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ABSTRACT

Transition zones between soil types are locations in which

disproportionate pipe damage occurs due to seismic shaking. The authors

previously considered the dynamic axial response of long segmented pipelines

induced by the incoherent seismic ground motion. Homogeneous soil conditions

were assumed. The present paper extends the authors' previous work to

include local inhomogeneity. The results are expressed in terms of the

appropriate spectra.

In general, a local inhomogeneity may contribute to a change in pipe

response in three different ways. In the case of wave propagation, there

will be a local variation in delay time. Inhomogeneity will cause a

variation in the free field waveform at adjacent segments. Finally, the soil

stiffness will vary from soft to firm material. In general, all three

effects will occur simultaneously. However, to help understand the phenomena,

each effect is considered separately.

Changes in the phase delay are not very significant. Large

amplifications in pipe response, relative to the homogeneous case, can occur

when the incoherent component of the input ground motion is large. Finally,

for a two degree of freedom system, a local change in soil stiffness can

cause a large increase in pipe response, even for a coherent ground input.

~)reover, a two degree of freedom system appears to be a reasonable model for

the behavior of a multisegment system.
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LIST OF SYMBOLS

c
T

transmission coefficient

c = wavespeed in soil

D = peak ground displacement
max

D k
m

f

influence coefficient for center joint displacement in mode k, for unit
ground relative displacement across joint m, see Eq. (3)

frequency, function

G maximum value of the integral in Eq. (65)

h = depth of soil layer

i, j joint or segment number

kG' k
Gl

, k
GZ

= soil stiffness

k = pipe/joint stiffness
p

~ length of pipe segment

I length of transition region

m ~ mass of pipe segment and attached soil; joint or segment number

N number of pipe segments

PI' Pz modal participation factors for coherent ground motion

QI' Q
Z

= modal participation factors for incoherent ground motion

R k, R k
v z

response in the k
th

mode due to input vet)
respectively

z(t) and z (t) ,

R k
6z

m

th th
response in the k mode due to input 6z (t) across the m joint

m

response of single degree of freedom system to a Dirac delta

SD
A

, Sv
A

= absolute displacement and absolute velocity spectra

SD
R = (standard) relative displacement spectrum
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8
1

= interference response spectrum

s = Laplace transform variable

t

V
max

v =

x.
l

x

time

maximum ground velocity

z(t) = ground velocity

absolute displacement of the i
th

pipe segment

coherent motion of system

y

y

y­z

normalized difference in response, see Eq. (74)

horizontal coordinate

response, relative to the ground, of a single degree of freedom system
subjected to ground motion z(t)

z =
i

free field ground displacement at the i
th

segment

2(s) = Laplace transform of z(t)

z = coherent free field ground motion

6X(s) Laplace transform of 6x(t)

6x center joint displacement

62 incoherent free field ground motion; i.e., difference in free field
ground displacement between successive segments

oCt) = Dirac delta function

e = phase angle, radians

K

~k

difference in soil stiffness relative to the pipe stiffness, see Eq. (37)

wavelength

average soil stiffness relative to the pipe stiffness, see Eq. (45)

th
fraction of critical damping in the k mode
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p mass density of the soil

T 0:= phase delay

k .th th
¢. J element of k modal vector

J

~, ~¢ elements of modal vector corresponding to coherent and incoherent
motion

1 - 0,/G

circular frequency on the input motion

th
circular natural frequency of k mode of undamped system

A, B = soil A, soil B

G, g = ground

I, R, T 0:= incident, reflected, transmitted

i, j, m = segment or joint number

k 0:= mode number

p pipe/joint

Superscripts_

k 0:= mode number

T transpose of matrix
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I. INTRODUCTION

Lifelines include pipelines, highways, transit, communications and

power distribution systems. Pipelines carry fluids - water, sewage, gas,

liquid fuels - which are of vital importance to modern civilization. Their

disruption by an earthquake can add greatly to the destruction and injuries

caused by the seismic shaking itself. Moreover, the disruption of

highways, telephone and power lines will hinder enormously recovery from

the emergency. Consequently, there is a growing interest in the seismic

response of lifelines.

Weidlinger and Nelson, Refs. [1] and [2], showed that the seismic

analysis of lifelines differs fundamentally from that of conventional

structures. Whereas the foundation of a conventional building extends over

a limited area, and consequently the ground motion may be assumed to be the

same - i.e., coherent - over the entire foundation, this is not true for

lifelines, where the structure extends essentially parallel to the ground

surface for a distance long in comparison with its other dimensions. While

the coherent motion may contribute to the stresses in the lifeline

structure, in other cases it corresponds to a stress-free rigid body

motion. In all cases, however, a key component of the seismic input is the

incoherent motion, i.e., the difference in ground motion along the

lifeline. By analogy with the standard response spectrum, Weidlinger and

Nelson, Refs. [1] to [3], defined the interference response (rR)

spectrum, the maximum difference in absolute displacement of two adjacent

points on the structure, caused by the corresponding incoherent ground

input.

Nelson and Weidlinger, Refs. [4] and [5], considered the dynamic

response of long segmented lifelines due to a variety of seismic inputs.

Their analysis was restricted to the axial direction and to incoherent
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ground motion caused by a phase delay. Moreover, they assumed homogeneous

soil conditions along the lifeline. They showed that when the joint

stiffness is much smaller than the soil stiffness (kp/k
C

« 1), the peak joint

displacement is given directly in terms of the interference response

spec trum. For the case of a bridge which lacks intermediate support, modal

decomposition can be used, and the response in each mode is merely the

appropriate IR spectrum multiplied by a modal participation factor. The

problem of combining the various modal contributions is analogous to that of

a conventional multi-degree of freedom structure with widely spaced natural

frequencies.

For the case of a long continuously supported pipe of non-negligible

joint stiffness, the authors found that the center joint displacement was

predominantly a local phenomenon, which essentially was not influenced by

conditions more than a few pipe segments away from the joint. Moreover,

they showed that the IR spectrum, evaluated at the lowest (antisymmetric)

frequency, was an excellent tool for estimating the maximum joint response

over a broad range of parameters.

The current paper is an extension of the previous work to cases in

which the soil is no longer locally homogeneous. As such, it is again

restricted to axial motion. Kubo et aI, Ref. [6], point out that the

relative pipe damage from the 1923 Kanto earthquake in Japan was greatest

in the transition zone between soil types. Shinozuka and Kawakami in a

probabilistic study, Refs. [7] and [8], show that free field strain

increases as the "correlation distance" decreases. Horeover, in that study

and in an extension to it, Ref. [9], they show correlation between the RMS

value of strain and the damage statistics from the Kanto earthquake.

Studies of buried pipes by other authors show transition regions

between two materials to be a critical area for pipe response. Wang and



- 3 -

Cheng, Refs. [10] and [11J, considered a constant phase delay between adjacent

segments in their quasistatic analysis. They showed a large increase in peak

joint displacement when there was a large sudden change in soil stiffness.

Hindy and Novak, Ref. [12], studied the pipe response (maximum stress) for

the reflection refraction of a plane P-wave by a vertical plane interface.

The appropriate soil stiffness was used in each media. The input ground

motion record from the San Fernando 1971 earthquake was assumed to represent

either the incident or the transmitted wave in the softer soil. They showed

a significant increase in pipe stress near the interface for waves traveling

from the softer to the stiffer material. When the wave traveled in the

opposite direction, even larger increases in stress appeared near the

interface.

The present paper is an attempt to extend the authors' previous work to

include local inhomogenuity, and to corroborate the results of other

researchers. Again, the results are expressed in terms of the appropriate

spectra.

