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ABSTRACT

The objectives of this paper are (1) to identify the basic para­

meters which control the earthquake response of torsionally coupled

systems composed of resisting elements providing force interaction dur­

ing yielding; (2) to clarify differences in response between systems

subjected to single-component ground motion and systems subjected to

double-component ground motion; (3) to clarify differences in response

among an elastic system, an elasto-plastic system without force inter­

action, and an e1asto-plastic system with force interaction, and (4) to

evaluate the effects of magnitude of eccentricity and magnitudes of

yield shear forces on the response of elasto-plastic systems with force

interaction.

A single-story structure with a rectangular deck and four resisting

elements was used to examine these objectives. First, dimensionless

equations of motion were formulated containing the basic parameters which

control earthquake response and, then, parametric studies were carried

out to determine the effects of such parameters on elasto-plastic coupled

translationaJ....torsional response.
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1. INTRODUCTION

It is important in earthquake resistant design of structures to

know the effect of eccentricity on seismic response. The coupled lateral

and torsional response of structures has been investigated by many re­

searchers during the past ten years or so. These studies have considered

the response of both linear and non-linear systems subjected to both

single- and multi-dimensional earthquake excitations.

Coupling between lateral and torsional motions of a primary struc­

ture and an attachment, such as a penthouse or a tower, has been studied

using linear systems by Dempsey[9], Douglas and Trahert[lO], Kan and

Chopra[20,2l,22], Medeario ~8], Muller and Keintzel[33], Penzien[43] and

Skinner, Skilton and Laws [51] •

Lateral-torsional response of a single-story and multi-story elastic

structure subjected to two-dimensional ground motions has been investi­

gated by Housner and Outinen [18], Jurukovski and Bickovski[19], Mazilu,

Sandi and Teodorescu[27], Newmark[34], Shepherd 'and Donald[48], Shiga[50]

and Tso and Biswas [54] ~ Mazilu, Sandi and Teodorescu[ 27] and Newmark [34]

have investigated torsional response of linear systems subjected to tor­

sional ground motions caused by wave propagation on the ground surface.

Differing from the above studies using discrete parameter models, Gibson

Mood¥ and Ayre[13,l4] and Hoerner[17] have investigated the torisional

response of continuous models.

Non-linear response of three-dimensional structures subjected to

multi-component ground motions has been investigated by many researchers,

that is, by Anagnostopoulos, Roesset and Biggs[4], Clough, Bennuska and

Wilson[6] '., Erdik[12] ,Kan and Chopra[23], Kobori, Minai and Fujiwara[24] ,
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Koh, Takase and Tsugawa[25], Meyer and Oppenheim[29], Morris[32], Nigam

[35,36,37], Okada, Murakami, Udagawa, Nishikawa, Osawa and Tanaka[38],

Pecknold[42], Porter and Powell[44], Prasad and Jagadish[45], Onose and

Shiga[49], Takizawa[52], Toridis and Khozeimeh[53], Wen and Farhoomand

[57]and Yamazaki[58].

Non-linear behavior of simple resisting elements, such as columns

or beams, under multi-dimensional forces also has been investigated by

Aktan, Pecknold and Sozen[l,2], Aktan and Pecknold[3], Chen and Atsuta

~, Darwin and Pecknold[8], Hodge[16], Liu, Nilson and Slate[26], Morris

and Fenves[30,31], Okada, T., Seki, Asai, Paku and Okada, K.[39], Okada,

T., Seki, Paku and Okada, K. [40,41], Rosenblueth and contreras[46],

santathadaporn and Chen [47], Warner [55] and Wen and Beylerian[56].

Two basic approaches have been used to investigate the inelastic

behavior of resisting elements under multi-dimensional forces. One

approach uses plasticity theory leading one to the concept of a yield

surface on the whole section of a resisting element. Stable inealstic

material defined by Drucker[ll] is usually assumed in this case. The

other approach has similarities to the finite element method in that the

section of a resisting element is divided into sub-elements possessing a

uniaxial stress-strain relationship. This approach has been applied

many times to the analyses of the inelastic behavior of reinforced con­

crete columns, e.g. Aktan, Pecknold and Sozen[1,2], Aktan and Pecknold

llL, Okada, T., Seki, Asai, Paku and Okada, K.[39], Okada, T., Seki,

Paku and Okada, K.[40,4] and Warner[55].

The objectives of this paper are (1) to identify the basic para­

meters which control the earthquake response of torsionally coupled

systems composed of resisting elements providing interaction during
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yielding; (2) to clarify differences in response between systems sub­

jected to single-component ground motion and systems subjected to double­

component ground motion; (3) to clarify differences in response among an

elastic system, an elasto-plastic system without force interaction and an

elasto-plastic system with force interaction (EPI-system) and (4) to

evaluate the effects of magnitude of eccentricity and magnitudes of yield

shear forces on the response of EPI-systems. To fulfill these objectives,

a structural system was used having the following characteristics:

i. A single-story system is used having a rectangular deck and

four resisting elements supported on a rigid base.

ii. The floor deck is assumed to be rigid and the resisting

elements are assumed to be rigidly clamped at top and bottom.

iii. The rigid base is excited by two orthogonal horizontal com­

ponents of ground motion in the x- and y- directions.

iv. Axial deformations of the resisting elements are neglected

and the inter-story lateral displacements are assumed to be

small compared with the dimensions of the system.

v. Elasto-plastic hysteretic model is assumed for the relation

between shear force and shear deformation of the resisting

elements.

vi. The interaction effect between two orthogonal components of

shear force acting on sections of the resisting elements

during yielding is taken into account using an assumed

circular yield surface.
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2. EQUATIONS OF MOTION

2.1 Linear Systems

Let k. and k. represent the translational stiffnesses of the i-th
~x ~y

resisting element (column or wall) along the principal axes of resis-

tance, x and y, respectively. Then,

K = 2:k.
x i 1.X

and (2.1)
K = 2:k.

Y i 1.y

are the translational stiffnesses of the structure in the x- and y~i-

rections, respectively. Also, let x. and y. be the distances of the i-th1. 1.

resisting element from the center of mass along the x~ and y-axes, as

shown in Fig. 2.1. Then,

(2.2)

is the torisonal stiffness of the structure about the center of mass.

The torsional stiffnesses of the individual resisting elements about

their own centroidal axes can be neglected.

For a system of discrete resisting elements, the center of resis-

tance is located at distances e and e (the static eccentricities) alongx y

the x,-. an.d y- axes 1 respectively, where

1 bk.e = - x.
x K i ~y ~

and
y (2.3)

1 2:k.e = YiY K i l.XX
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,.
Let the earthquake ground motion be defined by accelerations u (t)

gx

and ii (t) along the x- and y-axes. The equations of motion of thegy

system shown in Fig. 2.1, without damping, can then be written in the

standard form

M
..

K K
.. 1u + u - e Ue =-M ux x x y x gx

)I tie - e K u + Ke Ue + e K u = 0 (2.4)
Y x x x y Y

M
.. ..u + e Ky ue + K u =-M u

Y x Y Y gy

in which M and I are the mass of the deck and the inertia of rotation of

the deck about a vertical axis through the center of mass, respectively,

and ux ' uy and ue are displacement components of the center of mass rela­

tive to the base in the x-, y- and e-directions, respectively.

