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SUMMARY

A response spectrum method for stationary random vibration analysis of linear structures

is developed. The method is based on the assumption that the input excitation is a wide-band,

stationary Gaussian process and the response is also stationary. However, it can also be used as

a good approximation for the response to a transient stationary Gaussian input with a duration

several times longer than the fundamental period of the structure. Various response quantities,

including the mean-squares of the response and its time derivative, the response mean fre­

quency, and the cumulative distribution and the mean and variance of the peak response are

obtained in terms of the ordinates of the mean response spectrum of the input excitation and

the modal properties of the structure. The formulation includes the cross-correlation between

modal responses, which are shown to be significant for modes with closely spaced natural fre­

quencies.

The proposed procedure is demonstrated for an example structure that is subjected to

earthquake induced base excitations. Computed results based on the response spectrum

method are in close agreement with simulation results obtained from time-history dynamic

analysis. The significance of closely spaced modes and the error associated with a conventional

method that neglects the modal correlations are also demonstrated through this example.
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INTRODUCTION

In random vibration analysis of structures subjected to stationary excitatiQns, a description

of the input excitation in terms of a power spectral density function is commonly used. For

linear systems, it is well known that the power spectral density of the stationary response is the

product of the system transmittancy function and the power spectral density of the input pro­

cess (8). It is also known that most response quantities of engineering interest can be obtained

in terms of the first few moments of the response power spectral density taken about the fre­

quency origin (16). For example, the zeroth moment, i.e. the area under the power spectral

density function, is the mean-square response, whereas the second moment, Le. its moment of

inertia, is the mean-square of the response rate. In the special case when the response process

is Gaussian, it has been shown that the first three spectral moments, Le., the zeroth, the first,

and the second, are also sufficient to determine the cumulative distribution and the mean and

variance of the peak response over a specified duration (I6,5). These response quantities are

fundamental to and, for the most part, are adequate for safety assessment of structural systems

subjected to random excitations.

In certain applications, such as in earthquake engineering, the specification of the input

excitation in terms of a power spectral density function is not the most convenient method. A

description that is often found to be more expedient is in terms of the mean response spectrum.

This is a function describing the mean of the peak response of an oscillator of varying fre­

quency and damping to a given input excitation. In structural engineering practice, a response­

spectrum description of an input is preferred because of a variety of reasons. Chief among

these is, perhaps, tradition; many existing structural codes and specifications are based on the

response-spectrum method, and most structural engineers are accustomed with this idea.

Another reason is convenience in generating design response spectra rather than power spectral

densities from existing data. Finally, as shown in this paper, for certain critical response quanti­

ties, such as the mean of the peak response, a formulation based on the response spectrum

method is computationally simpler than that in terms of the power spectral density function.
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It is shown in this paper that, under a general set of conditions, the first three moments

of the response power spectral density for a linear structure can approximately be obtained in

terms of the mean response spectrum of the input excitation and the modal properties of the

structure. These conditions are that: (a) the structure have classical modes, (b) the input exci­

tation be a stationary Gaussian process, and (c) the input be a wide-band process, i.e. have a

smoothly varying power spectral density over a range of frequencies covering the significant

modes of vibration of the structure. The resulting expressions for the three spectral moments

lead to a set of modal combination rules whereby each statistical quantity of the response,

including the mean-squares of the response and its time derivative, the response mean fre­

quency and the mean and variance of the peak response, is expressed as a combination of the

mean values of maximum modal responses, where each maximum modal response is obtained

in terms of the ordinate of the mean response spectrum, associated with the corresponding

modal frequency and damping, and the modal properties of the the structure. This analysis also

yields the cumulative distribution of the peak response in terms of the input response spec­

trum. An important feature of this formulation is that it accounts for the cross-correlation

between modal responses. It is shown that this correlation can be highly significant for struc­

tures with closely spaced natural frequencies.

In practice, the restrictions under which the method is applicable can be considerably

relaxed. Specifically, the method may be used for the transient response of structures to wide­

band Gaussian inputs, provided the peak response occurs during a stationary phase of the input

with a duration several times longer than the fundamental period of the structure. Within this

context, the method can be particularly useful in earthquake engineering in determining the

response of structures to transient base inputs. Such an application is demonstrated for an

example structure with closely spaced frequencies subjected to an ensemble of artificially gen­

erated earthquake motions. Computed results based on the proposed response spectrum

method are shown to be in close agreement with Monte Carlo results obtained through time­

history analyses of individual motions. The example also serves to demonstrate the significance
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of the cross-correlation between responses in modes with closely spaced frequencies.

