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PERFORMANCE OF LOW-RISE BUILDINGS - EXISTING AND NEW

by

James T. P. Yao,* F. ASCE

INTRODUCTION

With a few notable exceptions [26], the great majority of struc
tural research projects in earthquake engineering have been concentrated
on the analysis and design of high-rise buildings. Therefore, this
Workshop presents a unique opportunity for structural engineers to
discuss various aspects of the problem concerning low-rise building
structures. The word "performance" may mean different things to dif
ferent people. For example, it can refer to the performance criteria
in structural design. It may also imply the response and behavior of
existing structures under actual environmental conditions. The seismic
performance of existing buildings can be improved by retrofitting,
which is certainly different from new constructions. The questions on
when and how an existing should be retrofitted remain to be further
studied.

Consider the life of any given structure to begin when the con
struction process is completed at time zero as shown in Figure 1.
The well-known "bath-tub" shaped hazard function, hT(t), is usually
divided into three parts. The first part is called the "infantile
mortality rate", which reflects error and defect related failures
starting with a high value and decreasing with time to a constant
at time td. The second part isa constant hazard function which
implies chance failure. At time t w' the third part of the hazard func
tion starts to increase due to "wearout" or fatigue types of failures.
The dividing time between "new construction" and "existing construction"
impl ies a decreasing or constant hazard function, and the term "exi sting
bui1 ding" impl i es a constant or increasing hazard function.

If both the load and the resistance for a given type of structures
can be represented with known random processes, it is possible to com
pute the hazard function for a relatively simple and idealized structure
[40-42J. For special cases where sufficient failure data are available,
the hazard function can also be estimated statistically. Recently,
Drenick and Yun [10J studied the effect of uncertainties in earthquake
ground-motion statistics and recommended the combined application of
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Figure 1. Hazard Function of a Structure

2



probabilistic methods and worst-case analyses for the realiability
study of seismic structures. Nevertheless, difficulties still exist
in the safety evaluation and damage assessment of existing structures
[43].

Because of my current research interest in structural engineer
ing, the emphasis of this paper is placed on the evaluation of safety
related performance of existing structures. An attempt is made to re
view (a) the theory of structural reliability, (b) error and defect
related failures for new constructions, and (c) wearout and deteriora
tion related failures for existing structures. Finally, the need for
a set of standard nondestructive testing and inspection techniques is .
discussed.

THEORY OF STRUCTURAL RELIABILITY

Some 35 years ago, the late Professor A. M. Freudenthal presented
a rational approach to the structural safety problem and thus formally
established the subject area of structural reliability [13]. The
extensive state-of-the-art of this important topic was summarized in
a 1972 report of the American Society of Civil Engineers/Structural
Division/Task Committee on Structural Safety [36]. In 1974, a reli
ability-based design code format was presented to the civil engineering
profession [37]. To-date, the theory of structural reliability has
been applied to solve various practical problems in earthquake engineer
ing, wind engineering, ocean engineering, aerospace structures, and
nuclear structures [14].

The interrelationship betweenthe state of nature (the way things
are) and the state-of-the-art (the extent of our understanding and
knowledge) is illustrated in Figure 2. In the state of nature, a
structure is subjected to disturbances throughout its intended life
time. The responses of the structure to such disturbances exist in
various forms such as displacements, internal forces, stresses and
strains, which present a "demand ll on the structure. Inherently, each
structure possesses a "capacity", which consi sts of various 1imit states
corresponding to respective demands. Damage or failure may result
whenever one or more demands exceed corresponding capacities. The
reliability function, LT(t), for a given structure is defined as the
probability that the structure will survive at least time t, i.e.,

LT(t) :: peT > t) (1 )

Where peT > t) denotes probability, and T is a random variable denot
ing the useful lifetime of the structure. Alternatively,

LT(t) = P[R(T) > S(T); 0 ~ T ~ t] (2)

where Red and SCd ·denote the resistances (capacity) and response to
disturbances (demand) of the structure, respectively. The reli
ability function is related to the hazard function in the following
manner:
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(3)

where LT(to) is the initial value of the re1aibi1ity function at time
tQ' Generally, the structural system and its environment are represent
ed with mathematical idealizations for the purpose of analyses. When
ever the mathema tica 1 representations for di sturbance and the structure
are given or assumed, the process to find the desired responses is call
ed structural analysis. More specifically, when the load is given as a
function of time, the subject area is known as structural dynamics.
When the dynamic excitation is random with certain statistics available,
the methodology for finding certain statistics of the structural re
sponse is called random vibration (e.g., see [8,21J). These response
statistics can then be used along with resistance (limit states) sta
tistics for the estimation of structural reliability.

Meanwhile, it is necessary to determine the configuration (includ
ing geometry of the structure and sizes of its members), the material,
and the type of construction before the structure is constructed. In
this design process. the loading conditions and limits of the response
are specified and the dimensions of the structure usually follows an
iterative process involving both structural analysis and structural
design. Some recent developments on design code formats are summarized
in 1976 [9J. A practical example of the current generation of reli
ability-based design code in the load and resistance factor design
(LRFD) as described by Galambos et a1 [16J. Optimum design processes
were also discussed [23. 32J.