Equation 2.4 can be rewritten in the matrix form

where

and

MD + KU=-Mu
...-g

M= [M'\J
K ..,.e K 0

x Y x

K= -e K Ke e K
y x x y

0 e K K
x Y Y

(2.5)

(2.6)

(2.7)

(2.8)

u
-g (2.9)
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Equation 2.5 is for an undamped system. For a damped system, an ortho-

gonal damping matrix [7] , Q, can be used in the form

where

(2.10)

in which

and

W =

~=

-1
2w £.

1
3

WI

1
3

W
2

1 1
3 W

3
W3

W
3

(2.11)

(2.12)

(2.13)

Quantities W. and~. (i = 1,2,3) are the circular frequencies and spec-
J. J.

ified modal damping factors, respectively, for the i-th natural mode

of the system. The equations of motion of the damped system now become

MU •+DU+!.Q.=-MU
~

(2.14)

which can be changed into the normalized form

(2.15)
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where

1:1 = A 11.-1 + A
2 + 1\3 11.1 ~

2
e

2
W ",-X W 0

x r x

e
2 2

e
211. = .. -X w xWe -w

r x r y

0
ex ? 2-w wr y y

u = {r;n = r U

(2.16)

(2.17)

(2.18)

in which

W
2

= KIMx x

and

2
W = K 1M
y Y

2We = Ke/I

(2.19)

(2.20)

Quantity r in Eq. 2.20 is the radius of gyration of the deck about a

vertical axis through the center of mass as defined by

(2.21)
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2.2 Non-Linear Systems

The equations of motion of the nonlinear system can be written in

the form

M U+ D U+ F = - M u
~

or

where the corresponding restoring force vectors are given by

!Qx

}
r Qix

F = Qe = r - L Q d. + L Q. d.- . ix l.y i l.y l.X

l
l.

Qy t Qiy

and

(2.22)

(2.23)

(2.24)

r Q
X

} r
L Q.

1i 1X

Q= r F =
2

L Q. d. + L Q. d. {2.25)~r Qe = r rl Qy

i l.X l.y i l.y l.X

JL Q.
i l.y

in which

(2.26)

In the above equations Q , Q and Qe denote restoring shear forces of thex y

system in the x- and y-directions and the restoring torsional moment of

the system about the vertical axis through the center of mass, respec-

tively, and Q. and Q. denote restoring shear forces of the i-th resis-
1X 1y

ting element in the x- and y-directions, respectively. The restoring

shear forces Q and Q. of the i-th resisting element are, if theix l.y

system is linear, given by

(2.27)
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where

Q. = { Q~x }-J.
QJ.Y

k. = [kiX 'k
iy

]-J.

{
U.

}J.x
U. =-J. U.J.y

(2.28)

(2.29)

(2.30)

in which u. and u. are, as shown in Fig. 2.2, displacements of the i-th
J.x J.y

resisting element relative to the base in the x~and y_directions, re-

spectively. They are related to the displacements of the center of mass

relative to the base, u and u , and the rotation of the deck about the
x y

vertical axis through the center of mass, ue' by

where

u. = Z. U
-J. -J.

(2.31)

(2.32)

For the non1inearsystem, conditional equations must be defined

which consider interaction between forces acting on the section of e1e-

ments during yielding. A general theory considering yielding in struc-

tures with interaction in terms of generalized forces and displacements

has been presented by Nigam[35] (see Appendix I). Using this theory to

take account of the interaction effects between shear forces Q. andJ.x

Q. in the x·- an d y-directions acting on an elasto-plastic resistingJ.y
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element during yielding, the force-displacement relationship of the i-th

resisting element can be expressed in terms of a yield surface define by

eI>. (Q. ) = 1
~ -~

thus, giving

•
Q. = k. u.
~ -1. -~

which applies when

eI>. (2,. ) < 1
1 J.

or

eI>. (Q. ) = 1
1. -~

.p
< 0W.

~

and

0 0

~J?)Q. = k. (u. -
-~ -1. -1. -~

(2.33)

(2.34)

(2.35)

which applies when

eI> • (2,. ) 1
1. J.

op
W. > 0

1.

In these equations, u~ is the plastic part of velocity vector u. repre-
-1. -1

senting the i-th resisting element. It can be evaluated using the re-

lation

deI>.
k.

~

u. ,
dQ. deI>.-1. -1.op -~ 1.

(2.36)u. deI>. deI>.
.

dQ.~
1. , 1. -~

dQ. aQ.
-~ -~

where the symbol <,> denotes inner product of two vectors. The quantity

wJ? in the inequalities above is rate of plastic work of the i-th
~
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resisting element and is defined by

(2.37)

Equations 2.36 and 2.37 can be rearranged and finally placed in

the forms

'p
;= B. B. k. Z.u. U

-1. l. -1. -l. -1. -

and

'p T
W. = B. Q. B. k. z. U

1. l. -l. -l. -l. -l.

where

B.
1=

l. a.,) a~. 2
k __l._

+ kiy(aQi~)ix(aQiX

and

(2.38)

(2.39)

(2.40)

B. =
-l. ail>.

1.

aQ.
1.X

3~.
l.

3Q.
1.y

d~.
l.

.~

l.X (2.41)

Now, the force-displacement relationships given by Eqs. 2.34 and 2.35

for the i-th resisting element can be expressed in the forms

•
Q. = k. Z. u (2.42)

l. -1. -l. -
for

~. (Q. ) < 1
l. -1.

or

~. (Q.) = 1
l. -1.

'p < 0W.
1.
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..
r. c. z. u

1. -1. "'"""1. -

~.(Q.) = 1
1. -1.

WI: > a
1.-

(2.43)

(2.44)

(2.45)

It is useful at this point to consider the equations of motion of

an elasto-plastic system without interaction between shear forces in the

x- and y-directions. In this case, the force..-displacement relationship

of the i-th resisting element in the x-direction can be written as

• (1) •Qix = k. Z. u (2.46)
1.X -1.

for the conditions

IQixl < QixO

and

IQixl = QixO

~ < a
l.X
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Note· that

(2.47)

when

w~ > 01.X -

Similarly, the force-displacement relationship in the y-direction becomes

• (2)·
Qiy = k. Z. U1.y -::L

when

IQiyl < Q. 01.y
or

IQiyl
= QiyO

WI: < 01.y

Again, note that

•
Qiy = 0

(2.48)

(2.49)

when

~ >01.y

Quantities z. (1) and Z. (2) are row matrices corresponding to the first
-1. -1.

and second rows, respectively, of the matrix Z.; that is,-1.
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~~') = {_ :iY}T

~2) = { :iXr
(2.50)

and Q. 0 and Q. 0 are yield shear forces, in the x- and y-directions, re-J.x J.y

spectively, of the i-th resisting element. Quantities ~ and w~ in theJ.x J.y

inequalities above are rates of plastic work, in the x- and y-directions,

respectively, of the i-th resisting element and are represented by

WI?
ix

(2.51)

and

2.3 Dimensionless Equations of Motion

Consider the overall system as represented by

(2.52)

{
L Q.
i J.xO

L Q. Old. 1+ L Qiyoldixli J.X J.y i

l t QiyO

(2.53)

=

QXO/KX

r Qeo/Ke

QYO/Ky

(2.54)
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v U /U 0

)
x x x

v = V e = r ue/r ueo (2.55)

v uy/uyOy

Px Qx/Qxo

E.= Pe = r Qe/r Qeo

Py Qy/Qyo

and

axo r QxO/M g

a eO = jr Qeo/I ~
aye QyalMg

having resisting elements as represented by

{

s. } {k' /K }~x ~x x

s. k. /K
~y ~y Y

(2.56)

(2.57)

(2.58)

(2.59)

