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Abstract

Axisymmetric dynamic response of a buried pipe due to an incident com-

pressional wave is the subject of this investigation. The pipe has been

modelled as a thin cylindrical shell of linear homogeneous isotropic elastic

material embedded in a linear isotropic homogeneous elastic medium of infinite

extent. The response characteristics of the pipe due to changes in the mate-

rial properties of the surrounding ~edium have been carefully studied. It

is found that even at long wavelengths and low frequencies the dynam~c response

is significantly altered by the changes in the Poisson's ratio and the rigidity

modulus of the surrounding medium. Further it is found that there are real

resonant frequencies of the pipe which are also significantly dependent on

these quantities as well as on the wavelength.
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1. Introduction

Dynamic response of buried pipelines to seismic excitation has been a

subject of considerable interest in recent years. The interest in the subject

originates from the desire to design lifelines like gas and water/sewer pipe- ­

lines against severe damage from earthquakes. The damage to buried pipelines

is caused by landslides, liquefaction of soil, faulting and also due to shaking

by traveling seismic waves.

Several investigators have recently studied the dynamic response of under­

ground pipelines to seismic excitation. References to these works can be found

in the review artic les [l, 2, 3, 4] . Most of these Horks have treated the pipe-

line as a continuous or segmented beam and pave not taken into account the

dynamic interaction betHeen the pipe and its surrounding medium.

The departure from the beam model is in the works of Ariman, et ale [2, 5]

and in those of Novak and his co-workers [6,7,8], where the authors have Con­

sidered the shell model of the pipe. However, the interaction of the pipe and

the soil has not been considered.

In our recent studies [9, 10, 11] it has been shown that the interaction

between the pipe and its environment significantly influences the displacements

of the pipe wall and the stresses arising in it. It has also been found [9, 10]

that the depth of the embedment of the pipe also affects the pipe response.

In this paper we have examined in detail the interaction effects on the

dynamic response. In an earlier paper [11] we presented a quasi-static analysis

of the problem in which the inertia effects were neglected. It Has shown that

except for very long wavelengths the pipe does not in general follo~ the motion

of the ground. This implies that the inertia effects should have considerable

influence on the response of the pipe. Thus the object of this paper is to

analyze the full dynamic problem.
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The related problems of the free and forced vibrations of a pipe in an

acoustic medium have received considerable attention in the past [12, l3J.

The vibration of a pipe in an elastic medium is complicated by the coupling

of the longitudinal and shear waves generated in the surrounding medium.

As in the case of a freely vibrating pipe in an acoustic medium it is found

that there may exist resonant frequencies for a pipe freely vibrating in an

elastic medium. However, in the latter case the existence of the resonant

frequencies depends on the rigidity ratio of the pipe and its surrounding

elastic medium.

We have also considered the forced vibration of the pipe due to an inci-

dent longitudinal wave. It is shown that the displacement of the pipe wall
I

and the axial stress in it depend critically on the Poisson's ratio and the

rigidity modulus of the surrounding medium.
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As shown in [llJ the equations governing the axisymmetric motion of a

shell element are given by
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Here u, ware the axial and radial displacements of a point on the shell-

middle surface (see Figure 1) and ':l' is the rotation of the normal to thisx

surface in the meridianal plane. The other shell parameters appearing above

are defined as follows.

R == Mean Radius

h - Thickness

E
P

D

Eh
---2 '
I - 1)

12

E - Young's Modulus, 1) == Poisson's Ratio

G == Shear Modulus
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P - Density
s

k - Shear correction factor, taken as
x

_TT_

JT2

The vector ;e* represents the force and moment exerted per unit area by

the surrounding medium on the shell and has the components

p*
1

(1 +...h-) 'T ~t(
2R rr

(4)

The stress components 'T ~t( and 'T ok arise from the motion of the surrounding
rr rx

h
medium and are evaluated at r = R + 2 .

The displacement ~(r, e, x, t) of a point of the outer medium satisfies

the equations of motion

where

2
'f 77·u

"'''' '"
(5)

'f = J2(1-0)
1 - 20

o is the Poisson I s ratio and c
2

is the shear wave speed.

