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Nonlinear Hyperelastic¢ (Green) Constitutive Models

for Soils: Theory and Calibration

By: A. F. Saleeb and W. F. Chen
School of Civil Engineering
Purdue University

West Lafayette, IN

1. Introduction

1.1 General

The stress—-strain behavior of any type of soil subjected to externally
applied loads is quite complicated and depends on many factors. This has
been a subject of research for many years, and the advent of the numerical
technique of finite element has given added impetus to these efforts [29].
The problems stem mainly from the fact that, unlike the properties of
most engineering materials, soil stress—strain responses are greatly
affected by such factors as soil structure (grain size, grain shape,
surface texture, mineralogy, cementation or bonding, etc.), density,
water content, drainage conditions, degree of voids saturation, loading
rate, confining pressure, loading history, and current stress state [8,
11, 13, 30)}. Clearly, the number of variables is far tooc extensive to
offer any encouraging hope for developing a simple, yet realistic,
constitutive relation that is capable of modelling the behavior of all
soils under general loading conditions. Drastic idealizations and simpli-~
fications are essential in order to model mathematically and approximately
the real behavior for the solution of the problem at hand. TFor exarple,
in most of the presently available constitutive relations, soil behavior

has been drastically idealized as time-independent, such as elastic and




elastic~plastic models where time effects are neglected. In addition,

interaction between mechanical and thermal processes is usually neglected.
Recent work [6, 14, 18, 19, 21, 22] has indicated that the stress-
strain behavior of most granular materials may be separated into
recoverable and irrecoverable components, and attempts have been made to
treat each component individually. The recoverable behavior is treated
within the framework of elasticity theory; while the irrecoverable part
is based on plasticity theory. Such separation is necessary if cyclic
loading and unloading are encountered. However, for problems in which
a monotenically increasing load prevails, elasticity based models provide
a much simpier approach. Most of the commonly used plasticity models
for soils are summarized in the recent paper by Chen [2]. 1In the forth-
coming, three general methods of formulation for elasticity based stress-
strain relations are reviewed. Later in this paper, a complete development
of the proposed isotropic third-order hyperelastic model will be presented
and its application to three different types of soils: clay "X", clay

"Y" and Ottawa Sand will be discussed.

1.2 Review of Elasticity-Based Stress—Strain Relations

Three different types of elasticity-based constitutive models are
presently available for general formulation. These are summarized in the
following [4, 15]:

1) Cauchy type in which the current state of stress depends only on
the current state of deformation, i.e., stress is a function of strain.

Mathematically, the constitutive equations for this material are given by:

) (1D

05 = Fi5 (6



where Fij is the elastic response function of the material, Oij and €11
are the components of stress and strain tensors, respectively. The elastic
behavior described by Eq. (1) is both reversible and path independent in
the sense that stresses are uniquely determined from the current state

of strain or vice versa. There is no dependeiice of the behavior on the

stress or strain histories followed to reach the current state of stress

or strain. It can be shown [4] that Caudhy elastic material may generate

energy under certain leoading-unloading cycles. Such behavior is
inadmissible since it violates the laws of thermodyanmics. This leads
naturally to the consideration of the second type of formulation, Green
hyperelastic type. Many commonly used constitutive models for soils are
based on Cauchy type of formulation. For example, different incremental
isotropic nonlinear elastic stress—strain relations have been formulated
based on the modification of the isotropic linear elastic relations with
two of the elastic moduli (Young's modulus E, Poisson's ratio v, shear
moedulus G, constrained modulus M, and bulk modulus K) Being taken to be
sealer functions of stress and/or strain states [5, 12, 17, 18, 19, 20].

(2) Hyperelastic (Green) type. This is based on the assumption of

the existence of a strain energy density function W (or a complementary

energy density function ) such that [4, 15]:

%15 T 3., (2a)
ij
or,
€,, = 32 (2b)
ij 90, | '
1]

£.. g,.
in which W= S +J g,,de,, and Q = [ H £..do,. are functions of the
0 1j 743 0 i3 43

current components of the strain and stress tensors, respectively. Thig

ensures that no energy can be generated through load cycles and laws of



thermodynamics are always satisfied.

For an initially isotropic elastic material, W or  are expressed in

terms of any three independent invariants of strain or stress tensors

€ or O,

13 if° respectively. In general, if  is expressed in terms of the

three stress invariants:

1 kk

I -3 o (3)
2 2 km “km

i, =0

then, Eq. (2b) yields the following constitutive law

N ail an aiz an 353
£,, T e h e —— = = G 6+ 0, + DT, g, (&)
1 9T 90,, 8T.90,, 91,00 EE SEIE Tt
17743 27743 3774
where the material response functions, ¢i, are defined as
Q
by = ,(T) = 2 (5
aT,
i
and these functions are related through the three equations: [4]
9, 3¢,
— = (6)
oI, aT,
i i

In Eq. (4), Sij is the Kronecker Delta (611 =1, 8,, =0, ete.).

12

The choice of the three independent stress invariants appearing in

Egs, (3 and 4) is arbitrary. Instead, one may use the invariants Jl =

1 _ 1 .
Skk’ J2 =3 Sijsij and 33 §Sijsiksjk of the stress deviator tensor
Sij = Gij - %Okkéij’ or even mixe# invariants such as il’ J2 and J3. The

particular advantage of the choice here is the separation of the functions



¢i in a simple convenient manner. Based on assumed polynomial expansions
of the function @ in terms of the three invariants, different constitutive
models can be developed. 1In particular, Evans and Pister [16] developed

a general third-order stress-strain law using Eq. (4) and retaining

terms in § from second to fourth order in stress, Ko and Masson [23]

used this law and described the fitting procedure of the model and applied
it to describe the behavior of Ottawa sand. This same model and fitting
procedure {23] will be used in the present paper to describe the behavior
of three different types of soils.

(3) Incremental (Hypcoelastic) type. This type of formulation is

often used to describe the mechanical behavior of a class of materials
in which the state of stress depends on the current state of strain as
well as on the stress path followed to reach that state [4, 6, 15, 311,
In general, the incremental constitutive relations for time-independent

materials are written as [6, 12]:

O11> Egn’ gpq) = 0 (7)

F(o,.
CA
provided that this equation is homogeneous in time (i.e., time occurs to
the same order in all terms of the equation and therefore, may be

eliminated). In Eq. (7) and épq are the stress increment and strain

* 6k1
increment tensors, respectively, and F is a tensor function. Equation (7)
is very general, but because of its complexity it is not possible to
indicate in which manner the total and incremental stresses and strains
are related and therefore, for simplicity, special cases of the general
law are usually used. In particular, four special cases of the general

law, in which strain increments are linearly related to stress increments

through the material response moduli which depend on a single state



varigble. will be given. . These casés are described by the relations [6]:

645 = A Omn Bt (82)
955 = B G’ S (8b)
€19~ Sy O (8c)
éij = ijkl(omn) (84

where Aijkl through Dijkl

ment. The behavior described by any of Egs. (8) is infinitesimally {(or

are general functions of their indicated argu-

incrementally) reversible. This justifies the use of the suffix
“elastic" in the term hypoelastic used by Truesdell [31] to describe the
constitutive relations in Eq. (8a). Based on the degree of dependence of

the tensorial functions A, through D,

i3kl upon the components of the

ijkl
corrresponding tensor argument, different types of constitutive laws are
obtained. ¥or example, in a grade one (or first order) constitutive law,
the tensorial functions in Egs. (8) are linear functionsof their arguments.
A hypoelastic material of grade zero (zero order) is equivalent to aniso-
tropic elastic Cauchy material. Hook's Law is representative of this

type of behavior in case of isotropic materials. For isotropic materials,

the tensorial response functions in Eqs. (8) are further restricted to

be form—invariant under the full group of transformation of the coordinate

axes [4].

