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ABSTRACT

The upper bound limit analysis of perfect plasticity is

applied to obtain a formulation for the critical height of a

seismic-infirmed earthslope. The variation of the force

magnitude and direction along the slope elevation is accounted

for thr0ugh two orthogonal seismic profiles. Based on earlier

work for the dead-weight case, a rotational logarithmic spiral

surface is again shown to be the most critical shape of

sliding surface for any seismic profiles. Results for dead-

weight induced instability obtained from the present model

agree well with existing values. Also in good agreement with

published values are the data for the constant and linear

seismic profiles. Appreciable reductions in critical heights

for a more general horizontal seismic profile are observed.

The reductions caused by a vertical seismic profile of similar

shape but with relative magnitudes of 0.1 and 0.5 times that

of the horizontal profile are shown to be rather insignificant.

The determination of the location of the most critical slip­

surface for a slope of specific geometry and height has also

been demonstrated with this model.



CHAPTER I. INTRODUCTION

1

Earthquakes continue to be a subject of intensive studies.

The damage to properties and the widespread deaths that may be

traced back to earthquakes as the main cause are well-recorded.

In many instances, the severest destructions and greatest

number of casualties result from earthquake-induced landslides.

Records show that landslides occur most frequently on sloping

earthmasses. They are observed on the slopes of dams,

embankments and other man-made cuts; on the banks of rivers,

lakes, reservoirs, and along coasts as well as on mountain

slopes. For simplicity, such sloping earthmasses will be

referred to as 'earthslopes' throughout this report.

Because of the potential threats associated with these

landslides, there is an urgent need to advance the state of

the art to develop more effective methods for the assessment

of such dangers. Common practice in such analyses involves

the neglecting of the more complex soil behaviors and

properties, as well as the simplification of the seismic

forces as being constant. While at the present, attempts

are underway by other investigators [Ref. 18 &21] to more

precisely formulate the critical soil behaviors, this study

will be limited to the improvement of the analysis through
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the incorporation of non-constant seismic forces throughout

the slope height. This 'study will not only allow for the

refinement of results, but would also shed light on the

possibility of incorporating the nonhomogeneity of some soil

properties. To this end, more realistic estimation on the

earthslope stability can be made with relative ease.

Historically, the study of an earthslope's potential

for collapse under its own weight has been the main concern of

the earth-structure engineers. Because of its geometrical

configuration, density, and strength properties, a slope with

a height above certain critical value may become too weak to

support the weight of its own mass. This soil mass is then

assumed to move downslope by the gravitational pull along a

well-defined failure surface. Practices have been to approach

the problem in a phenomalistic way, where the variety of post­

elastic soil behavior is replaced by a model of perfect

plasticity [Ref. 4 &II-IS]. The idealized homogeneous and

isotropic soil is further assumed to yield under the well­

known Coulomb criterion and its associated flow rule. Then

methods were derived to predict the existence of a slip

surface, which would yield without restrictions, carrying the

soil mass above it downslope. Among the more famous methods

are the slip-line method, the limit-equilibrium methods, and

the limit analysis approach. Of these, the limit analysis

approach is relatively easier and have applications to a

larger range of slope geometries.
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The extension of the limit analysis method for the static

case to the case of seismic loadings is a logical step forward.

The existing approach involves essentially adding to the dead­

weight of the potential collapse mass a pseudo-static force

simulating the seismic load. This force acting through the

center of gravity of the soil mass is expressed as the product

of the soil mass and a "seismic coefficient". As shown in

Fig. 1, m~ is the soil mass and Kx is the seismic coefficient.

The choice of such a coefficient is to reflect the maximum

force exerted on the slope for the time history of an earth­

quake.

The criticism on this rather crude approach are: (i)The

seismic coefficient of a slope is not a constant value during

any instant of an earthquake. Owing to the non-rigidity of

the soil layers, the reactive forces developed throughout the

height of the slope as a result of the movement of the ground

always vary. (ii)Because of the granular nature of the soil,

it is reasonable to expect the density and strength properties

to vary along the height as the consequence of different

degrees of water saturation inside the inter-granular voids

of the soil.

To get around the first problem, a more recent effort

[Ref. 17] was made to incorporate zones of different seismic

coefficients along the height to approximate the actual

variation (Fig. 2). While such approach is a definite

improvement over the earlier ones, there are also restrictions
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to its applications. A conceivable difficulty is the case

where the variation of the seismic coefficient is so sharp

that a large number of thin zones have to be used. In the

presence of a secondary slope as shown in Fig. 2 with ~>O,

the analysis will necessitate the handling of two different

slope geometries. In this case, rather than considering the

original slope with one knee (section BEDB in Fig. 2a), one

will have to consider a fictitious slope with two knees

(FEDGF). With the need to prepare a map of coefficient zones

for each profile of seismic forces at each instant, it would

be quite time-consuming when investigating the hazard of the

slope at intervals within the duration of the earthquake.

The next logical step towards a better analysis of the

earths lope is to develop formulations to account for a more

accurate seismic profile. The seismic coefficient as a

function of the elevation above the ground level must be

recognized. The vertical component of the seismic force,

neglected in earlier works, must be included. Through

appropriate interpretation, the vertical seismic profile

can also be used to represent the variation of density along

the height as well. With more rigorous and general formulat­

ions, further implications of the possibility of incorporating

the profiles of strength parameters into the model can be made.

All these are undertaken in this study.
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Since every mathematical model has its limitations, it

is the wise application of a model to different situations

that determines its usefulness and efficiency. The slight

changes of the model for the analysis 'of the location of the

most critical slip surface in a given slope are demonstrated.

Further directions for the applications of the model, as well

as improvements for the future, are also discussed.



CHAPTER II. THE UPPER BOUND THEOREM OF THE PERFECT
PLASTICITY LIMIT ANALYSIS

6

One of the most effective method of analysis of slope

stability is that of limit analysis. The theorems of limit

analysis were developed during the fifties. These theorems

are based on the generalized perfect plasticity model of

material behavior. With such a model, a material deforms

indefinitely or yield flows under a constant collapse load.

The stress-strain response curve beyond the elastic range

is represented by a horizontal line. Generally speaking,

the post-elastic strain behavior of soil can be approximated

by this model (Fig. 3). By such an idealization, work-

hardening or work-softening, which are usually not too

prominent at the onset of yielding, are neglected.

Another important assumption is that the changes in the

geometry of the yielding material are insignificant. The

direct consequence of this assumption is the result that

"when the limit (collapse) load is reached and the deformation

proceeds under constant loading, all stresses remain constant;

only plastic (non-elastic) increments of strain occur."

Subsequently, a number of theorems were established

through the consideration of virtual work and energy. These

theorems, when applied appropriately to analyze the limiting
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state of the passing from the elastic to the plastic range,

have been used by several investigators [Ref. 4 &11-15] to

determine the lower and upper bounds on the actual critical

load. The determination of the lower bound involves the

assumption of a stress state for the material body studied.

The stress field in a slope is usually complicated. This

presents a problem in calculating the lower bound. On the

other hand, it is with relative ease that one may apply the

upper bound limit analysis.

The upper bound limit analysis is based essentially on

two of the limit theorems, namely:

i) Initial stresses or deformations have no effect on the

plastic limit or collapse load, provided that the geometry

is essentially unaltered; and

ii) The Upper Bound Theorem If a compatible and

kinematically admissible mechanism of plastic deformation
.p" .p" .p*

(e .. , u .. ) is assumed, which satisfies the condition u. =0 on
l.J l.J 1

the displacement boundary; then the loads Ti &Fi , determined

by equating the rate of external work to the rate of internal

energy dissipation, will be either higher than or equal to

the actual limit load.

In other words, the Upper Bound Theorem states that collapse

must impend or have taken place if a path of failure exists.

The external work rate is given as

. I .p" f .p"WE = .. T.u. dA + F.u. dV
l. l. l. l.

V ,
(1)
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and the rate of internal energy dissipation is

WI = fa~~.~~~ dV1J 1J
V

In the Upper Bound Theorem, a reference is made to a

(2)

kinematically admissible mechanism of plastic deformation. It

is often useful to consider discontinuous velocity fields as

such mechanisms. By discontinuous velocity field, it is meant

not an actual fracture type of discontinuity across a fixed

surface. Rather, this discontinuity is simply an idealization

of a continuous distribution in which the velocity changes very

rapidly across a thin transition layer (Fig. 4). Such

idealization is permissible provided that the stresses on the

assumed discontinuity surface are chosen as the limiting

values of the stresses on the surfaces bounding the transition

layer as the thickness of this layer approaches zero. It

should be noted that the rate of internal energy dissipation

in this transition layer will approach a finite value in the

limit as the thickness of the layer approaches zero.

In the application of the limit analysis to soil by

approximating the stress-strain curve as an inclined and a

horizontal line (Fig. 3), the yield stress level used should

be chosen to represent the average stress in an appropriate

range of strain. As in all stability problems, the maximum

average stress mobilized over the whole of the failure

surface in a real soil will be less than the peak value and
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more than the residual value. Its relative position between

these two limits is being determined both by the properties

of the soil and by the geometry and boundary stresses in the

problem to be analyzed.

Like metals, soil as an engineering material can be

described by a yield criterion of its transition from an

elastic state to the state of plastic flow. It is generally

assumed that plastic flow occurs in soil when, on any plane

at any point in a mass of soil, the shear stress L reaches an

amount that depends linearly upon the cohesion stress c, and

the compressive stress a (Fig. 5):

L = C + a·tan<jl (3)

This is the Coulomb's criterion, in which <jl is the angle of

internal friction of the soil. The two constants c and <jl

can be looked upon as the parameters that characterize the

total shear resistance of the soil media. It should be noted

that for a purely cohesive soil (<jl=0), Coulomb's criterion

is identical to Tresca's criterion for metal.

In dealing with plastic strain rates of an ideally plastic

and isotropic material, the principal axes of strain rate and

stress are assumed to be coincident. The direct consequence

of this assumption for a granular material like soil, whose

shear strength depends directly on the normal stress, is the

associated flow rule. The associated flow rule asserts that

any plastic deformation of a Coulomb material must be
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accompanied by an increase in volume, or dilatancy, provided

that $FO. The result of this dilatancy is the inclination

of the strain or displacement vector at an angle of $ to the

shearing surface (Fig.6).

Since real soils are quite complex and theories proposed

to characterize them do not exactly describe their physical

behavior, discrepancies between theoretical and empirical

results should be expected. An example is the excessive

dilatancy predicted by the perfect plasticity theory.

Clearly, to account for the complexity of the problem with

more elaborate models will mean a trade-off of the convenience

for the physical reality. However, in certain circumstances,

such as the stability problems in soil mechanics, the

deformation conditions are often insufficiently restrictive

for the soil deformation properties to affect the collapse

load to a great extent. The adoption of the limit analysis

based upon Coulomb's criterion and its associated flow rule

is justified. It is, therefore, used in the present study.



CHAPTER III. FAILURE SURFACE
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III.A. The Neccessitt for a Failure Mechanism

In the analysis of slope stability, the determination of

the critical height of the slope, the height at which the slope

is at the verge of collapse, yields an important criterion.

According to the Upper Bound Theorem, failure can occur if a

compatible failure mechanism exists in the body. A convenient

way to approach the problem is to assume that a single, well­

defined slip surface exists for the slope. If a virtual

displacement is induced along the surface, the rate of the

input of work energy due to the applied forces would be equal

to or in excess of the rate of internal dissipation of energy.

This results in an indefinite or unrestrained shear deformation

along the length of the slip surface. The soil mass resting

immediately upon the slip surface is carried along and can be

treated as a rigid block undergoing rigid-body motion. The

soil mass beneath the failure surface is viewed as being

stationary (Fig. 7).

The velocity field in the sliding block is significantly

different from that of the stationary block, with an extremely

thin shear flow soil layer separating the two. Thus, the

earthslope is considered to have a discontinuous velocity
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field with the shear flow layer treated as a surface of

discontinuity.

With a Coulomb material like soil, the associated flow

rule requires a separation or overlap of the material on the

two sides of the layer to accompany a tangential velocity

discontinuity. The actual transition layer must have

appreciable thickness, but the idealization to a discontinuity

surface may still be useful. This is the case as long as the

very small thickness of the layer remains uniform throughout

its entire length.

III.B. The Kinematically Admissible Mechanisms

Since the motion of the sliding block above the failure

surface is caused by the shear flow of the surface along its

entire length, the type of motion acquired by the sliding

soil mass then reflects the shape of the sliding mechanism

that carries it. Thus, for a translational failure mode, the

slip surface is neccessarily an inclined straight layer. For

the rotational failure without dilatation, the mechanism

would be circular in shape. However, this is only true in

the case of a purely cohesive soil (~=O).

For most soils, where internal friction is significant,

a dilatation equal to tan~ is observed according to the

associated flow rule (Fig. 6). With this, then the only

admissible failure mechanisms are the straight (plane) layer
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surface for translation, and the ~-logspiral surface for

rotation (Fig. 8). The qualification for these two kinds of

surface is that they are the only ones that insure the

uniformity of the thickness throughout the surface length

during yielding.

That the plane surface of translational displacement is

admissible is rather obvious. The shear strain rate vector,

inclined at an angle ~ to the surface as a result of dilatat­

ion, is constant along the length of the surface. This

insures that every point on one side will displace the same

amount at a small time interval, thereby preserving the

uniformity of the thickness.

For the case of the rotational mechanism, an examination

of the geometry at the onset of yielding and at a small

interval later is neccessary (Fig. 9). Suppose the angular

displacement is de; then the radius UK of an arbitrary point A

on the surface is moved to the new position nAT. However,

this new position of the radius nAT will coincide with the

old position of the radius ~ of the point B before the

displacement. From the geometry, AAT (=rd8) is neccessarily

perpendicular to nAT. Now, since KAT coincides with the

velocity vector, which forms an angle ~ with the surface
,

according to the associated flow rule, then radius OB must

be greater than OX by an amount of rd8(tan~). In other words,

~ - OX = rd8(tan~) , (4)
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or

r(8+d8) - rCa) = dr = r·tan~·d8. (5)

By integration, and noting that a and r stand for the initialo 0

angle and radiUs, the equation for the only admissible rotation-

al failure mechanism is

(6)

or

(7)

Thus,

(8)

IILC. The Most Critical Type of Mechanisms

In the discussion of Section III.B. above of the straight

and ~-logspiral surfaces as the translational and rotational

mechanisms, the arguments were essentially based on the

geometric compatibilities. The question that remains is that

of these two types of mechanisms, which one would be more

critical? That is, which one would be developed with the

least input of external work? For the earths lope under the

static loads, the $-logspira1 has been shown to be the most

critical [Ref. 15]. However, it is still neccessary to find
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out, for more complicated loading situations, whether this

type of failure mechanism is still the most likely to occur.

Since different shapes of failure surface will result in

earths lopes of different soil masses, the stress state along

the slip surface is mechanism-dependent. The process of

determining the most critical surface is thus controlled by

the consideration of the shape function and the stress­

distribution function. The problem is then reduced to one in

which both the shape of the mechanism and the resulting

stresses along the failure surface must be chosen in such a

way that the external loads from the soil mass above this

surface will be just balanced by the stresses developed at

the surface. At the incipience of any collapse, when the

stress state satisfies Coulomb's criterion, the flow of the

velocity discontinuity will then carry the block it supports

along. Of all the possible shapes that satisfy the above

requirement, the one that needs the minimum of applied load

would be the most critical. This then is the criterion of

optimization.