(2.60)
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{

siex } = r 2 r k
ix d~,1Ke }

S'e I k. d. IKe
1 y l 1y 1X

{

V. } f u. Iu. a }1X 1X 1X

V. = =1-1
V. U. lu. a

1y 1Y 1Y

r
k

= k. Ik.
i 1X 1Y

0
2

o = __0 -·ixO
TN; W:/

k1. 1 .
1X

(2.61)

(2.62)

(2.63)

(2.64)

(2.65)

(2.66)

(2.67 )

(2.68)

(2.69)
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1" = W tx
(2.70)

The dimensionless equations of motion of the single-story non-linear

system can be placed in the form (see Appendix II)

v + 2 V ~ + TI = - a-g

where

(2.71)

(2.72)

(2.73)

a =
-g

(

o

T 72
u (w 1;; )/g a yO "'xy

gy y xy

(2.74)

and

<5
1

<5
2

-1
~ (2.75)= n

<5
3
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in which

(:: )' (:: ) (:~)
n = (:: ), (:: ) (::) (2.76)

(::J (::) (::)
(J =

[" 0, 'xy ~ (2.77)

Pxe ,
.e.= 1 (2.78),

Pye

e /ry

E: =
,

1
,

e /rx

(2.79)

l.=l-: : ~:]
- 1 - 1 1

(2.80)
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e
1 _J.. 0

r

e
1 e

1..:J... x---
A = r Z;2 r 2 (2.81)

xe Z;xy

e
1 1

0
x---r 2 2

Z;xy Z;Xy

(2.82)

r Px E Pix qixOi

;E.=

1
Pe = - E Pix qiexo + E Piy qieyO (2.83)

i i

Py t Piy qiyO

and

1
2

Z;xe

(2.84)

The symbol ' denotes differentiation with respect to dimensionless time,

Le. d/dT.

The dimensionless forms of the force-displacement relationships

corresponding to Eqs. 2.42 and 2.43 of the i-th resisting element of the

elasto-p1astic system having force interaction become

,
z. V
-1.

(2.85)
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~. (p.) < 1
~ ~

4>. (p.) = 1
~ -~

:;.: < 0
~

, ,
p. = y. c. r. z. v
-~ ~-:L-~-~-

for

4>. (p. ) = 1
J. -J.

~ > 0
~-

Quantities Y., £i' r. and z. are defined by
~ -~ -~

1
Yi =

r2(~Y(a4>. r~r -- +k. dp. Q. dp.
~ ~x ~ ~y

C·y d4>. d4'? -
dPi~y

J. ~---
a,Pix CPiy

c. =
-:L

a4>. a4>.
(~r~ ~

-a~ dPiy cp.
~x ~x

[ 2 rkJ
r Q.

~

r. =
-~ "

(2.86)

(2.87)

(2.88)

(2.89)
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where

-1
- v i8xO

-1
v

i8yO

o

...1
v iyO _

(2.90)

and

{

v. a 1 I q. o/s. }~x ~x ~x

• V iyO J= l qiYO/Siy

(2.91)

{

Vi8xO } =
Vi8yO

(2.92)

The rate of dimensionless plastic work, ~, in the inequalities above is
~

represented by

where

r
k

i
Si = -rk-.(~a~~,.--~_.-)-2-+-=-r-~-.(~d~~~""'i~)-2

~ dP. 1 dP,1X . 1y

(2.93)

(2.94)
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and

b" =
-~

d<P. d<P.
~ ~

apix aPiy

dcIJ. d<P.
~ ~

dPix apiy
(2.95)

Further, the dimensionless forms of the force-displacement relation-

ships represented by Egs. 2.46 - 2.49 for the i-th resisting element of

the elasto-plastic system without force interaction become

, (1) ,
Pix = z. v

-~

for

!Pix /
< 1

or

IPixl = 1

~ < 0 ,
~x

Pix = 0

for

IPixl = 1

:}? > 0
~x -

, (2) ,
Piy = z. v

-~

for

IPiy /
< 1

(2.96)

(2.97)

(2.98)
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or

IPiyl = 1

:J? < 0J.y

and

,
Piy 0 (2.99)

for

= 1

:J.: >0
J.y -

Q t 't' (1) d (2) d t ' d' h f'uan J. J.es Z. an z, enote row ma rJ.ces correspon J.ng to t e J.rst-J. -J.

and second rows, respectively, of the matrix, z., i.e.
-J.

s, T
J.x

qixO

(1)
z. =-J.

siex- ----
qiexo

o
(2.100)

0
T

(2) s'eJ. y
Z. =
~ QieyO

s.
-.2:Y...
qiyO

The rates of dimensionless plastic work, ~ and ~ , in the x- and y-J.x J.y

directions, respectively, are represented by
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:J: (1) ,
= Pix z. v

~x -~

and

~ = p.
(2) ,

z. v
~y J.y -J. ....

(2.101)

(2.102)

where dimensionless plastic works ~ and ~ in the x- and y-directions,J.x J.y

respectively, are defined by
Q2

= wI? / xiO
~x k.

~x

2

=~ /QiyO
iy k.J.y

(2.103)

(2.104)

Solving the above equations of motion, dimensionless quantities of

response are obtained. Dimensional response can be obtained by simply

transforming the dimensionless quantities' consistent with their defini-

tions, thus one obtains

u =

1< ::)
= ~ 1;2 av

2 -
Wx

y

•
1< ;:)

= ..5L 1;2 (2.105)u = a v
W - - -x

y

..
1< ::)

rz2 II

u= = g a v......

y

where

....

a =
....

(2.106)
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U. ={ uix } =JL {,(1,3»)2 (1,3)
v.a ~iO-1 u. 2- - -11y W

X

~. -{.
} = ~x·{,(1'3»)2

u. (1,3)1X a
~iO ~i-1 .

U.1y

f U. }1X {f n ,3)}2 (1,3).. II

J
u. = l Uiy

= g a ~iO ~i-1

where

1;;(1,3)
= [1 'exy ]

(1,3)
= [aXO'aYJa

and

(2.107)

(2.108)

(2.109)

(2.110)

V' O =
-1 l-vixO ... l

v. 01y

(2.111)

(2.112)
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_[axo

1!i = { llix }
11.

J.y

"
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a 0 q. 0y ~y-

z. v
-~

(2.113)

(2.114)

2.4 Relation among Dimensionless Variables.

The dimensionless variables defined in section 2.3 are composed of

both independent and dependent variables. The independent dimensionless

variables are as follows;

modal damping factors for the 1st,

2nd and 3rd natural modes, respec-

tively, of the system

circular frequency ratio, defined by

Eq. 2.57,of the system

coefficients of yield shear forces,

and

d. , d.
~x J.y

s. , S.
J.X J.y

defined by Eq. 2.5~of the system

dimensionless distances, defined by

Eq. 2.26,of the i-th resisting element

from the center of mass

contribution ratios, defined by Eq.

2.60,of translation stiffnesses of

the i-th resisting element to the

system

contribution ratios, defined by Eq.

2.62, of yield shear forces of the

i-th resisting element to the system
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The dependent variables are transformed into dimensionless forms

through the relations

S.1.y d. }1.X

S. d.1X 1y

(2.115)

(2.116)

{ :::: } = { :::
(2.117)

2
1. O/(~ d~ + L six d~ ) jsxe = s.