Several incremental constitutive relations have been used in
modelling the behavior of soils and rocks [L, 6, 7, 19, 28, 32]. More
recently, incremental stress-strain relations have been formulated
separately for a special class of the hypoelastic materials, in which the

response tensors in Eqs, (8) are assumed to depend on the invariants, but



not on the stress (or strain) tensor itself, However, in these later
models, different forms for the material response functions apply in
initial loading, and in subsequent unloading and reloading, i.e., the

models are generally irreversible, even for incremental loading. These

models are now known as variable-moduli models, and they have been

extensively used to describe the behavior of soils in ground shock
studies [26, 27]. In Ref. [4], a complete critical theoretical study of
the three types ol elasticity formulation has been made.

In the first part of the following discussions, a third-order
hyperelastic (Green) constitutive model is formulated (seec. 2), and
specific fitting procedure to determine the material constants together
with several numerical examples are subsequently described (sec. 3),
Based on this formulation, explicit expression is developed for the
incremental stress-strain relation (sec. 4). This model is subsequently
refined by introducing a loading criterion and a failure criterion, thus,
extending the range of application to reversed loading case (sec. 5).

In the second part, theoretical considerations of the model for uniqueness
and stability of numerical solutions are examined (sec. 6). Comparisons
of the model predictions with experimental results are made in sec. 7.
Advantages and limitations of the deformational types of plasticity
models, which are identical with nonlinear elastic types of stress-strain
relations as long as unloading does not occur, are emphasized. The

model described in this paper can be readily applied to nonlinear stress
analysis of geotechnical problems involving three-dimensional stress and

strain components,



2. TFormulation of the Proposed Third-Order Hyperelastic (Green) Constitu-

tive Model
2.1 General

For an initially isotropic¢ material, if the complementary energy
function Q(fl, TZ’ f3) is expressed as a fourth order polynominal in the

stress components, one can write [16, 23]:

= == = , 1,22 1, =3 == o= =
Q(Il, Iy, 13) = AO + Alll + 23111 + 33211 + 33;112 +3,1, + 3513
1 =4 -2 = 1. =2 - =
+ 43611 + B.I7 12 + 33812 + 391113 (9

where the stress invariants Il, I, and T3 are defined in Egs. (3) and AO,

A1 and Bl to Bg are material constants. The numerical wvalues of the co-—-
efficients in Eq. (9) above are inserted for convenience in subsequent deriva-

tion., Then, using the normality condition of Eq. (2b), the constitutive

relations may be written as:

- =2 = -3 - = -
= + +
eij Alﬁij + [Blll + lel + 3312 + 3611 2371112 3913]6ij
- =2 - -
+
+ [13311 + B, + 3711 + 3812]0ij + [35 Bgllloimojm (10)

Assuming that the initial stress-free state corresponds to initial strain-

free state, the constant Al is equal to zero, and we have from Eq. (10),

Ei,j = ¢1Oij + d)zoij + d>3oimojm (11la)

where the material response functions, ¢i, of Eq. (4), are given by

3

- -2 - — - - -
= + B 1
¢, = By I, + B,I) + Bol, + BI) + 2B.T.T, + Byl (11b)
- -2 =
¢, = BT, + B, + BT} + BgI, (11e)
+ B, I (11d)

B2
W
1]
=~}

5 971



and obviously the relations between these functions, Egqs. (6), are
satisfied. Equations (1la to d) are the general third-order hyperelastic
(Green) stress—strain relations. It only remains to determine the nine

material constants Bl to B9 from experimental results in order to

complete the model formulation, This will be explained in subsequent
sections. The general form of the proposed third-order constitutive

law, Fqs. (11),was formulated by Evans and Pister [16]. The present
formulation of the model and the procedure of determining the nine material

constants B1 to B9 follow the method originally developed by Ko and

Masson [23].

As mentioned in [23], based on the experimental test results, stress-—
strain curves describing the behavior of many soils especially loose
sands and soft clays in shearing along conventional soil tests (e.g.,
triaxial compression, triaxial extension, and simple shear tests) can be
best represented by odd functions. For instance, typical stress-strain
curves for scil along different shearing stress path (Fig. la, b) are
illustrated in Fig. 1(e¢) for Ottawa sand [23]. This is the reason for
the particular choice of the third-order stress-strain law.

For most soils (and particularly for cohesionless soils) initial
natural state includes a nonzero reference state of stress, ng,

corresponding to a zero reference state of strain Ei ). Therefore,

5%

the components of the incremental strains Aeij corresponding to the

incremental stresses Aoij measured from the initial reference state of

0
stress, Oij’ are calculated as:

0

(o 0
ij “Vkt’

0
k1

Ae Okl

Aokl) = eij( + Aokl) - eij( ) (12)

Substituting 00 and Acgl into Eq. (lla) to calculate the corresponding

k1
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. 0 0 . ,
strains Eij(okl) and eij(okl + Aokl), Eq. (12) can be written in the

form:
Ae (00 +A0,.) = (§, -~ d.)68,, + (P, - ¢ )00 + $, A0
13 k1 k1 17 %1705 2 7 927093 T P2P04;
(13a)
0 0 0 0
+ (53 - ¢3)Gimcjm + és(ﬁimchm + UijUim + Aoionjm)
where,
., = ¢ (OO + A0, ) s B, =9 (00 + AG) 3 B, = ¢ (GO + Ag, .)
1 1 k1 k1™ 2 2 2V k1 * 3 3kl k1l
(13b)
b, = ¢, (00.) Db, = b, (00 ) s g = ba(00)
1 1"kl ’ 2 2Kkl * 3 3kl

i.e., the functions 61 and ¢i are computed by substituting the corresponding

0 0
states of stress, (Ukl + AC) and Ok

of Eqs. (11b to d). It is to be emphasized that Asij(co + Ag) are not

1° respectively, into the expressions

kl

incremental strains in a complete sense; they represent total strains

e e 0
measured from the initial reference state, O

K1’ with the components

0
gij(ckl) taken as zero. The stress components AOi

small.

j are not necessarily

In order to study the behavior of the stress-strain model of Eq. (13)
under the conditions of conventional soil tests, it is necessary to reduce
the relations for the particular loading paths followed in these tests.

Since the stress paths in most soil tests are straight line paths in the

principal stress space (e.g., CTC, CTE, SS, HC, etc.), it is more
convenient to develop the stress—strain relations of the model under a
general straight line loading path in the principal stress space, Then,
for a particular loading path in any test, the relations can be formulated
very easily as a special case from the general straight line locading path.

In the forthcoming, formulatien of the constitutive relations of the model



under a general straight line (proportional) loading path is given. In
addition, examples of specific relations in a number of conventional

tests are presented.