In general, a local inhomogenuity may contribute to a change in pipe

response in three difference ways. In the case of wave propagation, there

will be a local variation in delay time. The inhomogenuity will cause a

variation in the free field wave form at adjacent segments. Finally, the

soil stiffness will vary from soft to firm material. In general, all three

effects will occur simultaneously. However, to help understand the

phenomena, each effect will be considered separately.
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II. EFFECT OF VARIATION IN PHASE DELAY

The simplest case to consider is that in which the ground motion z(t)

(except for phase delay) is the same across the entire pipeline, but where

the phase delay T varies from across one link to the next. In Refs. [4] and

[5], the center joint displacement in (antisymmetric) mode k, for an

f f ld A () h th.. f 1incoherent ree ie motion uz t across t e m JOlnt 0 a ong
m

continuously supported pipe is given as

6 x (k)
m

D k R k (t)
m 6z

m

(1)

where R k is the solution to
6z

m

(2)

where
If fI

means differentiation with respect to time, and where

k
D

m
, k antisymmetric (3)

is the influence coefficient for center joint displacement, in mode k, for a

unit ground relative displacement across joint m. It should be noted that

the D k depend only on the geometry and mechanical properties of the system,
m

via the eigenvalues w
k

and eigenvectors ~jk, and are independent of the input

ground motion. The quantity Sk is the fraction of critical damping in the

th
k mode, and w is the natural frequency of each pipe segment if the joint

g

stiffness k were zero. For convenience, the number of links N has been
p

taken as even so that there is a joint exactly at the center of the pipe.

The contribution of the symmetric modes is then zero.

As was mentioned in the introduction, the phase delay from segment to

segment will be varied independently of the corresponding soil stiffness kG.

This assumption may be justified when the same backfill is used irrespective

of the nat~ve soil. The discrete soil/pipe stiffness kG represents the

integrated force/displacement relation for the buried pipe segment. The
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major contribution will depend on the shear modulus of the soil immediately

adjacent to the pipe, i.e., the backfill.

thThe assumed input ground motion across the m joint is

~2 (t)
m

(4)

where 2 without a subscript is the free field motion at the first segment,

and T. is the phase delay across the i
th

joint. For small values of T ,
1 m

~ z ( t) = T Z( - mZ
1

T~ = T Z (t)
m m ~ i=l ~ m m

The response R~ k is therefore
2 m

(5)

T
m

R k(t )
v m

(6)

k
where R (t) is the solution to Eq. (2) with 2 (t) replacing ~2 (t), and

v m m m

where

t
m

m-l
t - I

i=l
T.

1
(7)

It can be shown that for 2 (0) 0,
m

. k
R (t)

z m
R \t )

v m
(8)

k
where R (t) is the response [i.e., the solution to Eq. (2)] when the input

2 m

is 2 (t). In words, the absolute velocity of the pipe segment due to a
m

displacement input is the same as the absolute displacement due to the

corresponding velocity input.

The total center joint displacement
th

in the k mode is thus

~x (k) (t)
N-l N-l
I D k R~zk(t) = I

m=l m m m=l

k
D

m
T

m
(9)
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. k
The response functions R (t) for all segments m are all the same, except

z m

for the phase delay. In the limiting case when (see Ref. [ 4], Appendix C)

N-l
W

k I T « 'IT

m=l
m

and

N-l,
~ I T « 'IT

m=l
m

(10)

(1)

or the total transit time of the traveling wave is much less than a half

. d f ' k
th

d f h d f f h hperlO 0 tne mo e, or 0 t e ominant requency 0 t e input, t en

(12)T
m

(k) . k N-l k
L'lx (t) ~ ( ) ~ DRz t N/ 2 L m

m=l

[3]), the maximum absolute value of Rk(t)
z

By definition (see Refs. [1] to

is the absolute velocity spectrum

(13)

Therefore,

N-l
MAxlllx(k)(t)! < S A( E,) ~ D k T

V wk ' k L. m m
m=l

(14)

where the equal sign applies only when the maximum contribution from each

segment occurs simultaneously, i.e., when Eqs. (10) and (11) hold.

In most practical cases of long pipes with many segments, Eqs. (10)

and (11) will not hold. However, as was shown in Appendix B of Ref. [4],

contributions from more than a few segments (say 3) away from the center

have little effect on the total response of the center joint. (The

individual modal contributions will be affected.)

With this in mind, SEGPIPE, the computer program described in Refs.

[4] and [5] was altered to allow variable T , and two additional runs were
m

made. The assumed variation in T is shown in Fig. 1. The transition
m



- 7 -

between two regions, with uniform wavespeeds or delay times l
A

and l
B

,

respectively, was placed at the center joint. Since there is an odd number

of joints (for an even number of links), and equal numbers of joints were

assigned to the two regions, the center joint was assumed to have the average

value 1 = (1
A

+ 1
B
)/2. The ratio of delay times was taken as 2:1 and 1 was

taken as 0.02 sec, the same as that of the previous uniform case to which the

new runs were compared. Wave travel in both directions was considered.

For the configuration shown in Fig. 1, taking into account the symmetry

k
of D , the contribution of the three centermost terms to Eq. (9) becomes

m

D
k . k k

1 R
z

(t
N

) + D
~-l ~-l --1 N
2 2 2. 2

Rk(t -1)
1 B z . N B

2

'" Rk (t ) ~A + 1~ ~ k
z N 2 N- --

2 2

(15)

for small values of 1
A

and 1
B

• The process may be continued until, for

sufficiently small values of 1
A

and 1
B

, small enough to satisfy Eqs. (10)

and (11),

6x (k) (t)

and

N-l
I

m=l

k
D

m
(16)

(

1 + 1~
E.;k) A 2 B)

N-l

I
m=l

k
D

m
(17)

Thus, to first order, the average phase delay 1 plays the key role, and

results of all three calculations should be the same.

These conclusions are confirmed by Table I which compared the total

center joint displacement, and the modal contributions to it, from Run 26 of

Ref. [4], Appendix B, and the two new time history calculations. The largest
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change in individual modal contributions is merely 2.4%, for mode 4. Most

(*
modal contributions change by much smaller amounts. The ± 6% variation in

total response reflects the cumulative effect of the slight shifts in phase of

the various modes, more than their change in magnitude. Nevertheless, for

variations in delay time T as large as 2 to 1, 6% changes in response are

clearly second order. Moreover, via Eq. (9), a homogeneous soft site would

lead to a larger response than one only half soft. Thus, other effects must

be investigated as the possible cause of the pipe damage in the vicinity of

local inhomogenuities.

r)
. The fact that mode 4 shows the largest relative change is no mere accident.

Figure 4 of Refs. [4) and [5J shows that D 4 ~ 0 for m ~ N/2, while D 4 is
m m

maximum at m = N/4, 3N/4. The separation between these two contribution

regions is sufficiently large for them not to occur simultaneously. Thus,

mere addition along the line of Eq. (15) is not valid.



- 9 -

Table I: Effect of Variation in Phase Delay on Total Joint Displacement and

Modal Contributions to it.

Run 26 Run 31 Run 32

TAITE = 1. a TB/TA :::: 2.0 TEITA = 0.5

Value (em) Value (em) % Increase Value (em) % Increase

MAxlLxl 1.874 1. 766 -5.76 1.986 5.98

MAxli\x(2) I 3.294 3.276 -0.55 3.283 -0.33

MAXIi\x(4) I 2.610 2.664 2.07 2.672 2.38

MAX/6x(6) I 2.109 2.099 -0.47 2.103 ' -0.28

MAxILx(8)I 1. 528 1.536 0.52 1.536 0.52

MAxI6x(10) I 1.145 1.140 -0.44 1.143 -0.17

MAxI6x(12) I 0.798 0.807 -1.12 0.807 -1.12

MAX ILx (14) I 0.570 0.576 1. 05 0.575 0.88

MAX/6x(16) I 0.392 0.393 0.26 0.394 0.51

MAXILx(18) I 0.231 0.227 -1. 73 0.227 -1. 73

MAXILx(20) I 0.076 0.076 a 0.077 1. 31

MAx16zN/21 0.658 0.658 0.658

.In all cases, N = 20, k /k = 4, Damping Ratio 5%, t
f

. 1 19.98 sec,
G p lna

~ :::: (TA + TE)/2 = 0.020 sec.