Since the object of the present investigation is to analyze the motion

of the shell excited by an incoming traveling seismic wave, it will be assumed

that u is composed of two parts. The part due to the incident disturbance
'"

will be denoted by

motion as

(i)
u ,whose components may be represented for axisymmetric
'"

(i) _ u RJs2 - k 2 (Js2 _ 2
coss (x-ct)u = II k

l
r)

r o 1

(6)
(i)

= u SR I (Js2- k
2

r)sin S (x - ct)u
x o 0 1

where I is the modified Bessel function of the first kind. In writing (6)
n
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i;~ has been assumed that the disturbance is in the form of a longitudinal wave.

Clearly ~ (i) given by (6) with k
1

:= w/c
l

== cS/c
l

satisfies (5) and is a

traveling wave of wavelength A == 2TT/S ) moving with speed c along the axis of

the pipe. For the special case of a plane longitudinal wave moving albng the

axis of the pipe (6) will reduce to

u (i) == 0
r

U
(i) ==x U o SR sin S (x - c I t) (7)

The other part of ~ , denoted by
(s)

~ )
may then be written as (see [11]),

(8)

Here K is the modified Bessel function of the second kind and
n

J 2 2
Y == t - E: (9)

The constants A and B are chosen so that the displacement is continuous

at the shell outer surface, i.e.,

(s)
u

r

(i)
w - ur '

(s)
u

x (10)

Assuming thatr = R + h/2 •

Once u;s), u~s) are known) they can be used to calculate the stresses

,.,.(s );'<
I aris ing from them at
rx

(s ),'<
'r
rr

w == wcosS(x-ct) , '±' := '±' sin S(x - c t) ,
x x u == usinS(x-ct)

(11)

it was shown in [llJ that
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and

m = h/R ,

v4 = (1 + m/2) y G6 = (1 + m/2) 6

Finally equations for the determination of w, '±' x and u are obtained

by substituting (11) and (12) in (1) - (3). In matrix notation these can be

written as

[A-MT-rlB]U = _MTU(i) +MT(i)

Here A and Bare symmetrix 3 X 3 matrices having the elements

(14)
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It should be pointed out here that Eq. (14) represents the equation for

the determination of the displacement of, and the rotation normal to, the

middle surface when the pipe is excited by an axially propagating longitudinal

wave. The excitation is given by the right hand side of Eq. (14). Clearly the

matrix T is independent of the nature of the excitation and depends solely on

the geometry of the pipe, the material properties of the surrounding medium and,

of course, on the wavelength and wave-speed of the excitation. So for a different
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excitation only U(i) and T(i) will be changed. Further, the equation deter-

mining the frequency of free vibration of the pipe in an elastic medium is

given by

2
det [A - MT - (2 ] = 0 (16)

In general these frequencies are complex and depend on M as well as on

other material an4 geometrical parameters of the shell and its surrounding

medium. The real frequencies can exist only if

E: < t/'r (17)

These are discussed in the following section. Note that (17) implies that



- 9-

3. Numerical Results and Discussion

Eq. (16) was solved for real frequencies for different values of M and

the Poisson's ratio, cr, of the outer medium. These are shown in Tables 1 and 2.

The following parameters were chosen for the shell.

h/R .05 , v 0.3 , p /p := 2.9266
s

pipe in vacuum.

It was found that there were no real frequencies for small M and for M

between 0.1 and 1 there is only one real frequency, which lies between the

frequencies of the first and second flexural modes of free vibration of the

It is further noted that if t :$ Jl. then there are no real
3

frequencies for any value of M. This is to be contrasted with the case of a

shell vibrating in an acoustic medium in which case it was found [12] that there

was always one real frequency for all t. Also, the real frequency exists for

smaller values of t as M increases. For example, when M:= 0.1 the real

frequency occurs first for t := 5n/3 whereas, when M:= 0.3 it occurs first

for t := 5n/6 and when M := 1 it is for t := 2n/3. It is observed that the

frequency of free vibration decreases with the increase in the rigidity ratio

of the soil and. the pipe. Increasing the Poisson's ratio also decreases the

frequency.

As an example of forced vibration Eq. (14) was then solved for U for

different t, E:, M and cr with the same shell parameters indicated above.

Knowing U the axial stress N is then calculated from the equationxx

N :=
xx (18)

In order to exemplify the dynamic effect I wJ1;",static I (= H) and I N /Nstatic I
xx XX

(= N) have been plotted in Figures 2 - 13 against S for different t and M.