Because most techniques of structural analysis are applicable only
to idealized systems. the behavior of a completed sturucture in the
state of nature may not correspond to that of the mathematical model
as used prior to the construction. For certain important structures,
nondestructive tests are performed to collect selected load and re
sponse data. Techniques of system identification (e.g., [llJ) are then
applied to obtain a more realistic mathematical model for further analy
sis. Such studies are a part of the subject area of structural identi
fication [7, 17, 31J. It has been suggested to extend such applications
for the estimation of damage and reliability of existing structures
following the occurrence of severe earthquakes [24, 43J. Recently,
attempts are also being made to obtain a rational formulation for the
safety evaluation and damage assessment of existing structures [45J.

An existing structure can be tested and inspected either period
icallyor immediately following an extreme event. Ideally, these test
data and inspection results can be used for the following two purposes:
(a) to assess the damage (or safety) state of the structure at the time
of test and inspection. and (b) to modify the mathematical representation
of the structural system for further safety and reliability analysis.
As an example, when a new structure is first completed, the reliability
of the structures in the next fifty years (design life) is given by
Equation 3 as follows:

LT(50) = LT(D) exp [-~Q hT(t}dt] (4}
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where LT(O) may be assumed as unity, and hT(t) may be based on some
idealized mathematical analyses prior to any testing or inspection of
the completed structure. When the structure is six years old, there
is a strong earthquake which causes some damage to the structure.
Then, the structural reliability using test data and inspection re
sults can be revised as follows:

(1) (1) 50 (1)
LT(50) = LT(6) exp [-f 6 ~ (t)dt] (5)

. (1)
where [T (6) represents the present damage (or safety) state of the
structure, and hi11 (t) reflects the modified mathematical representa
tion of the structure syst.em following one major earthquake. The
comparison of LT(50) and t+ I (50) may help the engineer to decide wheth
er and how the structure should be repaired. More generally, the up
dated rel iabil ity function after -i.thinspection can be given by:

L~-i.)(t) = Li-i.)(t~) exp [- f~, nf-i.) (t)dt]
<L

I?l~eality, however, it is still difficult to estimate L;l'(t), and
hi (t) on the basis of test data and inspection results. .

NEW CONSTRUCTION

(6)

Because most failures for new constructions can be related to
human errors and defective components, available literature in this
regard is reviewed herin. Recently, Fraczek [12J reported on the
results of a study of some 277 cases of errors concerning reinforced
concrete structures. Because many practicing engineers are reluctant
to disclose error-related failures, these results were extracted from
incomplete responses to a survey which was conducted by the ACT Com
mittee on Structural Safety. Nevertheless, results of this study
indicate that (a) design errors are more prevalent than construction
errors in connections, joints, and prestressed concrete'members,
(b) most design errors are detected during occupancy and cause ser
viceabil ity malfunctions, and (c) nearly three-fourth of construction
errors are detected and over one-half of these errors cause distress
or failure. In conclusion, Fraczek recommended to conduct a new sur-
vey for the collection of further information because of the following
difficulties that he and the ACI Committee encountered: (a) some
responses were vague and ambiguous, (b) the terms Ifai1ure" and IIdistress"
were interpreted in a subjective manner by various respondants, (c) the
present survey was found to be biased toward errors which were detect-
ed following the completion of the constuction process, and (d) the
sampling process may not be statistically valid partly because many
engineers chose not to reply to the Committee during the present survey.

Allen [18J summarized the results of 'a seminar on the relation
between human error and civil engineering structures, which was held in
Ontario, Canada on 15-16 October 1979. Participants of this seminar
include; W.R. Schriever, F. Knoll, A. Nowak, R.F. Scott, N.C. Lind,
E. Y. Uzumeri, R. G. Sexsmith, Z. S. Shah, C. J. Turkstra, H. Mathieu,
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and N. FitzSimons. As a group, they discussed the subject in detail
and made recommendations with regard to research, organization, codes
and standards, collection of failure information, and information feed
back. Some 19 references were listed.

Because most failures were found to be related to human error
or unexpectedly extreme loading conditions [1, 35J, Nowak [27J attempt-
ed to estimate the effect of gross errors on structural safety by consid
ering one possible error at a time. There exist several means of control
ling gross errors, which include (a) inspection; (b) proof loading,
and (c) adjustment of design safety factors. Nowak suggested that the
choice of the type and the degree of error control can result from an
economic analysis. Recently, a series of papers on these topics have
been presented [3, 22, 25, 28, 30, 38J.

EventuallY,it is hoped· that any detected defects and/or expected
errors in a given new construction can be used to modify both
LTltO) as well as hT(t) in Equation 3. Thus, the reliability estimate

LTlt) can be improved with the use of test data and inspection results.

