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ABSTRACT

A hybrid model for the analysis of soil-structure interaction is

proposed which promises to be superior to the currently available

methods of analysis. The modelling is achieved by partitioning the

total soil-structure system into a near-field and a far-field with

hemispherical interface. The near-field, which consists of the

structure to be analyzed and a finite region of soil around it,is

modelled by the finite element method. For the semi-infinite far­

field, impedance matrix corresponding to the interface degrees of

freedom is developed which accounts for the loss of energy due to

waves travelling away from the foundation.

For torsional vibrations, the far-field impedance matrix can be

determined analytically. For general loading conditions a semi­

analytical approach is adopted in which the far-field is modelled

through continuous impedance functions placed in the three coordinate

directions at the interface. These frequency dependent impedance

functions are determined by using system identification methods such

that the resulting hybrid model reproduces the known compliances of a

rigid circular plate on an elastic halfspace. Numeri~al results

obtained using these far-field impedances indicate that the proposed

model presents a realistic and economic method for the analysis of

three-dimensional soil-structure interaction in surface or embedded

structures.
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1. INTRODUCTION

Soil-structure interaction has significant influence on the

dynamic response of massive embedded structures such as nuclear power

plant buildings and offshore gravity towers. Although considerable

effort has been made in the past to develop an understanding of this

phenomenon, conceptual and computational difficulties still remain

primarily due to the three-dimensional, semi-infinite nature of the soil

medium. Complex geometries associated with real structures, non­

homogeneity and strain dependency of soil properties, scattering of

seismic waves from the embedded foundation, and uncertainties associated

with input motions are factors which complicate the mathematical modelling

process. Rigorous mathematical treatment of these factors is impossible

at the present time.

Currently, two basic methods are available for the analysis of

soil-structure systems: the continuum method and the finite element

method. Both methods involve certain simplifying assumptions regarding

the nature of the problem and both have certain advantages and dis­

advantages over the other [1,2,3].

In the continuum approach (sometimes referred to as the impedance

approach or the substructure approach), the foundation is idealized as

a rigid massless plate bonded to a semi-infinite halfspace to which the

structure is directly coupled as shown in Fig. l.l(a). Frequency

dependent impedance functions for the plate are developed and incorporated

into the Fourier transformed equations of motion for the structure by

imposing the conditions of compatibility and equilibrium between the

structure and the plate. The continuum approach provides a simple and

economical three-dimensional model for a large class of practical
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soil-structure interaction problems. Its obvious disadvantage is the

simplistic modelling of the struQtural foundation as a rigid plate with

simple geometries.

Evaluation of the dynamic impedances for the plate requires the

solution of a mixed boundary value problem in elastodynamics. This

problem is simplified by assuming a stress distribution or a relaxed

contact between the plate and the soil. Analytical solutions for the

impedance (or compliance) functions for the rigid body modes of a

massless circular plate on a homogeneous, isotropic, elastic halfspace

have been presented, among others, by Lysmer and Richart [4], Veletsos

and Wei [5] and Luco and Westemann [6]. Solutions for layered elastic

halfspaces [7-12], viscoelastic halfspaces [13,14] and layered

viscoelastic halfspaces [15] are also available. The corresponding

solutions for rigid rectangular plates have been presented in Refs. 16-22.

The two-dimensional problem of a rigid strip footing on an elastic

halfspace has been studied by oien [23] and Luco and Westemann [24].

Wong and Luco [25] in 1976 developed a method to analyze arbitrary

shaped rigid foundations on the surface of viscoelastic halfspaces by

expressing the displacements in terms of an integral of Green's function.

Studies of the effect of foundation embedment on response have

been rather limited. Continuum solutions are available for dynamic im­

pedances of rigid embedded foundations for antiplane [26-29] and plane

strain [30,31] conditions. Luco [32] obtained impedance functions for the

torsional vibrations of a rigid hemisphere embedded in a homogeneous

elastic halfspace. Apsel and Luco [33] later generalized the above approach

for semi-elliptic foundations. Approximate solutions for the dynamic

impedances of a vertical rigid circular cylinder have also been obtained

by assuming that the pressure distribution under the footing is the same
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as that for a circular surface footing [34,35,36]. Recently, Apsel [37]

presented a method to analyze rigid embedded foundations of arbitrary

shapes. This method represents a significant advancement in the state­

of-the~art in soil-structure interaction.

The input motion to the foundation in the continuum approach is

usually taken as the free-surface ground motion. It may, however, be

different from the free-surface motion if the seismic waves are not

vertically incident or if the structure is deeply embedded in the soil.

The response of a foundation to incoming seismic waves constitutes what

is called a scattering problem which has been studied by several

authors [27,31,38-40]. Most of these studies are limited to the case of

plane SH waves. The interaction of Rayleigh surface waves with footings

has been investigated by Iguchi [41] for rectangular foundations and by

Simpson [42] for strip footings. These studies indicate that the

scattering effects may significantly reduce the free-field motion and

induce torsional and rocking motions in addition to translation. Rigid

foundations also have a filtering effect on the high frequency content

of the incoming seismic waves, filtering out those with wave lengths

smaller than the width of the foundation 143-46]. Although such an

approach to soil-structure interaction analysis deserves attention, one

is limited by lack of knowledge about the wave content of a typical

strong motion accelerogram and the angle of incidence of the incoming

seismic waves. Recent studies [47,48] have shown that a major constituent

of a typical strong motion earthquake are the surface waves; however,

their exact proportion and the presence of other types of waves may vary

from earthquake to earthquake. In the light of such limitations, it

appears reasonable and prudent at present to use the more reliably

recorded free-field motions as input to soil-structure systems.
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The other approach to the analysis of soil-structure interaction

is the application of the finite element method [49,50,51]. In ,this

approach both the structure and the soil are modelled through an

assemblage of finite elements, Fig. l.l(b). An obvious disadvantage of

such an approach is that the soil which is essentially semi-infinite in

nature has to be modelled by a finite sized model with a rigid lower

boundary. This rigid boundary has the effect of trapping energy

radiating away from the foundation; thus, introducing artificial

resonance conditions in the response. The discretization also causes a

filtering effect on the waves in the higher frequency range. These

problems may somewhat be mi,tigated by placing the boundaries far from

the structure and by keeping the size of the finite elements sufficiently

small. This however leads to a system with a relatively large number of

degrees of freedom causing severe penalty on computer time and storage.

The analysis is therefore usually restricted 'to two-dimensions. This

inability of the finite element method to properly model the soil as a

three-dimensional semi-infinite medium is a major disadvantage. It has

been shown [52] that.an arbitrary r.eduction of a three-dimensional problem

to two-dimensions not only underestimates the peak amplitude of ,response

but also affects the frequency where it occurs. The overwhelming

advantage of the finite element method is that structures with flexible

foundations embedded in the soil and having complex geometries can be

analyzed without major difficulty. The strain dependency of the soil

properties and their spatial variation can also be considered by assigning

appropriate material properties to each element.

In an effort to minimize errors associated with a finite size

model, special non-reflecting boundaries have been developed. Lysmer and

Kuhlemeyer [53] developed an approximate energy absorbing boundary in
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the form of discrete viscous dampers placed around the boundary of the

finite element grid. Other boundaries of similar nature have.been

proposed by White et ale [54] and Smith [55]. A transmitting boundary

for plane and axisymmetric problems was proposed by Waas [56] that was

an accurate representation of the radiation boundary conditions. This

approach was later extended to axisymmetric problems with arbitrary

loading conditions [57]. These analyses are however limited to half­

spaces underlain by rigid bed rock. No satisfactory solutions are as yet

available for three-dimensional situations where bed rock does not

exist at reasonable depths. These viscous and transmitting boundaries,

in conjunction with the finite element method, have been used to determine

the impedance functions for rigid embedded foundations [58,59]. The

viscous boundaries have also been used to simulate the third dimension,

in an otherwise two-dimensional analysis of soil-structure interaction,

without much physical justification [60,61].

Another variation of the finite element method is the so-called

general substructure method [62,63]. In this method, a finite element

analysis of the soil region without the structure is first carried out

to determine the dynamic stiffness matrix corresponding to the interface

degrees of freedom which is later used in soil-structure analysis of

the structure. The method has computational advantages over the direct

application of the finite element method. However, in the analysis of the

soil region, the various limitations pertinent to the finite element

method apply. For the simple case of a homogeneous viscoelastic halfspace

in plane strain, the dynamic stiffness matrix for the surface degrees of

freedom has been developed analytically [64].

Recently, Day [65] used the finite element method in a time-
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domain analysis to obtain steady state response of a rigid hemispherical

foundation. A large finite element mesh is used so that the waves

reflected from the rigid boundaries would arrive after the transient

solution has been completed; thus, eliminating the influence of the rigid

boundaries on response. Close agreement with the closed-form solutions

obtained by Luco [32] was observed. This type of analysis is very

expensive due to the large number of degrees of freedom involved and

its application to three-dimensional cases remains impractical.

