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ABSTRACT

Theoretical and eiperimental investigations of the dynamic behavior
of cylindrical liquid storage tanks are conducted to seek possible
improvements in the design of such tanks to resist earthquakes. The
study is carried out in three phases: 1) a detailed theoretical treat-
ment of the liquid-shell system, 2) an experimental investigation of
the dynamic characteristics of full-scale tanks, and 3) a development
of aﬁ improved design-procedure based on an approximate analysis.

Natural frequencies of vibration and the associated mode shapes
are found through the use of a discretization scheme in which the
elastic shell is modeled by finite elements and the fluid region is
treated as a continuum by'bOundary solution techniques. In this
approach, the number of unknowns is substantially less than in those
analyses where both tank wall and fluid are subdivided into finite
elements. A method is presented to compute the earthquake response of
both perfect circular and irregular tanks; it is based on superposition
of the free lateral vibrational modes, Detailed numerical examples are
presented to illustrate the applicability and effectiveness of the
analysis and to investigate the dynamic characteristics of tanks with
widely different properties. Ambient and forced vibration tests ére
conducted on three full-scale water storage tanks to determine their
dynamic characteristics. Comparison with previously computed mode
shapes and frequencies shows good agreement with the experimental
results, thus confirming the reliability of the theoretical analysis.
Approximate solutions are also developed to provide practicing engineers
with simple, fast, and sufficiently accurate tools for estimating the

seismic response of storage tanks,
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DYNAMIC ANALYSES OF LIQUID STORAGE TANKS

GENERAL INTRODUCTION

The progress of scientific investigations into the dynamic behavior
of liquid storage tanks reflects the increasing importance of these
structures, Early uses for liquid containers were found in the petro-
leum industry and in municipal water supply systems. As their nuﬁbers
and sizes began to grow, their tendency to vibrate under seismic loading
became a matter of concern. For instance, the possible failure of large
tanks containing flammable liguids in and around densely populated areas
presents a critical fire hazard during severe earthquakes, In addition,
the consequences of total spills of the contained liquid, as well as
structural damage to the tank and its accessories, may pose a consider-
able economic loss. In recent times, the use of liquid containers in
nuclear reactor installations has led to several investigations of their
vibrational properties. However, the performance of liquid storage
tanks during the 1964 Alaska and the 1971 San Fernmando earthquakes
revealed a much more complex behavior than was implied by design assump-
tions. Thus, although the problem has been recognized, the state of
knowledge of liquid-tank seismic vibrations is, still, not entirely
satisfactory.

The present study develops a method of analyzing the dynamic
behavior of ground-supported, circular cylindrical, liquid storage tanks
by means of a digital computer. The reliability of the theoretical

analysis was confirmed by conducting vibration tests on full-scale tanks.
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In addition, approximate solutions are also developed to provide
practicing engineers with simple, fast and sufficiently accurate toocls
for estimating the seismic response of storage tanks,

The following sections present a brief historical review of the
literature and outline the methods of analysis employed in the present

study.

A. Historical Background

Seismic damage of liquid storage tanks during recent earthquakes
demonstrates the need for a reliable technique to assess their seismic
safety. The Alaska earthquake of 1964 caused the first large-scale
damage to tanks of modern design [1,2] and profoundly influenced the
research into their vibrational characteristics. Prior to that time,
the development of seismic response theories of liquid storage tanks
congsidered the container to be rigid and focused attention on the
dynamic response of the contained liquid.

One of the earliest of these studies, due to L. M. Hoskins and
L. S. Jacobsen [3], reported analytical and experimental investigations
of the hydrodynamic pressure developed in rectangular tanks when sub-
jected to horizontal motion., Later, Jacobsen [4] and Jacobsen and Ayre
[5] investigated the dynamic behavior of rigid cylindrical containers.

In the mid 1950's, G. W. Housner [6,7] formulated an idealization,
commonly applied in civil engineering practice, for estimating liquid
response in seismically excited rigid, rectangular and cylindrical
tanks. He divided the hydrodynamic pressure of the contained liquid

into two components; the impulsive pressure caused by the portion ¢f the
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liquid accelerating with the tank and the convective pressure caused by
the portion of the liquid sloshing in the tank. The convective com~
ponent was then modeled by a single degree of freedom oscillator. The
study presented values for equivalent masses and their locations that
would duplicate the forces and moments exerted by the liquid on the
tank. The properties of this mechanical analog can be computed from the
geometry of the tank and the characteristics of the contained liquid.
Housner's model is widely used to predict the maximum seismic response
of storage tanks by means of a response spectrum characterizing the
design earthquake [8,9,10].

At this point the subject appears to have been laid to rest until
the seismic damage in 1964 initiated investigations into the dynamic
characteristics of flexible containers. 1In addition, the evolution of
both the digital computer and various associated numerical techniques
have significantly enhanced solution capability.

The first use of a digital computer in analyzing this problem was
completed in 1969 by N. W. Edwards [11]. The finite element method was
used with a refined shell theory to predict the seismic stresses and
displacements in a circular cylindrical liquid-filled container whose
height to diameter ratio was smaller than one. This investigation
treated the coupled interaction between the elastic wall of the tank
and the contained liquid. The tank was regarded as anchored to its
foundation and restrained against cross-section distortions.

A similar approach was used by H. Hsiung and V. Weingarten [12] to
investigate the free vibrations of an axisymmetric thin elastic shell

partly filled with liquid. The liquid was discretized into annular
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elements of rectangular cross-section. Two simplified cases were
treated; one neglecting the mass of the shell and the other neglecting
the liquid-free surface effect. 1In a more recent study, S. Shaaban and
W. Nash [13] undertook similar research concerned with the earthquake
response.of circular cylindrical, elastic tanks using the finite element
method. Shortly after [13], T. Balendra and W. Nash [14] offered further
generalization of this analysis by including an elastic dome on top of
the tank.

A different approach to the solution of the problem of flexible
containers was developed by A, S. Veletsos [15]. He presented a simple
procedure for evaluating the hydrodynamic forces induced in flexible
liquid-filled tanks. The tank was assumed to behave as a single degree
of freedom system, to vibrate in a prescribed mode and to remain circular
during vibrations. The hydrodynamic pressure distribution, base shears
and overturning moments cerresponding to several assumed modes of vibra-
tions were presented. He concluded that the seismic effects in flexible
tanks may be substantially greater than those induced in similarly
excited rigid tanks. Later, Veletsos and Yang [16] presented simplified
formulas to obtain the fundamental natural frequencies of the liquid-
filled shells by the Rayleigh-Ritz energy method. Special attention was
given to the cosgfB-type modes of wvibration for which there is a single
cosine wave of deflection in the circumferential direction.

Another approach to the free vibration problem of storage tanks was
investigated by C. Wu, T. Mouzakis, W. Nash and J, Colonell [17]. They
developed an analytical solution of the problem using an iteration pro-

cedure but the assumptions employed in their analysis forced the modes
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of vibration to be of a shape that cannot be justified in real "tall"
tanks. They alsc computed the natural frequencies and mode shapes of
the cosnd-type deformations of the tank wall, neglecting the initial
hoop stresses due to the hydrostatic pressure, which introduced certain
errors,

Until recently, it was believed that, only, the cosf-type of modes
were important in the analysis of the vibrational behavior of liquid
storage tanks under seismic excitations. However, shaking table experi-
ments with aluminum tank models conducted recently by D, Clough [18] and
A, Niwa [19] showed that cosné-type modes were significantly excited by
earthquake-type of motion. Since a perfect circular cylindrical shell
should exhibit only cost-type modes with no cosnB-type deformations
of the wall, these experimentally observed deformations have been attri-
buted to initial irregularities of the shell radius. Shortly after the
foregoing tests were completed, J. Turner and A. Veletsos [20] made an
approximate analysis of the effects of initial out-of-roundness on the
dynamic response of tanks, in an effort to interpret the unexpected
results.

Extensive research on the dynamic behavior of liquid storage tanks
has also been carried on in the aerospace industry. With the advent
of the space age, attention was focused on the behavior of c¢ylindrical
fuel tanks of rockets, the motivation being to investigate the influence
of their vibrational characteristics on the flight control system.
However, the difference in support conditions between the aerospace
tanks and the ecivil engineering tanks makes it difficult to apply the

aerospace analyses to civil engineering problems, and vice-versa. A
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comprehensive review of the theoretical and experimental investigations
of the dynamic behavior of fuel tanks of space vehicles can be found

in [21].

B, Outline of the Present Study

Recent developments in seismic response analyses of liquid storage
tanks have not found widespread application in current seismic design.
Most of the elaborate analyses developed so far assume ideal geometry
and boundary conditions never achieved in the real world. In addition,
the lack of experimental confirmation of the theoretical concepts has
raised doubts among engineers about their applicability in the design
stage. With few exceptions, current design procedures are based on the
mechanical model derived by Housner for rigid tanks.

The following study develops a method for analyzing the dynamic
behavior of deformable, cylindrical liquid storage tanks, The study was
carried out in three phases: 1) a detailed theoretical treatment of the
liquid-shell system, 2) an extensive experimental investigation of the
dynamic characteristics of full-scale tanks, and 3) a development of an
improved design-procedure based on an approximate analysis.

A necessary first step was to compute the natural frequencies of
vibration and the associated wmode shapes. These were determined by
means of a discretization scheme in which the elastic shell is modeled
by finite elements and the fluid region is treated as a continuum by
poundary sclution techniques., In this approach, the number of unknowns
is substantially less than in those analyses where both tank wall and

fluid are subdivided intoc finite elements.



DYNAMIC ANALYSES OF LIQUID STORAGE TANKS

RING SHELL ELEMENT

Z
FREE SURFACE
BN ELEMENT
— —— ~ = At AN NN PA P Pa oo l
] J 2
F—_ \\N_ _"__’// r 3
1 H LIQUID a
o REGION |
VIBRATION 5
o , GENERATORZ
L . /‘_QB R . ARRARRARRARRAL( A ?
O 8-0 P76
A. Theoretical Study B. Vibration Tests

of Full-Scale

(i) Free Vibration Analysis
Liquid Storage Tanks

(ii) Earthquake Response

Outline of the Present Study

MECHANICAL
i T
T

MODELS

W

PAREMETERS
OF MECH.
MODELS

C. Seismic Design

(i) Simplified Analyses

(ii) Design Curves

1



-8-

Having established the basic approach to be used, the analysis was
applied to investigate the effect of the initial hoop stress due to the
hydrostatic pressure, the effect of the coupling between liquid sloshing
and shell vibrations, the effect of the flexibility of the foundation,
and the influence of the rigidity of the roof.

The remainder of the first phase of the study was devoted to
analyvzing the response to earthquake excitation. Special attention was
first given to the cosbt-type modes for which there is a single cosine
wave of deflection in the circumferential direction. The importance of
the cosnf-type modes was then evaluated by examining their influence on
the overall seismic response.

The second phase of research involved vibration tests of full-scale
tanks. The vibrations of three water storage tanks, with different
types of foundations, were measured. Ambient as well as forced vibra-
tion measurements were made of the natural frequencies and mode shapes.
Measurements were made at selected points along the shell height, at the
roof circumference, and around the tank bottom.

The principal aim of the final phase of research was to devise a
practical approach which would allow, from the engineering point of view,
a simple, fast and satisfactorily accurate estimate of the dynamic
response of storage tanks to earthquakes. To achieve this, some simpli-
fied analyses were developed, As a natural extension of Housner's model,
the effect of the soil deformebility on the seismic response of rigid
tanks was investigated. To account for the flexibility of relatively
tall containers, the tank was assumed to behave as a cantilever beam with

bending and shear stiffness., The combined effects of the wall flexibility
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and the soil deformability were then investigated. To further simplify
the design procedure, a mechanical model which takes into account the
flexibility of the tank wall was developed; it is based on the results
of the finite element analysis of the liqg}d—shell gystem. The param-
eters of such a model are displayed in chérts which facilitate the cal-
culations of the equivalent masses, their centers of gravity, and the
periods of vibration. Space limitations necessitate that much of the
analysis of the third phase of the study be not included in this report.
However, the details of such analysis will be presented in a separate
Farthquake Engineering Research Laboratory report entitled "A Procedure
for Seismic Design of Liquid Storage Tanks."

The foregoing research advances the understanding of the dynamic
behavior of liquid storage tanks, and provides results that should be of

practical value,

C. Ozrganization of This Report

This report is divided into two parts covering the first two phases
of the study. Each part consists of one or more chapters and each
chapter is further divided into sections and subsections. The subject
matter is covered in four chapters and each is written in a self-contained
manner, and may be read more or less independently of the others. The
letter symbols are defined where they are first introduced in the text;
they are also summarized in alphabetical order following each chapter.
Many references have been included so that the reader may easily obtain

a more complete discussion of the various phases of the total subject.
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PART (A)
CHAPTER I

FREE LATERAL VIBRATIONS OF LIQUID STORAGE TANKS

Knowledge of the natural frequencies of vibration and the associated
mode shapes is a necessary first step in analyzing the seismic recponse
of deformable, liquid storage tanks. The purpose of this chapter is to
establish the basic set of equations which govern the dynamic behavior
of the liquid-shell system, and to develop a method of dynamic analysis
for free vibrations of ground-supported, circular cylindrical tanks
partly filled with liquid.

In the first section, the problem is stated, the coordinate system
is introduced, and the possible modes of vibration are discussed. The
second section contains the basic equations which govern the liquid
motion: the differential equation formulation and the variational for-
mulation. The third section discusses the different expressions for
energy in the vibrating shell and the derivation of its equations of
motion by means of Hamilton's Principle. In the fourth section, topics
which receive attention are: the application of the boundary solution
technique to the liquid region, the variational formulation of the
overall gystem, the finite element idealization of the shell, and the
evaluation of the several matrices involved in the eigenvalue problem,
The fifth section presents detailed numerical examples and explores
some of the results which may be deduced about the nature of the dynamic

characteristics of the system.
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It is worthwhile to mention that the method of analysis presented
in this chapter is not only competitively accurate, but it is also com-
putationally effective in the digital computer. 1In addition, the effi-
ciency of the method facilitates the evaluation of the influence of the
various factors which affect the dynamic characteristics, as will be

demonstrated in the second chapter.

I-1. Preliminary Considerations

The purpose of this section is to present a brief description of
the structural members of a "typical" liquid storage tank and tc discuss
the advantages of the circular cylindrical tank over other types of
containers. This section is also intended to outline the coordinate
system used in the analysis, and it contains a discussion of the possible

mﬁdes of vibration of the liquid-shell system,

I-1-1. Structural Members of a "Typical"” Tank

A considerable variety in the configuration of liquid storage tanks
can be found in civil engineering applications. However, ground-
supported, circular cylindrical tanks are more popular than any other
type of containers because they are simple in design, efficient in
resisting primary loads, and can be easily constructed.

A "typical" tank consists essentially of a circular cylindrical
steel wall that resists the outward liquid pressure, a thin flat bottom
plate that rests on the ground and prevents the liquid from leaking out,
and a fixed or floating roof that protects the contained liquid from

the atmosphere.
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The tank wall usually consists of several courses of welded, or
riveted, thin steel plates of varying thickness. Since the circular
cross—section is not distorted by the hydrostatic pressure of the con-
tained liquid, the wall of the container is designed as a membrane to
carry a purely tensile hoop stress, This provides an efficient design
because steel is a very economic material especially when used in a
condition of tensile stress.

Several roof configurations are employed to cover the contained
liquid: a cone, a dome, a plate or a floating roof. A commonly used
type is composed of a system of trusses supporting a thin steel plate.
The roof-to-shell connection is normally designed as a weak connection
so that if the tank is overfilled, the connection will fail before the
failure of the shell-to-bottom plate connection. In addition, enough
freeboard above the maximum filling height is usually provided to avoid
contact between sloshing waves and roof plate.

Different types of foundation may be used to support the tank: a
concrete ring wall, a soclid concrete slab, or a concrete base supported
by piles or caissons. The tank may be anchored to the foundation; in
this case, careful attention must be given to tﬁe attachment of the
anchor bolts to the shell to avoid the possibility of tearing the shell
when the tank is subjected to seismic excitationg, For unanchored tanks,
the bottom plate may be stiffened around the edge to reduce the amount
of uplift.

To summarize, circular cylindrical tanks are efficient structures

with very thin walls; they are therefore very flexible.
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I-1-2, Coordinate System

The liquid-shell system under consideration is shown in Fig. I-1,
It is a ground-supported, circular cylindrical, thin-walled liquid con-
tainer of radius éﬁz length L, and thickness h, The tank is partly
filled with an inviscid, incompressible liquid to a height H.

Let r, 8, and z denote the radial, circumferential and axial coor-
dinates, respectively, of a point in the region occupied by the tank.
The corresponding displacement components of a point on the shell middle
surface are denoted by w, v, and u as indicated in Fig. I-1. To describe
the location of a point on the free surface during vibration, let £
measure the superelevation of that point from the quiescent liguid free
surface, Lastly, let S; denote the quiescent liquid free surface, and
Sy and S3 denote the wetted surfaces of the shell and the bottom plate,
respectively.

In the following analysis, the shell bottom is regarded as anchored
to its rigid foundation, and the top of the tank is assumed to be open.
The effect of the soil flexibility and the roof rigidity will be dis-

cussed later in the second chapter.

I-1~3. Types of Vibrational Modes

The natural, free lateral vibrational modes of a circular cylindri-

cal tank can be classified as the cos9-type modes for which there is a

single cosine wave of deflection in the circumferential direction, and

*The letter svmbols are defined where they are first introduced in the
text, and they are also summarized in alphabetical order in Appendix
I-a.
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as the cosnb-type modes for which the deflection of the shell
involves a number of circumferential waves higher than i. Figure 1-2-a
illustrates the circumferential and the vertical nodal patterns of these
modes, For a tall tank, the cosO-type modes can be denoted beam-type
modes because the tank behaves like a vertiéal cantilever beam.

In addition to the shell vibrational modes, there are the low-
frequency sloshing modes of the contained liquid. Fig. I-2-b shows
the first two free surface modes of a liquid in a rigid circular cylin~

drical tank.

I-2. Equations Governing Liquid Motion

The following section contains the basic equations which govern the
liquid motion inside the tank. The fundamental assumptions involved in
the derivation.of these equations are briefly presented. The full set of
the differential equations and their associated boundary conditions is
clearly stated. Finally, the variational equations of the liquid motion
are introduced and the equivalence of the two formulations is demon-

strated.

I-2-1. Fundamental Assumptions

In a consideration of the different factors affecting the motion of
the liquid, the following conventional assumptions are made:
1. The liquid is homogeneous, inviscid and incompressible,
2. The flow field is irrotational.
3. No sources, sinks or cavities are anywhere in the flow
field.

4. Only small amplitude oscillations are to be considered.
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1-2~2. Differential Equation Formulation

For the irrotational flow of an incompressible inviscid liquid,

the velocity potential, ¢(r,6,z,t), satisfies the Laplace eguation

V2 = 0 ' (1.1)

in the region occupied by the liquid (0 =r =R, 0 286 & 2%, 0 =z < H)

where
2 2 2
2 _ 3% .13 1 3% 3
v arZ T roor T r2 ez Y32

In addition to being a harmonic function, ¢ must satisfy the proper
boundary conditions. Since it is primatrily viscous effects which pro-
hibit the liquid from slipping along the solid boundaries, the condition
of no tangential slipping at the boundary is relaxed and only the velo-
cities of the liquid and the container normal to their mutual boundaries
should be matched. The velocity vector of the liquid is the gradient of
the velocity potential, and consequently, the liquid-container boundary
conditions can be expressed as follows:

1. At the rigid tank bottom, z = 0, the liquid velocity in the

vertical direction is zero
2 (r0,0,0) = 0 (1.2)

2. The liquid adjacent to the wall of the elastic shell, r = R,

must move radially with it by the same velocity

3 P
ﬁ} (R,0,2,t) = 2% (0,2,1) (1.3)
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where w(6,z,t) is the shell radial displacement.