2.2 Stress-Strain Relation for a General Straight Line Loading Path in

the Principal Stress Space

In the formulation presented here, the initial reference state of
0 . ;
stress, le’ is assumed to be a hydrostatic stress state (since all the

tests performed satisfy this condition); i.e.,

0 _ 0_ 0 _ 0 _ ) .

Gij = GC (or Ol = 02 = 03 = GC), for i 3j

0 (13)
o,, = 0; for 1 # 3

1]

whete 0,5 9 and 0y are the principal major, intermediate and minor

11

stresses, respectively, and O denotes the initial consolidation pressure,

Denote the increment stress AGl in the major principal stress
measured from the initial hydrostatic state of stress by A, Then, for

a general straight line stress path, the increments Ao, and Aoz in the

1

other two principal stress are o, A and uzh, respectively; i.e.,

1

Ao, Ao, : Ao, =1:0a, o

1 2 3 Doyt O, (14)

where al and &, are parameters determining the direction of the straight

I, and I, of Eqs. (3) for

line path (¥ig. 2). Thus, the invariants 1 9 3

19

0 0 .
the intial and current states of stress ¢, . and o _ + Adkl, respectively,

k1 k1l

as shown in Fig. 2, are given by

- ¢] - 0
Il(akl) = 30C , 12(0kl
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- 0 _
Il(okl + Aokl) = SOC + 3kk1

= .0 32 1.2

I2(Ok1 + Aokl) =50, + ocxkl + ZA k2 (15a)
- 0 _ 3 2 2 1.3

13(okl + Aokl) = o, + Cfc)\kl + GCA k2 + 3)\ k3

in which the parameters kl’ k2 and k3 are defined as

kl =1+ al + uz
= 2 2

k2 =1+ oy + (15b)
— 3 3

k3 =1+ al + Oy

Hence, substituting the expressions (15a, b) into Egs. (13b) and using

Eg. (13a) to calculate the principal strains Ac Aez and AES’ we finally

1.’
get

Ae. = c{l)x + cgl)xz + c{1),3

1 3
(2 (2).2 (2).3 .
A€2 = C1 A+ C2 AT+ C3 A (16a)
N ) (3,2 (3).3
A€3 = Cl A+ C2 A+ C3 A
(1)

in which the Cj coefficients are given by
¢ o (kB +B,) +[6k B, + (2k, + 3B, + 2B_]o
L 11 4 172 1 3 577¢

3 2
+ [27k136 + (151:.l + 9)37 + (k1 + Z)BS + (2k1 + 6)39]0c

Q) .2 1 2 2
C = [le2 + (kl + 2k2)83 + BS} + [9le6 + (6k1 + 3k1 + 3k2)B7

1
+ (k1 + Ekz)Bs + (Zkl + k2 + 3)B9]Oc
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1 _ .3 2 1 1
C3 = leG + (kl + klkZ)B7 + 2k2B8 + (k1 + 3k3)B9
C(z) = (k,B, + o.B,) + [6%,B, + (2k, + 3a.)B, + 20.B.lo
1 171 174 172 1 1’73 175" ¢

3 . 2
+ {27le6 + (151{1 + 9a1)B7 + (kl + 5“1)38 + (Zkl + 60L1)B9]0C

(2y _ 2 1 2 2 2
c,”" = [klsz + (ulkl + 2k2)B3 + a135] + [9le6 + (6ulkl + 3k1 + 3k2)B7

1 2
+ (cxlk1 +-§k2)38 + (30Ll + 2alkl + kz)Bg]Gc
(2) _ .3 2 1 2 1 6b
03 le6 + (klk2 + alkl)B7 + ialszs + (ulkl + §k3)39 (16b)
c3 - (kB + a.B,) + [6k.B. + (2k. + 30.)B, + 20.B.]0
1 171 274 172 1 2773 275 ¢
3 2
+ [27k1B6 + (15kl + 9u2)B7 + (kl + §u2)38 + (Zk1 + 6“2)39]°c
(3 _ .2 1 2 2 2
02 = [klﬁ2 + (azkl + 2k2)33 + azBS] + [9le6 + (6a2kl + 3k1 + 3k2)37

gk, + %kz)BS + (302 + 2ajk, + ky)Bglo,

3) _ .3 2 1 2 1
C3 = leé + (klk2 + u2k1)37 +’§“2k238 + (a2k1 + 3k3)39

Clearly, the advantage of performing the tests along straight line
loading paths is that the changes in the principal stress and strain
components during the tests are conveniently expressed in terms of a
single parameter, A, as given in Eqs, (14) and (16a)., Furthermore, the
components of the principal strain increments are given as cubic functiéns
in this parameter (see Eq. 16a). Indeed, these cubic relations are the
basis fpr the determination of the nine material constants, Bi’ from the
experimental results, as will be explained later.

In the following, special cases of the relations of Eq. (16) are

given for some of the stress paths in the conventional soil tests.
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(a) Hydrostatic Compression Path (HC): Fig 1(a)

In this case, the stress components 01 = 02 = 03 are increasing and

oy T a, = i, k1 = k2 = k3 = 3., Thus, Eqs. (16) simplify to

>
9]
I

>
m
"

>
M
I

= [(331 + B4) + (1832 + 933 + 2B5)0c

9 2 9
+ (81B, + 5437 + B, + 1239)ac]k + [(9B, +‘§B3 + Bg)

6 28

9 2
+ (81}36 + 5437 + EBS + IZBQ)GC]A {(17)

3 3
+ 18137 + =B_ + aBglk

+ [27B >Bg

6

(b) Conventional Triaxial Compression Path (CTC): Fig. 1(a)

The components 02 = O3 are constant, and Ul is increasing; i.e.,

0 0 0
al = a, = 0, kl = k2 = k3 = 1. Hence, for Gl = 02 = 03 = Oc and Aol = A,
we have from Egqs. (16)
_ 5 2
Ael = [(B1 + BA) + (6]32 + SB3 + 2B5ﬂﬁc + (27B6 + 24B7 + 238 + SBQ)GC]A
+ [(B, + 2B, + B) + (9B, + 12B, + 28_ + 6B_)0_]\°
2 23 5 6 7 2°8 9" ¢
1 4 3
+...... i

+ [B6 + 2B7 2B8 + 3ngk

(18)
N 2
Ae, = Ae, = [B; + (6B, + 2By)o_ + (27B, + 15B. + By + 2By)o 1A

1 1 2
+ [(B2 + 533) + (9B6 + 6B7 + 238 + BQ)OC]A

1 3
+ {B6 + B7 + SBQJR

(c) Simple Shear Path (8S): Fig. 1(b)

The stress component 01 is increasing, and 04 is decreasing while Oy

is held constant; i.e., oy = 0, Oy = -1. Therefore, the equations in (16)

are reduced to: (k. = k3 = 0, k, = 2)



_ 3 2
Ael = [34 + (3B3 + ZBS)OG + (9B7 +‘§Bs + 6B9)UC]X
+ [(B, + B.) + (6B_ + B, + 58.)0 1A% + [B.])\°
3+ 35 7+ Bg 9% 8
_ 2
Agz [B3 + (6B7 + BS + 2B9)oc]k (19
Ae, = - [B, + (3B, + 2B_.)0_ + (9B. + 5B, + 6B.)0 ~])
3 4 3 509 7 ¥ 2Bg 9¥ ¢