RESPONSE OF MOF SYSTEMS TO STATIONARY EXCITATION

Consider an n-degree-of-freedom, viscously damped, linear structure. Assume that the

structure has classical modes with Wi' ~i' i=l, 2, ... ,n, denoting its modal frequencies and damp-

ing coefficients, respectively. It is well known (2) that, using a mode-superposition procedure,

any response R (I) of such a system can be expressed in terms of its modal responses as

(1)

where Ri{t) ='I'iSi{t) is the response in mode i, in which '1'; is the effective participation factor

for mode i and is a constant in terms of the i-th modal vector and the mass matrix (it is in gen-

eral the product of the conventional participation factor and a linear combination of the ele-

ments of the i-th modal vector (2», and Si{t) is the i-th normal coordinate, representing the

response of an oscillator of frequency Wi and damping coefficient ~i to the given input. Con-

sider the stationary response of the system to a stationary input F (t), described through a one-

sided power spectral density Gr(w). With no loss of generality, let F(t} be a zero-mean pro-

cess. Then, the response is also a zero-mean process. Its one-sided power spectral density is

given by

(2)
i j

where Hi(w) = 1/(wl-w2+2i~iw;w) is the complex frequency-response function (for displace-

ment response) of mode i and the asterisk denotes a complex conjugate. Using Eq. 2,

moments of the response power spectral density about the frequency origin are obtained as

00

Alii = f wlllGR (w)dw = LL'I'i'l'jAIII.U
o ; .i

where

(3)

AIII.U = Re[~WIIIGr(W)Hi(W)H;'(W)dW] (4)

are cross-spectral moments of the normal coordinates associated with modes i and j (5). It is

noted that because of symmetry GR (w) is always real-valued; therefore, only the real parts of
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the cross-spectral moments are of interest. Introducing coefficients Pm,u=Am,u/.JAm,iiAmJj, Eq,

3 can be written in terms of the spectral moments of the individual normal coordinates as

Am = r,r,'I';'I'jPm,u.JAm,i;Am,.i.i
; j

(5)

It is well known that AO=(j~ and A2=(j~ are the mean squares of the response, R (t), and its

time derivative, R(t), respectively, whereas AO,i; and A2,ii are the mean squares of the i-th nor­

mal coordinate S;(t) and its time derivative, S;(t), respectively, Also, from the preceding

definition of Pm,U' it should be clear that PO,ij and P2,U are cross-correlation coefficients between

Si(t) and S/t) and between their time derivatives, Si(r) and Sj(t), respectively, The moments

A1 and Al,ii are related to the envelope of the response process, as described in Ref. 16. The

corresponding coefficients, P1.ij, have no obvious physical interpretation, However, their

behavior is also similar to a correlation coefficient, as shown in Ref. 5.

Closed-form solutions for Am,U and Pm,U for m = 0, 1,2, i.e., for the first three spectral

moments, are given in Ref. 5 for responses to white-noise and filtered white-noise inputs. For

these classes of inputs, the power spectral densities are of the form

(6)

and

4+ 41' 2 2 2W" ~owoW
GF(w) = " "., G (7)

(w,3-w2)2+4~iw,3w2 0

respectively, where Go is a scale factor and wg and ~g are the filter frequency and damping

coefficient. By proper selection of these parameters, a variety of input power spectral density

shapes can be studied. In particular, the filter frequency, wg , determines the dominant range of

input frequencies, whereas ~g determines the smoothness of the power spectral density shape,

see Fig, 1, Observe that spectral amplitudes for frequencies greater than W g rapidly diminish

with increasing frequency. As a result of this, responses in modes with frequencies much

greater than wI( will generaily be small and insignificant in comparison to responses in modes

with frequencies within the dominant range. This fact plays an important role in the subse-

quent development, since results obtained in the response spectrum method for modes within
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the dominant range of frequencies will be more accurate leading to accurate estimation of the

response. Also observe in Fig. 1 that the spectra are smoother for larger values of ~g' For the

purpose of this study, a filtered white-noise input with ~g ~ 0.6 will be considered as a wide-

band input. It is noted in passing that a filtered white noise with w.~ = 57T and ~g = 0.6 is com-

manly used in earthquake engineering to model the ground acceleration process (2,7).