At the liquid free surface, z = B + £(r,6,t), two boundary condi-
tions must be 1lmposed. The first of these conditions is called the
kinematic condition which states that a fluid particle on the free sur-
face at some time will always remain on the free surface. The other
boundary condition is the dynamic one specifying that the pressure on
the free surface is zere. This condition is implemented through the
Bernoulli equation for unsteady, irrotational motion

39 B L1 gs- e (z- =
i +Dg + 5 Ve Ve + g ¢ (2-H) 0 (1.4)

where p is the liquid pressure; Py is the liquid density; and g is the
gravity acceleration. By considering small-amplitude waves, the free

surface boundary conditions become

3 3

2 (r,0,0,0 = 22(r,e,0) (1.5)
3 -

szz sqti(raesﬁat) + DQ'g E;(r,e,t) = 0 (1-6)

in which the second-order terms are neglected. Rquations 1.5 and 1.6
are often combined to yvield the following boundary condition which

involves only the velocity potential

2
gv-f(r,e,ﬁ,t) + g%j’ (r,8,H,t) = 0 r.7n
t

The pressure distribution, p(r,9,z,t), can be determined from the
Bernoulli equation and is given by

3¢ .
p(r,S,Z,t) = —pQ, m:_ + pg’ g - (H‘Z) [\1.8)
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where the nonlinear term V¢-V¢ is neglected as being quadratically
small. It should be noted that the pressure p is the sum of the

hydrostatic pressure
P, = Ppg * (B-2) (1.9)
and the dynamic pressure

24 (1.10)

I-2-3. Variational Formulation

There are often two different but equivalent formulations of a
problem: a differential formulation and a variational formulation.
In the differential formulation, as we have seen, the problem is to
integrate a differential equation or a system of differential equations
subject to given boundary conditions. 1In the variational formulation,
the problem is to find the unknown function or functions, from a class
of admissible functions, by demanding the stationarity of a functional
or a system of functionals. The two formulations are equivalent because
the functions that satisfy the differential equations and their boun-
dary conditions also extremize the assoclated functionals. However,
the variational formulation often has advantages over the differential
formulation from the standpoint of obtaining an approximate solution.

The most generally applicable variational concept is Hamilton's

Principle, which may be expressed as follows

ty

81 = 5[(T~—U+W)dt = 0 (1.11)

t
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where T is the kinetic energy, U is the potential energy, W is the
work done by external loads and ¢ is a variational operator taken
during the indicated time interval. Hence, this approach necessitates
the formulation of the kinetic energy of the liquid, the potential
energy of the free surface and the work done by the liquid-shell
interface forces.

It has been shown [3] that the appropriate variational functional

for the liquid is given by

t
19) = [2{2& | @49 av- ;{; (-gig)zds oy [ow ds}dt
& v 51 Sy (1.12)

where w is the prescribed radial velocity of a point on the middle
surface of the shell and V is the original volume occupied by the
liquid and bounded by the surface § = Sl + S2 + 83; S1 being the
quiescent liquid free surface, and 82 and S3 are the wetted surfaces
of the elastic shell and the rigid bottom plate, respectively.

By requiring that the first variation of I be identically zero
[3], the differential equation (Eq. 1.1) and the a550¢iated linear
boundary conditions (Eqs. 1.2, 1.3, and 1.7) can be obtained.

A different variational formulation was presented by Luke [4] to
obtain the two nonlinear boundary conditions at the free surface. He
extended the variational principle used by Bateman [5] by including the

free surface displacement among the quantities to be varied and

employing the functional
t

2
65 = [ L 0,0 (1.13)

3
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where LC is the complementary Lagrangian functional; ¢ is the liquid
velocity potential; and & is the free surface displacement measured
from the quiescent liquid free surface.

As mentioned earlier, a linearized version of the free surface
boundary conditions, Egs. 1.5 and 1.6, can be deduced by considering
small amplitude surface waves. Under this linearization scheme, the

complementary Lagrangian functional takes the following form:

p . 2
LC(¢,€)=—Q£‘/[(V¢°V¢)dv+pQSf(¢£—%)ds+p£! b w ds
1 2
(1.14)

We shall now proceed to show that the requirement for the first

variation of the functional IC (¢,£) to be zero, will provide us with
all the Egs. 1.1 to 1.3, 1.5 and 1.6. Performing the variation, one

can obtain

t t
2 2
SIC = - Py [ (Vo -VS¢) dv dt + Py j- _] ($8E +E5¢ - g£8E) ds de
[ ty S1
ty
+ oy j I w 6¢ ds dt (1.15)
t, S

1 -2
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Applying Green's theorem to the first term and integrating the

second by parts, yields

t

t
2 2
2 5
tl v o tl S
ty .
* Py J [ (-$SE + £6¢ -gESE) ds de + 0, I ($65) ds
t1 S1 Sl tl
t2 t2
y 2
+ Dg j wddp ds dt = p£ I J Vo S dv dt
tl S2 tl \Y
t2 t2
- 3¢ _ -) _ .
Py f (av §) 5¢ ds dt - oy f [ (4 + g5) 65 ds dt
£ 5 t, 8
7 9 "2 3 .
~ Py J‘ J’ (5%” W) 8¢ ds dt - py 5% §6 ds dt (1.16)
t, Sy e 8,
99

where gGAis the derivative of the potential function ¢ in the direction
of the outward normal vecter Ve Note that the variation and differen-
tiatfon operators are commutative and the order of integration with
respect to space coordinates and time is interchangeable. Also, by
definition, 6& (r,8,t) is zero at t = ty and t = t2.
The integral in Eq. 1.16 must vanish for any arbitrary values of
8¢ and 8. These variations can be set equal to zero along S and Sl’

respectively, with 8¢ different from zero throughout the domain V.

Therefore, one must have

Vi = 0 in V (1.17)
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Furthermore, because of the arbitrary nature of the variations

8¢ and 8%, one can write

3 L . 3 )

£-f =0alomg s, i.e. ‘a% (r,8,H,t) = S—‘E(r,e,t) (1.18)
¢ +gf =0 along S i.e. g—% (r,8,B,t) + g&(r,6,£) = 0  (1.19)
8. * — [ag ] 8 a

-5% ~w = 0 along Sy 1.e.~§% (R,0,z,t) = 5%(6,z,t) (1.20}
3¢ - . 94 - 1~
ne = 0 along S, ice. 5- (1,0,0,8) =0 (1.21;

Thus, the first variation of the functional Ic has furnished the
fundamental differential equation (Eq. 1.17) and the appropriate
boundary conditions (Egs. 1.18 to 1.21).

The functional IC(¢,£) will be adopted in the following analyses;
it is particularly effective in analyzing the dynamic behavior of the

liquid-shell-surface wave system, as will be explained later.

I-3. Equations Governing Shell Motion

Shells have all characteristics of plates along with an additional
one - curvature. However, a large number of different sets of equations
have been derived to describe the motion of a given shell; this is in
contrast with the thin plate theory, wherein a single fourth order
differential equation of motion is universally agreed upon.

The main purpose of this section is to present a straightforward
formulation of the potential and kinetic energies of a circular cylin-
drical shell, and to derive its equations of motion by means of

Hamilton's Principle.
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I-3-1., Potential Energy ¢f the Shell

The present formulation of the potential energy is based upon a
first approximation theory for thin shells due to V. V. Novozhilov [7].
For simplicity and convenience, the theory will be developed in Appen-
dix I-b for the special case of circular cylindrical shells following
an analogous procedure as outlined by Novozhilov for arbitrary shells.

The potential energy stored in the flexible shell is in the form
of a strain energy due to the effect of both stretching and bending.
The force and moment resultants acting upon an infinitesimal shell
element are depicted in Figs. I-3-a and I-3-b, respectively. The

strain energy expression can be written as

u(e) = % } }W(Nzez + Ngey + Mg g + MR+ MK+ M KZB)R dé dz
0 o (1.22
In equation 1.22, NZ and Ne are the membrane force resultants;
and MZ and MO are the bending moment resultants. The quantities N and
M are referred to as the effective membrane shear force resultant and
the effective twisting moment resultant, respectively; they are related
to Nz@“ NGZ’ MZEJ and Mez by

M

N = -——-e—%: Z"E
N = Nz@ R Nez (1.23-a)

=
It

1
S (M + M) (1.23-b)

Now, the shell material is assumed to be homogeneous, isotropic
and linearly elastic. Hence, the force and moment resultants can be

expressed in terms of the normal and shear strains in the middle
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(a) FORCE RESULTANTS

Rdé@

{b) MOMENT RESULTANTS

Fig. I-3. Notation and Positive Directions of

Force and Moment Resultants,
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surface gz, >

5 and eze; in terms of the midsurface changes in curva-

ture Kz and K ; and in terms of the midsurface twist Kz as follows:

3, 8

NZ = kl (ez + v 86) (1.24~a)

Ne = kl (e6 + W ez) (1.24-Db)

N = k Y (1.24-¢)

- 1 2 E:26 - ¢

Moo=k, (K, +v Ke) (1.24-4d)

Me = kz (Ke + v Kz) (1.24-2)

Moo= ok (DY g (1.24-%)

2 2 zH ) -

where kl is the extensional rigidity and k2 is the bending rigidity;

they are given by

kl = 5 {1.25-3)
1-v
3
k, = —Eh—T (1.25-b)
12(1-v")

where E is the modulus of elasticity of the shell material; v is
Poisson's ratio; and h is the shell thickness.
Equations 1.24-a to f can be written, more conveniently, in

the following matrix form:



where

and

{o}

D]

<

i
ot
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{6} = 1[Dlie}
r (1.27-a) {e}
_i V 0 0
Y i 0 0
0 0 i-v 0
2

0 0 O pi
12

2

vh

0 0 0 17
0 0 0 0

f€ ~N
z
€0
€26
= < ?
K
z
K
\. Kze J
0 0
0 0
0 ¢]
\)h2 0
12
B
2
2
0 (1-v)h

(1.206)

(1.27-b)

(1.27-c)

3
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The normal and shear strains in the middle surface are related

to the components of the displacement by

- du -
e, = o (1.28-a)

- 1 3v -
86 = 3z (36 + w) (1.28-Db)

- ov _ 13u -
EZB = + R 55 (1.28-¢)

Also, the changes in the midsurface curvatures Kz and Ke and the mid-

surface twist Kz are given by

8

32
x = -°¥ (1.29-2)
z 3 2
Z
1 82 av
R, = - L &y (1.29-b)
R® 296
2 BZW 2 v
KZB T TR 9296 R 3z (1.29-¢)

Now, the generalized strain vector {€} can be expressed in terms

of the displacement vector {d} as follows:

{et = [PHd} (1.30)

u
where {d} = {v} (1.31) ; and [P] is a differential operator
W

matrix defined by



[— ]
IE)
7 0 0
18 1
0 R 30 R
19 o
R 938 0z 0
[p] = (1.32)
2
0 O ._..a.___
7z
s L3 13
RZ a8 RZ 882
o 23 _2 79
| R 3z R 3288_*

With the aid of equations 1.22, 1.26, and 1.30, the potential
energy expression can be written as
j
0

U(e) (e} o) R d0 dz

I
N

o‘n._‘\g

({e3T[D1{e}) R dB d= (1.33)

n
DN | b
ng“‘\ﬁ
Ct“““g

or, in terms of the displacement vector, as

L i

2
Uty = [ {([P]{d})T[D]({P]{d})} df dz (1.34)
0

oo

0
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It is worthwhile to indicate that Eqs. 1.24-a to f are as
simple as possible, but they still fulfill the requirements which
are sufficient for the validity of the fundamental theorems of the

theory of elasticity in the theory of shells [8].

I-3-2. Kinetic Energy of the Shell

The kinetic energy of the shell, neglecting rotary inertia,

can be written as

1 2m

2
T(t) = f f{m( z) Bu(e,z,t)) + (Sv(géz,t))
0 :
+ (BW(@,Z,t))Z] R d9 de (1.35)
ot

where m(z) is the mass of the shell per unit area. Eq. 1.35 can be

written, more conveniently, as follows

/

where {d} is the displacement vector, defined by Eq. 1,31, and ( )

I

y
] (m(z){é}T{é}) RdS dz  (1.36)
0

ST

T(t) =

means differentiation with respect to the time, t.

I-3-3, Derivation of the Equations of Motion of the Shell

The differential equations of motion of the elastic shell and
their associated boundary conditiocns will be derived by means of

Hamilton's Principle. The use of this variational principle has
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the advantage of furnishing, automatically, the correct number of
boundary conditions and their correct expressions. It employs the
different expressions of energy of the vibrating shell which have
been derived in the preceding sections. 1In addition, an expression
of the work done by the liquid-shell interface forces, through an

arbitrary virtual displacement &w, is required; it can be given by

H 2
W = wlﬁ (p(R,e,z,t) SHO'R dg dz (1.37)
0 O

where p(R,6,z,t) is the prescribed liquid pressure per unit area of
the middle surface of the shell; and H is the liquid height.

Many investigators have considered various simplifying assump-
tions so that it may be possible to obtain closed form solutions
to the resulting set of differential equations. Since the method
of soluticn te be used in this analysis is a numerical one, such
considerations need not be made.

The variation of the kinetic energy, T(t), has the form

jr

0
Ajr
0

therefore,

rBu
§T(L) m{z) [_5? ) + ( ) + == ( ) R do dz

o kh“\ﬁ

ou dv 9 .
{m [3t TGRS TGl v r )”R o
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£

t2 2 L 27
- - Bq
~I‘6l(t)dt = J. {m( i St at(é u) + — at at(d v) + = Bt at(é )}}R dedzdt
tl tl 0 O
L 27 ¢ "
- s Hm(z)[(--—- e;u) Iz + ( 5) I + (»— 6w)l2]}R dndsz
o 0 t tl

t2 L 2 5
- J’“m(z)[—“ su + &7 8 v S oV + a_ sw }R dedzdt
T ot
1 0

I

2 1L 2rm )2 2 2
- _j J ”m(z) _——}Zi Su + -% 8v + ——‘g Sw }R d6dzdt
¢ 0 o ot ot ot (1.38)

Note that, by definition, Su{f,z,t), d6v{b,z,t), and Sw(b,z,t) are
zero at t = t, and t = t2.

The strain energy expression, Eq. 1.33, can be written, in terms

of u, v, and w, as follows

27

Bl -2l B -
0

u(t) =

\‘L‘"

2(l—v )

o @

(I-v) |1 0u _ 3v
2 R 36 dz

2
2(-v) M(ﬁg RAY s [azw - i‘iJz R d6 dz (1.39)
RZ 322 862 39 R2 9z38 3z
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and therefore, the variation of the strain energy can be expressed

as

L. 2w

_ duy , 10vy, L] _ G |
U(e) = f j{[ 5 “’)] [6(82) + R‘S(ae) + E5"] R
0 0
du av Ju av 1-v v (i du v
(22 0(20) + 2o ou s (v w) o (Be)] + 22 2 20+ 2[R (38) + o(3)]
02 D21 % s\ [fe%e\ 1 %\ L L JfovY]  (-wn’
* T2t s )l 1P\ ) T e T
32> R% \3p 322/ r® \ee?/ ®° 12R
32w 6(32:0) 3% 5(§-‘1)+ (__Z_g ) _'g)_\i) 5(‘5‘32"’) L 2a-wn’ 0% gg},
2.2 Gaz) T ozNes) Tz T ) O\, 2 Lol |9290 Bz
2
27w v '
) o] e o

then integrating by parts, if it is necessary, yields

L 2 )
(1—v) 8 u (1+v) 37w Vv dw
Su(e) = J J'{ + + —-—»} Su
N 2R2 o2 T 2R 3208 T K 5z
"0 o0
I) %0 d-v) 3%v 1 o5 L me 1 o 2w\ L 1 ow
“172r Bzse T2 I I R ) +2Q-v) T T Ay
922 R® 862 12r* \®% 96 3z R
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3 2 (.4 4 4
8 )
R 3z' R” 8z°36° R 36

R 38 T Dz

;;z[ga_u By

L
} R do (1.40)

Introducing Eqs. 1.38 and 1.40 into Eq. 1.11, and assuming that

the tank is empty for the time being, gives

+ L 2w
2
Eh Jz f ]' d u + 1-v 82u _ m(luvz) Bzu + (1+y) azv + v oW 5
- Su
(lévz) 322 2R2 882 Eh 8t2 2R 32986 R 3z
t. 0 0
1
[(m) 2’y , 1w a’v L v _ml=v)) 3'v , h (L 2%y
2R 3230 2 aZ2 RZ 362 Eh Btz lZRZ R2 862
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R 38 @ 29z .2

2 3R

(A=) [l‘§2_+ v n

)] - [ () o [ £
3238 Jz 12 822 R2 862 28 Bz‘ 12 323 R2
0 0
53 52 -
( - azge) - 6w Rde de = 0 . (1.41)
32390
0

The integral must vanish for any arbitrary values of Su, 8v, 8w,

ow

and 6(82

), so these variations can be set equal to zero at z =0 and

z = L, and different from zero throughout the domain 0<z<L. Therefore,

one must have

2 (1+v) Bzv

2 2. .2
9 u (1-v) 87u  m{I-v") 9 u v oow
+ - + + 2 o g (1.42)
2,2 2 302 En 2 2R 9230 @ R 9z
1+ 82u 1-v azv 1 82v m(lnvz) Szv h2 1 azv : azv
R 0z086 T 2 .27 3 7 T Eh y v g g YU
“ 3z R” 98 ot 128" \R” 236 3z

2 3 3
R

8 19r% \g?% 502 32%90



vow 1 av o nt e, o v
Roz " 2987 2 |2 o3 I
11“2_84w+_2__ 34W +__]:_84w=0

12 \az% R 02%08?  RY pe*

2
m{1-v) BZW +
Eh 2
3t
(1.44)

Eqs. 1.42, 1.43, and 1.44 are the basic differential equations

of motion of the shell and can be expressed in the following matrix

form

[L] {d}

{o}

(1.45)

where {d} is the displacement vector defined in Eq. 1.31; and [L] is a

linear differential operator which can be written as

[L] =

—

2® (1w 3 |
2 2 2 |
oz 2R 96 2 1
(L +v) 3 | v .3
5 2R 0239 ! R 9z
ps(l—v ) 52 ;
- L Ty I
B 3t | i
S , —— e
i
(1-v) o | 1 8% |
I
2 522 g7 e? ;
| R
1
1ty 37 ' 0 (1-vH) 52 | r? %
S - I
2R 9209 i
§ ! B 3 3
[ 3
i {—a (Z—V) 5 - +‘“§ —ﬁs
)2 et 9236 R~ 296
+a[2(1-v)~ + =5 |1
97 i
o o ——— o o e e e e e s e . e i e o £ e e
1 I
I
13 L S arht
R2 90 i R
v 3 i j
R 3z 1 2
» (Z—V\»aB L 83 | . ps(l—v ) 82
4 |
| 32236 R 367! E 2
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where
2
. . ’ E

862

o
R

==

; and o =
12R 822 s

(1.47)

Furthermore, because of the arbitrary nature of the variation,

in considering Eq. 1.41, one can write

L
Eh Eﬁl V) (Bv )] =
+-— — 4 -Gu = 0 Y (1-48)
{(l—v2) oz R \96
0
Eh 1 3u . dv hz 82w ov -
[*——zum a%*@';ﬁ(me‘@) i T
0
~ L
3 2 2
Eh 5 3 g + 25’ ﬁ_g__ %g_.’.g(gg o, (1.50)
12{1-v") L2z R 20 ) 0
L
3 [.3 3 2
12(1-v7) | 827 R” \3z208 z 0

In order to clarify the four terms in parentheses in the preceding
equations, reference can be made to Eqs. 1.23, 1.24, 1.25, 1.28, and
1.29. It will be recognized that these terms represent the resultants

Mz 5 1 BMz,e
Nz, (Nze +-~§~), Mz, and (Qz +-§ Y ), respectively. Hence, Egs.

