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PLASTICITY MODELS FOR SOILS

Theory and Calibration

by

E. Mizunol and W. F. Chen2 , M. ASCE

1. Introduction

The mechanical behavior of soil and rock is complicated and they can

not be modelled accurately as a continuum. At present, however, the con­

cept of continuum mechanics has been used extensively in the mathematical

modelling of these materials. These include the applications of linear

elastic models, nonlinear elastic models, and elastic-plastic models to

geotechnical engineering problems. Although the models such as hyper­

elastic or hypoelastic can represent the phenomena such as dilitancy and

hardening or softening of soil behavior, the effect of plastic strain

induced during loading can not be predicted within the framework of an

incremental Hooke's law with variable moduli which are functions of the

stress and/or strain levels.

Current research in soil constitutive modelling is moving toward the

development of three-dimensional stress-strain relations based on the

principles of plasticity as well as elasticity.

Herein, three types of soil models are described. The first type

was used for prediction before the workshop was held, thus without the bene­

fit of the test results. The second and third types are subsequently

developed and used after the workshop.

(i) Nonlinear elasticity material model with the Mohr-Coulomb or

the Drucker-Prager surface as failure criterion.

(ii) Mohr-Coulomb type of elastic-plastic material model with two

different sizes of elliptical hardening cap which are defined

respectively on the tensile meridian plane (fi = 0°) and the

compressive meridian plane (8 = 60°). (Cap Model I)

lResearch Assistant, School of Civil Engineering, Purdue University, West
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(iii) Mohr-Coulomb type of elastic-plastic material model with an

elliptical hardening cap whose size depends on the Lode angle 8.

(Cap Model II).

2. A Brief Historical Review

The Mohr-Coulomb criterion of failure is certainly the best known in

soil mechanics. This criterion states that failure occurs when the shear

stress l and the normal stress 0 acting on any element in the material

satisfy the linear equation.

l + 0 tan </> - c a (1)

where c and </> denote the cohesion and the angle of internal friction,

respectively.

Although this criterion has in the past been used by necessity and

simplicity to obtain reasonable solutions to important, practical problems

in geotechnical engineering, the following limitations should be noticed:

(1) \This criterion neglects the influence of intermediate principal stress

on shear strength; and (2) the failure surface of the Mohr-Coulomb criterion

exhibits corners or singularities in the three dimensional principal stress

space. From the second limitation, these singularities are difficult to

handle in a numerical analysis.

The Drucker-Prager surface [7] can then be considered as a three di­

mensional approximation to the Mohr-Coulomb failure criterion with a simple

smooth surface. This criterion is expressed as a linear combination of the

first invariant of stress tensor II and the square root of the second invar­

iant of the deviatoric stress tensor IJ2 together with two material con­

stants a and k. The material constants a, k can be related to the Coulomb's

c and </> constants in several ways. The Drucker-Prager yield surface with

an associated flow rule, however, can not predict the plastic volumetric

strain observed in experiments. To improve this, extended von Mises model

with convex end cap was proposed by Drucker, Gibson and Kenkel [6].

Following the concept of Drucker et a1., subsequent strain hardening

plasticity models using the critical state concept were developed by re­

searchers at Cambridge [12], and a specific Cam-Clay model based on normally

consolidated or lightly overconsolidated clay was suggested by Roscoe,
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Schofield, and Thurairajah [9]. However, failure surface used in this

model is still the Drucker-Prager type which resultsin a much greater dila~

tancy prediction than that observed in experiments. As a result, modified

failure or yield criterion with an elliptical hardening cap which controls

the dila~ancy was subsequently proposed by DiMaggio and Sandler [5].

In recent years, the cap model has been further modified and refined by

Sandler [10,11] and Baladi [1]. Various advanced version of this model

including such features as kinematic hardening, double hardening etc. have

recently been proposed. The historical review of the plasticity modelling

of geotechnical materials has been given in a recent paper by Chen [3].

3. Notations

The state of stress at a point inside a soil medium can be completely

determined by the stress tensor o .. in a three dimensional space. In gener-
1J

al, the stress tensor can be decomposed into two parts: (1) the hydrostatic

pressure part, where the off-diagonal terms are identically zeros and the

diagonal terms are equal to mean normal stress; and (2) the deviatoric part

S ..• Thus,
1J

0 ••
1J

(2)

where 1
1

, the first invariant of the stress tensor, is the sum of the di­

agonal stress componsnts and 6 .. is the Kronecker delta. The hydrostatic
1J

pressure and the deviatoric stress, respectively, cause volumetric change

and shape change of the material element.

Fig. 1 shows the view of the state of stress in the principal stress
--+

coordinate system (01' 02' 03). Stress vector OA can be decomposed into
--+ --+
OB in the ~-axis which is called hydrostatic axis (01 = 02 = 03) and BA

in the deviatoric plane (n-plane) which is perpendicular to the s-axis.

