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ABSTRACT

The basic purpose of this research was to investigate the feasibility

of studying the nonlinear response behavior of concrete arch dams on a

20 ft square shaking table. Assuming a length scale of 1/150, suitable

model material of plaster, celite, sand and lead powder was developed.

The proportions and properties of adopted materials are listed.

Shaking table tests are described of a segmented arch rib model

designed of this material to simulate the monolith joint opening behavior

of an arch dam. Also, the test of a model of Koyna Dam is mentioned,

where the model behavior simulated reservoir cavitation mechanism and

the observed cracking of the prototype. The principal conclusion of the

investigation is that shaking table research is a practical means of

studying the nonlinear earthquake response of concrete arch dams,

including their actual failure mechanisms.
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1. INTRODUCTION

Earthquake safety of dams is a matter of increasing concern in

seismically active regions of the world because the potential hazard

presented by a large reservoir is proportional to the increasing popu­

lation downstream of the dam. Consequently, both existing structures

and proposed new designs are being subjected to seismic safety

evaluations; these involve estimation of the maximum earthquake motions

that may be expected at the site, and evaluation of the dynamic response

to these motions. The current practice in the seismic analysis of

concrete dams is to assume that the structure as well as its interaction

mechanisms with reservoir and foundation are linearly elastic, because

of problems involved in the analytical representation of nonlinear

behavior. Unfortunately, however, such linear analyses do not adequately

represent the true behavior of concrete arch dams, and it is difficult to

establish consistent design criteria based on results of linear analyses.

Three major types of structural nonlinearities (see Fig. 1.1) can

be expected in the response of concrete arch dams to strong earthquake

motions. The mechanism that occurs most commonly results from movement

of the vertical joints that are formed between the concrete monoliths

during the construction process. Under static condition, these joints

are forced closed by the hydrostatic pressure of the reservoir, and the

structure resists these loads as a single unit. During the dynamic

response to a severe earthquake, however, bending and upstream motion

of the arch tend to cause opening of these joints, and it is evident

that a linear analysis which neglects the possibility of joint opening

may produce misleading results. Specifically, tensile stresses that



2

may be indicated in the arch ring direction cannot be transmitted across

the monolith joints.

The second type of nonlinearity that may result from an intense

earthquake is horizontal cracking of the vertical monoliths. Such

cracking is most likely when the dam is deflecting upstream so that

the monolith joints open; at such a time, the arch action is eliminated

and the structural resistance is provided only by cantilever bending.

The typical dynamic response analysis does not predict the cracking of

the concrete, and no estimate is made of the displacements that may

occur in the post-cracking condition.

Reservoir cavitation is the third form of nonlinearity that may be

associated with earthquake response. This occurs when negative dynamic

fluid pressure at dam face offsets the hydrostatic plus atmospheric

pressure during a intense earthquake motion. Consequently, recurrent

separation and subsequent impact action is generated between the

reservoir and dam face. The separation action tends to reduce the dam

response because it suppresses the dynamic negative pressure beyond the

static level; but the subsequent impact action, which causes instantaneous

large positive pressures in the upper parts of the dam, might increase

the stress response at these locations. The impact actions in

concurrence with the second or higher mode response of dam may enhance

the tendency toward tensile cracking in the upper sections of the verti­

cal monoliths. The typical dynamic response analysis in the design does

not predict the cavitation impact, and no estimate is made of the

extent of stress redistribution due to the cavitational response.

Although nonlinear finite element analysis procedures have been

developed that could deal in principle with these nonlinearities, no

calculations have yet been made that account for the monolith joint
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opening in a realistic fashion[l], the analytical prediction of

cracking has proven to be very difficult because the results are so

sensitive to the failure criteria assumptions[2], and the only studies

of the cavitation mechanism to date are grossly over-simplified in that

they treat the reservoir effect as "added mass"[3]. For these reasons,

it is important to carry out experimental studies of the seismic

behavior of concrete arch dams, both to provide quantitative evidence

about their actual dynamic response and to serve in verification of non­

linear analytical procedures as they are developed.

The purpose of the investigation reported here was to determine

the feasibility of carrying out meaningful model studies of concrete

arch dam response to earthquakes, using the 20 ft. square earthquake

simulator at the University of California Earthquake Engineering Research

Center. The research was carried out with financial support of the

National Science Foundation as part of a U.S.-Taiwan Cooperative

Research program on the earthquake behavior of Techi Dam; this support

is gratefully acknowledged. Funds provided in this grant were not

sufficient to test a complete model of the Techi Dam; moreover,

preliminary studies were needed to determine whether a complete model

test was feasible. Therefore, this investigation was limited to

three objectives: (1) development of a model material that would

adquately maintain similitude with the prototype at a length scale of

about 1/150, (2) shaking table tests of a segmented arch rib constructed

from this model material, to demonstrate the effect of joint opening

on the dynamic response, and (3) shaking table testing of a cantilever

monolith made from the model material and retaining a reservoir, to

determine cracking mechanisms and post-cracking behavior of the system.
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Results of the work done on these three topics are presented in the

following chapters of this report.



5

CANTILEVER
CRACKING

MONOLITH
JOINT OPENING

NONLINEAR MECHANiSMS IN ARCH DAM RESPONSE

Fig. 1.1 Nonlinear Mechanisms in Arch Dam Response
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2. MATERIAL DEVELOPMENT

2.1 Similitude Requirements

In earthquake response of an arch dam, the significant forces

controlling the behavior up to the point of failure are those due to

gravity (including hydrostatic pressure), to the earthquake

acceleration, and to elastic as well as inelastic deformation. In order

for the prototype response behavior to be truly reproduced in a model

test on the shaking table, the following relationship is imposed by

similitude laws:

S • SW L

where

SE Modulus and strength ratio

Sw Unit weight ratio

SL = Length scale

It is also required in any nonlinear test that strains in the model

should equal those of the prototype - as is necessary to maintain true

geometric similitude.

In this study, the length scale was set at 1/150 because this

provided a model size that could be constructed and tested conveniently

on the shaking table. The unit weight ratio was fixed to unity by the

condition that the liquid in the model reservoir would be water, the

same as in the prototype. Thus, the scales for strength and modulus

of the model material must be equal to the length scale. In addition,

the time scale was controlled by the fact that the gravitional acceler-

ations in the model would be the same as in the prototype, thus,

requiring that the dynamic acceleration scale also be unity. With

Preceding page blank
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both acceleration ratio and length scale fixed, the time scale is found

to be the square root of the length scale. In previous dynamic model

tests of arch dams, these material requirements have not been satisfied[4].

A summary of the similitude requirements established for this

investigation is presented in Table 2.1. It will be noted that two

of the requirements expressed for the model liquid are not satisfied

if water is used in the model test, i.e., effects due to viscosity and

compressibility will be distorted. The authors do not consider these

to be critical factors in typical arch dam response, although some

researchers would differ with regard to the importance of

compressibility [5].

2.2 Development of Test Materials

The foregoing discussion of model similitude has led to the following

requirements to be met by the model material: the unit weight must be

the same as the prototype material, and both strength and modulus must

be 1/150 of those properties in the prototype. Table 2.2 lists the

material properties that have been assumed for the prototype, and the

resulting target values that are imposed on the model material.

Clearly, the development of a material which weighs the same as concrete,

with a modulus of 27,000 psi, and 27 psi compressive and 2.7 psi tensile

strength is a major challenge. A value of 70,000 psi is the smallest

modulus developed in past tests dealing with such plaster materials.