1. 1X 1.y
i r ki 1X J

2 2 2
Sye = Sxe/SXY

aeO a xO L q. old. I + ayO
L qiyoldixli l.X 1y i

s. 2
r k . =~Ss. xy

1 1y

and

r
Q

. = qixO a xO
1. qiyO ayO

(2.118)

(2.119)

(2.120)

(2.121)

(2.122)

The dimensionless frequencies W1/w , W2/W and W /w in Eq. 2.76 can be
x x 3 x

numerically obtained by solving the dimensionless eigen value problem
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1 ~ n

e
_1

r
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e
-1

r
o

= 0 (2.123)

where

o

n = w/w
x

ex 1----r 2
Z;;xy

2
n

(2.124)

2.5 Yield Functions of Shear Failure ?ystem

Based on Drucker's postulate [Ill concerning stable elastic~plastic

material, the yield surface must be closed and convex. The lowest bound,

under the postulate, being able to be mathematically considered is, as

shown in Fig. 2.3a, a closed surface formed by the four straight lines

+ IPiyl = 1 on the Pix - Piy plane in which Pix and Piy are nor-

malized shear forces acting on the i-th resisting element in the x~ and

y-directions, respectively. The uppermost bound, based on Drucker's

postulate, which can be mathematically considered is, as shown in Fig.

2.3b, a closed surface formed by the four straight lines, Ipixl = land

Ip I = 1 The yield surface having the uppermost bound corresponds toiy •

the one for elasto-plastic systems without interaction between shear

forces acting on a resisting element during yielding.

The most popular yield surface as shown in Fig. 2.4 for each resis-

ting element subjected to shear forces, Qix and Qiy' in the x~ and y­

directions will now be taken into account. In this case, the yield sur-

face function ~. is defined by
1.
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Q. 2
, Qiy) = (Q .1. X )

1.xO

which in a dimensionless form becomes

1
(2.125)

1 (2.126)

where

{ :::} {::::::::} (2.127)

in the x- and y-directions, respectively. The bound of this circular

yield surface lies between both the lowest and uppermost bounds described

above.

A yield surface function for elliptical sections subjected to bend-

ing moments, M. and M. , in the x- and y-directions, respectively, is
~x ~y

represented by [34];

M. 2
(-2:?£.)
M. 01.X

M. 2
+ (2¥...)

M
iyO

1 (2.128)

in which M. 0 and M. 0 are yield moments of the sections in the x- and y-
1.X 1.y

directions, respectively. Considering a bending failure system in which

yielding occurs at the top and bottom sections of each resisting element

at the same time and the element is rigidly clamped at the top and bottom

to the deck and base, respectively, of the system, the relation between

shear forces acting on the element and bending moments acting on the top

and bottom sections of the element becomes
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M. }J.X

M.
J.y

(2.129)

where "H" denotes story height. Shear forces Q. band Q. b
J.X J.y

corresponding to yield moments of the bending failure system are given

by

} =~ { :::: }
(2.130)

Substitution of Eqs. 2.129 and 2.130 into Eq. 2.128 gives

Q. 2
+ (2L) = 1

Qiyb
(2.131)

which is similar to Eq. 2.125; therefore, when Q. band Q. b are chosen
J.X J.y

instead of the yield shear forces, Q. ·0 and Q. 0' the yield function for
J.X J.y

the shear failure system can be applied to the bending failure system.
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3. CASE STUDIES

3.1 Choice of Parameters

3.1.1 Systems

Four element systems shown in Fig. 3.1 were considered. Parameter

studies have been carried out for the following properties:

(1) Uncoupled period in the x-direction, T = 2 /w
x IT x

Several values in the range of 0.3 to 2.2 sec. were considered.

(2) Frequency ratio, s = w /w = T /T
xy x Y Y x

Values, 1.0, 1.5 and 2.0, were considered.

all cases.

This means that T > T in
y x

(3)

(4)

Distribution of resisting elements, d. and d.
1X 1Y

Resisting elements are located at each corner of the square deck and the

center of mass is located at the geometrical center of the deck itself.

Hence, dimensionless distances of the elements from the center of mass

are

Id. I = Id. I = (3/2)1/2 = 1.2247 (i = 1,2,3,4)
1X 1Y

Distribution of stiffnesses of resisting elements, s. and s.
1X 1Y

case a) Models with eccentricity in only the y-direction (Fig. 3.1a)

Dimensionless stiffnesses of elements in the x-direction were assumed

to be as follows:

Relation between the normalized eccentricity in the y-direction

e /r and the dimensionless stiffnesses is
y

Normalized eccentricity values equal to 0, 0.2 and 0.4 were considered.
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Dimensionless stiffnesses of elements in the y-direction were

assumed the same, i.e .•

hence,

e /r =: O.
x

Case b) Models with eccentricities in both the x- and y-directions

(Fig. 3 .lb) .

Dimensionless stiffnesses of elements in the x-direction were

assumed the same as Case a. Dimensionless stiffnesses in the

y-direction were assumed to follow the relations

The relation between normalized eccentricity in the x-direction e /rx

and the dimensionless stiffnesses in this case is

1/2
(sly - S2y ) 2.4495 (sly )e /r =: 2 (3/2) = - sx 2y

Normalized eccentricity values equal to 0, 0.2 and 0.4 were considered.

(5) Yield shear forces of systems, axO and ayO

Dimensionless yield shear forces in the x- and y-directions, axO

and ayO ' respectively, were given by the following relation:

axo and a yO = 2.5 c T < 0.8 sec.
0 (3.1)

Co
> 0.8= T sec.

T-O.4

in which T denotes uncoupled natural period, T or T. Values of para-x y

meter, cO' considered were 0.06, 0.09 and 0.12. The value 0.06 was

determined to be standard by referring to the response spectrum (Fig. 3.2)

for inelastic systems with 2% of critical damping when subjected to the

El Centro, California, earthquake using a ductility factor ~ =: 5. The

dimensionless yield shear forces concerned with uncoupled natural period
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for different values of parameter cO' i.e. 0.06, 0.09 and 0.12, are

illustrated in Fig. 3.3.

The values of dimensionless yield shear forces for inelastic systems

to be considered are listed in Table 3.1.

Distribution of yield shear forces,q. 0 and q. 0
1X 1y

Yield shear forces of resisting elements were assumed to be propor-

tional to their stiffnesses. Hence, dimensionless yield shear forces of

the elements in the x- and y-directions, q. 0 and q. 0' respectively, are
1X 1y

equal to their dimensionless stiffnesses s. and s. , respectively, i.e.;
1X 1y

S.
1y

(7) Shape of yield function

A circular type yield function was assumed for each elasto-plastic

resisting element of the EIP-system.

Modal damping factors for the first, second and third natural modes

of the system, ~l ' ~2 and ~3' respectively, were assumed equal to 0.05.