Using the techniques of variational calculus, the applied

load on a potential slip surface can be defined by a

functional (Fig. 10):

w= I[(dFx)2+(dFy)2]~,
H

(9)

where dFx and dFy are the orthogonal force components of an
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infinitesimal soil layer at an arbitrary elevation. They are

defined as

(10)

(11)

Here, y is the specific weight, Kx and Ky are the loading

coefficients, ~ is the length of the infinitesimal soil layer,

and dh is its thickness. For the static case involving the

gravitational force only, Kx=O and Ky=l. For seismic loading,

both Kx and Ky are non-zero. The present formulation permits

the consideration of cases where the seismic load has a

vertical component; for this case, Kyfl.

To account for the variations of loadings along the

vertical and horizontal distances from the toe of the slope,

Kx and Ky are allowed to be any functions of r and a, the

reference polar coordinates, as

(12)

(13)

The function ~ depends on the shape of the slip surface, the

geometry of the slope, as well as their relative positions with

respect to each other. (See Appendix B.) Thus,

~ = ~(r,e,a,a). (14)

From the consideration of the geometry along the slip line,



dh = ds.cos(e-~), (15)
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where ~ is the angle between the perpendicular to the radius

and the surface element ds, which is

ds = r.de/cos~.

Therefore,

dh = f(r,e,~)de.

(16)

(17)

With respect to the polar coordinates, and with eo and eh
being the initial and final angles of the slip surface, the

functional W may be expressed as

(18)

The additional equations are the equations of equilibrium:

(19)

(20)

= o. (21)

These three equations can be simplified from the geometry, in

addition to the requirement that Coulomb's criterion of

T=c+otan$ be satisfied everywhere along the slip surface to
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assure the onset of yielding. Thus, they become

eh
LF = I (Rl-Bl)de = O· (22)

x ,
eo
eh

LF = I (R2+B 2)de = 0; and (23)
y

eo
e

h
EM = r (R3+B3)de = 0, (24 )

0

eo

with

Rl = -a[(rcose)'tan~+(rsine)']-c(rcose)t = Rl(e,r,r',~,c,a);

(25)

R2 = a[(rcose)'-(rsine)'tan~]-c(rsine)' = R2(e,r,r',~,c,a);

(26)

R3
2 2 (27)= a(rr'-r tan~)-cr = R3(r,r',~,a);

Bl = y~(e,r,a,8)Kx(e,r)f(e,r,~) = Bl (e, r , ~, a., 8, y) ; (28)

B2 = y~(e,r,a.,S)Ky(e,r)f(e,r,~) = B2(e,r,~,a.,s,y); (29)

(30)

where the R's are the reaction forces from the stress state of

the slip surface, and the B's are the applied forces contribut-

ed by the soil block supported by the surface.



In minimizing the functional

eh

W = JP(e,r,a,B,~)de,
eo
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(31)

subjected to the three constraints, it is neccessary to make

use of the Lagrangian multipliers:

(32)

By the Euler-Lagrange differential equation for multi-variable

variational calculus, we get

aI a2I , a2I " all = o· anda-r- ar'ae -r ar ' ar -r ar'ar' ,

aI all , all " all = o.aO' - aO"ae -0' aO' ' aO' -0' aO' ' aO' '

(33)

(34)

From the fact that P, Bl, B2 , and B3 are independent of 0', it

is obvious that

lli = lli
aO' aO'

ap
= aO' = O. (35)

With these, and the condition that

aIW = 0,

Equation (34) becomes

(36)

(37)
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Substituting into Equation (37) the expressions for R1 , R2,

and R3 from Eqs.(2S)-(27), we obtain

Al{-[(r'cose-rsine)tan$+(r'sine+rcose)]}+A2{[(r'cose-rsine)

-tan$(r'sine+rcose)]}+A3{(rr'-r2tan$)} = O. (38)

To convert the coordinates to the cartesian system, the

following transformation indentities are used:

x = rcose;

y = rsine;

(39)

(40)

dx =ae r'cose-rsine;

r'sine+rcose;

(41)

(42)

(43)

rr' • (44)

Equation (38) is then reduced to

Knowing that

we get

(45)

(46)
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AJ -tanp -~] +Adl-tan ~*]+A3 [x+y~-tan cj>(x~-y)] = o. (47)

By collecting terms, it becomes

(48)

Translating the origin (0,0) of the x-y system to (-~ A1) ofA3'T;
the new X-Y system (Fig. 11), the differential equation evolves

into:

or

(Y-Xtan¢)dY+(Ytan¢+X)dX = 0.

Substituting

y = vX and

dY = vdX+Xdv

into Eq.(49), we obtain the following

Integrating Eq.(53), we get

or

(49)

(SO)

(51)

(52)

(53)

(54)



~nX = tan$[arctan(v)]-t~n(1+v2)+co .

Since v=Y/X, then obviously

e = arctan(v)

and

(T/X) 2 = 1+v 2.

Therefore,

22

(55)

(56)

(57)

( 581

or ~nT = etancjl+co (59)

From the boundary condition, where TO corresponds to eo

for the initiation of the slip surface curve,

(60)

or (61)

Substituting Eq.(61) back into Eq.(59), we finally get

(62)

This is the equation for a cjl-10gspira1. The cjl-10gspira1 is

then the most critical slip surface.

From the solution of Eq.(34), it is obvious that the

process of solving the Eq.(33) will be even more tedious.

The solution will be very complicated, and will only result

in the profile of the normal stress distribution along the

slip surface. Since the normal stresses along the entire
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surface are directed toward the center of rotation, they have

no contribution in the internal dissipation of energy for our

rotational mechanism. It is therefore sufficient to know

from the examination of Eq.(33) that the normal stress

distribution along the slip surface varies with different

loadings.

Note that by means of similar derivations, the following

statement can be obtained: For the case where body forces as

well as soil non-homogeneity and anisotropy in cohesion are

considered only, the most critical failure surface is still

the ~-logspiral.
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CHAPTER IV. DETERMINATION OF THE CRITICAL HEIGHT FOR
'SEISMIC STABILITY

IV.A. General Formulation of the Seismic Force Profile

As shown in Chapter III, the ~-logspiral surface may be

used as the failure mechanism in the stability analysis of an

earthslope under seismic loading situations. Following

traditional approach in slope stability analysis, we predict

the critical height of the slope rather than the critical

load itself. Such a prediction is an upper bound on the

actual value. It is quite useful in providing insight to

the evaluation of the slope stability as well as guidelines

for the design of earth-projects.

Pertinent to the analysis of the stability of an earth­

slope under seismic loads is the development of a suitable

representation for the loads. In earlier works (e.g. Ref.

[20]), the seismic load is considered constant and in the

horizontal direction only. More recent studies (Ref. [7] to

[10]) considered the seismic load to increase with height.

In addition, studies have taken into consideration the

vertical component of seismic loads.

More realistically, the seismic profile is non-linear.

A convenient representation is to treat profiles of the
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vertical and horizontal components as polynomials of the

elevation, as follows:

m .
1: [a.h)]; and

j=O J
(63)

(64)

However, to conform to the polar coordinates used to

describe the failure spiral surface, these must be expressed

in terms of e and r. If the spiral is to pass through the

toe of the slope, then the height of any horizontal layer of

soil is (Fig. 12):

h = n-y,

where

(65)

(66)

y = rsine

with

= r·exp[(e-eo)tan~]sine, (67)

(68)

Substituting Eq.(65) into Eq.(63) for Kx(h), we obtain:

which expands to

(69)
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Eq.(70) may be rewritten as

If we set

m. .. .
v

J
' = L [~ ]a . n1 - J • ( -1) J ,

j=O J 1

Eq.(7l) can be expressed as

Similarly, for Ky(Y) with

n. .. .
1 1-J J1.1. = L [.]b. n .(-1),

J j=O J 1

we have

(72)

(74)

(75)

n .
L 1l.yJ =

j =0 J

n .
L1l.(rsine)J =

j =0 J
(76)

IV.B. The Critical Height of a Toe-Spiral

A spiral that begins somewhere in the a-portion and

terminates at the base of the a-portion of the slope shall be

referred to as atoe-s·piral. With the toe -spiral prescribed

as the failure surface, together with the seismic profiles



27

specified along the slope, the critical height of the slope

may be derived.

The critical height of a toe-spiral is the height of the

slope at which such a failure mechanism can be developed so

that the soil mass resting upon the £ailure surface will be

carried down in the fashion of pure rotation. Yielding

impends when the loads from the rotating mass perform external

work at a rate equal to the internal rate of energy dissipat­

ion in the mechanism. It is then only neccessary to impose a

virtually small rotational velocity to the rotational block,

and require that the energy rate equilibrium be observed.

Equating of the external work rate to the internal dissipation

rate will provide the basis for the calculation of the

critical height.

By means of superposition, the rate of external work

done contributed by the rotating soil mass DBED (Figs.12,13 &

14) can be found as the rate of work done by ABEFA ( the

gross work rate), minus the work rate by ABDCA and CDEFC

(the fictitious work rate). Considering the region of ABEFA

first, we have (Fig.14):

W = fdWIX + fdWlY = fnYdFx +J~nXdFy , (77)I

with dFx = YKx(y)dA, (78)

dF = YKy(y)dA, (79)
Y

x = rcose, and (80)



y = rsine.

Noting that

dy = (dr/de)sine+rcosede

= sined[roexp{(e-eo)tan$}]/de+rcosede

= (sirietan$+cose)rde,

and

we have

e
= JhYQKx(y)r3[Sin2ecosetan$+SineCOSZe]de,

eo e

J
h 3 Z 3= ~Yn Ky(y)r [sinecos etan$+cos e]de.

eo
For region ABDCA, we have:

and
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(81)

(82)

(83)

(84)

(85)

Wz = IdWzx+JdWZy = rYQKx(Y)[Y(XZdY)l+l\YQI).(Y)[X~dYl. (86)

B B

From the geometry, the expression of Xz can be derived from

(87)

so that

(88)

for

(89)



Thus,

Yn
JdW2x = JynKx(Y)[(~2-Y/tan~)Y]dY, and

YB

IdWzy - f~YQKy(Y)[(~z-y/tana)Z]dY.
YB

Similarly, for region CDEFC:

29

(90)

(91)

YE YE
= J ynKx(y) [Y(X3dy)]+J ~YnKy(Y) [x~dy],

Yn Yn

(92)

where from

x 3 is derived:

for

Thus,

YEfdW 3X = JynKX(Y)[(~3-Y/tan13)Y]dY, and
Yn
Y

JdW3y = f~YnKy(Y) [(~3-Y/tan13)2]dY.
Yn

(93)

(94)

(95)

(96)

(97)
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The above six equations, Eqs.(84,85,90,91,96,97), can be

expanded by substituting the expressions for Kx(Y) and Ky(Y)

into them:

e

f
h m JO+3 JO+1 2 JO+2= yn ~ [Vor (sin acos e+sin ecosetan~)]de;

j=O J
eo
e

J
h n °+3 ° 3 °+1 2= ~ YnJ [llJorJ (sinJecos e+sinJ ecos etan~)]de;

J=Oeo

(98)

(99)

(100)

(101)

(102)

(103)

Eqns.(98) &(99) are expressed into more consistent forms

with the application of the following identities:

and

r = p[exp(9tan~],

where

(104 )

(105)

(106)
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Thus, we have

e
Yn Ill. [ j+3fh e(j+3)tan<jl( 0 j+l 0 j+3 += t \lop e Sln e-Sln e

j =0 J e
o 0+2

cos esinJ etan<jl)de], (107)

and

e

f
. n 0 3 Jh a(0 3) 0 • 2dW
ly

= ~yn.l [ll.pJ+ e J+ tan<jl(cosasinJe-cosasinJ+ a+
J=0 J a

o
. j+l . j+3 )d ] (108)Sln etan<jl-sln atan<jl a.

Each of these two equations involves two integral forms,

namely:

I Aa . Ba d d f Aa . B de Sln cosS a, an e Sln e e.

Their solutions are:

= eAas inBe[Acos S+ (B+l}sin a]
A2+ (B+l) 2

AB (AS. B-l sdS- Je Sln ,
A 2+ (B+lj

and (109)

After some manipulation, the iterative formulas can be

shown (App.C) as:

J AS . B de Sln e e =

= I[A,B]; and (111)
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= eA8sinB8[AcoS8+(B+l)sine]_ AB I[A,B-l]
A2+(B+l)2 A2+(B+1)2

= J [A,B] . (112)

Ultimately, Eqs.(107) and (108) can be reduced to the

final forms:

!dWlX =

JdWly =

where

(113)

(114 )

f 1 (r ,8 ,8h )x 0 0

and

-3 m 0 +3 8h= r • l vopJ {I[(j+3)tan~,j+1] -I[(j+3)tan~,
o j=O J 8

0
8h 8h

j+3] +tan~J[(j+3)tan~,j+2]}, (115)
8 0 80

_3 n 0 +3 8h 8h
f 1 (r ,8 ,eh) = r o • l ].lopJ {J[(j+3)tan~,j] -J[(j+3)tan~,j+2]

y 0 0 j=O J eo 8 0

8h 8
+tan~I[(j+3)tan~,j+l] -tan~I[(j+3)tan~,j+3]h}. (116)

80 80

Next, the coordinates of the points B, D, and E of the

soil mass DBED are seen to be

YB = rosin80 (117),

YD = rosin80+Lsina, and (118)

YE = rhsineh '-" r oexp [(eh -8'0) tan~] sineh . (119)
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Therefore, from Eqs. (88) and (94):

, and (120)

The variable L, like H, is the geometric parameter

describing the rotating soil mass DBED. From the geometrical

configuration of the slope, we have the following relations:

(122)

(123)

The solution of these two simultaneous equations gives

explicit expressions for both Land H:

(124)

(125)

Then, Eqs.(lOO) to (103) are all in integrable forms,

and can be expressed formally as

IdW2X
3= yQr f 2 (r ,a ,ah);o x 0 0

JdW2y = ~YQr~f2y(rO,eO,eh);

IdW3x = YQr~f3X(rO,eo,eh); and

IdW3y = ~YQr~f3y(rO,eo,eh)'

(126)

(127)

(128)

(129)
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where

m , j +2 j+3
-3 2Y Y YD

f2x(ro,6o,6h) = r o I \) j [ j+2 - (j +3)tana] t B
(130)

j=O

~2 j +1 j+2 j+3
-3 n ZY 2~ZY Y YD

f2y(ro,6o,6h) = r o I 11· [ j +1 -(j+2Jtana+ (j+3)tan2a]tB ;
(131)

j =0 J

j+2 j+3
-3 mt3y y. YE (132 )f3x(ro,6o,6h) = r o j~oVj[ j+2 -Cj+3)tanB]tD;

~Z j+l j+Z j+3
-3 n 3Y 2tZY Y YE

f3y(ro,6o,6h) = r o Ill. [ - + ]~ (133)
j =0 J j+l (j+Z)tanB (j+3)tanZe DO

The total rate of external work done is now expressed as

The next step is to calculate the rate of internal energy

dissipation along the velocity discontinuity surface BE, where

yielding occurs. From Eq.(Z), this dissipation rate for an

infinitesimal surface element is:

o • °
dW1 = (~T-oTtan~)d6ds,

where

°
T = rncos~/t,

(136)

(137)

with t being the extremely small thickness of the velocity
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transition zone resulting from the dilatation (Fig. 6). The

negative sign for the second term is neccessary because ~.
represents the compressive normal stress while Ttan~ stands

for the outward dilatation. Since the Coulomb's criterion

must be satisfied, from Eq.(3), we have

-atancj> = C-'T. (138)

Substituting this into Eq.(136) and integrating over the

entire region of the mechanism results in

Here, d~ is the differential thickness of an element. The

extremely small thickness of the transition zone is constant

throughout. Noting that

ds = rd6/coscj>, (140)

we have for the total internal energy dissipation rate the

expression:

6
h

= enJ {roexp [ ( 6- 6
0

) tan cj> ]} 2de
60

2= ~cnro·{exp[2(6h-eo)tancj>]-1}/(2tancj». (141)

Equating the external work rate to the internal rate of

dissipation:

(142)
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we have

c exp [2 Cah - eo) tan¢»] -1

r o = Y·2tan~[(flX-f2x-f3x)+~(fly-f2y-f3Y)]
(143)

By the Upper Bound Theorem, this means that any toe-spiral

satisfying the above equation will be a surface along which

yielding impends. Substitution of Eq.(143) into Eq.(135)

gives an expanded expression for H, the vertical distance of

the knee D above the ground, or the height of the slope:

(144 )

where

F(ro ,8
0

,8h)

(eh-e )tan~ 2C8h-8 )tan¢»
sinS[e 0 sin(eh~m)-sin(eo+m)][e 0 -1]

2tan¢lsin(S-a) [f1x-f2x-f3x+~(f1y-f2y-f3y)]

(145)

The critical height of instability is then the minimum value

of H attainable for a combination of ~, m, and S, as well as

Kx(Y) and Ky(y). It may be written as

* < c *H y.N (146)

with

(147)
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* * *such that r o ' So &Sh satisfy the conditions of

aF = 0aro

aF = 0
~

a'F _
aSh - 0 • (148)

*The dimensionless number N is the seismic stability factor

*of the earths10pe. The value of N is a pure number, and is

dependent on ~, a, S, Kx(Y) and Ky(Y).