It is apparent from the previous discussion that it is difficult

to properly model three-dimensional embedded structures with flexible

foundations using the existing methods of analysis. The continuum

approach which can easily treat the three-dimensional semi-infinite nature

of the soil is limited to the analysis of rigid foundations with simple

geometries. The finite element method on the other hand has the

advantage that it can easily accommodate complex geometries such as

those produced by structural embedment and variable soil properties can

also be considered. However, it can not properly model the three­

dimensional semi-infinite soil medium which accounts for radiation

damping in the system. It is the objective of this investigation to

develop a simple, rational, and economical hybrid model for the analysis

of soil-structure interaction which takes advantage of the good features

of the currently available methods and which minimizes their bad

features. This model is obtained by partitioning the entire soil-structure

system into a near-field and a far-field. The near-field is modelled :by

the finite element method whereas the far-field is modelled in the form

of an impedance matrix. As will be shown in Chapter 2, the equations of

motion for the hybrid model are obtained by combining the near- and far­

field equations in the frequency domain using the concepts of sub-
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structuring. Since modelling of the near-field through the finite

element method is a standard structural analysis procedure, the main

thrust of this investigation is in the determination of the far-field

impedances which account for the semi-infinite soil medium. In

Chapter 3, the far-field impedance matrix for the case of torsional

vibrations is developed by solving the actual radiation boundary value

problem. However, it is pointed out that to solve such a boundary value

problem for general loading conditions is mathematically intractable at

present. Therefore, for general three-dimensional loadings, a semi­

analytical approach is presented in Chapter 4 which makes use of system

identification procedures to determine the far-field impedance functions.

The type of finite element used in modelling the near-field is presented

in Chapter 5. Numerical results for the far-field impedances are

presented in Chapter 6 along with solutions obtained from the resulting

hybrid model which are compared with closed form solutions for the rigid

plate on an elastic halfspace. Significant conclusions of the research

are presented in Chapter 7.
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2. HYBRID MODEL

For hybrid modelling, the soil-structure system is partitioned into

a near-field and a far-field. The near-field is modelled through standard

structural analysis techniques, such as the finite element method, where­

as the far-field is modelled through an impedance matrix which accounts

for the semi-infinite nature of the foundation medium. The combined model

provides a simple but powerful and economical method of treating soil­

structure interaction in three-dimensional form.

2.1 Near-Field

The near-field as shown in Fig. 2.l(b) consists of the structure to

be analysed under the prescribed loading conditions and a finite portion

of the soil medium encompassing irregular base geometries such as those

produced by embedment.

The entire near-field is modelled in three-dimensional form using

the finite element method which makes it possible to realistically model

the complex geometrical shapes associated with real structures. Spatial

variations of soil properties within the near-field can also be effect­

lvely taken into account by assigning appropriate material properties to

each soil finite element. Several types of finite elements are available

to suit particular situations: beam elements, two-dimensional triangular

and rectangular elements, shell elements, and three-dimensional solid

elements. For example, if the structure is the containment shell of a

nuclear power plant it may be modelled by shell elements. The soil in

the near-field should be modelled by three-dimensional solid elements

unless the nature of the problem is such that two-dimensional behavior

is justified.

Preceding page blank
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Conceptually, the finite element method can be applied to two- and

three-dimensional problems with equal ease. However, the analyst is

often limited by the amount of computer storage available. In the direct

application of the finite element method, a three-dimensional analysis of

the soil-structure system is usually not feasible because of the large

system required to minimize the spurious reflections of waves from the

artificial boundaries. In the hybrid model, the semi-infinite foundation

medium is effectively modelled through a far-field impedance matrix; thus,

the size of the near-field and consequently the number of degrees of

freedom in the system can be kept relatively small. If the near-field

possesses geometric and material axisymmetry, a reduction in the number

of degrees of freedom can also be achieved by using axisymmetric finite

elements [66,67].

The ability of the finite element near-field to transmit waves

depends upon the assumed displacement field within and the size of each

element. Higher order elements which have quadratic displacement fields

transmit waves more accurately than do elements having linear displace­

ment fields. Having selected the type of finite element to be used, care

should be taken to make sure that the finite element mesh is fine enough

to be able to transmit waves having frequencies over the entire range of

interest. A variable 3 to 9 node isoparametric finite element is used

in this study for the modelling of the near-field. It is very effective

in reproducing curved boundaries and for the same number of nodes

provides a higher degree of accuracy. The formulation of this element

and its effectiveness in wave propagation problems are discussed in detail

in Chapter 5.
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2.2 Far-Field

The far-field is treated herein as a homogeneous halfspace of

linearly elastic isotropic solid representing the semi-infinite

foundation soil. It shares a common interface with the near-field

along which the nodal points are common to both. In the present

investigation, the interface between the near- and far-fields is chosen

to be hemispherical. The far-field is therefore a halfspace with a

hemispherical surface cavity as shown in Fig. 2.1(c). The choice of

hemispherical boundary is judicious because any singularities in the form

of sharp corners are avoided and the mathematical boundary conditions are

easy to satisfy.

The far-field accounts for loss of energy in the form of waves travel­

ling away from the foundation. An accurate model of the far-field which

properly accounts for this radiation damping has so far been difficult to

accomplish. In this report, a far-field impedance matrix which relates

the far-field forces to the far-field displacements at the interface

degrees of freedom is developed. This impedance matrix when combined with

near-field equations of motion very effectively and efficiently simulates

the total soil-structure system. The development of the far-field

impedance matrix requires the solution of a set of partial differential

equations with prescribed boundary conditions on the interface. For the

case of torsional loading, it is possible to carry out this rigorous

analysis and develop the corresponding far-field impedance matrix.

However, for general loading conditions, it does not appear feasible to

solve such a boundary value problem. For the general case, therefore,

a semi-analytical approach is adopted in which the far-field is modelled

through continuous three-component impedance functions placed at the

interface. These frequency dependent impedance functions are obtained
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through methods of system identification.

2.3 Hybrid System

The equations of motion for the isolated near-field finite element

idealization can be written as

(2.1)

in whichu is the nodal point displacement vector (including interface

•nodal displacements) relative to the free-field motion and u and U are

the corresponding velocity and acceleration vectors, respectively. The

load vector £(t) may be due to earthquake ground motion, wind or any

other arbitrary external forces. !(t) is the vector of interaction

forces which has non-zero components corresponding to the interface

degrees of freedom only. ~ and ~ are mass and stiffness matrices,

respectively, and ~ is the viscous damping matrix which accounts for

energy loss in the near-field due to material damping.

In the consistant mass formulation, ~ is a full matrix whose off-

diagonal terms are not zero implying a coupling between the inertia

forces. However, it has been observed [68,69] that a lumped mass

approximation which ignores such coupling is sufficient and provides

results that are comparable in accuracy to those obtained using consistant

mass matrix. Also, since the lumped mass matrix is diagonal, a substantial

saving in computer storage is achieved.

Damping matrix ~ is also a full matrix in general. However, its

individual elements are difficult to determine. In conventional dynamic

analysis, this difficulty is often overcome by performing a modal

decomposition of the undamped equations of motion and assigning modal

damping ratios to the lower significant modes of vibration. Such an
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approach to soil-structure systems is not valid because in general the

structure and the soil posses different damping characteristics leading

to coupling between different modes. It is, therefore, necessary to

define the complete damping matrix. In most cases this can be achieved

by specifying modal damping ratios separately for the structure and for

the soil region and then developing mass and stiffness proportional

Rayleigh damping matrix [69]. An alternative, and sometimes more

convenient, way of defining damping in soil-structure systems is to assume

constant hysteretic damping in both the structure and the soil [63}.

The equations of motion for the near~field can be transformed into

frequency domain giving

2
iwC K) u(w) !lew) !(w)(-w M + + +

or,

§. (w) ~(w) !:.(w) + !:.(w)

where,

S (w)
2

M iWC K-w + +

(2.2)

(2.3)

(2.4)

is the frequency dependent, complex valued impedance matrix characterizing

the mass, damping and s"tiffness properties of the near-field. !:(w) and

Q(w) are the Fourier transforms of the load vector and displacement vector,

respectively. !(w) is the Fourier transform of the interaction vector

and w is the excitation frequency.

If as shown in Fig. 2.l(b), the vector ~ of nodal point

displacements is separated into two parts: ~ corresponding to the nodal

displacements at the boundary common to near-field and far-field, and u-s

corresponding to the nodal displacements elsewhere in the near-field,
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Eq. 2.3 can be written as

[
~ss ~sbl

s s J-bs -bb

(2.5)

in which !b represents the interaction forces at the interface between

the near-field and the far-field.

For the isolated far-field, the dynamic force-deflection relation-

ship is

(2.6)

where Sf(W) is the far-field impedance matrix which has to be determined

by a separate analysis. In rigorous form, it is a full matrix the

elements of which characterize the mass, damping, and stiffness character-

istics of the far-field. It is complex valued and frequency dependent.

The equations of motion for the far-field are incorporated into

the frequency domain near-field equations by invoking the conditions of

compatibility and equilibrium at the interface; i.e.,

u = U
-f -b

and

!'f + F 0
-b

(2.7)

(2.8)

Substitution of Eqs. 2.6, 2.7 and 2.8 into Eq. 2.5, leads to the following

equations of motion for the hybrid system in the frequency domain:

(2.9)
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or,

S (w)u (w) p (w) (2.10)

where SeW) is the impedance matrix of the hybrid system including the

near- and the far-fields.

A reduction in the number of unknowns in Eq. 2.10 can be achieved

by expressing the structural displacements in terms of the lower

significant normal modes of the fixed-base structure as discussed in

Refs. 63 and 70.

2.4 Earthquake Input Motion

Definition of a realistic input motion is important for the earth-

quake response analysis of soil-structure systems. The seismic energy

arriving at a particular site will depend upon several factors such as the

fault rupture mechanism, the location and distance of the site relative

to the earthquake epicenter, the intervening and local soil conditions,

and the presence of topographical features such as mountains and canyons

[71]. A complete characterization of an earthquake ground motion unique

to a particular site cannot be obtained within the present state of art;

therefore, one must rely upon the strong ground motion records obtained

during past earthquakes or upon synthetically generated ground motions.

