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PLASTICITY MODELS FOR SCOILS

Theory and Calibration
by
. 1 2
E. Mizuno and W. F. Chen™, M. ASCE

1. Introduction

The mechanical behavior of soil and rock is complicated and they can
not be modelled accurately as a continuum. At present, however, the con-
cept of continuum mechanics has been used extensively in the mathematical
modelling of these materials. These include the applications of linear
elastic models, nonlinear elastic models, and elastic-plastic models to
geotechnical engineering problems. Although the models such as hyper-
elastic or hypoélastic can represent the phenomena such as dilitancy and
hardening or softening of soil behavior, the effect of plastic strain
induced during loading can not be predicted within the framework of an
incremental Hooke's law with variable moduli which are functions of the
stress and/or strain levels,

Current research in soil constitutive modelling is moving toward the
development of three-dimensional stress—strain relations based on the
principles of plasticity as well as elasticity.

Herein, three types of soil models are described. The first type
was used for prediction before the workshop was held, thus without the bene-
fit of the test results. The second and third types are subsequently
developed and used after the workshop.

(i) Nonlinear elasticity material model with the Mohr-Coulomb or
the Drucker-Prager surface as failure criterion,

(ii) Mohr-Coulomb type of elastic-plastic material model with two
different sizes of elliptical hardening cap which are defined
respectively on the tensile meridian plane (8 = 0°) and the

compressive meridian plane (5 = 60°). (Cap Model I)
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(iii) Mohr-Coulomb type of eléstic—plastic material model with an
elliptical bhardening cap whose size depends on the Lode angle 8.

(Cap Model 1I).

2. A Brief Historical Review

The Mohr-Coulomb criterion of failure is certainly the best known in

soil mechanics. This criterion states that failure occurs when the shear
stress T and the normal stress ¢ acting on any element in the material
satisfy the linear equation. '

T+otan ¢ ~¢c =0 (1)

where ¢ and ¢ denote the cohesion and the angle of internal frictiom,
respectively.

Although this criterion has in the past been used by necessity and
simplicity to obtain reasonable solutions to important, practical problems
in geotechnical engineering, the following limitations should be noticed:
(1) ‘This criterion neglects the influence of intermediate principal stress
on shear strength: and (2) the failure surface of the Mohr-Coulomb criteriomn
exhibits corners or singularities in the three dimensional principal stress
space. From the second limitation, these singularities are difficult to
handle in a numerical analysis. - |

The Drucker-Prager suxrface [7] can then be considered as a three di-
mensional approximation to the Mohr-Coulomb failure criterion with a simple
smooth surface. This criterion is expressed as a linear combination of the
first invariant of stress tensor Il and the square roct of the second invar-
iant of the deviatoric stress temsor VJy together with two material con-
stants o and k. The material constants o, k can be related to the Coulomb's
c and ¢ constants in several ways. The Drucker-Prager vield surface with
an associated flow rule, however, can not predict the plastic volumetric
strain observed in experiments. To improve this, extended von Mises model
with convex end cap was proposed by Drucker, Gibson and Kenkel [6].

Following the concept of Drucker et al,, subsequent strain hardening
plasticity models using the critical state concept were developed by re-
searchers at Cambridge [12], and a specific Cam-Clay model based on normally

congolidated or lightly overconsolidated clay was suggested by Roscoe,
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Schofield, and Thurairajah [9]. However, failure surface used in this
model is still the Drucker-Prager type which resultsin a much greater dila-
tancy prediction than that observed in experiments. As a result, modified
failure or yield criterion with an elliptical hardening cap which controls
the dilatancy was subsequently proposed by DiMaggio and Sandler [5].

In recent years, the cap model has been further modified and refined by
Sandler [10,11] and Baladi [1]. Various advanced version of this model
including such features as kinematic hardening, double hardening etc. have
recently been proposed. The historical review of the plasticity modelling

of geotechnical materials has been gilven in a recent paper by Chen [3].

3. DNotations

The state of stress at a point inside a soil medium can be completely
determined by the stress tensor Gij in a three dimensional space. In gener-
al, the stress tensor can be decomposed into two parts: (1) the hydrostatic
pressure part, where the off-diagonal terms are identically zeros and the
diagonal terms are equal to mean normal stress; and (2) the deviatoric part
Sij' Thus,

1
3‘1 .., ¥ S, (2)

where Il, the first invariant of the stress tensor, is the sum of the di~
agonal stress componsnts and 6ij is the Kronecker delta. The hydrostatic
pressure and the deviatoric stress, respectively, cause volumetric change
and shape change of the material element.

Fig. 1 shows the view of the state of stress in the principal stress
‘Eiordinate system (cl, Oy 03). Stress vectorIBK can be decomposed %Eio
0B in the &-axis which is called hydrostatic axis (01 = 02 = 03) and BA
in the deviatoric plane (m-plane) which is perpendicular to the g-axis.