Note that when the loading force is a constant (i.e.

zeroth degree polynomial in y), the function F becomes

dependent on So and 6h only, and

(149)

IV.C. Earths10pe of Purely Cohesive Soil

A purely cohesive soil is one in which there is no

internal friction (~=O). It is also called the Tresca

Material.

It is observed from Eq.(145) that

F = .&.111..)
q (~J '

where

(150)

(6h~6 )tan~ 2(6h -S )tan~
g(~) = sinS[e 0 sin(6h+a)-sin(60+a)] [e 0 -1],

(151)

and
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For ~=O, function F becomes

(152)

= g(CP=O) _ 0
q($=OJ - rr . (153)

(154)

By the l'H6pita1 rule, we have

F(CP=O) = lim .&i!L =~ .
cP+O q rcpJ q , (0)

Differentiating functions g(CP) and q(CP) from Eqs.(151) and

(152) with respect to cP, collecting terms, and evaluating at

cP-o, we have

q' (0) = 2sin(f3-a) [(f1 -f2 -f3 )+~(f1 -f2 -f3 )] I .
x x x y y y cP=O

Accordingly,

(155)

(156)

F(r ,6 ,6
h

)1
o 0 cP=O

(6h -6
0

) [sin(6h+a)-sin(6o+a)]sinf3
=

sin(f3-a) [flX-f2x-f3x+~(f1y-f2y-f3y)~lo
(157)

IV.D. Physical Ranges and Constraints

Since the problem concerned has been associated with

certain geometries, it is neccessary to identify the physical

constraints corresponding to the geometrical restrictions.

Applicability of the analysis to physical situations are

discussed in this section.
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iii) L > 0 (160)

v) L/H > 0.1 (162)

vi) H/L > 0.1 (163)

for purely cohesive soil only

(165)

(166)

(167)

xi) H > H ; for the determination of the location
s of the most critical spiral for a slope

of given height only
(168)

The first constraint is the only equality constraint. It

is the same as Eq.(143), which must be satisfied for spiral

failure mechanisms.

The second constraint is similar to the second of the

two simultaneous equations for the slope geometry, Eq.(123).

Its inclusion in this list imposes the restriction that the
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spiral must terminate in the B-portion of the slope.

The third constraint requires that the spiral be started

out in the a-zone of the slope. Thus, the second and third

constraints assure the condition that the spiral traverses

both zones of the slope under investigation.

A close examination of the equation for the critical

height as formally stated in Eq. (146) reveals that the value

for the critical height can still be illusively positive yet

physically unrealistic. This is the case when both the

numerator and the denominator expressions are negative-valued.

In order to rule out such a possibility, the constraints

number 4 &7 are introduced. As it may seem quite redundant

to use both expressions as constraints instead of just either

one of these, it must be pointed out that using both can

safeguard the function from assuming negative values. This

is extremely important as long as the optimization process

is concerned.

The fifth constraint essentially requires that the

spiral not be skewed towards and along the height of the

slope (that most part of it lies in the B-zone; Fig.IS),

whereas the sixth constraint specifies that a spiral skewing

out of proportions towards and along the top of the slope

(with most part inside the a-zone;Fig.IS) is not acceptable.

Such skewing tendencies are observable when the slope angle a

is equal or close to the internal friction angle ~, in
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addition toa small f3 angle. The presence of these skewness

usually results in critical height values that are very low.

Two reasons are given to dispell such skewing spirals. The

first being that for such spirals, the geometry is quite

different from the ideal picture on which the derivations

are based. So, results obtained may be questionable.

Secondly, even if these skewed spirals are perfectly alright,

the degree of hazard associated with them may not be as great

as the less-skewed ones. Based on these considerations, the

ratios are set as shown. Of course, they are subject to

relaxations or further restrictions, according to the

judgements of the investigators.

Constraint number 10 assures that the spiral does not

go backward.

The eleventh constraint is only applicable when the

problem is to locate the most critical failure surface in a

slope of given height (Refer to Chapter VI). It assures the

spiral height is not higher than the allowable height, that

of the slope.

Constraints 8 &9 are related to the physical ranges of

the spiral angles 8
0

&8h • The first of these two is more

general. It is derived from a consideration of the expression

for the length L, Eq.(124). For the length to be greater

than zero, the following must be true:

(169)
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(170)

(171)

This can only be satisfied if

and

(172)

e +8 > ~1To or (173)

The result is then for the first case:

which is reflected in the tenth constraint. For the second

case, it is

which is Constraint number 8. As for the ninth constraint,

the expression for the slope height H, Eq.(125), is used. In

order that it is positive, the following must be true:

(176)

If the slope under investigation is composed of purely

cohesive soil, then Eq.(176) becomes

(177)
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(178)

This gives

(179)

and (180)

which are Constraints number 9 and 10.

While much have been said of the constraints, the

importance of the ranges of the independent variables r o ' 6
0

,

and 8h must not be overlooked. Although no specific statement

has been made in the derivations, the validity of these

formulations can be easily seen to rest on the following

implied variable ranges:

o < r < 00,o

6
0

> 0, and

(181)

(182)

(183)

However , to provide greater insight into the

applicability of these formulations as well as to expedite

the optimization process, better refining of these ranges is

neccessary. These narrowing down of the ranges can be

achieved by geometric and algebraic considerations. The

geometry of the model requires that the spiral be confined

within the slope by the perimeter of the slope. This results
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in the upper and lower limit for Boand Bh , respectively

(Fig.16):

(184)

(185)

The upper limit for Bh can be further refined by next

considering the expression for the slope height again,

Eq.(125). To satisfy the fact that H is positive, the

expression is reduced to

r
sin(Bh+a) > ~sin(B +a),r h 0

(186)

with (187)

and the implied and established limits for Bo • It is obvious

that

o < Bh+a < 1T, or

(188)

(189)

(190)

Accounting for the above refinements, the ranges now becomes:

(191)

(192)

(193)

These restrictions should further reduce the efforts needed

in the optimization.
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The discussions presented in Chapter IV pertain

essentially to failure mechanisms with the ending at the toe

of the slope. However, for special cases, it is possible

that the spiral may terminate at some distance vertically

above the toe, or even stretched horizontally away from the

toe.

V.A. Sagging Spiral

Before discussing the special cases mentioned above, it

is worth noting yet another possibility, the case of a sagging

spiral (Fig.17). A spiral will be termed "sagging" if its

point vertically farthest away from the origin (M in Fig.17)

is not its endpoint E. This point of the largest

vertical distance is a stationary point in the spiral:

(194 )

This point which corresponds to the maximum of y, is determined

by solving the equation:

The solution is

e = ~1T+<Pm •

(195)

(196)
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From this, a criterion can be set to determine whether a given

spiral is sagging or not. Clearly, we have

ordinary spiral 8h < 8m

sagging spiral 8h > 8m

In view of the possibility of having a sagging spiral

failure surface, it is important that the analytical procedure

developed for ordinary spiral failure surfaces be re-examined

to determine its applicability to the case of sagging spirals.

That the procedure is equally applicable to both cases is

easily demonstrated. We note that the evaluation of the

external work rate contributed by the soil block BMEDB

(Fig.17), defined by the spiral and part of the perimeter of

the slope, is equivalent to the evaluation of the area inside

two curves ~l(Y) and ~2(Y)' See Appendix B. In the case of

the ordinary spiral, the external work rate is calculated

formally:

for YB ~ Y < YE ' with boundary ~l(Y)'

(197)

Wz = fdW 2x+fdWzy for YB ~ Y~ YD}
. . .with boundary ~2(Y)'

W3 = fdW3x+fdW3y for YD ~ Y ~ YE
(198)

For the case of a sagging spiral (Fig.17), it is

convenient to truncate the' portion of ~l(YJ,at pointM, and
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add the remaining portion of the curve to '1'Z(y), such that

.
(Wl)l = f dWl for YB < Y < Ym with boundary '1'l(Y);=
.

f dWl(WI) 2 = for YE < Y < Ym ' with boundary '1'Z(y);=
. .

with WI = (Wl)l+(Wl)Z .
. .
W2 = fdW Z for YB < Y < Yn ' with boundary W2 (y) )=

W3 = f dW3 for Yn < Y < YE ' with boundary '1'2 (y)

(199)

(ZOO)

Formally, this is the same as Eq.(134). Thus, the same

formula may be treated for both the case of the sagging

spiral and the ordinary spiral. In these cases, the formula

is applicable only when the entire length of the spiral is

above the ground level.

The exception taken in the last statement is justified

by the constant seismic force beneath the ground level; in

contrary to the variation of the seismic coefficient above
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the ground, with the elevation. This essentially divides the

seismic coefficients into two regions (Fig.17):

( ao
K (h) = ~x

la +
m .
I a.hJ

0 j=l J

f"K (h) =
Y n .

b + I b .hJ
0 j =1 J

or

rKx(y) =

SoVjy
j

rKy(Y)

· .'1 ~jyj
J=O

; for h < 0

(202)

for h > 0

for h ~ 0

(203)

for h > 0

for y ~ n

(204)

for y < n

for y ~ n

(205)

for y < n

A close examination of the geometry of the earths lope

and the possible combinations of relative position between

the slope and the spiral failure surface reveals that there

are basically four major categories of spiral failure

mechanisms. These are illustrated in Fig.18 and are
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categorized as follows:

i) normal --- (a) the spiral terminates at the toe and there

is no sagging (eh~em,n~rhsin8h).

(b) the spiral ends some elevations above the

ground and there is no sagging (8h~8m'

n>rhsin8h)·

(c) the spiral is sagging, but its end is

raised and it has no point below the

ground (8h >8m, n>rmsin8m).

ii) partially sunken --- the spiral is sagging; despite the

elevation of its end above the

ground, part of its length is below

the ground (6h >8m, r hsin8h <n<rmsin8m).

iii) sunken --- the spiral is sagging, ends at the toe, and

the portion between the end and a certain

point is completely below the ground (8h >8 m,

r hsin8h=n<rmsin8m, d=O).

iv) stretched the spiral is sagging, ends some horizontal

distance d from the toe, and the portion

between the end and a certain point is

completely grounded (8h >8m, d>O,

r hsin8h=n<rmsin8m)·
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V.B. Raised Spiral

A spiral which has its end at an elevation above the toe

of the slope is hereby referred to as a raised spiral.

Typical slopes are shown in Fig.l8,i.b,i.c and ii. For such

a spiral, the two simultaneous equations, Eqs.(l22) and (123),

governing the dimensions of the rotating block are unchanged.

In fact, only minor modification of the formulations need be

made.

The modified expression for n is

(206)

where HT is the height of the raised spiral terminal.

*Corresponding changes in the expression for Hare:

with

. ( eh - eo) tan <j> . . 2 ( eh - eo) tan <j>
s l.nB [e Sl.n (eh+a) -Sl.n (eo+a)] [e -1 ]

2tan<j>sin(B~a).[flX-f2x-f3~+~(£ly-~2y-f3y)]

such that

where

* c *H !: -·NY ,

(208)

(209)

(210)
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* * * *In addition, r o ' 80 , 8h , HT must satisfy the conditions:

aF = 0
~

aF = 0a8
0

aF = 0
aeh

aFaIr.f = 0 • (211)

These modifications are sufficiently general and would include

the toe spiral as a special case (HT=O). When the raised

spiral qualifies for the first category as a.normal spiral,

no modification is needed.

For the spiral of the third category, (Fig.18.iii), the

sunken spiral, the raised height is zero, but the spiral

cuts through the ground level once. Referring to the angle

corresponding to the ground level point G (Fig.17) of the

spiral as eg , the external work rate (gross) can be modified

as

6h

f dW l =
60

where

6 g 6 g

ynr~[flX(ro,60,eh)I+~fly(rO,eo,6h)1 ],
60 60

6hf ynaor3[sin26cos6tan~+sin6cos26]d6 +

eg 6
h

~f ynbor3[sinecos28tan~+cos3e]d6
eg 8h 6h

= ynr~[f~~(ro,60,eh)1 +~f~y(ro,60,6h)1 ],
6g 6 g

(212 )

(213)

(214)

(215)
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with

B eh
flx(r0,8 0 , ehll

ag

-3 3 8h 8h= rap {I [3tancj>,lJI -I[3tancj>,3ll +
o 0 8g 8g

eh
tancj>J[3tancj>,2]I },

8g

8 8
= r~3bop3{J[3tancj>,O]lh-J[3tancj>,2]lh+

8g 8g

8h 8h
tancj> I [3tancj>,1 l I -tancj> I [3tancj>, 3l I

8g 8g

(216)

, (217)

.
Thus, the earlier equations for WI' Eqs.(113) and (114), can

still be used, as long as the Eqs.(11S) and (116) are

modified as

(218)

(219)

The ground point angle 8g can be found from the follow­

ing equation derived from the geometry:

(8h -8
0

)tancj> (8 -8 )tancj>
G1. = r e sin6h -r ego sin8 = 0

o 0 g
(220)

The elevation is to be carried out with Newton's iterative

root finding method:

6(n+1) = 8(n)-G /G'
g gIl '

(6 - 6 ) tancj>
Gi = dGl /d6 g = roe· g 0 (tancj>sin8g+cos6 g).