2 3
+ {(B3 + BS) + (6B7 + B, + SBg)GC]A ——[BS]A

8

(d) Triaxial Compression Path With Constant Mean Normal Stress (TC):

Fig. 1(a, b)

In this case, the compomnent ¢, is increasing while 02 = g, are

i 3
decreasing such that oy +o, + 0, = const. = 30c; i.e., Aol + A02 + A03 = Q;
1 3 3
or &, = d, = = E-and k1 = {, k2 = 5 k3 =7 Then, we have
At, = [B, + (3B, + 2B.)0  + (9B, + OB, + 6B.)02]A
1 4 3 5" ¢ 7 278 9 ¢
3, 9 3 9 2, 3 1, 1,3
+ [(433 + 35) + (237 + ZBS +-§Bg)oc]A + [188 + aBg]A
(20}
- - 1, 3 9 3 2
Aez = A€3 = - [2}34 + (2B3 + BS)OC + (§B7 + ZBS + BBQ)OC]A

3 1 9 3 9 2
+ [(433 + ZB.'S) + (-2‘37 +. ZBS + ZBQ)GC]X

3 1 3
+ [~ 838 + 4Bg]?\

(e) Triaxial Extension Path With Constant Mean Normal Stress (TE):

Fig. 1(a, b)

‘The component 0, is decreasing while 0, = 0, are increasing such that

1 3
% +0, + 04 = const. = 36.. Denoting the change (decrease) in oy by A
, 1 _ .3 _ 3
(i.e., AGl = - A), then A =ay = -3 and kl =0, k, = 5 ky = 7 and the

gtrain increments are:
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_ 3 2
A€1 = [34 + (333 + 235)00 + (937 + EBS + 6B9)UC]A
3 9 3, . 9 2 .3 1, 1,3
LGBy * Bg) + GBy + gBg + 5Bg)0 JAT - [3Bg + 7B I
(21)
e ol 3 9. .3 2
Aez = A€3 {234 + (233 + BS)OC + (237 + Z'BS + 3B9)O’c])\
31 9. 3. .9 2 . 3, 1. ..3
UGB+ gBs) * GBy F By Y gBIo AT+ [gBg - 3By 1A

3. Fitting Procedure ro Determine Material Constants

3.1 Fitting Procedure

Thé procedure of the determination of the nine material constants,
Bi’ is outlined in Ref. [23]. In this section, this procedure is.summarized
and the results obtained for the three different soils: clay "X", ciay "y"
and Ottawa sand are given.

(a) Along a straight line stress path in any test, the principal

strain increments Ac AEZ and A€3 are expressed as cubic functions of

l’
the parameter A, as given in Eq. (16a), with the appropriate constants

Cl’ C., and C., according to the particular type of the test. Moreover,

2 3

the constants Ci’ which depend on the reference inital state of stress

in the test, ng, and the orientation of the loading path (defined by al
and az), are then linearly related to the nine material constants, Bi’
using Eqs. (1l6b).

(b) By fitting cubic curves to the experimentally obtained stress-
strain curves for each component of the principal strain increments, the
numerical values of the three distinct constants Cl’ C2 and C3 for this
component are determined. Standard procedures of regression analysis may
be used in fitting the cubic curves. However, it was found that the initial

slopes of the curves determined from such analyses usually deviate too

much from the measured slopes. Therefore, the procedure employed here is



17

based on matching the initial slope and two points for each curve to
determine the three constants Cl’ C2 and C3, as shown in Fig. 3. In some
cases, adjustment of the determined constants may be made to give a
better overall fit to the experimental curves.

{c) From the results obtained in (a) and (b) above, we have a
number of linear simultaneous equations in the nine unknowns, Bi {three
equations for each distinct stress-strain curve}. Theoretically, since
nine unknown independent material constants are present, only three
independent stress-strain curves are required to give nine equations in
nine independent unknowns. These three curves are completely arbitrary
and they could be from any type of test. However, it is not expected that
a constitutive model with its constants determined from one test is
capable of predicting the behavior of the material under arbitrary loading
paths different from that of the test. Thus, it is better to make use of
most of the available test results, in which case the number of linear
equations will exceed the number of unknown independent material constants.

(d) The system of linear equations obtained in (c) (which generally
exceeds the number of unknown material constants, Bi) is solved using a

least-square solution technique to determine the nine material constants

B,.
i

3.2 Numerical Results

The procedure described above has been applied to the three types of
s0ils mentioned earlier. The test conditions and the numerical results
obtained for each are summarized in the forthcoming.

(a) Clay "X"

The experimental data for this soil were obtained from triaxial

tests with constant mean normal stress under consolidated drained conditions



18

conducted on prismatic samples trimmed from block samples. The samples
were 100% saturated. During the tests, the measured quantities were the
principal stress components ol, S, and 04 {the major principal stress 01

is in the vertical direction while g, and ¢, are in the lateral directiomns),

3

the principal strains €, and €q5 and the volumetric strains €, =€

1 kk
(the signs follow the soil mechanics sign convention, i.e., compressive
stresses and strains are positive),

The tests were performed under constant stress ratio, m, where m

is defined as
" ST 22)

six different sets of data are provided for clay '"X": two sets with m= 0,
1l for each one of the initial hydrostatic (consolidation) stress OC =
10, 20, 30 psi. Note that for drained conditions total stresses, Gij’

1 '

and effective'stresses,ﬁij, are equal. The effective stresses, Oij’ are

given by
g,. = o,, = ud,, (23)

where u is the pore water pressure.

As can be noted from Eqs. (20), for the TC tests, only six material
constants, B3, BA’ BS’ B7, B8 and B9 are used. Thus, the least-square
solution procedure is used for 36 equations in 6 unknowns (six equatioms

for each set of data after allowing for symmetry in the tests). The

results obtained are:

2

= 4.4073 x 10 psi™? | -1

- 8.5 x 10 psi

(==}
o

|

=}

|

2

5.861 x 107 psi® , B -3

- 4.3667 x 10'6 psi ” ,

.=
H
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-3 -3

, B, = 3.478 x 1077 psi

B, = 2.8092 x 10> psi 9

8

These values of material constants are used in the prediction of stress-
strain curves for m = 0.25, 0.50, 0.75 for each value of Oy = 10, 20, 30
psi, as shown in Fig. 4(a).

(b) Clay "Y"

As for clay "X", 100% saturated prismatic samples were tested under
consolidated drained conditions. The tests were of the conventional tri-
axial type in which the minor principal stress, 63, was kept constant.

Six different sets of data were available for clay "Y"¥ two sets
with m = 0, 1 for GC = 2.5, 5, 10 psi. The results obtained for the

solution of 36 equations in 9 unknown material constants are;

B, = - 3.7425 x 107" psi™t, B, = - 6.69 x 107 psiTt
B, = 5.5416 x 107 psi’2 . B, = 6.913 x 107" psi'l s
B, = -1.3109 x 107 psi™® , B, = 1.164 x 1070 psi”
B, = -3.954 x 107 psi™> | B = 1.254 x 107 psi”>
-3

B = 3.9257 x 10™° psi

These values are used to predict the material behavior for m =
0.25, 0.5, 0.75 under the initial consolidation stresses o, = 2,5, 5, 10
psi, as shown in Fig. 4(b).