/3) and the
N 1
component BA represents the deviatoric stress S,,. The length of 0B and BA
1]

The component vector [} represents the mean normal stress p (I

are ¥3 p and p = /S%l + S%Z + S%B , respectively. If the stress vector

GZ iz viewed from the hydrostatic &-axis, the actual length and directiou of
it can be represented respectively by p and the Lode angle 6 . The Lode

angle 6 is given by



J
_1 -1 .3/3 3
g = 3 cOs (‘2— 3/2) (3)
4o

where J3 is the third invariant of the deviatoric stress tensor.

In this paper, the typical continuum mechanics sign convention (tensile

stress positive) is utilized in the theoretical development.

4, TFailure and Yield Functions

The following faflure and yield functions are used in the three pro-

posed models to be described in the subsequent sections.

Mohr-Coulomb Criterion

The Mohr-Coulomb criterion given by Eq. 1 can now be written more

generally in terms of stress invariants [8,14].

F o= Il sin ¢+3(1-sin ¢) sin 8 +2/§(3+sin %) cos 9 /3; - 3c cos ¢ = 0 %)

where 6 is the Lode angle (Eq. 3).

The cross sectional shape of the Mohr-Coulomb surface on the deviator-

ic plane is an irregular hexagon as shown in Fig. 2.

Drucker-Prager Criterion

This criterion has the simple form:
F=ol +fj';—k=0 (5)

where ¢ and k are material constants which can be related to cohesion ¢ and
the angle of internal friction ¢ of the Mohr-Coulomb criterion in several
ways. For example, if the Drucker-Prager criterion is matched with the
Mohr-Coulomb criterion in three dimensional principal stress space (Fig. 2)
along the compressive meridian (point A) or tensile meridian (point B), the
two sets of familiar material comnstants o and k can be obtained. For the
compressive meridian matching, substituting 6 = @/3 into Eq. 4 and rearrang-

ing it, we obtain

o
P



o = 2 sin ¢
/3 (3-sin ¢)
; | (6)
K = 6c cos ¢
/3 (3-sin ¢)

These material constants are identical to those given by Zienkiewicz
{13}. For the tensile meridian matching, substituting 6 = 0° in Eq. 4

and we obtain

. 2 sin §

/5 (3+sin ¢)
> (N

k= _ Dccos ¢
V3 (3+sin ¢ )

Various matchings between the Drucker-Prager surface and the Mohr-
Coulomb surface for material constants are given by Chen and Mizuno [4].
In general, if o is zero, Eq. 5 reduces to the well known von Mises yield
condition for metals. The Drucker-Prager surface is used here as the fail-
ure surface for cap models described in what follows. Eq. 5 represents an
axisymmetric cone-shaped surface with respect to Ol = 0, = 0, axis in

2 3
principal stress space (Fig. 2).

5. Conventional Cap Models

The loading funcfions are usually assumed to be isotropic and to con-
sist of the fellowing three parts:
(i) An ultimate failure envelope can be either of the simple linear
Drucker-Prager form or the nonlinear form assumed by Sandler [11].
BL

o 1
F o= /Jz - (A-Ce ) (8)

T->



in which A, B and C are material constants. Here, the failure

equation becomes parallel to Il axis under large value of Il’ and
this results in a limited dilatancy under high pressure Il.
(ii) Strain-hardening cap function has the form of a quarter of an

ellipse (Fig. 3)

F =F yJ_
c C(Il’

5 eik) = (Il-L)2 +RZJ2 -1y = 0 (9

in which x is the intersection of cap with Il axis and x is alsc

a hardening function which depends on plastic volumetric change

P
dekk. S
volumetric strain function Ekk with the material constants W

The location of the cap x is related to the plastic

and D according to

bx
S " Wie = =1) 10)
and R is the ratio of the major to the minor axis of the cap
ellipse which may be a function of L and the Lode angle 6§, and L
is the value of Il at the center of the elliptic cap; and

(iii) Tension cutoff limit plane is introduced
F =1 -T=20 (11)

where T is tension cutoff limit.
The cap can control the dilatancy of soils under hydrostatic pressure‘Ir
Although the cap can predict not only strain-hardening of soils, but also
strain-softening, this type of model can not predict exactly the hysteresis
loop under shear loading. This is because the hardening function in this
model is assumed to be controlled by plastic volumetrie strain,

Each of these models mentioned above contains several material con-
stants which can be determined from data of standard simple shear test, iso-
tropic consolidation test, uniaxial strain test, and triaxial compression,
tension tests.

The determination of these material constants will be given in the

part on model calibration.



6. Basic Concepts of Models Developments

The following assumptions are made for the three types of models
considered here [2]

(1) Linear elastic, hypoelastic or hyperelastic function is used in
the elastic range for the isotropic or anisotropic material
element,

(i1) Incremental plasticity theory is applied to calculate plastic
strain increment during loading range,
(iii) The Mohr-Coulomb or the Drucker-Prager criterion is used as
failure criterion. Effect of strain hardening on this portion
of surface is not considered,

(iv) Associated flow rule is assumed for the cap hardening portion of

the surface.

P aF
C
de. = dx 35 (12)
1j ij

where dA is positive scalar function.

