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Abstract

Axisymmetric dynamic response of a bﬁgied pipe due to an incident com-
/

pressional wave is the subject of this investigation. The pipe has been
modelled as a thin cylindrical shell of linear homogeneous isotropic elastic
material embedded in a linear isotropic homogeneous eiastic medium of infinite
extent. The response characteristics of the pipe due to changes in the mate-
rial properties of the surrounding medium have been carefully studied. It
is found that even at long wavelengths and low frequencies the dynamic response
is significantly altered by the changes in the Poisson’s ratiocand therigidity
modulus of the surrounding medium., Further it is found that there are reai

resonant frequencies of the pipe which are also significantly dependent on

these quantities as well as on the wavelength.



1. TIntroduction

Dynamic responsec of buried pipelines to sgismic excitatibn has beén a
subject of ceonsiderable interest Iin recent years. The interest in the subject
originates from the desire to design lifelines like gaé‘and watér/sewer pipe- -
linés against severe damage from earthquakés. The damage to bﬁried pipelines
is caused by 1andslides, liquefaction of soil, faulting énd alsq due té shaking
by traveling seismic waves.

Several investigators have recently studied the dynamic response of under-
ground pipelines to seismic excitation., References fo these works can be found
in the review articles [1, 2, 3, 4]. Most of these works have treated the pipe-
line as a continuous or segmented beam and.pave not taken into account the
dynamic interaction between the pipe and its surrbunding medium,

The departure from the beam model is in the works of Ariman, et al, [2, 5]
and in those of Novak and his co-workers [6, 7, 8], where the authors have con-
sidered the shell model of the pipe, However, the interaction of the pipe and
the so0il has not been considered.

In our recent studies [9, 10, 11} it has been shown that the interaction
between the pipe and its environment significantly influences the displacements
of the pipe wall and the stresses arising in it. It.has also‘beén found [9, 10]
that the depth of the embedment of the pipe also affects the pipe response,

In this paper we have examined in detail the interaction effects omn the
dynamic response. 1In an earlier paper [11] we presented a quasi-static analysis
of the problem in which the inertia effects were neglected., It was shown that
except for very long wavelengths the pipe does not in general follow the motion
of the ground. This implies that the inertia effects should have considerable
influence on the response of the pipe., Thus the object of this paper is to

analyze the full dynamic problem,



The related problems of the free and forced vibrations of a pipe in an
acoustic medium have received considerable attention in the past [12, 13].
The vibration of a pipe in an elastic medium is complicated by the coupling
of the longitudinal and shear waves generated in the surrounding medium.

As in the case of a freely vibrating pipe in an acoustic medium it is found
that there may exist resonant frequencies for a pipe freely vibrating in an
elastic medium, 'However, in the latter case the existence of the resonant
frequencies depends on the rigidity ratio of the pipe and its surrounding
elastic medium.

We have also considered the forced vibration of the pipe due to an inci-
dent longitudinal wave. It is shown that the displacement of the pipe wall

/
and the axial stress in it depend critically on the Poisson's ratio and the

Y
rigidity modulus of the surrounding medium.



7. Hguations and Solution

As shown in [11] the equations governing the axisymmetric motion of a

shell element are given by
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Here u, w are the axial and radial displacements of a point on the shell-
middle surface (see Figure 1) and ‘f’x is the rotation of the normal to this
surface in the meridianal plane. The other shell parameters appearing above

are defined as follows.
R = Mean Radijius

h = Thickness

Ep = Eh2 > E = Young's Modulus, v = Poisson's Ratio
-3
E h2

b= Tz

Shear Modulus
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ps = Density
LB
12
k = Shear correction factor, taken as i
X

J12

The vector p* represents the force and moment exerted per unit area by

the surrounding medium on the shell and has the components
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The stress components Tr£* and Tréc arise from the motion of the surrounding

medium and are evaluated at r = R + -"1:12— .

The displacement u(r,@, x,t) of a point of the outer medium satisfies

fi

the equatiohs of motion
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¢ is the Poigson's ratio and <, is the shear wave speed.