In the hybrid model, the seismic input is applied at the interface

between the near-field and the far-field. Since in the hybrid modelling

the size of the near-field can be kept small, the same free-field ground

motion can often be applied at the entire boundary. Although this

neglects the rocking and torsional motions generated by spatial variations

of the ground motion, the error introduced will be quite small for

structures whose lateral dimensions are small in comparision to the wave
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lengths of the incoming seismic waves. It must be emphasized, however,

that the lack of knowledge of an appropriate input motion is not a

limitation of the hybrid model itself. It only reflects the present

state of the art and the need for additional research effort in this

area. If the spatial variation of the earthquake ground motion is known,

it can be applied to the hybrid model without any difficulty.

2.5 Dynamic Response of Hybrid System

Once the input motion has been defined, the Fourier amplitude pew)

~(w)

of the resulting load vector E(t) can be obtained from

T
d

J E(t) eiwt
dt

o

where T
d

is the time duration of excitation. The solution ~(w) of

Eq. 2.10 for discrete values of the excitation frequency completely

(2.11)

characterizes response in the frequency domain. The time histories of

response can then be obtained by the Fourier synthesis of the complex

frequency response into time domain using

~(t)
1

27f

00

J
_00

~(w)eiwt dw (2.12)

The Fourier transforms of Eqs. 2.11 and 2.12 are carried out using

Fast Fourier Transform (FFT) techniques which are very efficient and

economical on digital computers [72].
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3. ANALYTICAL SOLUTIONS FOR FAR-FIELD IMPEDANCES

3.1 General Equations

The far-field which is a semi-infinite halfspace with a surface

hemispherical cavity of radius R is shown in Fig. 3.I(a) along with

the chosen spherical frame of reference. For a linearly elastic

isotropic continuum the small-displacement equations of motions in

spherical coordinates are [73]

2
~ Clwr + 2jl Cl(rw

e
)Cl uep

(A+2jl) 1 Cl~
(3.1)P

Clt2
r Clep - rSinep Cle r Clr

2
2jl Cl(rwep) 2jl Clwr

Cl u
e (A+2jl) 1 Cl~

P --= +---
Clt2

rSinep ~ - r Clr r Cl¢

where ur ' uep' ue are the radial, tangential and, circumferential

components of the

1
2 . A-,

r Sln't'

is the dilatation and,

(3.2a)

1

U~
Cl (u~r)J2w

2 . ep
(uerSinep) - ~r

r S1.n

2W¢
I [";~ -

"(UerSin~)J
(3.2h)= rSin¢ or

2We
1 [" (u~r) - a;;]
r Clr
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are the rotations. p is the mass density and A and ~ are Lame's

constants.

It is difficult to solve Eqs. 3.1 in their original form.

However, if ur ' u¢ and ue are eliminated by using Eq. 3.2, one gets

4 dWr 2 d dW
+ r ---ar + 2"" Wr + 2 1 a¢ (Sin¢ a¢)

r r Sin<j>

1 a
2

(WeSin<j»
-2-

S
-·-2A-.- a¢ae

r l.n 'f

These uncoupled p~ and S-wave equations are easy to solve for the

(3.3)

dilatation ~, and rotations wr ' W¢, we. The displacements ur ' u¢ and

ue can then be obtained by substituting the expressions for ~, Wr ' W<j>

and we into Eqs. 3.1. Proceeding in this fashion, general solutions of

Eqs. 3.1 are [74],
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CD CD

u (r,ep, e, t) L L
mn COS} iwt= u (r,ep) S' meoer r J.n

m=o n=o

CD CD

uep(r,ep,e,t) L L
mn COS} iwt

uep (r,ep) Sin meoe (3.4)
m=o n=o

CD CD

ue(r, ep, e , t) l: l: mn Sin} e iwtue (r,ep) m °e-Cosm=o n=o

where,

mn
u

r [

1 d n (n+l)hn (kr)
- -2 -dr- hn (pr)Amn--mk--2- -=-r-­

p
C ] pm (Cosep)mn n

r[- 1
2

P

h (pr)
--,-"n__ A

mn
1

mk
2 1 d ]- -d (rh (kr» Cr r n mn

m
dP (cosep)

n
d<jJ

m+ ........,.--,-
n(n+l)

h (kr) B
n mn

m
P (Cos<jJ)

n
Sin<jJ

(3.5)

r[p~
h (pr) 1
-=.:nc--_ A +­

mn k2
1 d
r dr (rh (kr»C ]n mn

m
P (Cos<jJ)

n
Sinep

1
n(n+l)

h (kr) B
n mn

mdP (Cos<jJ)
n

d<jJ

in which h (0) are the spherical Hankel functions of the first kind,
n

pn(o) are the associated Legendre polymonials of the first kind, and
m

2
P

2pw
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where w is the excitation frequency and A , Band, C are the,
ron ron ron

as yet, unknown constants of integration which have to be determined

from the boundary conditions.

To determine the dynamic force-deflection relationship for the

far-field, unit tractions are imposed at node i on the interface in

each coordinate direction. The resulting displacement field on the

interface then provides the influence coefficients of the dynamic

flexibility matrix for the far-field which can be inverted to give the

general three-dimensional far-field impedance matrix.

The pertinent boundary conditions that must be satisfied are the

following:

a. On the hemispherical interface r

traction in the r-direction,

cr = O(~-~.) o(8_8.)e
iwt

rr ~ 1

= 0

(J = 0
r8

R, -TI/2 ~ ~ ~ TI/2, for a unit

(3.6a)

with similar conditions in ~- and 8-directions.

b. On the free-surface r > R, ~

where 0 is the Dirac's delta function.

±. TI/2,

(3.6b)

Unfortunately, at present it does not seem possible to satisfy

the boundary conditions given above and to determine the far-field

impedance matrix for general three-dimensional problems. However, a
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solution to this formulation can be obtained for the case of torsional

vibration.

3.2 Torsional Impedances

If advantage is taken of the natural axisymmetry of the far-field

then for the case of torsional vibration, it is possible to solve the

radiation boundary value problem as discussed in Sec. 3.1 and to obtain

a torsional impedance matrix for the far-field. Under torsional

excitations with respect to the z-axis (~=O), the only non-vanishing dis-

placement is the circumferential component ue. Because ofaxisymmetry

the displacements are independent of the angle e and only one quadrant

in the e = 0 plane has to be considered, Fig. 3.l(b). For steady state

vibrations, we can write

ue (r, ep, t)
iwt= Ue(r,ep,w)e (3.7)

where the amplitude function ue must staisfy the equation of

motion

where,

k = w/c
s

w = excitation frequency

c = IG/p, the shear wave velocity
s

G = shear modulus, and

p mass density.

o (3.8)
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h f f th h . h . 1 . t h f iwtOn t e sur ace 0 e em~sp er~ca cav~ y, a sear orce l o e

is applied at the nodal circle $=$. in the circumferential direction.
~

The boundary conditions are then described by

G
(

oue _ ue) eiwt
Ore = or r

1
2rrR Sin~

(3.9)

at r=R, °2$<rr/2, and

O$e =
§. (aue - UeCot~) iwt

= 0
r 0$ e

at r~R, $ = rr/2.

3.2.1 Continuous Approach (75]

(3.10)

Equation 3.8 can be solved by the method of separation of variables.

Let,

(3.11)

Substitution of Eq. 3.11 into Eq. 3.8 leads to two uncoupled equations;

one in r-direction and the other in $-direction, i.e.,

o (3.12)

The solution of Eq. 3.12 is

where,

(3.13)

(3.14)

(3.15)
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and H
V

(e) is the Hankel function of the first kind representing a wave
n

travelling away from the origin (r=O) into the ha1fspace (r+oo).

The solution of Eq. 3.13 gives the eigen vectors

(3.16)

and the eigen values

n (n+l), n 1,3,5,---00 (3.17 )

1
where p (0) are the associated Legendre polynomials of first kind with

n

rank one. The boundary condition given by Eq. 3.10 restricts the order

of Legendre polynomials to odd numbers in the above solution

00
Ue(r,<jJ,w) L:

n=l, 3, •.
(3.18)

where hn(O) are now the spherical Hankel functions and An is an

arbitrary constant which will be determined from the boundary condition

given by Eq. 3.9. Substitution of Eq. 3.18 into Eq. 3.9 gives

(3.19)

Sin<jJ

8 <<jJ-<jJ. )
1.1---

27TRG

00
A lnb h l(b) - (n+l)b h l(b )-h (b )lpl(cos<jJ)n 0 n- 0 0 n+ 0 n 0 ~ n

n=1,3 ..

WRwhere b is a non-dimensional frequency defined by b --C.
o 0

s

With the aid of the orthogonality condition for plea),
n

namely

=

o

2 (n+l) :
(2n+l) (n-l) ~

m :I n

m = n

(3.20)
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and the recursion formula of h (a.)
n

An can be evaluated giving

(3.21)

1 (2n+l)
~ = 2TIRG n(n+l)

where

1
p (Cos</>.)n ~

D (b )
n 0

(3.22)

D.n(b ) = b h +l(b ) - (n-l)h (b )o on 0 n 0

Substitution of Eq. 3.22 into 3.18 gives at r=R

(3.23)

(3.24)

which is the displacement field on the interface due to a unit force

distributed uniformly along the nodal circle </>=</> .•
~

f
Elements C.. of the flexibility matrix(or compliance matri~are

J~

defined as the displacement at node j due to a unit force at node i.