Ground Input: El Centro May 1940 N-S
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III. VARIATION IN FREE FIELD WAVEFORMS

Obviously, large local variations in the free field ground motion will

lead to correspondingly large values of pipe joint displacement or pipe

strain. Local inhomogenuities can cause focusing, reflections, etc., which

will induce large variations in free field motion.

Even the simple situation illustrated in Fig. 2 of a non-uniform

alluvium layer subjected to a vertically incident SH wave is worth

examining. The baserock motion is assumed coherent. To the left of the

transition region the surface motion will be zl(t), based on the rock

motion and the characteristics of the layer (e.g., fundamental frequency

(*
f

l
= c/4h

l
) . To the right of the transition region, the surface motion

will be z2(t) (fundamental frequency f
2

= c/4h
2
). The length of the

transition region on the surface will be on the order of the horizontal

extent of the change in layer thickness £. A shallow buried pipe crossing

the transition region at some angle would experience large strains even

though the local soil properties would remain the same.

Wojcik, in a recent report, Ref. [13], presents an excellent survey of

various analytic and numerical studies found in the seismological literature

related to variation in ground motion caused by inhomogenuity. One study by

Drake and ~lli1, Ref. [14], used the finite element method to model the

northern portion of the San Fernando Valley and allowed Love waves to

propagate from north to south. The thickness of the surface layer of

alluvium increases substantially over the 16,000 ft included in their

calculations. They found amplifications of the fundamental Love mode as

*)In Refs. [7] - [9], the fundamental frequency of the site was the means

through which ground inhomogenuity was specified.
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large as 5.5, and considerable variation in ground surface response along

the cross section. While the scale of their problem is large (1000's of

feet) relative to the length of pipe segments (~ 20 ft), their results

suggest what might occur if the variation in ground properties were on a

much smaller scale.

In a related problem of the analysis of SH waves in a dipping layer,

Wojcik, Ref. [13], finds amplifications greater than 10 due to a harmonic

input, see Fig. 3. The peak amplitude occurs at ~ 6 wavelengths from the

vertex of the dipping layer. Moreover, a phase delay of TI radians occurs

across the peak, at a separation distance of approximately the wavelength

in the layer A. For example, if the layer shear wavespeed is 500 ft/sec,

then the change in the 10 Hz components of the input will vary - 20 times

that in the bedrock over a distance of only 50 ft. Such an effect is

clearly relevant to a pipe with 20 ft segments crossing at an angle.

The general problem with a multifrequency input, and with many near

surface layers of varying thickness is beyond the scope of the current

paper. Nevertheless, one additional case, that of a vertical plane P-wave

incident on a vertical plane interface, Fig. 4, is amenable to solution.

As mentioned in the introduction, this was the case considered by Hindy

and Novak, Ref. [12]. One must keep in mind, however, that it may be neither

a realistic representation of what is found naturally, nor even a "worse

case" situation.

Assume the incident wave (in material A) is traveling from left to

right, i.e.,

(18)

Then, the reflected wave will be
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while the transmitted wave will be given by

(19)

(20)

In Eqs. (18) - (20), c
A

' c
B

and p p are the wavespeeds and densities in
A' B

the two materials, and the coordinate y is measured from the interface.

The ground displacement in material A is the sum of the incident and

reflected waves. It is noted that at the interface y = 0, the displacement

is contlnuous. When the wave travels from a softer to a stiffer material

(PAc
A

< PBc
B
), the reflected motion is in the opposite direction than the

incident motion.

th
The interface is at the N

l
joint in the pipe, see Fig. 4. The

th
incident wave at the center of the m segment, where

(m -
1

y ·---N)9,
2 1

is given by

2
1m

(t) = f[t + (N
l

+1. - m)T
A

] m < N
2 1

where T
A

= 9,/c
A

. The reflected wave at the same location is

(21)

(22)

m < N
1

(23)

Expanding f in series, and retaining only the first two terms, the sum of

incident and reflected motion is

2 (t)
m

(24)
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Similarly, the transmitted wave at segment m in material B is

Zm - zm+l' is thus

z (t)
m

2PAcA 1
------ [f(t) - (m - N - -Z)T

B
f(t)]

PBcB + PAcA 1

th
The incoherent motion across the m joint, b,z

m

m > N
1

(25)

2 PB
c

B
T

b,z A
f (t)

m PBcB + PAcA

b,z
2 PA

c
A

T
B

f (t)
m PBcB + PAcA

m > N
1

(26)

(27)

and at the joint across the interface

b,ZN
r 1

(28)

It is worth considering the limiting cases of large differences in

impedance. \~en the wave travels from very soft to very hard soil

b,z -+ 0
m

(in

(in

soft Sail)]

hard soil)
(29)

Alternately, if the wave travels from hard to soft soil (p c »p c )
A A B B

6.z -+ 0
m

b,z -+ 2T f ("t)
m B ill > N

1

(in hard Sail)}

(in soft soil)
(30)

In either case, in the limit there is a doubling of the incoherent

ground motion in the soft soil relative to what would occur at a homogeneous

site of the same material.

Assuming the ground stiffness is uniform across the entire lifeline,

the center joint displacement may be found as outlined in the previous

section. 1Vith the b,z given by Eqs. (26) - (28), the elemental joint
m

displacements in node k may be found via Eqs. (1) - (3). Noting the b,z all
m
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are proportional to f(t), expressions similar to Eqs. (12) and (14) may be

derived for i'lx(k)(t) and its maximum value. Of course, the same problem,

the phasing of the different contributions, that was discussed previously

('1<
would occur here too • Recalling the localized nature. of the pipe

response, one can consider the interface to be only a few (~ 3) joints

from the "center joint" and that the response would be the same, Le.,

where here material A is the softer material. Thus, regardless of the

direction of wave propagation, the peak response will occur on the soft

side of the interface, and the magnitude will be less than twice that of

a pipe at a homogeneous soft site with the same input ground motion.

Finally, it is interesting to compare the present result with those

of Ref. [12]. When the wave traveled from soft to firm material, Hindy

and Novak assumed that f(t) was the incident wave. Their results for this

case show the peak stress for an impedance ratio of 8 occurs in the soft

material, close to the interface. However, the increase is only 35% larger

than that which occurs in the homogeneous (soft) site, considerably less

than the 78% increase suggested by Eq. (31). Moreover, their largest

stress increase (50%) occurs directly at the interface and when the

impedance ratio is only two. In that case, Eq. (31) gives only 33%.

The differences are even more striking when a wave traveling from firm

to soft ground is considered. In that case, Ref. [12] assumed that the

incident wave was f(t)/c
T

where c is the transmission coefficient defined
T

~-----_._-----~----

*)Actually, by retaining only firs~ order terms in the expansions, Eqs.

(24) and (25), it was tacitly assumed that the travel time to or from the

interface was small.
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by Eq. (20). Multiplying Eq. (27) by l/c
T

,

~2
m

T
B

f(t) , m > N
l

(in soft soil, B) (32)

regardless of the impedance ratio, while 62 in material A will be smaller.
m

Thus, for the assumption of Ref. [12],the current treatment gives the same

result as that in a homogeneous soft site. The peak response will always

occur on the soft side of the interface, and that caused by a wave

traveling from hard to soft ground is less than that caused by wave motion

in the opposite direction. This is in contrast to the results presented in

Ref. [12] where large amplifications, > 100%, occur at the interface for

all impedance ratios considered for wave motion from hard to soft ground.