The effort to produce a plaster material having such a small tensile

strength also is new; the tensile cracking mechanism in arch dam response

had been ignored in these previous tests [4,6].

To begin the development it was decided to ignore the unit weight

requirement at first; thus, the objective during this phase was to
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develop a material having appropriate strength and modulus values.

The materials used in this initial development were casting plaster,

celite and water. The study was based on work done previously at

Berkeley by Professor J. M. Raphael [7]. Subsequently, sand was added

to the mixture to help control bleeding of the mixing water and also

to improve the ratio between the strength and the modulus. In the

final stage of development, lead powder was added to the mixture to

provide the desired unit weight. In general, the addition of each

constituent caused changes in all the material properties; thus, a

very extensive test program was required involving casting and testing

of nearly 300 3 x 6 in. cylinder specimens. Table 2.4 lists data from

all the mixing tests performed in this study.

Mixing and casting procedures varied with the type of material

and also with ratio of water to plaster in the mix. In order to mini­

mize bleeding and/or segregation, the cylinders were cast only after

the consistency had stiffened to a specified value as indicated by

tests with a brass cone consistometer; this requirement led to longer

mixing times for higher water/plaster ratios. Control of segregation

became difficult when lead powder was included in the mix, and a

greater degree of stiffening was required before the heavy plaster mixes

were cast. Thus, the addition of lead increased the mixing time before

casting, and prolonged mixing caused some variation in the material

properties. Test cylinders usually were cast in a set of six from a

single batch of material; generally they were removed from the molds

about half hour after casting to avoid development of shrinkage cracks

along the mold wall. Drying was done at 9SoF in a circulating air

oven and was continued until the weight of the specimens became

constant.
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The modulus of elasticity and compressive strength of the

materials were determined by standard compression test procedures.

Typically the cylinder was preloaded to take up slack in the compress-

ometer; load was then applied at a rate of 200 lbs/minute until a strain

of 0.000333 was reached. The process was repeated three times with

each cylinder, and the "secant" modulus was determined from the load

increment required to produce the strain level of 0.000333. The ultimate

compressive strength was determined by loading the cylinders to failure,

and the corresponding failure strain was measured in some cylinders with

strain gages. The ultimate tensile strength was measured by a lateral

splitting test. A special splitting-tension fixture was used for this

test, and the tensile strength was calculated from the formula:

=
2 Pmax
rrhd

where hd is the area of the longitudinal section on which splitting

occurred. Flexural tests of some 4 x 4 x 26 in. beam specimens also

were performed to evaluate the ultimate strain for tension failure.

2.3 Mechanical Properties of the Materials

The significant properties of the four types of material developed

in this study are summarized in Figs. 2.1 to 2.5. Properties measured

for the light weight mixes are denoted in these figures by circles

while the heavy weight mixtures made by the addition of lead powder are

indicated by triangles. "Open" symbols are used to identify mixes

without sand, and the addition of sand is denoted by "solid" (filled in)

symbols.

The ratio of water to plaster was found to be the most important

parameter in controlling the mechanical properties of the materials,
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and Fig. 2.1 shows the variation of Young's modulus (E) with the water/

plaster ratio (by weight) for the four types of material. To minimize

the experimental effort, a wide range of water/plaster ratios was

studied only for the mixture without sand; the mixtures with sand were

investigated only in the range of water/plaster ratios expected to

provide acceptable resul"ts. In general, the amount of celite used in

the mixes was adjusted to provide good workability and consistency

it varied with the water/plaster ratio. Also, the sand/plaster ratio was

adjusted to give a suitable relationship between modulus and strength

in the range of the desired properties; a ratio of 12 was found to be

effective.

As is evident in Fig. 2.1, a wide range of E values was obtained

for both light and heavy mixtures by varying the water/plaster ratio;

however, addition of the lead powder caused a definite increase of

modulus, especially with regard to the minimum achievable value. Also,

addition of sand increased the modulus of both light and heavy mixtures;

as would be expected.

The influence of the water/plaster ratio on the ultimate compressive

strength (0 ) of the test cylinders is depicted similarly in Fig. 2.2,
u,c "

and it is evident by comparison with Fig. 2.1 that the compressive

strength is closely related to the modulus of elasticity. However,

it is interesting to note that the addition of sand did not increase

the strength as it did the modulus. Similar conclusions may be dra.vn

with regard to the ultimate tensile strength (0 t) indicated by theu,

splitting test, which is plotted against the water/plaster ratio in

Fig. 2.3.

Of particular importance with regard to similitude requirements are
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the ratios of modulus to compressive strength (E/a ) and of
u,c

compressive to tensile strength (a /a ), because these ratios should
u,c u,t

be the same for the model material and the prototype concrete. The

variation of modulus with compressive strength is shown for the four

types of material in Fig. 2.4, and it is clear that this ratio is

essentially constant for each material over a wide range of strengths.

On the other hand, the ratio varies widely among the four materials.

The light plaster with sand has the desired ratio (E/a = 1000); each
u,c

of the other materials would introduce some distortion of model results

in this regard.

The variation of compressive strength with tensile strength is

presented similarly in Fig. 2.5. Although some scatter is evident in

these results, a reasonable straight line approximation can be made

for each material. The variation of this a -/a ratio among the
u,c u,t

materials is less than for the E/a ratios. Again the light plaster
u,c

with sand is seen to best approximate the target ratio for prototype

concrete, which is 10.

Based on these results, a light plaster with sand mixtures was

adopted for construction of the segmented arch rib model; constituents

and properties of the selected mix are listed in Table 2.3. Comparison

with the target values in Table 2.2 shows that this material should

provide good similitude with the prototype deformations and failure

mechanisms. Of course, the unit weight requirement is not satisfied,

but for this model lead weights were attached to approximate the static

load effects. The compressive stress-strain curve for this material,

shown in Fig. 2.6, is similar in shape to that of typical mass-concrete;

therefore, it may be assumed that nonlinear deformations will be



13

simulated adequately as well.

To simulate the dynamic cracking behavior of a cantilever section

model, it was necessary for the model material to duplicate the unit

weight of the prototype concrete because the addition of external weights

would lead to distortions. The constituents and mechanical properties

of the heavy plaster with sand material that was selected to construct

this model also are summarized in Table 2.3; its compressive stress­

strain curve also is plotted in Fig. 2.6. The tabulated data and curve

for this material demonstrate that it does not satisfy the similitude

requirements as well as does the light weight mixture. In particular,

it will be noted that the ultimate strain is only 0.8 mils per inch;

thus, deformations at compressive failure would be smaller in the model

than in the prototype. However, this type of distortion was not

introduced in this cantilever section test, because the failure

mechanism in that test was associated with tensile cracking.
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TABLE 2.1

SIMILITUDE REQUIREMENTS FOR DAM MODEL

model
Component Variable Required Scale Ratio

prototype

Dam Unit ~veight p = 1

Length L = 1/150

Elastic Modulus E = 1/150

Ultimate Strength cr = 1/150

Poisson's Ratio V = 1

Strain E: = 1

Force F = (1/150)3

Reservoir Liquid Unit Weight p = 1

Speed of Sound c = (1/150)1/2

Viscosity 11 = (1/150) 3/2

Earthquake Motion Displacement L = 1/150

Acceleration a = 1

Duration and Period T = U/150) 1/2

TABLE 2.2

DAM MATERIAL PROPERTIES

Assumed Modal Material
Property Prototype Concrete Targets

Unit weight (pcf) 150 150

Young's Modulus E (psi) 4 x 166
26.7 x 103

Ultimate Strength (psi)