In the following, the concept of "decomposition" of stress state onto
tensile meridian plane and compressive meridian plane is described.

Suppose that Gij»is-the principal stress state acting on an element
in soil mass and dOij is the principal stress increment after the
application of an external load increment. The representation of the
state of stress as viewed in Il - /j; space is shown in Fig., 4. The CTE
line in Fig. 4 is on the 6§ = 0° plane and represents the conventional
triaxial extension test. The CTC line is on the 8 = 60° plane and repre-
sents the conventional triaxial compression test. If stress path is along
Il axis, it represents the isotropic consolidation test. These three tests
are commonly performed tests in geotechnical field. The strengths ob-
tained by the compression test and tension test for soils are different,
and the bulk moduli K and shear moduli G determined from these tests are
also different. Thus, in the proposed modelling, different material
constants (bulk modulus K and shear modulus G) for CTE and CTC tests are
introduced. The following items are taken into consideration in the present

developments.
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(i)} The state of stress Gij as represented in Il - JE;—space lies in
the range of Lode angle from g = 0° and § = 60° .

(ii) The behaviors of material corresponding to the paths lying on
the tensile and compressive meridian planes (8 = 0° and 0= 60°)
are determined first from CTE and CTC tests, respectively,

(iii) The behavior of material corresponding to a stress path lying on

a plane making an angle 0°< ¢ £ 60° is determined from the
combined CTE and CTC tests.

Herein, the combined concept of CTE and CTC tests for item (iii) is
explained.

The points A and A' in Fig. 4 denote the present state of principal
stress Oi‘ and the subsequent state of principal stress‘(Gi, + dUij),
respectively. The vector ' or dcij is now projected onto the deviatoric
stress plane (m-plane) as the vector BB', and onto the CTC-CTE plane as
the vector CC'. The vector GG' is on the intersecting line, which is the
intersection between the CTC-CTE plane and the plane passing through the
hydrostatic axis Il and the stress vector AA'.

The deviatoric stress vector BB' on g~plane can now be further de-
composed into two parts: ER' and DD’ along the OE' and OD' axes
respectively, as

s, = dsgj + asij 13)
where dsg_ and dsi, are the components of the stress in the 6 = 60° and
0° planesg respectévely. From the geometry, the magnitudes of these
on 0°-plane and dJ

componénts of dJl on 60°-plane can be calculated

2 2
from the total sz as
2
ng = sz[cos(ﬂ/S—G) i sin(n/3-0)1]
Y3
(14)
dJ; = sz (cos & - —l»sin 6)2

V3



¢]
Since the deviatoric stresses dSij and dSi, have the following char-
J

acterigtics:
0 0 0 0 0 1.0 1 ..0
dS = S = -— e —
i3 = (@879, 9555, dS30) = (dSp;, =5 dSyy, - 5 dS;,)
(15)
11 1 1. .1 1 1
a8y, = (48, dSy), d53) = (aSyy, dsyy, -2dsp))

Therefore, for the case of loading, the components of dsgj and dS%, can be
1]

calculated from Eqs. 14 and 15 as

0 0 0
(dSO as? . as?y = (= 552 Eiz— Eﬂz
11* %220 P33 3 3 3
and ¢ (16)
. . N dJé dJ; PR
(dsll’ dS,,, dS3q) = {- 3 0 N3 0 2 3
)

Similarly, the vector ' with length dIl on the CTC-CTE plane can be de-

1
composed as dIO and dIl onto the CTC line and CTE line respectively. From

1
the geometry of Fig. 4, we have

cos{v/3 -8) N gin(n/3 - 8)
dal; = dIl[ /3

= O

2 cos ©

dIi = dIl é—itané
/3

0 1
Therefore, the decomposed principal stresses doij and dcij can be re-

[ (1n

|

written as
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3 11> 3 22 3 33

1 1 1
a1 a1 ax
1 1, .0 M, a4 1)
A =Lwast, ~Laast Laias
doyy (3 110 3 227 3 33 J

In the following, explicit expressions for calculating the strains are

0 0 0
d1 d1 d1
do0 =(l+d80 ~L 4 qg” _;+d50>

» (18)

developed for the three proposed models: (1) nonlinear elasticity model
with the Mohr-Coulomb or the Drucker-Prager failure surface; (2) cap model

1; and (3) cap model II.