1.48, 1.49, 1.50, and 1.51 take intc account the possibility that

either
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Nz = 0 or u = 0 at z = 0,z =1 (L.52)
Mg

N o+ —%— = 0 or v = 0 at z = 0,z =1 (1.53)
Moo= 0 or %g- = 0 at z = 0, z =1L (1.54)
M

Qz +,%.?é? = 0 or w = 0 at z = 0,z =1 (1.55)

Equations 1.52, 1.53, 1.54, and 1.55 represent both the natural and
geometrical boundary conditions associated with the equations of
motion of the shell.

For a partly filled liquid container, the equations of motion

take the following form

2
L] {a} = 11§§~l {F} (1.56)
0
where {F} = {0} (H<z<L) and {F} = [ 9) (0<z<H); p being the
P

liquid pressure.

i~4. A Numerical Approach to the Lateral Free Vibration - The Finite
Element and the Boundary Solution Methods

The finite element method is now recognized as an effective
discretization procedure which is applicable to a variety of engi-
neering problems. It provides a convenient and reliable idealization
0of the system and is particularly effective in digital-computer analy-
ses. However, for some specific simple problems, the so-called

boundary solution technique [10] may be even more economical and
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simpler to use. We shall briefly discuss the similarities and
differences of these two procedures.

In the standard procedure of the finite element method, the
unknown function is approximated by trial functions which do not
satisfy the continuum equations exactly either in the domain or,
in general, on the boundaries. The unknown nodal values are deter-
mined by an approximate satisfaction of both the differential equa-
tions and the boundary conditions in an integrated mean sense. The
boundary solution technique consists in essence of choosing a set
of trial functions which satisfies, a priori, the differential equa-
tions throughout the domain. Now, only the boundary conditions have
to be satisfied in an average integral sense. Since the boundary
solution technique involwves only the boundary, a much reduced number
of unknowns can be used as compared with the standard finite element
procedure. At this point, we must remark that the boundary solution
technique is limited to relatively simple homogeneous and linear
problems in which suitable trial functions can be identified.

Since each procedure has certain merits and limitations of its
own, it may be advantageous to solve one part of the region using
the boundary solution technique and the other part by the finite
element method. 1In the following section, such a combination has
been used successfully. The liquid region is treated as a centinuum
by boundary solution technique and the elastic shell is modelled by

finite elements. In this approach, the number of unknowns is sub-



42 -

stantially less than in those analyses where both tank wall and liquid

are subdivided into finite elements [3, 12, 13}.

I~4-1. Application of the Boundary Solution Technique to the Liquid
Region

It has been shown that the functional Ic (¢,£) defined by Egs.
1.13 and 1.14, together with the variational statement GIC = 0,
provide the necessary differential equation to be satisfied throughout
the liquid domain as well as the appropriate boundary conditions.
Henceforth, we shall be concerned with the variational formulation,

demanding stationarity of

_[¢% ds} dt

t

2 3o . 2
L.(6:8) = [ {— 5& I(V@- V$) dv + pg,f (oE- g%—) ds + py
£y v Sl 52
(1.57)

k3
Once a set of trial functions, Ni(r,S,z), which are solutions

of the Laplace equation, have been identified, then one can assume

that

N
-~

I
$(r,0,z,t) = ig Nigr,B,z) . Ai(t) (1.58)

1

where I is the number of trial functions to be used jin the expansion
of the potential function ¢.
Since the velocity potential function defined by Eq. 1.58 satis-

fies the Laplace equation, V2¢ = 0, identically throughout the liquid
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domain, one can replace the volume integral in Eq. 1.57 by a surface

integral using Green's theorem:
g

v z

J- Wo-ve) av = J 6 Las - | 6 7% av = J-¢ 245 @59
v S

3¢ . , s . \
where 5%—15 the derivative of the potential function ¢ in the direction
of the cutward normal vector V.

Now, we seek the stationarity of the functional

t

~ 2 P 2

Ic(¢a€) = I —-5& j- ¢-%% ds + p, j‘(¢é~ 5%—) ds + oy ]-¢ﬁ ds }dt
tl S S S

1 2 ,
(1.60)

~

The functional Ic(¢,E) defined in the preceding equation involves
only the boundaries of the liquid region, and therefore a finite
element discretization of the liquid region itself is not needed.

1-4-2, Variational Formulation of the Equations of Motion of the
Liguid-Shell System

As was seen, the extremization of the complementary functional
IC(¢,E), assuming that the shell velocity is prescribed, leads to
the differential equation of motion of the liquid and the appropriate
boundary conditions. Similarly, it was demonstrated that the set of
equations which govern the shell motion can be obtained by means of
Hamilton's Principle, assuming that the liquid pressure is prescribed.

A‘combination of the preceding variational formulations can be
made to provide a variational formulation of the motion of the liquid-

shell system; the variational functional can be written as
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t2 DQ’
J(u,v,w,,8 = f (0,0, - Ul,v,w) - 5 f(vq;-vqb) dv
t1 v
. .
to, [ G- Edstp [ deas lat (1.61)
51 Sy

where u, v, and w are the displacement components of the shell din
the axial, circumferential, and radial directions, respectively; T
and U are the kinetic and strain energies of the shell;p2 is the
liquid density; ¢ is the liquid velocity potential; & is the free
surface displacement; and g is the gravity acceleration.

When it is noted that the volume integral in Eq. 1,61 can be
replaced by a surface integral, refer to sec. I-4-~1, the functional

J takes the form

t
2 o
J(U,V,W,(t),g) = j T({l,{f,;ﬂ) - U(U,V,W) - ?QL j(b %%’ ds
tl G

S

hd Y 2 .
+QS‘<’, f(i@—j’-%-—)ds+pz quﬁds dt (1.62)
Sl )

In this chapter, only the impulsive pressure of the liquid will
be considered; this is equivalent to assuming a zero gravity accel-

eration. Given this new situation, the functional J can be written as
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t
2 e
J{u,v,w,9,5) = I T(a,v,w) - Ulu,v,w) — 5&- ]-¢ %%—ds
tl S
toy [Eods oy [ wgas }at (1.63)
Sl 52

Now, it can be recognized that the shell vibrational motion is
independent of the free surface motion, and consequently, it is pos-
sible to omit the term in Eq. 1.63 involving the free surface velocity.

Hence, the functional J is given by

o

£
J,v,w,$) = ~[ T(u,v,w) - Ulu,v,w) - §&>I¢ %%’ds + pz jhéwbds dt

t1 S 82

(1.64)

The effect of the coupling between liquid sloshing and shell vibrations

will be discussed later in chapter II.

I-4-3, Expansion of the Velocity Potential Function

2
The solution ¢(r,0,z,t) of the Laplace equation, V¢ = 0O, can
be obtained by the method of separation of variables. Thus a solution

is sought in the form

0(r,8,2,8) = R(r)-0(8)*Z(z)*T(t) (1.65)

Appendix lI-c gives a detailed derivation of all possible solutions of

the Laplace equation which can be stated as follows:
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fin(kr)cosh(kz)

%1(kr)sinh(kz)

n
T z

6(r,0,2,8) = ’i*n(t) cos(ne)ﬁ . (n=1) (1.66)

n
is

In(kr)cos(kz)

Lln(kr)sin(kz)

where J  and I are the Bessel functions and the modified Bessel
functions, respectively, of the first kind of order n; k is a separa-
tion constant; and n is the circumferential wave number. It should
be noted that the terms containing the Bessel functioﬁs and the
modified Bessel functions of the second kind, Y, and K,, as well as
the terms zr  and r  have been discarded, since they are singular
at r = 0.

In a solution by the separation of variables, the terms given
by Egq. 1.66 should be superimposed to satisfy the boundary conditions.
Therefore, it is desirable to retain only those terms which have
vanishing derivative with respect to z at z = 0. Hence, the terms
Jn(kr)cosh(kz), In(kr)cos(kz), and r" are retained. The separation
counstant is chosen to satisfy that the liguid pressure at the free
surface 1s zero, or equivalently, the time derivative of the veloc-
ity potential function at z = H is zero for all time. Hence, the

te
~

trial functions Ni are given by

ﬁi(r,e,Z) = §=1 In[dir) cos (o, z) cos (n) (1.67)
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_ {2i-D)m
where T <1.68)

The velocity potential function, ¢(r,6,z,t), can then be expressed

as
I x
¢(r,8,2,8) =, I A () N (r,0,2) (1.69)
or in a matrix form as
T *
0(2,0,2,6) = {a®f . {§@,0,2) (1.70)

I-4-4. TIdealization of the Shell

The first step in the finite-element idealization of the shell
is to divide it into an appropriate number of ring-shaped elements.
These elements are interconnected only at a finite number of nodal
points as shown in Fig. I-4-a. (it is probably more descriptive to
speak of the "edges' of the element rather than the "nodes'; however,
these terms will be used interchangeably). The element size is
arbitrary; they may all be of the same size or may all be different.

The equations of motion of the shell admit the representation

of the displacement components u, v, and w in the following form

o
= I -
u(f,z,r) ne1 un(z,t) cos(nd) (1.71-a)
v(8,z,t) = % v (z,t) sin(n9) (1.71-b)
n=1 n
fou)
w(B,z,t) = ngl v (z,t) cos(nd) (1.71-c)
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Now, the displacement functions un(z,t),vn(z,t), and wn(z,t) can be
expressed in terms of the nodal displacements of the finite elements
by means of an appropriate set of interpolation functions. The
shape functions associated with the axial and tangential displacements
are taken to be linear between the nodal points. However, those
associated with the radial displacement are cubic Hermitian poly-
nomials to assure slope continuity at the nodes,

Consider a typical shell element of length Le with a local
axial coordinate z as shown in Fig. I-4-b. The displacements une(E,t),

vne(E,t) and wne(E,t) can be written in terms of the nodal displace-

ments as follows

2

ue(zat) = LS. (2) u (1) (1.72-a)
— 2 — —-—

vne(z,t) = i§1 Si(z) vni(t) (L.72-b)
- 2\ —_— — ~ —_ ~

w o (z,t) = iil (Ni(Z) w, (t) + N (2) wni(t)) (1.72-¢)

where e is the subscript indicating "'element" and Gni(t), Gni(t),

W i(t), and %ni(t) are the generalized nodal displacements of the
n

element. The shape functions are given by
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= . 1 B
Sl(z) = 1 T
e
- z
Sy(2) = ¢
e
) -2 -3
N(z) = 1-375—+2 5
LE Le
(1.73)
. o 2
NZ(Z) = 3 L2 -2 ;'3*—
e e
o _ -2 -3
Nl(Z) = z - 2 L—e + 3
Le
- 2 73
Np(z) = =g+
e Lg

Since the displacements of each circumferential wave number n
are uncoupled, it is appropriate to omit the subscript n for brevity.

Egqs. 1.72-a to ¢ can be written in a matrix form as

{d(E,t)}e = [Q(E)}{a(t)}e (1.74)

and

It

F@)awm), = ®@I" @ml, (1.75)

we(E,t)

where



—81(5) 0
[o(z)] = 0 Sl(z)
| o 0
{E(t)}e =
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'ue(E,t)\
{d(z,t)}, =4 v (z,£) p (1.76);
RACR)
0 0 32(2) 0 0 0
0 0 0 32(2) 0 0
@ B@ o S NN N6
(1.77);
uy (€
v, (t)
w, (2)
w, ()
(1.78);
u, (t)
v, (£)
w, ()
&2(tﬁ

Nyt

il

{0 o0 Nl(z)

O

@ NG

e
ﬁ1(5> 0 0 N, ﬁz(E)} (1.79);

N2 (z) /I:IZ (z)} (1.80); and
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()
w, (t)
%l(t)
@i, =< (1.81)
wz(t)
w, (£)
. J €
NEL
Finally, let {q} = z {d(t)}e (1.32)
e=1

where {ql is the assemblage nodal displacement vector; and NEL is

the number of shell elements along the shell length.

I-4-5. Evaluation of the Shell Stiffness Matrix

The elastic properties of the shell are found by evaluating
the properties of the individual finite elements and superposing
them appropriately. Therefore, the problem of defining the stiff-
ness properties of the shell is reduced basically to evaluating the
stiffness of a typical element,

The strain energy of the shell due to stretching and bending

(Eq. 1.33) can be written as

™

L 2
ue) = 3 f (e} DI} do dz (1.83)
0 ¢
where {e} = ([P}{a} (1.84); and [P] is a differential operator

matrix defined by Eq. 1.32,
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For each circumferential wave number n, the displacement vector
{d} of any point (R,8,z) on the middle surface of the shell can be

expressed in terms of the vector {dn} as follows

{d} = [@n]{dn} (1.85)
where
cos {(nb) 0 0
{@n] = 0 sin(nd) 0 (1.86) ;
0 0 cos {n8)
(u (z,t) )
n
{d (z,t)} = 11 v _(z,t) L (1.87) ;
f+d n
\wn(z,t)J

u and v being the axial and radial displacement at & = 0; and v
is the maximum tangential displacement.

Substitute Eq. 1.85 into Egq. 1.84, then one can write

(e} = Ipl{a} = [PlO Md} = [O 1B ()1{d )}  (1.88)

where
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-
cos(nd) 0 0 0 0 0 - ]
0 cos (nB) 0 0 0 0
0 0 sin{nd) 0 0 0
[@n] = (1.89) ;
0 0 0 cos (nf) 0 0
0 0 0 0 cos(nB) 0
L“O 0 0 0 Q sin(nd)
— —
3
e 0 0
n 1
0 R R
n ]
N R dz 0
and [Pn(z)] = (1.90)
2
0 0 —-é‘z
3z
n n2
O —— o
R2 R2
s 23 m3
R 3z R 3

With the aid of Eq. 1.88, the strain energy expression (Eq. 1.33)

can be written as
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27
u(e) {([ﬁn]{dn})T(f (01710118 ) de) (18 14a_b }dz
0

{}
o[
O S—

TR
2

il

O S T

~ T A
{({Pn]{dn}) (0] (Ip Hd 1) }dz (1.91)

Again, the displacements of each circumferential wave number
n are uncoupled, and therefore, it is appropriate to omit the sub-
script n for brevity.

Now, the strain energy (Eq. 1.91) may be expressed, with the aid

of the displacement model (Eq. 1.74), as

TR N

EL
e Z

L
e, ~ - T ~ _ _
ue) = . fo (crrer@ pt 3, plQIE )z (1.92)

e:

where NEL is the total number of shell elements along the shell
length: and [D}e is the element constitutive matrix; it is assumed
constant over the entire element,

Eq. 1.92 may be expressed conveniently in terms of the element

stiffness matrix as

NEL _

e =g T I (1.93)
. L

e T ) .

where [k 1, = TR f [B]°[D]_[B] dz (1.94) ;
0

and (8] = [P1Q] (1.95)
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The integration involved in the evaluation of [Ks]e can be
accomplished by using the Gaussian integration method along the
element length. A Four-points integration-rule is required to
exactly compute the elements of the stiffness matrix; it can be

stated as follows

Le 4
G(z)dz = I G(z.) W, (1.97)
i=t T 7
0
where z, = 7;—(1 + ni); n, o= F 0.339981; n, = F 0.861136;
4 3
W, = 0.326 L ; and W, = 0.174 L .
1 e 2 e
4 3

The process of constructing the equations for the assemblage
from the eguations for the individual elements is routine. Nodal
compatibility is used as the basis for this process. Since the
displacements are matched at the nodes, the stiffnesses are added
at these locations. The assemblage stiffness matrix and the nodal

displacement vector can be written as

NEL NEL
[k,1 = > [k ], and {q} = > {d) (1.98)
e=1 e=1

Now, the strain energy expression becomes

ult) =

=

{q}T (K] {q} (1.99)
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Finally, when it is noted that the strain energy stored in
the shell during deformations must always be positive, it is evident

that

5 @'k 1a} > 0

Matrices which satisfy this condition, where {q} is any arbitrary
nonzero vector, are said to be positive definite; positive definite
matrices are nonsingular and can be inverted. The stiffness matrix

[KS} is alsc symmetric and banded.

I-4-6. Evaluation of the Shell Mass Matrix

The kinetic energy of the elastic shell (Eq. 1.36) can be

written as

21

L
DL Y
T(e) = % f (m(z){d} {d}) R d6 dz (1.100)
0

O

Substituting Eq. 1.85 into Eq. 1.100, one can obtain

, 2w

L
1) = 3 [ {nG) tay! (\j[@n]T{@n} dS){dn} az
0 0
L
= %;‘ j- (m(Z){dn}T{dn}) dz (1.101)
0
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When the interpolation displacement model is used, Eq. 1.74
can be inserted into the expression of the translational kinetic

energy to obtain

L
re) = B a [ da@)Naad,) @ (1.102)
0
where the subscript n is omitted for brevity and m, denotes the mass
of the shell element per unit area; it is assumed uniform over the
entire element.
Fquation 1.102 can also be written as

NEL

Ie) = 3 ot {é}e R {é}e (1.103)
e=1

where [MS]e is the consistent mass matrix of the element which can

be defined by

1, = v | RORE (1.104)

When the integration involved in the evaluation of [Ms]e is

carried out, the resulting consistent mass matrix is
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Le Le ]
o L o o o 0
3 6
130, 112 oL 1317
1 - €
0 0 = o 0 9 9 420
2 3 2 3
PO £ S o o e 1
710 105 420 140
_ . (
P%]e LR (1.105)
RO 0o 0 e 0 0
3 3
Le Le
R 0 £ 0 0
9L, 13D 3L 1L
0 0 55 o 0 © 35 710
RS B R
o0 i20 160 00 210 105 |

The mass matrix of the complete assemblage can be developed
by exactly the same type of superposition procedure as that described
for the development of the assemblage stiffness matrix. The assem-

blage comsistent mass matrix is

[Mé] = P%;l [Ms]e (1.106),
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and therefore, the translational kinetic energy can be written as

e = 5 {0 (1.107)

I-4-7. The Matrix Equations of Motion

As a consequence of neglecting the free surface oscillation
modes, the motion of the tank wall can be analyzed by intreducing an
additional mass matrix in the matrix equations of motion of the
shell; it represents the effect of the liquid dynamic pressure during
vibration.

To establish the matrix equations of motion of the liquid-shell
system, one can make use of the variational functional (Eq. 1.64)

which can be written as

ty

P
J{u,v,w,$) = -[ T(i,v,w) - U(u,v,w) - E& j-¢ %%»ds + pz~[%<bds dt
S

¢ s
1 2 (1.108)

The scalar energy quantities, U(t) and T(t), are already obtained
in terms of the assemblage nodal displacement vector, {q}, and are
given by Egs. 1.99 and 1.107, respectively.