Compression (cr ) 4000 26.7
. ( )u, c 400 2.67Tensl.on cr tu,

Poisson's Ratio 0.20 0.20
- -

E/cr 1000 1000
u,c

cr /0 10 10
u,c u,t



TABLE 2.3

ADOPTED MODEL ~~TERIALS - CONSTITUENTS AND PROPERTIES

Mix Proportions (by weight) Mechanical Properties

a a unit I
Water Ce1ite Sand Lead E u,c u,t wt.---

Plaster Plaster Plaster Plaster (psi) (psi) (psi) (pcf) * E/a a /av u,c u,c u,t

Light Plaster With Sand

7.0-1 1.8

I
12.0 -- 27.7 I 26.5 2.81 74.9 0.17 1045 9.43

xl03 I
i

I
I

Heavy Plaster with Sand I
I

I I I I
I

I 0.1610.0 2.2 12.0 24.12 44.1 26.7 I 2.99 146 1650 8.93
xlO3

I I

*V = Poisson's Ratio

f-'
U1



TABLE 2.4

CYLINDER MIXING AND LOADING TEST
(a) LIGHT PLASTER MIXTURES

Mix Proportions Consistency Mechanical Properties
(by Weight) (in. ) Time (min. ) -~---

Specific IE (J (J
Mixing Test Settle

(10
3

psi)
u,c u,t

Ident. Wlp CIP LIP SiP Initial Cast Cast Set (in. ) (psi) (psi) Density Remarks
I

121278.1 3.5 1.0 3.7 1.4 21 51. 9 122. 11.4 0.51 Mixture considerably hardened just
before cast.

121278.2 3.8 1.0 4.6 3.6 24 59.9 ;LOO. 18.9 0.48

121378.1 4.2 1.1 4.5 3.5 31 .01 45.5 77.2 15.7 0.46

121478.1 3.4 0.9 4.3 3.3 32 55.7 110. 23.4 0.50 Mixture hardened during cast.

121978.1 4.6 1.2 4.8 3.5 23 241, .03 38.7 84.3 14.3 0.44

121978.2 5.0 1. 35 4.6 3.8 20 261, .02 33.9 74.2 10.9 0.43 Spiral cracks developed in one
cylinder .

121978.3 5.4 1.5 4.5 3.8 20 28 . 05 29.1 62.8 9.67 0.42

122078.1 3.4 0.9 4.3 3.6 15 21 85.1 173. 27.3 0.51

122078.2 5.8 1.65 4.4 3.6 23 31 24.2 47.1 7.58 0.42

122078.3 3.0 0.77 4.8 3.3 20 24 112. 224. 31. 9 0.53

011729.1 6.2 1.8 4.3 3.2 34 42 17.8 40.8 6.20 0.41

012479.1 6.6 1.9 4.4 3.3 29 18.7 42.9 6.47 0.40

012579.1 6.6 1.9 4.2 2.9 39 17.6 42.3 6.32 0.40 Casting plaster from barrel "Ross
High Dam No. 12".

020179.1 7.0 2.0 4.5 3.6 68 Excessive 9.96 19.0 2.60 0.40 In trial cast of arch block,
bleeding water leaked through mold
joints. Shrinkage was 2.7%.
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'fABLE 2.4b

LIGHT PLASTER MIXTURE WITH SAND

I
Mix Proportions Consistency

I

Mechanical Properties :1

(by Weight) (in. ) Time (min.) !

Mixing
I

Settle
I (10

3E

pSiJ
a la I .. Iu,c u,t Spec~flc

Test W!P e!p L!P S!p Initial Cast i Cast Set (in. ) (psi) I (psi) I Density Remarks

011779.2 6.2 1.8 2.0 4.4 3.1 41 I 48'> 0.00 19.5 39.2 5.93 I

I 40
I

011879.1 6.2 1.8

I
3.0 4.4 3.4 33 21.2 I 39.3 4.49

011879.2 6.2 1.8 1.0 4.4 3.5 32 38'> 19.9 42.2 5.73

011879.3 6.2 1.8 1.0 3.7 2.7 29 23.4 51.9 8.01 Sand of No. 20 mesh.

011879.4 6.2 1.8 2.0 4.2 3.0 38 44 19.6 38.2 5.85 Sand of No. 20 mesh.

020879.1 6.5 1.5 13.4 4.8 3.4 25 -- -- -- Cast cylinders were very weak,
and damaged in mold release.

020979.1 6.5 1.5 13.4 5.1 3.7 23 28 48.2 42.0 5.80 1.30

I021479.1 6.5 1.5 13.4 4.8 3.8 31 37 40.8 34.5 -- 1. 29 Shrinkage 1.5%. Trial cast of
arch block.

021579.1 6.5 1.5 13.4 4.8 3.8 32 38 -- -- -- 1.29 Shrinkage 2.3%. Trial cast of
arch block.

021679.1 7.0 1.8 12.0 4.6 3.5 26 32'> 26.2 28.1 3.78 1.19

022279.1 7.5 2.0 12.0 4.6 3.5 24 30 0.03 33.6 30.4 4.44 1.16

022379.1 7.0 1.8 8.0 5.2 3.5 33 39 27.6 32.1 4.06 1.00

022379.2 7.5 2.0 8.0 4.8 3.6 26 32'>

I

24.9 33.2 4.48

I

0.97

030879.1 7.0 1.8 12.0 4.7 3.7 37 45 29.8 27.1 3.24 1.21

I-'
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TABLE 2.4b(CONT'D) - LIGHT PLASTER MIXTURE WITH SAND

Mix Proportions Consistency Mechanical Properties

(by Weight) (in.) Time (min. )

E
(J (J

Mixing Settle
(103 psi)

U,c u,t specific
Test w/P CIP LIP SiP Initial Cast Cast Set (in. ) (psi) (psi) Density . Remarks

031479.1 7.0 1.8 12.0 4.8 4.1 38 27.4 25.1 3.16 1.21 Trial cast of arch block.,

032979.1 7.0 1.8 10.0 5.0 3.6 27 34 29.5 28.0 3.38 1.12

032979.2 7.0 2.0 12.0 3.9 2.7 25 31 31.8 32.5 4.03 1.21 Tiny air bubbles scattered over
surface of cylinder just after
mold release.

033079.1 7.0 1.6 12.0 5.2 3.9 25 31 32.9 30.2 3.78 1.20

040279.1 7.0 1.8 11.0 4.9 3.8 41 49 30.1 24.2 2.95 1.16 Shrinkage 2.5%.

040679.1 7.0 1.8 13.0 4.5 3.4 32 38 -- -- -- -- Cast cylinders were weak like je110
and badly distorted during mold
release.

041379.1 7.0 1.8 12.0 4.7 3.6 42 -- -- -- -- Cast ten arch blocks.

041879.1 7.0 1.8 12.0 4.8 3.9 45 51 27.7 26.5 2.81 1.20 Cast ten arch blocks.

042579.1 7.0 1.8 12.0 4.8 3.8 38 471, 26.5 26.0 3.02 1.20 Cast ten arch blocks.

050479.1 7.0 1.8 12.0 4.6 3.6 44 53 -- -- -- -- Cast three arch blocks.

060679.1 7.0 1.8 12.0 4.9 3.9 45 54 -- -- -- I. 21 Cast five 4x4x27 in. beams.
Shrinkage 3.0%.

062979.1 7.0 1.8 12.0 5.0 3.9 49 27.2 28.6 -- 1.21 Trial cast of Koyna Dam section.