3.1.2 Ground Motions

The ground motions considered were the first 30 seconds of the El

Centro accelerogram recorded during the Imperial Valley earthquake of

May 18, 1940, and the first 30 seconds of the Taft Lincoln School Tunnel

record of July 21, 1952. These ground acceleration histories presented

in Figs. 3.4a and 3.4b were digitized using the "standard" base line

correction [15]. A uniform time interval of 0.02 seconds was used in the

digitization process. The maximum accelerations of these records are

El Centro SOOE (NS)

S90E (EW)

341.7 gals

210.1 gals
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Table 3.1 Dimensionless Yield Shear Forces for Inelastic Systems

and Dimensionless Maximum Ground Accelerations

Para- Dimensionless· Maximum Dimensionless

Uncoupled Period meter Yield Ground Accelerations
Shear Forces

I
T or T (sec. ) Co axO or ayO Ii) Imax lu Imaxx y gx gy

0.06 0.15 2.32 1.43

0.3 0.09 0.225 1.55 0.95

0.12 0.30 1.16 0.71

0.06 0.15 2.32 1.43

0.4 0.09 0.225 1.55 0.95

0.12 0.30 1.16 0.71

0.06 0.15 2.32 1.43

0.6 0.09 0.225 1.55 0.95

0.12 0.30 1.16 0.71

0.06 0.15 2.32 1.43

0.8 0.09 0.225 1.55 0.95

0.12 0.30 1.16 0.71

0.06 0.10 3.49 2.14

1.0 0.09 0.15 2.32 1.43

0.12 0.20 1. 74 1.07

0.06 0.06 5.81 3.57

1.4 0.09 0.09 3.87 2.38

0.12 0.12 2.91 1. 79

0.06 0.0429 8.13 5.00

1.8 0.09 0.0643 5.42 3.33

0.12 0.0857 4.07 2.50

0.06 0.0333 10.47 6.44

2.2 0.09 0.05 6.97 4.29

0.12 0.0667 5.23 3.21
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SOOE (NS)

S90E (EW)

152.7 gals

175.9 gals

For convenience of numerical comparison between response of systems sub-

jected to the El Centro records and the response of systems subjected to

the Taft records, the Taft records were normalized to the same intensity

levels as those of the corresponding El Centro records. Components NS

and EWof the ground motions were considered as excitations to systems

in the x- and y-directions, respectively.

It is convenient to consider dimensionless ground motions instead of

absolute ones. Referring to Eq. 2.74, the dimensionless ground accel-

erations U and U in the x- and y-directions, respectively, are de-
gx gy

fined as:

(3.2)

The maximum dimensionless ground accelerations also become

{
IU hnax

} {
Iii !max/g axe

}
gx gx

= (3.3)
IU Imax Iii Imax/g ayOgy gy

In this report dimensionless yield shear forces axe and ayO in the x­

and y-directions, respectively, were determined by Eq. 3.1. Substitu-

. tion of Eq. 3.1 into Eq. 3.3 gives
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1
2.5 g Co }. T<O.8 sec.

{
IU ImaX}1T-O.4 gx

=~ IU
gy

Imax
T>0.8 sec.

(3.4)

x- and y-directions,

The maximum dimensionless accelerations, hence, are changed depend-

ing on the uncoupled natural periods of the systems. The maximum values

of the dimensionless accelerations taken into account are listed in

Table 3.1.

3.1.3 Method of Analysis

Integration of the equations of motion given by Eq. 2.71 is carried

out using the third order Runge-Kutta method described in Appendix III.

Figure 3.5 shows dimensionless displacement - time response at the

center of mass of an EPI-system having parameters ~. = 5%, T = 0.6 sec.,
~ x

s = 1 , e Ir = a and e Ir = 0.2 subjected to the El Centro earthquakexy x y

in which the maximum values of the dimensionless ground motions in the

Iv Imax and Iv lmax, are 2.32 and 1.43, respec-gx gy

tively. Figures 3.6 and 3.7 show dimensionless displacement - time

response of the elements 1 and 3, respectively, of the EPI-system sub-

jected to the ground motions. A locus of dimensionless displacement

response and dimensionless hysteresis curves at the center of mass of

the system are shown in Fig. 3.8 and 3.9, respectively. Locusci of

dimensionless displacement response and dimensionless hysteresis curves

of the elements 1 and 3 of the system are shown in Figs. 3.10 to 3.13.

The locusci of shear force response, shown in Figs. 3.10b and 3.12b,
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for the elements 1 and 3 follow very well the rule concerning force

interaction of elements with a circular yield surface. Shear force

drops are also seen in the hysteresis curves shown in Figs. 3.11 and

3.13. These drops are caused by interaction between the shear forces

in the x- and y-directions.

3.2 Effects of Ground Motions

3.2.1 Response to the El Centro and the Taft Earthquakes

Response spectra of dimensionless displacements of EPI-systems sub-

jected to the El Centro and the Taft earthquakes are presented in Figs.

3.14 to 3.16 for the three sets of values of eccentricities e /r andx

e /r. The main features of these response spectra are summarized as
y

follows:

1. Response spectra of dimensionless displacements at the center

of mass in the x-direction, v , for EPI-systems when subjected
x

to the El Centro earthquake are of the same level as those

produced by the Taft earthquake (Figs. 3.14a, 3.15a and 3.16a).

2. Response spectra of dimensionless displacements at the center

of mass in the y-direction, v , are relatively flat for both
y

earthquakes in the range T > 0.8 sec.; however, the spectralx

values for the El Centro earthquake are approximately two times

greater than those for the Taft earthquake (Figs. 3.14a, 3.15a

and 3.16a).

3. Response spectra of dimensionless rotation about the center of

mass, ve' for the El Centro earthquake are approximately the

same as those for the Taft earthquake. Note however that the

response spectra for the El Centro earthquake have predominent

peaks at T = 0.6 sec. which show spectral values for the
x
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El Centro earthquake to be approximately twice those of the

Taft earthquake (Figs. 3.l4a, 3.1Sa and 3.16a).

4. Response spectra of dimensionless displacements of resisting

elements in the x-direction for the El Centro earthquake are

roughly the same as those for the Taft earthquake. However,

the corresponding spectra in the y-direction show different

features between the two earthquakes, i.e., the curves for the

El Centro earthquake show decreasing and increasing spectral

values with increasing values of eccentricity e /r for resis­
y

ting elements 1 and 3, respectively, while the corresponding

curves for the Taft earthquake show very little change with

increasing values of the eccentricity (Figs. 3.l4b, 3.lSb and

3.16b).

Response spectra for the uncoupled EPI-systems having no eccen-

tricities in both the x- and y-directions show different features between

the El Centro and the Taft earthquakes as shown in Fig. 3.14. Further as

indicated above, the coupled translational-torsional systems show differ-

ent spectral response variations with frequency ratio ~ and with eccen­xy

tricities e /r and e /r for the different types of earthquake ground
x y

motions used.

3.2.2 Response to Single- and Double-Component Ground Motions

The maximum dimensionless displacement responses for coupled EPI-

systems subjected to single-component ground motion (NS-component of the

El Centro earthquake in the x-direction) and double-component ground

motion (NS- and EW-components of the El Centro earthquake in the x- and y-

directions, respectively) are compared in Figs 3.17 to 3.20 for different

values of uncoupled natural period T. The different features shown for
x
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responses at the center of mass in the x-direction for EPI-systems when

subjected to both single-component and double component ground motions

are caused primarily by the differences in force interaction. Likewise,

differences in the x-direction shown for uncoupled frequency ratio ~
xy

equal to land 2 are caused by differences in force interaction. It can

be recognized from Figs. 3.l7a, 3.l8a, 3.l9a and 3.20a that the differ-

ences between the maximum dimensionless displacements at the center of

mass in the x-direction, v , for systems with ~ = 1 and with ~ = 2
x ~ ~

for double-component ground motion are much greater than those for single-

component ground motion. This observation indicates that the effects of

force interaction on the response of EPI-systems to single-component

ground motion are much less than the corresponding effects on the response

of similar systems subjected to double-component ground motion. The

reason why such effects are relatively small for single-component ground

motion even for systems having large values of eccentricities is that the

response is primarily in the direction of the input motion.

Torsional responses about the center of mass of EPI-systems, ve'

when subjected to both single-component and double-component ground

motions show different tendencies with changing values of both eccentric-

ity e Ir and uncoupled frequency ratio ~ as shown in Figs. 3.l7a, 3.l8a,
y ~

3.l9a and 3.20a.