One possible explanation of the variance between the conclusions reached

in this section, and those of Ref. [12], is that the results derived up to

this point assumed that the soil stiffness was uniform across the entire

lifeline. In Ref. [12] the soil stiffness varied according to ihe square of

the shear wave velocity, and thus differed in the two materials.
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IV. VARIATION IN SOIL STIFFNESS

In the most general system, the soil stiffness kG' the pipe/joint

stiffness k and the mass of each segment could vary independently from one
p

segment to the next. The program SEGPIPE was altered to treat just such a

case, in addition to variations in the phase delay T. The theory and

discussion for the more general case, as well as the results from multi-

segment calculations with real earthquake ground input, are given in a

forthcoming report, Ref. [15]. For the current report, the discussion is

limited to a simpler two degree of freedom system.

The simplest model which can include a variation in soil stiffness is

the two degree of freedom system shown in Fig. 5. There, two pipe segments

of mass m are attached to each other via a joint of stiffness k , and to the
p

ground via soil stiffnesses k
Gl

and k
GZ

' respectively. For simplicity, free

end conditions are assumed. It was shown in Refs. [4] and [5] that (when

k
Gl

= k
GZ

) the analysis of a simple two degree of freedom model was relevant

to much more complex systems for a wide range of small (but non-negligible)

values of kp/k
G

• A similar conclusion is found in Ref. [15].

The equations of motion of the system, neglecting damping, are

mx l . + k (xl ­
p

The natural frequencies of free vibration (WI < W
Z

) are given by

(33)

(34)

2
If kGl = kGZ ' the two frequencies reduce to WI

respectively. Alternatively, if k
Gl

< k
GZ

' but k
p

2
Wz = kGZ/m, and the two Eqs. (33) are completely uncoupled.

In general (k > 0), the mode shapes are given by
p

(kG + Zkp)/m,

= kGl/m and
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[I. k
Gl

- k
G2 +V(kG2 2:1'kC1) 2 + 1]2k

P

[1 kG1 - kG2 _VCG2
2:

p

kG1) 2 + 1], 2k
p

They are sketched in Fig. 6, mormalized so that the sum of the squares in

each mode is unity. Also shown in Fig. 6 for each mode are components of

the modal vector corresponding to the coherent motion, ¢, and that

corresponding to joint motion, 6¢.

In general, both modes contribute to both ¢ and 6¢. the mode shapes,

Eqs. (35) and (36), depend on a single parameter

k
C2

- k
Cl

K = 2k > 0
p

When K « 1, the mode shapes, Eqs. (35) and (36), approach [1, 1] and

[1, - 1], respectively; i. e., mode 1 becomes a rigid body translation

(35)

(36)

(37)

(~ = 1, 6¢ = 0), while mode 2 becomes a pure extension (~ 0, 6¢ = 2). On

the other hand, when k 7 0 so that K » 1, the mode shapes become [1, 0]
p

and [0, 1], respectively, and both modes contribute equally to ~ and 6¢.

It is interesting to rewrite the system, Eqs. (33), using the

transformations

x = (x +
x2) /211

(38)
6x Xl - x 2

and

z = (z + z2) /2 }1
(39)

6z zl - z2
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In terms of these new variables, Eqs. (33) become

2m 0 x (kCl+kCV
(kCl:kC9 x (kCl+k

CV
(kCl:kC9 z

+

~Cl:kcy Gk+k~ ~G1:kGV (G1:kG~0
m 6x k

p
+ C\ C2 6x Az

2

(40)

The eigenvalues of the new system, Eq. (40), of course are the same as those

found previously, Eq. (34) . The transformed eigenvectors are

(:': VK2
+1 -11J [1, 4k

±V4 +
4k 2 ][(ii, 6ijJ]1,2 = [1 1 P (k

C1
- Pk

C2
) (41), K kCl

-. k
C2

w'hich are consistent with Eqs. (35) and (36). Following the approach used in

Refs. [ 4] and [5 ], one may obtain an equation
(k)

the contribution offor 6x ,

each mode k to the joint displacement, i.e.,

k l, 2 (42)

where the modal participation factors for the coherent and incoherent ground

motion are given respectively by

and

+ K__
k

C2
- k

Cl+------:::...---"=--- (43)

_ K
2+p( 1+ VK

2+1}+ ",--.>.o-_-'-_~-2.-

2 VK2+1 (y+l+VK2+l)

where

+

2

(44)

(45)
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In the above, the upper signs refer to mode 1, and the lower ones to mode 2.

It is observed that as K ~ 0, i.e., for vanishing variation in soil

stiffness, P
k
~ O. Thus, the coherent motion does not contribute then to

the joint displacement. Also, as K ~ 0, Q1 ~ 0 while

V 1
limit Q2 2 + V k +k (46)

K ~ 0 1 + 2k/ ~ G\ G2)

which agrees with that found in Ref. [16]. Consequently, as was found more

generally in Refs. [4] and [5], the first mode is symmetric for a symmetric

system, and does not contribute at all to the center joint displacement.

It is noted that k
G2

> k
Gl

> 0, so that K must be less than V. Thus,

for k
p

> 0, the other limiting values of Q
k

occur as K ~ V, i.e.,

(47)

Thus, ~z contributes equally to both modes in this limiting case.

Alternately, when K < V but there is vanishingly small joint stiffness, i.e.,

\ ~ 0, P
k
~ + 1 while both Q

l
and Q

2
approach + 1/2.

The variation in the modal participation factors, PI = - P
2

, Q
l

and Q2'

with the parameters K and V is shown in Fig. 7. For a wide range of V, it is

Assuming that the addition of (modal) damping does not alter the above

derivation, the solution to Eq. (42) (with damping ratio Sk included) is

~x(k)(t) (48)

k k
where R_ (t) and R A (t) are the solutions to Eq. (2) when the input ground

Z LIZ

motion is ~(t) and ~z(t), respectively. The frequency w
k

and damping ratio

~k appear as parameters. The actual joint displacement is the sum of the two

modal contributions, or (noting P
2

= - PI)
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where the dependence of the R's on the w
k

and t.:
k

is written explicitly.

Recalling from Refs. [1] to [3] the definition of the absolute

A
displacement spectrum SD and the interference response spectrum Sr' the

total joint displacement is bounded by

A A
MAxl!:ox(t)I < PI[SD (WI' t.: l ) + SD (WZ' t.: Z)]

+ IQll Sr(Wl ' t.: l ) + QZ Sr(Wz' t.: Z)

where the absolute spectra correspond to the coherent ground motion ~(t), and

where the interference spectra correspond to the incoherent ground motion

!:oz(t). The equal sign will hold only when all the contributions are

additive, and occur simultaneously. Alternately, by addition and subtraction

of z(t) to the first term on the right side of Eq. (49), it becomes

(50)

where yz(t, wk ' t.: k) is the response, relative to the ground, of a single

degree of freedom system of circular frequency w
k

and damping t.:
k

to ground

motion ~(t). Consequently, the joint motion !:ox(t) is also bounded by

MAxl!:ox(t) I ~ Pl[SDR(Wl , t.: l ) + SDR(W
Z

' t.:
2
)]

+ /Ql' Sr(wl , t.: l ) + QZ Sr(W2 ' t.: 2) (52)