The component vector DB represents the mean normal stress p (1
1

/3) and the

component BA represents the deviatoric stress Sij. The length of DB and BA
are 13 p and p = Isil + S~2 + S~3 ' respectively. If the stress vector
-T
QA is viewed from the hydrostatic ~-axis, the actual length and direction of

it can be represented respectively by r and the Lode angle 8. The Lode

angle 8 is given by
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8
1 -1
3 cos

J
(313 _3_)

2 J3/2
2

(3)

where J
3

is the third invariant of the deviatoric stress tensor.

In this paper, the typical continuum mechanics sign convention (tensile

stress positive) is utilized in the theoretical development.

4. Failure and Yield Functions

The following failure and yield functions are used in the three pro­

posed models to be described in the subsequent sections.

Mohr-Coulomb Criterion

The Mohr-Coulomb criterion given by Eq. I can now be written more

generally in terms of stress invariants £8,14].

F I . "'+ 3(I-sin cj»
1 Sl.n 'Y

sin 8 + 13(3+sin cj» cos 8 /--
yJ - 3c cos cj>

2 2 o (4)

where 6 is the Lode angle (Eq. 3).

The cross sectional shape of the Mohr-Coulomb surface on the deviator­

ic plane is an irregular hexagon as shown in Fig. 2.

Drucker-Prager Criterion

This criterion has the simple form:

o (5)

where a and k are material constants which can be related to cohesion c and

the angle of internal friction cj> of the Mohr-Coulomb criterion in several

ways. For example, if the Drucker-Prager criterion is matched with the

Mohr-Coulomb criterion in three dimensional principal stress space (Fig. 2)

along the compressive meridian (point A) or tensile meridian (point B), the

two sets of familiar material constants a and k can be obtained. For the

compressive meridian matching, substituting 8

ing it, we obtain

J: -4-
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ex =

k

2 sin <j>

13 (3-sin <j»

6c cos <j>

13 (3-sin <j»

(6)

These material constants are identical to those given by Zienkiewicz

[13]. For the tensile meridian matching, substituting 6 = 00 in Eq. 4

and we obtain

2 sin <j>
ex =

/3 (3+sin <j»

(7)

k 6c cos <J>

13 (3+sin <j> )

Various matchings between the Drucker-Prager surface and the Mohr­

Coulomb surface for material constants are given by Chen and Mizuno [4].

In general, if ex is zero, Eq. 5 reduces to the well known von Mises yield

condition for metals. The Drucker-Prager surface is used here as the fail­

ure surface for cap models described in what follows. Eq. 5 represents an

axisymmetric cone-shaped surface with respect to 01 = 02 = 03 axis in

principal stress space (Fig. 2).

5. Conventional Cap Models

The loading functions are usually assumed to be isotropic and to con­

sist of the following three parts:

(i) An ultimate failure envelope can be either of the simple linear

Drucker-Prager form or the nonlinear form assumed by Sandler [11].

_ BI
lIJ - (A - C e )

2

:r -5-
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in which A, Band C are material constants. Here, the failure

equation becomes parallel to I axis under large value of I and
1 l'

this results in a limited dilatancy under high pressure II.

(ii) Strain-hardening cap function has the form of a quarter of an

ellipse (Fig. 3)

(9)

in which x is the intersection of cap with II axis and x is also

a hardening function which depends on plastic volumetric change
p

dE
kk

• The location of the cap x is related to the plastic
p

volumetric strain function E
kk

with the material constants W

and D according to

P Dx
Ekk = Wee -1) (10)

and R is the ratio of the major to the minor axis of the cap

ellipse which may be a function of L and the Lode angle 6, and L

is the value of II at the center of the elliptic cap; and

(iii) Tension cutoff limit plane is introduced

F
t

o (11)

where T is tension cutoff limit.

The cap can control the dilatancy of soils under hydrostatic pressure II.

Although the cap can predict not only strain-hardening of soils, but also

strain-softening, this type of model can not predict exactly the hysteresis

loop under shear loading. This is because the hardening function in this

model is assumed to be controlled by plastic volumetric strain.

Each of these models mentioned above contains several material con­

stants which can be determined from data of standard simple shear test, iso­

tropic consolidation test, uniaxial strain test, and triaxial compression,

tension tests.

The determination of these material constants will be given in the

part on model calibration.

1: -6-



6. Basic Concepts of Models Developments

The following assumptions are made for the three types of models

considered here [2]

(i) Linear elastic, hypoelastic or hyperelastic function is used in

the elastic range for the isotropic or anisotropic material

element,

(ii) Incremental plasticity theory is applied to calculate plastic

strain increment during loading range,

(iii) The Mohr-Coulomb or the Drucker-Prager criterion is used as

failure criterion. Effect of strain hardening on this portion

of surface is not considered,

(iv) Associated flow rule is assumed for the cap hardening portion of

the surface.

dF__c_

dA dO .•
1J

(12)

where dA is positive scalar function.

In the following, the concept of "decomposition" of stress state onto

tensile meridian plane and compressive meridian plane is described.