Now, inserting the expression for the potential function (Eq.
1.70) into the third term of the functional J, and noting that the
trial functions, given by Eqs. 1.67 and 1.68, satisfy the conditions

that ¢ = 0 along Sl and %%- = 0 along 53, one can write
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[
——
<

bt
ja b
]

I

p
* j.¢_§£ ds (1.109)
2 av

Sy

H 27

£
B —2& ff (‘b(R’esz,t) . 2—% (R,e,z,t)> R d6 dz
00

RP v, 0 %
B 2 % IN T
- = {amw) <ff {N(R’S’Z)HE (R,0,2)} d8 dz){A(t)}
00
(1.11.0)
. . oc
where Ni (r,8,z) = rl%;:l In(mir) cos(aiz) cos{ng) ; and
. 2i-1 .
% = i"%ﬁ—lﬂ , i = 1,2,0.0...,1.

Performing the integration dinvolved in Eq. 1.110, one can obtain,

t .
for the n h circumferential wave, the following

% ! ¢%—% ds = HR‘;‘?‘ {A}T Ec_]{A} (1.111)

where EC] is a diagonal matrix whose elements are given by

a.H

——-—J_.- e =
Cii = > In(@iR) In(&iR) s i=1,2,....,L. (1.112)

With the aid of the radial displacement expression (Egq. 1.71-c),

the last term of the variational functional (Eq. 1.108) becomes



_63-

H 27
%, !'j- (ﬁ(e,Z,t)'¢(R,6,z,t)> R d6 dz
A ;
2r

H
RDQ _£ [ﬁ;rn(z,t) ( jcos(ne) 9 (R,G,z,t)dt%)] dz (1.113)
0

Il

F& _[ w ¢ ds
Sy

]

and upon using the potential function expression (Eq. 1.70) in

Eq. 1.113, it can be obtained

H
% f wods = R, f(w;rn(z,t)'{§(z)}T-{A(t)}) dz (1.114)
S2 a
where ﬁi(Z) = In(miR) cos(aiz) (1.115)

Now, inserting the shell displacement model (Eq. 1.75) into

Eg. 1.114 to get

Le
NER ) T “
% _[ v¢ds = RO, 3. j-{H(t)}e {ﬁ(é)}{ﬁ(z)}T {a} az
S, e=1 \0 &
) . NEH (!E }T . {A })
= ™R, g;& (0, {c]e () (1.116)

where NEH is the number of shell elements in contact with the liquid

~

along the shell length; and [C}e is a matrix of order 8 x I which can

be expressed.as follows:



>

o>

>

il

o>

[ 0 0 . o ]
0 0 ] 0
C3p C3p Gy - v a1
CZ;J_ C42 C43 ‘e . C&I
e 0 0 0 5 .. 0 (1.117)
0 0 0 0
€71 S92 S30 - " 1
| %1 G2 Gz - & “a1
1 6 , 12 6
In(aiR)Le - (E— + 3> s:Ln[Bi(e-l)] + 3 cos[Bi(e—l)]— 3
i Bi Bi R
1
. 12 .
51n[Bie] e COS[Bie]>| H
B,
1
2 4 . 1 6 ) 2
f[n(oaiR)Le - ;—:J,w S:Ln[si(e-l)] -(—‘72- - ?> cos[Bi(e—l)] -5
i B':i_ i B:i.
6 \
sin{Bie] - cos[Bie] ;
By /
. 6 . 12 1 6\
In(uiR)Le 5 s:m[Bi (e-1)] - 7 cos[si(e-l)] + (6_ + —3-/1
Bi Bi 1 Bi

8

1

sin[Bia] + -%:2- COS[Bie]) H

4 3
B 8. B

In(aig‘)Li<- 4 sinlg (e-1)] + 2 cosl8 (e-1)] - ~3— sinlB e]
1 S 1



-65-

g, = a.Le ; and e is the number of the element (refer to Fig. I-4-a).
Using Eq. 1.82 , one can write Eq. 1.116 in terms of the assemblage

nodal displacement vector as follows
w ¢ ds
pr ¢

where [6]

i

™oy ()" €] {A) (1.118)

(1.119)

il
—~—t
<o
b

~
It is more convenient to redefine the matrices fCJ and [C] as

[c] = o, [e] 5 1ol = mRey [C] (1.120)

Hence, Egs. 1.111 and 1.118 can be written as

;z_f¢3§% ds = 1/2 {A}T ECJ{A} (1.121)
S

and P f v 4 ds = {q}T (] {a} (1.122)
$
2

Now, inserting Egqs. 1.99, 1.107, 1.121, and 1.122 into the varia-

tional functional (Egq. 1.108), one can obtain for the assemblage
t
2

sf(l/z {q}T M. 1{q}- 1/2 {q}T 1 {a} - 1/2{A}T fel {a} +
la)t [él{A}) dt = 0

1
Applying the variational operator yields
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;2 ( {a{;}T{MSl{cn - {6q}T[KS]{q}v - gaA}Tﬁcg (A} + {aq;T[E] {a}

Y

+ {SA}T[G]T{&})ch: = 0 (1.123)

Integrating the first and fourth terms in Eq. 1.123 by parts
with respect to time, and noting that the displacement vector must

satisfy the conditions {q(tl)} = {q(tz)} = {0}, then one can write

t
[ sl o+ e+ (6 A]] + fey ™ [ g -
t
' (€17 (dj] jac = o (1.124)

Since the variations of both the neodal displacement, {8g}, and the
coefficients, {§A}, are arbitrary, the expressions in brackets must
vanish. Therefore, the matrix equations of motion for the liquid-shell

system can be obtained in the form
1§+ (K Jfq} + [C1GA} = {0) (1.125)
and cdear - (8174 = (0) (1.126)

Since the matrix ECJ is not singular, then one can write Eq. 1.126

as
-1 0T .
(a1 = [ teras (1.127)
Now, differentiating Eg. 1.127 with respect to time

iy = eIt (1.128)
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and substituting Eq. 1.128 into Eg. 1.125 to get
M 144} + [k 1a} + eIy e @ - o (1.129)
Now, define an added mass matrix [DM] as follows
oMl = (8]t 8" (1.130)

The matrix [DM] is symmetric and is a partially complete matrix (i.e.,
not banded); the elements are well distributed over the matrix. The
general form for such a matrix and for the banded consistent mass matrix
is shown schematically in Fig. I~5; only the hatched blocks are non-zero
elements.

Finally, the governing matrix equation of the lateral vibration of

the liquid-filled shell is given by
(41 + M)) 461+ K Mad = {0 (1.131)

I-4-8. An Alternative Approach to the Formulation of the Added Mass

Matrix
In the preceding section, the matrix equations of motion of the

liquid-shell system were derived by means of the variational functional
(Eg. 1.64). Another way of treating the problem is to derive the added
mass matrix directly from the appropriate expression for the work done
by the liquid-shell interface forces, and then, to derive the governing
matrix equation of motion of the shell by means of Hamilton's Principle.
This approach is simpler and easier to follow; it will be explained in
this section.

it has been shown that the potential function ¢(r,0,z,t) which
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satisfies the appropriate boundary conditions at the liquid free sur-

face, and at the rigid bottom plate, can be expressed as

8

o(r,6,z,£) = 2: (Ani In(air) cos(uiz) cos(ne)) (1.132)
n=1 i=1

]

The remaining boundary condition at the liquid-shell interface

(Eq. 1.3) can be written as

Ig%_{;éi [Ani oy In(aiR) cos(aiz) ] ~ wn(z,t) , cos (nH)

= 0
(1.133)
and consequently,
w L]
;Z% [Ani ai In(uiR) cos(aiz)] = Wn(z’t) (1.134)

The functions Ani(t) can be determined in terms of %n(z,t) by em-

ploying the orthogonality relations of the cosine functions, namely,

H 0 i# ]
J[. cos (a;z) cos(ajZ) dz = { (1.135)
2 N

After the appropriate algebraic manipulations of Eq. 1.134, the

following expressions for Ani(t) result

H

2 ~lﬁ w (z,t) cos(a.z) dz
n i

0 i 0= 1,2,.... (1.136)

ni -
oy H In(@iR)

X th . .
and therefore, the dynamic pressure, for the n circumferential
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distribution, can be given by

9 _
Pd (R,8,z,t) = - Py ot (R,0,z,t)

H
f W (n,£) cos(a.n) dn
- 25 < In(@iR)-COS(uiz) + cos(nd)

i=1 oy In(aiR)

(1.137)

The work done by the liquid pressure through an arbitrary virtual

displacement, Swn cos(n6), can then be written as

H 2T
f [ (Pd(Rae,Z,t)‘cSwr; Cos(ne))R de d=z
0 0

H
21RO, I (u R)
= - I L Z {OCZ'I (OL R ([Sw cos (o, z) dz> (IW cos(aiz) dz)}
0

(1.1.38)

and by defining bni as

2TRp L (%R) (1.139),
ni -
H ai In(@iR)

one can write

H H
W = - E {bni(f Sw <:os(o¢iz) d?)(fw cos(otiz) dz)}
0

i=1 0
(1.140)

The work expression (Eg. 1.140) gives rise to the definition of the
added mass matrix [DM]. In oxder to compute its elements, one has to ex-

press the integrals in Eq., 1.140 in terms of the nodal displacement vec-

tor. With the aid of the displacement model (Eq. 1.75), one can write
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H NEH L

e
f w(z,t) coslo,z) dz = 3] f {ﬁ(’é)}T{E(t)}e coslo, (z+ (e-1)L)] dz
0 e=1 0

(1.141)
Now, define the vectors {f(i)}e as the integrals
L
. e
{f(l)}z =f{ﬁ(z)}T cos [oci(i + (enl)Le)] dz
0
_ (1) (1) (1) (1)
= [O , 0, f3 , f4 , 0,0, f7 . f8 ]
® (1.142)
where
fgﬂ - 1 ( (% + ”6“3") sin[g, (e-1)] + -1-—12; cos [8 (e-1)] - % sin(ge]
i B B. - B
i i i
- cos[Bie]) ;
By
fii) = L!E(T g3 sin[Si(e—l)] - (;E'— EZ) cos{Bi(e~l)] - g§-sin[61e]
B B B.7. g
i i i i
- —62 cos{BiE]);
Bl
(1) 6 . 12 1 6 .
f71 L, (E sm[Bi(e—l)] - 64 COS[Bi(e—l)] + 8 + 83) Sln[Bie.]
i 1 i

12
+-—Z cos[Bie{);

féi) - 12 (— EZB— sin[f, (e-1)] + ? cos(Bile-1)] - _ﬁ% sinlfyel

1 1 i

1 0
+{—= - =) cos[B,e] };
(B? BZ.*) 1 )

1 1



The next step is to define the vectors IF<1)} as

=z
=

H

(rF®y - g 8y (1.143)

e

1

1

[
Il

and therefore, Eq. 1.141 can be written as

H

fwz,t) cos(a,z) dz = O T (1.144)
0

Eg. 1.140 can then be expressed as

o0

ow o= - 2o, fsqr P HENT (g
i=1
= - {sa) ( 2 b, {F(i)}{F(i)}T) {4} (1.145)
i=1

Equation 1.145 leads to the definition of the added mass matrix [DM] as

[DM] = Zm: b, {F(i')}{F(i)}T (1.146)
1=1

It is important to note that the series in Eq. 1.146 converges very
rapidly and only the first few terms are needed for adequate representa-
tion of the infinite series. Eg. 1.145 may be expressed conveniently in

terms of the added mass matrix as
T .
§W = - {s8q} [pM]{g! (1.147)

Now, inserting Eq. 1.99, 1.107, and 1.147 into Hamilton's Principle
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(Eq. 1.11) to obtain

[N

(iTo1 - saTie - sa i) 4 = o (1.148)

rt
frt

Integration of the first term by parts with respect to time gives

[aN]

t7 t

2 2
(60 ) t0)ar = ({5q}T[MS]{a})i - f foq} M1} dr

Y t

t
-

(1.149)

Noting that, {éq(tl)} = {Gq(tz)} = {0}, the first term on the right

hand side of Eg. 1.149 vanishes. Substituting the remaining term into

Eq. 1.148 gives

t

2
f {53 [([MS] + [DMI) {41 + [Ksl{q}} dt =0 (1.150)
t

1

Since the variations of the nodal displacement, {8q}, are arbitrary,
the expression in brackets must vanish. Therefore, the governing matrix

equation of the lateral vibration of the liquid-filled shell is given by

(g1 + ) 1)+ [Kg)4ar = fo1 (1.151)

It is worthwhile to indicate that the elements of the added mass
matrix, derived in this section, are identical to those derived in the

preceding section, if the infinite series in Eq. 1.146 is truncated

after the Ith term.
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I-4-9. The Eigenvalue Problem

The matrix equation for the free lateral undamped vibrations of

the tank wall is given by

MI{gqr + [Kl{q} = {0} (1.152)
where M] = IM_] + [pM]; and [K] = [K_].
By writing the solutions of Eq. 1.152 in the familiar form
fq(e)) = (41 ™t 1 = O (1.153)

and substituting Eq. 1.153 into Fq. 1.152 (leaving out the common

factor elmt), the following equation is cbtained
2 *
(-o® g+ w)@r = (o (1.156)

where {g} is the vector of the displacement amplitudes of vibrations
(which does not change with time), and @ is the natural circular fre-
quency.

A nontrivial solution of Egq. 1.154 is possible only if the deter-

minant of the coefficients vanishes, i.e.,

2 (1.155)

I
[w}

[K] - w"[M]

Expanding the determinant will give an algebraic equation of the
th , 2 .
N degree in the frequency parameter W for a system having NEL ele-
ments, where N = 4 x NEL.
Because of the positive definitiveness of [M] and [K], the eigen-
2

2
values wi, wz"""wN are real and positive guantities; Eq. 1.154
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%
provides nonzero solution vectors {q}(eigenvectors) for each eigenvalue

w?

.

I-5. Computer Implementation and Numerical Examples

A digital computer program has been written to compute the natural
frequencies and mode shapes of vibration of the coupled liquid-shell
system by the method outlined in the preceding section. The shell node
displacements (eigenvectors) are a direct result of the solution, and
these are then used to solve for the shell force and moment resultants,
and for the hydrodynamic pressure acting on the wall of the tank. No
attempt will be made in this report to explain the mechanics of the
computer program; however, a brief description of the general structure
of the program, and of the necessary input data is presented.

Several examples of liquid storage tanks with widely different pro-
perties are alsc presented to demonstrate the applicability of the anal-
ysis deveioped herein, and to cover the dynamic characteristics of these
tanks. The analysis was first applied to various special cases, due to
other investigators, which served as a check on the formulaticn of the
problem, on the convergence of the soluticon, and on the validity of the
entire idealization process. The program was then used to compute the
dvnamic characteristics of vreal, full-scale tanks which have been tested
experimentally in the second phase of this study:; a comparison between
the computed and the measured characteristics will be presented in

Chapter IV.
Numerical results are also included in this section to demonstrate

the variation of the dynamic characteristics with the geometric
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dimensions of the tank such as the shell radius, length, and thickness,

and the ligquid depth. Additional information about the variation of
these characteristics with the end conditions of the tank (due to soil

flexibility and roof rigidity) will be discussed in Chapter [1.

I-5-1. Computer Implementation

The FORTRAN program was written in accordance with the method de-
veloped in section I1-4, and was implemented on the Caltech digital com-
puter (IBM 370/158 system).

The "FREE VIBRATION (1)" program consists of geveral subroutines to
develop the element stiffness matrix (Eq. 1.94), the element mass matrix
(Fq. 1.105), and the added mass matrix (Eq. 1.146); to assemble the shell
stiffness and mass matrices; and to extract the eigenvalues (natural
frequencies), and the eigenvectors (natural modes). The computation of
the eigenvalues w{ﬁn and the eigenvectors {g}mn for the lateral vibra-
tions is worked out through a double precision subroutine which is avail
able from the Caltech computer program library.

Only the fixed-free boundary conditions for the shell are treated in
this program; however, the effact of the soil flexibility and the roof
rigidity will be discussed in the following chapter, and accordingly,

a generalization of this progrém will be made.

Data input to the program follows the scheme outlined in Fig. I-6.
The program cutput consists of a Listing of all the natural frequencies
of the discrete system and of only the first few vertical modes for each
circumferential wave number required; it also displays these vertical

modes in charts.
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I

i

Read the number of problems (NP)

}

[~—--<::i DO loop over the number of problems

Read dimensions and properties of the
shell: (R, L, pg, E,v)
liquid: (H, QQ)

Read the number of elements (NEL and NEH)
%
ﬂ*%<<:j DO loop over the number of elements (NEL)

Read the thickness of each element ‘

Iy

Read lower and upper limits (NI, N2)
of the circumferential wave numbers required

!

1«
|
|
]

Read the number of vertical modes required (N3)

4

-———v<ngloop over the circumferential wave numbers required

_ ———

Formulate and solve the eigenvalue problem

]

DO loop over the number of vertical
modes required (write and plot)

«

- CONTINUE

-

Stop

Fig., I-6. Input Data.
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I-5-2. TIllustrative Numerical Examples

In the following examples, the free lateral vibrations of liquid
storage tanks are analvzed to check the accuracy. of the computer pro-
gram and to explore some of the results which may be deduced about the

nature of the dynamic characteristics.

Example 1 Empty Storage Tanks

The computer program was first utilized to check the formulation
of the shell stiffness and mass matrices by computing the natural fre-
quencies and modes of vibration of an empty tank which has the follow-
ing dimensions:

R = 60 ft, L = 40 ft, and h = 1 inch.
The tank wall is made of steel whose properties are:

E = 30 x 10% Tb/in?, o, = 0.733 x 1072 1b. sec?/in®, and v =0.3.

The number of elements (NEL) was taken to be 12 elements; thersfore,
the number of expected modes is (4 x NEL) (i.e. 48 modes are expected),
and the length of each element (Le) is 3.33 ft.

The computed natural frequencies are presented in Table I-1-a along
with those calculated by other investigators for comparison. The first
two vertical mode shapes (relative nodal values) of the axial, circum-
ferential and radial displacements (u, v, and w) are shown in Fig. I-7.
The fundamental mode of vibration of the radial displacement w was also
computed using 10 elements; it is displayed in Table I-1-b along with
the results of Ref. [17].

In addition, the fundamental natural frequency @,. was computed by

11

the approximate method suggested in [16]; it is given by
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Table I-1

Natural Frequencies of the cosp-type Modes (fml cps)

n = 1

Ve;sé:al Present Finite Element Ritz Method | Analvtical
No. (m) Analysis Ref. [14] | Ref. [15] Ref. [16] Ref. [17]

1 ; 34.04 34.08 34.03 34.66 34.04

2 43.86 43.91 43,85 44,02 43,81

3 44,54 44,64 44.57 44,64 L. 44

4 45.02 45.19 45.07 45.25 44.83

5 45,68 45.92 45.77 - 45,40

b. Fundamental Vertical Mode Shape

(Radial Displacement w)

{;7L Present Analysis | Ref. [17] || z/1 | Present Analysis | Ref. [17]
— L. A{ S
0.1 0.2245 0.2242 0.6 0.7946 0.7949
0.2 0.3765 0.3773 0.7 0.869¢% 0.8762
0.3 0.4920 0.4920 0.8 0.9294 0.9298
0.4 0.6035 0.6036 0.9 0.9716 0.9720
0.5 0.7052 0.7054 1.0 1.0000 1.0000
I S S EU U | R
Table I-2
Natural Frequencies of the cosnf-type Modes (fm3’ fm4 cps)
Vertical n = 3 n = 4
Mode -
No. (m) | Present Analysis |Ref., [17] ||Present Analysis | Ref. [17]
1 255.8 250 213.6 209
2 1272.4 1240 829.7 797
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v L u v W
CIRCUMFERENTIAL WAVE NUMBER = 1 CIRCUMFERENTIAL WAVE NUMBER = 1
NRTURAL FREGUENCY = 34.04 CPS MRTURAL TREQUENCY = 43.88 CPS
(m = 1) (m = 2)
Fig. I-7. Vertical Mode Bhapes of the cos8-type Modes of an

Empty Tank.

v W U ¥ il
CIRCUMFERENTIRL WAVE NUMBER = 3 CIACUMFERENTIAL WAVE NUMBLR = 4
NATURRL FAEQUENCY =255.80 CPS NATURAL FREQUENLY =213.53 CPS
(m = 1) (m=1)

Fig. I-8. Vertical Mode Shapes of the cosnf-type Modes of an
Empty Tank.
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1 L 1 A (1.156)
2 = 2 + 2 + 2
“11 “b s Yr
where Wy = g;ﬁﬁg—g / %—> is the fundamental natural frequency of the
L s

tank acting as a cantilever flexural beam;

u

s = A~fﬂ~——*€% £ is the fundamental natural frequency of
byl + v Ps

the tank acting as a cantilever shear beam; and

_ 1 /E
w =
* R 107 V/ "

ovalling motion of a ring of unit width which has the cross sectional

is the fundamental natural frequency of

dimensions of the tank.