It is shown in Ref. 5 that whereas A./lI,ij are sensitive to the shape of input power spectral

density (as described by parameters wg and ~g), the coefficients PIII.U remain relatively

indifferent for wide-band inputs, i.e. for ~g ~ 0.6. As an example, Fig. 2 shows a comparison

of Po.u for responses to white-noise and filtered white-noise inputs with.{~ = 0.6. Similar results

are given in Ref. 5 for PI.U and P2.U' Observe in this figure that the correlation coefficient

rapidly diminishes as the two modal frequencies Wi and Wj move further apart. This is especially

true at small damping values that are typical of structures. Thus, for wide-band inputs cross

terms in Eq. 5 are only significant for modes with closely spaced frequencies. Also note that

the coefficients for responses to the two types of inputs are nearly the same as long as the

modal frequencies are not far beyond the dominant range of input frequencies, as it happens at

the right end of the lower graph in Fig. 2 where both Wi and Wj are much greater than Wgo

Since the latter case is not critical, it follows that cross-correlation coefficients based on

response to a white-noise input are good approximations to the corresponding coefficients for

responses to wide-band inputs. Exact solutions of PIII.U' m = 0, 1, 2, for response to white-noise

input are given in Ref. 5. A set of approximate expressions obtained from these results are

(8)

(9)

00)

Pl.U =

2~[(Wi+w)2(~i+~) + (w?-w}) (~i-~)]
Po.u =

4(Wi-W)2+ (Wi+w)2(~i+~)2

2~[(w,+wY(~;H)- 4(w;-w)2/7T ]

4(Wi-W)2+ (Wi+w)2(~i+~)2

2~[(Wi+w)2(~i+~)- (w?-w}) (~i-~)]
P2,U =

4(Wi-Wj)2+ (Wi+WjV(~,+~)2

These expressions, which are simpler but good approximations of the exact results, are plotted

in Fig. 3 for selected values of damping. On the basis of the preceding discussion, these
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expressions will be used here for responses to wide-band inputs with arbitrary power spectral

density shapes. With these expressions given, to evaluate Eq. 5 it is only necessary to compute

the spectral moments for individual normal coordinates given by

00

Am.i; = f wmCF(w) IH;(w) 12dfl)

o
These moments for m = 0, 1, and 2 are subsequently obtained in terms of the ordinates of the

mean response spectrum.

STATISTICS OF PEAK RESPONSE FOR GAUSSIAN EXCITATION

It is well known that the response of a linear structure to a zero-mean Gaussian input is

also zero-mean and Gaussian (8). Vanmarcke (17) has derived a distribution for the first-

crossing time of a symmetric barrier for a zero-mean, stationary Gaussian process in terms of

its first three spectral moments. Using his formulation, the cumulative distribution of the peak

absolute response over a duration T, defined as

can be expressed as

, [ ] [ l-eXp(-.J'lT/28 eS)]
FRr(r) = l-exp(-s2/2) exp -VT exp(s2/2)-I ,r >0

in which s = r/ IJ R = r/.J>:o is a normalized barrier level,

IJi? 1 r;;
v = 'lTIJ R = -:;;" ~

is the mean zero-crossing rate of the process, and 8e = 81,2, where

(12)

(13)

(14)

(15).j:ff28 = 1__1_

AO"-2

is a shape factor for the response power spectral density with a value between zero and unity.

(A small value for 8 denotes a narrow-band process whereas a value near unity denotes a wide-

band process (17).) The mean and standard deviation of R T may in general be obtained as

RT=pIJR and IJR
T
=qIJR, respectively, where p and q are peak factors given in terms of the

three spectral moments and the duration To For 10 ~ VT ~ 1000 and 0.11 ~ 8 ~ 1, which are of
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interest in earthquake engineering, approximate expressions for P and q from Ref. 5 are

~l+ 0.5772
P = "\I LlnV e7

.J2lnv e7

1.2 5.4
q= -

.J2lnve7 13+(2Inve7)3.2

where

v = 1(1.6380
.4S- 0.3S )V, 8 < 0.69

e v, 8 ~ 0.69

(16)

(17)

(1S)

(19)

(20)

is an equivalent rate of statistically independent zero crossings. Fig. 4 shows plots of P and q

versus V7 for selected values of 8. Shown in this figure is also the ratio q / P which is the

coefficient of variation of the peak response.

For large values of V7 (say, V7 ~ 5000), which may be of interest in some applications

such as in wind and ocean engineering, asymptotic expressions of the peak factors given by

Davenport (3) may be used

~+ 0.5772
P = "Lillv7 .J21nv7

1T 1
q=-

.J6 .J21nv7

These expressions, which are independent of 8, disregard the dependence between the crossings

of the process. For this reason they can only be used for large V7 for which the influence of

such dependence on the mean and variance is negligible (17).