Suppose that 0 .. is the principal stress state acting on an element
1J

in soil mass and do .. is the principal stress increment after the
1-J

application of an external load increment. The representation of the

state of stress as viewed in 11 - ~ space is shown in Fig. 4. The eTE

line in Fig. 4 is on the 8 = 00 plane and represents the conventional

triaxial extension test. The eTe line is on the 8 = 60 0 plane and repre­

sents the conventional triaxial compression test. If stress path is along

11 axis, it represents the isotropic consolidation test. These three tests

are commonly performed tests in geotechnical field. The strengths ob­

tained by the compression test and tension test for soils are different,

and the bulk moduli K and shear moduli G determined from these tests are

also different. Thus, in the proposed modelling, different material

constants (bulk modulus K and shear modulus G) for CTE and CTe tests are

introduced. The following items are taken into consideration in the present

developments.

:r -7-



(i) The state of stress 0ij as represented in II - JJ; space lies in

the range of Lode angle from 8 = 0° and 8 = 60° .

(ii) The behaviors of material corresponding to the paths lying on

the tensile and compressive meridian planes (8 = 0° and 8= 60°)

are determined first from CTE and CTC tests, respectively.

(iii) The behavior of material corresponding to a stress path lying on

a plane making an angle Oo~ 8 ~ 60° is determined from the

combined CTE and CTC tests.

Herein, the combined concept of CTE and CTC tests for item (iii) is

explained.

The points A and A' in Fig. 4 denote the present state of principal

stress ° and the subsequent state of principal stress (0 .. + dO .. ),
ij 1J 1J

respectively. The vector AX' or do .. is now projected onto the deviatoric
1J

stress plane (n-plane) as the vector BB', and onto the CTC-CTE plane as

the vector CC'. The vector CC' is on the intersecting line, which is the

intersection between the GTC-CTE plane and the plane passing through the
-+

hydrostatic axis II and the stress vector AA'.

The deviatoric stress vector BB\ on n-plane can now be further de­

composed into two parts: EE' and DD' along the DE' and OD' axes

respectively, as

dS ..
1J

o 1
dS .. + dS ..

1J 1J
(13)

o
where dS ..

1J
0° planes,

1
and dS .. are the components of the stress in the 8 = 60° and

1J
respectively. From the geometry, the magnitudes of these

I 0 0components of dJ
Z

on OO-plane and dJ
2

on 60-plane can be calculated

from the total dJ
2

as

dJO dJ [cos(n/3-8) - -l sin(n/3-8)]2 1Z Z 13

J
(14)

1 1 sin 8)2dJ2
dJ (cos 8 - -

2 13
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Since the deviatoric stresses dS
O 1

and dS .. have the following char-ij 1.J
acteristics:

dS? ° 0 0 0 1 0 1 0
1= (dSll ' dS

22
, dS

33
) (dS

ll
, - 2" dSU ' - "2 dSll)

1.J

J

(15)

1 1 1 1 1 1 1dS .. (dSll ' dS
22

, dS 33 ) (dS
ll

, dS
ll

, -2dSn )
1.J

Therefore, for the case of loading, the components of dSO and dSl can beij ij
calculated from Eqs. 14 and 15 as

0 0 0 EpJ~ JJ~ ff)(dSn , dS
22

, dS
33

) = -2 -
3 3 '

and (16)

1 1 1 (ff. _jdJ~ 2%)(dSll ' dS
22

, dS 33 )
3 '

-+
Similarly, the vector CC I with length dI

l
on the CTC-CTE plane can be de-

o 1
composed as dIl and dI

l
onto the CTC line and CTE line respectively. From

the geometry of Fig. 4, we have

1
- 1:..- sin(Tr/3 - 8)J
/3

cos 8[

COS(Tr/3 - 8)

dIl 2

(17)

o 1
Therefore, the decomposed principal stresses do .. and do .. can be re-

1.J 1.J
written as

:t -9-



~IO dIO o )d 0 = -..1. + dS O __1 + dSO dIl 0
a .. 3 11' 3 22' -3- + dS

331J

(18)

~I1 dIl

dSl dI
l

)1 = -.l + dSl _1+ -..1. + dS l
do ..

1J 3 11' 3 22' 3 33

In the following, explicit expressions for calculating the strains are

developed for the three proposed models: (1) nonlinear elasticity model

with the Mohr-Coulomb or the Drucker-Prager failure surface; (2) cap model

I; and (3) cap model II.

7. Incremental Constitutive Equations

7.1 Nonlinear Elasticity Model

In this modelling, behavior of materials is assumed to be elastic until

the state of stress reaches the failure surface. For an isotropic, the

bulk moduli K
O

,K
l

and the shear moduli GO ' G
l

may be determined from the

triaxial compression and triaxial tension tests. Two types of bulk moduli

and shear moduli are considered.

(i) Bulk moduli and shear moduli are constant. This reduces to the

linear elastic model.