Since the object of the present investigétion is to analyze the motion
of the shell excited by an incoming traveling seismic wave, it will be assumed

that u is composed of two parts, The part due to the incident disturbance

(L

will be denoted by u , whose components may be represented for axisymmetric

motion as

B -uoRng- k12 1, ( g2. klzr) cos § (x-ct)

r

R (6
u}il) = uogRIO( §2- kf.r)siné (x - ct)

where In is the modified Bessel function of the first kind. In writing (6)



it has been assumed that the disturbance is in the form of a longitudinal wave;
Clearly B(i) given by (6) with kl = o’u/c:1 = c§/¢l satisfies (5) and is a
traveling wave of wavelength A = 21/E , moving with speed c¢ along the axis of
the pipe., For the special case of a plane 1ongitudina1' wave moving aloﬁg the

axis of the pipe (6) will reduce to
() . (i) . o
b = 0 , ux u ERsin g (x clt) (7)

The other part of u denoted by B(s) , may then be written as (see [11]),

(s) _ X X N ,
ur = -TA R K1 (v R)+B§K1(6 R)]cos,?, (x- ct)
(8)
(s) _ rar X S x {0 F (-
u "t = [A_,KO(Y R) + B = 1\0(6 R)}sln§ (%~ ct)
Here Kn is the modified Bessel function of the second kind and
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The constants A and B are chosen so that the displacement is continuous

at the shell outer surface, i.e.,

2

Once u]ES) uf{s) are known, they can be used to calculate the stresses

T]Ef_}': R T](Ts)‘«f arising from them at r =R + h/2 . Assuming that

w:;cosg(}c;nct) 5 ’{r’x=‘i-7xsin§(x~ct) s u=§sin§(x-ct)

a1

it was shown in [11] that
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where the elements Tij of the matrix T are given by
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Finally equations for the determination of W, ?X and u are obtained
by substituting (11) and (12) in (1) - (3). 1In matrix notation these can be
written as

2 - . ‘
[a-ur-0°8]U = -Mro®) 4@ RN

Here A and B are symmetrix 3 X3 matrices having the elements
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It should be pointed éut here that Eq. (14) represents the equation fér
the determination of the displacement of,.and the rotation normal to, the
middle surface when the pipe 1s excited by an axially propagating longitudinal
wave. The excitation is given by the right hand side of Eq. (14). Clearly the
matrix T is independent of the nature of the excitation and depends solely on
the geometry of the pipe, the material properties of the surroﬁnding medium and,

of course, on the wavelength and wave-speed of the excitation. So for a different



excitation only 'U(l) and fr(l) will be changed. Further, the equation deter-
mining the frequency of free vibration of the pipe in an elastic medium is

given by

det[A-MT-Qz]-=O . (16)

In general these frequencies are complex and depend on M as well as on
other material and geometrical parameters of the shell and its surrodnding

medium, The real frequencies can exist only if
¢ < /7 | (17)

These are discussed in the following section, Note that (17) implies that

c < ¢, .
2



3. Numerical Results and Discussion

Eq. (16) was solved for real frequencies for different values of M and
the Poisson's ratio, ¢, of the outer medium. These are shown in Tables 1 and 2.

The following parameters were chosen for the shell.

h/R = .05 , v = 0.3, ps/p = 2,9266

It. was found that there were no real frequencies for small M and for M
between 0.1 and 1 there is qnly one real frequency, which lies between the
frequencies of the first and second flexural modes of free vibra;ioa of the
pipe in vacuum, It is further noted that if &.S %% then there are no real
frequenéies for any value of M. This is to be contrasted with the case of a
shell vibrating in an acoustic medium in which case it was found [12] that there
was always one real frequency for all 2, Also, the real frequency exists for
smaller values of £ as M increases. For example, when M = O.lbthe real
frequency occurs first for 4 = 5m/3 whereas, when M = 0.3 it occurs first
for 4 = 57/6 and when M =1 it is for 4 = 27/3. It is observed that the
frequency of free vibration decreases with the Increase in the rigidity ratio
of the soil and the pipe. Increasing the Poisson's ratio also decreases the
frequency.

As an example of forced vibration Eq. (14) was then solved for U for

different 4, €, M and ¢ with the same shell parameters indicated above.

Knowing U the axial stress NXx is then calculated from the equation

XX

E u ‘
- _po I
N = [LUy +vU, + F ol U, ] (18)

In order to exemplify the dynamic effect ] w/wStatlc|

e ' ' static
(FW) and [ NxX/Nxx [
(¥ N) have been plotted in Figures 2 - 13 against ¢ for different 4 and M.