(221)

(222)
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The superscripts stand for the iteration number. For the

initiation of the iteration process, or at the zeroth

iteration, e(O} can be estimated by assuming that
g

(223)

So (224)

Since the possibility of divergency exists in Newton's

method, the following bounds will assure that such possibility

will be eliminated:

(225)

For the spiral of the second category, the partially

sunken spiral (Fig.18.ii), the raised height is non-zero and

the spiral cuts through the ground level twice. Referring

to the angles corresponding to the ground level points Gl

and G2 as egl and eg2 , respectively, we have the following

expressions for the functions fIx and fly associated with

the gross external work rate:

(226)

(227)
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The angles Bg1 and 8g2 can be found from the following

equation of geometric consideration:

(228)

As before, the evaluation formula is Newton's iterative

formula:

(n+l)

8g1 ,2

where G' = G'2 1

(229)

(230)

The initial estimation for eg1 and 8g2 are made in a similar

procedure as before:

(0) = 26 -Q ande m ~h 'gl

Their safety range for convergency are

em < 8g2 < \ •

v. C. Stre"tched Spiral

(231)

(232)

(233)

(234 )

When the end of a spiral is stretched a horizontal

distance d away from the toe, the two simultaneous equations
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for geometry are changed to

(235)

(236)

Solving these equations simultaneously, we obtain

and

(237)

with (239)

Accordingly, for the formulation of xE' used in Eq.(12l),

modification is neccessary:

(240)

where it is noted that rhcos8h is negative because 8h is

larger than ~7T.

Also, since the spiral is sagging, the formulation for

WI must be modified as in Eqs.(2l2) to (219) for the sunken

spiral. Eq.(144) now becomes

(241)

F(r 8 8 d) = "d·sinexsin(3 +
0' 0' h' s1n((3-ex)

s:itt(3[e( 8h- 8o) tancjlsin1 8
h

+ex) -sin(so+ex) ] [e
2

(8h - 80 ) tan cjl -1]

2tancjlsin((3-ex)[flx-f2x-f3x+~(f1y-f2y-f3y)]

(242)
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*The critical height H of the stretched slope is

*H c *< -·N wherey , (243)

** * *such that r o ' 8
0

, 8h , d satisfy the conditions:

(244)

aF - 0 .F"' - ,
o

aF = 0-:rn;;
·aF
~ = 0 ;

aF = o.
~

(246)

In addition, since a stretched spiral is neccessarily a

sagging spiral, the range for eh must be restricted as

(247)

The other ranges and constraints for the simple toe spiral

still apply.
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The determination of the critical height for a slope

of given geometry and soil properties is useful in that it

provides valuable criteria for the safety des~gn of earth-

slope structures. However, for an existing earthslope, it

would be more vital to be able to predict the most critical

failure surface under a given seismic load. Investigations

of the cumulative soil mass displacement of a slope during

an earthquake, similar to those suggested in Ref. [7] and

[10], may be carried out.

To accommodate the analysis of the critical slip

surface, in particular to determine the location of the

probable failure of the existing slope, only a few

modifications have to be made to the analysis presented in

the preceding chapters. Foremost, we have to set:

where Hs is the height of the given slope and L is as defined

in Eq. (124) • In addition, HT, the elevation of the end point

of the spiral above the ground, is now no longer an

indeperident variable, but is given as

(249)
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With these changes introduced, the rest of the formulations

for the critical height of a toe-spiral can be used as

discussed in Chapter V.

"As for H , it is now defined as the vertical distance

between the knee of the slope and the end of the most

critical spiral. It can thus be used to specifY the

dimension of the most critical rotating block of soil mass.

In addition to the modifications to the formulations,

an additional physical constraint must be recognized,

namely:

(250)

Adding this extra constraint to the original constraints

assures that the height of the potential failure surface is

not higher than the physical height of the slope.
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In order that the formulations developed in this study

can be readily applicable to related investigations,

computer coding has been implemented. A listing of the

computer program and some selected sample outputs are

included in the appendices for easy references. An in-house

optimization subroutine BIASLIB, developed by the Purdue

University School of Mechanical Engineering, Ref. [23], has

been used in the program. The program itself has been

subjected to testings and debuggings, and should contain a

minimum of residual errors.

A total of nine cases were investigated. Their results

are tabulated in this thesis.

The first two of these cases deal with a static

situation, with gravity as the sole influencing force. The

stability factors associated with dead-weight induced

collapse were calculated. For the static case, the loading

profiles for the vertical and horizontal components are

Ky(h) = 1.0 (251)

Kx(h} = 0.0 (252)

Data for this simple loading are in abundance. The purpose
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here is to provide an indication on how good results from the

new model agree with the existing ones. Such a comparison

is possible because the present model is quite general and

that the dead-weight collapse is but one special case. As

shown in Tables 1 and 2, the stability factors are in good

agreement with the published values (Ref. [15]), both for the

non-stretched and the stretched spirals.

Also listed in these two tables are the coordinates and

dimensional parameters of the spirals. These parameters are

useful because they provide valuable insight into the

estimation of the coordinates of the most critical spiral

for a slope of similar geometry and properties. The

estimation corresponds to the choice of a feasible starting

point for the optimization process. This optimization

process can be quite sensitive to the choice taken.

Tables 3 and 4 present the results for the cases of

constant and linear pseudo-seismic profiles. The constant

seismic profile is taken so that

K (h) = 0.325x

(253)

(254)

Again, the stability factors obtained from our analysis are

in good agreement with the published values (Ref. [17]).

It should be noted that for the linear profile, the
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profile itself is not the same for each slope. Instead,

shorter slopes have steeper profiles as tall slopes have more

gentle ones. This is due to the fact that the first

published data (Ref. [17]) for a linear profile were obtained

by imposing on the slopes a maximum of four zones of equal

thickness. These zones are of different seismic coefficient

values (Kxl=O.25, KxZ =O.30, Kx3=O.35, Kx4=O.40) to approximate

the original profile of linear variation (Fig.2). Such a

zone-restricting technique, which distributes the seismic

load linearly through the slope height, tends to subject

shorter slopes to heavier seismic loadings.

While it is neccessary to ascertain the validity of the

philosophy underlying this technique, we dispense with the

philosophical arguments and still use the published data to

check the results of our study. For this comparative study,

we first identify the equation of the seismic profile for

the slope configuration for a published critical height.

Thus, if the seismic coefficients for the slope are of the

form

k (h) = b +blh,x 0

we may use equivalent data from the published data by

arbitrarily fixing as conditions the £ollowing:

(255)

(256)
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(257)

(258)

Solving these equations simultaneously, the coefficients bo

and bl are determined:

bo = 0.225, and
(259)

*bl = 0.20tH

This, of course, reflects the inverse relationship between

the height of the slope and the seismic loading intensity.

With the loading profile for each slope calculated as

indicated above, the critical height can be analyzed using

the new model formulated. Calculated results compare well

with the previous published data as shown in Table 4.

The data in Table 5 reflect the reductions in critical

heights resulting from a more realistic seismic profile

(Fig.19). This profile was given in Ref. [8] and [10] for

earthdams up to 300 feet tall. The equation of the profile

can be approximated, between 0 and 50 feet of height, as

Ky(h) = 1.0

K (h) = 0.0057+0.0084h-O.000076h2+O.00000032h 3 ,
x

(260 )

(261)

which is sufficiently accurate for the slope configurations

studied. The data obtained are shown to be larger (from 1.5

to 2.5 times) than those for the constant profile of 0.325
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in Table 3. On the other hand, they are less than those for

the static case, as expected.

Tables 6 and 7 exhibit data corresponding, respectively,

to the following loading profiles:

Ky(h) = 1.0+0.lKx(h)

Kx(h) = 0.0057+0.0084h-0.OOOO76h2+O.OOOOOO32h3

and

Ky(h) = 1. 0+0. 5K (h)x

K (h) = 0.0057+0.0084h-0.OOOO76h2+O.OOOOOO32h3
x

(262)

(263)

(264 )

(265)

These calculations were made to understand the effect of a

weak vertical seismic component on the critical height. The

results indicate that while there are decreases in the values

for an increase of the vertical component, these decreases

are generally not too significant. This insignificant effect

can be observed for a vertical component as strong as half

the magnitude of the horizontal one. There are also

relatively no significant change in the spiral coordinates.

These small changes may be due to the fact that the two

component profiles were assumed to be similar. Therefore

any statements extracted from these two tables may not be

general enough to warrant the omission of the vertical

component profile in future works, as they might be quite

different in real life. More detailed investigations
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concerning the vertical loadings should be made in the future

when such profiles are available.

Tables 8 and 9 are the tabulations of the locations of

the most critical slip surface in slopes of different

configurations. The height of the slope was given as 30 feet

in Table 8 and SO feet in Table 9. Under loadings specified

by Eqs.(260) and (261), the soil neir the top of the slope

experience the worst conditions and is the most likely place

for a spiral to develop. The two tables reflect this fact

and also the reductions in spiral heights as a result of the

more intense loadings of a taller slope.

In all these tables, some more or less common features

can be observed. They are:

i) stretched spirals are present only in slopes with low

angle of internal friction, ~, and small slope angle 8;

ii) sagging spirals are also found only when ~ and 13 are

small, but their ranges are usually larger than those of

the stretched ones;

iii) partially sunken spirals have not been studied completely

so far.

A close examination reveals a relatively general pattern

for the variations of the spiral coordinates for similar

configurations and loading conditions. This may be helpful

in choosing the feasible starting points for future analyses

with the computer coding.
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It It
Table 1. Stability Factor N =H (y/c) for Dead-Weight Induced

Failure, Through Non-stretched Spirals.

Kx = o.
Loading Profiles:

Ky = 1.

" " Y It Y " " * *
</> ex 8 N N -L c ro 8

0
8h 8gc---

(degrees) (pub1.) t ( radians )

0 0 30 6.43 ( 6.51) 6.54 11. 70 0.288 2.156 0.986
60 5.25 ( 5.25) 4.37 7.73 0.327 1. 581 1. 561
90 3.83 ( 3.83) 3.50 10.02 0.479 1. 003 - - - --

5 0 30 9.14 ( 9.13) 5.75 14.98 0.427 2.048 1. 259
60 6.16 ( 6.16) 4.17 8.41 0.386 1. 563 - - - - -
90 4.19 ( 4.19) 3.47 10.77 0.529 1. 026 - - - - -

10 0 30 13.50 (13.50) 5.58 21. 31 0.571 1. 986 1. 497
60 7.26 ( 7.26) 4.04 9.25 0.447 1.561 - - - - -
90 4.58 ( 4.58) 3.44 11.56 0.579 1. 062 - - - - -

10 30 12.99 (12.89) 11. 89 27.67 0.671 1. 942 1. 544
60 6.99 ( 6.99) 5.17 9.96 0.445 1. 562 - - - - -
90 ;4.47 ( 4.47) 3.92 10.45 0.521 1.105 - - - --

15 0 30 21. 67 (21. 69) 5.77 34.93 0.732 1. 939 1. 725
60 8.63 ( 8.63) 3.96 10.31 0.512 1. 568 - - - - -
90 5.02 ( 5.02) 3.42 12.35 0.630 1. 081 - - - - -

10 30 21.16 (21.14) 9.26 36.60 0.730 1. 945 1. 718
60 8.38 ( 8. 38) 4.87 10.86 0.506 1. 580 - - - - -
90 4.91 ( 4.91) 3.82 11.19 0.577 1.122 - - - - -

20 0 30 41. 22 (41.22) 6.46 73.65 0.917 1. 891 - - - - -
60 10.39 (10.39) 3.91 11. 68 0.581 1. 580 - - - - -
90 5.51 ( 5.50) 3.40 13.30 0.684 1. 110 - - - - -

10 30 40.69 (40.69) 8.93 73.61 0.904 1. 896 - - - - -
60 10.16 (10.16) 4.68 12.13 0.573 1. 587 - - - --
90 5.40 ( 5.40) 3. 75 12.01 0.634 1.144 - - - - -

20 30 38.81 (38.64) 18.63 76.15 0.887 1. 909 - - - - -
60 9.79 ( 9. 74) 7.31 16.01 0.669 1. 570 - - - - -
90 5.24 ( 5.24) 4.38 11.18 0.586 1.188 - - - - -

25 0 30 120.64 (119.9) 11. 74 300.15 1.160 1. 820 - - - - -
60 12.74 (12.74) 3.89 13.55 0.655 1. 595 - - - - -
90 6.06 ( 6.06) 3.39 14.30 0.739 1.141 - - - - -

10 30 119.33 (119.4) 12.02 286.17 1.139 1. 824 - - - - -
60 12.52 (12.52) 4.57 13.92 0.647 1.599 - - - - -
90 5.95 ( 5.95) 3.68 12.91 0.692 1.169 - - - - -

20 30 117.28 (117.4) 22.88 294.68 1.138 1. 823 - - - - -
60 12.14 (12.14) 5.91 14.74 0.646 1. 605 - - - - -
90 5.80 ( 5.80) 4.22 11. 95 0.647 1. 203 - - - - -
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Table 1. (cont'd)

~ ~

11 111 r II e" e" 0~I/> ex S N N c' era 0 h g----- i"
(degrees) (pub1. ) ( radians )

30 0 60 16.04 (16.04) 3.90 16.24 0.735 1. 612 - - - - -
90 6.69 ( 6.69) 3.37 15.42 0.794 1.173 - - - --

10 60 15.82 (15.82) 4.50 16.54 0.727 1. 614 - - - --
90 6.59 ( 6.59) 3.63 13.99 0.754 1.195 - -- - -

20 60 15.47 (15.47) 5.64 17.20 0.724 1.617 - - - - -
90 6.44 ( 6.44) 4.09 12.86 0.711 1.222 - - - - -

30 60 14.78 (14.78) 8.41 19.09 0.737 1. 623 - - - - -
90 6.22 ( 6.22) 4.95 12.20 0.672 1. 258 - - - - -

35 0 60 20.94 (20.94) 3.94 20.43 0.822 1. 630 - - - - -
90 7.42 ( 7.42 ) 3.36 16.70 0.851 1. 205 -- - - -

10 60 20.73 (20.73) 4.49 20.69 0.815 1. 631 - - - - -
90 7.32 ( 7.32 ) 3.58 15.26 0.816 1. 222 - - - - -

20 60 20.40 (20.40) 5.51 21. 22 0.811 1. 633 - - - - -
90 7.19 ( 7.19) 4.04 15.27 0.800 1.234 - - - - -

30 60 19.78 (19.78) 7.67 22.57 0.814 1. 635 - - - - -
90 6.98 ( 6.1'9) 4.70 13.08 0.739 1. 272 - - - - -

40 0 60 28.92 (28.91) 4.03 27.69 0.918 1. 647 - - - - -
90 8.29 ( 8.29) 3.33 17.84 0.906 1. 239 - - - - -

10 60 28.71 (28.71) 4.56 27.91 0.913 1. 648 - - - - -
90 8.19 ( 8.19) 3.54 16.58 0.878 1. 252 - - - - -

20 60 28.39 (28.39) 5.50 28.37 0.908 1. 649 - - - - -
90 8.06 ( 8.06) 3.90 15.41 0.847 1. 268 - - - - -

30 60 27.82 (27.82) 7.35 29.40 0.907 1. 650 - - - --
90 7.87 ( 7.87) 4.55 15.42 0.830 1. 279 - - - - -

40 60 26.46 (26.45) 12.05 31.82 0.908 1. 654 - - - - -
90 7.56 ( 7.56) 5.73 13.69 0.779 1. 320 - - - --

t
Data published by Chen et al., [14] and [15].
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* *Table 2. Stability Factor N =(y/c)H for Dead-Weight Induced
Failure, Through Stretched Spirals.