(ii) Elastic bulk moduli K
O

and K
l

are assumed to be functions of the
o 1

first invariant of the decomposed stress tensor II and II '

respectively,

and (19)

(20)

and elastic shear moduli GO and Gl are assumed to be functions

of the second invariant of the decomposed deviatoric stress
o 1

tensor J
2

and J
2

, respectively.

GO "GaCM) and G1' G1QJ~)

According to the incremental Hooke's law, the strain increments

d€O and ds 1 are written in terms of the decomposed stresses da~. and do:.
~ ~ ~ ~

as

T-10-.:..:,.,



dOl dIO + 1 0E: . . 9 1 6.. 2G dS ..
lJ KOlJ 0 lJ

(21)

and the total strain increment dE: .. is the sum of the two components.
lJ

dE: ..
lJ

o 1
dE: " + dE: ..

lJ lJ
(22)

It should be noted that the direction of the total strain increment dE
ij

is not necessary in the same direction as that of the total stress incre-

The following shortcomings are noted in this modelling:ment dO' ..•
lJ
(i) The decomposition of dI

1
into two parts is not unique.

convenience, we use the GTC-CTE planes.

Here, for

(ii) The decomposition of dI
1

for the case of isotropic compression

test can not be made because many combinations of decomposition

can be considered.

(iii) For two stress paths which are extremely close to each other

along the hydrostatic pressure axis but lie on two different

planes e = 0° and 60° respectively, the volumetric strains

predicted with the corresponding bulk moduli K
O

and K
1

will

have different values at the boundary of the hydrostatic axis.

The nonlinear elasticity model described above was used for pre­

dictions at the workshop.

7.2 Cap Model I

The conventional cap model used by Ba1adi [1], among others, has the

Drucker-Prager type of yield surface with an elliptic cap. The size of

the cap is assumed to have either a constant value or to be a function

of the plastic volumetric strain. Since the Mohr-Coulomb failure surface

is probably the best among all the failure criteria for soils, it follows

that the size of the cap should depend not only on the plastic volumetric

strain, but also on the Lode angle e. In the present modelling, therefore,

J:' -11-



two different caps are used. One is defined in the tensile meridian plane

(8 = 0°) and the other is defined in the compressive meridian plane (8

60°). This is illustrated in Fig. 5-a, where the Mohr-Coulomb failure

lines on these two planes are also shown.

In the elastic range, two types of bulk moduli K
O

,K
l

and shear

moduli GO ,G
l

may be considered.

(i) K
O

' K
l

, GO and G
l

are constants.

(ii) K
O

' K
l

are functions of the first invariant of the decomposed

10 1
stress tensor or I and the plastic volumetric strains

PO Pill
Ekk or Ekk , respectively,

Ko I (23)

and G ,G are functions of the second invariant of the decom-o 1 1
posed stress tensor .J~ or .J2 and the plastic volumetric

. PO PI
stra1ns E

kk
or E

kk
•

(24)

failure envelope which will not harden.

decreases or increases. The Mohr-Coulomb criterion is used here as

The plastic strain dEP during
ij

the loading is derived from the flow rule (Eq. 12). The total plastic
P PO

strain increment dE .. is the sum of the plastic strain increments of dE ..
PI 1J 1J

and dE .. which are induced by the two caps:
1J

and
P

E
kk

the

where dE~~ and dE~~ are the plastic volumetric strains induced

by the caps on 8 = 60° and 0° planes, respectively.

The elastic strains dEe are calculated in the same manner as that
ij

used previously in the nonlinear elasticity model.

In the plastic range, the two elliptic caps located on the 8 = 0°

60° planes will contract or expand as the plastic volumetric strain

J: -12-



PO
dE:,. +

1J

Pl
dE: ..

1J
(25)

Each of the plastic strain increments can be written as

PO
dA

O
3FO
__c_

ds, . =
°1J 30. ,
1.J

(26)

P1
dAl

3F1

dE: , , =
__c_

1.J 3 1
°ij

scalar functions, FO, Fl are the
c c

the decomposed stresses, respec-

where dA
O

, dAl are different positive

11 " f . dOle 1.pt1.C cap unct10ns an cr", 0., are
1.J 1.J

tively. From Eqs. 25 and 26, we have

PO
dE:. ,

1.J

(27)

[

3F.
l

nl 3F
1

3g 3J
l

.]c 1 c ~J2 2
1 ----+-- -- --

dA n l 30:, IT 3J1 30~ .
1 1.J 3~J2 2 1.J _

The total strain increment dE: is the sum of the elastic strain and plastic
ij

strain increments.

dE: ..
1.J

+ 0 .. +
1.J

:r -13-
~



r°° aF
dA ~

. aI~
o..
~J

o
ij

S~J1J

S: '.]1J

+

(28)

°de .. is the strain corresponding to the decomposed deviatoric stress
1J 1

Also, d>" has the same form as that of Eq. 29 except changing the

Eq. 28 is the incremental stress-strain relations corresponding to the

proposed cap model I. In order to use this relation (Eq. 28) for a stress

analysis, the scalar functions dAD and d>..l must be determined. Using the

° 1consistency condition dF = ° during loading and Eq. 12, d>" ,d>" can be
c

derived in a straightforward manner as

aFO o GO dFO
s~ . °3KO -6" dE: +-- c

de ..