070579.1 7.0 1.8 12.0 4.9 3.8 38 Trial cast of Koyna Dam section.

070779.1 7.0 1.8 12.0 4.7 3.6 36 Trial cast of Koyna Dam section.

I-'
00



Mix Proportions
(by Weight)

consistency
(in. )

TABLE 2.4c - HEAVY PLASTER MIXTURE

Mechanical Properties
Time (min. )

Mixing
Test WIP c/PI LIP Sip Initial I Cast Cast Set

Settle
(in.)

E

(10
3

psi)

a
U,c
(psi)

a
u,t

(psi)
Specific
Density Remarks

4.210.769110.35

121378.2

121378.3

121478.2

121578.1

121578.2

122178.1

122178.2

122778.1

122778.2

122878.1

122878.2

011079.1

011679.1

011679.2

011679.3

012979.2

4.2

4.2

4.2

3.8

4.2

4.2

4.6

5.0

5.4

3.4

6.2

6.2

6.2

6.2

I 7.0

I i

1.11 12.92

1.0 12.88

1.1 12.92

1. 0 11.66

1.1 12.92

1.11 12.92

1.1114.14

1.2' 13.23

1.3 14.32

0.9 8.88

2.0 16.60

1. 5116.50

1.5 16.50

1. 5116.50

1.8118.71

4.1

O.

4.6

4.5

4.6

3.7

4.0

4.3

4.5

4.5

3.7

2.8

4.5

4.5

3.0

4.3

1.1

O.

3.0

1.7

3.3

3.5

3.0

3.2

3.1

3.2

1.5

1.8

1.7

1.2

3.0

1.7

14

5

48

22

18

37

52

94

90

90

51

70

95

77

168

100

211,

761,

64

114

102

107J,

64J,

99

127

92

0.00

0.22

Excessive

0.10

0.08

0.04

0.25

0.30 I

I

52.0

73.0

109.

64.0

74.0

42.8

35.9

33.5

98.8

31. 3

77.5

123.

170.

83.2

104.

53.4

48.7

41. 7

156.

48.2

21.2

27.1

14.4

17.9

10.0

7.48

7.24

28.5

7.35

2.05

2.57

2.67

2.63

2.62

2.71

2.72

2.41

2.41

2.38

2.37

All cylinders were cracked inside
mold due to delayed release.

Dry litharge substituted. Cylinder
stayed soft for many days.

Cylinder cracks near top due to
excessive bleeding.

Spiral cracks near top due to
delayed mold release.

Egg beater was used first time to
help thorough mixing of ingredients

Cylinder stayed soft and wet with
heavy bleeding.

Powdered lead of Standard Grade
CPS··S). Mixture was like a thick

paint paste, and never stiff'}ned.

Excessive cracks inside mold
cefore developing enough
strength to be released.

I-'
\0



TABLE 2.4d - HEAVY PLASTER MIXTURE WITH SAND

Mechanical Properties
Mix Properties Consistency I !(by Weight) (in.) Time (min.) E

U (J I ..
Mixing Settle

103 psi)
u,C I u,t Spec1f1c

Test W!P C!p L!P S!P Initial Cast Cast Set (in.) (psi) j (psi) Density Remarks

012679.1 6.2 1.5 16.50 6.0 4.3 1.4 541, 62 -- -- I -- 2.46 Cracked severely inside mold
during oven dry..

012979.1 6.2 1.5 14.24 10.0 3.7 1.1 33 381, None 42.3 34.1 I 4.53 2.29

060779.1 7.0 1.8 15.99 12.0 3.5 O. 28 None 62.8 I 48.0 I 6.99 2.28

061979.1 8.0 1.8 18.68 12.0 4.7 2.0 24 29 49.3 32.0 . 4.37 2.33 During the first twenty min. of
mixing, lead particles deposited
at mix bottom.

062079.1 9.0 2.0 21.40 12.0 4.7 1.9 30 41 61.1 35.0 3.88 2.39

062079.2 10.0 2.2 24.12 12.0 4.6 3.0 631, 0.88 -- -- -- -- Cylinders just after cast was
soft like jel1o.

062179.1 8.0 1.9 19.15 10.0 3.9 1.5 48 58 55.9 30.6 3.81 2.38

062279.1 8.0 1.9 19.60 flo 0 4.3 2.3 60 74 -- I -- -- Cylinders were soft like paste in-
side mold even three days after cast

071079.1 8.0 1.9 19.60 8.0 4.5 1.9 23 261, None 30.6 29.0 4.49 2.29

071079.2 9.5 2.1 22.76 12.0 4.5 4.0 30 451, 0.09 35.0 22.6 3.26 2.25 Cylinder cast was made at two
3.4 36 0.06 47.7 28.9 -- 2.35 different times of miXing.

071279.1 10.0 2.2 24.12 12.0 4.5 4.5 40 0.31 31.8 17.8

I -- 2.07 ICast made at four different times
4.3 50 0.25 42.3 22.6 -- 2.34 of mixing. Successful mold
4.0 55 0.13 55.9 26.8 1 -- 2.39 release at 1-~ hour after cast.
4.0 59 0.06 61. 2 27.9 I 2.95 2.35

071379.1 9.0 2.0 22.30 8.0 4.6 4.5 42 0.16 40.6 27.1 I 4.08 2.35
4.2 48 0.13 41.6 27.1 4.07 2.38

072479.1 10.0 2.2 24.12 12.0 4.8 4.0 38 47.9 27.9 3.61 2.34 Cast Koyna Dam section.

072779.1 10.0 2.2 24.12 12.0 4.4 4.2 46 62 0.17 -- -- -- -- Cast Koyna Dam section.

073179.1 10.0 2.2 24.12 12.0 4.4 4.0 44 54 0.06 -- -- -- -- Cast Koyna Dam section.

080379.1 10.0 2.2 24.12 12.0 4.7 3.9 25 311, 0.06 441 26.7 2.99 2.34 Cast Koyna Dam section

N
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3. ARCH RIB TEST

3.1 Model Configuration

The arch rib model was designed to approximate the geometry

(span, thickness, and curvature) of the Techi arch dam, Taiwan, at

about the mid-height section, using a length scale of 1/150. It was

constructed of a rectangular blocks cast of the light plaster with sand

mixture, with edges beveled to form the arch shape. Only seven blocks

were used for experimental simplicity; it is believed that this is

enough to qualitatively characterize the joint opening mechanism. The

dimensions of the blocks were 9 in. wide by 3-3/16 in. thick, by

13-5/16 in. long.

To conduct the tests the arch rib was assembled on the shaking

table in the vertical plane, as shown in Figs. 3.1 and 3.2. In this

arrangement, the dead weight of the blocks simulated the hydrostatic

pressure that acts horizontally on the prototype arch rings, so lead

weights were attached to the blocks to develop the desired static arch

thrust. Two different amounts of weight were added in different tests,

giving equivalent unit weights of the material of 151 and 227 pcf; the

incremental weight was intended to approximate the dynamic "added mass"

effect of the reservoir. With the model constructed in the vertical

plane, vertical motions of the shaking table simulated the effect of an

upstream-downstream earthquake while horizontal table motions simulated

a cross-canyon earthquake.

3.2 Instrumentation

Instrumentation provided to measure the dynamic response of the

model included accelerometers, oriented radially at the center of blocks
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2, 4 and 6 (see Fig. 3.1), and Direct Current Differential Trans­

Formers (DCDT's) measuring radial and tangential displacements at the

center of each block, as well as relative "joint opening" displacements

at the upper edge of each joint. In addition, strain gages were

installed at three points in each block along the extrados center

line: at mid-length and one inch from each end. To indicate opening of

the joints, contact sensors were installed near the upper and lower

edges of the blocks on adjacent faces. The photographs presented in

Figure 3.3 show the DCDT's, contact sensors, and the arch rib end

support.