Upon using Eq. 1.156, the fundamental natural frequency w

11 Is
given by
Wy = 205 rad/sec
w
. _ 11 _
i.e., f11 = o 32.63 cps

It is easy, now, to compare the results obtained by the method of
analysis under study and the results obtained by other investigators;
Table I-1-a and b indicates a very close agreement between these
solutions.

It is also of interest to check the natural frequencies of the
cosnf—-type modes with those computed in [17]. The tank consists of a
cylindrical shell of radius R = 3 inches, of length L. = 12 inches,

and of thickness h = 0,010 inches, and having the properties:



 -82-
Bo= 29.6 x 10° Ib/in®, p = 0.733 x 10 Ib-sec’/in; and v = 0.29,
The natural frequencies for the circumferential wave numbers (n = 3 and
n = 4) are presented in Table I-2 and the fundamental natural modes are

displayed in Fig. I-8.

Example 2 Completely Filled Tanks'l

Let us consider the same first tank of the previous example, but
now with a full depth of water (pg = 0.94 x 10_4 Ib. secz/inA). Table
I-3~a presents the computed natural frequencies of the cosG-type modes,
while Fig. T-9-a shows the fundamental vertical mode of vibration.

Again, to illustrate the effectiveness of the analysis under con-
sideration, a comparison between the obtained results and those of
Refs., [12, 13] has been made. It is clear, from Table I-3-a, that the
computed frequencies are in good agreement with those calculated in
Refs. {12, 13].

The influence of the aspect ratio (length to radius ratio) on the
dynamic characteristics was investigated by computing the natural fre-

quencies and modes of vibration of a "tall" tank; its dimensions are:

R = 24 ft, L. =72 ft, and h = 1 inch.
The frequencies are given in Table 1I-3-b and the fundamental mode is
shown in Fig. I-9-b. 1Inspection of Figs. I-9-a and b shows that the
mode shapes of "broad" and "tall” tanks are indeed quite different.
The hydrodynamic pressure distribution for these two cases and for sim-
ilar rigid tanks [16] is also shown in Fig. I-10 for compatrison.
The natural frequencies of the same "tall" tank were also computed

for different wvalues of the shell thickness; thev are presented in
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Table I-3
Natural Frequencies of a Full "Broad" Tank‘(fml cps)

n = 1

m ! Present Analysis | Ref. [12] | Ref. [13]

1 6.18 6.13 6.20

2 11.28 11.15 11.41

3 15.10 15.11 15.54

4 17.79 18.16 | 18.72

Natural Frequencies of a Full "Tall" Tank (fml cps)

n = 1
m{h = 1.04n |h = 0.43in|h = 0.288 in|h = 0.43 in"
1 5.31 3.56 2.93 3,82
2 15.64 10.45 - 8.59 10.38
3 23.24 15.55 12.79 1511
4 29.85 20.08 16.54 18.62
5 34.85 23.61 19.48 21.77

*Variable thickness (average h) - Refer to Chapter IV.

Convergence of the Natural Frequencies (fml cps)

n = 1
m |1 =501 =107 |1 = 20
1 5.34 5.31 5.31
2 15.70 15.64 15.63
3 23.45 23.24 23.20
4 30.05 29.85 29.77
l5 36.20 34.85 34.75

*%Standard
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a. "Broad" Tank

(L/R = 0.67)
v W
CIRCUMFERENTIAL WAVE NUMBER = 1
NARTURAL FBEQUENCY = (.18 CFS
"Tall" Tank
(L/R = 3.00)
U v W

CIRCUMFERENTIAL WAVE NUMBER = 1
NATURAL FREQUENCY = 5.31 CPS

Fig. I-9. Fundamental Natural Modes of Full Tanks
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RIGID TANK RIGID TANK

L/R = 0.67 L/R = 3.00
HYDRAODYNAMIC PRESSURE DISTRIBUTIGN
( FUNDAMENTAL MODE

Fig. I-10, Hydrodynamic Pressure Distribution on Full Flexible
and Rigid Tanks.

U v W
CIRCUMFERENTIAL WAVE NUMBER = 1
NRTURAL FREQUENCY = 9.88 CPS
Fig. I-11. Fundamental Vertical Mode of a Half-Full "Broad" Tank.
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Table I-3-b. It is observed that the thicker the shell, the higher the
natural frequencies, as is expected.

The convergence of the solution is also illustrated in Table I-3-c
by computing the natural frequencies using 5, 10 (standard), and 20
terms in the series expansion of the velocity potential ¢ (Egs. 1.132
and 1,146).

Lastly, the fundamental natural frequency is checked by the
method suggested in [16]. For the "tall" tank under consideration, and

for a shell thickness of 0.288 inch, it gives

Wy = 18.28 rad/sec, i.e., fll = 2.91 cps

which is in close agreement with the computed frequency shown in

Table I-3-b.

Example 3 Partly Filled Tanks

Again, let us consider the same tanks discussed in the previous
example but, now, partly filled with water. For the half-full "broad"
tank, the computed natural frequencies and those found in Refs. [12, 13]
are shown in Table I-4, and the fundamental mode shape is plotted in
Fig. I-11. The vertical mode shapes of the "tall" tank under considera-
tion were also computed for a 75% and a 50% of the full depth of water;
they are displayed in Fig. I-12. The associated hydrodynamic pressure
distributions are also shown in Fig. I-13.

Finally, calculations of the natural frequencies for different
values of liquid depths were carried out to investigate the influence of
liquid heights on the dynamic characteristics. These frequencies are

presented in Table I-5-a and b, and are also shown in Fig. I-l4-a and b.
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Table I-4

Natural Frequencies of a Half-Full "Broad" Tank (ﬁnl eps)

n = 1
— : -
m Present Analysis Ref. [12] Ref. [13]
1 .88 | 10.15 9.91 h
2 17.065 17.85 17.74
Table I-5
Natural Frequencies of Partly-Filled Tanks (fml cps)
n = 1 A
a. A "Broad" Tank
AP T
FiOO {Full) 6.18 11.28 15.10 17.79
&G 7.24 12.96 17.07 20.18
60 8.79 15.37 20.05 24.28
50 9.88 17.05 22.48 28.22
30 13.82 24,00 34,27 36,55
0 34.04 43.86 44 .54 45.02
b. "Tall"™ TFank o
% liguid o o
in tank oo m o= 2 mo= mo= 4
100 (Full) 5.31 15.64 23.24 29.85
&0 7.05 18.76 26,99 34.22
60 9.64 22.45 30.57 37.02
50 11.42 24.03 30.87 38.88
30 16.406 25.61 38.80 51.07
0 (Empty) 19.26 | 56.42 86.38 97.02
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u v W u Y W
CIRCUMFERENTIAL WAVE NUMBER = 1 CIRCUMFERENTIAL WAVE NUMBER = 1
NATURRL FREQUENCY = 7.59 CPS NATURRL FREQUENCY = 11.42 CPS
75% Full 50% Full

Fig. I~12. Fundamental Modes of a Partly-Filled "Tall" Tank.

S —

FULL TRANK 757 FULL TANK 502 FULL TRNK
HYGROOYNAMIC PRESSURE DISTRIBUTION
(¢ FUNDAMENTAL MODE )

Fig. I-13. Hydrodynamic Pressure Distribution on a Partly-Filled

"Tall' Tank
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a. A "Broad" Tank
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b. A "Tall" Tank

Fig. I-14. Natural Fregquencies of Partly-Filled Tanks



-90-

They clearly demonstrate the significant contribution of the added-mass

of the liquid.

It is important to note that, in all the previous numerical ex-~
amples, attention was given to the cosf-type modes only; these modes
are unaffected by the hydrostatic pressure of the liquid. In contrast,
the cosnbB-type modes may be significantly influenced by the initial
hoop tension due to the hydrostatic pressure and this will be discussed

in the following chapter.
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Appendix I-a

List of Symbols

The letter symbols are defined where they are first introduced in

the text, and they are also summarized herein in alphabetical order:

Ai(t) and Ani(t)

{d(6,z,t)}

{d(i,t)}e and {d_}

£d}

{d},

Time dependent coefficients of the velocity
potential, Fq. 1.58 and Eq. 1.132, respectively.
Vector of the coefficients Ai;‘Eq. 1.70.

Square matrix defined by Eq. 1.96.

Coefficients defined by Eq. 1.139.

Diagonal matrix defined by Eqs. 1.112 and 1.120.

A matrix of order 8 x I defined by Eq. 1.117.

A matrix defined by Egqs. 1.119 and 1.120.

Added mass matrix defined by Eq. 1.130.
Constitutive matrix defined by Eq. 1.27-~c,
Constitutive matrix of the element "e', Eq. 1.92.
Shell displacement vector, Eq. 1.31.

Vectors of the maximum displacement components of
the nth circumferential mode, Egs. 1.76 and 1.87,
respectively.

Generalized displaéement vector of the element "e',

of order 8 x 1, Eq. 1.78.

Vector of the generalized displacements (radial and
slope only) of the element "e’, of order 4 x 1,

Eq. 1.81.
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E Young's Modulus of the shell material.
e Indicate element, and cccasionally used as the num-
ber of the element "e".

{F} Force vector, Eq. 1.56.

{f(l%e and {F(l)} Vectors defined by Eqs. 1.142 and 1.143,

respectively.

fmn ‘ Natural frequencies, c¢ps.

G( ) Function used in Eg. 1.97.

g Acceleration of gravity.

H Liquid depth.

h Shell thickness.

I . Number of terms in the series expansion of the
velocity potential, Eq. 1.58.

In( ) Modified Bessel functions of the first kind of
order n, Eq. 1.66.

&n( ) Derivative of In( ) with respect to the radial
coordinate, Eq. 1.112.

I, IC, and ic Variational functionals, Egs. 1.12, 1.13 and 1.60,

respectively.

i /-1, Eq. 1.153.

J Variational functional, Eq. 1.61.
Jn( ) Bessel functioms of the first kind of order n,
Eq. 1.66.
[KS]e and [Ks] Element stiffness matrix and the assemblage stiff-

ness matrix, Eqs. 1.94 and 1.98, respectively.

[K] Stiffness matrix, Eq., 1.152.



-93._

Modified Bessel functions of the second kind of
order n.

Midsurface changes in curvature.

Midsurface twist.

Separation constant, Eq. 1.66.

Extensional rigidity, Eq. 1.25-a.

Bending rigidity, Eq. 1.25-b.

Shell length.

Element length.

Complementary Lagrangian functional, Eq. 1.14.
Linear differential operator matrix, Egq. 1.46.
Element mass matrix and the assemblage mass matrix,
Fgqs. 1.104 and 1.106, respectively.

Mass matrix, Eq. 1.152.

Bending moment resultants.

Twisting moment resultants.

Effective twisting moment resultant, Eq. 1.23-b.
Number of vertical mode.

Mass of the shell per unit area.

Element mass per unit area.

Constant = 4 x NEL.

Number of shell elements along the shell length.
Number of shell elements in contact with the liquid.
Membrane force resultants.

Membrane shear force resultants.

Effective membrane shear force resultant,Bg. 1.23-a.
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Interpolation functions, Eq. 1.73.

Trial functions defined by Eq. 1.67.

Trial functions defined by Eg. 1.115.

Vectors of the interpolation functions, Egs. 1.79
and 1.80, respectively.

Vector of the trial functions ﬁi(r,e,z), Eq. 1.70.
Vector of the trial functions §i(z).

Number of circumferential waves.

Differential operator matrix, Eq. 1.32.
Differential operator matrix for the nth circum-
ferential wave number, Eq. 1.90.

Liquid pressure, hydrostatic pressure, and dynamic
pressure, respectively.

Matrix of interpolation functions, of order 3 x 8,
Eq. 1.77.

The assemblage nodal displacement vector, Egq. 1.82,
Time independent nodal displacement vector,

Eq. 1.153.

Tank radius.

Separation—of-variables function, Eg. 1.65.

Radial coordinate of the cylindrical coordinate
system.

Liquid surface, quiescent free surface, wetted sur-
faces of the shell and the bottom plate,
respectively.

Interpolatien functions, Eq. 1.73.
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Kinetic energy.

Separation-of-variables function, Eq. 1.65,

Functions of time, Egq. 1.66.
Time.

Limits of
Eq. 1.11.
Potential energy or strain energy.

Liquid volume

Work done by external loads.

the time interval under consideration,

Shell displacements in the axial, tangential, and

radial directions, respectively.

. . th
Pisplacement functions for the n
wave, Eq. 1.71.

. . th
Displacement functions for the n
wave in the local axial coordinate

"o
e L]

Egq. 1.72.
Generalized nodal displacements of

Bq. 1.7Z

Weights of the Gaussian
Bessel functions of the
Separation-of-variables
Axial coordinate of the
system.

Local axial coordinate,

Constant defined by Eq. 1.47.

function, LEq.

circumferential

circumferential

of the element

an element,

integration rule, Eq. 1.97.

second kind of order n.

1.65.

cylindrical coordinate
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Coefficients defined by Eq. 1.68.
Coefficients = ay Le.

Variational opérator.

Normal strains in the middle surface.

Shear straln in the middle surface.
Generalized strain vector, Eq. 1.27-b.

Free surface displacement.

Integration points, Eg. 1.97.

Diagonal matrix defined by Eq. 1.86.

Diagonal matrix defined by Eq. 1.89.
Separation-cf-variables function, Eq. 1.65.
Circumferential coordinate of the cylindrical
coordinate system.

Poisson's ratio.

Outward normal vector.

Mass density of the liquid and the shell material,
respectively.

Generalized force resultant vector, Eq. 1.27-a.
Liquid velocity potential function.

Natural frequencies, Eq. 1.156,

Circular natural frequencies.

Differential operators defined by Eq. 1.47.
Laplacian operator.

Gradient operator.

Differentiation with respect to time,
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Appendix I-b

A Linear Shell Theory

The present investigation is based upen a first-approximation
theory for thin shells due to V.V. Novozhilov [7]. For simplicity and
convenience, the theory will be developed herein for the special case
of circular cylindrical shells following an analogous procedure as out-

lined by Novozhilov for arbitrary shells.

I-b-1. Fundamental Assumptions

In the classical theory of small displacements of thin shells, the
following assumptions were made by Love:

a. The thickness of the shell is small compared to the radius of
curvature,

b. 7The deflections of the shell are small in comparison to the shell
thickness.

c. The transverse normal stress is small compared with other normal
stress components and is negligible.

d. Normals to the undeformed middle surface remain straight and normal
to the deformed middle surface and suffer no extention. This
assumption is known as Kirchheff's hypothesis.

These four assumptions give rise to what Love called his "first
approximation" shell theory and are universally accepted by others in

the derivation of thin shell theories.

I-b-2. Coordinate System and Notations

Consider a right, circular cylindrical shell of radius R, length L,
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and thickness h. Let r, 6, and z denote the radial, circumferential and
axial coordinates, respectively, of a point on the shell middle surface.
The corresponding displacement components are denoted by w, v, and u, as
indicated in Fig. I-b-i. To describe the location of an arbitrary point
in the space occupied by the shell, let x measure the distance of the

point along r from the corresponding point on the middle surface

In addition to the letter symbols being summarized in appendix I-a,
the following symbols are also used in the following derivation of the
linear shell theory:

e s ee, and e, Normal strains at an arbitrary point in the space
occupied by the shell, Eq. I-b-1.
FZ, FS, and Fr Axial, circumferential and radial forces per unit

area of the shell midsurface, respectively.

I I2, and T Functions defined by Eq. I-b-22.

1° 3

Pz’ Pe, and Pr Axial, circumferential and radial forces per unit
area of the shell midsurface including inertia
forces, respectively.

Qz and Qe Transverse shearing forces.

QO, Ql’ and Q2 Functions defined by Egq. I-b-19.

U, V, and W Displacement components at an arbitrary point.

X Shell coordinate (refer to Fig. I-b-i).

Yoo Yox and Yer Shear strains, Eq. I-b-1.

Ez’ Ee, and Eze Dimensionless quantities defined by Eq. I-b-21,

GZ,GS , and dx Normal stresses, Eq. I-b=-9.

28" Tox’ and o, Shear stresses, Eq. I-b-9.

A
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h
(ii) FORCE RESULTANTS ' 4”:)(

{iii) MOMENT RESULTANTS

Fig, I-bL.
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Wz and ?8 Rotations of the normal to the middle surface during

deformation about the 8 and =z axes, respectively.

I-b~3. Strain-Displacement Relations

The well-known strain-displacement equations of the three-dimensional

theory of elasticity can be expressed in the coordinates (z,8,x) as

follows:
*\
. - 21,
z 3z
€ T : X (%%i+' W),
R li—E)
.. AW
X 3 x
L (b
v o= _ 1 8U’+_8V
= = =,
z6 6z R(l+-}£ 9 z
R/
- oW _ 92U
Yux T xz 9z +>3x ’
1 oW sV
and v, = vy = ————————~(w-— Y) + —
Ox x0 R(14-§) 30 3IxX
R
.
where e €y and e are the normal strains;
Y50 Xéx’ and Yéx are the shear strains;
and U, V, and W are the displacement components at an arbitrary
point.
As a consequence of Kirchoff's hypothesis
e = 0, Yoo 0 and Yox 0 {(I-tk-2)

Now, in order to satisfy this hypothesis, the class of
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displacements is restricted tothe following linear relationships:

U{z,8,x) = u(z,8) + x Wz(z,e)
Viz,8,x) = v(z,0) + x ¥,(z,8) (I-b-3)
W(z,8,x) = w(z,B)

where u, v, and w are the displacement components at the middle surface
in the z, &, and normal directions, respectively; and Tz and We are the
rotations of the normal to the middle surface during deformation about

the 6 and z axes, respectively; i.e.,

y = 3U(2,0,%)
z X
(I-b-4)
¥ = BV(Z,G,X)
o I X

The first of Egqs. I-b-2 is satisfied by restricting W to be indepen-
dent of x; i.e., W is completely defined by the middie surface component
w. Substituting Egs. I-b-3 into Egs. I-b-1, the last two of Egs. I-b-2

are satisfied provided that

g

.2 - L, _a3w _he
Wz = and We = 3 ( 88) (I-b-5)

Substitution of Eqs. I-b-3 and I-b-5 into Eqs. 1-b-1 yields
~

|

e = L [l_(§l£,+ w) - ~§(a 2W - aléﬂ (I-b-6)
9 @+% R\38 R2\ye2 29 f- u

R
1 p) 193 2x X \3v Bzw
Yo (“""";;) [(r* 'ﬁﬁ)""}?(l" zﬁ)gz‘aeaz)]
l+§

v
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Eqs. I-b-6 may be expressed conveniently in terms of the normal and

shear strains in the middle surface £, and €00 in terms of the

£g

midsurface changes in curvature KZ and Ke, and in terms of the midsur-

face twist KZ@ as follows:

N
e = g + x K
VA z Z
5 ( x) (Ee % Kg e (I-b=7)
1+ 5
R
1 x
Y0 = (1+?§_) Eze+x(l+—ﬁ)K8
-
where W
_ Jdu
SZ oz
_ 1w
o T R(89+w)
_ lou, v
€07 R a6 oz
{I-b-8)
82 &
9z
\
. QEE v
8} RZ 862 36
/
\
« o 2 3w
z6 R 3z 38 oz
J

I-b-4, Force and Moment Resultants

As was shown in the preceding section, the strain variation
through the thickness is completely defined with respect to x. Thus,

if the relationships between stresses and strains are defined, the
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resulting stresses can be integrated over the chell thickness. The
resultants of the integrals will be termed "force resultants” and
"moment resultants'.