all kk g d~ 1J 1J

0
dA

[aFO~2 [~r - dFO dFO
(29)

9KO --% +G
3 __c c

aI 0 dIO d PO
1 1

E:
kk

where

dSO
ij·

subscript from 0 to 1. For the states of stresses on the Mohr-Coulomb

surface, the corresponding plastic strain increment dE:~. is derived from
~J

the flow rule:

PdE: ..
1J

1: -14-
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where FL is the Mohr-Coulomb failure function, cr,. is the total stress and
1J

dA is a positive scalar function.

The main characteristics of this model are:

(i) The direction of the strain increment dE .. is not necessary in
1J

the same direction as that of the stress increment dcr" even
1J

with elastic region.

(ii) The hardening caps exist only in the e = 0° and e = 60° planes.

Two caps control the hardening of the isotropic materials

within the range of 0° to 60°.

The limitations of this model are:

(i) The same limitations as that of nonlinear elasticity model

described previously.

(ii) Because this model assumes two independent caps, the model may

predict a total plastic volumetric strain E:
k

that may exceed

the maximum plastic strain W.

(iii) The intersections of the caps with II-axis are not the same.

The model does not satisfy the continuity condition along

the hydrostatic axis.

7.3 Cap Model II

This model can be considered as a generalization of the cap model I

described in the preceding section. The two caps in the e = 0° and 60°

planes are now connected by a three-dimensional cap as shown in Fig. 5-b.

In the elastic range, the same procedure as that of Cap Model I is

used for the elastic strain calculation. However, the bulk modulus K
O,01

or K is now a funct10n of 11 or II and the total plastic volumetric strain

E~k ~ while the shear modulus GO or Gl is a function of ~ or ~ and the

total plastic volumetric strain S~k' respectively. Similarly, the plastic

strain increment is determined from Eq. 12. Thus, the total strain

increment dE,. is written as
1J

dE
ij

I-15-



+
[

(IF

+ dA (li
C

0 ..
1 1.J

+_1_

2JJ2
(31)

where dA is derived using the same procedure as in Cap Hodel I.

For the stress state on the Mohr-Coulomb failure surface, the plastic

strain increment is given by Eq. 30.

8. Hodel Calibration

General

In the workshop, three sets of soil materials are available for

prediction under different stress paths. These are "Clay X", "Clay y",

"Kaolinite Clay" and "Ottawa Sand". Herein, nonlinear elasticity model

is applied to predict the behavior of all three materials. Further,

plasticity models (Cap Model I and Cap Model II) are applied only to

"Clay X" and "Clay Y".

In the following, the stress paths used in the experiments and in the

predictions are first defined. Then, the general procedure for determining

the material constants for the three models is explained, and the stress­

strain relations corresponding to particular stress paths are derived.

Herein,typical soil mechanics sign convention (compressive stress positive)

is used in the model calibration.

8.1 Stress Paths in Experiments

The stress path used in the experiments can be described by the stress

ratio m.

m (32)

where 01' 02 and 03 are the principal stresses applied to the cylindrical or

the cubic soil spedimen and 01 is the stress in the vertical or axial

direction.

'I-16-



The stress path with the ratio m =0 or m =1 is on the plane e = 60°

or e = 0° respectively. The stress path corresponding to a simple shear

test as viewed in the n-plane is shown in Fig. 6-a. If the Lode angle e is

defined from the plane, m =0, then, the relation between e and m is given by

cos e (2-m) (l-2m) (l+m)
2 3/2

2 (m -m+ 1)
(33)

The stress path corresponding to conventional triaxial test lies between

the stress path CTC test and the path CTE test as shown in Fig. 6-b in

11 - ,r; space.

8.2 Determination of Material Constants and Analysis

General

For the nonlinear elasticity model, we need to determine the bulk

moduli K
O

and \' shear moduli GO and G
l

• The bulk modulus K is a function

of 1
1

and is determined by an isotropic compression test. The shear moduli

GO and G
l

are functions of ~ and ~ and are determined by the stress

difference-strain difference curves from drained triaxial compression

and tension tests conducted at different levels of confining pressure. If

the model is applied to problems involved cyclic and reversed loading,

bulk modulus K, and the shear moduli GO and G
1

can be determined respec­

tively by the unloading curves of the tests mentioned above. Hence, the

variable moduli model is used.

For the plasticity models, the bulk modulus K and the shear moduli GO

and G
1

can be determined from the slopes of the unloading curves of an

isotropic compression test; and from the slopes of the unloading stress

difference-strain difference curves of a drained triaxial compression

tests and tension tests at different levels of confining pressure, respec­

tively. In the plastic range, the values of a and k are obtained from

c and ¢ values associated with the Mohr-Coulomb failure envelope, which is

constructed through simple shear tests. The material constants Wand D in

Eq. 10 associated with the hardening function are determined by isotropic

compression and unloading tests. The constant R associated with cap

shape is determined from simple shear and uniaxial strain tests. The choice
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of material constants R from experimental data requires a considerable

experience.