R
where SD (wk ' t.:k) is the standard relative displacement spectrum. Whether

Eq. (50) or Eq. (52) is more restrictive depends on the frequencies wI and

w
2

and the frequency content of the coherent input ~(t). In general, for

sufficiently soft systems

for W « r2 (53)
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while for stiff systems the opposite is true, i.e.,

for Q « W (54)

a) Joint Displacement Due To Coherent Inpu~

First, let us consider the case when the ground motion is coherent, i.e.,

6z(t) = O. In that case, only the first term on the right hand side of either

Eq. (49) or Eq. (51) remains. Of course, the participation factor PI goes to

zero for K 7 0; however, for K > 1, PI ~ 1 (see Fig. 7), so that

IIL (1) - IL (2) I or Iy- (1) _ y_ (2) I must be examined.
z z Z z

It is useful to examine 6x(t) in transform space, i.e.,

6X(s)
-

PI 2(s) (55)

where s is the transform variable, 6X(s) and 2(s) are the Laplace transforms

of 6x(t) and z(t), respectively. The transforms of Rz(t, w
k

' Sk) were obtained

from Eq. (2), assuming rest initial conditions. Firstly, for very soft

systems, where w
2

is small bu~ finite and WI 7 0,

6X(s) ~ - PI 2(s) (56)

so that

(57)

Secondly, for very stiff systems where Wz » WI > Q, 2(S) 7 0 as s 7 WZ'

Thus,

6X(s) ~ PI 2(s) - PI 2(s) (-S-=-2-+-2-W-l-~-:-S -+-W-I--=-Z].
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and

,W »w > r.l
2 1

(59)

Obviously, as WI ~ w
2

the difference in responses must vanish. While

this may be intuitively true, the statement says nothing about the rate at

which the difference in responses goes to zero. When ~z = 0, the Laplace

transform of Eq. (51) becomes

~X(s) 2
s +

(60)

(61)W - W > 0
2 1andW =

Assuming proportional damping (~1/~2 = W
l

/W2), and letting

w
l

+ W
2

2

as well as defining

(62)

Eq. (60) may be written as

2 - ls2
1

~~ws + :2 )(1_~~)2]~X(s) P
l

s 2(s)

0~ws + ( 2
) ( 1 + ~~)2

(63)
2

+ s +
2w

For ~w/w « 1, terms quadratic and higher in ~w/w may be dropped, so that

~X(s)

for /;'w/w « 1

2P ~w
1 ­

W [
2- ] [ ~- 2]- s 2 (s ) 2~ws + W

2 - _2 2 -- _2
s +2~ws+w s +2~ws+w

(64)

The first bracket is recognized as the transform of the relative response

y_(t, w, ~), while the second bracket is the transform of the absolute
z

response if 2(s) were unity, i.e., if ~(t) were a Dirac delta function.

Thus, by convolution,

~x(t)

for ~w/w « 1
T, W, ~) dT (65)
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where ra(t, w, ~) is the absolute response of a single degree of freedom

system (of frequency wand damping ~) to a ground motion oCt). One may

find r
o

analytically, i.e.,

[ 2f, cos

It is noted that

- \ r:--;2
w VI - E;, t + sin -\~ ]w Vi - E;, t (66)

(67)

and

The joint response is seen in Eq. (65) to go to zero linearly as 6W/w goes

to zero. The actual variation in ~w/w with K and ~ is shown in Fig. 8.

While it is possible to obtain numerically first y_(t, W, ~) for a
z

real earthquake input, and then numerically integrate Eq. (65), it would be

a formidable task. However, if the ground motion were a haversine function,

(68)

~ (t) l(l - cos Qt)
2

(69)

and the damping were neglecteq, then Eq. (65) may be integrated analyticall~

i. e. ,
gin(w + m t]2

- [~ sin(w - Q) t

P2lt~~)(~)
sin Lllt wt - _-

1 - rljw 1 + rljw
6x(t) -- [1 - 2 cos(w - Q) t _ cos(w + Q) t]6w (rl/~) 2

+ cos wt
W

« 1 1 - (Q/W)2 1 - Q/w 1 + Q/w

Figure 9 shows that Eq. (70) is an excellent approximation to the actual

computed joint response for early times (Wt < 20) for ~w/w as large as 0.1.

The limit wt < 20 was not chosen arbitrarily. Real earthquake motions are

not sinusoids. It is rare for there to be more than approximately three

major cycles of a dominant frequency.

(70)
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Equation (70) is still a rather complicated expression. Moreover, it is

not valid as S4 + w (or more accurately WI or (
2
). It can be shown (after much

algebra!) for sufficiently small values of Lw/w «< 1 and

"ljJ = 1 - Q/w « 1

that

(71)

where

L'lx( t) Lw 0t p
w 8 1

2+ tan 8 sin(wt - 8) (72)

tan e
2 ­"ljJ wt

2 - 2
"ljJ - (L'lw/2w)

(73)

The computed joint response and the approximation Eq. (72) are compared in

Fig. 10 for L'lw/w = 0.01 and Q/w 0.95; viz,"ljJ 0.U5. Again, an excellent

early time approximation has been obtained, one which is proportional to

Lw/w.

-
The actual values of Lw/w are almost certainly beyond the range for which

Eq. (72) holds (see Fig. 8), and may be beyond the range for which Eq. (70)

holds as well. Calculations were made for various values of Lw/w and Q/w.

The joint displacement, or difference in response, was normalized with respect

to its maximum possible value, i.e.,

(74)

An example of Y versus wt is shown in Fig. 11 for L'lw/w = 0.3 and Q/w 0.6.

Other plots are given in the Appendix.

The maximum values of IY(t) I from all the undamped calculations are

shown as the various symbols in Fig. 12. Not much credence should be given to

the solid symbols, which are connected with dashed lines. They correspond to

cases in which Rz(t, WI) was "resonant-like", and still did not reach its

eventual maximum by wt = 20. For all values of Q/w, MAX!Y! increases with
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6w/w, at first linearly as suggested by Eq. (70). In all cases,

MAX IRz(t, WI) - Rz(t, cu
2

) I was smaller than the maximum of the larger

response, /R-(t, w ) I. In all non-"resonant-like" cases, it was less than the
z 1

smaller one as well. The largest value of MAX/YI, ignoring the "resonant-

like" solid symbols, was 0.369 at 'J/w = 0.7 and 6w/w = 0.2, a point close to

being "resonant-like". Most values shown in Fig. 12 are considerably less

than that.

One should try to interpret the parameter 'J/w in terms of real

earthquake ground motion input. For a given value of 6W/W, MAXIY/ decreases

as 'J/w decreases. As 'J/w + 0, both Rz(t, wI) and ~(t, W
2

) will approach

the ground input, z(t); i.e., each response will be quasistatic. The

difference between the two responses will approach zero. Adding damping to

the system will have a similar effect. Thus, in viewing Fig. 12, most

credence should be given to the smaller values of 'J/w.

The effect of damping on the joint displacement is shown in Fig. 13,

drawn for Lw/w = 0.3 and 'J/w = 0.6. The undamped case is the same, except

for a scale factor, as the curve in Fig. 11. Also shown is the coherent

haversine input, z(t). While the addition of damping changes the magnitude

and frequency of the response, the basic character of the solution is not

changed.

Only so much can be ascertained from calculations with sinusoidal type

imput. A total of ten calculations were made using the first 20 seconds of

the MaY 1940 El Centro North-South record as the coherent ground motion ~(t).

The calculations are listed in Table II. In all the calculations the mass m

of each was held constant, and equal to l/n
2

The values of k
Gl

,segment .

k
G2

and kp' and consequently K and l.1, were varied as shown in the table.