Now, the shell material will be assumed homogeneous, isotropic and
linearly elastic. Hence, the stress strain relationships can be ex-

pressed as

. N
_ 1 _
ez T B [Gz v (GO<+ %J
1
= = - +
ey o [?e v (o o ﬂ
e = 1 [? - v (o + ¢ )]
p's E L'x 7 8 > (1-b-9)
_ 2+ ) .
'Ee E z8
21+ Vv
sz—_ B Ozx
2(L + v
Tox = £ “ox J

where E is Young's modulus; and v 1s Poisson's ratio. The Kirchhoff's

hypothesis yields e Ty = 0, whence, by Egs. [-b-O

zZX Yex ?

—_— — = A * . .
O, Tox 0 and o, v (oz + oe). But Love's third assumption

is that o is negligibly small, which is one unavoidable contradiction.
Another contradiction is that Ozx and Gex are clearly not zero, since
their integrals must supply the transverse shearing forces needed for

equilibrium; but they are usually small in comparison with Gz’ Oy, and

o}
28"
Retaining the assumption that Ox is negligibly small reduces the

problem to one of plane stress; i.e., Eqs., I-b-9 are reduced to



- L _
e, = % (o N qe) W
- 1L _ -
ey = f (ce v o) > (I-b--10)
2(0 + V)
LT E 926 )

N E 3
o, = 5 (e +vey)
1 - v
E
Op = N 5 (eg+ ve)) > (I-b—ll)
-V
- __E _
%26 200 +v) Yze )

Now, consider the face of a shell element that is perpendicular to
the z-axis. By integrating the stresses 9, GZB and sz over the shell
thickness, the force resultants, per unit length of the middle surface,

acting on this face can be expressed as

(N \ B (U \
Z 2 pA
J Nof = 4 S0 $(1 + %) dx (I-b-12)
_h
\Qz J 2 \Ozx)

and, similarly, the force resultants on the face perpendicular to the

B-axis will be



[ {
Ne W h Oy \
2
ﬁNSz L = < 082 } dx (I-b-13)
_h
\Qe ) 2 \OBX/

Analogously, the moment resultants are given by

h
Mz 2 Oz
= f (1 + ﬁ) x dx
L - % Yo
{I-b-14)
h
M 7z |{%
_ ‘l~ x dx
Mez - g' Oez

and, consequently, have dimensions of moment per unit length of the
middle surface.

The force and moment resultants acting upon an infinitesimal shell
element are depicted in Figs. I-b-ii and I-b-iii, respectively. It is

worthy to note that although o . = o, from the symmetry of the stress

8
tensor, it is clear from Egs. I-b~12, I-b-13, and I-b-14 that NZe # Nez

# M

.

and M
z

8 Bz

I-b-5. Force-Strain and Moment-Curvature Relationships

From the theory of elasticity the well-known expression for the

strain energy stored in a body during elastic deformation is
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[
1]
N[

y/ﬁ (Uzez * Ueee + %% + OZGYZG + Ozszx + UBx\éx) dv
v (I-b-15)

where dv is the volume of an infinitesimal element and is given by
X
dv = R(l+—-)de dz dx
R

Applying the Kirchhoff's hypothesis reduces Eq. I-b-15 to

R “b-16
U = 5 -[(Gzez+69€6 +026Y26) dv (I-b-16)

v

Substituting Eqs. I-b-11 into Eq. I-b-16 yields

-V
et [ e, G500 |
2(1 - V)

v {(1-b-17)

Substituting further the expressions for the total strains in terms
of the middle surface strains and changes in curvature given by

Egs. I-b-7, Eq. I-b-17 Dbecomes

-1

o i [ e e D) (e ey

201 - V%)
Y

+ 2v (ez + x Kz) (ee + x Ka)

(1 - v x\ x )
+W'iﬁ*—<l+‘§) (EZG + X(l +-2_R)KZS\)]R de dz dx
(I-b-18)

-1
Replacing (} +<§) in Eq., I-b-18 by its series expansion given by

® 3
2: (f %) , and neglecting terms raised to powers of x greater than
j=20
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two in the integrand, one obtains

U = —JLT f(QO+le+x2 Q,) R dé dz dx (1-b-19)
2(L - v7) -
v
where
2
2 £
QO = (g + se) -2(1 - V) (% €q ~ —3§ﬁ
2
. = ® +x)° 20 -wlrkr -Fe)+Ecx - k)
2 z 6 20— R ‘Cz7z ~ Fg g
X 2 )
_ (1 - ) Fze "z +_f§_+ (1 - "z8
2 R 2 2 2
R R

Note that the wvalue of Ql is of no interest, since

h h
2 2
lexdx=Qlfxdx=O
h _h
2 : 2

Carrying out the integration of Egq. I-b-19 over the thickness,
gives

2
~ Eh ( b )
v o= —Zh 0.+ q.) R do dz (T-b-20)
2(1_\)2)./-‘]‘ VAR
A

Now, Eq. I-b-20 will be examined carefully to determine which

terms are to be retained. First, the curvature changes and twist are

replaced by dimensionless quantities defined by

%— ge = %—Ke and 528 = h Kz9 (I-b-21)
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where Eé s Ee and Eze can be physically interpreted as the strains in

the extreme fibers of the shell resulting from Kz, Kg and Kze,

respectively.

Substituting Eqs; I-b-21 into Eq. I-b-20, one obtains

Uu = "——"E'h—-?:— (Il + 12 + 13) R d6 dz (I-h-22)
2(1 - v7) ' _ ‘
z g
' 2
2 ) 29 1 |- -2
where Il = (ez +~ee) - 2(1-v) €.€5 ~ % + 3 (sz + ee)
. iy
- 201 - w) £, €y 16
= gl - -y _ Q- v -
T, = ® [3 (e,e, = g Eg) 3% Cz6 ze]
I, = n ng A 2
3 22 |12 24 ®zg

A2
It is now clear that 12 and 13 are of the orders (%) and (%) ,

respectively, with respect to unity; hence, 12 and I3 will be neglected

in comparison with Il’ giving

2
£

Eh W2 20

U = ————— ﬂ; +e ) =201 - w) (e €, — ‘*"jﬂ
2(1 - VZ) A g z 6 4

z
2
2 K
h 2 z9
LI _ - ) _ LA
+ 17 [(Kz +K,) 2(1 - V) (KzKe 7 )] R d6 dz

Taking the variation of Eq. I[-b-23 yields
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Eh
(1 __\)2) f[ l:(€z+ \)se) GEZ + (88 + v EZ)fSee
9
z

2
(1 - v) h
=7 e + 35 | (K, v K 6K,

&u

+ 7 Fz8 %%,p 17

a1 -wv
+ (Ky + v K) SK, + =K g 8K o R df dz

(1-b-24)

Returning to the strain energy functional given by Eq. I-b-16 and

taking its variation gives:

U = f (Gz Gez * 06 ‘See + Cfze 6YzG) dv ,
v

and upon using Egs. I-b-7, it can be written as

f-l.f l+ (68 +x6K)+0(6£ + % 6K)

=
+o_be o+ % Uze(l + ZR) GKzé]R a6 dz dx
(1-b-25)

Making use of the definitions of the force and the moment resultanis

(Eqs. I-b~12, I-b-13, and I-b-14), Eq. I-b-25 can be rewritten as

‘]t]r(Nzﬁez £ Ny e+ N Se  + MK+ M, K, + M 6K ) R d8 da
z 0

{I-b-26)
where - ' Mez
o= Nez N Nze - "R
v o= L
M = 5 (Mze + Me )
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Comparing Eqs. I-b-26 and I-b-24 leads to the following relation-

ships
N,o= *—*EELE-(EZ + v Ee)
(1 - v5)
Ny = = 7 (gt ve)
(L -v5)
- Eh
N = s
2(1 + v) “z8 (I-b-27)
3
Mz = ___Eh—z_ (K? + v Ke)
12(1 - v5) -
.3
M@ = —*BLT (KQ + v KZ)
121 - v '
3
Moo= —Eh 8
26(1 + v) Z

To obtain relationships for Nze’ Mze and Mez instead of those for
N and ﬁ, some further manipulation is necessary. However, the evalua-
tion of these resultants is needed only for the determination of the

transverse shearing forces which are of no practical interest in thin

shells.

I-b-6. Equations of motion

The force and moment resultants acting upon an infinitesimal shell
element have to satisfy six conditions of equilibrium. The equations
of equilibrium are well-known and generally acceptable and can be

stated as follows:



\

aN aN

z 1 Oz _

3z + R 38 + Pz = 0
3N IN

76 1 8 1

5z © R 38 T R% t Py = 0
an+ 1% ANy + P =0

3z R 36 R 6 T
3z HO N z
BMZS 1 a_Mf._ - Q = 0

2z R 3 &

1
20 " Nop T Mgy =0

-111-

(I-b-28)

It should be noted that the sixth equilibrium equation is identical-

1y satisfied.

of equilibrium gives

Eliminating Qz and Qg from the remaining five equations

-~
3N N
z 13N -
dz + Roo + Pz 0
= ~ g N I M
o N 2 oM i 8 1 .8 - Lh_
5z TV Ra2 TR 56 +R2 5s T Ty 0 5 (I-b-29)
2 32
aMZ+ESZM +l~———Mﬁ—lN + P = 0
2 2

822 R 2z58 R 58 R 76 r )

The force and meoment resultant éxpressions

(Eqs. I-b~27)

are then

substituted into the equilibrium equations, giving them in terms of the

generalized strains.

Finally, the strain-displacement equations
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(Eqs. I-b-8) are substituted, yielding three differential equations of
motion having u, v, and w as dependent variables and z, ¢, and t (rime)
as independent variables.

This set of differential equations is of the eighth order. Time

enters the equations of motion through inertial terms by replacing P ,
z

2 2 2

3_u 3w

- P - - g ¥

P, and Pr by FZ psh ) 5 s F p h 5 s and F g%h 5

@ t 5t t St

where p 1is the mass density per unit volume; and ¥ , F_, and F
5 z T

0

represent the applied forces per unit area of the middle surface in the
z, 8, and normal directions, respectively. The equations of motion can

be written in a matrix form as
1 - 2
D] {d} = =V {F} (I-b-30)

where
{u

F = <4-F }is the applied force vector,

and [L] is a linear differential operator given by Eq. I-b-31 in

which

o= 2o, a8t = 8% ana A% = R



2 2
5 + (=) > _ P (1-v2) 3 (A+v) 3 %BB__
2R 8 z
2% 2R® pe° £ 3t 929
2. .2
1-v 3" L1 5”0 sy 37 F
7
2 422 R a6® E at? g* 99
- (1+v) ._@.__ 3
[L1= 7 5200 2 2 ' 3 1
b oo 2ot s L 2T Sl G ity
NN 3°z56 R” a6
I
2 38 2
R” 0 1 24 Perivh) o7
¥ - +aR4 + —F T3
R 3z 53 1 3 R at
toom@) Ty -y
9238 R 96|
(I-b-31)

“ell-
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Appendix I-c

Solutions of The Laplace Equation

The solution ¢(r,08,z,t) of the Laplace equation,vz¢ = (, can be
obtained by the method of separation of wvariables. Thus, the soluition

is sought in the form

$(r,0,2z,t) = R(r)+0(8)+ 2(2)*T(v) (I-c-1)
Substituting Eq. I-c-1 dinto the governing differential equation

gives

~ N
g( 515)+1 &0, rmdz (T-c-2)
5 2 2

vy R
o
)

Following the usual argument of separation of variables, it is
observed that the second term in Eq. I-c~2 contains all the © dependence
and is a function of 6 only; it must therefore equal a constant. This
constant will be chosen to be —nz, where 0 is an integer. The signifi-
cance of the minus sign is that trigonometric rather than exponential &
dependence will result, and the significance of n's being integers is

that ¢(8) = ¢(6 + 27, as is required. The solution for é(e) is then

Qn(e) = A nsin(ne) + A

1 cos(ns) (I-c-3)

2n

P . . . s as 2,
The remaining differential equation, after dividing by r, is

N>

~ 2 2;\
1 d dRy n d
~ Tar (‘f dr)”?*“ 3 =0 (1-c-4)
rR r dz

Again, the separation-of-variables argument requires that the last

term in Eq. I-c-4 be equal to a constant; it may be positive, zero,
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or negative. If the separation constant is chosen to be positive, say

kz, then
2/\
§_%__ 5 o= o (I-c-5)
dz
and >
d dR 22 2, o
r— ( dr) + (k - n ) R = 0 {(I-c-6)
The solution E(z) is
ﬁ(z) = Bl cosh (kz) + B2 sinh (kz) (T-c-7)

In addition, Eq. I-c—6 is Bessel's equation of order n whose

solution is given by

R(r) = ¢ J (kr) +C

n Yn(kr) (I-c-8)

2n

where J,(kr) and Y,(kr) are the Bessel functions of the first kind and
of the second kind, respectively. Since Y,(kr) is singular for r = O,
the coefficients CZn must be zero, i.e., the radial dependence of the
velocity potential will be proportional to Jn(kr).

. \ 2 . .
The separation constant may be also negative (~k”); in this case,

the differential equations become

4/‘\
d g + k27 = o (I-¢-9)
dz
and
d dR 2 2 20 o
e (F ) kk"r" +n°) R = 0 (I-c-10)

Therefore, the solutions ﬁ(z) and ﬁ(r) are given by

7(z) = B, cos(kz) + B, sin(kz) (I-c-11)

1 2
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R(r) = €y 1.(ke) + €, K (k) (L-c-12)

2n

where In(kr) and Kn(kr) are the modified Bessel functions of the first
kind and of the second kind, respectively. Again, the functions Kn(kr)
will be discarded because they are singular at r = 0.

If the separation constant is chosen to be zero, then the solutions

ﬁ(z) and ﬁ(r) become

Z(z) = Blz + B2 (I-c-13)

o~ n -n

R(r) = C1n r + C2n T (I-c-14)
where C, must be equal to zero o avoid the singularity at r = 0.

2n

To summarize, any solution of the Laplace equation, which is non-

singular at r = 0, can be given by
-
Jn(kr) cosh(kz)

Jn(kr) sinh(kz)

- cos (ng)
¢(r,0,2,£) = T () x x (n = 1) (I-c-15)
o sin(nb) T

In(kr) cos(kz)

kIn(kr) sin(kz)
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CHAPTER T1

COMPLICATING FFFECTS
IN
THE FREE LATERAL VIBRATION PROBLEM OF LIQUID STORAGE TANKS

A method of analyzing the free lateral vibration of liquid storage
tanks has been developed in the preceding chapter; it is based on both
the finite element procedure and the boundary solution technique. This
method provides a starting point for the consideration of complicating
effects upon liquid storage tanks such as the effect of the initial hoop
stress due to the hydrostatic pressure, the effect of the coupling be-
tween liquid sleshing and shell vibration, the effect of the soil flex—-
ibility, and the effect of the roof rigidity.

The first topic, presented in Sec. 1I-1, is concerned with the
initial hoop stress and its influence upon the cosnf-type modes of vib-
ration of the tank wall. Most analyses developed so far have consider—
ed only the cosB-type modes, and assumed that the only stresses present
in the shell are those arising from the vibratory motien. This is a
valid assumption because this type of mode is insensitive to the exis-
tence of the initial hoop stress. However, thoge analyses which have
been made to compute the frequencies and shapes of the cosné-type modes
have also neglected the stiffening effect of the initial hoop tension;
this may introduce a considerable error, especially In the values of
the natural frequencies. In the following analysis, the nonlinear
strain-displacement relationships are employed to formulate the added
stiffness matrix. The free vibration eigenproblem is then treated in

the same manner as in Chapter I.
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‘The second section is devoted to examining the effect of the coup;
ling between liquid sloshing and shell vibration. Although many studies
have dealt with the vibration of the liquid-shell system (as shown in
Chapter 1), little can be found in the literature about the coupling
effect. A common assumption has been to neglect this coupling, partly
due to the algebraic complexity associated with fits consideration, and
partly due to the fact that the significant liquid sloshing modes and
the shell vibrational modes have well-separated frequency ranges.

The problem of the dynamic interaction between liquid storage tanks
and the soil during earthquakes has, so far, not been studied. Because
the foundation could influence the seismic response in an important way,
an investigation of the soil-tank interaction was made. The significance
of such interaction for the response of both rigid and flexible tanks is
discussed briefly in the third section, and a quantitative study regard-

ing the interaction of these tanks with the foundation will be presented
in a separate report.

The influence of the roof rigidity on the modes of vibration has
been also investigated. A simple roof model has been considered in this
study which offers a direct insight into a complicated interaction prob-
lem. Tt shows that the roof has an important effect on the cosnf-type
modes of vibration; this result has been confirmed experimentally.

It is evident that each of the previously discussed factors affects,
more or less, the dynamic behavior of tanks; it was therefore important

to develop methods capable of dealing with such complications.
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IT-1. The Effect of the Initial Hoop Stress

In the preceding chapter it was assumed that the only stresses
present in the shell are those arising from the vibratory motion. How-
ever, tank walls are subjected to hydrostatic pressures which cause hoop
tensions. The presence of such stresses affects the vibrational charac-
teristics of the shell, especially the cosnf-type modes.

Te incorporate these effects, it is necessary to modify the strain
energy expression of the shell, and to generalize acceordingly the equa-
tions of motion. Upon using the finite element model, the matrix equa-
tion of motion can be easily derived, and it takes the familiar form
with an added stiffness matrix due to the presence of the initial stress

field.

I1-1-1. Modification of the Potential Energy of the Shell

Consider a circular cylindrical shell acted upon by a static ini-

. . i i i
tial stress field 0,5 O and Oz

o which is in equilibrium. The initial

0
stresses in the shell result from the hydrostatic pressure. During vib-
rations, the shell stresses consist of the initial stresses plus the
additional vibratory stresses oz,c%)and 96" In the subsequent analysis,
the bending stresses produced by the initial loading are neglected, i.e.,
only the initial membrane stresses are considered; this is equivalent

to assuming that the bottom of the tank wall has a free end condition in-

stead of a built-in condition.
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Since the initial stress state is in equilibrium, the potential
energy of the system in this state may be taken as the reference level.