EXISTING BUILDINGS

It is desirable to assess the safety state of existing structures
either periodically or immediately following each major catastrophic
event suchas a strong earthquake. On the basis of such assessments,
decisions can be made on whether a particular structure should and can
be repaired. One recent example of extremely sever earthquakes is the
28 July 1976 Tangshan earthquake in the Hopeh Province in China.
Jennings [19J reported that over 75 percent of the 916 larger brick
buildings (most are two to four stories in height) collapsed or were
severly damaged. It is also interesting to note that studies of the
response characteristics of building structures showed considerable
differences in the fundamental periods in comparison with undamaged
structures.

In case of need, the condition of any existing building structure
can be evaluated either experimentally or analytically. Analytical
studie~ include (a) the examination of available design calculations
and drawings, (b) the review of applicable specifications, and (c) the
anlaysis of the structure with the use of additional field observations.
Experimental investigations frequently consist of (d) thedetermina
tion of locations of failures, (e) the application of non-destructive
testing, (f) the detection of defective components and (g) the proof
loading of the structure. Although such evalution are known to exist
in general, the detailed methodology inclUding the decision-making pro
cess remains as privileged information for a relatively few experts
in the profession [43J.

It is desirable for structural engineers to as~ess the degree of
deterioration in resistance and to evaluate the reliability of a partic-
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ular structure at any given time [24, 39]. When a structure is inspect
ed for the purpose of making damage assessment, a series of nondestruc
tive tests may be performed and the resulting data can be analyzed
accordingly. Measurable quantities during these tests include loads,
deformation or strains, and accelerations. From these experimental
data, (a) mechanical properties such as stiffness and strength, and
(b) dynamic characteristics such as natural frequency and damping can
be estimated. Moreover, visible damage features such as cracks and
permanent deformations can be detected by experienced inspectors.

One possible approach to the structural identification problem is
to obtain a damage function, the parameters of which can then be esti
mated using testing and inspection data. Blume and Monroe [4J assumed
that the damage is linearly related to the ductility factor with "0 11

denoting elastic behavior and "1 11 denoting collapse. Bertero and Bresler
[2] stated that (a) the lateral displacement ductility facotrsgenerally
provide a good indication of structural damage, and (b)' the inter-story
drift is a more important factor in causing nonstructural damage. Bresler
[5J discussed the relative merits of using plasticity ratio (residual
deformation to yeild deformation) and the ductility. For structures
which are subjected to cyclic plastic defromations with decreasing
resistance, the ratio of the initial to jth-cycle resistance at the
same cyclic peak deformation was also suggested.

For monotonic loading conditions, Oliveria [29] defined a damage
ratio function, which is analogous to a special case of a damage function
as developed for axially-loaded mild steel speciman subjected to low
cycle and high-amplitude reversed plastic deformations [48]. This
earlier damage function as given by Yao and Munse [48] was used to
evaluate the safety of structures by Kasiraj and Yao [20] for a specific
earthquake excitation, and later by Tang and Yao [34] for random ground
motions. In an unpublished technical note, Rosenblueth and Yao [33]
introduced a damage function in their pilot study of cumulative damage
of seismic structures. Unfortunately, currently available test data
are still insufficient to either validate the form of such a damage
function or to estimate these parameters for reinforced concrete struc
tures.

Ultimately, it is desirable t9.?btain Ca) some measure of the current
safety (or q~mage) state such as LT~ (ti)' and (b) the modified hazard
function hf~ (t) with the use of test data and inspection results which
are obtained at time ti' In this manner, the reliability 0rfhe struc
ture at some future time t(>t1 ) can be estimated (such as LT 1 (50))
in equation 5).

RESEARCH NEEDS AND CONCLUDING REMARKS

Refer to Figure l, the hazard function during the time period be
tween the begjnning of construction, -tb, and the completion of construc
tion, 0, seems to require further study. Quantitatively, the building
gegins with bare ground at time -tb and ends with a full structure at
time zero. Therefore, the fact that the structure itself changes with
time (time-variant) makes the analytical problem of computing or esti-

8
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mating the hazard function more interesting and challenging. Moreover,
it is desirable to collect re1avant data for the statistical inference
of this hazard function.

According to Zadeh [49, 50J, as the complexity of a system increas
es, our ability of making precise and yet significant statements con
cerning its behavior diminishes. Consequently, the closer one looks
at a real-world problem, which is usually complex, the fuzzier its
solution becomes. All existing buildings are indeed complex systems,
the complete behavior (including various degrees of damage) of which
cannot be easily and clearly described. The application of fuzzy sets
to several civil engineering problems was reviewed recently [6, 44J.
Moreover, an attempt was made to apply the theory of fuzzy sets to the
complex problem of damage assessment of existing structures [46J.

Finally, it is desirable to develop a standard set of nondestruc
tive inspection and testing procedures for all existing structures,
whether they are new or old. Depending on the value and failure con
sequences of each building, a certain procedure can be selected and
followed. To properly interpret these inspection and testing data,
a rational methodology needs to be formulated. Recently, Fu and Vao
[15, 41J proposed to use the theory of patte~n recognition in such
studies. Other topics for further research are also listed [47J.
Much of this research for low-rise buildings will be common for exist
ing and new buildings alike.
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