To define the response during each test, output from sixty-nine

data channels was recorded in digital form at a rate of about 100

samples per second per channel.

3.3 Test Procedure

Free vibration tests of the arch rib models were made during the

first stage of testing. To excite the motion, a weight was suspended

by a wire from an appropriate point on the model and was released

suddenly by cutting the wire (see Fig. 3.4). Either symmetric or anti­

symmetric vibration modes were induced by attaching the suspended weight

at suitable locations; the first three mode shapes are plotted in Fig.

3.5. Vibration frequencies of the first three modes were 12, 24 and

38 HZ, respectively.

Earthquake excitations of the model were applied first in the

vertical component alone, then in the horizontal component alone, and

finally with both vertical and horizontal motions applied simultaneously.

The motion used in this study was derived from the El Centro 1940

accelerogram, but was speeded up by a factor of 1150 as required for
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model similitude. The testing in each series was started at a low

intensity, and subsequent tests were made with sequentially increased

accelerations. During the final biaxial input tests, the intensity of

the combined motions was increased gradually until collapse occurred.

The entire sequence of test cases is listed in Table 3.1.

3.4 Test Results

3.4.1 vertical excitations

The vertical table acceleration history applied to the model in

a typical test is shown in Fig. 3.6a. This vertical input excited

primary the two lowest symmetric vibration modes (Fig. 3.5); the time

histories of the response in these modes is shown in Fig. 3.6b and 3.6c.

These modal amplitudes were derived from the radial displacements

recorded at seven points on the arch, making use of the orthogonality

properties of the mode shapes. Strains recorded near one end of the

arch rib, shown in Fig. 3.6d, demonstrate reasonable correlation with

these modal amplitudes and suggest that the response during this test

(which had a peak table acceleration of 0.226 g) was essentially linear.

3.4.2 Linear response to horizontal excitation

The antisymmetrical modes of vibration excited by horizontal

table motions are associated with large flexural deformations, and thus

tend to induce joint openings between the arch segments. Therefore,

the first horizontal input was applied at low intensity (0.039 g peak

acceleration) to minimize joint opening and provide essentiailly linear

response for correlation with analytical results. The time variation

of the first antisymmetric mode amplitude induced by this test is shown

in Fig. 3.7a; the corresponding strain history recorded near one end
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support of the arch is plotted in Fig. 3.7b. Again the fact that the

local strain correlates well with the modal amplitude suggests that

little joint opening is occurring near the end of the model.

3.4.3 Nonlinear response to horizontal excitation

The first mode response to a wore intense horizontal excitation

(0.152 g peak), about four times greater than that discussed above, is

shown in Fig. 3.8a. Both the reduced frequency of vibration (from 12

to 8 Hz.) and the increased response relative to the input (response

amplitude increased about 8Umes) demonstrate that this behavior is

significantly nonlinear. The occurrence of joint opening is evident

in Fig. 3.8b which depicts the top surface strain of the arch adjacent

to an end support; clearly the dynamic "tensile" strain in this test

is limited to the amount of preexisting compressive strain induced

by the dead load. Joint opening prevents the development of actual

(total) tensile strains, but no such limitation is operative in the

compressive dix-ection. Mo"tions indicated by the DCDT and the contact

sensor at the same joint (Figs. 3.8c and 3.8d) provide corroboration

of the joint opening response mechanism. The fact that the strain

history shown in Fig. 3.8b continued after the termination of the

joint opening suggests that the final stage of the response is linearly

elastic.

3.4.4 Configuration of opened joint

The exact configuration of the block faces of an opened joint can

not be identified directly from joint displacement or contact sensor

data. A much more meaningful quantity, the "joint opening ratio",

was evaluated by means of a simple data transformation. The radial,
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tangential and joint displacement measured at each block were transformed

into the relative block rotation angle (8) and the localized compressive

deformation (e), according to the mechanism presented in Fig. 3.9.

The joint opening ratios for joints 1 and 3 during the "Moderate

Intensity Horizontal Test" are shown in Fig. 3.10; joint 2 never

opened in this test. It is interesting to note that at joint 1, at one

end of the arch model, nearly 90 percent of the original contact area

opened; thus, only ten percent of the area of the joint face carries

the compressive load at this time. Thus, it is evident that intense

joint opening causes greatly amplified compressive stresses in return

for suppressing development of tensile stresses in an arch ring.

3.4.5 Nonlinear response to intense biaxial excitation

The first mode response to a severe biaxial excitation (0.739 g

peak in horizontal direction and 0.788 g peak vertical), is shown in

Fig. 3.11a. In the horizontal component alone, this is about five

times greater than the input discussed above. Greatly enhanced

nonlinear behavior is evident in the result. The frequency of vibration

is further reduced (from 8 to 4 Hz) and the response relative to the

input increased again about 1.5 times. Moreover, the shift of the modal

response towards the negative direction indicates that the arch rib

vibrates with a shape substantially distorted toward the up-south

direction (Fig. 3.2). Strain recorded near one end support of the arch

model, shown in Fig. 3.11b, indicates no significant response

corresponding to intense joint opening except for the first compressive

cycle. From these results it is concluded that significant joint

degradation occurred at the arch end, probably due to local crushing

at one edge. Subsequently, the shape of the arch became distorted,
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and the stress was redistributed at the support.

3.4.6 Compressive failurs in arch rib

During a biaxial excitation test with peak accelerations of 1.34 g

in the horizontal and 0.91 g in the vertical direction, the arch rib

model collapsed as shown in Fig. 3.13. Time history responses of the

strain and contact sensors at the end support of the model are shown in

Figs. 3.12a and 3.12b; no displacement response was measured in this

test because these instruments had been removed to protect them from

damage. It is evident in these results that the nDdel remained in

place during the first two seconds of earthquake shaking (Fig. 3.6a);

in spite of undergoing intense joint opening response, the collapse

occurred surprisingly close to the end of excitation. This failure

pattern reinforces the conclusion that significant joint degradation

at one end of the arch rib model caused major distortion of shape in

the up-south direction; the model stability was finally lost by a

compressive failure at "the end support. The photograph of Fig. 3.13

showing the debris of plaster material at the arch end support

corroborates this conclusion. It should be noted that there was no

indication of slip in adjacent joint faces or tensile cracking within

the model prior to the collapse in compression.

3.5 Correlation with Elastic Analysis

Nonlinearities in the segmented arch rib response to severe

earthquake excitation are related to recurrent opening and closing of

the joints. During severe opening action, 'the arch rib also demonstrates

substantial nonlinear degradation of the joints, leading eventually

to compressive failure in the joint faces. The nonlinear computer
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programs at Berkeley have not yet been adapted to account for the

joint opening mechanism of an arch rib, so analytical correlation cannot

be made at this time with the intensely nonlinear response. However,

a linearly elastic finite element model of the arch rib was subjected

to the measured low and moderate intensity table accelerations to

examine the analytical correlation with these responses. To match the

observed vibration frequency, the elastic modulus of the mathematical

model was set to 42,900 psi, about 17 percent greater than the measured

tangent modulus shown on Fig. 2.6. The analytical damping ratio was

set to 3 percent, as measured in free vibration tests of the model.