Thus, the internal strain energy of the shell can be written as

L2’|T§
U(t)=lff , toge to v R(1+2)dx d6 dz
2 g8 Z9 'z8 R
00 -h
2
h
H 27 2
K
R + = 2.
+f ff ee) (l R) dx d6 dz (2.1)
0 0 -h
2
in which the initial stresses o; and 026 are taken to be zero. The vib-
ratory strains e, ee, and YzG’ and the vibratory stresses g, Ge, and

o are related by Hooke's law as indicated by Eq. I-b-11. The stain-

26’
displacement relationships are then substituted inte Eq. 2.]1. However,
because the initial hoop stress may be large, it is necessary to use the
second-order, nonlinear strain-displacement equation in the second inte-
gral of Egq. 2.1 while using only the linear relationships in the first
integral [1]. This maintains the proper homcgeneity in the orders of
magnitude of the terms in the integrands.

The strain energy expression (Eq. 2.1) can be written conveniently

as
u(t) = Ul(t) +U2(t) (2.2)

where Ul(t) is defined by Eq. 1.33, and Uz(t) is given by
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27

H )
[ i
v, () = j ] (Ne ge) R do dz (2.3)
] 0

i, . . .
where Ne is the initial membrane force resultant in the circumferential

direction, and ¢, 1s the midsurface strain which can be expressed as
2 2 2
1 (v 1 (1 Bu) 1(av 1 ( 3w)
= = (2L & + = = 24 e + | = - 22

"8 R(ae W) 2 1 R 38 Rae+w) R 50
The nonlinear terms in Eq. 2.4 are given by Washizu [2]. However, it
should be mentioned that the linear terms of the strain-displacement
relationships developed by Washizu are identical to those of Novozhilov
theory {3] which has been used in the preceding chapter.

The initial force resultant N% and the liquid hydrostatic pressure

D, (Eq. 1.9) are in equilibrium, and therefore, satisfy Eq. (I-b-29);

i.e.,
N

D -

i
Ny = p, 8 R.(8-z), and (2.5)

|

Q2
fun]

II-1-2, Derivation of the Modified Equations of Motion of the Shell

The modified equations of motion of the shell can be derived follow
ing the same procedure outlined in section I-3-3. Applying Hamilton's
Principle, taking the necessary wvariations with respect to the displace-
ment components u, v, and w, and employing Egq. 2.5, lead to the desired
equations of motion. In this case, the differential operator matrix is
generalized from Eq. 1.56 to the form

2

LSt 0< z< B (2.6)

[L 14} h

’a

where [L ] = [L] + [L*]; [L] is the differential operator defined by
Eq. 1.46, and [Ll] is a differential operator containing the additional

terms which account for the initial hoop stress; it 1is given by
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. 2
_ Né f% 0 0 -
36
i, 2 i 3
[ - = 0 Ne(i— -) 2 Ny 3% .
Eh 8& :
s 2
» 13 i 3 A
0 2 NS =5 NG(} ; 82)

It should be noted that the force vector {F} in Eg. 2.6 dces not include

the hydrostatic pressure.

IT-1-3. Evaluation of the Added Stiffness Matrix

The potential energy of the shell has been modified to account for
the initial hoop stress, and the additional strain energy U2(t) is
given by Eq. 2.3. Since Ng is not a function of 8, the strain energy

expression U2(t) can be rewritten as

H 27
U, (t) =R f‘N;‘(f €q de)} dz (2.8)
0 0

The strain-displacement relation (Eq. 2.4) is then inserted into the
strain energy expression (Eg. 2.8). However, the linear terms of

Eq. 2.4 do not contribute to Uz(t) since

27

fcos(n@)de = 0 {n > L)
0

Furthermore, the nonlinear terms can be expressed more conveniently in

the following matrix form:
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2t L ([F) (@) (2.9)

where {d} is the displacement vector (Eq. 1.31); [?] is a differential

operator matrix given by

5
B ‘a'“‘é' 0 O'!
=1 _ 1 ? )
7] -+ | o & 1 (2.10) 3
L O 1 - §%y

and the superscript nf indicates "nonlinear”,

With the aid of Egs. 1.85 and 2.10, Eq. 2.9 can be expressed as

= 5 (FRJe) (] [adie))
= 5 e TR e (2.11)
where
-n sin(nd) 0 0
P 1 - [FIR] - %{ 0 ncos(ng)  cos(no)
0 sin(ng) n sin(ng)

(2.12)

Mow, imserting Eq. 2.11 into the strain energy expression (Eg. 2.8), one

o talnsuz(t) i 7{&; {dn}T (TFJT [ﬁn]de){dn}}dz

g [ (e e e @
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where n 0 0
[C] = 0 0?41 2n | (2.14)
n
0 2n n2 + 1

Again, omitting the subscript n, and using the displacement model

(Eq. 1.74), one can write
NEH T

U, (t) = —é— Zl 3 [K] (2.15)

where NEH is the number of shell elements in contact with 1liquid; {a>e
is the generalized nodal displacement vector (Eq. 1.78) of the element

"e'; and [k:je is the element added stiffness matrix which is given by

L
5 - [ (Mool whells e
0

. i . .
The integration involved in the evaluation of [?s] o 18 carried out
approximately by assuming uniform hydrostatic pressure along each ele-

ment; the resulting added stiffness matrix is given by



m b 0 0 0 n ke 0 0 0
3 6
2 I
0 {(n +1)L 7nl nL2 (n2+1)L 3nL —nLZ
P e e 0 e e e
3 10 10 6 10 15
2 2 2 - 9 I
7nLe 78(n +1)Le 11{(n +1)Le 3nLe 54 {n +1)Le -13(n +1)Le
0 10 0 - 510 0 10 20 470
2 3 s -
L’ 11212 2+ aL? 13 4+DLY —3(m%+1)L]
0 e e e 0 e ) e e
10 710 310 15 70 420
i Wﬁe n2Le n Le L
_ 4%
E%]e " R 6 0 0 0 3 0 0 0 ~
2 2 2 2
0 (n +1)Le BnLe 4 nLe 0 (n +1)Le 7nLe :?}g
6 0 , is 3 0 10
2
0 3ni. 54(n241)L 13(n+1)1° 7nl, 78 +DL ~11(n>4+1)L°
e e e 0 e L _ € e
10 420 420 10 710 710
2
—nL2 —13(n2+1)L2 —3(n2+l)L3 — —ll(n2+l)L2 2(n +l)L3
0 e e e 0 1S e o 774“”79
15 530 470 10 710 0

(2.17)
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_—_ i .
where Ne is the membrane force resultant Ne evaluated at the centroid of

the element "'e'".

Finally, let [Ki]\= %%? [K;]e (2.18)
l =

where [K:] is the assemblage added stiffness matrix of the shell.

I1-1-4. The Matrix Equations of Motion

The matrix equations of motion of the liquid-shell system take the

familiar form

Mg} + [Kl{q} = © (2.19)

where {q} is the assemblage nodal displacement vector (Eq. 1.82), [M] =
[MS] + fDM]; [Ms] and [DM] are the shell mass matrix (Eg. 1.106) and the
added mass matrix (BEg. 1.146), respectively, and [K] = [Ks] + [Ki]; [KS]
and [Ki] are the shell stiffness matrix (Eq. 1.98) and the added stiff-
ness matrix (Eq. 2.18), respectively.

The free vibration, eigenvalue problem can then be written as (re-
fer to Sec. I-4-9)

(-mZ[M] + [K1){§} = {0} (2.20)

*
where {q} is the vector of the displacement amplitudes of vibration

(time independent), and w is the natural circular frequency.

IT-1-5. 1Illustrative Numerical Examples

The computer program "FREE VIBRATION (1)" is generalized by includ-
ing a subroutine to compute the element added stiffness matrix (Eq. 2.17).
The program is then employed to investigate the effect of the initial

hoop tension on the cosb-type modes of a broad tank (R =60 fr, L = 40 ft,



-129-

and h = 1 inch) and a tall tank (R = 24 ft, L = 72 ft, and h = 0.43
inch). As expected, the influence of such a stress field on modes of
this type is insignificant as indicated in Table ITI-1.

The analysis is also applied to compute the natural frequencies
and mode shapes of the cosnd-type deformations of these two tanks. The
computed frequencies are presented in Table T1-2, and the mode shapes
are shown in Fig. I1I-1. The natural frequencies are also calculated
without inecluding the stiffening effect of the initial hoop tension;
they are also shown in Table II-2 for comparison. Inspection of
Fig. 1I-2-a shows that the stiffening effect due to the hydrostatic
pressure has a significant influence upon the frequencies of vibration
of tall tamnks. On the other hand, Fig., II-2-b shows that such effect
is, for practical purposes, negligible in broad tanks. It is also of
interest to note that the influence of the initial stress upon the
cosnf-type modes becomes more significant as the circumferential wave
number n increases.

To illustrate the effectiveness of the analysis under cousideration,
a comparison between the computed dynamic characteristics and those
found experimentally in [4] is made. The physical model emploved in

{4] is partly filled with water, and has the following dimensions and

properties:
R = 4 inches, 1L = 12.5 inches, H = 11 inches,
h = 0.0050 inch, E = 0.735 x lO6 Ib/inz,
Py = 0.133 x 10_3 Ib.secz/iné, and v = 0.3,

As seen from Table II-3 and from Fig. II1-3, the computed characteristics



are in good agreement with the experimental results.
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This confirms the

accurécy of the analysis, and the significant role played by the initial

hoop tension during the vibration of tall tanks.

TARLE II-1

NATURAL FREQUENCIES OF THE COSO-TYPE MODES (fml cps)

Initial Stress Excluded Initial Stress Included
Tank
m= 1 m= 2 m=1 m= 2
Broad 6.1841 11.276 6.1853 11.279
Tall 3.5586 10.450 3.5593 10.452
TABLE TI-2
NATURAL FREQUENCIES OF THE C0Sn6-TYPE MODES (fmn cps)
—
Tank Initigl Stress n 2 3 4 5 6
Excluded 1 5.19 414 3.31 2.69 2.21
9 Tneluded 5.19 4.15 3.35 2.76 2.36
9 T
& Excluded 10.6 9.98 9.22 8.32 7.43
Included 2 10.6 9.99 | 9.25 8.37 7.52
Excluded 1.65 0.95 0.65 0.55 0.60
. Included 1 1.69 1.21 1.31 1.62 1.98
r—{
& Excluded 6.66 4,52 3,28 2,52 2.05
Included 2 6.68 4.64 3.68 3.44 3.68
TABLE I1I-3

NATURAL FREQUENCIES OF THE COSn6-TYPE MODES (fln cps)
(Comparison of Theoretical and ¥Experimental Values)

n=3in=4iln=5In=6ln=7|n=2§

Initial Stress Excluded | 11,85 8.06 6.57 6.77 8.28 [10.60
Initial Stress Included | 13.42 }12.63|14.82 {18.15} 22.01 |26.46
Model Test [4] - - 14,50 {18.10 | 21.60 {25.90
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Fig. I1-1. Vertical Mode Shapes of the Cosnfé-type
Modes of Full Tanks
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II-2. The Effect of the Coupling between Liquid Sloshing and Shell

Vibration

Although the behavior of the coupled liquid-shell system has been
regarded as important and considerable theoretical work has been done
on this problem [5,6,7,8,9], the dynamic interaction between sloshing
waves and shell vibrations has not been yet investigated. The coupling
is usually neglected on the ground that the significant sloshing modes
are of much lower natural frequencies than those of the vibrating shell.

In the following section, emphasis is placed on the question of

whether or not the coupling effect can be significant; in other words,
is it necessary to consider the liquid-shell-surface wave system, or
only the two uncoupled cases: (i) the liquid-shell system (refer to
chapter I) plus (ii) the free surface gravity waves in a similar rigid

tank?

I1-2-1. Basic Approach

Two different finite element formulations can be employed to
analyze the free vibration of the coupled liquid-shell-surface wave
system.

In the approach adopted in this investigation, a finite element
discretization of the liquid region itself 1s not necessary. Instead, a
series representation of the liquid velocity potential is obtained by
proper specification of the velocities at and normal to the liguid boun-
daries. The elastic shell is modelled by a series of ring-shaped finite
elements and the quiescent 1iquid free surface is represented by concen-

tric annular rings which may be regarded as "free surface elements"
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restrained in the normal direction by springs. The formulation of the
syétem matrices is straightforward and leads directly to the matrix
equations of motion. This approach is equivalent to employing the
functional J(u,v,w,9,£) defined by Eq. 1.61, and utilizing the boundary
solution technique as explained in chapter 1.

The second approach to the finite element solution of the problem
is based on the variational funectional E(¢)} (Eq. 1.12) to establish the
liquid matrix equations of motion. The liquid region is discretized in-
to annular elements of rectangular cross-section. The resulting matrix
equations of motion of the liquid are then combined with the matrix
equations of motion of the elastic shell. However, it was pointed out
by previous investigators [5,6,7] that the extraction of the eigenvalues
and eigenvectors of the free vibration problem is extremely difficult
because these large size matrices are "nonsymmetric'. Consequently, they
neglected the free surface gravity waves and considered only the liquid-
shell system. A careful study of these matrices revealed that their
size can be drastically reduced if partitioned to eliminate all the liq-
uid degrees of freedom except those of the free surface. Appropriate
algebraic manipulations of this system of matrices lead to the same
"symmetric" matrix equations of motion derived by the first approach.

In the following subsections, the basic equations that govern the
system behavior are introduced, the matrices involved in the analysis

are developed, and the overall free vibration eigenproblem is formulated.
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II-2-2. The Governing Equations

It has been shown that the solutions (Eq. 1.66) of the Laplace
equation (Eq. 1.1) which are nonsingular at v = 0, and have vanishing
derivative with respect to z at z = 0, can be written as

qn(kr) cosh (kz)

o(r,6,2,t) = %n(t) cos (n8) { " ,mz= 1) (2.21)

In(kr) cos {(kz)

The solutions given by Eq. 2,21 should be superimposed to satisfy the
boundary conditions at the liquid-shell interface, and at the liquid
free surface.

Without affecting the generality of the solution, the potential

function ¢ (r,8,2z,t) cdan be expressed as

o0 (el
n ALt ALz
_ T i i
d(r,9,z,L) Z { Aon(t)(R) + Z [ Ain(t) In<-——~H )cos (—-——-—H )]
n=1 i=1
=~ e €. 2
+ [Bjn(t) Jn —%{“> cosh (&iﬁ—- cos{nb) (2.22)
j=1
where Ai = im (i =1,2,...); and ejn are the zeros of the first deriv-
ative of PRessel functions J_, i,e., "J (e, )= 0 (J =1,2,...).
n n' jn

The arbitrary functions A (t), Ain(t), and Bjn(t) can be deter-—

On
mined by satisfying the boundary conditions (Egqs. 1.3 and 1.5) at r = R

and z = H, respectively.

Thus, along the wetted elastic wall of the tank, we have
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[/ . (xR Ao Z
D oag () + E [(f) A, (6) In(ﬂ%) cos (%—-)] } cos (ng)

M s

o]
1l
=

(z,t) cos(né) (2.23)

.53
»
n=]

in which the shell radial velocity has been expanded in a Fourier series
in the circumferential direction. For each circumferential wave number

n, Eq. 2.23 uncouples and can be written as

s B [Bronf)en ()] -
R Do (E) ~ |\% A, (8) ThaJeos \ g /| = ¥, (&0 (2.24)

AZ
Multiply Eq. 2.24 by cos(—%—) where s = 0,1,2,..., integrate from O to H,

and note that

0 i#s
i )\iz )\Sz
f[cos (T) cos (T):\ dz = H i=s5=20 s
0 % i=s8 (s =21)

then the functions Aon(t) and Ain(t) can be expressed in terms of %n as

follows: q
R .
Aon(t) = Ej’ wn(z,t) dz
0
H
' 2 . Ay
Ain(t) = ;,—I“ZR Wn(Z,t) cos o dz;(i =1,2,..)
in /0 (2.25)

The linearized free surface condition (Eq. 1.3) dmplies that

o o0 Ejn Sjnr) ‘ E.nH .
Z z (—R—- Bjn(t) Jn 2 sinh '—J"-—-R cos(ng) = £(r,B8,t)

n=1 ! j=1 (2.26)
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If we write é(r,@,t) = j{: én(r,t) cos{nfd), then, for each circumfer-
n=1

ential wave number n, Eq. 2.26 can be written as

00 Ein E,nH g,nr .
J.Z; (_R-) Byn(t) sinh ) ( J—R) = g (rt)  (2.27)

The functions Bjn(t) can be determined in terms of én by employing the

orthogonality relations of Bessel functions, namely,

R ejnr €ant 0 J#s
r Jn R) Jn R ) dr = {2.28)
R2 n2 2
0 5 1l =-—=}J (e, ) J#s
2 E? 0t yn
in

provided Bn(ejn) = 'ﬁn(esn) = 0

After the appropriate algebraic manipulations of Eg. 2,27, the following

expressions for Bjn(t) result

R . €t
2 j~r gn(r,t) JnCH%fh) dr -
B.o(e) = O i , (G =1,2,...)  (2.29)
jn EjnH nd 9
ejnR81nh ~—E~'],— 5 Jn(sjn)
in

The potential functien ¢{(r,8,z,t), defined by Eqs. 2.22, 2.25, and
2.29, satisfies the Laplace equation (Eq. 1.1) and the boundary condi-
tions {Eqs. 1.2, 1.3, and 1.5). The remaining boundary condition

{(Eg. 1.6) can be stated as follows:
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QQJ i {Aon(t)(%)ﬂ + j.o: [éln(t) Cos()\i) In(%f)]‘f‘ Z [Ejn(t)

i=1 i=1

£, H £, .Y
cosh( 3; ) Jn(-%%—> +g £ (r,t) cos (nf) = 0 (2.30)

0O=r=<R, 0= 86 =2m

To analyze the overall problem, one has teo ceonsider the equations
of motion of the circular cylindrical shell. These, including the

effect of the initial hoop stress, can be written as (Eqs. 2.6 and 1.45)

2
* _ 71_‘_. Vv
L1 {a} o

{F} (0 <z <H, 0= §= 2m)

(2.31)

and

i

[L] {4} {o} (H<z <L, 0= 8 =2mm

L

where {d} is the displacement vector; [Lh] and [L] are differential
operators defined by Eqs. 2.7 and 1.46, respectively; and {F} is the
force vector given by
{F} = {0 (2.32)
Pa
With the aid of the potential function expression {(Eq. 2.22), the

hvdrodynamic pressure Pgs acting on the inner surface of the shell, can

-3

be given by
— AP
pd(Rse ,Zst) = —QQ"S'E (R,G,Z,t)
. & AR Az
» . 1 1
= -0 }E: {Aon(t) + .E [Ain(t)ln(fﬁﬁ) cos (*ﬁ—)]
n=1 i=1
- £, 2
» Jn
+ jil [Bjn(t) Jn(sjn) cosh ( 2 )] }cos (nd) (2.33)

(0 =z =H, 0=8=2u)
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The solution to the vibration problem of the liquid-shell-surface
wave system can now be obtained by satisfving the conditions of dynamic
equilibrium (Eqs. 2.30 and 2.31) as well as the equations 2.25, 2.29 and

2.33.

I1-2-3. The Governing Integral Equations

The governing integral equations of the coupled system will be
derived by employing the principle of virtual displacements, This con-
cept provides an integral expression which is equivalent to the egua-
tions of dynamic equilibrium, and is particularly convenient to
formulate the finite element matrices.

Consider a system in dynamic equilibrium under the actiomn of a set
of forces, including inertia forces defined in accordance with
d'Alembert's Principle. By introducing virtual displacements compat-
ible with the system constraints, the total work done by these forces
should be zero.