3.3 Effects of Force Interaction

Response spectra for E-, EP- and EPI-systems with ~ = 1 when sub­xy

jected to the double-component ground motion of the El Centro earthquake

are presented in Figs. 3.21 to 3.23 for different values of eccentricity.

It can be observed that the response spectra for EPI-systems are generally

smooth function of natural period T which is in contrast with the
x
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response spectra for E~ and EP-systems which are quite irregular. Differ-

ences between the maximum responses for the EP- and EPI-systems are pro-

duced by force interaction effects. The results in Figs. 3.21 to 3.23

show that the maximum responses of the EPI-systems are larger in certain

ranges of T and smaller in other ranges than those of EP-systems. Thisx

observation, which is consistent with the results of Kobori [24], indi-

cates that force interaction effects do not always produce larger maximum

displacements.

Kobori indicates also that force interaction effects have a tendency

to balance the two components of ductility ratio response in column

members for those cases involving large plastic deformations. This same

tendency is confirmed by the results presented herein, especially for

those systems having long uncoupled natural periods T. The results
x

shown in Figs. 3.21 to 3.23 are for those systems having an uncoupled

frequency ratio s = 1. As previously mentioned, force interaction
xy

effects on inelastic response are variable with the value of uncoupled

frequency ratio.

3.4 Effects of Uncoupled Natural Frequencies

The maximum dimensionless displacement responses for EPI-systems

having no eccentricities in the x-direction i.e. ex/r = 0, are presented

in Figs. 3.24 to 3.27 for different values of uncoupled natural period

T. In these figures, the variations in the maximum dimensionless dis­x

placement response at the center of mass in the x-direction, v , with un­x

coupled natural frequency ratio s are caused primarily by force inter­
xy

action. Torsional effects in this case are small. The degree of force

interaction effects is related to the value of uncoupled frequency ratio

s (Figs. 3.24a, 3.25a, 3.26a and 3.27a). Note that the maximum
xy
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dimensionless displacements at the center of mass of the EPI-systems in

the y-direction, v , have been affected not only by force interaction,
y

but also by changes in the value of the uncoupled natural period T •
Y

3.5 Effects of Eccentricities

The maximum dimensionless displacement responses for EPI-systems

with eccentricity in only the y-direction and with eccentricities in both

the x- and y-directions are presented in Figs. 3.28 and 3.29, respec-

tively. These results show that translational displacement responses at

the center of mass of the EPI-systems, v and v , are insensitive tox y

changes in the values of eccentricities, especially, for the systems

having long uncoupled natural periods T. They also show that torsionalx

response about the center of mass , va ,increases almost linearly with·

increasing values of the eccentricities. This means that translational

displacement response at the center of mass is not related to the

eccentricities of the system. differing completely with torsional response

which is directly related to the eccentricities of the system.

Torsional response about the center of mass, va' for those systems

with eccentricities in both the x- and y-directions produces larger

displacements than for those systems with eccentricity in only the

y-direction. However translational displacement responses at the center

of mass, v and v , for both the systems having not large values ofx y

eccentricities give almost the same values in the x- and y-directions,

respectively.

3.6 Effects of Yield Shear Forces

The maximum dimensionless responses for EPI-systems with different

values of yield shear forces axO and ayO but for fixed values of uncou­

pled frequency ratio sxy are presented in Figs. 3.30 to 3.33 for
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different values Tx ' In these figures, Co is the parameter used to

define yield shear forces a
xO

and a
yO

as given by Eq. 3.1. It is easily

noted that the translational and torsional displacement responses

decrease with increasing values of the yield shear forces (Figs. 3.30 to

3.33).

The maximum dimensionless displacement responses of the resisting

elements of the EPI-systems for small values of parameter cO' e.g. Co =

0.06, fluctuate with changing values of eccentricity. This fluctuation

decreases however with increasing values of Co (Figs. 3.30b, 3.31b, e.32b

and 3.33b). This means that excessive torsional response due to eccen­

tricities can be controlled by increasing the yield shear forces appro-

priately.
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4. CONCLUSIONS

The principal conclusions of this study concerning the coupled

translational (x and y) - torisonal (8) response of single-story force-

interacting elasto-plastic (EPI) systems subjected to earthquake ground

motions are the following:

1. The coupled translational-torsional systems show different

spectral response variations with frequency ratio s and withxy

eccentricities e /r and e /r for the different types of earth-x y

quake ground motions used.

2. The effects of force interaction on the response of EPI-systems

to single-component ground motion are much less than the corre-

sponding effects on the response of similar systems subjected

to double-component ground motion.

3. The response spectra for EPI-systems are generally smooth

functions of natural period T which is in contrast with the
x

response spectra for E- and EP-systems which are quite irregular.

4. Force interaction effects do not always produce larger maximum

displacements.

5. Force interaction effects on inelastic response have a tendency

to balance the two components of displacement response for those

cases involving large plastic deformations, especially for

systems having long uncoupled natural periods T •x

6. Translational displacement responses at the center of mass of

the EPI-systems, v and v , are insensitive to changes in thex y

values of eccentricities, especially, for those systems having

long uncoupled natural periods Tx ; however, torsional response
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about the center of mass, ve' increases almost linearly with increas­

ing values of the eccentricities.

7. Torsional response about the center of mass, ve' for those systems

with eccentricities in both the x- and y-directions produces larger

displacements than for those systems with eccentricity in only the

y-direction. However translational displacement responses at the

center of mass, v and v , for both the systems having not largex y

values of eccentricities give almost the same values in the x- and

y-directions, respectively.

8. Excessive torsional response due to eccentricities can be controlled

by increasing the yield shear forces appropriately.
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APPENDIX I

YIELDING IN ELEMENTS

Fundamental relations describing the interaction between forces

acting on sections of elements during yielding are described herein [34).

The internal work of a linear elastic element can be expressed in

the form

w (1.1)

-in which Q and q represent generalized n-dimensional force and displace-

ment vectors, respectively, and the sYmbol <:';> denotes inner product

of two vectors. Vector Qin a linear elastic element can be written as

Q = S q (1. 2)

in which S is a constant stiffness matrix of the element. The limit

yield surface for a perfectly elasto-plastic system, a closed surface

enclosing the origin, can be defined through a scalar function of the

generalized forces of the form

(1.3)

Postulating stable inelastic material [11) and assuming that the

coordinate axes of the generalized forces Q and the displacement incre-

ments ~q coincide, the yield surface will be convex and the plastic dis-

placement vector ~qP will lie along the outer normal to the yield surface

at a regular point. Hence, the normal to the surface will be in the

direction of the gradient and

(1.4)
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where A is a positive scalar.

-During yielding the force vector Q moves on the yield surface. In

plasticity theory this is called "loading" and is characterized by the

relation

and

diP = 0

The change from plastic behavior to elastic behavior occurs if

and

diP < 0

This is called "unloading". The work done during an increment of yield-

ing is given by

dwP (I. 5)

It follows from Egs. I.4 and I.S that during loading

ill (Q) 1

and

since the yield surface encloses the origin. Unloading must occur when

iP(Q) = 1

and

dvf < 0



(Q)
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The criteria for elastic and inelastic behavior at a section can now be

expressed as the section is linearly elastic for

<I> (Q) < 1

or

= 1 ] (Unloading)
dwP < 0

and the section is yielding for

1 ] (Loading)
dwP > 0

and

The displacement increments can be decomposed into elastic and plastic

parts, ~qe and ~qP, respectively, so that

(1.6)

During yielding the tip of the force vector moves on the yield surface

and the incremental generalized force vector ~Q is related to the elastic

part of the incremental displacement vector by the relation

(1. 7)

Since the plastic incremental displacement vector ~qP is normal to the

yield surface (Eq. 1.4) and the force vector moves on the yield surface

during yielding, incremental vectors ~Q and ~qP must be orthogonal, i.e.