7. Incremental Constitutive Equations

7.1 HNonlinear Elasticity Model

In this modelling, behavior of materials is assumed to be elastic until

the state of stress reaches the failure surface. For an isotropic, the

. , c
bulk moduli KO ,Kl and the shear moduli GO » 6y

triaxial compression and triaxial tension tests. Two types of bulk moduli

may be determined from the

and shear moduli are considered.
(i) Bulk moduli and shear moduli are constant. This reduces to the
linear elastic model. '

(ii) Elastic bulk moduli KO and K1 are assumed to be functions of the

first invariant of the decomposed stress tensor Ig'and Ii,
respectively,
K =K (I%) and K, = K (1)) | (19) -
0 01 o1 171

and elastic shear moduli G0 and Gl are assumed to be functions
of the second invariant of the decomposed deviatoric stress

0 1
tensor J2 and JZ’ respectively,

Gy = GOQJ(Z)) and G, = Gl(J;> (20)

According to the incremental Hooke's law, the strain increments
0 1
degj and dsij are written in terms of the decomposed stresses dcij and do,

i

as

L -10-



0 1 .0 1 0
de. = —— dI® §,., + == dS. |
ij 9KO 1 "ij 2G0 ij
L (21)
1 1.1 1.1
de’ . = —— dI + = dS
“ij 9K dTy 845 26, i3

and the total strain increment dEij is the sum of the two components.
de,, = de,. + de,. (22)

It should be noted that the direction of the total strain increment de
is not necessary in the same direction as that of the total stress inc;%~
ment doi_. The following shortcomings are noted in this modelling:
(1) The decomposition of dIl into two parts is not unique. Here, for
convenience, we use the CTC-CTE planes.

(ii) The decomposition of dIl for the case of isotropic compression
test can not be made because many combinations of decomposition
can be considered.

(iii) For two stress paths which are extremely close to each other
along the hydrostatic pressure axis but lie on two different
planes 8§ = 0° and 60° respectively, the volumetric strains
predicted with the corresponding bulk moduli KO and Kl will
have different values at the boundary of the hydrostatic axis.

The nonlinear elasticity model described above was used for pre-

dictions at the workshop.

7.2 Cap Model I

The conventional cap model used by Baladi [1], among others, has the
Drucker-Prager type of yield surface with an elliptic cap. The size of
the cap is assumed to have either a constant value or to be a function
of the plastic volumetric strain. Since the Mohr-Coulomb failure surface
is probably the best among all the failure criteria for soils, it follows
that the size of the cap should depend net only on the plastic volumetric

strain, but also on the Lode angle 6. In the present modelling, therefore,
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two different caps are used. One is defined in the tensile meridian plane
(6 = 0°) and the other is defined in the compressive meridian plane (0 =
60°). This is illustrated in Fig. 5-a, where the Mohr-Coulomb failure
lines on these two planes are alsc shown,

In the elastic range, two types of bulk moduli KO ,K1 and shear

moduli G, , G, may be considered.

0’71
(1) KO’ Kl, GO and Gl are constants.
(ii) KO’ K, are functions of the first invariant of the decomposed
L0
stress tensor I_ or 11 and the plastic volumetric strains
P
Ekg or Eki , respectively,
0 PO
K =
0~ Fo (Ts B
(23)
1 Pl
K =
TR G )

and GO, Gl are functions of the second invariant of the decom-
0 1
posed stress tensor 32 ot JZ and the plastic volumetric

strains PO Pl
Elk or £ .

Kk

0 PO '
0~ GO(JJ ' hkk)

T p1
Gy Gl(JJz ] ekk>

where dsig and deii are the plastic volumetric strains induced

by the caps on 6 = 60° and 0° planes, respectively.

2
|

(24)

The elastic strains de?_ are calculated in the same manneyr as that
used previously in the nonliﬂeat elasticity model.

In the plastic range, the two elliptic caps located on the § = 0°
and 60° planes will contract or expand as the plastic volumetric strain
Eik decreases or increases. The Mohr-Coulomb criterion is used he;e as
the failure envelope which will not harden. The plastic strain deij during
the lecading is derived from the flow rule (Eq. 12). The total plastic
strain increment dsij is the sum of the plastic strain incrementsvof dsi?

and d€§§ which are induced by the two caps:

T-12-



P P
deP_ = de_(,] + et (25)
ij ij i]

0 \
oF
PO
dc . = dr’ -
+3 k)
i3
> | (26)
1
Pi 1 BFC
de.., = di
ij Bcl
ij /

where d)\o, d)\l are different positive scalar functions, Fg, Fi are the

elliptic cap functions and U(i)j’ O&Lj are the decomposed stresses, respec—

tively. From Eqs. 25 and 26, we have

s 510 ap0 afs0 50 )
PO 0 c 1 c 2 2
degq = 42 o .0 * 0 .0
3
2T 0y 4 BfJg 21, 99,
} @n
9P" 317 OFT aful gl
PL_ 1|2 L ¢ i
de = 1 1
P 3
ij SIl oc i 0 ’J; a.]z Oij
) )

The total strain increment dsi_ is the sum of the elastic strain and plastic
J

strain increments.