Therefore,

f
C.. = Ue(R,</>.,b ;</>.)
J~ J 0 ~

(3.25)

A far-field compliance matrix £f can therefore be assembled which

upon inversion gives the far-field impedance matrix ~f,

(3.26)

The far-field impedance matrix so developed relates the far-field

forces to the far-field displacements as indicated by Eq. 2.6. It is

complex valued and depends upon the non-dimensional frequency b , shear
o
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modulus G, and the far-field radius R.

Although the solutions developed in this section are theoretically

"exact", it must be recognized that they are not consistent with the

near-field finite element idealization in which the displacements are

usually assumed to have a linear or quadratic variation over an element.

The displacement field given by Eq. 3.18 (or 3.24) however is a function

of the Legendre polynomials. The imposition of the conditions given by

Eq. 2.7 therefore guarantees the compatibility of displacements only

at the nodes, but not along the entire interface. This is illustrated

in Fig. 3.2(a). To get meaningful results, it is therefore necessary

to have a large number of closely spaced nodes on the boundary so that

compatibility violations are minimized. This is apparent from the

large errors observed in the numerical solutions presented in Chapter 6.

The following consistent approach is therefore developed which results

in a significant improvement in the modelling of the far-field.

3.2.2 Consistent Approach

In this section, the far-field impedance matrix for the case of

torsional vibrations is developed using an approach that is consistent

with the finite element idealization of the near-field; thus, avoiding

the noncompatibility of displacements associated with the far-field

impedance matrix developed in the previous section.

As before separation of variables is used to find the solution

of Eq. 3.7 leading to the uncoupled Eqs. 3.12 and 3.13. Since in the

r-direction no discretization of the far-field is involved, the

continuum solutions obtained earlier (Eqs. 3.14 and 3.15) are used. This

ensures proper modelling of the semi-infinite soil medium.
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In the ~-direction, however, an equivalent discrete eigen value

problem is solved instead of using the closed-form solutions given by

Eqs. 3.16 and 3.17. This is done by discretizing the domain ~=O to

~=~/2 into line elements and using the same interpolation functions as

used in the near-field finite elements. Therefore for element p,

one can write

(3.27 )

where N is the row vector of interpolation functions and ~ is a vector
-p

containing the nodal values of the function g(~). For quadratic elements,

the interpolation functions as shown in Fig. 3.2 are,

1 1 Cl_t2 )N
l 2 (l-t)- -2

N
2

= l_t2

1 1 (1_t2)N
3 = -(1+t)- 22

where, for equally spaced nodes

Substituting Eq. 3.27 into Eq. 3.13 and using standard finite

element techniques [76], one obtains the following eigen value problem

<!s - A
2 t!) v= 0 (3.28)

where

K = E !.P; M = E MP

P P

with element matrices given by
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T T
KP = f N' N' Sin~d~ + f N N .1__ d~

P --p --p P --p --p SJ.n~
(3.29)

T
MP = f N N Sin~d~

p --p --p (3.30)

where N' is the derivative of the interpolation functions with respect
--p

to ¢.

Eigen value problem 3.28 can be solved by standard methods giving

eigen vectors ~ and eigen values A~ for n = 1,2, •••• N
b

where N
b

is the

total number of nodes on the interface. These eigen values and eigen

vectors are analogous to those given by Eqs. 3.16 and 3.17.

Substituting Eqs. 3.14 and 3.27 into 3.11, the displacement field

within an element can be expressed as

~(r,¢,w)

. N
b

L
n=1,2,

H
V

(kr)

A N ~ _n::..o....,--.,...
n -p -n Hv (kR)

n

(3.31)

where H
V

(kR) has been introduced as a normalizing factor to simplify
n

equations developed subsequently.

For r = R, Eq. 3.3 gives the displacement field at the interface

in the form

p
Ue (R,¢,W)

N
b

L
n=1,2,

A N ~
n -p-n

(3.32 )

uP
-f

where in an element
Nb
L

n=1,2
A ~

n -n

The corresponding vector for interface nodal displacements in the

(3.33)A v = V A
n -n~=

circumferential direction is
N

b
L

n=l,2
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In the above equation, y. is the matrix of eigen vectors and! is the

vector of unknown constants A which can be obtained from the relation
n

A = v-I U
- - -=f

The shear stress as given by Eq. 3.9 is

cr = G[dU8 _Ue]'
r8 dr r

(3.34)

Making use of Eq. 3.31, the shear stress at the interface r = R becomes

cr p
r8

N
b

G
= - E

R
n=1,2

N ~
-p -n (v +3/2)] An n

(3.35)

where b is the non-dimensional frequency defined earlier. The equivalent
o

nodal forces on the boundary can now be obtained as

T
R P
-f

2
= 2'1fR f Np-p

which become upon substitution of Eq. 3.35.

2'1fRG

N
b

L
n=l,2 (

f N TN SinC/>dC/»
P -p-p

Summing up over all the elements, one obtains

R = 2'1fRG M V H A=-=f ----

where H is a diagonal matrix whose elements are

(3.36)

Hnn
b

o

H (b )
v 1 0n-
H (b)

\) 0
n

- (V +3/2)
n

(3.37)

Finally, substituting'Eq. 3.34 into Eq. 3.36 gives

-1
~ = 2'1fRG !:! Y. !! Y. .!!f
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or

where the desired far-field impedance matrix

Sf(b)
- 0

-1
21TRG M V H V (3.38)

is a full matrix containing complex frequency dependent coefficients.

The advantage of using this approach to develop the far-field

impedance matrix is that the displacement field given by Eq. 3.32 is

consistent with the displacement on the boundary of the near-field as

shown in Fig. 3.2(b). Therefore, the compatibility of displacements

along the entire interface between the near- and far-fields is satisfied.

Also, the displacements are expressed in terms ofa finite number of

eigen vectors as opposed to an infinite sum required for the continuous

approach.

Numerical solutions using the far-field impedance matrices

developed by continuous and consistent approach are presented in

Chapter 6.
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4. SEMI-ANALYTICAL SOLUTIONS FOR FAR-FIELD IMPEDANCES

Analytical solutions as described in Chapter 3 are limited to

~orsionalvibrations. As previously mentioned, solutions for non-

axisymmetric cases appear to be mathematically intractable at present.

The following semi-analytical approach is therefore developed using

concepts of system identification to determine the far-field impedances

for general three-dimensional loadings.

4.1 Mathematical Modelling

The far-field, which is a semi-infinite halfspace with hemispherical

cavity, is modelled by continuously distributed impedance functions placed

in three coordinate directions on the interface between the near- and far-

fields. Conceptually the far-field may, therefore, be thought of as a

Winkler type foundation(uncoupled over the interface) characterized by

complex impedance functions: the real part representing stiffness and the

imaginary part representing radiation damping. This is a realistic assumption

if the displacements are smooth and slowly varying functions over the inter-

face, which can be assured by placing the interface at a reasonable distance

from the structure. These continuous impedance functions are then discreti-

zed at the boundary nodal points to obtain a far-field impedance matrix.

In general, for horizontally layered halfspaces, the impedance

functions can be expressed in terms of a Fourier series retaining only the

symmetric terms in ~ due to axisymmetry of the far-field; thus giving
()()

SR(R,<P,W) = l: SRn(R,W) Cosn¢
n=o

()()

s~ (R,</> ,lU) l: S</>n(R,W) Cosn</> (4.1 )
n=o

()()

Se(R,<P ,w) l: Sen(R,W) Cosn</>
n=o

Preceding page blank
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where SR' S¢, and S8 are the far-field impedance functions per unit area

in the directions normal, tangential and qircumferntial to the hemispherical

interface as shown in Fig. 4.l(a). Coefficients SRn' S¢n' and Sen are

complex valued functions of the interface radius R and the excitation

frequency W. The number of terms required in Eqs. 4.1 to properly

represent the far-field will depend upon the complexity of layering.

However, due to the Winkler assumption, only the first term in each

coordinate direction is needed for homogeneous, isotropic ha1fspaces.

The discrete far-field impedances for node i on the interface are

obtained by integrating the continuous boundary impedances over the

tributary area A. which extends halfway to the nodes adjacent to node i
~

as shown in Fig. 4.1(a). Therefore, in the normal direction, the

discrete impedance at node i is

II
A.
~

Since, in spherical coordinates

dA = (Rd¢) (RSin¢de)

Eq. 4.2 becomes

¢i e
i

i 2 2 2

SR R I I SR(R,¢,w)Sin¢d¢ de

¢i e i
1 1

(4.2)

(4.3a)

Similarily in the tangential and circumferential directions,

¢i ei
2 2

R
2 I I S$(R,$,W)Sin$d¢ de

¢i e i
1 1

(4.3b)
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¢i e
i

i 2
2 2

Se R J J Se(R,¢,W)Sin¢d¢ de (4.3c)

¢i e
i

1 1

Thus, for each node on the interface, a 3 x 3 diagonal impedance

matrix is obtained leading, in general, to a 3Nb x 3N
b

diagonal far­

field impedance matrix, Nb being the number of nodes on the interface.

In the present investigation, the far-field considered is

homogeneous and isotropic for which, as mentioned previously, it is

sufficient to consider the far-field impedances to be uniformly

distributed. Therefore, only the constant terms in Eq. 4.1 are

retained, giving

(4.4)

where n's and ~'s are the real and imaginary part, respectively, of the

unknown far-field impedance functions. These impedance functions are

determined by using system identification methods such that the resulting

hybrid model reproduces the known response functions of a rigid

massless circular plate on a uniform elastic halfspace. Because of axi-

symmetry of the system under consideration, it is necessary to consider

only one quadrant in the e=O plane as shown in Fig. 4.l(b) where the

nodal points actually describe nodal circles.