K = O.
Loading profiles: x

K = 1.
Y

* * XL'll . Xr * a'll a* a'll Xd*ep a S N N c .. c 0 0 h g c---
(degrees) (pub1. ) t ( - radians )

0 0 15 5.60 ( 5.53) 42.85 56.64 0.349 2.688 0.456 40.34
30 5.56 ( 5.53) 32.81 39.77 0.332 2.657 0.484 30.36
45 5.53 ( 5.53) 51.48 57.75 0.352 2.685 0.456 49.05

5 0 15 14.38 (14.38) 10.15 45.67 0.627 2.242 1. 053 5.90
30 9.13 ( 9.13) 6.09 15.21 0.402 2.119 1.184 1. 30
45 7.35 ( 7.35) 4.69 9.97 0.372 1. 817 1. 498 0.00

5 15 13.71 (13.71) 18.49 50.97 0.646 2.239 1. 056 7.42
30 8.83 ( 8.83) 8.76 16.93 0.407 2.174 1.126 2.80
45 7.18 ( 7.18) 5.62 10.52 0.379 1. 825 1. 490 0.00

t Data from Chen, [15].
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* *Table 3. Stability Factor N =(yjc)H for Constant Seismic
Horizontal Component.

Kx = 0.325
Loading profiles:

K = 1.
Y

* * XL * Y * * it *<P a S N N ero e eh
e .

c 0 g---
(degrees) (publ.)t ( - radians )

10 0 30 4.98 ( 4.98) 12.80 16.86 0.882 2.107 1. 367
60 4.32 ( 4.32) 5.26 9.40 0.781 1.669 - - - - -
90 3.22 ( 3.22) 3.56 13.57 0.839 1.178 - - - - -

20 0 30 8.83 ( 8.83) 6.94 17.32 0.949 2. 058 1. 776
60 5.63 ( 5.63) 4.53 10.26 0.885 1. 665 -- - - -
90 3.65 ( 3.65) 3.35 17.53 0.962 1. 217 - - - - -

30 0 60 7.44 ( 7.44) 4.20 11. 78 1. 008 1. 697 - - - --
90 4.13 ( 4.13) 3.14 18.65 1. 058 1. 284 - - - - -

40 0 60 10.25 (10.25) 4.01 14.19 1.142 1. 743 - - - - -
90 4.66 ( 4.65) 2.93 21.31 1.166 1. 349 - - - - -

t Data from Chen et a1., [17] •
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* *
Table 4. Stability Factor N =(y/c)H for Linear Seismic

Horizontal Profile.

K = 0.22S+b 1h
Loading profiles: x

K = l.
Y

b t * * 1..{: 1.* * * * 1..*
4> a. S N N 8

0
8h 81 c cro g cd---

(degrees) (pub~ Jt ( radians )

10 0 30 .0388 5.24 (5~16) 10.96 18.26 0.941 2.005 1. 478 0.0
60 .0468 4.25 (4.27) 5.50 10.91 0.856 1. 635 - - - - -
90 .0635 3.13 (3.15) 3.59 16.39 0.888 1.168 - - - - -

20 0 30 .0221 9.09 (9.06) 8.25 22.49 1. 064 1. 998 1. 840 0.0
60 .0362 5.50 (5.53) 4.83 12.29 0.970 1. 638 _. - - - -
90 .0562 3.54 (3.56) 3.35 18.95 0.990 1. 222 - - - - -

30 0 60 .0275 7.22 (7.28) 4.55 14.67 1.101 1. 673 - - - - -
90 .0500 3.98 (4.00) 3.12 19.47 1. 080 1. 292 - - - - -

40 0 60 .0201 9.87 (9.97) 4.44 18.65 1. 243 1. 720 - - - - -
90 .0447 4.47 (4.47) 2.88 18.42 1.166 1.369 -- - - -

t
Imposing four equi-thickness zones of different coefficients

(0.25, 0.30, 0.35, 0.40) indiscriminate of slope heights in
effect results in the variation of seismic profile with the

size of the slope.

t Data from Chen et a1., [17].
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* *
Table 5. Stability Factor N =(y/c)H for the General Average

Horizontal Profile.

Kx=0.0057+0.0084h-0.000076h 2

Loading profiles: +0.OOOOO032h 3

K =1.
Y

* .YL* ::i. * s* s* s*¢ a B N commentc cro 0 h g---
(degrees) ( radians )

0 0 30 6.12 7.00 12.02 0.349 2.123 1. 019
'*5.15 36.97 44.02 0.365 2.648 0.494 (y/c)d=34.0

60 5.07 4.55 8.03 0.377 1. 523 -- - -- *5.07 46.96 53.53 0.380 2.658 0.484 (y/c)d=47.2
90 3.75 3.53 10.33 0.504 1. 008 - - - - -

5.06 50.05 53.54 0.380 2.660 0.481 (y/c)~=47.2

10 0 30 11. 63 6.29 20.65 0.647 1. 963 1. 522
60 6.87 4.24 9.61 0.509 1. 555 - - - - -
90 4.45 3.48 12.29 0.616 1. 055 - - - - -

20 0 30 23.67 8.04 48.55 0.985 1.904 - - - - -
60 9.48 4.16 12.08 0.658 1. 575 - - - - -
90 5.28 3.44 14.69 0.733 1.111 - - - - -

20 30 9.55 98.29 122.15 1.124 1. 922 1. 919 see n~te #1
10.59 100.0 144.37 1. 174 1. 921 1. 919 (y/c)d=8.46

60 8. 72 7.60 14.70 0.681 1. 608 - - - - -
90 5.00 4.54 11. 74 0.631 1. 202 - - - - -

30 0 60 13.58 4.25 16.39 0.831 1. 611 - - - - -
90 6.31 3.40 17.55 0.851 1.174 - - - - -

20 60 12.88 6.70 18.21 0.835 1. 623 - - - - -
90 6.06 4.22 13.87 0.766 1. 232 - - - --

40 0 60 20.58 4.57 25.15 1. 035 1. 656 - - - - -
90 7.63 3.37 22.26 0.981 1. 239 - - - - -

20 60 19.84 6.82 27.05 1. 037 1. 661 - - - - -
90 7.39 4.02 17.24 0.913 1. 278 - - - - -

40 60 7.64 76.23 80.73 1.197 1. 819 - - - -- see note #2
90 6.84 6.42 15.16 0.855 1.350 - - - --

*notes: #1 (y/c)HT=0.00022

*#2 (y/c)HT=O.OOOOl
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" "Table 6. Stability Factor N =(y/c)H for the General Profile
Oriented at a Direction of Arctan(O.l) with the
Horizon.

')

K =O.OOS7+0.0084h-O.000076h~ 3
Loading profiles: x +O.OOOOO032h

K =1.+0.1K
Y x

" " ::ir " " " * " *<P a. /3 N tL eo 8h 8g a=::id' or n=.:tHc 0 c cT---
(degrees) ( radian 5 ) ( comments )

0 0 30 6.10 6.97 ,11.98 0.349 2.123 1. 019
5.15 35.20 42.34 0.362 2.646 0.495 CT=32.73

90 3.74 3.53 10.33 0.505 1. 008 - - - - -

20 0 30 23.51 7.93 47.94 0.982 1. 905 -- - - -
90 5.27 3.43 14.57 0.732 1.112 - - - - -

20 30 9.27 100.8 136.42 1. 168 1. 891 - -- - - h=0.773
90 4.99 4.54 11. 74 0.632 1. 202 - ----

40 0 60 20.45 4.51 24.84 1. 032 1. 656 - - - - -
90 7.60 3.36 22.34 0.982 1. 238 - - - - -

40 60 7.61 76.0'8 79.81 1.195 1. 821 - - - - - n=0.0021
90 6.81 6.41 15.15 0.856 1. 350 - - - --
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* *Table 7. Stability Factor N =(y/c)H for the General Profile
Oriented at a Direction of Arctan(0.5) from the
Horizon.

Loading profiles:

K =0.0057+0.0084h-0.000076h2+O.OOOOOO32h 3
x

K =1.+0.5K
Y x

• .1L* .1r * * * * d=.1 * - .1 *cfl CI. 13 N 8
0

8h 8 h=cHrc c 0 g c or---
(degrees) ( radians ) ( comments )

0 0 30 6.02 6.89 11. 82 0.349 2.124 1. 018
5.14 31.13 37.74 0.352 2.639 0.502 0=28.47

90 3.70 3.50 10.33 0.508 1.006 - - - - -

20 0 30 22.91 7.49 45.53 0.970 1. 911 - - - - -
90 5.20 3.38 14.40 0.731 1.111 - - - - -

20 30 9.02 98.15 122.05 1.129 1.920 -- - - - n=O.Oll
90 4.92 4.48 11. 61 0.633 1. 202 - - - - -

40 0 60 19.97 4.32 23.73 1. 024 1. 658 - - - - -
90 7.48 3.31 21. 91 0.981 1. 238 - - - - -

40 60 7.53 75.46 78.23 1.192 1. 823 - --- -
90 6.69 6.33 14.96 0.858 1.351 - - - - -



* values calculated for a (ely) ratio of 1.
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Table 9. Location of the Most Critical Slip Surface for a
Slope of SO Feet in Height.

Loading profiles:

Kx=0.0057+0.0084h-0.000076h 2+0.OOOOOO32h 3

K =1.
Y

Height of the slope: H =50 ft.s

.xH* * .xL* y * * * *4> a S .LH -r 8 8h
e

c cT c c 0 0 g---
(degrees) ( radians )

0 0 30 2.03 47.97 21. 49 14.92 0.491 2.489 ------
90 2.96 47.04 3.82 11.13 0.693 1.131 ------

20 0 30 11.18 38.82 6.78 21. 06 0.936 2.023 ------

90 3.90 46.10 3.39 17.70 0.931 1.193 ------
20 30 3.44 46.56 34.03 26.29 0.878 2.111 ------

90 3.60 46.40 5.42 10.74 0.793 1.386 ------

40 0 60 12.22 37.78 4.12 16.09 1.107 1. 719 ------

90 5.09 44.91 3.06 26.95 1.159 1. 317 ------
40 60 3.49 46.51 34.77 22.26 1. 020 1. 933 ------

90 2.95 47.05 29.46 26.06 1.118 1. 812 ------

* values calculated for a (ely) ratio of 1.
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CHAPTER VIII. SUMMARY, CONCLUSIONS AND 'RECOMMENDATIONS
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VIlLA. S'U'mniaryand Conclusions

The main purpose of this study has been to develop a

more general and consistent mathematical model for the

analysis of the instability of earths lopes under seismic loads.

By recognizing the disadvantages of existing models and with

a better understanding of the nature of an earthquake's

influences, such a more involved model has been successfully

formulated. The treatment of several possibilities has been

categorized such that a better insight into the influence of

the slope geometry on the spiral failure mechanism can be

gained. By looking into the possible changes seismic loads

may have on the shape of the most critical slip surface,

far-reaching conclusions may be drawn. For instance, in the

derivation of the slip surface equation, it could be observed

that the inhomogeneity and anisotropy in the cohesion of the

soil has no effect on the critical shape. In fact, the only

controlling factor on the shape of the slip surface is the

internal friction angle ~.

Most important of all is the flexibility inherent in

the present formulation to account for the variations of the

seismic forces along the height. In considering both



76

vertical and horizontal components for the seismic loads, not

only is the variation of magnitude of the seismic force with

height, but also the variation of the direction of the seismic

force accountable. Such loading profiles, if interpreted

wisely and with care, can also be used to allow for the

variation of the specific weight of the soil along the height.

To facilitate the adaptation of this present model to

future analyses related to seismic-infirmed earthslopes,

computer coding of the tedious formulations has been

implemented, and results of fairly simple cases have been

studied. These data constitute two main functions: to

provide indicators of agreement between results of the present

model and previous established models, and to provide further

information relating to the seismic loadings that were not

available previously. Of importance are the tables of the

spiral coordinates for the different cases studied. They not

only show the general patterns of the variation of the

coordinates, but also provide good indications for estimating

the initial coordinates for the spiral optimization process.

Thus, the iterative algorithm of the optimization subroutine

(used in the computer program) can be initiated in the right

direction, resulting in the expedited analysis, cutting down

on run time and cost, as well as preventing convergence onto

local minimum.

The ability to predict and estimate the relative It9cation

of the most critical failure surface in an earthslope of given
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property, geometry, and height is even more significant It

allows for the cumulative displacement analysis proposed in

Ref. [7] and [10] to be carried out in the future •

All in all, the present model is a step forward in

recent efforts to understand better the seismic effects on

the stability of earthslopes. It is, nevertheless, quite

idealized with respect to the actual time variation feature

of the seismic forces, and the changes in soil properties.

The changes in properties are results of compaction, pore

water pressure variation, liquefac~ion, seepage forces,

non-linear post-elastic responses, hysteretic strain

behaviors, etc., caused by the loadings.

VI I LB. Recommendations for Future Work

In view of the limitations of the model developed in

the present study, directions for future improvements and

further studies can be identified. Three of the more

important and yet reasonably attainable suggestions are

listed below:

i) The present formulation may be extended to account for

the inhomogeneity and anisotropy of the soil cohesion. It is

obvious from this study that the varying cohesion has no

effect on the spiral equation, and it does not enter in the

equations of external work rate. Thus, all is needed is a

modification of the internal energy dissipation rate equation

to account for two cohesion profiles, one with respect to the
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elevation, the other with respect to the orientation. Such

modification would be similar to that in Ref. [15]. and should

not induce too much chnngt's in th~ .rormulutl()f\ or tht\

computer coding.

ii) An extensive computer program to incorporate the hazards

of a slope at different time intervals during the occurrence

of an earthquake should be attempted. Such coding should

include the examination of the seismic profiles at different

intervals. to see if displacements along a well defined slip

surface are inflicted or not. The displacements at the end

of each interval should be integrated to determine the total

displacement after the quake. This is essentially the new

approach to the assessment of seismic slope hazards proposed

in Ref. [7] and [10]. However. no specific method of

identifying the slip surface was mentioned in these earlier

articles. The present study has provided part of the answer.

The method developed for identifying the most critical slip

surface for a slope of given height (such as those in Tables

8 and 9) can be used to determine the progressive development

and movement of the failure surface in the course of the

quake.

iii) In the case of dead-weight induced slope failure, the

slope can be treated as an infinite prism with the cross­

section of a slope. Such that the accompanying slip surface

can be assumed with reasonable accuracy as an incomplete

logspiral prism. However, in the case of seismic-infirmed
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slopes, the direction of the seismic load may not be on the

plane of the slope cross-section. Nor do the seismic loads

have to be distributed uniformly throughout the entire

stretch of the slope. Thus, a three-dimensional failure

surface will naturally result. A study of the family of

3-D slip surface can therefore be quite rewarding.
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Appendix A

Computer Coding

For the easy application of the analysis developed here,

a computer coding of the model has been implemented. Ample

demonstrations are included for references: Fig.AI shows the

complete listing of the program itself; Fig.A2 is a flow

chart of the subroutine-interactions; and Fig.A3 is a sample

output.