Results similar to the above also apply to each normal coordinate Si (t). It suffices to

replace R by Si and Am by Am./i in each of Eqs. 12-15. For notational purposes, the parameters

v, 8, P, and q for the i-th normal coordinate will be denoted in the subsequent analysis by Vi'

8 i , Pi' and qi' respectively.

DEVELOPMENT OF THE RESPONSE SPECTRUM METHOD

Let ST(W,~) represent the mean value of the maximum absolute response of an oscillator

of frequency wand damping ~ to a stationary input excitation, F(r), over a duration 7. The

function ST(W, {) for variable W and ~ is defined herein as the mean response spectrum associ-

ated with the input F (t) and the duration 7. It is the objective in this section to develop a
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procedure for evaluating the response of a multi-degree-of-freedom structure when the input is

a zero-mean, wide-band, stationary Gaussian process specified through its mean response spec-

trum.

From solutions in Ref. 5, it can be shown that the mean zero-crossing rate,

V,=.jA2,,)Ao,Jrr, and the shape factor, 8,=.J1-Af.JJ/AO,JJA2,jj, associated with the response of

an oscillator of frequency Wi and damping coefficient L, are not too sensitive to the shape of

the input power spectral density, provided that the input is wide-band and that the oscillator

frequency is not far beyond the significant range of input frequencies. As an example, Fig. 5

shows the ratios of these quantities for response to a filtered white-noise input with (g = 0.6 to

those for response to a white-noise input. Observe that the ratio of the mean zero-crossing

rates is always very near unity. Also, the ratio of shape factors is near unity for values of the

oscillator frequency that are within the dominant range of input frequencies. From this argu-

ment, and the fact that the response is not overly sensitive to small variations in the mean

zero-crossing rate and the shape factor (as it is evident in Fig. 4 for the mean and variance of

the peak response), it follows that values of v, and 8, that are based on a white-noise input are

good approximations for the corresponding values for response to a wide-band input with arbi-

trary power spectral density shape. Thus, using results for a white-noise input (5,17),

W,
v·=­I

7T

and

[ [ 1
21'h [ I'h8, = 1- 1 l-1.. tan-l (, ~2 ..h

.J1-(? 7T .J1-(? 7T

(21)

(22)

where the approximation is valid for small damping. These expressions are used in Eqs. 16-18

(or 19-20) to compute the peak factors P, and qi for each normal coordinate in terms of the

corresponding modal frequency and damping coefficient.

From the definition of the mean response spectrum, it is clear that ST(W;,~) is the mean

of the absolute maximum of the i-th normal coordinate, S; (t). Thus, using the relation



- 10 -

1 -2
AO,ii = -2ST (Wi' U (23)

Pi

Furthermore, using the relations 1J j = .JA2,iJAo,;;/'rr and fj i = .J1 - Af./JAO.iiA2,ii together with the

above expression and Eqs. 21-22, the first and second spectral moments for the i-th normal

coordinate are obtained as

(24)

(25)

and

2
Wi -2 ( )

A2.ii = -2ST Wi' ~i
Pi

respectively. Eqs. 23-25 give the first three spectral moments of the i-th normal coordinate in

terms of the corresponding modal frequency and damping coefficient and the ordinate of the

input response spectrum. These results are, of course, only valid for responses to wide-band

inputs and for modes whose frequencies are within the dominant range of the input frequen-

cies.

Using Eqs. 23-25 together with Eqs. 8-10 in Eq. 5, the moments AO, AJ, and A2 of the

response power spectral density are computed in terms of the response spectrum ordinates.

These moments can be used to evaluate the cumulative distribution of the peak response or the

various statistical quantities of the response as described in the previous section (Eqs. 13-20).