(c) Ottawa Sand

Samples of Ottawa sand were compacted by aerial pluviation to a
relative density of 87% and they were tested in the dry state three-

dimensionally under different stress paths. The data sets provided were
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for different stress paths: CTC, CTE, HC, TC and TE, for varieties of
initial hydrostatic stresses, O For example, the CTC tests were carried
out for oc = 5 and 10 psi, and 0, = 10 psi was used for the CTE test,

Both the TC and TE tests were performed for 3 values of the initial

equal hydrostatic pressure, Oc = 5, 10, 20 psi. The principal axes are
denoted by z (vertical) and x, y (horizontal).

For Ottawa sand, the material constants reported in Ref. [20] were
tried and reasonably good overall agreement of the theoretical curves and
the experimental‘results provided was obtained. Therefore, it was decided
to use these same values instead of the values initially obtained from
separate least square solutions of the equations, This provides means
for further investigation of the range of applicability of the model. For
instanée, although these values of the constants yielded reasonably good
results for most of the cases discussed in [23] and for those of the
test cases for model calibration investigated here, it was found that the
behavior of the model is sensitive to the small changes of the constants of

the higher order terms (e.g., B, B, By and Bg)' Slight changes in the

8
values of these constants will change greatly the behavior of the model

under certain stress paths. This will be illustrated in the second part

of the present paper. The values of the constants reported in [23] are:

By = - 4.431 x 107 psi™t, B, = 1.685 x 107° psi?, B, = -3.107 x 1078
B, = 1.885 x 1074 psi”t B, = 1,725 x 107° psi™?, B, = 0,1237 x 107°
B, = ~0.4018 x 107° psi"3, Bg = 2,578 x 1077 psi‘3, By = 5.597 x 1070 p

For the study of the effect of the change in the numerical values of the

material constants on the results, the values of the constants B6 and B7

psi

psi

2

-3

-3

si
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were changed to B, = 0,1687 x 100 ana B, = -0.4690 x 10”° without changing

6
the other constants. The stress paths used in the prediction are shown

in Fig. 4(c).

4. Incremental Form of the Stress-Strain Relations

The ultimate goal of developing constitutive models is its use in
the gsolution of a boundary value problem to predict the behavior of the
structure, Most often, numerical techniques such as the finite element
method are used in the solution, and incremental stress-strain relations
are needed tovsolve problems involving material and/or geometrical non-
linearities. In the following, an incremental form of the nonlinear
general constitutive law of Eqs. (11) is formulated. 1In addition, the
material compliance matrix relating the increments of the principal
stresses and strains is developed.

Differentiating Eq. (1la), the strain increment tensor éij can be

written as:

09 0, 93¢ 3o, ¢, 8¢
. 1 i 2 im im 3 ..
€,. = 1 ..+ ¢ O,. =+ ¢ . O, 16 (24)
ij Bokl ij 2 BUkl ij Bakl 3 80k1 im jm ngl kl

where 6kl is the stress increment tensor, and the functions ¢i are given
in Bqs. (11b to d). The partial derivatives in the equation above are

calculated using the expressions for ¢i, and the results are given by

99

1 - -2 - _
50y, (By + 2ByI, + 3B,L) + 2B,1,08, 1 + (Bg + 2B,1,)0, 1 + BoOy 0
30,

= I ’ 25

5o (By + 2B711)0, 1 * BeOyy (25)

Kl
0 90, . 90, C.

3 ij im” jm
—— = B 6 el 6‘ (S' 3 R e 6. + o, (S.
BOkl 9kl SUkl ik “jl Sle i17jk jl ik
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Combining the results of Eq. (24) into Eq. (23), we finally obtain

6, 3,
“13 ISle i3 % #284851 * 9y 30, T 300,185 F Ty104)
3%
3 -
i m Sckl]okl (26)

This equation represents the general incremental form of the proposed
nonlinear third-order hyperelastic constitutive model. This equation can

always be written in a matrix form
{¢} = [c]{a} (27)

where {&} and {5} are the strain and stress increment vectors, respectively,
an& [C] is the material tangential compliance symmetric matrix which
depends . on the current state of stress Oij and the material constants Bi'
Special cases such as plane stress, plane strain and axisymmetyic, can be
readily developed from the general form of Eq. (27). As an example, the
matrix equation relating the principal stress and strain increments is

written as

& 1 %12 G3 5y

== 2]
€ €21 G2 C23 5y (28
& Csp1 €30 Cg3 04

where the elements of symmetrix matrix [C] are given by

- -9 -
C11 = [(Bl + BA) + (ZB2 + B3)Il + (3B, + B7)1l + (ZB7 + 38)12]

- 2
+ [Z(B3 + BS) + 2(237 + 39)11]61 + (38 + 239)01
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- T 12 T
Cyp = [By + B,) + (2B, + B)I, + (3Bg + B)I, + (2B, + Bg)I,]
T 2
+ [2(By + Bg) + 2(2B, + By)I, lo, + (Bg + 2By)0;
- T 72 i
Cq3 = [(By + B,) + (2B, + By)I, + (3Bg + B)I) + (2B, + BT, ]

= 2
+ [2(B3 + BS) + 2(ZB7 + Bg)Il]o3 + (B8 + 2B9)03

(28a)
Cip = Cpy = [By + 2321 + 33611 + 28,1 + (By + 23751)(01 +a,)
+ Bgo, 0, + Bg(Gi-FOZ)
Ci3=Cqp = [B + 232f1 + 3B 1% + 2B 12] + (By + 2B I ) (0 +03)
3380103 + Bg(oi + og)
c23=c32— [B +21321 +3B6i+2BI]+(B +2BI)(O +cf)

+B80 +B(o +0)

It is to be emphasized that the previous equations are valid only for the
case when the principal axes of stresses and strains coincide and do not
rotate as the material element deforms. In such cases, the principal
axes of strain and stress increments also coincide. In general, the

principal axes of stress and strain increments do not coincide; shearing

stress increments will produce voluymetric strains in addition to the
shearing strains, and deviatoric and hydrostatic components of the
response are always coupled. Such interaction and cross effects between
the deviatoric and hydrostatic responses are extremely imporfant in
modeling such phenomena like dilatation or compaction and stress-(or
strain-)induced anisotropy for granular materials. Moreover, as can
easily be seen from Eqs. (11) and {(26), the effect of the intermediate
principal stress, 0y, which is related to the direction of the stress
path in the deviatoric plane [12], is accounted for by the inclusion of

the third stress invariant T3. The importance of these phenomena has
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been supported by experimental results, and it is desirable to include
them in the mathematical model.

It is a limitation of most elasticity-based models that behavior in
unloading is not correctly described; these models are basically intended
for use in cases where monotonically increasirg locads prevail. Since
there is no explicit yield (or loa&ing) surface in the elasticity models,
the definition of loading and unloading has no clear cut meanings. This
has naturally led to the introduction of loading functions in the
theory of plasticity. However, in the present formulation, an approximate
mefhod of modeling unloading and reloading behavior will be described
and used in the prediction for some tests on sand. Furthermore, a failure
condition will be postulated in order to determine the limiting state of

stress.