PROGRAM LASSIECINPUT,OUTPUT,TAPE5=INPUT,TAPES=OUTPUT)
C
C******************* LAS S I E *******,~*****************************
C LIMIT ANALYSIS ON STABILITY OF SEISMIC INFIRMED EARTHSLOPE
C
C THIS IS A RESULT OF THE NATIONAL SCIEI'IC£ FOUNDATION FUNDED PROJECT
C NO. PRF-780932S.
C THIS PROGRAM IS THE CODING OF THE FORMULATIONS FOR THE SEISMIC
C CRITICAL HEIGHT OF AN EARTHSLDPE BASED ON THE UPPER BOUND LIMIT
C ANALYSIS OF PERFECT PLASTICITY.
C WRITTEN BY S.W. CHAN, AT PURDUE UNIUERSITY: LAST REUISION: 7/10/80.
C FOR ANY FURTHER INFORMATIONS, PLEASE CONTACT PROF. S.L. KOH OF
C MECHANICAL ENGINEERING DEPARTMENT, OR PROF. W.F. CHEN OF CIUIL
C ENGINEERING DEPARTMENT.
C
C TO USE THIS PROGRAM, PLEASE PROUIDE THE FOLLOWING INFORMATIONS:
C IWRITE = +1 : TABULATED OUTPUT OF THE SLOPE HEIGHT FOR EACH
C COMBINATION OF RO,THETAO, A THETAH DURING THE
C PHASE OF FINDING THE STARTING POINT FOR OPTIMIZATION
C 0 NO TABULATED OUTPUT WHEN FINDING THE STARTING POINT
C -1 NO TABULATED OUTPUT BECAUSE THE STARTING POINT IS
C TO BE INPUTTED.
C M=THE DEGREE OF THE HORIZONTAL SEISMIC PROFILE POLYNOMIAL.
C NN =THE DEGREE OF THE UERTICAL SEISMIC PROFILE POLYNOMIAL.
CAIN = THE INITIAL UALUE (DEG.) FOR SLOPE ANGLE ALPHA.
C BIN = THE INITIAL UALUE (DEG.) FOR SLOPE ANGLE BETA.
C PIN = THE INITIAL VALUE (DEG.) FOR INTERNAL FRICTION ANGLE PSI.
C BB = THE ARRAY CONTAINING THE (M+1) COEFFICIENTS FOR THE
C HORIZONTAL PROFILE.
C A = THE ARRAY CONTAINING THE (NN+1) COEFFICIENTS FOR THE UERTICAL
C PROFILE.
C CRATE = THE RATIO OF C/GAMMA.
C IFLAG = 1 : FOR NON-STRETCHED SPIRAL
C 2 : FOR STRETCHED SPIRAL.
C XO = THE INITIAL UALUES FOR THE 4 UARIABLES RO,THETAO,THETAH,
C (RADIANS), A HTOE OR D: ONLY NEEDED FOR IWRITE=-1 •
C ---(THE FOLLOWING ANGLES IN DEGREES)---
C XMIN = THE LOWER LIMITS FOR THE 4 INDEPENDENT UARIABLES.
C XMAX = THE UPPER LIMITS FOR THE 4 INDEPENDENT UARIABLES.
C DX = THE INCREMENTS FOR THE 4 INDEPENDENT UARIABLES IN THE
C BRUTE FORCE SEARCH FOR THE STARTING POINT, (IWRITE=O OR 1).
C PSIM = THE FINAL UALUE FOR PSI (AND ALPHA).
C BETAM = THE FINAL UALUE FOR BETA.
C DPSI = THE INCREMENT FOR PSI.
C DALPHA = THE INCREMENT FOR ALPHA.
C DBETA = THE INCREMENT FOR BETA.
C******************************'**************************************
C

DIMENSION SAUE(3,3),XMIN(4),XMAX(4),CON(11),DX(3),XO(4),XM(4)
DIMENSION A(10),BB(10),ZMU(10),ZNU(10)
NAMELIST /INF01/IWRITE,M,NN,AIN,BIN,PIN,BB,A,CRATE,IFLAG,HMAX
NAMELIST /INF02/XO,XMIN,XMAX,DX,PSIM,BETAM,DPSI,DALPHA,DBETA
COMMON /A1/TNPSI,BETA,ALPHA,SNALFA,SNBMA,THETAM,SNTM,CRATE,HMAX
COMMON /A2/SNBETA,TNALFA,TNBETA,TNALSQ,TNBESQ,HTOE,TG1,TG2,CSTM
COMMON /A3/NP1,A,ZMU
COMMON /A4/MP1,BB,ZNU,TORQTL
COMMON /A5/BC(S,S)
COMMON /BR1/CF,IFLAG,NB

C
C THE FOLLOWING PARAMETERS ARE FOR THE SUBROUTINE ¢BIAS¢ ONLY, FOR
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C THEIR MEANINGS, PLEASE CONSULT THE vEIAS USER MANUALv.
C

COMMON/B1/B(100)
COMMON/B2/XMAX
COMMON/B3/XMIN
COMMON/B4/FR, MAXM, EPSLS
DATA IPR.IDATA,MAXM/1,1,1000/
DATA EPSI,EPSLS,FR,R/1.E-4,I.E-4,1.E-8,10./

C
C INITIATION OF UARIABLES.
C

DATA ZMU,ZNU/20*0./
DATA BC/81*0./
DATA A,BB/20*0./
DATA XO/4*0./
READC5, INFO!)
WRITECS,INF01)
READC5,INF02)
~~RITECS, INF02)
NPl=NN+1
MP1=M+1
NB=NP1
IFCMP1 .GT. NPl)NB=MPI
CALL BINOMCNB)
DO 500 II=1, 3

C
C THE UALUES OF DX,XMIN,XMAX ARE SAUED FOR LATER USES.
C

SAUEC1,II)=DXCII)
SAUEC2,II)=XMINCII)
SAUEC3,II)=XMAXCII)
ANGP=PIN
ANGA=AIN
ANGB=BIN

500

400
300
C
C CHANGE FROl1 DEGREES TO RADIANS.
C
200 ALPHA=ANGA*0.0174533

BETA=ANGB*0.0174533
THM=90.+ANGP
THETAM=THM*0.0174533
PSIA=ANGP*0.0174533
TNPSI=TANCPSIA)
SNBETA=SINCBETA)
SNALFA=SINCALPHA)
SNBMA=SINCBETA-ALPHA)
TNALFA=TANCALPHA)
IFCBETA .LT. 1.5707SS)GOTO 25
TNBETA=1.
GOTO 15

25 TNBETA=TANCBETA)
15 TNALSQ=TNALFA*TNALFA

TNBESQ=TNBETA*TNBETA
SNTM=SINCTHETAM)
CSTM=COSCTHETAM)
DO 700 II=1,3
DXCII)=SAUEC1,II)
XMINCII)=SAUEC2,II)

700 XMAXCII)=SAUEC3,II)
IFCIFLAG .EQ. 1)XOC4)=0.
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WRITEC6,10)ANGP,ANGA,ANGB
10 FORMATC¢1¢,50C~-¢)/~ FOR PSI=~,F5.0,5X,¢ALPHA=¢,F5.0,5X,

$~BETA=~,F5.0)

IFCIWRITE .ED. -l)GOTO 750
CALL BRUTECIWRITE,ANGP,ANGA,ANGB,XMIN,XMAX,DX,XO)
DO 600 11=1,3
XMIN(II)=SAUE(2,II)

800 XMAXCII)=SAUE(3,II)
750 CALL RANGE(ANGB,ANGA,ANGP,XMIN,XMAX,DX)

DO 650 11=2,3
XMIN(II)=XMINCII)*0.0174533

650 XMAX(II)=XMAXCII)*0.0174533
IF(XO(l) .LT. XMAX(l»GOTO 800

C
C IN CASE NO FESIBLE STARTING POINT IS FOUND, THE POINT OF MID-RANGES
C IS USED AS THE STARTING POINT.
C

XOCl)=CXMIN(1)+XMAXCl»/2.
XO(2)=(XMINC2)+XMAX(2»/2.
XO(3)=CXMIN(3)+XMAX(3»/2.

800 K=9
C
C IF HMAX IS NON-ZERO, THE SLOPE HEIGHT IS GIUEN: AND THE PROBLEM IS
C TO LOCATE THE MOST CRITICAL SURFACE.
C

IF(HMAX .GT. 0.)K=10

ANGB=ANGB+DBETA
IFCANGB .LE. ANGA)GOTO 105
IF(ANGB .LE. BETAM)GOTO 200
ANGA=ANGA+DALPHA
IFCANGA .LE. ANGP .AND. ANGA .LE. PSIM)GOTO 300
ANGP=ANGP+DPSI

TORDTL=TORQTL*XM(1)**3
WRITECS,5S)TORQTL
FORMATC¢O THE TOTAL EXTERNAL TORDUE INTENSITY IS ¢,F15.5)55

C
C READY TO CONSIDER NEXT SLOPE GEOMETRY.
C
105

30

45

C
C CALLS ~BIAS¢ FOR OPTIMIZATION, SEE vBIAS USER MANUALv.
C

CALL BIAS(4,K,1,CON,XO,R,EPSI,IPR,IDATA,XM)
IFCHMAX .GT. O.)WRITECS,SS)HMAX
FORMATC¢O THE HEIGHT OF THE SLOPE WAS GIUEN AS ¢,F7.2)
IFCIFLAG .EO. l)GOTO 900
WRITECS,30)XM(4)
FORMAT(~O THE SPIRAL IS STRETCHED ~,FIO.5,¢ UNITS¢)
WRITECS,35)TG1,TG2
GOTO 100
FORMATC~O TGl=¢,FlO.5,~ TG2=~,FI0.5/

+~ IF TGl=TG2=X(3), SPIRAL IS NORMAL¢/
+~ IF TGl<TG2=X(3), SPIRAL IS SUNKEN¢/
+~ IF TGl<TG2<X(3), SPIRAL IS PARTIALLY SUNKEN¢)

WRITECS,40)HTOE
FORMATC~O THE SPIRAL IS RAISED ¢,FIO.5,~ UNITS¢)
WRITECS,45)TG1,TG2
FORMAT(~O TG1=¢,FIO.5,¢ TG2=¢,FIO.5)35

C
C TORQUE PER UNIT AREA IS CALCULATED.
C
100

65

900
40
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C
C. •
C

IFCANGP .lE. PSIM)GOTO 400
STOP
END

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
FUNCTION F(X)

104

C
C TO CALCULATE THE SAFETY FACTOR FOR THE SLOPE STABILITY.
C THE FORM OF THIS SUBPROGRAM CONFORMS WITH THE REQUIREMENTS OF ¢BIAS¢
C

DIMENSION X(4)
COMMON /A1/TNPSI,BETA,ALPHA,SNALFA,SNBMA,THETAM,SNTM,CRATE.HMAX

C
C FOR THE USE OF ¢BIAS¢ ONLY.
C

C

COMMON/1/NF,NC
NF=NF+1

ICALl=1
CALL SPIRAl(ICALL.X.EF,FNET.EXTRA)
F=EF*SIN(X(3)+ALPHA)-SIN(X(2)+ALPHA)
FACTOR=X(3)-X(2)
IF(TNPSI .GT. 1.E-4)FACTOR=(EF*EF-1.)/2./TNPSI

c

C
C THE STABILITY FACTOR:
C

F=F*FACTOR*FNET+EXTRA
C
C THE ACTUAL CRITICAL HEIGHT:
C

F=F*CRATE
RETURN
END

C
C. •
C

SUBROUTINE CONST(X,CON)
C
C TO SPECIFY THE CONSTRAINTS FOR EFFECTIUE OPTIMIZATION.
C THE SUBROUTINE FORM IS IN CONFORMATION WITH SPECIFICATION OF ¢BIAS¢.
C

DIMENSION X(4).CON(11)
COMMON /A1/TNPSI. BETA,ALPHA.SNALFA,SNBMA,THETAM, SNTM, CRATE. HMAX
COMMON /BR1/CF,IFLAG,NB
COMMON /C1/CLR,SNTH,RH,SNTO.CSTO.CSTH

c
C FOR ¢BIAS¢ ONLY.
C

COMMON/1/NF,NC
NC=NC+1

ICALL=O
CON(10)=X(3)-X(2)-O.01
IF(CON(10) .GT. 1.E-4)GOTO 200
DO 300 1=1,10

300 CON(I)=-10.
RETURN

200 CALL SPIRAL(ICALL.X.CE,FNET.EXTRA)
C
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C THE UERTICAL DISTANCE OF THE SLOPE KNEE FROM THE ROTATION CENTER.
C

CK=x(1)*SNTO+CLR*SNALFA
C
C THE UERTICAL DISTANCE OF THE SPIRAL TERMINATION POINT FROM THE CENTER.
C

CH=RH*SNTH
R=CRATE*eX(3)-XC2»/FNET
IFeTNPSI .GT. 1.E-4)R=CRATE*(CE*CE-l.)/2./TNPSI/FNET
TOL=3.1415927-2.*BETA
TOU=7.
IFCTNPSI .LE. 1.E-S)TOU=3.1415927-2.*ALPHA
C8=CCE*SINeX(3)+ALPHA)-SIN(X(2)+ALPHA»*SINeBETA)/SNBMA

C
C THE SLOPE HEIGHT (OR THE SPIRAL HEIGHT IF HMAX>O):
C

105

C
CF=R*C8+EXTRA

IFeHMAX .GT. O.)CON(ll)=HMAX-CF
CON(9)=TOU-XC3)-X(2)
CONeS)=Xe2)+XC3)-TOL
CON(7)=CS
CONeS)=CF/CLR-O.l
CON(5)=CLR/CF-0.l
CON(4)=FNET
CON(3)=CLR-0.Ol
CON(2)=CH-CK-O.Ol
CON(l)=X(l)-R

C
C THE 11EANINGS OF THE CONSTRAINTS ARE
C CON NO. COMMENT
C -------- -------------------------------------------------------
C 1 THE RADIUS IDENTITY FOR QUALIFYING SLOPE.
C 2 A 3 TOGETHER ASSURE THE SPIRAL CUTS THROUGH BOTH THE
C ALPHA AND BETA REGIONS OF THE SLOPE.
C 4 A 7 TOGETHER RULE OUT UNREALISTIC UALUES FOR SLOPE HEIGHTS.
C 5 A S TOGETHER GUARD AGAINST SKEWED SPIRALS.
C 8 A 9 THE SPIRAL ANGLES INEQUALITIES FOR ANGLE RANGES.
C 10 THE SPIRAL MUST NOT GO BACKWARD.
C 11 THE SPIRAL HEIGHT MUST NOT BE GREATER THAN THE SLOPE
C HEIGHT, (FOR LOCATING THE MOST CRITICAL SPIRAL).
C

RETURN
END

C
C. •
C

SUBROUTINE BRUTE(IWRITE,ANGP,ANGA,ANGB,XMIN,XMAX,DX,X)
C
C THE BRUTE FORCE APPROACH TO LOCATE A ROUGH MINIMUM CAS THE FEASIBLE
C STARTING POINT FOR ;tBIAS;l!) BY SEARCHING THROUGH THE RANGE OF EACH
C VARIABLE eEXCEPT THE 4TH ONE) AT CHOSEN INCREMENTS.
C

DIMENSION CNCll),XMINC4),XMAXe4),DXe3),XC4),OUT(2,100),REGe3,100)
COMMON /BR1/CF,IFLAG,NB
DATA REG/300*0./

c
C PARAMETERS RELATED TO THE DECLARATION OF A MINIMUM.
C

CRITE=0.005
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COMPARE=1000.
DIFMIN=100000.