For torsional and vertical vibrations of the rigid plate, the

displacements in the far-field will be constant around the nodal circles.

The discretized far-field nodal impedances in an axisymmetric formulation

can therefore be obtained from Eqs. 4.3 by simply extending the limits of
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integration in the 8-direction from a to 2rr instead of from 8~ to e;.

Thus, for torsional vibrations, the nodal impedances are

i Si = aS =R </J

</Ji
21T

si 2 2
= R J J Se(R,</J,W)Sin</Jd</J dee

</Ji a
1

Substituting Eq. 4.4 into Eq. 4.5 gives

(4.5)

Sin</Jd</J (4.6)

where

A.
1.

Sin</Jd</J (4.7)

is the area of the tributary strip shown in Fig. 4.l(b).

Similarily for vertical vibrations, since the circumferential

displacements are zero, the discrete impedances at node i can be obtained

as

</Ji

R
2

2
J
</Ji

1

<jJi

R2
2

J
</Ji

1

21T
J SR(R,<jJ,w)Sin<jJd</J de
o

211'
J S</J(R,<jJ,W)Sin</Jd<jJ de
o

(4.8)

a

Again making use of Eqs. 4.4, one gets
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Si = (nR + iE;R) A.

}
R ~

(4.9)

Si (n¢ + iE;¢) Ai
¢

For the coupled translational and rocking mode of vibration, the

displacements around a nodal circle are not uniform but instead are given

by

i Coseu = ur r

i
Coseu¢ = u¢

This non-uniform condition introduces cos
2

e and Sin
2

e terms in Eqs. 4.5

and 4.8 which can be explained in terms of the principle of virtual work:

If a real displacement ui is applied at node i, then the resulting force
r

around the nodal circle is

f
r

i= S • u Cose
R r

(4.10)

Therefore, the work done by the virtual displacement QU is
r

QW II QU f dA = R
2

r r

2'IT
I au f Sin¢d¢ de
Orr

(4.11)

Choosing the virtual displacement distribution to be of the same form as

the actual displacement field, substitution of Eq. 4.10 into Eq. 4.11

gives

oW R
2 II QUi i

Cose. Sin¢d¢ deCose. SR Urr

~2
¢i

2'IT
QUi

2
2 ).= f I SR(R,¢,w)Sin¢. Cos 6d¢ de u~r

¢i 0
1
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i 2
S = R

R

21T
f SR(R,~,W)Sin¢d¢ cos

2
ede

o

Similarily, in the ¢- and e-directions

Since

i R2Se =

27T
f S¢(R,¢,W)Sin¢ d~ cos

2
e de

o

27T
f Se(R,~,w)Sin¢d~ Sin

2
e de

o

(4.12)

21T
f
o

2
Cos e de=

Eqs. 4.12 reduce to

~i

si 2
2

(ll + iE,;R)7TR f Sin¢d¢ (llR + i~R)· Ai /2R R
¢i

1

<pi

si i~¢)7TR2
2

(ll + J Sin¢d¢ (ll¢ + iE,;¢) .Ai /2 (4.13)
¢ ¢ ,i

QJ
l

¢i

si i;e)7TR
2

2

(lle + f Sin¢d¢ (lle + i~e) .Ai /2e
¢i

1

which are the work equivalent discrete impedances at node i in the normal,

tangential, and circumferential directions, respectively. The factor of

1/2 in the above equations reflects the fact that due to the Cose and

Sine variation of displacements around nodal circles,the total work done
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is half of that done when the displacements are uniform.

Equations 4.6, 4.9 and 4.13 give rise to the following impedance

matrices in spherical coordinates for node i:

_i
S

lxl
(4.14a)

for torsional vibrations,

-i
S

2x2
A.
~

(nep +

(4.l4b)

for vertical vibrations, and

o
A.
~

2
o

o o

o (4.l4c)

for coupled translation and rocking.

These impedance matrices must be transformed into cylindrical

coordinates to be compatible with the corresponding nodal point displace-

ments used for the axisYmmetric finite elements in the near-field. As

shown in Fig. 4.2, the displacements in these two coordinate systems are

related by

u-
r

Sinep Casep 0

Casep -Sinep 0

u
r

uz

u
r

= <P u
z

(4.15)

o o 1
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where ¢ is the displacement transformation matrix. The nodal impedances

in cylindrical coordinates can therefore be obtained as

(4.16)

The far-field impedance for the entire interface can then be

assembled as

(4.17)

• N
S b

which is an N
b

x N
b

diagonal matrix for torsional vibrations, a 2N
b

x 2N
b

tridiagonal matrix for vertical vibrations, and a 3N
b

x 3N
b

tridiagonal

matrix for coupled translation and rocking vibrations.

The far-field impedance matrices so obtained can be. employed in the

hybrid modelling of the rigid massless circular plate on an elastic half-

space as discussed in Chapter 2, yielding equations of motion

. ~ (w) ~ (w) = p (w)

for the three modes of vibration of the plate.

4.2 Error Function

(4.18)

For a prescribed value of excitation frequency wand for assumed

values of the far-field impedances, matrix Eq. 4.18 can be solved to yield

the complex harmonic displacement vector ~(w) which includes the dis-

placement amplitudes (compliances) of the rigid massless circular plate.

The resulting compliances are a function of the assumed far-field impedances

and will be in error with the analytical solutions. To minimize the errors
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involved, an error function containing the sum of the squared errors of

all the plate compliances is formed giving,

J(~,w) =
NC
I: lu.(S,w) -c.(W)1 2

i=l ~ - ~
(4.19)

where, ~ is an n-dimensional vector containing all of the far-field

impedance coefficients, u.
~

u. (S,w) are the compliances of the plate
~ -

as generated from Eq. 4.18 for the hybrid model, C. = c. (w) are the
~ ~

known plate compliances generated from analytical elasticity solutions,

and NC is the number of plate compliances considered in the solution.

The analytical solutions for the rigid massless circular plate

in the torsional, vertical and coupled translational and rocking modes

of ~ibration are presented in Refs. 4, 5, and 6. These dynamic

compliances are defined by the matrix equation

b.T CTT 0 0 0 T

b.
V

0 Cvv 0 0 V

b.H 0 0 CHH CHM
H

b.
M

0 0 CMH CMM M

Therefore, five independent compliance functions are available, namely,

CTT ' Cvv ' CHH ' CHM (CMH = CHM) and CMM ' which are plotted in Fig. 4.3.

In the present investigation, since the far-field is uniform, the

vector of far-field impedances from Eq. 4.4 is

(4.20)
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Thus, there are six parameters that must be determined.

4.3 Parameter Evaluation

Methods of system identification are used to systematically adjust

the originally assumed values of the far-field impedance coefficients so

that the error function J(~,w) is minimized for discrete values of w,

thus giving the far-field impedance vector ~ over the frequency range

of interest.

There are several iterative methods reported in literatu!e [77]

which could be used for this purpose. Most of these methods use the so-

called gradient techniques in which new values for the components in

vector S are obtained by following in the direction of the negative

gradient of the error function in the n-dimensional parameter space.

The method selected for the present study is the modified Gauss-Newton

method which makes use of information on second derivatives, thus,

resulting in an improved convergence rate. The Gauss-Newton method is

obtained by expanding the error function J(~,w) into a Taylor's series

and equating the gradient to 0, resulting in the equation

-1

~i = ~i-l - A h (~i_l'w) ~ (~i_l'w) (4.21)

where S. 1 and S. are the parameter vectors at iterative steps i-I and i,
""'-].- -1.

respectively,

(lJ (lJ= < ap;-, ap;-,
1 2

... , (lJ >
(lS

n

(4.22)

is the gradient vector and,
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~(fi_l'W)

. .
(4.23)

is the nxn Hessian matrix the inverse of which modifies both the

magnitude and the direction of the steepest descent given by the negative

gradient. Scalar A is a positive step-size parameter selected to ensure

a decrease in error within each ~teration cycle. Equation 4.21 may also be

written as

s. 1 - Ad. 1
-l.- -~-

where
-1
h (fi - l ,w) .<I. (fi - l ,w)

is the search direction given by the modified Gauss-Newton method.

(4.24)

(4.25)

The components of the gradient vector in Eq. 4. 22 are obtained by

taking the derivative of the error function at f i - 1 , i.e.,

aJ
NC

[Re(Vi)-Re(Ci )]
aRe (V.)

L
~

as. = 2
as. +

J i=l J
(4.26)

NC
[rm (Vi) -1m (Ci )]

aIm (V.)
2 L

J.

as.i=l J

Similarily, the coefficients of the Hessian matrix are
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2 aRe (U.) 3Re(Ui l!a2
J

NC
[Re (Ui ) -Re (Ci )]

a Re (U.)
2 ~

~ ~

asjaSk
=

aSjdSk
+ as. as +

i==l J k

(4.27)

I[ImIUil-Im(Cil]

2 alm(U. ) 3Im IUi l!NC a Im(U.)
2 ~

~

+
~

aSjdSk as. aSki=l J

Since the effort required to calculate the second derivatives in

Eq. 4.27 is prohibitive, the modified Gauss-Newton method approximates

the coefficients of the Hessian matrix by

2
NC
~

i=l
(4.28)

Such an approximation is justifiable in the near vicinity of the

.
minimum where U. = C.; however, it can be considerably in error away from

~ ~

the minimum. Therefore, if the initial estimates of the vector ~are

considerably in error, convergence may be slow initially.

