EQ. 0)GOTO 400
DO 100 I=i,LL
J=J+2
2= (M~Jd+1 )% (M=-J+23
ZM=ZM-2.
DENOM=SQA+ZM*ZM
IF(DENOM .GT. 1.E-BYGOTO 500
SUMF=SUMF +PD*2Z#TF
SUMI=SUMI+PD*Z2#TI
RETURN
500  PD=PD*Z-DENOM
IF(ABS(TERMF) .LE. 0.000001)GOTO 200
TERMF=TERMF/SN2F ~DENDM
GOTO 250
200 CALL ZERO(ZM,CSF,SUMF,A,PD)
230 IF(ABS(TERMI) .LE. 0.000001)GOTO 300
TERMI=TERMI~/SN2IDENOH
GOTO 350
300 CALL ZERC(ZM,CSI»SUMIsA.PD)
350 TERMF=TERMF#2
TERMI=TERMI*2Z
SUMF =SUMF + TERMF # (ASNF-ZM#*CSF )
100 SUMI=SUMI+TERMI*(ASNI-ZM=LCSI)
400 RETURN
e END

C-c.o-oncocoloocooo.inoio'ot'co-----
SUBROUTINE ZERO(ZM,CSsSUMsA.PD)

THIS SUBROUTINE TAKES CARE OF THE SPECIAL CASE
HHEN THE ANGLE IS ZERD

0

[pleiely]
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IF(ZM-1.)100,200, 300
100  SUM=SUM+A#PD

RETURN
200  SUM=SUM-CS*PD
300 RETURN
END
c
C‘ . - [ L] - L L] - . L] - L] - E ] - & - - + - L & - - - L - - - * . Ll L] .
C

SUBROUTINE COEFF(ETA:As ZMUs N}
[
g CALCULATES THE COEFFICIENTS OF THE TRANSFORMED SEISMIC PROFILE.

DIMENSION A(10),2MUC10)
COMMON ~AS-BC(3,9)
= DO 100 I=1sN

100 ZMUCIHN=ALI2
IF(N .EQ. 1JRETURN
ETAX=1.
NM2=N-2
IF(NM2 .EQ. 0)GOTO 400
D0 200 I=1,NM2
NMT=N-1
ETAX=ETAX*ETA
ZMUCL)=ZMUC1)+ACI+1 Y #ETAX
DO 200 J=2,NMI

200  ZMUDI=ZMU(D+A(I+JI*BC(J-1, II*ETAX

400  ZMUCL)=ZMUCD)+AINI*ETAX*ETA
SIGN=-1.
DO 300 L=1,N
SIGN=SIGN*{(-1.)

300  ZMUCL)Y=ZMUCL)=SIGN
RETURN
END

SUBROQUTINE BINCHC(ND)

TO CALCULATE THE BINOMIAL COEFFICIENTS FOR THE MAXIMUM EXPANSION
OF 107TH POWER OR LESS

COMMON ~AS/BC(S,8)
IF(ND .EQ. 1)RETURN
D0 100 J=1,89
100 BC(L,J)=J+1
D0 200 I=2,ND
ADD=1.
IF10=10-1
D0 200 J=1,1IF10
BC(Is J3=BC(I-1,J)+ADD
200  ADD=BC(IsJ)
RETURN
END

o000 OO0

c

C.ll.l"l...ll‘l.lt.llllllnl.tlt.'..

c

g THE REST ARE THE INPUT DATA STORED IN THE TWO INPUT NAMELISTS.
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$INFOL IWRITE=-1,M=3,NN=3,AIN=0.,BIN=30.,PIN=0.,A(1)=1.00057,
A{2)=0.00084,A(3)=-0.0000075, A{4)=0.000000032,

BB(1)=0.0057, BB(2)=0.0084, BB(3)=-0.000076,
BB(4)=0,00000032+BB(5)=0,sCRATE={.s IFLAG=2, HMAX=0. %

SINFO2 KMINCLI=1. s XMINC2)=0,9 XMINCII=10,» XMINC4)I=0,
HMAX(1)=400. » XMAX(2)=90. » XMAXK(33=170.» XMAK(4)=100.,
X0(1)=12.023:X0(2)=0.35, X0(3)=2.12,
DX(1)=5.,DX{(2)=20.,0X(3)=20.,
PSIM=0.,DP5I=10.s DALPHA=10.,» BETAM=390.,DBETA=90. %