Clay X

The experimental data on the simple shear tests with the stress ratio

m=O and 1 under confining pressure a 10, 20 and 30 psi are available.
c

The nonlinear elasticity model, cap model I and cap model II are used

for prediction. In the case of nonlinear elasticity model, the stress

difference-strain difference curves are drawn for each confining pressure

as shown in Figs. 7 through 9 where we have used the average values of E
l

and

E: , or E and E:. These curves are fitted by a function using nonlinear
2 2 3

regression analysis. In general, the relation between stress difference

and strain difference can be expressed as

Taking derivative with respect to the strain difference, we have

(34)

or (35)

Each pair of GO and G
l

functions are utilized for the present prediction

under different confining pressure. The matchings of the Mohr-Coulomb

constants (c,~) and the Drucker-Prager constants (a,k) are listed in Table 1

for all three materials. The principal stress increments da
ll

, d0
22

and

d0
33

can be written in the form as

2m -1
2 -m

(36)
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from which dJ
2

can be expressed in terms of dOll. Thus t for a given dal1t
the corresponding strain increment d£ .. can be computed. The process con­

lJ
tinues until the stress path reaches the Mohr-Coulomb or Drucker-Prager

failure surface.

oThe stress-strain relation can be regarded as linear up to dOll

of 5 psi or dail of 2 psi, respectively. Thus, the following relation is

assumed in the leastic range, for m =0

In the case of plasticity models, clay X is assumed to be an anisotropic

material. Fig. 10 shows the relation between the stress increment da~l or

da~l and each strain increment.

d 0 0.0014 0 0 -0.00156
0 0 0 (37)£11 = dallt d£22 dOll and d£33 = 0.0002 dOll

and for m = 1,

d 1 0.00325 dail'
1 -0.00267 1 and

1 1
(8)£n = d£22 = dOll d£33 = -0.00055 dOll

The constants Wand D are estimated to be 0.3174 and 0.0087, respectively.

Therefore, Eq. 10 is

= 0.3174 [1 _ e-0.0087(x-46.5)] (39)

where the value 46.5 is three times of the preconsolidation pressure a
p

(compressive stress taken as positive). The material constants R (cap

shape) are determined to be 4.7 from the simple shear test data with the

stress ratio m = 0 and to be 5.7 from those with the stress ratio m = 1.

Fig. 11

m =1 in

for the

shows the location of hardening caps for the planes of m=O and
P

II - ~ space. The plastic strain increments d£ij are calculated

cases of Cap Model I and Cap Model II. As the experiments have

been conducted under stress control condition t the plastic volumetric

strain increment d£~k can be calculated from Eq. 39 after the value of x

is obtained from the subsequent state of stress and elliptic cap equation.

Therefore, dA is obtained from Eq. 12.
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For cap model I,

1
and dA (40)

and for cap model II,

dA

p
Therefore, the plastic strain increment dE is obtained from Eq. 12

ij
respectively.

(41)

Clay Y

The experimental data are obtained from the triaxial tests with the

stress ratio m =0 and m =1 under the initial confining pressure er =2.5,
c

5.0 and 10 psi. The property of clay Y appears to be similar to that of

clay X. As the initial location of confining pressure lies on "Dry of

Critical" from viewpoint of the critical state soil mechanics, the Coulomb

constants c and ~ (in Table 1) are different from those constants for clay

X. The experimental data indicate that the behavior of clay Y appears to

be isotropic. Therefore, the stress difference-strain difference relation,

and the stress invariant II - the volumetric strain relation are checked

for three sets of data as shown in Fig. 12 through 14. For nonlinear

elasticity model, the functions of bulk moduli K
O

' K
l

and shear moduli

GO' G
l

are obtained using the curve fitting procedure similar to that of

clay X. The principal stress increments dOll' d022 and d0
33

with the

stress ratio m is expressed in terms of dOll by

(42)
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The corresponding strain increment can be calculated as that of clay x.
For the plasticity models, the stress-strain relations are again

checked for the data with m = 0 and 1 as shown in Fig. 15. The shear

modulus GO for m = 0 or G
1

for m = 1 is assumed to be a function of ~
or constant, respectively. The bulk moduli K

O
and K

1
are assumed to be two

different constants respectively. The material constants Wand Dare

estimated to be 0.135 and 0.009. Therefore, Eq. 10 is

P
E:
kk

0.135 [l - e-O•009 (x-46. 5)1 (43)

where the preconso1idation pressure a is assumed to be the same as that in
p

clay x.
The material constants R (cap shape) are determined to be 2.39 from

the triaxial test data with m = 0 and to be 0.87 from those with m = 1.

The location of hardening caps are shown in Fig. 16. The calculation of the

strain increment is the same as that of clay X.