The analytically determined time histories of the first and second

sYmmetric mode amplitude, and also of the strain near the end support

are compared with the corresponding experimental results from the

vertical acceleration test in Fig. 3.14. The correlations are good

enough to verify that the behavior is essentially linear, as assumed.

Correlation between analysis and experiment for the low intensity

horizontal test is shown in Fig. 3.15. These results suggest that even

in this minor motion the response is slightly nonlinear; both the

observed displacement response amplitude and its period of vibration

are somewhat greater than the analytical values. The displacement

correlation for the moderate intensity test, shown in Fig. 3.l6a,

demonstrates much greater discrepancies in both period and amplitude.

The observed strain in Fig. 3.16b, shows its significant nonlinearity

by the limited tensile strain as well as intensified compressive strain.

Of course, no such phenomena are demonstrated in the analytical response,

because the linear mathematical model cannot duplicate the behavior of

the physical model undergoing significant joint opening.



TABLE 3.1

TEST CASES OF ARCH RIB MODEL NO.3
(Equivalent unit Weight of 151 pcf)

Test Run

Peak Table
Acceleration (g)

Horizontallvertical Remarks
- -----,

110579.01 ~ 0.060 I
110579.02 ~ 0.095 I
110579.03 o:~

110579.04 0.039

110579.05 I 0.068

110579.06 0.152
w
.s::.

110579.07

110579.08

110579.09

110579.10

110579.11

110579.12

0.157

0.274

0.561

0.739

0.983

1. 344

0.238

0.340

0.517

0.788

0.944

0.908

Minor compressive damages at upper edges of joint - 1 and 3.

Several blocks of localized damage at lower edges of joint face.

DCDT's (for radial, tangential and joint displacement) were
dismantled.

Arch collapsed. Block 7 completely were crashed near end
support of arch.
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(BASE BEAM)
(SHAKING TABLE)
/////////////
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LEAD BLOCK

,

1t-1o.----------SPAN = 72 3~ in.-------~

Fig. 3.2 Arrangement of Segmented Arch Model

(a) View of DCDT's

Fig. 3.3 Instrumentation of Arch Model
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(b) Contact Sensors on Arch Rib

(c) End Support of Arch Model

Fig. 3.3 (Cont.) Instrumentation of Arch Model
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Fig. 3.4
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Fig. 3.5 Elastic Vibration Mode Shape of Arch Model
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Fig. 3.6 Vertical Excitation Test of Arch Model
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Fig. 3.7 Low Intensity Horizontal Test of Arch Model
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Fig. 3.8 Moderate Intensity Horizontal Test of Arch Model



42

\
\
\

"
JOINT OPENING RATIO = -]

-1 C
- - 1181

Fig. 3.9 Definition of Joint Opening in
Arch Model

J.o2.01.0

0

,Ji 1\

1\ 1\
0

~

l ~ \
\

\;

0

1.00

>-
<
0->-
<
"
~-
0-
0

-l.DD

TIME IN SECONDS
HORIZONTAL EXCITATION (PEAK-O.152G)
RUN 110579.06. ARCH RIB MOOEl NO.3

(a) Joint Opening Ratio at Support

J.O2.01.0

0

r f\ 1\ 1\

0
~ I ~

\/ jpl 1\ I-J
v

\.J V V V

0

M 1.00
I

>-
Z-0..,
>-
<

;:
<
0-

0
Z-
Z

'"0-
0

-1.00

TIME IN SECONDS
HORIZONTAL EXCITATION (PEAK-0.152Gl
RUN 110579.06. ARCH RIB MODEL NO.3.

(b) Joint Opening Ratio at Joint-3

Fig. 3.10 Joint Opening Ratio of Arch Model



43

.1500~-------------,----------------------------,

,
Q

Q

l:

Q

'"~ -.
3.0

TIME IN SECONDS
B!f'.XIAL EXCIT. (PEAK H=O.739. \I=C. S8G)

Rl' N j! 0579. 10, ARC H RIB MOD EL NO.3

(a) First Antisymmetric Mode Response

:::

Tlf'1E IN SECONDS
BIAXIAL EXCIT. (PEAK H=O.739. V=(.78BGJ

RUN 110579.10. ARCH RIB MODEL NO.3

(b) Measured Strain near Support

l.0'.0'.0

0

~ ~ e-------, ~ r--- ,----,

0

0

t­

'"~
'"~
~ -6.00

Z
Q

~ 6.00

TIME IN SECONDS
BIAXIAL EXCIT. (PEAK H=0.739. V=0.7BBGJ

RUN 110579.10. ARCH RIB MODEL NO.3

(c) Joint Opening at Support

Fig. 3.11 High Intensity Biaxial Test of Arch Model
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4. GRAVITY DAM SECTION TEST

4.1 Model Configuration

Although the basic purpose of this general research effort was to

evaluate the seismic behavior of a concrete arch dam, a gravity dam

section was selected for studying the dynamic cracking and cavitation

mechanisms because an individual thin shell arch dam monolith is not

suitable for resisting horizontal loads. Construction and testing of

a single monolith model was considered to be essential as a pre­

liminary step to testing of a complete arch dam model. A non-overflow

section of the Koyna Dam in India was chosen because that dam suffered

earthquake damage in 1966 and a seismograph record was obtained of the

damaging ground motions[8]. Thus, the objective of this study was to

subject a 1/150 scale section model of the Koyna Dam to the scaled base

motions, and to observe its cracking and post-cracking behavior. At

the same time, an investigation was made of the reservoir cavitation

mechanism observed during this model test.

The model was made of the heavy plaster with sand mixture by

casting at 4-inch thick section in a horizontal form in a single pour.

After drying, the model was rigidly attached to the shaking table at

the end of a rectangular water tank, 10 ft. long by 4-1/2 inches

wide and 30 inches high. The end of the tank was sealed by a thin,

plastic sheet that was supported by the face of the dam section; the

plastic had negligible strength and stiffness, but protected the

plaster from water. Figures 4.1 and 4.2 show the dimensions of the

model, and a photograph of the model dam at the end of the plywood

reservoir tank. Because of the plastic sheet at the end of reservoir,

this model setup is, in fact, capable of simulating one aspect of the

Preceding page blank
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cavitation mechanism in a prototype reservoir. Specifically, this model

exhibits response related to the recurrent separation and subsequent

impact between reservoir and dam face whenever the negative dynamic

pressure offsets the initial hydrostatic pressure. Figure 4.3

illustrates the concept of the cavitation mechanism in a prototype and

model reservoir. It should be noted that the atmospheric pressure effect

is not introduced in this model becaUSe the plastic film prevents

wetting of the plaster and thus allows access of the air pressure to the

upstream face. If the atmospheric pressure were permitted to act in

this model response mechanism, its effect would be greatly exaggerated

because the pressure would not be suitably scaled. To take proper

account of the atmospheric pressure at model scale would require use of

a reduced pressure chamber around the model. Lacking this capability,

a lesser distortion is achieved by using the plastic film to avoid

atmospheric pressure effects completely.

4.2 Instrumentation

Instrumentation provided to measure the model response included

dynamic pressure gages mounted on the plywood tank wall near the face

of the dam; gage I located at 2 in. depth, gages 2 to 5 at 5 in.

depth increments and gage 6 at the bottom of the reservoir. Horizontal

crest acceleration of the model was recorded by an accelerometer

rigidly attached to the model top. Deflections were monitored at every

one-fourth level of the dam by DCDT's mounted on a stiff reference

frame at the downstream end of the model. Also, strains were measured

at several locations around the level where there is an abrupt change

in the downstream slope (the term "critical section" will be used here­

after in this report in reference to this level) and at the dam base.
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Two types of wire gage with paper backing were used: single component

gages 0.812 in. long and rosettes of 0.750 in. gage length. Strain

gages of these sizes were deemed suitable for accurate strain measure­

ment. Figure 4.4 shows the strain gage locations.