[‘ ar? d1

de , = + §. .+
ij 0 PO 1 P1 :, ij
9K (11, € ) 9K, (I )

as® 1
1]

ast
-+ 1] +
o PO ( 1 Pi)
ZGA:’J , ekk) 26| ‘Jz Ve

Z£—13—




0 oF , o E
av | —& &, + € g | +
0 13 0 o U
1 2y 5, 33
1 apT . BFT L
av | —& s+ & s, (28)
p1t A3 i T i
1 21, a;

Eq. 28 is the incremental stress-strain relations corresponding to the
proposed cap model I. In order to use this relation (Eq. 28) for a stress

analysis, the scalar functions dAO and dll must be determined., Using the

consistency condition dF_ = 0 during loading and Eq. 12, a®, ol can be
derived in a straightforward manner as '
Yot 0 G, 570 o 0
IK € gde ., 4 = —— S de.,.
0 ,.0 kk ij ij
51 0 0
1 J NI
al = 5 2 : - (29)
Sl G oF 2 aFg oF
el _¢c _¢c
o 310 % ol ’ 310 8el?
1 o, 1 ki

where deg. is the strain corresponding to the decomposed dgviatoric stress
dS?,. Also, dll has the same form as that of Eq. 29 except changing the
su;gcript from 0 to 1. -For the states of stresses on the Mohr-Coulomb
surface, the corresponding plastic strain increment dgij is derived from

the flow rule:

de,, = dr —= (30)

T-14-



where FL is the Mohr-Coulomb failure function, Gi, is the total stress and
d) is a positive scalar functrion.
The main characteristics of this model are:

(i) The direction of the strain increment deij is not necessary in
the same direction as that of the stress increment dcij even
with elastic region.

(ii)} The hardening caps exist only in the 0 = 0° and 6 = 60° planes.
Two caps control the hardening of the isotropic materials
within the range of 0° to 60°.

The limitations of this model are:

(i) The same limitations as that of nonlinear elasticity model
described previ0usly;

(ii) Because this model assumes two independent caps, the model may
predict a total plastic volumetric strain eik that may exceed
the maximum plastic strain W,

(iii) The intersections of the caps with Il-axis are not the same.
The model does not satisfy the continuity condition along

the hydrostatic axis.

7.3 Cap Model 11
This model can be considered as a generalization of the cap model 1
described in the preceding section. The two caps in the 8 = 0° and 60°
planes are now connected by a three-dimensional cap as shown in Fig., 5-b.
In the elastic range, the same procedure as that of Cap Model I is
used for the elastic strain calculation, However, the bulk modulus K

0

. 0 1
or Kl is now a functien of Il or I1 and the total plastic volumetric strain

Eik , while the shear modulus G0 or Gl is a function of JJg or J; and the
total plastic volumefrie strain Ekk , Yespectively. Similarly, the plastic
strain increment is determined from Eq. 12. Thus, the total strain

increment de,, 4is written as
1]

a1° att - as?
de | = L— i 7| 8y i3
ij i
K (1 Ko(I7,e , 0 P
9 0( 1’€kk) 9 1( 1 ﬁkk) .2GJ< J ’Eké>



1

dSi. BFC 1 BFC
. ATy S < + 5 3
+ + dM 37 sij - 14 (31)
26 ( [i2,eF ! 23y B,
M * Tk

where dX 1s derived using the same procedure as in Cap Model I.
For the stress state on the Mohr-Coulomb failure surface, the plastic

strain increment is given by Eq. 30.

8. Model Calibration

General

In the workshop, three sets of soil materials are available for
prediction under different stress paths. These are "Clay X", "Clay Y",
"Kaolinite Clay" and "Ottawa Sand". Herein, nonlinear elasticity model
is applied to predict the behavior of all three materials. Further,
plasticity models (Cap Model I and Cap Model II) are applied only to
"Clay X" and "Clay Y".

In the following, the stress paths used in the experiments and in the
predictions are first defined. Then, the general procedure for determining
the material comstants for the three models is explained, and the stress-
strain relations corresponding to particular stress paths are derived.
Herein, typical soil mechanics sign convention {compressive stress positive)

is used in the model calibration.

8.1 Stress Paths in Experiments

The stress path used in the experiments can be described by the stress

ratio m.

m = =" (32)

where 01, 9, and o, are the principal stresses applied to the cylindrical or
the cubic soil spedimen and 01 is the stress in the vertical or axial

direction,.

T-16~



The stress path with the ratio m=0 or m=1 is on the plane 8 = 60°
or 0 = 0° respectively. The stress path corresponding to a simple shear
test as viewed in the wpplane is shown in Fig. 6-a. If the Lode angle © is

defined from the plane, m =0, then, the relation between 8 and m is given by

_ (2-m) (1-2m) (1+m)
3/2

cos 0

> (33)
2{m ~n+1)

The stress path corresponding to conventional triaxial test lies between

the stress path CTC test and the path CTE test as shown in Fig. 6-b in
I, - .
1 Jjg space

8.2 Determination of Material Constants and Analysis

General
For the nonlinear elasticity model, we need to determine the bulk
moduli K_ and Kl’ shear moduli G, and G,. The bulk modulus K is a function

0 0 1

of Il and is determined by an isotropic compression test. The shear moduli

G0 and Gl are functions of Jgg and J% and are determined by the stress
difference-strain difference curves from drained triaxial compression

and tension tests conducted at different levels of confining pressure. If
the model is applied to problems involved cyclic and reversed loading,
bulk modulus K, and the shear moduli G0 and Gl can be determined respec-
tively by the unloading curves of the tests mentioned above. Hence, the
variable moduli model is used.