The above approximation given by Eq. 4.28, makes the Hessian matrix

positive semi-definite, a property that the original matrix based on

Eq. 4.27 does not posses. To ensure that the inverse of the Hessian matrix

in Eq. 4.21 does exist, it is necessary only to add a small positive

constant to the diagonal elements, which has the effect of altering the

direction of search.

It must also be recognized that the response quantity U. (R,w)is
~

not an explicit function of ~but obtained through a numerical process
dU

involving the solution of Eq. 4.18. The partial derivatives as~ in
J

Eqs. 4.26 and 4.28, therefore, have to be replaced by the finite
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The error function J(f,w)defines an n-dimensional surface which

in two dimensions is easy to visualize as shown in Fig. 4.4. The

modified Gauss-Newton method is an iterative process in which the error

is minimized by obtaining successively better estimates of the far-field

impedance vector f until a point f* is located where slope of the error

surface approaches zero. The slope of the error profile at a point

f i along the search direction ~i-l is obtained by differentiating the

error function with respect to the step size A, giving

a. 1<8.)
~- -~

(4.29)

At any step i-I, a typical iteration cycle proceeds as follows -- The

far-field impedance matrices corresponding to the parameter vector f
i

-
l

are formed as explained in Sec. 4.1 which are then corrbined with the

near-field finite element equations to give the equations of motion

Eq. 4.18 for the hybrid model. These equations are solved to obtain the

responses U. of the rigid plate and the error is evaluated according to
~

Eq. 4.19. The slope of the error surface, a i _
l
(~i-l)' at that point is

then obtained by substituting f
i

-
1

for f
i

in Eq. 4.29 and compared

against a specified tolerance on slope sufficiently close to zero. If

the slope is less than the specified tolerance then it means that the

error surface is flat (or nearly flat) at that point and the error J

is minimized. The parameter vector f
i

-
l

in that case is the desired

far-field impedance vector f*. If not, then a line search along the

search direction d. 1 is made as shown in Fig. 4.4. According to Eq.4.24,
-~-
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each value of the step size parameter A defines a different point S.along
. . -~

this direction. within a line search the step size A is systematically

adjusted in such a way that a point 8. is obtained where the slope of the
-~

error profile is sufficiently small and the error is minimized in that

direction. For a detailed discussion on how a line search is conducted

for the step size determination, see the report by Matzen and McNiven [78].

The parameter vector S. so obtained is then used as the next point in the
-].

iteration process. The tolerance on slope within a line search affects

the number of steps required to determine the step size for which the

error profile reaches a minimum in the search direction. If a crude line

stopping tolerance is specified the process may take fewer steps within

each line search but may require a large number of iterations to reach the

true minima as indicated by dashed lines in Fig. 4.4. It has therefore

been recommended that a moderate amount of effort be spent in the step length

determination. How accurately the true minimum is determined depends upon

the specified criteria for overall convergence. If a strict tolerance

on slope is specified, the process may take longer to converge, but the

minimum will be determined more accurately.

To start the iterative process one must have an initial estimate

~ of the far-field impedance functions. The success of the method depends

upon the accuracy of this estimate. If the starting vector S is far
-0

from the true minimum, the convergence may be very slow. It is possible

that, although the iterative process converges to a minimum, the error at

that point is still large. This implies one of two things -- either it

is a local minimum, or it is a global minimum but the model chosen for

the far-field impedances is not adequate. In the first eventuality, one

may start from a different set of starting values B until the true
"'-0
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minimum is achieved. In the second case, one may try including higher

terms in the Fourier expansion of Eqs. 4.1. If that does not work

either, then it implies that the chosen model is not realistic. If,

however, at the minimum the error approaches zero, it signifies that the

chosen mathematical model for the far-field impedances is adequate and

that the iterative process has converged to the true minimum.
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5. FINITE ELEMENT MODEL OF NEAR-FIELD USED TO
GENERATE FAR-FIELD IMPEDANCES

The vibrations of a rigid massless circular plate on a uniform

elastic halfspace constitutes an axisymmetric problem. The near-field

can therefore be modelled by axisymmetric finite elements. In the

analysis of axisymmetric bodies subjected to arbitrary non-axisymmetric

loadings, both the loads and the displacements are expanded in terms of a

Fourier series [66]. Therefore, if a cylindrical frame of reference as

shown in Fig. 5.1 is used, the displacements u , u and u
e

in the radial,r z

vertical and circumferential directions, respectively, can be written

as

u Cr,z,e)
r

u Cr,z,e)
z

ueCr,z,e)

00 00

L: u Cr, z) Cosne + L: u (r,z)Sinne
n=O

rn n=O rn

00 00

L u Cr, z) cosn8 + L G (r, z) Sinn8 (S.l)
n=O

zn n=O zr

00 00

L: -uenCr,z) Sinne + E tlen(r,z) Cosne
n=O n=O

which contain symmetric and anti-symmetric components about the e=O axis.

These generalized displacements are functions of rand z only and do not

depend upon e. Thus, what was originally a three-dimensional problem is

reduced to a two-dimensional problem with substantial reduction in total

number of degrees of freedom. The introduction of the negative sign in

the sine term for the circumferential displacement has the effect of

yielding the same stiffness matrix for both symmetric and antisymmetric

components. Similarly, the applied forces can be expressed in the form,

Preceding page blank
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00 00 A

f (r,z,e) E f (r,z) Cosne + E f (r, z) Sinner
n=O

rn rnn=O

00 00
A

f (r,z,e) E f (r ,z) Cosne + E f (r, z) Sinne (5.2)z zn znn=O n=O

00 00

fe(r,z,e) E - fen (r,z) Sinne + E fen(r,z) Cosne
n=O n=O

Due to the orthogonality conditions of the trigonometric functions

in the above expressions, a set of uncoupled equations of mot£on of the

form

Mu. +Ku
-n-n -n-n (5.3)

can be obtained for each Fourier term, as shown later in this chapter.

The solution procedure consists of solving Eq. 5.3 for each Fourier

amplitude and then combining them according to Eq. 5.1 to obtain the total

displacement field. This leads to a very economical method of analysis

for axisymmetric bodies subject to arbitrary loads if the number of terms

required in the Fourier representation of the applied loads and the

resulting displacements is small. In particular, the torsional, vertical

and coupled translation and rocking vibrations of a rigid circular plate

can be represented by only a single term each as shown in Fig. 5.2. For

torsion, only the first (n=O) antisYmmetric term is required; thus

u (r,z,e) = 0
r

u (r,z,e) 0
z

Vertical vibrations can be represented by the first symmetric term in

Eq. 5.1 giving
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u (r,z,e) = urO(r,z)r

u (r,z, e) uzo(r,z)z

ue(r,z,e) = 0

Coupled translation and rocking vibrations are represented by the second

(n=l) symmetric term giving

u (r,z,e)
r

u (r,z,e)
z

ue(r,z,e)

urI (r,z) Cose

u
zl

(r,z) Cose

- uel (r,z) Sine

5.1 Variable 4 to 9 Node Isoparametric Element

The element used in this study is a gradrilateral element described

by 4 to 9 nodes as shown in Fig. 5.3. A triangular element is treated as

a degenerate gradrilateral by specifying two of the corner nodes to be

the same. Because of the axisymmetric nature of the problem, the element

actually describes a toroidal volume and nodal points are nodal circles

in r-e plane. The element which was originally presented for plane and

axisymmetric problems 179] has been extended here to axisymmetric problems

with non-axisymmetric loadings.

Interpolation Functions:

In an isoparametric formulation of the finite element method the

coordinates of any point within an element are interpolated as

r

z =

q
2:

i=l

q
L

i=l

N. (s,t)r.
1 1

N. (s,t)z.
1 J.

(5.4)
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where q is the number of nodes used to define the element which may be

anywhere from 4 to 9; r. and z. are the coordinates of the nodes i=l, •.. ,
]. ].

q and where N., the interpolation functions in the natural coordinates
].

system (s,t) are defined in Table 1.

The displacement field within an element is also approximated by

the same interpolation functions. Therefore, from Eqs. 5.1

u
r

u
z

00 q 00 q A.
t t i

Cosne t t
].

SinneN.u + N. u
n=O i=l

]. rn
n=O i=l

]. nr

00 q co q A.i ].
t t N.u Cosne + t t N. u Sinne (5.5a)

n=O i=l
]. zn n=O i=l

]. zn

co q i
t t -N'Ue Sinne +

n=O i=l ]. n

00 q Ai
t t Ni uen Cosne

n=O i=l

iii Ai Ai
where urn' uzn ' and uer are the symmetric components and urn' uzn ' and

U~n' the antisymmetric components of the nodal point displacements. In

the expressions to follow, however, the antisymmetric components have

not been shown for the sake of simplicity in presentation. Eqs. 5.5a

in matrix form can be written as,

u N Cosne 0 0 u
-rn

co

u = t 0 N Cosn8 0 u (5.5b)
z

n=O
-zn

ue
0 0 - N Sinne

~n

or
co

u = t N u (5. 5c)
n=O

-n -n
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where

N = < N
l

, N
2

, ... , N >
q

and

1 1
u u

rn zn

2 2
u u
rn zn

u u ~en-rn -zn

u q u q
rn zn

u q
en

Stress-Strain Relationship:

For three-dimensional isotropic elasticity, the stresses are

related to the strains by

a Cll C
12

C
l3

£
rr rr

a C
21

C
22

C
23

£
zz zz

a
ee

C
31

C
32

C
33 £ee

a C
44

2£
rz rz

are C
55

2E:
re

aze C
66 2£ze

or,

a = C £

where,

Cll' C22 ' C
33

=
2G(l-\»
(1-2\»

C12 ' C21 ' C13 ' C31 ' C23 ' C32
2G

(l-2V)

C44 ' C55 ' C66
G

in which G is the shear modulus and V is Poisson's ratio.