In particular, denoting RiT='J!iST(W,,~) as the mean of the maximum response in mode i, this

analysis yields the following modal combination rules for the response quantities:

Root-mean-square of response:

Root-mean-square of response rate:

[ I
~

WiWi --
(j" R = 1212--'P2.U RiT RjT

i j PiPi

Mean of peak response:

(26)

(27)

(28)
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Standard deviation of peak response:

[
2 I'/'q - -

U'R
T

= qU'R = 1:1:-.-.PO,URjTRjT
i j P,PI

where p and q in the last two equations are the peak factors for the response and are obtained

from Eqs. 16-18 (or 19-20) in terms of the mean crossing rate (Eq, 14) and the shape factor

(Eq. 15) of the response process. Another quantity that is of practical interest is the response

mean frequency, denoted by W, which is given by

,/,

U'R
W = 1TV = -- =

U'R
(0)

This frequency determines the average number of response cycles over a unit duration and is

useful in certain studies such as for fatigue related failures. Observe that, since Po,u and P2.U

are nearly the same (see Fig. 3), the mean response frequency is a weighted root-mean-square

of the modal frequencies of the structure.

It is important to note in the preceding expressions that since ST(Wj,~) is by definition

positive, the sign of liiT is the same as that of the corresponding effective participation factor,

'l'i' The sign of this factor depends on the modal characteristics of the structure and on the

direction of input. Since Po,u and P2,U are always positive, it follows that the cross terms in

Eqs. 26-30 are negative when 'l'i and '1') assume opposite signs. It is easy to show, however,

that the double summations inside parentheses in these expressions are always positive.

In many practical applications, the mean of the peak response is all that is required.

Therefore, a close examination and possible simplification of Eq. 28 is of special interest. It is

first noted from substituting Eq. 21 in Eq. 30 that the mean zero-crossing rate of the response

process, v, is a weighted root-mean-square of the mean zero-crossing rates, Vi' of the normal

coordinates. On the other hand, the shape factor, 0, of the response process would usually tend

to be greater than 0 i, since the response being contributed by all modes is usually a broader-

band process than each of the normal coordinates. This, however, may not be true when the

response is mainly contributed by one mode or two closely spaced modes, in which case 0 can
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be equal to or smaller than f)i' In any case, since the peak factor is only slightly dependent on

the shape factor (see Fig. 4), it is easy to see that, because of the relation of v to Vi' P would

generally tend to be some sort of an average of Pi' It follows, then, that the ratios piPi are

around unity and, since the peak factor monotonically increases with the frequency, they tend

to decrease with increasing mode number. The role of these ratios in Eq. 28 for the mean

response, therefore, is to enhance the contributions from the lower modes and to reduce those

from the higher modes of the structure. Since the peak factor has slow variation with the fre-

quency, as is evident from its logarithmic relation to the mean-crossing rate (see Fig. 4), for

most structures the ratios piPi would tend to be near unity. Thus, these ratios in the expres-

sion for the mean response can be discarded without much loss of accuracy. With this

simplification, Eq. 28 reduces to

ii, ~ [~~Oijii"iilf (31)

The advantage gained from this simplification is that the mean response is now given directly in

terms of the maximum modal responses and the coefficients Po.u; Le., there is no need to com-

pute the spectral moments from Eq. 5. Also note that this expression for the mean response is

independent of the duration (except that which is implied through the input response spec-

trum).

A similar simplification of the expression for the response mean frequency, W, is also pos-

sible, which after multiplying the numerator and denominator in Eq. 30 by P and neglecting the

ratios piPi> reduces to

';'

LLW iW jP2,URiTRiT

W = I_i
----::.

j
__--==-=_-

LLPo.URiTR;T
i j

(32)

Observe that, with this simplification, wbecomes the root-mean-square of the modal frequen-

des as weighted by the maximum modal responses. Because of this, this frequency is a good

indicator of the significance of contributions from various modes of a structure to a particular

response, i.e. a larger wwould indicate larger contributions from higher modes.
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For structures with well separated frequencies the coefficients Pm.U vanish; see Fig. 3. As

a result, all cross terms in the response expressions, i.e., Eqs. 5 and 26-32, can be neglected for

such structures. (As a simple rule, such terms can be dropped when w;;W j is less than

0.2/ ({ ;+{), which approximately corresponds to P m.U less than 0.1 (5).) In particular, Eq. 31 in

this case reduces to

(33)

This is the well known square-root-of-sum-of-squares (SRSS) rule for modal combination. It is

clear from this derivation that the SRSS rule for the peak response is only adequate for struc-

tures with well spaced frequencies. The error associated with the SRSS method for neglecting

the modal cross-correlations can be significant, as illustrated in the subsequent example.