Fig.Al (Cont'd)
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BRUTE ) ( RANGE
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' NEWTON
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OUTPUT
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\
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Fig. A2 Flow Chart of Subroutines.
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Appendix B

Derivation of Equation 14

In section 1I1.C, the function ¥, Eq.(14), was defined

as
£ = glo,8,r,0). | (B1)}

Its value depends on the slip surface ¥y and the perimeter
function ¥, of the slope (Fig. Bl). Recoursing to the

rectangular coordinates for the time being, we have

£ = ‘I’I(Y)-‘szot,ﬁ,)’) = £(0,B,Y). (B2)

Note that the actual form of ¥, is immaterial here. It can
be any complicated function or even a Fourier series to
account for the kink at the knee., Also notice that Eq.B2
is so general that it is true for any other slope-surface
combinations. (See Fig.BZ and B3.)

By transformation back to polar coordinates, & becomes
E = g(a,B,r’e), ' (BS)

which is in the same form as Eq.l14,.
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perimeter
function

the siip surface
function

Yo=Y (Y)

R

/ slope
y‘ A_ﬁ toe

Fig. Bl The Equivalency of £, the Horizontal Slice Length, for a
Toe-Surface of Failure.
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¥2 (a B, y‘)

B8 Vi(y)
7

Fig. B3 The Equivalency of £ for a Stretched Slip Surface.
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Appendix C

Derivation of Equation 111

Equation (111) of section IV.B is derived as follows.
We expand Eq.(110) iteratively as

jeAesinBede = 31%§7{eAesinB‘lG(AsinG-Bcos9)+B(B—1)=

{K1;T%77?5[eAesinB'3e{Asine-(B-Z)cose} +

(B-2) (B-3) fe*Osin® %ede] 1)

B- B-3

1B(Asine-Bcose)LB(B-l)sin 0,
A“+B* " AZ+BZ

eAe{51n

B(B-1) (B-2) (B-3)sin® o

(A=+B2) (A= (B-2) 7]

in8- (B~2)gcos®

E

L

Asln O (BISHEesleyen (c1)

where ¢ is the last term of the series. The expression for
¢ depends on whether B is even or odd. If B is even, then

eho
e A

= AB34 =
£, = k,Je %o = (C2)

k , if A#0

k.o , 1if A =10

with
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B(B-1)(B-2)(B-3)...[B-(B-1)] (C3)
©  (ASB) (A% (B-2)%).. . [A%e[B- (B-2) 1%

or

Y: (B)(B 1). (1)(A) if A#O0
L W -0l h ol 7
ie = (c4)
L B)(B 1).. (1) , if A =0
(B) (B-2)%.. (2)*

If B is odd, then

Lo = kojeAesineda =k [Aszgflcose Ae] (C5)
with
- B(B-1)...[B-(B -2)]
S0 7 (c6)
o = (aZen0y.. {A2+[B (B-3)1%F
or
8, = Ae[(B)(B 1). (1)(A51ne cose) ] cn
(A +B 2. (A +3%) (A%+1%)
Now, since  [5.] = (B) (B- 1%7 . (B-25+1)
and [g] =13
then, Eq,(Cl) can be éxpressed.as
feAeSinBGde = oA® nt(T){[ 1(2s )'EASlnG (B 25)C056151nB 25-19},
s=0 %% fora%e(-2t) %]
t=0

(C8)
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where int(%) # the integer part of (%)

Note that the last term,t, or 2, is included. For, if B is

even, then

. B, _

1nt(7) = B/2 ,

and the last term in the sum of Eq.(C8) is

B(B-1)...[B-2(B/2)+1] (sin0) '(Asing) As _
(A )

+B2) ... {A2+[B- (B-2) ]2} [A%] ©
if B is odd, then

. B

1nt(7) = (B-1)/2

and the last term in the sum of Eq.(C8) is

BgB-l)...[B-2(b-1)/2+11g;ine)O(Asine-cose)cAe )
(A%+82). .. (A%+3%) (A%+1%) -