(5.6a)

(5.6b)
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Strain-Displacement Relationship:

The three-dimensional strain-displacement relationship in

cylindrical coordinates is

£ =

£
rr

£
zz

2£
rz =

o

1
r

1 d
rae

o

o

o

o

1 a
rae

o

o

1 a
rae

o

u
r

u
z

(5.7)

Making use of Eqs. 5.5b, one obtains

~,r Cosn8 o o

0 ~,z Cosn8 0

1 1
Nn cosn800 - N Cosn8 0

2:
r - r -£ =

n=O
~,z Cosn8 ~,r Cosn8 0

1 Sinn8 1 Sinn8- - Nn 0 (- N-N,r)
r - r--

o -~Nn Sinn8 -~,z Sinn8
r-

or,

00

u
-:rn

u (5.8a)
-zn

~n

E: = 2:
n=O

B u
-n -n

(5.8b)
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Since the interpolation functions N. are given in terms of the
~

natural coordinates (s,t), the partial derivatives ~,r and ~,z in Eq.

5.8a are obtained by inverting the chain rule.

a or oz a a
as ~ ~ or or

= J (5.9)

a or oz a a
at at at az oz

where J is the Jacobian matrix, the elements of which can be obtained

by differentiating Eq. 5.4, e. g. ,

or
~

q aN.
~Eas­

i=l
r.
~

(5.10)

Upon inversion of Eq. 5.9, one gets

a oz oz a
or at -as as

1
(5.11)m-

a _or or a
oz at ~ at

where

I~I
or oz or oz

(5.12)
~ at - at as-

is the determinant of the Jacobian matrix which must always be positive

to satisfy Eq. 5.11. A non-positive Jacobian I~I implies that the

transformation from global to natural coordinates is not unique. This

may be caused by the angle between adjacent sides of the element being

ogreater than 180 or by node sequencing errors during input. The

Jacobian also represents the conversion of the volume differential dV

from global to natural coordinates:
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(rde)IJI dsdt (5.13)

Element Matrices:

The element stiffness and mass matrices can be obtained by using

the principle of virtual displacements which can be stated as

Io~T~dv + IoeTcrdv - fouTfdV = 0
V V V

(5.14)

Upon substituting Eqs. 5.5c, 5.6b and 5.8b into Eq. 5.14, one gets for

element e

00

t~o ~T£ dV)}l: ou
eT (r pM TN dV ·.e

+ f B TC B dV e - Iu u
m=O -nI

e -m-n ~
v

e -m-~ -n
v

e
V

I
(5.15a)

= 0

or,

which leads to the coupled equations of motion

(5.l5b)

where,

e-p
-ron

o (S.16a)

Me = Iff PN TN rdrdz de
-ron

Ve m n

Ke
I~f B

T
C B rdrdz de

-ron -m -~

V

pe = IfI N T f rdrdz de
-ron Ve -m

are the consistent mass matrix, stiffness matrix and load vector,

(5.17a)

respectively, for element e. The above integrals can be transformed

to the natural coordinate system of the element using Eq. 5.13; thus, one

obtains



e
E nm =

I~I
+1 +1 27f
f f f

-1 -1 0

+1 +1 27f
f f f

-1 -1 0

+1 +1 27f
f J f

-1 -1 0
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T
pN N r dsdt de-m -n

B T C B r dsdt de
-m --n

N T f r dsdt de
-m -

(5.l7b)

in which r can be expressed in terms of interpolation functions as

given by Eq. 5.4.

In the above equations, integration in the e-direction can be

carried out explicitly, giving rise to the following integrals:

0 m =I n
27f {1

1 f Cosme Cosne de 27f m n = 0
0

7f m = n > 1

0 m =I n (5.18)
27f {12 = f Sinme Sinne de 0 m n = a
0

7f m n > 1

27f
1

3
f Sinme Cosne de o for all m and n
0

Since these integrals equal zero for m =I n, it follows that

Me
-mn

Ke
0 for m =I n-mn

e
l?mn

and Eqs. 5.l6a reduce to the uncoupled form

e ··e + Ke e e (5.l6b)M u u :en~ -n -n -n
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for each Fourier amplitude. Equations 5.3, presented in the beginning

of this Chapter for the finite element idealization of the near-field

can now be obtained from Eg. 5.l6b by standard assembly procedures.

In the sand t-directions, the integrals of Eq. 5.l7b are

evaluated numerically using the Gaussian quadrature. Both 2 x 2

and 3 x 3 integration points are possible as shown in Fig. 5.4. However,

for a 9-node element, only 3 x 3 integration is recommended to ensure

stability.

The consistent mass matrix obtained in the above formulation has

non-zero off-diagonal elements. However, as mentioned in Chapter 2,

for most practical problems a lumped mass representation is sufficient.

Therefore, in the present investigation a lumped mass matrix is

formed by scaling the diagonal terms of the consistent mass matrix so

that their sum is equal to the total mass of the element.

The element presented herein offers a flexible, efficient, and

reliable means of analyzing plane and axiSYmmetric problems. Since the

isoparametric formulation allows accurate modelling of curved boundaries,

this element is especially suited for the present investigation where

the interface between the near- and far-fields is hemispherical. The

accuracy and stability characteristics of the element have been studied

previously [79] where it was noted that the addition of the ninth node

to the center of the more conventional 8-node isoparametric element

increases its reliability under geometric distortion. In the following,

the accuracy of the element in wave propagation problems is examined

and recommendations are made about the largest size of the elements to

be used.
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5.2 Element Accuracy for Wave Propagation

The effectiveness of the finite element to transmit waves is

studied by analyzing the problem of one-dimensional wave propagation

through a semi-infinite rod constrained to undergo motion only in the

longitudinal direction which has been the subject of a similar investi-

gation in the past [68]. The displacement field within the homogeneous

rod, when subject to a unit harmonic displacement as shown in Fig. 5.5(a)

can be obtained by solving the corresponding wave equation giving

where

u (z,w)
z

w
Cos C

p
1.
, , w

Z - S1.n C z
p

(5.19)

is the compressional wave velocity, and

M
2G(1-V)

l-2V

is the constrained modulus for the rod.

Since the only stress component at a horizontal section through

.
the rod is the normal stress cr = pC u a valid finite model can be

p z'

obtained by applying this stress to a finite portion of the rod

through uniform dampers with constant CD = PCp as shown in Fig. 5.5(b).

The resulting finite system maintains dynamic equilibrium and behaves like

the semi-infinite rod.

A plane-strain finite element analysis of the rod was performed

using the isoparametric element presented in the previous section. The

length of the finite model was conveniently chosen to be equal to one

wave length. Three different finite element meshes were considered as
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shown in Fig. 5.6. The first two meshes were modelled by 9-node elements,

whereas 8-node elements (without the center node) were used in the third

mesh. The size of the finite elements in the direction of wave

propagation was 1/3-rd of the wave length, A, in the first mesh and

1/4-th in the second and third mesh. Only the vertical degree of

freedom was allowed at each node. The stiffness and mass matrices

for the finite element models described above were obtained by a computer

program that was developed for this purpose. The distributed damping

stresses at the boundary of the finite element model can be replaced

by the work equivalent nodal damping values. These are equal to

bCrf6 at the side nodes, and 2bC~3 at the center node of each element

where b is the width of the element. Since there is no material

damping in the rod, this dashpot representation leads to a diagonal

damping matrix for the system having non-zero components corresponding

only the the boundary nodal points.

The resulting equations of motion were solved for the steady

state displacements in the rod due to the applied unit harmonic

displacement boundary condition. The numerical solutions so obtained

are compared with the true solutions (Eq. 5.19) in Fig. 5.7. Although

both consistent and lumped mass formulations were considered, the

results presented in Fig. 5.7 are for the lumped mass formulation only.

It is observed from this figiure that when the size of the 9-node

finite elements is 1/4-th of the wave length, the numerical results

are in excellent agreement with the true solutions. The maximum error

is about 3% for the real part and less than 2% for the imaginary part.

The use of consistent mass matrix instead of lumped mass matrix resulted

in only a slight improvement in the real part. For the first mesh, where
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the size of the finite elements used is 1/3-rd of the wave length,

the maximum errors are about 17% and 8% for the real and imaginary parts,

respectively. The importance of including the center node is apparent

from the results for the third mesh which are in significant error

with the true solutions even though the size of the elements used is

1/4-th of the wave length.

Since the above error analysis pertains to one-dimensional wave

propagation, the errors may be higher for more complex two- or three-

dimensional wave propagation. However, it serves as a useful guideline

in selecting the size of the elements in the finite element mesh. It

is recommended that 9-node elements be used as much as possible and

that the size of these elements be no greater than 1/4-th of the wave

length corresponding to the highest frequency of interest.