The computed (undamped) natural frequencies f
l

and f
2

which could be obtained



Table II: Two Degree of_Freedom Calculations Made Using E1 Centro N-S as the Coherent Ground Motion Input

i'JlJ.)/w
MAXIi'Jx(t) ,

Run kG/kG2 /kp K II f
1

(Hz) f
2

(Hz) Sl (%) S2 (%) PI (em)
----

I 2.9267/5.0733/1 1. 0733 4 0.9398 1.2715 0 0 0.3000 0.73166 27.2376

2 2.9267/5.0733/1 1. 0733 4 0.9398 1.2715 5.0 6.765 0.3000 0.73166 10.8056

3 2.9267/5.0733/1 1. 0733 4 0.9398 1.2715 10.0 13.53 0.3000 0.73166 6.8753

4 3.5 / 4.5 /1 0.50 4 0.9851 1. 236 7 10.0 12.55 0.2265 0.44721 3.7318

5 4.0 / 8.0 /1 2.00 6 1.0913 1. 5195 10.0 13.92 0.3280 0.89443 7.6352

6 5.0 / 7.0 /1 1.00 6 1.1817 1. 4504 10.0 12.27 0.2041 0.70711 4.5042

7 5.0 / 7.0 /1 1.00 6 1.1817 1. 4504 20.0 24.55 0.2041 0.70711 2.3916

"- / 10.5 /18 9.5 0.50 10 1.5718 1. 7405 20.0 22.15 0.1019 0.44721 0.7149
I

9 6.0 / 10.0 /1 2.00 8 1.3004 1. 6760 20.0 0.2524
N

25.78 0.89443 3.1224 0\

10 16.0 / 36.0 /2 5.00 13 2.1096 3.0902 20.0 29.30 0.3772 0.98058 1. 8691

Note: m = 1/n
2

and t
f

= 20.0 sec for all calculations
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via Eq. (34)(* are listed~ as is the assumed damping ratio ~l~ ~2 =

- (*
~1(f2/fl)~ ~w/w and the modal participa~ion factor P

l
computed from Eq. (43) .

The final column shows the computed maximum joint displacement~ MAXI~x(t)l.

The time histories of the joint displacement for each of the ten calculations

are shown in the Appendix.

Runs 1 to 3 correspond to the same two segment systems~ with various

damping ratios~ which was subjected to the haversine input discussed above.

For the undamped case~ Run l~ the maximum response occurs at late times and

is greater than the maximum value of R_(l). For that case, the square root
z

of the sum of the squares of the maximum modal responses is a good

approximation to the maximum total response. However, Run 1 is atypical in

that for all the other cases~ the maximum total response occurs relatively

early ~ and is less than MAXI R_ (1) (t) I. In fact, except for Run 2, the
z

, (2)
maximum total response is less than MAX R- (t)/ as well. Of course,

z

assuming n~ damping is totally unrealistic for a buried pipeline.

Some of the calculations were run for a specific purpose. For example,

the effect of damping (in a more realistic range) may be seen by comparing

the results of Runs 6 and 7. The mode 1 contribution ~o joint displacement

for both Runs are shown in Fig. 14. The modal response is computed via

k _
Eq. (48) ~ but where R~z (t) = a for a coherent input. Also shown in the

figure is the coherent ground motion z(t). The two modal responses follow

one another very closely~ and follow z(t) generally as well. The major

discrepancy in magnitude between the ~x(l) and z can be explained by the

value of Pl' The total joint response for the same two calculations is

shown in Fig. 15. Except for the obvious reduction in magnitude caused by

the increased damping~ the two curves are very similar. Moreover~ they

*)The frequencies~ participation factor P
l

, as well as the modal and total

response ~x(t)~ for each calculation were actually computed with a more

general program SEGPIP2. The program'is applicable to multilink systems

and will be described in Ref. [15].
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differ greatly from the modal responses shown in Fig. 14. All the low

frequency motion has been eliminated.

This apparent paradox may be explained by recalling that ~x(t) may be

(k)
expressed in terms of absolute responses R_ ~ Eq. (49) or relative

z
(k)

responses y_ ~ Eq. (51). The maximum absolute values of these two
z

quantities, i.e., the absolute and relative displacement spectra, are plotted

against frequency in Fig. 16 for 15% of critical damping. It is observed

h f 1 1 f
. R A

t at except or extreme y ow requencles, SD < SD . Thus~ Eq. (51) is more

maxima in

apropos for the current problem. Moreover, even at frequencies as low as

A
1 Hz S ~ Die the peak modal response is quasistatic, as was seen'D max'" ,

in Fig. 14.

However, even at higher frequencies, where R_(t, w, ~) follows z(t)
z

almost exactly, the total joint response is still not zero. Figure 17

compares the mode 1 contribution to joint displacement from Run la, in which

f l : 2.11 Hz, and the coherent El Centro input. Here, PI = 0.98~ so that

except at isolated peaks (the largest difference being the negative peak at

t ~ 2.2 sec), the two curves essentially coincide. The difference between

the two, yz(t, wI' ~l)' is plotted as the dashed curve in Fig. 18. Again,

except at the large negative peak at t ~ 2.2 sec and at several smaller

peaks, the dashed curve follows closely the solid curve which represents the

total joint response for this case. Thus, for Run 10, Eq. (59) appears to

hold except at the isolated peaks. The reason why Eq. (59) is not accurate

at the peaks may be seen in Fig. 19 in which y_ (l)(t) and y_ (2)(t) are
z z

compared. Although y_ (2)(t) is generally a third the magnitude of
(1)y_ (t),

z z

the minimum of each curve occurs at t = 2.2 sec, so that the total response

at t = 2.2 sec [y_ (1) - y_ (2) = - 1.84 cm] is less than the positive peak
z z

total response of 1.87 cm at t = 2.4 sec. At this later time the local

y_ (l) and (2) do not . It 1z yz occur Slmu aneous y.
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Returning to Table II, other runs were made to compare with multi-degree of

freedom systems. For the most part, these comparisons will be shown in

Ref. [15]. For example, the multi-link calculations described in Section I all

had a uniform ground stiffness kG = 4k. Run 4 results were compared with those
. p

from a 12 segment calculation in which the ratio kG/k
p

was 3.5 over half the

pipe, and 4.5 over the other half. The total center joint response of both

systems are compared in Fig. 20. A similar trend is shown in Fig. 21 in which

the Run 5 results are compared with those from a 12 segment calculation which

has the same kGl:kG2:kp ratio, i.e., 4:8:1. The corresponding value of K in

this case is considerably larger than in the previous case. Nevertheless, in

both Figs. 20 and 21, the two link system response is seen to be an excellent

model for the response of the corresponding more complicated multi-link system.

Run 8 was made specifically to examine a case in which 6w/w was small,

i.e., '" 0.10. Run 9 tried to establish a limiting case for "closely spaced"

frequencies; i.e., 6w/w'" 0.25. Finally, Run 10 was a case in which both f
l

and f 2 were shifted, considerably higher than those in the other cases, to a

R R
range so that SD (W2) '" SD (Wl )/3, see Fig. 16.

b) Joint Displacement When Incoherent Ground Motion Is Due To A Phase Delay

If in addition to the change in ground stiffness, there is a phase delay T

in the ground motion, then

62 (t)
.

T z(t) (75)

and recalling Eq. (8),

(76)

Thus, Eq. (49) becomes
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6x(t) Pl [ Rz(t, [;1) +
QI •

~l)]WI' T P R-(t, WI'I z

- Pl [ Rz(t, w2 ' ~2) -
Q2 .

~2)J (77)T p R-(t, W
Z

,
I z

For small values of T, the first and second brackets represent

Consequently,

becomes a lower upper bound than Eq. (50), even for the case when there is an

incoherent component to the input.