Here
static

w and Nstatic are obtained by solving Eq. (14) when S := O.
xx
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These static solutions are discussed in [11].

Figures 2 - 5 show the variations of Wand N with E: and M for .{, = n/6

and 0" := 0.25 and 0.45, respectively. It is seen from Fig. 2 that for small

M, H increases slightly from l.Q for small €, then decreases to a minimum at

about E: := 0.4 and continually increases with E: thereafter. Both figures 2

and 3 show that for all M, W drops below 1. 0 for small E:, goes through

minima and then increases with E:. Comparing Figs. 2 and 3 it is observed tha.t

changing the Poisson's ratio has pronounced effect on the dynamic response of

the shell. This is to be contrasted with the observation made in [11] that in the

static limit the response of the shell is not very sensitive to changes in the

Poisson's ratio. This is clearly not so if the inertia effects are taken into

account. It is found then that increasing 0" (softer soil) results in very

large displacements of the shell wall and, as Figs. 4 and 5 show, in large

axial stresses in the shell. For small M the axial stress first decreases with

increasing E:, but then increases very rapidly with E:, the increase being

sharper for large o. It may be noted that for M:::: 0.1, N attains asymptotically

a constant value for large E:, this value being smaller the larger 0· is. It

is of particular interest to note that if the soil is soft and M 2: 0.1 ,N in­

creases very rapidly with E: reaching a maximum value several times larger than 1

and then drops rapidly to an almost constant value that is not much larger than

one. In harder soil, however, N does not reach a sharp maximum. Except for

small E: it steadily increases to a constant value. These observations seem

to be consistent with the evidence that pipes suffer greater damage in soft

soils.

The variations of Wand N with M and E: are shown in Figs. 6 and 7 for

t := n 13 and cr := 0.25. It is seen that both Wand N behave quite differently

as the wavelength is increased. Generally, however, it may be observed that for
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small 1'1 the behavior of Wand N \\lith changes in E: is the same as for

t = n/6, the difference being that the dynamic axial stress is smaller than

its statical value for a large range of E:. It may be seen that for small E:,

W first increases sharply \\lhen 1'1 is small and then drops rapidly, goes through

a minimum. The sharp increase for small 1'1 and E: becomes steeper as t increases

(see Figs. 8 and 10). N also behaves in a similar manner.

The variations of Wand N with 1'1 and e for large t are shown in

Figs. 8 - 11. The most important feature to be noticed in these figures is that

the pipe begins resonating at a particular frequency that depends on M and t.

This has been discussed earlier. Figs. 12 and 13 show the dependence of the

resonant behavior when a = 0.45. It may be noted that increasing the Poisson's

I

ra'tio for the same 1'1 p: 0.1) generally resurts in larger displacements and axial

stresses.

A general behavior that may be observed from these figures is that for small

1'1 and S both Wand N decrease with increasing a. However, this behavior

is reversed for large 1'1. Also to be observed is the fact that for small M

and large € both Wand N increase with increasing a.

In order to see whether the pipe generally follows the motion of the ground

for long wavelengths, the values of the radial and axial displacements normalized

with respect to the corresponding ground displacements are plotted against e

for different 1'1 when t = n/6. It may be noted that for very small E: only U

is close to unity if 1'1 is large, but W is not. It is also interesting to

note that for large 1'1, W is close to unity when e is large. For small 1'1

an increase in the Poisson's ratio is seen to cause smaller discrepancies

between the radial and axial displacements of the pipe \\lall and the correspond-

ing ambient ground displacements.
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Thus the following conclusions may be drawn from the above observations.

(1) For long wavelengths when the rigidity ratio of the ground and the pipe

is kept at the same small value, larger axial stresses in the pipe are caused

in a softer ground. For large rigidity ratios, on the other hand, just the

reverse occurs, except when frequency is low.

(2) Pipe resonance occurs only when the rigidity ratio is large and the wave­

length is small. No resonance occurs in a soft soil.

(3) For short wavelengths, it appears that the axial stress in the pipe is

usually larger in a softer ground except at some small ranges of frequencies.

(4) It is important to note that except for very long wavelengths larger axial

stresses are caused in the pipeline in a rocky environment than in a soil-like

one.
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