5. Unloading - Reloading Behavior and Failure Condition

5.1 Approximate Modeling of Unlocading - Reloading

The observations and studies made in Refs. [8, 10, 15, 28] have
shown that unloading and reloading behavior of many soils is very nearly
linear and elastic in nature, Further, this behavior is independent of
the stress and strain levels at which unloading starts. For example,
in conventional triaxial compression tests (Fig. 5}, unloading and
reloading at different stress levels, A and B, will have essentially the
same slope which is nearly the same as the slope of the initial tangent,
as shown in Fig. 5. Actual behavior of soils will show a small hysteresis
loop as that shown at point A in Fig. 5. Based one these observations,
the unloading and reloading (to the maximum previous stress level) is
approximated herein as being linear elastic. This behavior is completely

described by any two of the familiar elastic moduli (E, v, K, G, and M).



The values of these two parameters are approximately chosen to be those

of the initial tangent moduli. In the following two expressions for the

initial tangent Young's modulus, Ei’ and Poisson's ratio, Vv, are
developed from the general expressions in the conventional tests.
Considering the expressions given in Eqs. (18) for the CIC test, it

can easily be shown that the initial moduli Ei and Vi are given by:

1 3Aal
CI [*‘“57;-'] = (Bl + 84) + (6B2 + SB3 + 2B5)c7c
i A=0
+ (27B, + 24B. + 2B + 8B.)0° (292)
6 7 278 9 ¢
and
o [aAez] - [aAez | .
i aAel 9A aAel i :
A=0 A=0
- ' 2
. 13.1 + (6132 + 233)0(‘_ + (27B6 + 15]37 + 38 + 2?}39)6c
v < - { B 2] {(29b)
(B1+BA) + (632+5B3+2B5)0c + (27BG+2437+§BS+839)OC

These expressions will be used in modeling the unloading-reloading
behavior. As can be seen from Egqs. (29a, b), both elastic moduli depend
on the initial value of the hydrostatic (confining) pressure as has been
experimentally demonstrated.

Finally, in order to complete the formulation of the approximate
method of modeling the loading-unloading behavior, it is necessary to
postulate a loading criterion. Tn simple test cases, unloading and reloading
can be easily visualized from the examination of the stress-strain curves.
However, for a completely general case, a clear well-defined criterion
for ‘unloading that is the same in any coordinate system (i.e., invariant)
is needed. Herein, a simple unloading and reloading condition is used.
This condition is expressed in terms of the complementary energy function
Q defined earlier which is invariant with respect to coordinate transforma-

tion, 'Unloading is indicated by the condition § < 0, where @ = Eijdgij
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is the incremental change in §i. The condition @ > 0 indicates loading.
Reloading is defined by the condition @ > 0 and 2 < ___, where §

max max
is the maximum previous value of & at the material point. Mathematically,
these general conditions may be written as;:

L]

Q2 and § > 0
max

it

Loading: when §

Unloading: when £ < 0 and < 0 (30)
max :

A

Relecading: when < Q and § > 0
max

For cases of unloading or reloading the moduli of Eqs. (2%9a, b) apply,

while for loading the expressions of Egs. (26) or (27) are used. In

terms of stresses, ! can be calculated using Eq. (1la) as

)Y, L O L
=, = + +
i TR S LT 7 2 B A (31)
ij
in which the follewing relations for the increment invariants Tl’ TZ and
I3
I. =6 s I,=0,,0,, and I,=0, 0, & {31a)

2 ij 1ij 3 im jm Tij

have been used. The only objection of the present definition of loading
and unloading, as for most variable-moduli models, is the ambiguity
encountered at the neutral loading condition é = 0, where one may
arbitrarily assign either value of the loading or unloading moduli. The
result is that infinitesimal stress changes near neutral loading may
produce finite strain changes, and continuity condition may be violated
which is not physically acceptable. However, apart from severe multi~
dimensional loading conditions, many practical solutions involve moderate

loading conditions and loading paths near neutral loading are not likely

to occur most often.
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5.2 Mohr—Coulomb Failure Condition

For a general practical finite element, a failure condition must
be postulated in order to determine the limiting state of stress. For
granular materials, different failure conditions have been proposed and
used, such as Mohr-Coulomb and Drucker-Prager conditions [3, 9, 24].
Experimental results have shown that Mohr-Coulomb criterion is among the
best failure conditions and it yields reasonably accurate results for
most soils. Herein, this failure criterion is employed for the three
soils described.

In the T~ (deviatoric) plane, the Mohr-Coulomb condition is repre-
sented by an irregular hexagon, as shown in Fig., 6. The general

expression for Mohr-Coulomb condition may be written as [3]:
f = dl(l -~ sing) - 03(1 + 5ing) - 2¢ cosp = 0 (32)

where 0. = the major (max.) principal stress, ¢, = the minor (min.)

1

principal stress, ¢ = cohesion and ¢ = angle of internal friction of the

3

soils, and soil mechanics sign convention is used (compression is
positive). For undrained conditions, effective stresses and effective

wvalues for ¢ and ¢ are used.

6. Theoretical Conditions: (Uniquenéss and Stability)

It is a desirable feature for any mathematical theory describing
the mechanical behavior of materials that the resulting solutions for
practical problems are unique and exhibit stable equilibrium configurations.
These characteristics are generally to be expected for most actual physical
situations. The stability and uniqueness requirements and their
implications for elasticity based constitutive models are discussed in

Ref. [4], based on Drucker's material stability postulate [10}. The
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implications of Drucker's stability postulate on the constitutive
relations presented may be summarized in the following:

(1) Although the present formulation is based on an assumed
function for {1, stability postulate assures the existence of
the strain energy density function, W such that W+ {Q =
Oijeij’ and the laws of thermodynamics are always satisfied.
Moreover, . the Hessian matrices [H] and [H'] for both functions

W and §), respectively, are positive definite, where the

components of these matrices are defined as [12]:

. 2 2
W ! 30
H,, . = : H,, . & =g (33)
ijkl aEij Bekl ijkl aoij ackl

(2) The surfaces W = const, and 2 = const. are always convex in
the strain or stress space, respectively.

(3) Based on the positive definite character of the Hessian
matrices, the inverse constitutive relations always exist,

For example, the inverse relation of Eq. (27) exists and

stress increments, éij’ can always be uniquely determined in
terms of the strain increments, éij' This is an extremely
important requirement in the finite element formulation which
always requires the material stiffness matrix [D] = [C]‘l.

Satisfaction of the above requirements can be achieved numerically

during the solution process, This will guarantee the uniqueness of

the results obtained for each step in incremental finite element solutions.

7. Comparison of Expeérimental With Theoretical Results

Herein, the numerical results obtained using the proposed model and
the determined material constants will be compared to the experimental
results used as data base for model formulation. Based on these compari-

sons and the discussion made earlier, a number of conclusions will be
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summarized in the following section.