APPLICATION TO EARTHQUAKE LOADING

The proposed modal combination procedure should be particularly useful in earthquake

engineering, where a response spectrum description of the ground motion is widely used. How-

ever, for such an application, it is important to examine the validity of the basic assumptions of

the method relative to earthquake excitations. Specifically, assumptions to be examined are: (a)

that the ground motion is a stationary Gaussian process with a wide-band power spectral den-

sity, and (b) that the response of the (linear) structure is a stationary process. Whereas

earthquake-induced ground motions are inherently nonstationary, the strong phase of such

motions is usually nearly stationary. Since the peak response generally occurs during this

phase, it is reasonable, at least for the purpose of developing a response spectrum method, to

assume it to be a stationary process. This assumption would clearly become less accurate for

short-duration, impulsive earthquakes. The assumption of Gaussian excitation is acceptable on

the basis of the central limit theorem, since the earthquake ground motion is the accumulation

of a large number of randomly arriving pulses (2). The wide-band assumption for the earth-

quake motion has been verified based on recorded motions and is generally accepted (2,7).

Finally, for the assumption of stationary response, it is well known (e.g., Ref. 8) that the
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response of a not-too-lightly damped oscillator to a wide-band input reaches stationarity in just a

few cycles. Thus, this assumption should be acceptable for structures whose fundamental

periods are several times shorter than the strong-phase duration of the ground motion. These

considerations also suggest that the strong-phase duration of the ground motion is the appropri­

ate value for the parameter T to be used in the response spectrum method.

It is clear from the above discussion that the response spectrum method for earthquake

loading will be most accurate for earthquakes with long, stationary phases Of strong shaking and

for not-too-lightly damped structures whose fundamental periods are several times shorter than

the duration of earthquake. Through a number of example studies, it has been found that the

procedure is quite accurate for typical structures and earthquakes (see the example below). It

has also been found that Eq. 31 for the mean response closely approximates the maximum

response for a deterministic ground motion with a non-smooth response spectrum. For this

reason, it has been proposed as a replacement for the SRSS method in deterministic analysis

(18). Based on the coefficient of variation of the peak response, i.e. the ratio q/p in Fig. 4,

maximum errors in such applications are expected to range within 10 to 30 percent, depending

on the response frequency.

Several formulations for the mean of the peak response to earthquake excitations have

previously been proposed (10,11,14). These are similar to Eq. 31 of the present formulation,

except for the difference in expressions given for the cross-correlation coefficient. The best

known among these methods is that of Rosenblueth et al. (10). In their formulation, which

has somewhat heuristic bases, the cross-correlation coefficients are given in terms of the modal

frequencies and damping coefficients and the duration of motion. For earthquake-type excita­

tions, this method appears to give good results if the duration is known (see Refs. 4 and 13 for

comparisons of the method with exact solutions). However, since the duration is often unk­

nown, Eq. 31, which is independent of duration, provides a better method to be used in such

applications. It must be pointed out that none of the existing response spectrum methods pro­

vide any means for computing the variance or the cumulative distribution of the peak response.
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This aspect of the present formulation, therefore, is unique and a furtherance of the state of

the art.

EXAMPLE APPLICATION

As an example application of the proposed response spectrum method, the responses of a

5-story building structure to a set of 20 simulated ground motions are studied. The building is

assumed to have rigid floors with uniform mass and stiffness along the height. A typical floor

plan and the properties are shown in Fig. 6. The structure is subjected to ground motions in

the x direction only. However, because of asymmetry about the x axis, the center of mass at

each floor has a rotational as well as a translational degree of freedom. This results in modes

with closely spaced frequencies, as described in the table in Fig. 6.

The ground motions used in this study were obtained using a simulation method by Ruiz

and Penzien (12). In this method, ground acceleration records are generated as samples of a

filtered Gaussian white-noise process as modulated by an intensity function. The filter parame­

ters for the power spectral density were selected to be w.~ = 51T and ~g = 0.6. An intensity func­

tion similar to that of a type-B earthquake, as defined by Jennings et al. (6), was used for this

purpose. It includes a stationary strong-motion phase of 11 seconds (between 4 and 15

seconds), yielding T = 11 for the response spectrum analysis. The power spectral density scale

factor, Go (see Eq. 7), was selected such as to produce a mean peak ground acceleration of 0.5g

over the ensemble of records. A sample of the simulated ground motions is illustrated in Fig.

7.