For the plasticity models, the bulk modulus K and the shear moduli G0
and Gl can be determined from the slopes of the unloading curves of an
isotropic compression test; and from the slopes of the unloading stress
difference-strain difference curves of a drained triaxial compression
tests and tension tests at different levels of confining pressure, respec-
tively. 1In the plastic range, the values of o and k are obtained from
¢ and ¢ values associated with the Mohr-Coulomb failure envelope, which is
constructed through simple shear tests. The material constants W and D in
Eq. 10 associated with the hardening function are determined by isotropic
compression and unloading tests. The constant R associated with cap

shape is determined from simple shear and uniaxial strain tests. The choice

T-17-



of material constants R from experimental data requires a considerable

experience.

Clay X

The experimental data on the simple shear tests with the stress ratio
m=0 and 1 under confining pressuré Oc = 10, 20 and 30 psi are available.
The nonlinear elasticity model, cap model I and cap model II are used
for prediction. In the case of nonlinear elasticity model, the stress
difference-strain difference curves are drawn for each cénfining pressure
as shown in Figs. 7 through 9 where we have used the average values of € and
Eﬁ,or 52 and 63. These curves are fitted by a function using nonlinear

regression analysis. In general, the relation between stress difference

and strain difference can be expressed as

*

o 1€y (34)

*
1~ 9y = f(el - or €

3

Taking derivative with respect to the strain difference, we have

[p]
o}
[}
2}
N

(00-00 01 —ol
0 1 = 8(0) 70y 01 0) =04)
or (35)

0 1~ 8¢ f /:”

and G1 functions are utilized for the present prediction

Rl
o
[
[7p]
[l

Each pair of GO

under different confining pressure. The matchings of the Mohr-Coulomb
constants (c,¢) and the Drucker-Prager constants (o,k) are listed in Table 1

for all three materials. The principal stress increments dcll, dc22 and
do33 can be written in the form as

doll = dgll
2Zm-1
dogy = 2w Y013 b (36)
_m+l
doyy =522 999
J




from which sz can be expressed in terms of doll. 11°
the corresponding strain increment deij can be computed.  The process con-

Thus, for a given do

tinues until the stress path reaches the Mohr-Coulomb or Drucker-Prager
failure surface.

In the case of plasticity models, clay X is assumed to be an anisotropic
material. Fig. 10 shows the relation between the stress increment dco or

1 11
doll and each strain increment.

The stress-strain relation can be regarded as linear up to dcgl

of 5 psi or ddil of 2 psi, respectively. Thus, the following relation is

assumed in the leastic range, for m=0

0 0 0 0 0 0
d = = —{, = .
Ell 0.0014 ddll’ d€22 0.00156 dcr11 and da33 0.0002 dcll (37)
and for m=1,
1 1 1 1 1 1
d = . = ~U. -
Ell 0.00325 doll’ dezz 0.00267 dcll and d€33 ().00055d01l (38)

The constants W and D are estimated to be 0,3174 and 0.0087, respectively.
Therefore, Eq. 10 1is

e:ik = 0.3174 [1 - ¢ 0-0087(x=46.5), (39)
where the value 46.5 is three times of the preconsolidation pressure g
{compressive stress taken as positive). The material constants R (cap
shape) are determined to be 4.7 from the simple shear test data with the
stress ratio m=0 and to be 5.7 from those with the stress ratio m=1.
Fig. 11 shows the location of hardening caps for the planes of m=0 and
m=1 in Il - JE; space. The plastic strain increments dei, are calculated

for the cases of Cap Model I and Cap Model II. As the experiments have
been conducted under stress control condition, the plastic volumetric
strain increment dEEk can be calculated from Eq. 39 after the value of x

is obtained from the subsequent state of stress and elliptic cap equation,

Therefore, dA is obtained from Eq. 12.

T-19-



For cap model I,

0o T T
A = and A = K (40)
oF aF
C C
300 a0t
ij ij

dr = —— = (41)

Therefore, the plastic strain increment dE?_is obtained from Eq. 12
1}

respectively.

Clay Y

The experimental data are obtained from the triaxial tests with the
stress tatio m=0 and m =1 under the initial confining pressure oc =2,5,
5.0 and 10 psi. The property of clay Y appears to be similar to that of
clay X. As the initial location of confining pressure lies cn "Dry of
Critical"™ from viewpoint of the critical state soil mechanics, the Coulomb
constants ¢ and ¢ (in Table 1} are different from those constants for clay
X. The experimental data indicate that the behavior of clay Y appears to
be isotropic. Therefore, the stress difference-strain difference relation,
and the stress invariant I1 - the volumetric stréin relation are checked
for three sets of data as shown in Fig, 12 through 14. For nonlinear

elasticity model, the functions of bulk moduli K , K and shear moduli

0’ 1
GO, Gl are obtained using the curve fitting procedure similar to that of

11’ dazz and do33 with the

stress ratio m is expressed in terms of doll by

clay X. The principal stress increments do

= d =md =
doll doll, 0yy =mdo | and d033 0 (42)
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The corresponding strain increment can be calculated as that of clay X.