For clay "X", typical stress-strain curves for some of the loading
paths in the tests provided as data base are shown in Fig. 7. Good
agreement is obtained between experimental and theoretical results in
most of the cases. However, there are some discrepancies between calcu-~
lated and measured stfains for the case of 0, = 20 psi and m = 1; the
model underestimates the axial and lateral strains at high stress levels,
as shown in Figs. 7(c¢) and (d). Considering the volumetric strains
observed under constant mean normal stresses, the model correctly
predicts volume changes. However, this only qualitatively, since the
calculated volumetric strains are too small compared to the measured
values, as can be seen from Fig. 7(h). This is expected in the present
formulation since the model in its present form cannot account for
material initial (inherent) anisotropy which has been observed for clays
"X" and "Y". For example, for the case o, = 30 psi and m = 0, the model
correctly predicts the axial strain, el, and lateral strain, €3, but it
gives eﬁtensional strains for 82(= 63) while the test measurements
indicate compressive values at high stress levels. Obviously, this
causes reduction in the calculated values for £,.

Comparison of the experimental with theoretical stress-strain curves
for clay "Y" are illustrated in Fig. 8 for some of the tests provided.
Again, a reasonably good overall agreement is observed in most cases.
Uniikg clay "X", the measured values of €y for elay "Y" are small, and
the model reproduces them with a better agreement with the test results,
as shown in Figs. 8(b), (d) and (£). As for clay "X", the calculated
values for the lateral strains, €95 do not agree with the experimental
results in many cases because of the initial anisotropy exemplified pre-

viously.
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Different comparisons of the measured and calculated stress-strain
curves for Ottawa sand are made in Fig. 9. The results in the CTIE and TE
tests, Figs. 9(a) to (d), are in good agreement with the measured values,
both in terms of the axial and lateral strains, 1In the CTC tests, the
discrepancies are more pronounced. Although, the initial soil behavior,
at low gtress levels, appeérs to be adequately represented by the model,
the test data depart significantly from the calculated curves for large
stress levels, particularly for the case Op = 5 psi, as shown in Figs.
9{g) and (h). However, the overall agreement for the cases shown and
those which are not included here is reasonably good. Also, the approxi-
mate modeling of loading-unloading behavior is seen to be adequate, as
can be observed in Figs. 9(c) and (d). The predicted failure stresses
using Mohr-Coulomb condition agree very well with the test values, as
can be seen in Figs., 9(e) and (g), for example. TIn Ref. [20], other cases
were investigated using the same values of the material constants
employed here, and good agreement with experiments was obtained (in the
cases reported in [23], stress-strain curves were shown only for low
stress levels below the failure values}. Hence, based on the cases
investigated both in Ref. [23] and in the present paper, it is believed
that the values of the constants used will give the best results at low
stress levels compared to the failure values.

In order to study the effect of the change in the values of the
material constants on the behavior of the model, comparison is made in
Fig. 10 for the two sets of constants given in sec. 3. The results shown
are for a proportional loading stress path with AOX : AOy : AOZ = 0,5 :
0.5 : 1, and Oc = 10 psi. The results shown indicate that the behavior

of the model becomes sensitive to changes in the constants as the stress
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level increases, and completely different results are obtained. This
will be more pronounced for increasing proportional loading paths where
large stress levels are generally expected before failure (e.,g., near HC
path). However, the strains occuyrring in stress paths near the HC path
are generally small compared to those observed under most other loading
conditions in practical engineering problems so that discrepancies of
the results for these loading conditions may be less significant to
overall soil behavior than discrepancies in other stress paths. The
important point to make is that it is necessary to appreciate the condi-
tions under which the model will be used, and to determine the material
constants from tests performed under conditions selected to duplicate as

many as possible of the expected field conditions.

8. Summary and Conclusions

The formulation of nonlinear hyperelastic constitutive model,
originally developed by Ko and Masson [23], has been presented and applied
to three different types of soils: clays "X" and "Y', and Ottawa sand.

.Detailed description of the procedure of determining the nine material
constants in the model has been made and the stress-strain relations

for general straight line stress paths and for examples of stress paths
in conventional soil tests are given, Incremental forms of the constitu-
tive relations, approximate method of modeling unloading-reloading
behavior, and a failure condition are also included for general nonlinear
finite element analyses. Finally, comparisons of the results obtained
with the experimental measurements are made.

Against the background of the discussion and comparisons made in the
present study, the following conclusions, concerning the advantages and

limitations of the proposed procedures, can be made:
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{1) The proposed constitutive relations can model many of the
characteristics of soil behavior such as: nonlinearity, stress—path
dependency, dilatation, stress—induced anisotropy, effect of the con-
fining (or hydrostatic) stress, the effect of the third stress invariant,
and the noncoincidence of the principal axes ¢f stress and strain incre-
ment tensors, especlally near failure. However, the present formulation
is limited to initially isotropic materials.,

(2) When used for monotonically increasing loading conditions, the
present formulation satisfies all the rigorous mathematical requirements
such as uniqueness, stability and continuity. TFor cases where general
unloading-reloading conditions are expected, the present approximate
criterion proposed for loading and unloading fails to satisfy the continuity
condition at or near neutral loadings. Furtherrefinement is needed
concerning this aspect.

(3) Once the nine material constants are determined, the incremental
form of the model can be easily implemented in finite element codes for
general analyses. The method described for material constants determina-
tion allows a great flexibility for inclusion as many test data as possible
in the fitting procedure. However, the procedure is not easy to applyv;
many trials for fitting the cubic curves may be needed in order to obtain
reasonable results,

(4) TFor the cases investigated, the model gives a reasonably good
overall agreement with the experimental results for the tests used as data
base in the model formulation. But the model fails to predict the large
volumetric strains for clay X, and the behavior near failure for Ottawa
sand in CTC and TC tests. For almost all of the cases studied, the model

does not correctly predict the values of the principal strain €q for
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clays "X" and "Y". This is expected because of the initial anisotropy
observed for both soils which cannot be accounted for in the present
formulation.

(5) The model behavior for Ottawa sand is found to be sensitive to
changes in values of the material constants for increasing proportional
loading stress paths where large stress levels are generally expected
before failure. Duplication of as many expected field donditions as
possible in the tests used for model calibration is generally recommended
to reduce such effects.

(6) Best results from the model are generally expected at low stress
levels below failure. This is usually the range where most of the
elasticity-based models are frequently used.

(7) The present formulation cannot account for post-failure behavior
in strain-softening materials (e.g., dense sand) since it indicates

increasing strains for increasing stresses (work-hardening type).
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Nonlinear Hyperelastic (Green) Constitutive Models

for Soils: Predictions and Comparisons

By: A. F. Saleeb and W. F. Chen
School of Civil Engineering
Purdue University

West Lafayette, IN

1. Introduction

In‘the first part of the present paper (theory and calibration), the
formulation of a third-order nonlinear elastic constitutive model based
on Green type of formulation has been given, and the model was used to
describe the behavior of three different soils: clays "X", "Y" and Ottawa
sand. For the different stress paths used in determining the material
constants in the model, the theoretical and experimental results have
beep compared., Based on these comparisons, it was found that the model
qualitatively gives good overall fit to the test results; it produces
essentially most of the important features of the behavior observed
experimentally such as nonlinearity, stress-path dependency, dilatation,
stress-induced anisotropy, effect of the intermediate principal stress
and the hydrostatic stress, etc., Quantitatively, the agreement between
the calculated and the measured values is reasonably good. However, the
theoretical model fails to predict the initial anisotropy observed in
tests for clays "X" and "Y". Moreover, the model underestimated the
volumetric strains for clay X. TFor Ottawa sand, it has been demonstrated
that the model behavior is very sensitive to changes in the higher order

material constants in loading paths near hydrostatic stress path when



large stress levels are generally encountered.