5.3 Near-Field Finite Element Mesh

The near-field in the hybrid modelling of the rigid circular plate

on a uniform elastic halfspace is idealized by the axisymmetric finite

element presented in the previous section. The finite element mesh used

is as shown in Fig. 5.8. There are 73 quadrilateral elements in the

mesh. The total number of nodes is 317 out of which 17 are on the

interface. These boundary nodes are numbered last so that the near-field

impedance matrix can be partitioned as discussed in Chapter 2. To keep

the errors associated with the finite element mesh small, 9-node elements,

which were shown to be so effective for wave propagation, are used as

much as possible. These elements on the boundary also reproduce the

hemispherical interface correctly. The largest dimension of elements

anywhere in the mesh is approximately 1/4th of the wave length

corresponding to a non-dimensional frequency (wR/C ) of 9.0. It is,
s
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therefore, anticipated that errors in the displacement field, for

frequencies below this value will not be greater than 5%. Such a re­

fined mesh was deemed necessary in this investigation to ensure that

the far-field impedances, identified using this mesh, are not unduely

influenced by the near-field discretization.

The stiffness and lumped mass matrices for the near-field are

obtained using a computer program specifically developed for this

purpose. For those elements with nodes in contact with the rigid

plate the stiffness and mass matrices are transformed so as to be

consistent with the rigid body motions of the plate. The stiffness

matrix is stored using an active column scheme to minimize computer

storage. Since material damping is not being considered in this

investigation, the near-field damping matrix is identically equal to

zero.
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TABLE 1

INTERPOLATION FUNCTIONS

1
(1+5) (1+t)

1 1 1N
1 ="4 --N - - N - - N

2 S 2 a 4 9

1
(1-5) (1+t)

1 1 1N
2

= - --N - "2 N6 --N4 2 S 4 9

1 (1-5) (1-t) 1 1 1N3 ="4 - "2 N6 --N - - N
2 7 4 9

1
0..+5) (l-t) 1 1 1N

4 ="4 - - N - "2 Na --N
2 7 4 9

1 (1_52) (1+t) 1N
S

= - --N2 4 9

1
(1-5) (l_t2 ) 1N

6 2
--N4 9

1 2 1N
7 ="2 (1-5 ) (l-t) --N

4 9

1
(1+s) (l-t

2
) 1N

S = - - - N
2 4 9

1 2 2 1
Ng (l-5 ) (l-t ) - - N

2 4 9

J

Note: Include N
S

to Ng only if nodes S to 9 are defined for the
element.
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6. NUMERICAL RESULTS:
FAR-FIELD IMPEDANCES AND COMPARISON OF SOLUTIONS

6.1 Torsional Loading

Computer programs were developed to evaluate the torsional far-

field impedance matrices using the continuous [75] and consistent approach

presented in Chapter 3. In the continuous approach, far-field impedance

matrices are not related to the order of finite elements on the boundary

of the near-field. In the consistent fo~mulation, quadratic interpolation

functions consistent with the near-field are used to generate the far-

field impedances. The far-field impedance matrices so obtained are

combined with the near-field finite element equations and the resulting

hybrid model solved for response of the plate under a unit harmonic

torque.

The plate compliances obtained from the hybrid model are compared

with the closed-form solutions in Figure 6.1. In this figure, the

non-dimensional frequency a is defined to be equal to walC II a" being
o s'

the radius of the rigid circular plate. It is observed that for the

consistent approach both the real and imaginary parts of response are

in close agreement with the known compliances. The error in the real

part varies from about 4% at a =.2 to about 6% at a
o 0

3.0. The

corresponding errors in the imaginary part are about 1% to 4%. Since

these errors are a combination of the modelling errors in the near-

and far-fields, they reflect the effectiveness of the consistent approach

in modelling the far-field, and the accuracy of the chosen finite

element mesh for the near-field. Solutions obtained using the continuous

approach are, however, in considerable error, especially after a = 1.8.
o

An oscillatory behaviour in response, absent in the consistent approach,

Preceding page blank
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is also observed. The displacement at the interface, using the two

approaches, are plotted in Figs. 6.2(a) and (b) for a = land 3,
o

respectively. At both frequencies, the consistent approach gives

smoothly varying displacements over the entire interface which, in

the absence of theoretical solutions, may be expected to be a good

approximation of the true far-field displacements. The solutions

obtained using the continuous approach are again found to be in

significant error. These discrepancies in solutions using the

continuous approach may be attributed in part to the non-compatibility

and displacements at the interface, and in part to the fact that the

infinite series of Eq. 3.24 has been truncated to a finite member

of terms.

6.2 General Loadings

For general loading conditions, the far-field impedances are

generated using the system identification approach outlined in Chapter

4. Since the modified Gauss-Newton algorithm for parameter adjustment

is an iterative process requiring repeated solution of the equations,

3N
s

3N
s 3~

advantage must be taken of the fact that at a particular frequency,

only the elements of the far-field impedance matrix are modified. There-

fore, in the computer program developed, the forward reduction of the

above equations is stopped after the first 3N equations at which stage
s

the coefficient matrix appears as shown below,
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Within any iteration, then, the solution procedure requires the repeated

reduction of 3Nb x 3N
b

submatrix and back substitution to obtain the

plate response. Since the number of nodes on the interface (N
b

) is

significantly smaller than the nodes elsewhere in the near-field (N ),
s

a great saving in computer time is achieved. Also, since the material

damping is not considered, only the far-field impedance matrix has complex

valued coefficients. Therefore, ,in the computer program, complex storage

is assigned only to the submatrix ~bb+ sf resulting in substantial

reduction in storage requirements.

The far-field impedance functions, n
R

+ i~R in the normal direction,

n¢ + i~¢ in the tangential direction, and ne + i~e in the circumferential

direction are determined by minimizing the error function (Eq. 4.19)

which is formed by considering the response of the plate in all the

three modes of vibrations, namely - torsional, vertical, and coupled

translation and rocking. Far-field impedances so obtained are presented

in Figs. 6.3 - 6.5 as a function of the non-dimensional frequency, b •
o

For any particular frequency, these uniformly distributed far-field

impedances are directly proportional to the shear modulus G, and
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inversly proportional to the interface radius R. The discretized far-

field impedances at any node, which are obtained by multiplying the

continuous impedances by the appropriate tributary area A. (Eq. 4.7), are
l

therefore directly proportional to both G and R, an observation consistent

with the theoretical solutions of Eq. 3.38. The far-field impedance

functions presented are for a Poisson's ratio of 1/3, a value which is

fairly representative for soils. Since the impedance functions for

surface footings are known to be fairly insensitive to variations in

Poisson's ratio [5], the far-field impedance functions developed may be

used for other values of Poisson's ratio without much loss in accuracy.

The dynamic response of the rigid circular plate, using these

far-field impedances are compared with the available solutions in

Fig. 6.6 for Poisson's ratio of 1/3. It is apparent from this figure

that the proposed hybrid model is very effective in reproducing the

theoretical solutions. The discrepancies observed in the coupling

compliances, C
MH

, which are plotted in Fig. 6.11, may be due to the

assumption of relaxed boundary conditions in the theoretical solutions.

For torsional vibrations, the displacement field at the interface is also

compared with that obtained by consistent approach in Fig. 6.7 which

is analogous to Fig. 6.2. From these figures it is apparent that the

system identification approach, although approxinate, predicts the

displacements much more accurately than the continuous approach.

Far-field impedances must, in principle, be related only to the

interface radius, R. However, due to the approximate and numerical nature

of the modelling, these impedances may be expected to be influenced by

the near-field model used in the system identification process. The
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far-field impedances were generated for an R/a ratio of 3,0 which was

initially selected to ensur~ smoothly varying displacements at the inter­

face. To investigate their range of applicability, these impedances

were employed to calculate the compliances of the rigid plate for three

other Ria ratios of 4.0, 2,4 and 1,935 by changing the radius of the

plate. These compliances are compared with their values obtained from

the closed form solutions in Figs. 6.8 to 6.10 for a Poisson's ratio

of 1/3. The agreement in solutions for R/aratios of 4.0 and 2.4 is

still very good, the errors being of the order of 5 to 10%. Solutions

for Ria = 1.935, which represents an extreme case of the far-field

being placed at a distance less than two times the radius of plate,

are also in reasonable agreement except for the real part of rocking

compliance, CMM , which has errors of the order of 20%, For all the

results presented, the errors in imaginary parts are generally much

smaller than in the real parts. Finally, the identified impedances are

used in the hybrid modelling of a rigid embedded hemispherical foundation

whose response to torsional excitations has been evaluated analytically[32].

The finite element mesh used is shown in Fig.6.12 which was obtained by

modifying the mesh of Fig. 5.8, The results are presented in Fig. 6.13

which indicates that the numerical solutions are within about 10% of

the analytical solutions.

The results presented above demonstrate the validity of modelling

the far-field through continuously distributed impedance functions for

general loading conditions. The impedance functions developed are appli­

cable to a wide range of practical situations and can be successfully

employed in the hybrid modelling of soil-structure interaction.
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7. GENERAL CONCLUSIONS

The hybrid model presented herein for treating three-dimensional

soil-structure interaction of surface supported or embedded stru~tures

shows great promise of being superior to the two basic methods now

being used, namely, the substructure (or impedance) method and the

finite element method.

The far-field impedances required by this method can be generated

for cases involving layered foundations and for cases involving visco­

elastic foundation materials. The basic method can even be used for

cases involving nonlinear hysteretic soil behavior in the near-field

by using equivalent linearization techniques allowing a frequency domain

solution or by using frequency independent (averaged values over

predominant frequency band) far-field impedances allowing a solution

of the nonlinear problem in the time domain.

Preceding page blank
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