In Fig. 16, the dotted curve shows the interference response spectrum SI

for the EL CENTRO record corresponding to a phase delay T = 0.020 sec. Larger

values of T (within limits) would shift the curve upward proportionately. In

the limited region in which SD
A

< SD
R

, so that Eq. (50) is more restrictive

than Eq. (52), Eq. (78) would hold. However, in that region (f < 0.1 Hz), SI

A
is two orders of magnitude smaller than SD ' so that the difference between

Eqs. (50) and (78) is negligible. For f > 0.1 Hz, Eq. (52), which cannot be

simplified, is more restrictive. However, again referring to Fig. 16,

SI « SD
R

and may be neglected as long as f < 2 Hz. For f ~ 4 Hz, 8
1

~ 5
D

R

so that the complete Eq. (52) must be evaluated. Finally, for very stiff

systems (f > 6 Hz) where 51 ~ T V
MAX

' the quasistatic relative displacement,

5 R «S so that the top line of Eq. (52) may be neglected.D I

c) Maximum Joint Displacement In Terms Of Spectra

In general, the joint displacement is given by the sum of two or more

time varying terms, i.e., Eq. (49) or (51). The maximum joint displacement,

of course, is bounded by the absolute sum of the individual terms, i.e.,

Eq. (78) or (52). However, this maximum would only be achieved if all the

individual maxima were to occur simultaneously, and were additive.

(78)
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In similar situations in conventional structures, the square root of the

sum of the squares of the modal contributions is used to estimate the total

response, Ref. [17]. A similar approach was tried for the current problem when

the input was coherent. The results are shown in Table III for each of the ten

cases. Except for the unrealistic case of zero damping, Run 1, it appears that

(79)

where error in using Eq. (79) runs from 0.6% for case 2 (with ~l = 5%), up to

almost 300% for case 8. Using only the fundamental frequency appears to give a

better estimate (again excluding Run 1), i.e.,

While Eq. (80) would follow directly from Eq. (59), which was derived assuming

(80)

a very stiff system with widely spaced frequencies, none of the ten cases satisfy

these restrictions. With the possible exception of Run 10, all the frequencies

are in the earthquake range (see Fig. 16) and the ratios f
2
/f

l
are all less

than 1.5. Nevertheless, Eq. (80) is a reasonably good estimate except for those

cases in which 6w/w < ~ 0.25; in such cases (i.e., Runs 4, 6, 7, 8 and 9) the

estimate given by Eq. (80) is too high. It is especially too high for the case

with closest frequencies, Run 8.

For limitingly small values of 6W/W, from Eq. (65), one may write

MAX!6X(t) I 6w (- F -)2P 1 W G w, s, z (81)

where the function G, the maximum value of the integral in Eq. (65), depends

implicitly on z(t) and the average parameters wand ~, but not on 6W/W. If it

is assumed that Eq. (80) holds for 6W/W > 0.25 and Eq. (81) for 6W/W < 0.25,

one may obtain by equating the two expressions at 6W/W = 0.25

-
G(w, C;;, z) (82)



Table III: Estimates of Joint Displacement for Two Degree of Freedom System Using Computed Relative Spectra

for E1 Centro N-S Record

f;1 f; 6W/W R R MAxI6X! V 2 2Run f 1 £2 SD (w1 ,f;1) Sn (w2 ,f;2) P1 81 +8 2
Error P181 Error

2
(Hz) (Hz) (%) (%) -- (em) (em) (em) (em) (%) (em) (%)

1 0.9398 1.2715 0 0 0.300 21. 99 17.01 27.24 20.34 -25.3 16.09 -40.9

2 0.9398 1.2715 5 6.76 0.300 12.61 7.86 10.81 10.87 0.6 9.22 -14.6

3 0.9398 1.2715 10 13.53 0.300 8.78 5.83 6.88 7.71 12.2 6.42 - 6.6

4 0.9851 1. 2367 10 12.55 0.226 8.84 6.32 3.73 4.86 30.2 3.95 5.9

5 1.0913 1. 5195 10 13.92 0.328 7.83 5.78 7.64 8.71 14.1 7.01 - 8.2

6 1.1817 1.4504 10 12.27 0.204 7.37 6.10 4.50 6.76 50.1 5.21 15.6

7 1.1817 1.4504 20 24.55 0.204 5.05 4.42 2.39 4.75 98.5 3.57 49.4
I

8 1.5718 1. 7405 20 22.15 0.102 4.83 4.14 0.71 2.84 298 2.16 202 w
N

9 1.3004 1. 6760 20 25.78 0.252 4.93 3.94 3.12 5.64 80.8 4.41 41.2

10 2.1096 3.0902 20 29.30 0.377 2.82 0.965 1.87 2.92 56.5 2.77 48.1
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R R - -
Using Eq. (82) and SD (WI' ~l) ~ SD (w, ~) for small 6W/W, Eq. (81) becomes

, tow/w < 0.25 (83)

The values given by Eq. (83) for Runs 4, 6, 7, 8 and 9 are given in Table IV,

along with the previous results given by Eq. (80). It is seen that the

relative error for Run 8, which has the smallest value of tow/w, is reduced

substantially.

Thus, for the limited number of cases considered, one may conclude that by

using Eq. (80) when tow/w > 0.25, and Eq. (83) for 6W/W < 0.25, the maximum

joint displacement may be estimated to within about 30%. The exception is Run

10 in which the cause for the poor estimate was examined earlier in Fig. 19.

In absolute terms, the difference is less than 1 em.

The natural frequencies for all the cases considered were in the range

0.9 < f < 3.1 Hz. Referring to Fig. 16, this is in the range in which

5 R < S A and 5 R »5
1

. For very soft systems (which are not realistic for
D D D

pipelines), the "sum" of the absolute spectra, following Eq. (78), would

produce a lower bound. Following Eq. (57), one suspects that a reasonable

estimate might be

in the range f
1

< f
2

< 0.1 Hz. Finally, for very stiff systems (say

f
2

> 6 HZ), 5
D

R « 51' so that the difference in stiffness is unimportant and

the joint displacement is given in terms of the interference spectra only.

Noting that for very stiff systems both Rtoz(t, WI' ~l) and Rtoz(t, wz' ~Z)

approach 6z(t), one may write

MAX!6X(t) I ~ Ql SI(Wl ' ~l) + QZ SI(WZ' ~Z) ~ (Q + Q ) TV. 1 Z max

where Eq. (75) has been used.

(84)

(85)



Table IV: Estimates of Joint Displacement for Two Degree of Freedom System with Closely Spaced Frequencies

(Coherent E1 Centro N-S Input)

MAX!L'.Ixi
- L'.IwRun f

1 f
2 SI Eq. (80) Error f S - Eq. (83) Error-

w
(Hz) (Hz) (%) (cm) (%) (cm) (Hz) (%) (cm) (%)

4 0.9851 1. 2367 10 3.95 5.9 3.73 1.1109 11.3 0.226 3.026 -18.9

6 1.1817 1.4504 10 5.21 15.6 4.50 1. 3161 11.1 0.204 3.868 -14.1

7 1.1817 1.4504 20 3.57 49.4 2.39 1.3161 22.3 0.204 2.828 +18.3

8 1.5718 1. 7405 20 2.16 202 0.71 1. 6562 21.1 0.102 0.7473 + 4.5

9 1.3004 1. 6760 20 4.41 41. 2 3.12 1. 4882 22.9 0.252 4.126 32.1

w
+:--
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V. SUMMARY AND CONCLUSIONS

Transition zones between soil types are locations in which

disproportionate pipe damage occurs due to seismic shaking. In the present

report, the various possible effects of local inhomogeneities on the axial

response of pipelines were considered individually. While in reality all

may occur simultaneously, by examining the effects separately, their

importance may be determined.

If the ground inhomogeneity results in a local variation in phase

delay, the variation does not cause a major change in the pipe response.