Each of these tranducers in addition to the shaking table

instrumentation, a total of 46 channels, was sampled at a rate of about

150 samples per second to define the response during each test.

4.3 Test Procedure

Frequency sweep tests of the model dam were made during the first

stage of testing. The sinusoidal excitation was gradually varied in

frequency in order to identify the model fundamental frequency with and

without reservoir water; the frequency response functions showing the

ratio of measured top to base acceleration are plotted in Fig. 4.5.

The results from these tests were particularly useful for the construction

of an artificial excitation signal.

Although the original test plan was to subject the gravity dam

model to the scaled Koyna base motions, a simulated earthquake excitation

signal was employed in this test. The actual shaking table motion

produced by the time scaled Koyna displacement signal (speeded up by a

factor of 1150) did not simulate the true time scaled earthquake

because the shaking table excitation system greatly attenuated the

amplitude for frequencies higher than 16 Hz. Thus, a simulated

earthquake displacement signal containing amplified frequency components

close to the model fundamental frequency was applied instead, in order

to generate a large amplification xesponse in the model. This

artificial earthquake was a combination of harmonic motions, with

frequencies of 6, 20 and 33 Hz. These harmonics were applied with
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intensity increasing linearly for one second, constant for one second

and then decreasing linearly for one second. Figure 4.6 shows the table

displacements and accelerations produced by this artificial signal.

Figure 4.7 is the velocity response spectrum of this motion.

Earthquake tests were started with a very low intensity signal,

then the intensity of the signal was increased by increments up to

cracking of the model. Simulated earthquake accelerations with a

peak value about equal to the acceleration of gravity induced cracking

of the model very similar to that observed at Koyna. As a final test,

a similar intensity shaking was applied to the cracked dam, simulating

an "aftershock" situation to demonstrate the post-cracking stability

of the dam.

Table 4.1 lists all the tests of the model, with excitation

intensity and some remarks recorded during the tests.

4.4 Test Results

4.4.1 Linear elastic response to low intensity excitation

The time history of crest acceleration and displacement, dynamic

pressure at the base, and strain near the critical section, recorded

in a test of 0.156 g peak acceleration, are shown in Fig. 4.8. These

results, showing nearly perfect correlation with each other, clearly

indicate the linear elastic response behavior of the model when

subjected to low intensity excitation. It should be noted that the

model responds in its first mode of vibration at 33 Hz in strong

correlation with the highest frequency component of the excitation

signal (Fig. 4.7); there is no indication of second or higher mode

response in the response.
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4.4.2 Cavitation response

Cavitation occurs in a prototype reservoir when the pressure in

the water is reduced to the vapor pressure, 0.363 psi absolute at 70oF.

In this model test, however, the plastic film allowed air pressure to

act on the dam face; hence, a simulated cavitation mechanism was induced

when the negative dynamic pressure equaled the hydrostatic pressure.

This phenomonen occurred in these model tests for excitation intensity

above moderate level (0.225 g peak acceleration). In fact, during the

test of 0.441 g peak acceleration, direct evidence of this impact

mechanism first was observed by emission of smoke-like dust from the

face of the model. It was evident that the surface of the plaster model

was being abraded by the recurrent impact action during the test. Time

histories of the dynamic pressures measured in this test are shown in

Fig. 4.10. The cavitation response is evidenced in the results by the

biased response toward the positive direction; pressure changes in the

negative direction were cut-off at the hydrostatic pressure level. It

will be noted in Fig. 4.9 that the pressure response to low intensity

shaking (0.156 g peak) does not indicate such distortions. The results

for the much more intense test (1.210 g peak) in Fig. 4.11 demonstrate

the cavitation region extending to below half the reservoir depth.

The influence of the cavitation phenomenon on the dynamic

pressure response is much more evident in Fig. 4.12, which shows extreme

values of dynamic pressure at several depths below the surface in each

test, plotted as a function of peak base acceleration. The negative peak

pressure in the results at all location demonstrates a definite tendency

to level-off at about the amplitude of hydrostatic pressure for each

depth.
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A trend curve of dynamic pressure distribution along the dam

height was constructed at every time step in each test, using a

parabolic fairing technique with the set of pressures measured at

several depths below the surface (see Fig. 4.14 for an example of the

calculated pressure distribution). Then, the dynamic pressure over

the entire area of the dam upstream face was integrated by Simpson's

rule to obtain a time history of "resultant pressure force". The

extreme value of this force in each test is shown in Fig. 4.l3a,

plotted as a function of peak base acceleration. The result indicates

a significant difference in the positive and negative peaks in each

test. Specifically, in the test of 1.08 g peak acceleration, the

negative resultant pressure force was close to its maximum limit of

53 lbs, which represents the hydrostatic pressure force.

To evaluate the total shearing force acting over the base section

(1-1/4 in. above the base), a data reduction technique similar to that

described above was applied for a set of shearing strain measured at

this level. Figure 4.l3b shows its extreme values in each test plotted

as a function of peak base acceleration. A significant difference in

the positive and negative response is evident in the results for tests

with base acceleration peaks above 0.8 g, showing the influence of the

biased dynamic pressure loading on the model.

For a detailed evaluation of the cavitation mechanism, isometric

plots of the dynamic pressure together with the corresponding dam

deflection response were found to be most suitable. The dynamic

pressure distribution along the height of the dam face and its

variation with time are shown in the upper part of Fig. 4.l4a, for a

selected interval during a low intensity test (0.156 g peak acceleration).
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The lower part of this figure shows the deflection of the dam section

relative to its base. The results of this "non-cavitational" test

demonstrate that the dynamic pressure profile is nearly identical in

each time increment, and also that the pressure variation is in strong

correlation with the dam deflection; the deformation towards upstream

direction coincides wi,th negative dynamic pressure, and the downstream

displacement is concurrent with positive dynamic pressure.

The corresponding plots for the most intense shaking test (1.21 g

peak acceleration) are shown in Fig. 4.14b. At each of the time-slice

grids, the hydrostatic pressure level is indicated by a dotted line on

the negative side. The dynamic pressure profile and the time variation

in this test are quite different from those discussed above for the non­

cavitational test. The pressure response at the upper part of reservoir

is quite erratic even before the dam cracking at time 1.1693 sec; of

course, pressure in this region becomes more correlated with the rocking

motion of the top profile of the darn after cracking. Of particular

importance in this plot is a definite indication of "impact action"

caused by the separated reservoir subsequently coming back in contact

with dam face. The sudden appearance of positive pressure above 7 in.

depth of reservoir from time 1.0886 sec. to 1.0954 sec. in the excitation

history is one such example. It is believed that such "top heavy"

pressure response would create a local bending of the upper section of

dam, and significantly contribute to the initiation of tensile cracking

at these location. Suppression of negative dynamic pressure above the

hydrostatic level is also demonstrated in the results for this

prominent cavitational test. The negative pressure profile is strictly

confined within the dotted line marking the hydrostatic level.
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The response tendency of the crest acceleration and displacement

shown in Figs. 4.15a and 4.l5b reflect the cavitation effect in a

"global" sense; a relative reduction is seen in the upstream response

due to the limited dynamic negative pressure. A similar cavitation

effect is also evident in the vertical strain at the dam base, which

is shown in Fig. 4.15d. A relative reduction in the tensile response

at the dam base near the downstream face correlates to the dam deflection

biased downstream. The vertical strain measured at the downstream side

of the critical section, shown in Fig. 4.15c, has quite a different

character. The result does not indicate any influence of a relative

reduction in the upstream response causing similar reduction in tension

at this location; on the contrary, the tensile peaks exceed the

compressive peaks at all levels of excitation intensity, except for

the non-cavitational test at 0.156 g peak acceleration. It is evident

that the second or higher displacement mode response was excited

"locally" in the upper part of the dam due to the cavitational impact.