Pseudo-velocity response spectra associated with each individual ground motion for 0, 2,

5, 10, and 20 percent damping were computed. Means, standard deviations, and coefficients of

variation of these spectra are shown in Fig. 8. For comparison, the coefficient of variation, q / p,

based on Eqs. 16-18 and 21-22, are also shown in Fig. 8(c) for the spectra with non-zero damp­

ing (smooth curves). Observe that for such spectra the analytical estimates of the coefficient of

variation closely agree with simulation results. It is interesting to note that the coefficient of

variation is relatively insensitive to damping. Also, note that it increa~es with increasing period
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ranging from about 0.1 at short periods (0.05 seconds) to about 0.3 to 0.4 at long periods (5

seconds). This implies that the peak response of low-frequency oscillators is more sensitive to

details of the ground motion than that of high-frequency oscillators. This is in agreement with

Trifunac's results in a study of digitization noise for recorded accelerograms (15). It is also

interesting to note in the simulation results of Fig. 8(c) that for an undamped oscillator the

coefficient of variation in the peak response is much larger than that for a damped oscillator,

especially for short periodloscillators. (Note that for an undamped oscillator the response does

not reach stationarity and the analytical expressions in Eqs. 16-18 do not hold.) A somewhat

surprising result in Fig. 8(c) is the small magnitude of the coefficient of variation for damped

spectra. Studies based on recorded accelerograms, such as that by Newmark (9), generally indi­

cate much larger variability. This can be explained by the fact that acceleration records used in

such studies are for different earthquakes and site conditions and do not represent members of

a single stochastic process. The larger coefficient of variation is a consequence of this added

variability.

Using numerical integration, peak responses of the example structure to each of the 20

ground motions were computed. These samples are subsequently compared with response esti­

mates based on the proposed method using the mean response spectrum in Fig. 8(a). Table 1

shows a comparison of the means and standard deviations of peak responses. (The word "simu­

lation" in this table denotes results based on numerical integration). Included in this table are

estimates of the mean peak response based on Eq. 28, the simplified method of Eq. 31, and the

SRSS method of Eq. 33, and estimates of the standard deviation of peak response based on Eq.

29. Estimates of the root-mean-square response based on Eq. 26 are also included in the last

column of the table. It can be observed in this table that Eqs. 28 and 29 for the mean and

standard deviation of the peak response are in close agreement with the simulation results. The

simplified expression for the mean response, Eq. 31, also appears to give good results. How­

ever, the SRSS method, Eq. 33, is in gross error reflecting the significance of the correlation

between modal responses which is neglected in this approach. Note that this method of modal
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combination underestimates the translational responses by as much as 27 percent and overesti­

mates the rotational responses by a factor greater than 2.

Fig. 9 shows a plot of the mean frequency, iii, for various responses orthe structure. As

can be observed, this frequency has a small value (close to the frequencies of the first two

modes) for floor displacements and rotations and for lower story shears and torques, whereas it

has a larger value for upper story shears and torques and for floor pseudo-accelerations. Since

iii is the root-mean-square of modal frequencies as weighted by the corresponding modal

responses, it follows from Fig. 9 that, as expected, floor displacements and rotations and lower

story shears and torques are mainly contributed by the first two modes, whereas upper-story

shears and torques and floor pseudo-accelerations have significant contributions from higher

modes.

Finally, Fig. 10 shows comparisons between the cumulative histograms of the simulated

samples and the cumulative distribution of Eq. 13, based on the response spectrum method, for

selected response quantities. In all cases, the theoretical distribution is acceptable based on the

Kolmogorov-Smirnov test (1) at all significance levels.

CONCLUSIONS

The principal results and conclusions of this study can be summarized as follows:

(1) A response spectrum method for stationary random vibration analysis of linear structures

subjected to wide-band, stationary Gaussian excitations is developed. Modal combination

rules are derived for the mean-squares of the response and its time derivative, the mean

and variance of the peak response and the mean frequency of the response. The cumula­

tive distribution of the peak response is also obtained in terms of the input response spec­

trum. The analysis properly accounts for the cross-correlation between modal responses.

(2) The cross-correlation between modal responses is significant for modes with closely spaced

frequencies. The conventional SRSS method of modal combination, which neglects this

correlation, can lead to gross errors in estimating the peak response when the structure
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frequencies are closely spaced.

(3) The proposed response spectrum method can be used for structures subjected to transient

Gaussian wide-band inputs, such as earthquake induced base excitations.' In such applica­

tions, the method would be more accurate when the excitation has a long, stationary

phase of strong motion, and the structure is not too lightly damped and has a fundamental

period which is several times shorter than the duration of excitation.