If the average phase delay remains constant, the effect on pipe response is

of second order. Moreover, the response due to phase delay is always less

than that which would occur at a soft homogeneous site.

Not surprisingly, amplification of the pipe joint response occurs when

there is a large variation in the incoherent component of the free field

ground motion due to changes in the waveforms caused by inhomogeneities.

The general case is beyond the scope of this paper. However, for the case

of a plane P-wave travelling horizontally incident on a vertical plane

interface, amplifications as large as two occur, relative to that in a

homogeneous soft site. In general, it appears as if the amplification in

joint response is proportional to that in the incoherent free field ground

motion.

A major cause of large joint motion results from the change in local

soil stiffness caused by local inhomogeneities. A simplified two degree of

freedom model was examined, and significant joint motion can result even

for a coherent input. This joint motion can be several times that which

would occur due to a phase delay only. Various special cases were

considered. For coherent input, it was shown that the joint response

approaches zero linearly as ~w/w ~ O. Relatively simple expressions, e.g.,
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Eqs. (80) and (83), were developed to estimate the joint response in terms

of spectra. Finally, itwas shown that the response of a two degree of

freedom system closely corresponds to that of a multi-link system.
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APPENDIX

In this appendix the response, Le., the joint relative displacement,

of a two degree of freedom system to a coherent ground motion is shown for

the various cases studied. The first 26 figures show the normalized

response yet, /},w/w, 0Jw) [see Eq. (74) in the text] for an undamped system

when the coherent ground motion is a haversine function. The figures

correspond to the 26 data points plotted in Fig. 12. (Note, Fig. A-10 is

identical to Fig. 11 in the text, and is included here for completeness.)

On each figure, the relevant maximum values are shown.

Figures A-27 through A-36 show the response of the two degree of

freedom system to a coherent earthquake motion, i.e., the first 20 seconds

of the EL CENTRO May 1940 North-South record. The ten figures correspond

to the ten cases listed in Table II of the text. The input ground

displacement is included in Figs. A-27 to A-3l.
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FIG.AI-NORMALIZED DIFFERENCE IN UNDAMPED RESPONSE

WHEN Z= (I-COS .Q,t) 12,Liw1iij = 0.1 AND .Q,lw = 0.5
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FIG.A2 NORMALIZED DIFFERENCE IN UNDAMPED RESPONSE

WHEN Z=(1- COS .Q, t) /2, ~w/w =0.2 AND n/w =0.5
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FIG. A3 NORMALIZED DIFFERENCE IN UNDAMPED RESPONSE

WHEN Z =(1- COS .Q,t) /2 ,L~w/w =0.3 AND .Q,/w =0.5
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FIG.A4 NORMALIZED DIFFERENCE IN UNDAMPED RESPONSE

WHEN Z = (I-COS .Q,t)/2, AW/iAj =0.4 AND .Q,/i,ij =0.5
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FIG. A5 NORMALIZED DIFFERENCE IN UNDAMPED RESPONSE

WHEN Z =(I - COS Ot) /2. baw/iij =0.5 AND O/iii =0.5
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FIG.A6 NORMALIZED DIFFERENCE IN UNDAMPED RESPONSE

WHEN Z = (I - COS .Q,t) /2, ~w/w =0.6 AND n/w =0.5
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FIG.A7 NORMALIZED DIFFERENCE IN UNDAMPED RESPONSE

WHEN Z = (I-COS .Q,t) /2, Aw/w =0.05 AND .Q,/w =0.6
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FIG.AS NORMALIZED DIFFERENCE IN UNDAMPED RESPONSE

WHEN Z = (1- COS nt)/2, ~wlw =0.\ AND n1w =0.6
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FIG. A9 NORMALIZED DIFFERENCE IN UNDAMPED RESPONSE

WHEN Z = (I-COS nt)/2,Aw/w =0.2 AND n/w=0.6
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FIG.AIO NORMALIZED DIFFERENCE IN UNDAMPED RESPONSE

WHEN Z =(I-COS nt)/2, ~w/w =0.3 AND .o.;w =0.6
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FIG.AII NORMALIZED DIFFERENCE IN UNDAMPED RESPONSE

WHEN Z = (I-COS !It)/2, ~w/w =0.4 AND .Q,/w =0.6
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FIG.AI2 NORMALIZED DIFFERENCE IN UNDAMPED RESPONSE

WHEN Z ::: (1- cos .o.t) /2, ~wlw =0.5 AND .o./w =0.6
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FIG.AI3 NORMALIZED DIFFERENCE IN UNDAMPED RESPONSE

WHEN Z = (1- COS .Q,t)/2, ~wlw =0.05 AND .Q,/w = 0.7
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FIG.AI4 NORMALIZED DIFFERENCE IN UNDAMPED RESPONSE

WHEN Z =(I-COS nt)/2, Aw/Cij =0.1 AND ,o,/Cij = 0.7
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FIG.AI5 NORMALIZED DIFFERENCE IN UNDAMPED RESPONSE

WHEN Z = ( 1- cos .n1)/2, Aw/w =0.2 AND o,/w =0.7
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FIG.AI6 NORMALIZED DIFFERENCE IN UNDAMPED RESPONSE

WHEN Z = (I-COS nt)/2, AWlw =0.3 AND nlw =0.7
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FIG.AI7 NORMALIZED DIFFERENCE IN UNDAMPED RESPONSE

WHEN Z =(I-COS .nt)/2t~w/w =0.4 AND n/w =0.7
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FIG.AIB NORMALIZED DIFFERENCE IN UNDAMPED RESPONSE

WHEN Z = (I-COS nt)/2, AWIQj = 0.05 AND n1w = 0.75
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FIG.AI9 NORMALIZED DIFFERENCE IN UNDAMPED RESPONSE

WHEN Z = ( 1- COS Slt)/2t~w/w =0.1 AND Sl/w =0.75
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FIG. A20 NORMALIZED DIFFERENCE IN UNDAMPED RESPONSE

WHEN Z = (I-COS .o.t}/2, Aw1w =0.2 AND .o.lw =0.75
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FIG.A21 NORMALIZED DIFFERENCE IN UNDAMPED RESPONSE

WHEN Z = {I-COS .nt)/2,6w/w = 0.3 AND .n/w= 0.75
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FIG. A22 NORMALIZED DIFFERENCE IN UNDAMPED RESPONSE

WHEN Z = (I-COS .o.t)/2, AWlw = 0.02 AND .o./e;; = 0.8





yet, ~W, 2)= R(l, w,l-R(t,Wz)

CJJ
-l>

IVl,," ,n z ;"W,)-Rztl,wz11 = 1.122

MAX I R z (1, W11 I = 3.031

MAX IRzlt,wzll=2.512
MAX I y I = 0.202

e. 25
1
1-__...... ..., ..., ..., p, .....__...,,.-__..,',...-__..., ,

.. , II. '\1 I 1"""'1 ,.

0.28

-0.25. , . t • , • • ' , I

& 4 B 12 16 20

wt

FIG. A23 NORMALIZED DIFFERENCE IN UNDAMPED RESPONSE

WHEN Z = (I-COS .nt)/2,6w/w =0.05 AND .n/w =0.8
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FIG. A24 NORMALIZED DIFFERENCE IN UNDAMPED RESPONSE

WHEN Z = {I-COS .ntl/2,6w/CAj = 0.1 AND .n/CAj = 0.8
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FIG.A25 NORMALIZED DIFFERENCE IN UNDAMPED RESPONSE

WHEN Z = (1- COS .nt)/2, 6wliij =0.2 AND 'o'lw =0.8
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FIG. A26 NORMALIZED DIFFERENCE IN UNDAMPED RESPONSE

WHEN Z = { I-COS .n t)/2, ~wlw = 0.3 AND n1w =0.8
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