Kaolinite Clay

The available experimental data are the triaxial tests (No. 1 and 10)

and the simple shear tests (No. 4 and 13) with m = 0 or m = 1 under an un­

drained condition. The nonlinear elasticity model is utilized for the

prediction.

The experimental data are plotted in the stress difference-the strain

.' difference space as shown in Fig. 17. Here, as in the previous case, the

stress difference-the strain difference curves are fitted by functions in

order to determine the shear moduli GO and G
1

which are functions of J
2

•

For these tests to be predicted by the model, the major principal stress is

inclined at an angle to the vertical axis of the specimen, while the inter­

mediate principal stress remains horizontal. Since the material is assumed

to be isotropic for present case, the direction of the applied principal

stresses will not affect the results of prediction. The increments of

principal stresses with stress ratio m are expressed in terms of da
11

by

dOll = dan' dOn = 0 and d033 = m~i dan

for Test No.2, 3, 7, 11 and 12 and

]:-21-
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1 - 2m do d d
m- 2 11 an °33

m+1
m - 2 dOll (45)

for Test No.5, 6, 8 and 9.

It should be noted that those principal stresses are the total princi­

pal stresses because the tests are conducted under an undrained condition.

Therefore, the effective principal stress increments must be known in order

to calculate the principal strain increments. In this case, the effective

stress increments are the deviatoric stress increments dS .. because the
1)

inclusion of hydrostatic pressure increment dI
l

causes a volumetric change.

Thus, the effective stress increments are calculated from Eqs. 44 and 45,

and the corresponding strain increments can be calculated in a same manner

as that described above.

Ottawa Sand

The experimental data available for predictions are the conventional

triaxial compression tests under the initial confining pressure of 5, 10

psi, the conventional triaxial tension test under the initial confining

pressure of 5 psi, and the simple shear tests with the stress ratio of m=O,

1 under the mean normal stresses of 5, 10 and 20 psi.

Here, as the experimental data for the loading, unloading and reload­

ing cases are given, the variable moduli model is used. In order to deter­

mine the shear moduli GO and G
l

for the loading case, the experimental data

for the loading parts in the simple shear tests are plotted in the space

of the strain difference and the stress difference divided by the stress

difference at each failure (Fig. 18). The curves used in the prediction

are shown by the dotted curves which are obtained by a nonlinear regression

G
L L

analysis. Thus, the shear moduli ° and G
l

for the loading cases are given

by

and

°1"-22--
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where a~ and a~ are the stress differences at failure in CTC and CTE tests.

The stress difference at a failure is given by

oa
f

6 teeDS ~ + am sin cj»

3 - sin 1>

(47-a)

for the modulus G
L

ando
6(c cos 1> + a sin cj»

m

3 + sin 1>

(47-b)

Lfor the modulus G
l

, where a is the mean normal stress. In this case, the

shear moduli are functions ~f II and J~ or J~.
To determine the shear moduli G~r, G~r for the unloading and reloading

cases, the experimental data for the unloading and reloading parts in the

simple shear tests are plotted in Fig. 19. In this case, the stress dif­

ference and the strain difference are measured from the unloading and re­

loading points. The curves used in the prediction are shown by the dotted
ur Gurcurves. Thus, the shear moduli GO and 1 have the same form as that in

Eq. 46.

The bulk modulus K
O

and K
l

are determined from the conventional tri­

axial compression and tension tests. Although the data on the isotropic

Fig. 20.
. KurpOlnt, a

unloading,

The bulk

andKur
1

and KNL
a

previous unloading

consolidation test are given, they are not used here to determine the bulk

moduli. The experimental data are plotted in I and £kk space as shown in
L L 1

moduli KO and K
l

for the loading up to the unloading

for the unloading, reloading up to the point of previous

and K~L for the loading starting from the point of the

are determined from the figure. These bulk moduli

appear to depend on the initial confining pressure a
c

general form for K may be written as

Therefore, the

K = K(a )
c

(48)

In general, the bulk modulus of Ottawa sand may be expressed by K =K(a )
max

where a is a maximum confining pressure similar to the preconsolidation
max

pressure.
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The calculation of the strain can be carried out in the same way as

mentioned previously.
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--OA = (OJ, CTz, CT;s )

--.-.
OB = (p,p,p)--BA = (5" Sa'S)

Fig. 1 Stress State in Principal Str~ss Space
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Fig. 6 Stress Path in Experiments
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Fig. 11 Location of Hardening Caps for Clay X
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PLASTICITY MODELS FOR SOILS

Comparison and Discussion

by

E. Mizuno
l

and W. F. Chen
2

, M. ASCE

Introduction

Herein, the predictions are made using the following three material

models:

(i) Nonlinear elasticity model with the Mohr-Coulomb or the Drucker­

Prager criterion as failure surface. This model is applied to

all predictions.

(ii) The Mohr-Coulomb type of elastic-plastic material model with two

different elliptical hardening caps. One on tensile meridian

plane (8 = 0°) and the other on compressive meridian plane

(8 = 60°). (Cap Model I). This model is applied to "Clay X"

and "Clay Y".