KoUNT=1
CHECK=COMPARE
CALL RANGE(ANGB~ANGA.ANGP.XMIN,XMAX,DX)

IF(IWRITE .EO. 1)WRITE(S.70)KOUNT
FORMAT(~O ITERATION~.I3)

JK=O
X( 1)=XMIN( 1)
TH=XMIN(3)
IF(IWRITE .EQ. O)GOTO 500
WRITE( S~ 10 )X( 1)
FORMAT(~0~~110(~$~)/~R=~,F5.1/)

WRITE(S,20)
FORMAH~ TH

,,(~-~) )

J=O

10

20

C
C ITERATION NUMBER (MAXIMUM OF 5 ITERATIONS ALLOWED).
C

1200

500
C
C VARYING THETAO FIRST.
C

400

70

TO=XMIN(2)
DO 700 K1=1.2
DO 700 K2=1.100

700 OUT(K1.K2)=1000.
X(3)=TH*0.0174533
IF(IWRITE .EQ. 1)WRITECS,40)TH

40 FORMAT(lX.FS.2.~ *~)

200 J=J+1
X(2)=TO*0.0174533

c
C FIRST DECIDE IF THE UALUE IS ACCEPTABLE.
C

CALL CONSHX. eN)
DO 150 1=2.10
IF(CN(I) .LE. O.)GOTO 600

150 CONTIriUE
ACN=ABS(CN(l)

C
C THE RADIUS IDENTITY IS USUALLY HARD TO SATISFY IN HERE, SO IF THE ERROR
C IS LESS THAN THE LAST REPORTED. THE UALUE IS QUALIFY FOR FURTHER
C CONSIDERATION.
C

IF(ACN .LE. O.l)GOTO 2250
IF(ACN .GT. DIFMIN)GOTO sao

2250 OUT(l.J)=TO
OUH2. J)=CF

C
C IF THE UALUE IS WITHIN THE TOLERABLE RANGE OF THE LAST REPORTED UALUE
C THEN THIS UALUE IS RECORDED.
C
2200 IF(OUT(2.J) .GE. COMPARE+CRITE)GOTO 800

IF(oUT(2,J)+CRITE .GT. COMPARE)GOTO 1000
JK=O
CoMPARE=OUH2,J)

1000 JK=JK+l
DIFMIN=ACN

c

Fig.AI (Cont'd)



C REGISTER THE POINT CORRESPONDING TO THE RECORDED UALUE.
C

REGel.JK)=xel)
REGe2.JK)=TH
REGe3.JK)=TO

C
C ADVANCE THE POINT ALONG THE THETAO AXIS.
C
SOO TO=TO+Dx(2)

IFeTO .LE. XMAX(2) .AND. TO .LT. TH)GOTO 200
IFeIWRITE .EO. O)GOTO 300
WRITEeS.30)(OUTel.I).I=1.10).eOUTe2.I).I=1.10)
IFeJ .LE. 10)GOTO 300
WRITEeS.30)(OUTel.I).I=11.20).eOUTe2.I).I=11.20)
IFeJ .LE. 20)GOTO 300
WRITEeS.30)(OUTel.I).I=21.30).eOUTe2.I).I=21.30)
IF(J .LE. 30)GOTO 300
WRITEeS.30)(OUTel.I).I=31.40).(OUTe2.I).I=31.40)

30 FORMATe8x.~*~.10elx.FS.2.3X)/8X.~*¢.10(¢(¢.FS.2.¢) ¢»
C
C NEXT ADUANCE THE POINT ONE INCREMENT IN THE THETAH AXIS.
C
300 TH=TH+DX(3)

IF(TH .LE. XMAX(3»GOTO 500
C
C THEN ADUANCE THE POINT ONE INCREMENT IN THE RO AXIS.
C

X(l)=X(l)+DX(l)
IFeXel) .LE. XMAX(l»GOTO 400

C
C IF THE SMALLEST UALUE RECORDED IN THIS ITERATION DOESN¢T IMPROUE
C APPRECIABLY OUER THAT OF THE LAST ITERATION. CONUERGENCY OF BRUTE
C FORCE SEARCH IS DECLARED.
C

IF (CHECK-COMPARE .LE. CRITE)GOTO 2000
C
C IF 5 ITERATIONS HAS BEEN RUN. NO NEED TO GO ON ANY FURTHER.
C
2800 IF(KOUNT .EO. 5)GOTO 1400
C
C FOR THE NEXT ITERATION. INCREMENTS ARE HALUED.
C

DO 1300 1=1.3
1300 DX(I)=DX(I)/2.
C
C IF NO FEASIBLE VALUES WERE RECORDED IN THE LAST ITERATION. CAN¢T GO
C ON ANY FURTHER WITH BRUTE FORCE SEARCH.
C

IF(JK .EO. O)RETURN
C
C IF THE INCREMENTS HAVE BECOME TOO SMALL. THEN CONDITIONAL CONUERGENCY
C OF THE BRUTE FORCE SEARCH IS DECLARED.
C

IF(DX(3) .LT. O.Ol)GOTO 1800
C
C THE SPACE OF SEARCH IS NOW SHRUNKEN IN ACCORDANCE WITH INFORMATIONS
C FROM THE LAST ITERATION.
C

XMIN(l)=REG(l.l)
XMAX(l)=REG(l.JK)
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XMIN(3)=REGe2,l)-DXe3)
XMAX(3)=REGe2,JK)+DXC3)
GREAT=-lOOO.
SMALL=1000.
DO 1100 I=l,JK
IFCREGC3,I) .GE. GREAT)GREAT=REGe3,I)
IFeREGe3,I) .LE. SMALL)SMALL=REGe3,I)

1100 CONTINUE
2700 XMIN(2)=SMALL-DXC2)

XMAX(2)=GREAT+DXe2)
C
C READY TO START THE NEXT ITERATION.
C

KOUNT=KOUNT+l
GOTO 1200

. . . . . . . ~ . . . . . . . . . . . .
SUBROUTINE RANGECANGB,ANGA,ANGP,XMIN,XMAX,DX)

WRITEeS,80)
FORMATe~O CONVERGENCY NOT YET DECLARED~¢)

GOTO 2000
WRITECS,90)KOUNT
FORMATC¢O CONDITIONAL CONVERGENCY AT ITERATION¢,I3)
WRITEeS,50)COMPARE
FORMATe~O THE POSSIBLE CRITICAL VALUE IS¢,F7.2//¢ AT¢,10X,¢R¢,15

AX,~TH¢,15X,~TO¢/8X,10C¢-¢),7X,10(¢-¢),7X,lOC¢-¢»)

IFeJK .EQ. O)RETURN
DO 1500 I=l,JK
WRITEeS.80)eREGCIK,I),IK=l,3)
FORMATC4X, 3e4X, F8. 2, 5X»
xe l)=REGCl, JK)
X(2)=REGC3,JK)*0.0174533
X(3)=REGC2,JK)*0.0174533
RETURN
END

C
C. •
C

1500
SO

1800
90
2000
50

C
C THE FOLLOWING ARE SUMMARY STATEMENTS AT THE END OF BRUTE FORCE SEARCH
C IN ACCORDANCE WITH DIFFERENT OUTCOMES.
C
1400
80

c
C THIS SUBROUTINE DEFINES THE ACCEPTABLE RANGES OF THETAO AND THETAH.
C

C
C. •
C

C

COMMON /BR1/CF,IFLAG,NB
DIMENSION DX(3),XMINC4),XMAXC4)
TOMAX=90.+ANGP-ANGA
IFeXMAX(2) .GT. TOMAX)XMAXe2)=TOMAX
IFeXMIN(2) .LT. 0.)XMIN(2)=0.
IFeXMIN(3) .LT. 90.-ANGB+ANGP)XMINe3)=90.-ANGB+ANGP
IFCIFLAG .EQ. 2)XMINC3)=90.+ANGP
IFCXMIN(3) .LE. XMIN(2»XMINe3)=XMINC2)+DXe3)
IFeXMAX(3) .GT. 180.-ANGA)XMAXe3)=180.-ANGA
IFeXMAX(3) .GE. 180.)XMAX(3)=XMAX-DXe3)
RETURN
END

. . . . . . . . . . . . . . . . . .
SUBROUTINE SPIRALeICALL,X,EFTH,FNET,EXTRA)
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C THIS SUBROUTINE FINDS THE TORQUE INTENSITV AS WELL AS OTHER PHYSICAL
C ~ GEOMETRICAL INFORMATIONS OF THE SPIRAL.
C

COMMON /A1/TNPSI,BETA,ALPHA,SNALFA,SNBMA,THETAM,SNTM,CRATE,HMAX
COMMON /A2/SNBETA,TNALFA,TNBETA,TNALSQ,TNBESQ,HTOE,TG1,TG2,CSTM
COMMON /A3/NP1,A,ZMU
COMMON /A4/MP1,BB,ZNU,TOROTL
COMMON /BR1/CF,IFLAG,NB
COMI10N /C1/ZL,SNTH,RH,SNTO,CSTO,CSTH
COMMON /S1/THETAF,THETAI
DIMENSION X(4),A(10),BBC10),ZMU(10),ZNU(10)
RO=X(!)
THETAO=X(2)
THETAH=X(3)
SNTH=SINCTHETAH)
CSTH=COS(THETAH)
EFTH=EXP(CTHETAH-XC2»*TNPSI)
SNTO=SIN(THETAO)
CSTO=COS(THETAO)
EFTO=1.

c
C A SPIRAL IS ASSUMED NORMAL UNLESS PROUEN OTHERWISE.
C

NIT=1
NCOUNT=1
RH=RO*EFTH

C
C THE TOP LENGTH OF THE SPIRAL:
C

ZL=CRO*SINCTHETAO+BETA)-RH*SINCTHETAH+BETA»/SNBMA
C
C ADJUSTI1ENTS FOR RAISED SPIRAL AND STRETCHED SPIRAL.
C

IF(IFLAG .EO. 2)GOTO 120
HTOE=X(4)
EXTRA=O.
GOTO 130
EXTRA=X(4)*SNBETA/SNBMA
HTOE=O.
ZL=ZL-EXTRA

120

130
C
C THE UERTICAL DISTANCE OF THE CENTER FROM THE GROUND:
C

ETA=RH*SNTH+HTOE
IFCHMAX .EO. O.)GOTO 140
ETA=RO*SNTO+ZL*SNALFA+HMAX

C
C IF THE SLOPE HEIGHT IS SPECIFIED, THEN HTOE, THE HEIGHT OF THE SLOPE
C TERMINATION POINT, IS NO LONGER AN INDEPENDENT UARIABLE.
C

HTOE=ETA-RH*SNTH
140 F1X=0.

F1Y=0.
C
C EXPRESSING THE SEISMIC PROFILES IN THE SPIRAL COORDINATES.
C

CALL COEFFCETA,BB,ZNU,MP1)
CALL COEFFCETA,A,ZMU,NP1)

C
C THE GROUNDING ANGLE IS TAKEN TO BE THE TERMINATING ANGLE UNLESS
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C PROVEN OTHERWISE.
C

TG1=THETAH
TG2=THETAH
SNTG1=SNTH
CSTG1=CSTH
EFTG1=EFTH
IF(THETAH .LE. THETAM-0.0001)GOTO 110

C
C IF THE SPIRAL IS SAGGING, IT MIGHT NOT BE NORMAL.
C

ETAM=RO*EXpe(THETAM-THETAO)*TNPSI)*SNTM-0.0001
IF(ETA .GE. ETAM)GOTO 110

C
C AT LEAST PART OF THE SPIRAL IS SUNKEN, GROUDING ANGLE IS NOT THETAH.
C

NIT=NIT+1
C
C LIMITS FOR SEARCHING FOR THE GROUNDING ANGLE, TG1
C

GLIM1=THETAO
GLIM2=THETAM

C
C FIRST ESTIMATE OF TG1:
C

TG1=2.*THETAM-THETAH
CALL NEWTON(X(2),RO,ETA,GLIM1,GLIM2,TG1,SNTG1,CSTG1,EFTG1)

C
C THE DEGROUDING ANGLE IS TAKEN TO BE THETAH UNLESS OTHERWISE PROVEN.
C

SNTG2=SNTH
CSTG2=CSTH
EFTG2=EFTH
IF(HTOE .LE. 1.E-S)GOTO 110

C
C IF THE TERMINATION POINT OF THE SPIRAL IS ABOVE THE GROUND, THEN THE
C SPIRAL IS PARTIALLY SUNKEN, AND THETAH CANNOT BE THE DEGROUNDING ANGLE.
C
C
C LIMITS FOR SEARCHING FOR THE DEGROUNDING ANGLE, TG2 :
C

GLIM1=THETAM
GLIM2=THETAH

C
C FIRST ESTIMATE OF TG2:
C

TG2=2.*THETAM-TG1
CALL NEWTONeX(2),RO,ETA,GLIM1,GLIM2,TG2,SNTG2,CSTG2,EFTG2)
NIT=NIT+1

C
C FIRST ROUND. INTEGRATING FROM THETAO TO TG1.
C
110 ARG1=SNTG1

ARG2=SNTO
ARG3=CSTG1
ARG4=CSTO
ARG5=EFTGl
ARGS=EFTO
THETAI=THETAO
THETAF=TGl

Fig.Al (Cont'd)

110



4200 NC=NPI
MC=MPI

C
C CALCULATING FlY:
C
150 EFTHP=ARG5*ARG5

EFTOP=ARG6*ARG6
YAF=O.
YAI=O.
ROPR=l./RO
SNITHR=l.
SNITOR=l.
StiITH=l.
SNITO=l.
STH=ARGI
STO=ARG2
DO 1000 I=l,NC
ROPR=ROPR*RO
APSI=I+2
APSI=APSI*TNPSI
SQA=APSI*APSI
EFTHP=EFTHP*ARG5
EFTOP=EFTOP*ARG6
IM2=I-2
IF(IM2)1100, 1200, 1300

1200 IF(APSI .GT. 1.E-4)YAF=1./APSI
IFCAPSI .GT. 1.E-4)YAI=1./APSI
GOTO 1400

1300 CALL SUMSCIM2,APSI,SQA,ARG3,ARG4,ARGl,ARG2,SNITHR,SNITOR,YAF,YAI)
SNITHR=SNITHR*ARGI
SNITOR=SNITOR*ARG2

1400 SNITH=SNITH*ARGI
SNITO=SNITO*ARG2

1100 ZI=I
COMPAF=APSI*ARG3+ZI*ARGl
COMPAI=APSI*ARG4+ZI*ARG2
COMPBF=COMPAF+2.*ARGl
COMPBI=COMPAI+2.*ARG2
DEN=50A+ZI*ZI
COMPAF=COMPAF*SNITH/DEN
COMPAI=COMPAI*SNITO/DEN
CORA=I-I .
CORA=-CORA*APSI/DEN
CALL SUMS(I,APSI,SQA,ARG3,ARG4,ARGl,ARG2,SNITH,SNITO,YBF,YBI)
STH=STH*ARGI
STO=STO*ARG2·
ZI=I+2
DEN=SQA+ZI*ZI
COMPBF=COMPBF*STH/DEN
COMPBI=COMPBI*STO/DEN
CALL SUMS(I+2,APSI,SQA,ARG3,ARG4,ARGl,ARG2,STH,STO,YCF,YCI)
CORB=I+I
CORB=CORB*APSI/DEN+TNPSI
YF=CYAF*CORA+COMPAF+YBF*CORB-COMPBF-YCF*TNPSI)*EFTHP
YI=(YAI*CORA+COMPAI+YBI*CORB-COMPBI-YCI*TNPSI)*EFTOP
COEF=ZMUCI)
IFCNCOUNT .EQ. 2)COEF=A(I)

1000 FIY=FIY+COEF*ROPR*CYF-YI)
C
C CALCULATING FIX:

Fig.A1 (Cont'd)