(1.8)
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Substitution of Eqs. I.6 and I.7 into Eq. I.8 finally gives an equation

for the positive scalar A, that is

<8
d~ I d~>
dQ dQ

(L 9)

The plastic incremental displacement vector ~qP given by Eq. I.4 can now

be represented as

<8 - dCP)
~q I dQ

~;l = ------

( 8 _d4> I .£!)
dQ oQ

-eand the elastic incremental displacement vector ~q becomes

<8 ~q I ~>-e
~q -

oQ oCP
~q = oCP

~;>
oQ<8 - I

oQ

(L1D)

(I .ll)

The incremental generalized force vector ~Q given by Eq. I.7 can also be

expressed in the form

(L12)

Dividing Eq. L12 by time increment ~t and taking the limit as ~t-+ 0,

there results

I ~~ >
q -

~
oCP

S -= '
dQ

o!>
dQ

. oCP }
oQ

(Ll3 )
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where the dot shown above quantities Q and q denotes differentiation with

respect to time, i.e., d/dt. This equation defines the force-displace-

ment relationship at a section when yielding is taking place. The corre-

sponding relationship at a section under the most general condition of

loading can be written as

for

or

Q = S q

<I>(Q) < 1

<I>(Q) = I I
wP < 0

(Unloading)

(LI4)

and

,~> .d~ }

d~> dQ
dQ

(LIS)

for

<I>(Q) = I 1
WI? > 0 J

(Loading)

where the rate of plastic work for an element, wP, is obtained from

Eq. L S, i . e .

(Ll6)

•
in which the plastic part of the velocity vector, qP , is obtained by

dividing Eq. 1.10 by ~t and taking the limit as ~t ~ 0; thus one obtains
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(1.17 )



114

APPENDIX II

DIMENSIONLESS EQUATIONS OF MOTION

It is desirable to transform the equations of motion, Eq. 2.23,

into dimensionless form. Since the inverse of stiffness matrix h defined

by Eq. 2.17 can be represented as

h-l 1 ( a2 1 )
w2

--818n---
x

in which

a = [1,0,~xy -

e l-Y
r ,

8 = 1 ,
ex

L r J

(ILl)

(II.2)

(II.3)

and

r
1 1 -1 -,

1 = 1 1 -1 (II.4)

l-l -1
1-'

n = (II. 5)

, the damping matrix ~ defined by Eq. 2.16 can be rewritten in the form
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(II. 6)

Then the dimensional equations of motion become

ii + {:~ ~2 - ~ ~ ~~) + A2 + A3 ~}~
-1

.Q.=-+ M u
~

(II.?)

.
Differentiation with respect to time t, ( ) =d( )/dt, can be trans-

formed into differentiation with respect to dimensionless time T,

I( ) =d( )/dT, using the relations

,
u = Wx (r u eo) £.:!...

(II.8)

where

,
1 ,

Substitution of Eq. II.8 into Eq. II.? gives

(II.9)

1.. E: 1 E:)n---

Pre-multiplying Eq. II.10 by

(ILIa)
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I 2 -1
f .e.

, since

and

2" {AI 2 1-1
f :Yo + 3 ~ (~- n.e. .£ .!.. .£ .e.)

wx

(II-H)

Substituting these relations into Eg. 11.11 and pre-multiplying by ~-2

give

" ,
V+2Vv+1T=-C/.

-g
(II .12)
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where

~ 1 -1 ~ ~ -1,
'J = vI (2. - n.e. ~ ~ £.e.) + v 2 + u3.e. :;;.. .e.

r
u (2-) I

gx Wx

1Ugy:", " ) / g a yO ,;,
y xy

and

(II.B)

(IL14)

(ILlS)

-1
=~ ~ (II .16)

in which

WI l
W

x

(IL17)
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APPENDIX III

NUMERICAL INTEGRATION PROCEDURE

111.1 Third Order Runge-Kutta Method

Integration of the equations of motion given by Eq. 2.71 have been

carried out using a third order Runge-Kutta method. To develope this

method for a system of n first order differential equations, consider the

system of differential equations with respect to time t written in the form

~ = f (t , ~) (IILl)

in which u and f are an n-dimensional vector and an n-dimensional vector

function, respectively. Then, the Runge-Kutta formula is given by

where

and

+ 1 (M
O

+ 3M
2

) + 0 (Llt4 )u = u
s+l s 4

- l'lt fM
O = · (t u )

s s

- Llt f {(t 1
(~ 1 - }M1 = · + 3 Llt) , + 3 MO)s s

l'lt f {(t 2 t) , (u 2 - }M2 = · + + 3 Ml )s 3 s

(III.2)

(III .3)

-in which MO ' Ml and M2 are n-dimensional vectors, Llt is the interval of

integration, sand s+l are subscripts denoting integration steps, and a
denotes an n-dimensional error vector proportional to Llt

4
.

111.2 Application of Runge-Kutta Method to Equations of Motion

The equations of motion can now be expressed as

Qx 1
..

u u ux x gx
.,

-1

J
r ue + Ll r ue + M r Qe = a (III.4)

II
Qy

..
u u uy y gy
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where the restoring forces of the system are

I
2: Q.

Qx
. ~x
~

r Qe
2 -2: Q. d. + 2: Q. d.

(III. 5)= r . ~x ~y i ~y ~x

l
~

Qy 2: Q.
i ~y

Rates of restoring forces of the i-th resisting element of EPI-systems

are given by

for

u
x

k. Z.
-J,. -~ •

u
y

(III. 6)

<P. (Q. , Q. )
~ ~x ~y

or

and

= 1

0

] (Unloading)

wI! <
~

<I>. (Q. , Q. ) =
~ ~x ~y

for

where

r. c. Z.
~ -~ -J,.

B. k. Z.
-~ -~ -~

r ~: )

1

0

] (Loading)

VI? >
~-

(III.7)

(III.8)
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Rates of restoring forces of the i-th resisting element of EP-systems

in the x-direction are given by

U
x

U
Y

for the conditions

and

;f <0
J.x

Note that
o

when

;f >0
J.x -

The corresponding relationships for the y-direction become

(
U

j x

Qiy k. Z ~2) r ueJ.y -J.

l U y

when

or

;f <0
J.y

Again, note that

(III.9)

(III.10)

(III.11)
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o
when

~ > 0
~y -

(III.12)

-"_PoQuantities W":
~x

and

and
_o_p,
W": in the inequalities above are given by
~y

u
x

u
y

(IILl3)

{
ux

~ = Q, z ~ 2) r ue~y ~y -~

l u
y

In continuing this development, let

u(l) u
1x

u (2) = r ue
u(3) = u

Y

u(4) u
x

u (5) = r ue
u (6) = uy

q(l,i) Qix

q(2,i) = Qiy

Then, the set of first order differential equations becomes

(IIL14)

(IlL 15)
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{" } { }u(l) u(4)

~(2) = u(5)

u(3) u(6)

(IIL16)

I")
" uu(4) gx u(4)

{~ (5)} = - .. 0 - t:.. {u (5)1
Ju(6) u u(6)

gy

E q(l,i) 1
-i q (1, il 'diy + ~ q (2'ild

iXj
(IILl7)

~ q(2,i)
1.