(4) In an example application, results based on the proposed response spectrum method are in

close agreement with simulation results based on time-history computations. It is shown

that the coefficient of variation in the peak response of an oscillator increases with

decreasing oscillator frequency and damping. This coefficient is found to range between

0.1 to 0.4 for oscillators of period 0.05 to 5 seconds. It is also shown that the response

mean frequency, which is given as the root-mean-square of modal frequencies as weighted

by the corresponding modal responses, is a good indicator of the significance of higher

modes to a particular response.
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NOTATION

cumulative distribution of R T ;

power spectral density scale factor;
power spectral density of F(t);
power spectral density of R (t);
frequency response function for mode i;
complex conjugate of H,(w);
a non-negative integer;
peak factor for mean of peak response;
peak factor for mean peak of i-th normal coordinate;
peak factor for standard deviation of peak response;
peak factor for standard deviation of peak of i-th normal coordinate;
barrier level;
random process describing response of structure;
time derivative of R (t);
random process describing response in mode i;
peak of R (t) over T;
mean of RT ;

mean of peak response in mode i;
normalized barrier level;
normal coordinate associated with i-th mode;
time derivative of Sl(t);
ordinate of mean response spectrum at frequency wand damping ~;

time;
shape factor for power spectral density of R (t);
an effective value of 0;
shape factor for power spectral density of S,(!);
filter damping coefficient;
damping coefficient for mode i;
m-th moment of response power spectral density;
m-th cross-spectral moment of S,(t) and SiC!);
mean zero-crossing rate of R (t);
an equivalent mean zero-crossing rate;
mean zero-crossing rate of S, (!);
correlation coefficients associated with AmJi ;

root-mean-square of R (t);
root-mean-square of (J'R;

standard deviation of peak response;

duration of excitation;
effective participation factor for mode i ;
circular frequency;
filter circular frequency;
natural circular frequency of mode i; and
mean frequency of response.
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Table 1. Summary of Results for Example Structure

Rr (J R
T

(JR

Response Level
Description

Simul.
Eq. 28 Eq.31 Eq. 33

Simul.
Eq. 29

Eq.26·Simul. Simul. Simul. Simul.
Displacement, em. 5 8.05 0.99 0.97 0.74 1.59 0.92 2.96

4 7.38 0.98 0.98 0.74 1.43 0.90 2.68
3 6.10 0.99 0.99 0.75 1.19 0.88 2.23
2 4.36 1.00 0.99 0.75 0.85 0.88 1.59
1 2.29 1.02 0.99 0.75 0.43 0.87 0.82

Rotation, radx10-2. 5 0.463 1.06 1.14 2.32 0.088 1.01 0.200
4 0.426 1.02 1.12 2.31 0.082 1.05 0.178
3 0.355 1.00 1.11 2.30 0.070 1.07 0.146
2 0.256 0.99 1.10 2.29 0.051 1.06 0.104
1 0.134 1.01 1.10 2.28 0.026 1.03 0.054

Pseudo-Acceleration, g. 5 1.430 0.99 0.97 0.73 0.278 0.90 0.486
4 1.270 1.02 0.98 0.74 0.237 0.87 0.458
3 1.050 1.08 1.01 0.76 0.192 0.87 0.384
2 0.843 1.08 0.99 0.74 0.114 1.09 0.298
1 0.611 0.96 0.86 0.73 0.067 1.07 0.182

Angular Pseudo- 5 0.803 1.07 1.11 2.31 0.136 1.09 0.296
Acceleration, rad/ S2. 4 0.716 1.10 1.12 2.31 0.140 0.93 0.278

3 0.624 1.16 1.09 2.25 0.131 0.81 0.246
2 0.494 1.17 1.07 2.23 0.101 0.79 0.192
1 0.296 1.21 1.10 2.30 0.051 0.89 0.112

Story Shear, kN. 5 1408 0.99 0.97 0.73 273 0.90 478
4 2648 1.00 0.97 0.73 504 0.84 945
3 3628 0.98 0.98 0.74 687 0.89 1305
2 4302 0.99 0.99 0.75 829 0.89 1569
1 4701 1.00 0.99 0.75 893 0.90 1681

Story Torque, kN.m. 5 2488 1.07 1.11 2.31 421 1.09 914
4 4640 1.13 1.12 2.32 837 1.05 1897
3 6367 1.03 1.13 2.34 1246 1.08 2641
2 7686 1.01 1.12 2.33 1568 1.04 3166
1 8442 1.06 1.13 2.31 1727 0.94 3577

Note:R r = mean of peak response; (J R = standard deviation of peak response;(J R~ root-mean-
T

square response.
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Figure 6. Properties of Example Structure.
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