For the plasticity models, the stress-strain relations are again
checked for the data with m = 0 and 1 as shown in Fig. 15. The shear

modulus G0 for m = 0 or G1 for m = 1 is assumed to be a function of Jg
or constant, respectively, The bulk moduli KO and Kl are assumed to be two

different constants respectively. The material constants W and D are

estimated to be 0,135 and 0.009. Therefore, Eq. 10 is

P 0.135 [1 _e—0.009(x—46.5)]

= =

Kk (43)

where the preconsolidation pressure ¢ 1is assumed to ﬁe the same as that in
clay X. F

The material constants R (cap shape) are determined to be 2.39 from
the triaxial test data with m = 0 and to be 0.87 from those withm = 1,
The location of hardening caps are shown in Fig, 16. The calculation of the

strain increment is the same as that of clay X.

Kaolinite Clay

The available experimental data are the triaxial tests (No. 1 and 10)
and the simple shear tests (No. 4 and 13) withm = 0 or m = 1 under an un-
drained condition. The nonlinear elasticity model is utiliied for the
prediction,

The experimental data are plotted in the stress difference-the strain

.difference space as shown in Fig. 17. Here, as in the previous case, the
stress difference~the strain difference curves are fitted by functions in
order to determine the shear moduli GO and Gl which are functions of JZ'
For these tests to be predicted by the model, the major principal stress is
inclined at an angle to the vertical axis of the specimen, while the inter-
mediate principal stress remains horizontal. Since the material is assumed
to be isotropic for present case, the direction of the applied principal
stresses will not affect the results of prediction. The increments of

principal stresses with stress ratio m are expressed in terms of dqll by

m
= = = o d 44
doll dcll, d022 0 and dc33 ) 011 (44)

for Test No. 2, 3, 7, 11 and 12 and

T.-21-



1-2m m+1
= = d d d = ——— d 5
do , = do, s do,, = ——5 doy and doy, = 75 doyy (45)

for Test No. 5, 6, 8 and 9.

It should be noted that those principal stresses are the total princi-

pal stresses because the tests are conducted under an undrained condition,

Therefore, the effective principal stress increments must be knowm in order
to calculate the principal strain increments. In this case, the effective

stress increments are the deviatoric stress increments dsij because the

inclusion of hydrostatic pressure increment dI, causes a volumetric change.

1
Thus, the effective stress increments are calculated from Eqs. 44 and 45,
and the corresponding strain increments can be calculated in a same manner

as that described above.

Ottawa Sand

The experimental data available for predictions are the conventional
triaxial compression tests under the initial confining pressure of 5, 10
psi, the conventional triaxial tension test under the initial confining
pressure of 5 psi, and the simple shear tests with the stress ratio of m=0,
1 under the mean normal stresses of 5, 10 and 20 psi.

Here, as the experimental data for the loading, unloading and reload-
ing cases are given, the variable moduli model is used. 1In order to deter-
mine the shear moduli GO and Gl for the loading case, the experimental data
for the loading parts in the simple shear tests are plotted in the space
of the strain difference and the stress difference divided by the stress
difference at each failure (Fig. 18). The curves used in the prediction
are shown by the dotted curves which are obtained by a nonlinear regression
analysis. Thus, the shear moduli GL and GL for the loading cases are given

0 1
by

o
o
]
omt"
s
O
—
NoC
\—/

and ) (46)




0
where Of and 0% are the stress differences at failure in CTC and CTE tests.

The stress difference at a failure is given by

6(ccos¢ + o_ sing) :
02 _ _ m (47-a)
3 -sin ¢

for the modulus GE and

1 6(ccosd + g sing) .
o, = L (47-b)
3+ sin ¢

for the modulus Gi, where ¢ 1is the mean normal stress. In this case, the
m .
shear moduli are functions of I1 and Jg or J;.

To determine the shear moduli G°F, GYF for the unloading and reloading

0 1
cases, the experimental data for the unloading and reloading parts in the

simple shear tests are plotted in Fig. 19. 1In this case, the stress dif-
ference and the strain difference are measured from the unloading and re-
lecading points. The curves used in the prediction are shown by the dotted

curves. Thus, the shear moduli Ggr and G;r have the same form as that in
Eq. 46,

The bulk modulus KO and Kl are determined from the conventional tri-

axial compression and tension tests. Although the data on the isotropic
consolidation test are given, they are not used here to determine the bulk

moduli. The experimental data are plotted in Il and €1k
L

Fig. 20. The bulk moduli KO and Ki for the loading up to the unloading

point, Kgr and K;r for the unloading, relbading up to the point of previous

KTL
previous unloading are determined from the figure. These bulk moduli

space as shown in

unloading, and KgL and for the loading starting from the point of the

appear to depend on the initial confining pressure Gc. Therefore, the

general form for K may be written as

K = K(Gc) (48}

In general, the bulk modulus of Ottawa sand may be expressed by K,=K(omax)
where cmax is a maximum confining pressure similar to the preconsolidation

pressure.
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The calculation of the strain can be carried out in the same way as

mentioned previously.
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Fig. 2 Shape of Yield Criterion on n-Plane
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Fig. 11 Location of Hardening Caps for Clay X
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PLASTICITY MODELS FOR SOILS