4.4.3 Cracking response

The model cracked in a manner very similar to that observed at

Koyna Dam during a simulated earthquake test with a peak value of 1.21 g

(see Fig. 4.18). The time history of crest acceleration and displace­

ment, dynamic pressure at the base, and strain near the critical

section, recorded in this cracking test are shown in Fig. 4.16. The

cracking was initiated by tensile failure at the downstream edge of

the critical section at 1.17 sec., and propagated through to the

upstream face in one swing of the dam deflection. The comparison of

the crest displacement history in this test (Fig. 4.l6b) with the

corresponding results in the low intensity shaking test (Fig. 4.8b)
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reveals the marked influence of cracking on the dam response behavior.

After' cracking, 'che part of the dam above the cracked section was

excited into a prominent rocking motion. The rocking response is

strongly correlated wit.hthe 6 Hz component of the simulated earthquake

motion (Fig. 4.6a), and the response amplitude relative to the input

acceleration intensity was increased by a factor of twenty from the

"linear elastic" test. The history of pressure at the dam base, which

is ShovlIl in Fig. 4.16c, also indicates the 6 Hz rocking effect super­

imposed on the 33 Hz elastic vibration response. It should be noted

that a similar 6 Hz response in the result before the cracking at

1.17 sec. is related to the reservoir cavitation effect: the reservoir

separation and impact action was greatly influenced by that frequency

component of the simula·ted earthquake signaL The most significant

phenomenon demonstrated in this test is that the upper part of the dam

section continued to retain the reservoir, even though it was

completely severed from the lower part: the stabilizing effect of the

gravitational force acting on the upper part of the dam was very

important in preventing overturning of the top profile.

4.4.4 Post-cracking response

Subsequent to the cracking test described above, a similar

intensity shaking was applied to the cracked dam. The response obtained

in this "aftershock" test is shown in Fig. 4.17. The crest acceleration

and displacement histories, shown in Fig. 4.l7a and 4.l7b, indicate that

the top profile of the dam above the cracked section was excited into

the same type of rocking motions as observed in the "cracking test".

A motion picture taken during this test showed that some damages were

developed at the downstream edge of the cracked section by impact
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action due to the rocking motion (see Fig. 4.19). The cracked dam

section, however, continued to retain its reservoir during and after

the severe aftershock test. It is evident that the cracked dam is a

stable structure, as was demonstrated analytically many years ago

by Dr. Jai Krishna[8].

4.5 Correlation With Elastic Analysis

At present, no analytical procedure is capable of realistically

considering the cracking and cavitation effects observed in the

gravity dam response. However, to demonstrate the limitations of

a simple elastic analysis, the response observed in two test cases

(the low intensity shaking and the cracking tests) have been compared

with the predicted response obtained from linear elastic finite

element analysis including hydrodynamic interaction[5].

Figures 4.20 and 4.21 present comparisons of the observed and

predicted time histories of crest displacement and strain near the

critical section, in the low intensity shaking test (0.156 g peak

acceleration) and the severe shaking test (1.210 g peak acceleration),

respectively. Figure 4.20 demonstrates reasonably close correlation

between the observed and predicted responses in the low intensity

shaking. Of course, such relatively good agreement between the

observed and predicted responses was expected because the model

response in this low intensity test was "linearly elastic", as assumed

in the analysis.

Referring to Fig. 4.21, it is seen that there is no consistent

relationship between the observed and predicted response peaks and

frequencies in this intense shaking test. The observed crest

displacement (Fig. 4.21a) demonstrates a prominent vibration response
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with substantially reduced frequency, and the predicted response

differs considerably from the observed. These discrepancies are due

mainly to the cracking of the dam, which was not considered in the

linear elastic analysis.

A similar comparison between the observed and predicted response

for a hydrostatic test is shown in Fig. 4.22. The response in this

case is due to filling of the reservoir. Close agreement between the

observed and predicted crest deflection is seen in Fig. 4.22a. The

correlation for the strains observed at two levels is seen in Fig.

4.22b to be not as good as that for the deflection. The difference

between the observed and the predicted result is particularly big

for strains at the downstream face. Of course, strain gages of

nearly one-inch length cannot accurately measure any strain

concentration, but also the predicted strain might be exaggerated by

numerical inaccuracy at the level where the downstream slope changes

abruptly.



TABLE 4.1

TEST CASES OF KOYNA MODEL NO.3
(27" Water Depth)

Crest Accel.
Peak Base Base Accel.

Test Run Acceleration (g) Amplification Remarks

280879.04 0.075 3.4

280879.05 0.156 3.2

280879.09 0.235 3.5

280879.10 0.441 3.5 Cavitation Appeared. White smoke emitted from
the upstream face.

280879.11 0.610 3.0

280879.12 0.794 2.8

280879.13 0.929 2.9

280879.14 1.082 3.0

280879.15 1. 210 2.8 Crack developed from downstream face.

280879.16 1. 218 2.4 "After Shock" test for cracked model.

0"1
o
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Fig. 4.18 Post-Cracking Response of Koyna Model
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(a) Downstream Face at Critical Section

Fig. 4.19 Cracking Damages in Koyna Model·
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(b) West-Side of Critical Section

Fig. 4.19 (Cant.) Cracking Damages in Koyna Model
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5. CONCLUSIONS

The principal conclusions that can be made from this investigation

are as follows:

1. Plaster-celite-sand mixtures can be made to simulate all

essential mechanical properties of mass concrete, except unit

weight, for model length scales as small as 1/150.

2. Addition of lead powder to satisfy the unit weight requirement

leads to some distortion with respect to strength and modulus

but a fair degree of similitude can be attained for length

scales as small as 1/150; better similitude could be achieved

for somewhat larger scales.

3. Arch segment models appear to reproduce the joint opening

mechanisms that are expected in the earthquake response of arch

dams, at least that component of the opening induced by arch

flexure. Joint opening effectively suppresses development of

actual tensile stress in the arch ring direction, but significantly

intensifies compressive stresses at the joint faces due to

reduction in joint contact area.

4. The Koyna Dam model tests demonstrated that a cracked gravity

dam can still retain the reservoir, and thus that cracking

should not be considered to represent failure of such structures.

It is believed that arch dams can undergo even more significant

cracking without loss of the reservoir; however, model studies

of a complete arch dam-reservoir system will be required to

demonstrate the post-cracking behavior of such structures.
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5. Cavitation mechanisms may have an important influence in the

dynamic response of arch dams. Impact action due to

cavitating reservoir interaction could significantly amplify

the stress response in the upper part of the dam; on the other

hand, the reservoir separation could reduce the upstream

forces acting on the structure. Thus, further study of this

problem is needed.

6. Based on the results of this investigation, it is concluded

that shaking table testing of complete arch dam model is

feasible, and that results of such a research program would pro­

vide invaluable insight into the nonlinear earthquake response

and failure mechanisms of thin shell concrete arch dams.
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