Cars .
Here w* 0 and NO-O ¢ are obtained by solving Eq. (14) when € = 0,
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These static solutions are discussed in [11].

Figures 2 -5 show the variations of W gnd N. with € and M for {4 =1/6
and O = 0,25 and 0.45, respectiveiy. It is seeﬁ from Fig. 2 that for smali
M, W increcases siightly from 1.0 for small ¢ ,' then decreases to a minimum at
about € = 0,4 and continually increases with € th‘ereafter. Both figuresv 2
and 3 show that for all M, W drops below 1.0 for small €, goes through
minima and then increases with € . Comparing Figs. 2 and 3 it is observed that
changing the Poisson's ratio has pronquneed effect on the dynamic rgéponse of
the shell. This is to be contrasted with the observation made in [11] that in the
atatic limit the response of the shell is not very sensitive to changes in the
Poisson's ratio. This is clearly not so if the inertia effects are taken into
account, It is found then that increasing g (scfter soil) results in verf
large displacements of the shell wall and, as Figs. 4 and 5 show, in large
axial stresses in the shell. For small M the axial stress first decreases .witﬁ
increasing € , but then increases very rapidly with €, the increase being
sharper for large ¢ . It may be noted that for M= 0.1, N attains a'symptotically'
a constant value for large €, this value Being smaller the larger ¢ is. It
" is of particular interest to note that if the soil is soft and M2 0,1, N in-
creases very rapidly with € reaching a maximum valﬁe several times larger than 1
and thlen'drops répidly to an almost constant value that is not much larger than‘
one., In harder soil, however, N does not reach a sharp maximum. Except for
small € it steadily increases to a constant value. These observations seem
to be consistent with the evidence that pipes suffer greater damage in soft‘
soils. |

The variations of W and N with M and € are shown in Figs. 6 and 7 for
4 =m/3 and ¢ = 0,25, It is seen that both W and N behave quite differently

as the wavelength is increased. Generally, hOWevef, it may be observed that for
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smail M the behavior of W and N with changes in € is the same as for
L =1m/6, the difference being that the dyanamic axial stress is smaller than
its statical value for a large range of €, It may be seen thz;.t for small €,
W first increases sharply when M is small and then drops rapidly, goes through
a minimum, The sharp increase for small M and € becomes steeper as 4 increases
(see Figs. 8 and 10). N also behaves in a similar manner.

The variations of W and N with M and € for large 4 are shown in
Figs. 8~ 11, The most important feature o be noticed in these figures is that
the pipe begins resonating at a particulaf frequency that depends on M and 4.
This has been discussed earlier. Figs. 12 and 13 show the depeﬁdence of the
resonant behavior when © = 0.45. It may be noted that increasing the Poisson's
ratio for the same M (= 0.1) generally resul%s in larger displacements and axial
stresses.

A general behavior that méy be observed from these figures is that for small
M and ¢ both W and N decrease with increasing <, However, this behavior
is reversed for large M. Aléo to be observed is the fact that for small M
and large € both W and N increase with increasing o .

In order to see whether the pipe generally follows the motion of the ground
for long wavelengths, the values of the radial and axial displacements normalized
with réspéct to the corresponding ground displacements are plotted against €

for different M when 4 =m/6. It may be noted that for very small € only ﬁ
is close to unity if M is large, but W is not. It is also interesting to
note that for large M, W is close to unity when € is large. For small M

an increase in the Poisson's ratio is seen to cause smaller discrepancies
between the radial and axial displacements of the pipe wall and the correspond-

ing ambient ground displacements,
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Thus the following conclusions may be drawn from the above observations.

(1) ¥or long wavelengths when the rigidity ratio of the ground and the pipe
is kept at the same small value, larger axial stresses in the pipe are caused
in a softer ground. For large rigidity ratios, on the other hand, just the

raverse occurs, except when Lrequency is low.

(2) Pipe resonance occurs only when the rigidity ratio is largé and the wave-

length is small. No resonance occurs in a soft soil.

(3) ¥For short wavelengths, it appears that the axlal stress in the pipe is

usually larger in a softer ground ekcept at some small ranges of frequencies.

(4) 1t is important to note that except for very long wavelengths larger axial
stresses are caused in the pipeline in a rdcky environment than in a soil-like

one.
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Figure 1, Geometry of the Problem
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Figure 7.
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