Comparison and Discussion
by

E. Mizuno1 and W. F. Chenz, M. ASCE

Introduction
Herein, the predictions are made using the following three material
models:
(1) Nonlinear elasticity model with the Mohr-Coulomb or the Drucker-
Prager criterion as failure surface. This model is applied to
all predictions,

(ii) The Mohr-Coulomb type of elastic-plastic material model with two
different elliptical hardening caps. One on tensile meridian
plane (g = 0°) and the other on compressive meridian plane
(s = 60°). (Cap Model TI). This model is applied to "Clay X"
and "Clay Y".

(iii) The Mohr-Coulomb type of elastic-plastic material model with a
three—-dimensional elliptical cap whose shape depends on the
Lode angle 6 . (Cap Model 1I). This model is applied to
"Clay X" and "Clay Y".

The comparison and discussion are given in the forthcoming.
Clay X

The comparison of the predictions with the experimental data on the

simple shear tests with constant mean stresses at 10 psi, 20 psi and

lpesearch Assistant, School of Civil Engineering, Purdue University, West
Lafayette, IN 47907

ZProfessor of Structural Engineering, School of Civil Engineering, Purdue
University, West Lafayette, IN 47907
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30 psi are presented in Figs. 1 through 4 for each of the stress ratio

m = 0.25, 0.5, 0.75. In these figures, the stress difference-axial strain
relation, and the axial strain-volumetric strain relation are presented.
The experimental data are shown by the open circles and the predictions are
denoted by lines.

As can be seen from the figures, the predictions by the nonlinear
elasticity model are off somewhat from the experimental data with o, = 20
psi and 30 psi. The model, however, gives a good prediction for the tests
with cc = 10 psi and for Uc = 30 psi, m = 0.75. Since the model is assumed
to be isotropic, it is difficult to predict the behavior of the anisotropic
clay X. Also, it should be noted that the volumetric strain e, on the
simple shear tests can not be predicted by this model.

Cap models are seen tc predict the axial strain-stress difference
relation and the axial strain-volumetric strain relation well for all
experiments shown in figures. The tests at Gc = 10 psi show elastic. 1In
the prediction (cc = 10 psi), the cap models show some plastic strains in
the region near failure surface, For the experiment with ¢ = 10 psi,

m = 0.5, the caﬁ model I predicts only elastic strains becaﬁse the de-
composed stresses do not reach the hardening caps. Therefore, there is no

plastic strains.

Clay ¥

The comparison of prediction with experimental data on the triaxial
tests under initial confining pressures OC = 2,5, 5.0 and 10 psi is
presented in Figs. 5 through 7 for each of the stress ratio m = 0.25, 0.5,
0.75. As the initial confining pressures lie on the swelling line, clay
Y behaves first like an elastic material in the tests. Nonlinear elasticity
model predicts well the experiments with Gc = 2.5 and 5.0 psi. However, the
predictions for the tests with cc = 10 psi, m = 0.5 and o, = 10 psi, m =
0.75 are off somewhat from the actual data. This implies that plastic
strains must occur in the tests. Cap models reflect this as shown in Fig.
7. The predictions by cap models for the triaxial tgsts with Oc = 2.5 psi
and 5 psi are almost the same as that of nonlinear elasticity medel. - For
these cases, either the stress paths have not reached the hardening caps,

or the plastic straimns are small at this stage of loading.

T-2-



Kaolinite Clay

The comparison of the predictions with the data on the triaxial or
simple shear tests under the undrained condition is presented in Figs. §
through 12, The total axial stress vs. axial strain curves are shown in
the figures. As can be seen, the nonlinear elasticity model predicts
the experiments well. In particular, the predictions for Test NO. 7, 8,
9, 11 and 12 are very good. TIn this model, the pore water pressure
increment is taken to be equivalent to the increment of the first invari-

ant of the stress tensor Il.

Ottawa Sand

The comparison of predictions with experimental data on various tests
is presented in Figs. 13 through 21. 1In each fipgure, the strains in %, vy
and z directions are plotted against the octahedral shear stress Toct'
Except the circular stress path, all predictions are good. In particular,
the initial slope of the actual behavior of Ottawa sand and the failure
load are accurately predicted by the nonlinear elasticity model combined
with the Mohr-Coulomb criterion. As for the circular stress path, the model

prediction is different significantly from the actual data in the region of

Lode angle 6 between 60° and 420° (Fig. 21).
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Fig. 8  Axial Stress-Strain Relations for Kaolinite Clay, Test No. 2 and 3
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Fig. 9 Axial Stress-Strain Relations for Kaolinite Clay, Test No. 5 and 6
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