111



C
SNITHR=1.
SNITOR=1.
ROPR=1./RO
EFTHP=ARG5*ARG5
EFTOP=ARGS*ARGS
DO 1500 I=1,MC
EFTHP=EFTHP*ARG5
EFTOP=EFTOP*ARGS
ROPR=ROPR*RO
ZIP2=I+2
APSI=ZIP2*TNPSI
SQA=APSI*APSI
CALL SUMSCI,APSI,SQA,ARG3,ARG4,ARG1,ARG2,SNITHR,SNITOR,XAF,XAI)
SNITHR=SNITHR*ARG1
SNITOR=SNITOR*ARG2
SNITH=SNITHR*ARG1
SNITO=SNITOR*ARG2
COMPAF=CAPSI*ARG3+ZIP2*ARG1)*SNITH
COMPAI=CAPSI*ARG4+ZIP2*ARG2)*SNITO
DEN=TNPSI/CSQA+ZIP2*ZIP2)
COMPAF=COMPAF*DEN
COMPAI=COMPAI*DEN
CALL SUMSCI+2,APSI,SQA,ARG3,ARG4,ARG1,ARG2,SNITH,SNITO,XBF,XBI)
CORR=I+1
CORR=1.-CORR*APSI*DEN
XF=(XAF*CORR+COMPAF-XBF)*EFTHP
XI=CXAI*CORR+COMPAI-XBI)*EFTOP
COEF=ZNUCI)
IFCNCOUNT .EQ. 2)COEF=BBCI)

1500 F1X=F1X+COEF*ROPR*CXF-XI)
IFCNCOUNT .GT. 1)GOTO 3300

C
C NEXT CALCULATES F2X+F3X :
C
C
C THE Y COORDINATE OF THE SPIRAL STARTING POINT:
C

VB=RO*SNTO
C
C THE Y COORDINATE OF THE SLOPE KNEE:
C

VD=UB+ZL*SNALFA
C
C THE Y COORDINATE OF THE SPIRAL TOE COR TERMINATING POINT):
C

VE=RH*SNTH
IFCTNALFA .GT. 1.E-4)GOTO 2100
XI2=0.
PARTB=O.
GOTO 2220

2100 XI2=UB/TNALFA+RO*CSTO
2220 IFCBETA .LT. 1.57079S)GOTO 2200

XI3=RH*CSTH
GOTO 2210

2200 XI3=UE/TNBETA+RH*CSTH
2210 ROQ3=RO**3

IFCIFLAG .EO. 2)XI3=XI3+XC4)
VDSU=UD
VBSU=UB
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UESU=UE
F23X=0.
DO 2000 I=l.MPl
ZIP1=I+1
ZIP2=ZIP1+1.
UE=UE*UESU
PARTE=XI3/ZIPl
VB=UB*UBSU
UD=UD*UDSU
IF(TNALFA .GT. 1.E-4)GOTO 2300
PARTD=-XI3/ZIP1
GOTO 2310

2300 PARTB=UB*(XI2/ZIP1-UBSU/TNALFA/ZIP2)
PARTD=(XI2-XI3)/ZIP1-UDSU/TNALFA/ZIP2

2310 IF(BETA .GE. 1.57079S)GOTO 2400
PARTE=PARTE-UESV/TNBETA/ZIP2
PARTD=PARTD+UDSU/TNBETA/ZIP2

2400 PARTE=PARTE*UE
PARTD=PARTD*UD

2000 F23X=F23X+ZNU(I)*(PARTD+PARTE-PARTB)/ROG3
C
C NEXT CALCULATES F2Y+F3Y :
C

IF(XI2 .GT. !.E-4)GOTO 2700
XI2SQ=0.
GOTO 2800

2700 XI2SQ=XI2*XI2
2800 XI3SQ=XI3*XI3

UE=1.
UB=!.
UD=!.
F23Y=0.
DO 2500 I=l.NPl
ZIPO=I
ZIP1=ZIPO+l.
ZIP2=ZIP1+1.
UE=UE*UESU
PARTE=XI3SQ/ZIPO
PARTB=O.
UB=UB*UBSU
UD=UD*UDSU
IF(TNALFA .GT. 1.E-4)GOTO 2600
PARTD=-XI3SQ/ZIPO
GOTO 3000

2800 PARTB=UB*(XI2SQ/ZIPO-(2.*XI2/ZIPl/TNALFA-VBSV/ZIP2/TNALSQ)*VBSV)
BLOCK2=VDSU/TNALSO/ZIP2
BLOCK!=2.*XI2/TNALFA/ZIPl
PARTD=(XI2SQ-XI3S0)/ZIPO+(BLOCK2-BLOCKl)*VDSV

3000 IF(BETA .GE. !.570798)GOTO 2900
PARTE=PARTE-(2.*XI3/ZIP!/TNBETA-VESV/ZIP2/TNBESO)*UESV
PARTD=PARTD+(XI3/TNBETA/ZIPl*2.-UDSU/TNBESQ/ZIP2)*VDSV

2900 PARTE=PARTE*UE
PARTD=PARTD*UD

2500 F23Y=F23Y+ZMU(I)*(PARTE+PARTD-PARTB)/R003
C
C IF SPIRAL IS NORMAL. THEN INTEGRATION IS COMPLETED. SO PROCEED REGULARLY.
C
3300 IF(NCOUNT .EO. NIT)GOTO 4400

NCOUNT=NCOUNT+1
IF(NCOUNT .EO. 3)GOTO 4300
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C
C FOR INTEGRATION OF TGl TO TG2:
C

ARG2=SNTGl
ARG4=CSTGl
ARGS=EFTGl
ARGl=SNTG2
ARG3=CSTG2
ARG5=EFTG2
THETAI=TGl
THETAF=TG2
NC=l
MC=l
GOTO 150

C
C FOR INTEGRATION OF TG2 TO THETAH IF THE SPIRAL IS PARTIALLY SUNKEN:
C
4300 ARG1=SNTH

ARG2=SNTG2
ARG3=CSTH
ARG4=CSTG2
ARG5=EFTH
ARG6=EFTG2
THETAI=TG2
THETAF=THETAH
GOTO 4200

C
C WITH ADDITIONAL ADJUSTMENTS, CALCULATIONS OF THE SPIRAL PARAMETERS
C ARE COMPLETE.
C
4400 TORQTL=F1X-F23X+(FIY-F23Y)/2.

FNET=TORQTL
IF(FNET .EO. O.)FNET=-l.E-S
IF(IFLAG .EO. 2)GOTO 4700

4500 EXTRA=HTOE
IF(HMAX .GT. O.)EXTRA=O.
GOTO 4S00

4700 EXTRA=EXTRA*SNALFA
4600 IF(ICALL .EQ. O)RETURN

FNET=SNBETA/SNBMA/FNET
RETURN
END

114

C
C. •
C

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
SUBROUTINE NEWTON(TO,RO,ETA,GLIM1,GLIM2,TG,SNTG,CSTG,EFTG)

C
C TO FIND THE GROUNDING THETA UALUE BY THE NEWTON METHOD
C

COMMON /A1/TNPSI,BETA,ALPHA,SNALFA,SNBMA,THETAM,SNTM,CRATE,HMAX
200 EFTG=EXPCCTG-TO)*TNPSI)

SNTG=SHlCTG)
CSTG=COSCTG)
G=ETA-RO*EFTG*SNTG
IF(ABSCG) .LE. O.OOOl)GOTO 100
DG=-EFTG*(TNPSI*SNTG+CSTG)*RO
TGNEW=TG-G/DG
IF(TGNEW .LT. GLIM1)TGNEW=GLIM1+0.l
IFCTGNEW .GT. GLIM2)TGNEW=GLIM2-0.01
IFCTG .LT. 1.E-8)TG=l.E-8
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DIFF=CTGNEW-TG)/TG
TG=TGNEW
IF(ABSCDIFF) .GT. 1.E-a)GOTO 200

100 RETURN
END
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C
C. •
C

. . . . . . . . . . . . . . . . . . . . . . . . . . .
SUBROUTINE SUMSCM,A,SQA,CSF,CSI,SNF,SNI,SNMF,SNMI,SUMF,SUMI)

C
C FOR THE SUMMSTIONS OF THE SEQUENCES IN THE ITEGRATION FORMULA FOR
C FlX A flY.
C

COMMON /Sl/TF,TI
J=O
LL=M/2
ASNF=A*SNF
ASNI=A*SNI
SN2F=SNF*SNF
SN2I=SNI*SNI
ZM=M
DENOM=SOA+ZM*ZM
PD=l/DENOM
TERMF=SNMF/DENOM
TERMI=SNMI/DENOM
SUMF=TERMF*(ASNF-ZM*CSF)
SUMI=TERMI*(ASNI-ZM*CSI)
IF(LL .EO. O)GOTO 400
DO 100 I=l,LL
J=J+2
Z=(M-J+l)*CM-J+2)
ZM=ZM-2.
DENOM=SOA+ZM*ZM
IF(DENOM .GT. 1.E-S)GOTO 500
SUMF=SUMF+PD*Z*TF
SUMI=SUMI+PD*Z*TI
RETURN

500 PD=PD*Z/DENOM
IFCABS(TERMF) .LE. O.OOOOOl)GOTO 200
TERMF=TERMF/SN2F/DENOM
GOTO 250

200 CALL ZERO(ZM,CSF,SUMF,A,PD)
250 IFCABS(TERMI) .LE. O.OOOOOl)GOTO 300

TERMI=TERMI/SN2I/DENOM
GOTO 350

300 CALL ZERO(ZM,CSI,SUMI,A,PD)
350 TERMF=TERMF*Z

TERMI=TERMI*Z
SUMF=SUMF+TERMF*CASNF-ZM*CSF)

100 SUMI=SUMI+TERMI*(ASNI-ZM*CSI)
400 RETURN

END
C
C. •
C

. . . . . . . . . . . . . . . . . . . . . . . . . . . . .
SUBROUTINE ZERO(ZM,CS,SUM,A,PD)

C
C THIS SUBROUTINE TAKES CARE OF THE SPECIAL CASE
C WHEN THE ANGLE IS ZERO
C
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IF(ZM-l.)100,200,300
100 SUM=SUM+A*PD

RETURN
200 SUM=SUM-CS*PD
300 RETURN

END
c
C. •
C

. . . . . . . . . . . .
SUBROUTINE COEFF(ETA,A,ZMU,N)

. . . .. . . . . . . . . . . . .
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c
C CALCULATES THE COEFFICIENTS OF THE TRANSFORMED SEISMIC PROFILE.
C

DIMENSION A(10),ZMU(10)
COMMON /A5/BC(9,9)
DO 100 !=l,N

100 ZMU(!)=A(I)
IF(N .EQ. l)RETURN
ETAX=l.
NM2=N-2
IF(NM2 .EQ. O)GOTO 400
DO 200 I=1,NM2
NMI=N-I
ETAX=ETAX*ETA
ZMU(l)=ZMU(l)+A(I+l)*ETAX
DO 200 J=2,NMI

200 ZMU(J)=ZMU(J)+A(!+J)*BC(J-l,I)*ETAX
400 ZMU(l)=ZMU(l)+A(N)*ETAX*ETA

SIGN=-l.
DO 300 L=l,N
SIGN=SIGN*(-l.)

300 ZMU(L)=ZMU(L)*SIGN
RETURN
END

c
C. •
C

. . . . . . . . . . . . . . . . . . . . . . . . . . . . .
SUBROUTINE BINOMCND)

C
C TO CALCULATE THE BINOMIAL COEFFICIENTS FOR THE MAXIMUM EXPANSION
C OF 10TH POWER OR LESS
C

COMMON /A5/BC(9,9)
IFCND .EQ. l)RETURN
DO 100 J=1,9

100 BC(l,J)=J+l
DO 200 I=2,ND
ADD=!.
IF10=10-I
DO 200 J=lo IF10
BC(I,J)=BC(I-l,J)+ADD

200 ADD=BC(I,J)
RETURN
END

C
c. . . . . .
C
C
C THE REST ARE THE
C

. . . . . . . . . . . . . . . . . . . . . . .
INPUT DATA STORED IN THE TWO INPUT NAMELISTS.
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$INFOl IWRITE=-1,M=3,NN=3,AIN=O.,BIN=30.,PIN=O.,A(1)=1.000S7,
A(2)=O.00084,A(3)=-O.0000076,A(4)=O.000000032,

BB(1)=O.OOS7,BB(2)=O.0084,BB(3)=-O.000076,
BB(4)=O.00000032,BB(S)=O.,CRATE=1.,IFLAG=2,HMAX=O. $

$INF02 XMIN(1)=1.,XMIN(2)=O.,XMIN(3)=10.,XMIN(4)=O.,
XMAX(1)=400.,XMAX(2)=SO.,XMAX(3)=170.,XMAX(4)=lOO.,
XO(1)=12.023,XO(2)=O.3S,XO(3)=2.12,
DX(1)=S.,DX(2)=20.,DX(3)=20.,
PSIM=O.,DPSI=lO.,DALPHA=lO.,BETAM=SO.,DBETA=SO. $
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YES

Fig. A2 Flow Chart of Subroutines.
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Appendix B

Derivation of Equation 14

In section III.C, the function ~, Eq.(14), was defined

as

~ = ~ (ex, s,r, a) • (B1)

Its value depends on the slip surface ~1 and the perimeter

function ~2 of the slope (Fig. B1). Recoursing to the

rectangular coordinates for the time being, we have

(B2)

Note that the actual form of ~2 is immaterial here. It can

be any complicated function or even a Fourier series to

account for the kink at the knee. Also notice that Eq.B2

is so general that it is true for any other slope-surface

combinations. (See Fig.B2 and B3.)

By transformation back to polar coordinates, ~ becomes

~ = ~(ex,S,r,a),

which is in the same form as Eq.14.

(B3)



--r-r...,....---------_x

tliFl/12 (a,~, y)
the

perimeter
function

the slip surface
~--function

"'I ="', (y)
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LlP toe

Fig. Bl The Equivalency of ~, the Horizontal Slice Length, for a
Toe-Surface of Failure.
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-=-"'--"'T"'1--r-'" X

Fig. B2 The Equivalency of ~ for a Raised Sagging Slip Surface.

y

Fig. B3 The Equivalency of ~ for a Stretched Slip Surface.
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Appendix C

Derivation of Equation 111

Equation (Ill) of section IV.B is derived as follows.

hi 'expand .Eq. (II?) iteratively as

{A!+(~_21[eAeSinB-3e{Asine- (B-2)cose} +

(B-2) (B-3) JeA6sinB- 4 ede]}}

Asine-(B-4~cose }+oA2+ (B - 4) , +. • • AI
(Cl)

where R. is the last term of the series. The exp¥essian for
R. depends on whether B is even or odd. If B is even, then

, if A ~ 0

, if A = 0

(C2)

with



aT

(C3)

~e = (C4)

If B is odd, then

, if A .. 0

with

or

Now, since B (B) (B-1~ ... (B-2s+1)
[25] = ( 5)!

and [~] = 1 t

then, Eq, (CI) can be expr~ssed as

( C5)

(C6)

(C7)

int(~) [ .' ( ~ . B-25-1I: t:. {[B ] (25) !A5Ine- B-2s)co5e SIn 6},
5=0 25 ft [A2+(B-2t) ]

t=O

(C8)



where int(~) • the integer part of C~)

lZ9

Note that the last term.t~ or 1
0

• is included. For. if .8 is

even, then

int(~) = B/2 •

and the last term in the sum of Eq~(C8) is

BCB-I) ••• [B-2CB/2)+1] Csin8)-ICAsin8)eA8 =
CA2+B2) ••• {A2+[B-CB-2)]2}[A2] ~e

if B is odd, then

intC~l = (B-l)/2

and the last term in the Sum of'Eq.(C8) is

B(B-I) ••• [B-2 (b-ll/2+1] (sin8)O (Asin8-cos8leA8 =
CA2+B 2) ..• (A2+3 2) (A2+1 2)

~o •