The relationships among rates of restoring forces and displacements for

EPI-systems can be rewritten as

{~(1'il} r4l

}

= k. Z. u (5)

q(2,i)
--J. -J.

u (6)

for

4>.{q(l,i) , q(2,i)} < 1
J.

or

4>.{q(l,i) q(2,i)} _. 1
J.

~. < 0
J.

and

{qll'il } {U(4l}= r. c. z. u(5)
" .J.--:J..-J.
q (2, i) u (.6)

for

4>.{q(l,i) , q(2,i)} = 1
J.

~ > 0
J.-

(III.18)

(IIL19)
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{

q (l,i)}T
~ = B. B. k. Z.

1 1 q(2,i) -1 -1 -1

(U(4»)

l
lu (s>}
u(6) J

(III. 20)

The corresponding relationships for EP-systems can be similarly written.

First, the relationships for the x-direction become

for the conditions

•
q(l,i)

(U(4)}
k. z~l) {u (5)1X -1

u(6)

(III. 21)

Iq(l,i)1 < Q
ixOand

Iq(l,i)1 = QixO

.p
< 0W.1X

Note that

when

.
q(l,i) = 0

Iq (l,i) I QixO

~ >01X -

(III.22)

Similarily, the relationships for the y-direction become

for

q(2,i) = k. z(2)
1y -i {

U(4)1
U(S)J
u(6)

(III.23)

Iq(2,i) I < QiyO
or

Iq(2,i)\ = QiyO

wr: < 0
1y
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q(2,i) = 0

Iq(2,i) I = Qiyo

w~ > 0
~y -

(III.24)

Quantities ¥f and ¥f in the inequalities above are given by
~x ~y

t4

)}~ q (1, i) Z ~l) u (5)
~x -~

.u (6)

and

r4

)}WE: = q(2,i) Z~2) u (5)
~y -~

u (6)

(III. 25)

(III.26)

III.3 Application of Runge-Kutta Method to Dimensionless Equations of
Motion

The dimensionless equations of motion are

,
vx

+2V

v
y

(III. 27)

where the dimensionless restoring forces are given by

Px l: Pix qixOi
~ = 5.-2 -2 -l: l: (III. 28)P8 S Pix qi8xO + Piy qi8yOi i

Py l: Piy qiyO
i
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The rates of dimensionless restoring forces of the i-th resisting element

for EPI-systems are given by

I

{~::}
v

x

= z. ve-~

I

V
Y

for

<I>. (p. , p. ) < 1
~ ~x ~y

or

~~ < 0
~

and

for

<I>. (p. , p.) 1
~ ~x ~y

WI: > 0
~

where

(III.29)

(III.30)

(III. 31)

Likewise, the rates of dimensionless restoring forces of the i-th re-

sisting element for EP-systems in the x-direction are given by



for the conditions

and
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(1)= z.
-~

= 1

,
v

y

,
v

y

(III.32)

Note that

;:?
~x

< a

when

I

Pix = a (III.33)

IPix/
= 1

> 0

Similarly, the corresponding dimensionless force-displacement relationships

in the y-direction become
,
v

x
(2) ,

(III.34)Piy = z. va
-~

,
vy

when

< 1

or

= 1

< a

and ,
P iy = a (III.35)
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when

1

:}! >0
1y -

,p.Qunatities vr.
1X

and

and
Ip
vr. in the inequalities above are given by

iy

1
V

X

I

V
Y

I
V

X

1

V
Y

(III .36)

(III.37)

To continue this development, let

v(l) = v
x

v(2) = ve
v (3) vy
v(4)

1
= v

X

v (5) 1ve
v (6)

1

vy
p (1, i) = Pix
p(2,i) = Piy

Then, the set of first order differential equations becomes

f':"(l)} {V(4)}

l
~(2) =. v(5)

v(3) v(6)

and

(IIL38)

(III.39)



f' } Ja} { }
v(4) gx v(4)

1
~ (S) = - 0 - 2~ v (S) - ~-

2

v (6) l(X v (6). gy
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E p(l,i) q. 0
i lX

-E p(l,i) qi6xo + E
l
; p{2,i) qi6yO

i
y.: p(2,i) q. 0
i ly

(III.40)

The relationships among rates of dimensionless restoring forces and

dimensionless displacements for EPI-systems can be rewritten as

Jp(l,i)} {V(4)}
= z. v(S)tP(2,i) -l v(6)

for

q,.{p(l,i) , p(2,i)} < 1
l

(III.41)

or

and

q,.{p(l,i)
l

p{2,i)} = 1

if: < 0
l

for

{~(l'i)}P (2,i)
y. c. r. z.

l -l -.l. -.l. {

V (4)1
v (S) ~

v (6) J
(III.42)

where

q, . {p (l , i) , p (2 , i) } 1
l

:;;: > 0
l-

~ = S. {PC1,i)}T
l l p(2,i)

[V(4»)

l
V(S) ~

v (6) J
(III.43)

Likewise, the relationships among rates of dimensionless restoring forces

and dimensionless displacements for EP-systems can be obtained. First,

the relationships for the x-direction become



for the conditions

I

P (1, i)
(1)= z

-i.
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{
V(4)}
v (5)

v(6)

(III .44)

and

note that

when

Ip(l,i) I < 1

p(l,i) = 1

.;;.: < 0
~x

I

p(l,i) = 0

!p(l,i) I = 1

.;;.: > 0
~x -

(III .45)

Similarly, the relationships for the y-direction become

for

I

p(2,i)
(2)= z

-i. {
V(4)}
v (5)

v (6)

(III. 46)

or

Ip(2,i) I < 1

Ip(2,i)1 = 1

.;;.: < 0
~y

and
I

p(2,i) = 0

when

Ip(2,i) I = 1

.;;.: >0
~y -

Quantities ~ and ~ in the inequalities above are given by
~x ~y

(III.47)
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r4l

}
~ p(l,i)

(1 )
v (5)z.

~x -~

v(6)

and

r4

)}:,t p (2,i) (2)
v(5)= z.

~y -:L

v (6)

(III.48)

(III.49)

III.4 Time Interval and Tolerances on Numerical Integration

Dimensionless time T is related to absolute time t by the equation

w t
x

The integration interval 6T was similarly determined by

w °i:ltx
N

(2.70)

(III. 50)

in which time increment 6t was taken equal to the interval of digitiza-

tion of the earthquake ground motion, i.e. i:lt = 0.02 seconds. A proper

choice of the value of integer N depends upon the values of the uncoupled

periods, T and T , of the system. A few test cases for T = T = 0.5
x y x y

seconds showed that changes in displacement response were less than 1%

for N = land 2. For T
x T = 0.3 seconds, the changes in displacementy

response were less than 2% for N = 2 and 4. Hence, choice of values for

integer N was determined as follows:

N = 1 for T and T > 0.5 secondsx y

2 forT and T < 0.5 secondsx y

For elasto-plastic systems, transitions from elastic to plastic

state and from plastic to elastic state must be carried out with suffi-

cient accuracy. The following criteria were used for such transitions:
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Elastic state if ~. < 1
~

{

l < ~. < 1 + 10-2
~-

Plastic state if
o < ~

Transition from plastic
to elastic state if

[
1 < ~. < 1 + 10- 2

- ~

L10-2 < ~ < 0l - ~

The integration interval initially selected was subdivided if the criteria

described above were not satisfied during numerical integration.
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