Herein, comparisons of the predicted theoretical and experimental
results are given for the thfee soils along test stress paths different
from those used in the determination of the material constants in the
model. This provides the necessary verification of the applicability
of the constitutive model in describing the soil behavior under general
three—dimensional states of stress. In the forthcoming, a summary of the
comparisons and a number of conclusions will be given for the three types

of soils investigated.

2. Comparisons of Theorétical and Experimeéntal Results

(a) Clay "X"

The calculated and measured stress—-strain curves along the different
stress paths unsed in the prediction for clay "¥" are shown in Fig. 1(a)
to (p). By examining these curves, the following conclusions may be
made:

1. In almost all the cases investigated, good qualitative agreement
is observed between the theoretical and the test results, except for
the volumetric strains in the case Oc = 10 psi, m = 0.25, where the model
indicates compressive strains while the test gives extensional values, as
illustrated in Fig. 1(b).

2. As for the stress paths used in determining the material constants,
the model underestimates the volumetric strains in all the cases, and

the values of the intermediate principal strain, €., are not correctly

2’
predicted. This is mainly due to the inability of the model to take into
account the effect of initial anisotropy observed experimentally.

3. In general, the theoretical stress-strain curves for the axial

strain €y show stiffer behavior than that of the measured ones, particularly
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at low stress levels. The most pronounced diserepancies between the
calculated and the test results are observed for Oc = 10 psi, m = 0.5;
and for g, = 20 psi, m = 0.25 and 0.5, where the stiffer behavior extends
up to the failure stress levels. However, for these cases, the lateral
strains, €3, agree well with the measured values, as shown in Fips. 1(d)
and (j), for example.

4, TFor the axial strains, €l, the best agreement is obtained for
the cases of o, = 30 psi, and for O, = 10 psi, m = 0.25, where the maximum
discrepancy is approximately 30%.

5. 1In almost all the cases, Mohr-Cculomb failure criterion provides

rveasonably good predictions for failure stresses.

(b) Clay "y"

Based on the comparisons of the predicted theoretical and experi-
mental stress-strain curves illustrated in Figs. 2(a) to (r), the
following cenclusions can be made:

1. As for clay "X", good overall qualitative fit is obtained in
most cases, However, the predicted values for the volumetric strains,
€, do not agree, even qualitatively, with the laboratory results for the
cages: Gc = 2.5 psi, m = 0.75; Gc =5 psi, m = 0.25; and Oc = 10 psi,

m = 0.5, specially for o, = 10 psi, m = 0.5 where the model shows dilatant
behavior near failure which is not observed in the test data, as given
in Fig. 2(p).

2. The volumetric strains for all other cases are better predicted
than those of clay "X", as shown in Figs. (b), (j) and (n), for example.

3. In most cases, the axial strain values are well predicted at
iow stfess levels below failure, except possibly for Gc = 2.5 pgi, m =

0.25, where the theoretical curve is stiffer than the experimental one.



As the stresses increase approaching failure levels, the discrepancies
increase. The most notable discrepancy is observed for O, = 10 psi,
m = 0,75, Fig. 2(q).

4, Because of the initial isotropy of the present model, the
calculated values of the intermediate principal strain, €99 do no agree
with the test results in many cases, as was the case for clay "X", since
test data showed strong initial anisotropy for both clays "X" and "Y".

5. The accuracy of Mohr-Coulowb condition in predicting failure
stresses for clay "Y" is not as good as for clay "X". For instance,

the error in calculated value for 01 at failure in the case Uc = 10 psi,

m = 0.75 is approximately 11%. This is mainly because Mohr-Coulomb
criterion does not take into account the effect of the intermediate

f
principal stress, 0,, on failure.

{c) Ottawa Sand
In Figs. 3 to S, the results of the comparisoms for Ottawa sand are

illustrated. The curves are plotted in terms of the octahedral shear

= v 2 J2 s Where J2 =

stress, T
* “oct. 3

s,.s,., is the second invariant of
ij ij

the stress deviator tensor, S'j' The following observations and conclu-
i

|

sions may be made:
1. Reasonably good overall qualitative fit is observed in all cases
investigated except for the small compressive lateral strains ex = Ey

observed experimentally in RTC test at low stress levels. Quantiatively,

the predicted values for the SS tests with o = 5 and 10 psi agree

oct

well with the test results at low stress levels., At high stress levels
near failure, the calculated strains are too small compared to the
measured values, For the SS test with Goct = 20 psi and m = 0.5, the

theoretical curves are too soft compared to the experimental curves, as
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shown in Figs. 5(a) and (b). The axial strain, €,> is better predicted
in the RTC test than in the RTE test. However, better agreement is
obtained for the lateral strains, EX = €y, in the RTE test, Figs. 7 and 8.

2. Although only an approximate modeling of unloading-reloading
behavior has been used, the calculated slopes describing the unloading-
reloading behavior agree well in most cases with those determined experi-
mentally, as shown in Figs. 3, 4, 5, 6 and 8, for example.

3. The calculated values of failure stresses using Mohr-Coulomb
condition are less accurate for Ottawa sand for the stress paths
described in Figs. 3 to 8 than for those used in determining the material
constants. The theﬁretical values underéstimate the measured failure
stresses. In general, the accuracy of predicting failure stresses is
less for Ottawa sand than for clays "X" and "Y",

4. At high stress levels in increasing proportional leoading stress
paths (particularly near HC path), the model predicts very large values
of strains compared to those obtained in the actual tests. This can
be directly seen from the general expressions of strains in Eq. (16a)
in the first part of the paper; although the coefficients of the quadratic
and cubic terms, 02 and CB’ respectively, are generally small for such
stress paths, the results obtained are considerably large when these
coefficients are multiplied by large values of the parameter A, As has
been shown in Fig. 10 in the first part, the model becomes sensitive to
changes in the higher order material constants for large values of X,

The behavior of the model with the changed values of B and B, agrees
better with the test results provided than the behavior when using the
original set of the material constants. The latter greatly overestimates

the strain values at high stress levels. More work and further refinement



are needed in determining the material constants to overcome this

difficulty.
3. Summary

The formulation of an isotropic third-~order hyperelastic constitutive
model has been given, and the model has been applied to three types of
soil. Theoretical and experimental stress—strain curves were compared
for different stress paths for each of the three soils. It was found
that the model is capable of describing most of the salient features
of soil stress-strain behavior such as nonlinearity, stress—path
dependency, dilatation, stress—induced anisotropy, effect of the hydro-
static stress, and the effect of intermediate principal stress and third
stress invariant. For monotonically increasing loading conditions, the
model satisfies all the rigorous mathematical requirements such as
uniqueness, stability and continuity. ReaSonably good overall fit has
been obtained in most of the cases investigated. Héwever, for clays
"X" and "Y", the initial anisotropy observed experimentally cannot be
predicted since the present model is initially isotropic. Moreover, it
has been found that for Ottawa sand the model, as presently formulated,
may exhibit questionable behavior in stress paths near hydrostatic
compression stress path where large stress levels are generally encountered.
This is mainly because of the large effects of the higher order terms in
the constitutive law. More refinement and adjustment of the material

constants in the model are needed in order to reduce these effects,
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