(iii) The Mohr-Coulomb type of elastic-plastic material model with a

three-dimensional elliptical cap whose shape depends on the

Lode angle 8 (Cap Model II). This model is applied to

"Clay X" and "Clay Y".

The comparison and discussion are given in the forthcoming.

Clay X

The comparison of the predictions with the experimental data on the

simple shear tests with constant mean stresses at 10 psi, 20 psi and

lResearch Assistant, School of Civil Engineering, Purdue University, West

Lafayette, IN 47907

2professor of Structural Engineering, School of Civil Engineering, Purdue

University, West Lafayette, IN 47907

l!: -1-



30 psi are presented in Figs. 1 through 4 for each of the stress ratio

m = 0.25, 0.5, 0.75. In these figures, the stress difference-axial strain

relation, and the axial strain-volumetric strain relation are presented.

The experimental data are shown by the open circles and the predictions are

denoted by lines.

As can be seen from the figures, the predictions by the nonlinear

elasticity model are off somewhat from the experimental data with 0 = 20
c

psi and 30 psi. The model, however, gives a good prediction for the tests

with 0 = 10 psi and for 0 = 30 psi, m = 0.75. Since the model is assumed
c c

to be isotropic, it is difficult to predict the behavior of the anisotropic

clay X. Also, it should be noted that the volumetric strain e on the
v

simple shear tests can not be predicted by this model.

Cap models are seen to predict the axial strain-stress difference

relation and the axial strain-volumetric strain relation well for all

experiments shown in figures. The tests at 0 = 10 psi show elastic. In
c

the prediction (0 = 10 psi), the cap models show some plastic strains in
c

the region near failure surface. For the experiment with a 10 psi,
c

m = 0.5, the cap model I predicts only elastic strains because the de-

composed stresses do not reach the hardening caps. Therefore, there is no

plastic strains.

Clay Y

The comparison of prediction with experimental data on the triaxial

tests under initial confining pressures a = 2.5, 5.0 and 10 psi is
c

presented in Figs. 5 through 7 for each of the stress ratio m = 0.25, 0.5,

0.75. As the initial confining pressures lie on the swelling line, clay

Y behaves first like an elastic material in the tests. Nonlinear elasticity

model predicts well the experiments with 0 2.5 and 5.0 psi. However, the
c

predictions for the tests with 0 10 psi, m = 0.5 and 0 = 10 psi, m
c c

0.75 are off somewhat from the actual data. This implies that plastic

strains must occur in the tests. Cap models reflect this as shown in Fig.

7. The predictions by cap models for the triaxial tests with 0 2.5 psi
c

and 5 psi are almost the same as that of nonlinear elasticity model. For

these cases, either the stress paths have not reached the hardening caps,

or the plastic strains are small at this stage of loading.

1t -2-



Kaolinite Clay

The comparison of the predictions with the data on the triaxial or

simple shear tests under the undrained condition is presented in Figs. 8

through 12. The total axial stress vs. axial strain curves are shown in

the figures. As can be seen. the nonlinear elasticity model predicts

the experiments well. In particular. the predictions for Test NO.7. 8.

9, 11 and 12 are very good. In this model. the pore water pressure

increment is taken to be equivalent to the increment of the first invari­

ant of the stress tensor II'

Ottawa Sand

The comparison of predictions with experimental data on various tests

is presented in Figs. 13 through 21. In each figure. the strains in x. y

and z directions are plotted against the octahedral shear stress T
oct

Except the circular stress path. all predictions are good. In particular.

the initial slope of the actual behavior of Ottawa sand and the failure

load are accurately predicted by the nonlinear elasticity model combined

with the Mohr-Coulomb criterion. As for the circular stress path. the model

prediction is different significantly from the actual data in the region of

Lode angle e between 60 0 and 420 0 (Fig. 21).
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TEST NO. 2 (Kaolinite Clay)
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TEST NO.5 (Kaolinite Clay)
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TEST NO. 7 (Kaolinite Clay)
(/)

0-

0
90

(/) 0
(/) 0Q) 0.... 0.-

(f)

70
8 Mohr- Coulomb Fai lure

0
x 0 Experimental Data4:

Prediction

50
O. 2. 4. 6. 8. 10.

Axial Strain E1
(%)

TEST NO.8 (Kaolinite Cloy)

8 Mohr - Coulomb Failure

o Experimental Data

Prediction

(/)

a.

b-

75
(/)

III
Q).....-

(f)

0
)(

4:

2.

0 000
o

4.

Axial Strain

6.

E, (%)

8. 10.
..

Fig. 10 Axial Stress-Strain Relations for Kaolinite Clay, Test No_ 7 and 8

::rt -13-

----_._.-.-.•_-----_...... . .... --.----_._---_.._-_.------_."-_._-----'......------



TEST NO.9 (Kaolinite Clay)
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TEST NO. 12 (Kaolinite Clay)
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