Introducing the virtual displacements $u, Sv, éw and 6&, then it

follows from Eqs. 2.30 and 2.3l that

H 27 L 27
[ f{—E‘% t6att L7y ta1l R a0 dz 4+ [ f{ﬂ% {84} [L] {d}R dO dz
o ot woo Y

H ZTT w© . xR . }\iR )\iz .
+f f ‘p}l Z:l [Aon(t) + 2; Ain(t) T T) cos ( = )+ : Bjn(t)
0

0



-141-

R 27
£, Z o oo
Jn (gjn) cosh (—Jg—)] cos (n@)} dw R d8 dz + j f{og Zl: [Aon(t)
. 0 0

n
n © Ax o €. H e, r
(43 R s 1 (5) e 3 b eomn (BT) 5 (3)
i=1 J=1
+ g En (r,t) ] cos (n@)} 8E rdo dr = O (2.34)

For each circumferential wave number n = 1, take du = éun(z) cos(nd);

Sv = évn(z) sin(nd); ow = éwn(z) cos(nB); and 8¢ = ng(r) cos (n@). (2.35)
Inserting Eqs. 2.25, 2,29 and 2.35 into Eq. 2.34, one can obtain

the following integral relation that govern the motion of the liquid-

shell~surface wave systen:
H L
TTREh T _% TREh B
f {Sd}[L}{dl dz  + —————{5&} {L]{d}dz
n n n 2 n n n
l—\) 1-v
0 H

H

H ®
Az
el [ o8] ([ 9] 3 Lol f oo () 9
i=1
G

0

H 2 H
(fw (z,t) cos( ;LI ) dz }+ b (f 6w (z) cosh(
j=1
0 0
R R H
€, ¢ 41
r gn(r,t) Jn( 3; ) dr + ﬁOn f 2 (Sgn(r) dr j i&n(z,t) dz
0 0

0

e () e ([ 5 &)
+ Z [ain f r Sin(r) In T dr [ wn(z,t) cos \~ dz
i=1 0 0
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o . R Ejnl‘ R . E,nr \
+ Z bjn f r 8¢ (r) I (——ﬁm) dr f r g (r,t) Jn(%) dr)
0 0

i=1

R
T8 .].r 6¢ (x) & (r,t) dr}) = 0 (2.36)
0
where 5 AL
_ waR ‘ ~ 2T RDQIH Hﬁ_m
%on n H i &in (k.R ?
2 i
1 n\ H
2np .
b. % ?
jn e, H 2
£, sinh ( 30 (1 -2 g ( . )
R E2 n\ jn
Jjn
A TPy, . 210, cos(li)
a = — ; a, = et o and
On n-1 in AR
i n\ H
. ) 2w Py
jn (Ejr}{) 2 )
EjnR tanh ‘_]i" 1- —'2' Jl’l (Ejn)
Ejn
(i =1,2,...; and j = 1,2,...)

II-2-4, Derivation of the Matrix Equations of Motion

To establish the matrix egquations of motion of the liguid-shell-
surface wave system, one can make use of Eq. 2.36; its first two terms
must be first integrated by parts with respect to the z coordinate to
eliminate the higher order derivatives. The substitution of the shell
displacement model (Eg. 1.74) into the integrated terms can lead direct-

ly to the shell mass and stiffness matrices obtained in the preceding
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analysis.

To forﬁulate thé overall problem, one must represent the free sur-
face displacement in terms of a finite number of nodal displacements.
Thus, one has to divide the quiescent liquid free surface into concentric
annular elements as indicated in Fig, II-4-a. A typical "free surface
element” of length R, with a local radial coordinate r is also shown in
Fig. II-4-b. The free surface displacement gne(;,t) can be written in

terms of the nodal displacements as follows:

2

ane(E,t) = ;z; 8, (r) g (1) = {s(})}T{é(t)}e (2.37)

where e is the subscript indicating "element" and Eni(t) are the nodal

displacements of the element. The shape functions are given by

- r
Sl (r) 1 - ‘lg
(2.38)

i

- r
Sz(r) R
e
With the aid of the shell radial displacement model (Eq. 1.75), and
the free surface displacement model (Eq. 2.37), the remaining matrices,
involved in the matrix equations of motion, can be evaluated. Thus,

Eq. 2.36 can be written as

(a1 + oay (k1 + h)) tad + o0 0o cd)

b {8y D, &Y + 1803y 1Y + (83T, 000 + 16 Ik HE Y = 0

(2.39)
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Fig. LI-4. Finite Element Definition Diagram.
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where {q} and {q} are the assemblage nodal displacement vectors of the
shell and the free surface, respectively. The shell mass matrix [MS]
and the shell stiffness matrices {KS] and [Ki] were developed in detail
in the preceding sections; they are given by Egs. 1.106, 1.98, and 2.18,
respectively. A complete derivation of the remaining matrices is
given in Appendix IT-b.

Now, the nodal displacements, that is, the unknowns for the entire

assemblage, may be written in the following partitioned form
Iz} = {eeeo (2.40)

where the subvector {q} is of the order (4 x NEL) x 1, and the subvector

{q} is of the order NER x 1; NER is the number of 'free surface ele-

ments'. The order of the vector {x} is, therefore, (4 x NEL + NER) x 1.
With the afid of Eq. 2.40, one can write Eq. Z.39 more conveniently

as

o) T ({M]{s&} + [K}{x})= 0 (2.41)

where the overall mass and stiffness matrices are written in the

following partitioned forms:

[ i
M1+ M1 « M,]
M] = *-—i--——iiﬂ-;--ml?-—u (2.42);
| DMy, oMyl |
(kb o1 ]
and [K] = femmBemmom B (2.43)
i (0] ; [Kgl J

It should be noted that both the mass and stiffness matrices in

Eg. 2.41 are symmetric and positive definite; the proof of symmetry of
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the ﬁass matrix [M] is given in Appendix II-c. Furthermore, the stiff-
ness matrix [K] is banded, while the mass matrix [M] is partially com-
plete (not banded).

Since the virtual nodal displacement vector {8z} is arbitrary, the
expression in parentheses in Eq. 2.4} must vanish. Therefore, the ma-

trix equation of motion for the assemblage can be obtained in the form

MI{x} + [K1{x} = {0} (2.44)

IT-2-5, The Overall FEigenvalue Problem

By writing the solutions of Eq. 2.44 in the familiar form
E 17
fx(e)} = {x} ™% ; 1 =43 (2.45),

and substituting Eq. 2.45 into Eq. 2.44 (leaving out the common factor

iwt . . . .
elw ), the following equation 1s obtained

(< 1o+ 1)) )R} = o) (2.46)

where {x} is the vector of the displacement amplitudes of vibration of
the overall system (which does not change with time), and w is the
natural circular frequency. The eigenvector {x} can be written in the

following partitioned form

{§} = ———— (2.47)

* %
where the subvectors { g} and {4} are the generalized nodal displacement
vector (independent of time) of the shell and the free surface, respec-
tively.

A nontrivial solution of Eg. 2.46 is possible only if the
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determinant of the coefficients vanishes, i.e.,
JKI - o M) = o0 (2.48)

Expanding the determinant will give an algebraic equation of the
Nth degree in the frequency parameter wz for é gyﬁtem having NEL shell
elements and NER free surface elements, where N = 4 x NEL + NER,

Because of the positive definitiveness of [M] and [K], the eigen-
values wi, wi,..., w§ are real and positive quantities; Eq. 2.46 pro-

* 2
vides nonzero solution vectors {x} (eigenvectors) for each eigenvalue w"

IT-2-6. Computer Implementation and Numerical Examples

A digital compﬁter program has been written to compute the natural
frequencies and mode shapes of vibration of the coupled liquid-shell-
surface wave system by the method outlined in the preceding subsections.

The program is employed to investigate the coupling between the
free surface sloshing modes and the cosf-type modes of a tall tank (R =
24 ft, L = 72 ft, and h = 0.43 inch). The quiescent liquid free surface
is divided into 12 elements (NER = 12), and the elastic shell is modeled
by 12 elements (NEL = 12); therefore, the number of expected modes is
60. The tank is assumed to be full of water {(NEH = 12).

The computed natural frequencies of the coupled system are present-
ed in Table 1I-4 along with those calculated for the two uncoupled sys-

tems; the sloshing frequencies in a rigid tank are obtained by [10]

2 gejn E'nH

W, = tanh _an (2.49),
jn R R

and the frequencies of the cosf-type modes are obtained by the analysis

presented in Chapter I (Table I~3-b). It is evident that the lowest
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TABLE I1-4

NATURAL FREQUENCIES (eps)

. (.ﬂ = l)

Mode The Coupled Sloshing Liquid=-Shell
Number System in a Rigid Tank System
1 0.2497 0.2500 -

2 0.4254 0.4255 -

3 0.5384 0.5384 -

4 0.6307 0.6304 -
13 3.5566 - 3.5586
14 10.433 - 10.450
15 15,515 - 15.551
16 20.006 - 20.075

TABLE II-5

MODE SHAPES

Fundamental Sloshing Mode (&) Fundamental Shell Mode (w)

Coupled System Rigid Tank Coupled System Liquid~Shell System
0.0000 0.0000 0.0000 0.0000
0.1315 0.1314 0.1646 0.1651
0.2600 0.2604 0.2415 0.2420
0.3848 0.3849 0.3301 0.3308
0.5021 0.5026 0.4244 0.4255
0.6113 0.61156 0.5199 0.5209
0.7093 0.7098 0.6140 0.6156
0.7955 0.7957 0.7037 0.7048
0.8674 0.8679 0.7866 0.7886
0.9249 0.9251 0.8608 0.8624
0.9663 0.9665 0.9238 0.9253
0.9918 0.9916 0.9727 ¢.9752
1.0000 1.0000 1.0000 1.0000
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natural.frequencies of the coupled system are in good agreement with the
sloshing frequencies in a similar rigid tank. Furthermore, the 13t s
lhth,...etc. ascending frequencies are, for practical purposes, the same
as those computed for the liquid-shell system. Therefore, it may be
concluded that the coupling effect is negligible. This is further sub-
stantiated by the mode shapes. Fig. 1I-3 displays the modes of the
coupled system corresponding to the lowest two natural frequencies; it
is clear that these modes have predominantly free surface motion. With
the maximum wave amplitude normalized to unity, the maximum wall dis-
placements for these modes are on the order of 10—3 or less. Therefore,
the wall participation is essentially negligible, and these modes are
characterized as free surface modes. Table II-5 presents a comparison
between the free surface displacements associated with the fundamental
mode of the liquid-shell system.

As 1s seen, the vibrational modes of the coupled system can be
separated into two groups. In one group, the motion of the free surface
is predominant (identical to that in a rigid tank), and in the other
group, the displacement of the shell is important and can be evaluated
by considering the liquid-shell system only. Therefore, it is suffi-
cient to consider only the two uncoupled systems:

{i) the liquid-shell system,

and (ii) the free surface gravity waves in a similar rigid tank.
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Fig. I1I-5. Mode Shapes of the Coupled Liquid-Shell-Surface Wave

System (shell displacements are magnified 500 time).
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I1-3. The Effect of the Deformability of the Foundation

It has long been recognized that the dynamic interaction between
structures and the supporting soil might influence their seismic response
in an important way. During the shaking of an earthquake, seismic waves
are transmitted through the soil and excite the structure which in turn
modifies the input motion by its movement relative to the ground. Al-
though many studies have dealt extensively with this problem, no attempt
has been made, so far, to extend such analysis to the soil-tank system.

A common approach in civil engineering practice is to regard the
tank as anchored to its foundation and to consider the foundation soil
to be rigid. The mechanical model derived by Housner [11] for rigid
tanks can then be emploved to estimate the maximum seismic response by
means of a response spectrum characterizing the design earthquake.

As a natural extension of Housner's model, the effect of the soil
deformability on the seismic response of rigid tanks was investigated.

A mechanical model was first derived to duplicate the lateral force and
moment exerted on the base of a rigid tank undergoing both translation
and rotation. This model was then combined with another simplified
model representing the flexibility of, and the damping in, the founda-
tion soil. The analysis, which will be presented in a future report,
reveals that rocking motion of rigid "tall" tanks accounts for a sig-
nificant part of the overall seismic response of such tanks.

Since Housner's investigation, much work involving the dynamic
response of deformable containers has been made; again, all of these

investigations have considered the foundation soil to be rigid. A
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complete analysis of the scil-tank system by the finite element method
is beyond the scope of this study; however, a simplified model of the
soil can be employed with a finite element model of the shell to exhibit
the fundamental characteristics of the dynamic behavior of the overall
system and to assess the significance of the interaction on the response
of deformable tanks.

Since the cosnlO-type deformations have no lateral force or moment,
only the influence upon the cosB-type modes should be investigated.
Furthermore, rocking motion is most pronounced for tanks having aspect
ratios ¢height to radius ratio) > 1. Thus, the soil-tank interaction
problem is governed by a beam-type behavior rather than by a shell-type
response. Consequently, the system was modeled by a vertical cantilever
beam (including bending and shear deformations) supported by a spring-
dashpot model. The details of the analysis will be presented, as pre-
viously mentioned, in a separate Earthquake Engineering Research
Laboratory report (EERL) in the near future.

Although the models discussed in this section represent a highly
simplified version of the actual interaction problem, they offer a
simple and direct insight into a very complicated problem; and so, they

are of a practical value,
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Ii-4, The Effect of the Rigidity of the Roof

Thus far only open top circular cylindrical containers have been
analyzed. However, tanks are usually covered either by a fixed roof or
by a floating roof to protect the contained liquid from the atmosphere.
It is the purpose of this section to investigate the influence of the
fixed-type roof on the dynamic characteristics of ;anks.

A complete analysis of the problem requires consideration of the
equations of motion of the roof simultaneously with the equations of mo-
tion of the shell, and enforcing the conditions of continuity of the
generalized forces and displacements at the junction, Such analysis has
been carried out in Ref. [7] where the dynamic problem of a taunk covered

by a dome has been treated.

In this section, a simple roof model, commonly used in civil engi-
neering tanks, is considered. 1t consists essentially of a thin steel
plate supported by steel trusses. The plate has a considerable stiff-
ness in its own plane; therefore, it restrains the tangential and radial
displacements of the shell at their mutual boundaries. It affects the
cosG-type modes by restricting the motion of the tank top to be a rigid
body translation; i.e.,

w(0,L,8) = -v(pl,t) 3 (=1 (2.50)
In addition, it restrains the cosn@-type modes against cross-sectional

deformations at the tank top; i.e.,
w(0,L,t) = v(6,L,t) = 0 ; (n=22) (2.51)

Furthermore, by virtue of its thinness, the plate has very little stiff-

ness in the z-direction transverse to its plane; consequently, it will
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(b) Tall Tank

Fig., 1I-6. Effect of the Roof on the Cost-type Modes.
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TABLE I1I-6

NATURAL FREQUENCLES OF THE COS5-TYPE MODES (cps)

Without Roof With Roof
Tank
m=1 m= 2 m=1 m= 2
Broad 6.1853 11.279 6.1791 11.260
Tall 3.5593 10.452 3.5387 10.405
TABLE 1I-7

NATURAL FREQUENCIES OF THE COSné-TYPE MODES (cps)

n

Tank Roof

2 3 4 5 6 7
% | Without 5.19 | 4.15 3.35 2,76 2.36 -
5 With 6.95 6.62 6.05 - - -
= | Without 1.69 1.21 1.31 1.62 1.98 -
o With 442 3.16 2.70 2.78 3.16 3.65

TABLE II-8

NATURAL FREQUENCIES OF THE COSn6-TYPE MODES (cps)

No Roof - Initial Stress

Excluded 2.33(1.40{0.95/0.,70{0.58{ 0.55[0.59(0.69
Roof - Initial Stress Excluded |4.3413.03[12.22|1.71{1.3911.2111.14[1.16
Roof - Initial Stress Included{4.3573.14{2.52|2.33{2.55{2.76{3.07{3.39
Full-Scale Vibration Test 4.35[3.1212.51]2.31}12.61}2.82]|3.06]3.37
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generate negligible moment Mz and membrane force Nz at the shell top as
the shell Vibrates. Although the foregoing boundary conditions are
highly simplified, the computed frequencies and mode shapes of real
full-scale tanks are in good agreecment with those measured by vibration
tests (refer‘to Fig. I1-9).

The effect of the roof rigidity on the cosb-type modes is generally
negligible as shown in Fig. IT-6 and as indicated in Table II-6. The
gslight reduction in the values of the natural frequencies is due to the
additional mass of the roof.

Table TI-7 presents the natural frequencies of the cosnS-type modes
with and without roof; it clearly illustrates the significant effect of
the roof on these modes which can be also seen in Figs. II-7 and II-8

Finally, the applicability of the analysis is demonstrated by com-
paring the computed natural frequencies of tank no. 3 (refer to Chapter
IV) with those obtained by field tests. Table II-8 and Fig. II1-9 clear-
1y emphasize the significant role played by the roof and the initial
stress field in estimating the natural frequencies of the cosnb-type
modes. It is also evident that the roof effect is more pronounced for
small n, while the initial stress influence is more significant for

large n.
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(a) Broad Tank
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NATURAL FREQUENCY = 3.16 CPS

Fig. II-7. Effect of the Roof on the Cosné-type Modes.
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II-5. Appendices

Appendix I1I-a

List of Symbols

The letter symbols are defined where they are first introduced in

the text, and they are also summarized herein in alphabetical order:

AOn(t) and Ain(t) Time dependent coefficients of the
velocity potential, Eg. 2.22.

a a, , 4., and ain Coefficients in Eq. 2.36.

B, (t) Time dependent coefficients of the

velocity potential, Eq. 2.22.

bjn and Ejn Coefficients in Eq. 2.36.

[Cn] Square matrix defined by Eq. 2.14,

[DM] Added mass matrix defined by Eq.1.130.

{d(e,z,t)} Shell displacement vector, Eq. 1.31.

{d(g,t)}e and {dn} Vectors of the maximum displacement
components of the nth circumferential
mode, Egqs. 1.76 and 1.87, respectively.

{a}e Generalized displacement vector of the
element "e”, of order 8 x 1, Eq. 1.78.

E Young's modulus of the shell material.

e Indicate element, and occasionally used
as the number of the element "e'.

e, and €y Vibratory strains, Eq. 2.,1.

{r} Force vector, Eq. 2.6.
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{FO}, {?0}, {Fi}, and {fi} Vectors defined in Appendix II-b.

{fO}e, {fo}e, {fi}e, and {fi}e Vectors defined in Appendix II-b.

fmn Natural frequencies, e¢ps.

g Acceleration of gravity.

H Liquid depth.

h ' Shell thickness.

IH( ) Modified Bessel functions of the first

kind of order n, Eq. 2.21.
1 () Derivative of In( ) with respect to the

radial coordinate, Eq. 2.23.

T Variational functional, Eq. 1.12.

i N -1 , Eq. 2.45.

J Variational functional, Eq. 1.61.

Jn( ) Bessel functions of the first kind of

order n, Eq. 2.21.

[Ki‘]e and [Ki] Element stiffness matrix and the assem-—
blage stiffness matrix due to the
initial hoop stress, Egs. 2.17 and 2.18,
respectively.

[KS] Assemblage stiffness matrix of the
shell, Eq. 1.98.

[Kz]e and [KQ] Flement stiffness matrix and the assem-
blage stiffness matrix of the liquid
free surface, Appendix II-b-1 and

Eg. 2.39, respectively.
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[Mlll, [Mlz]’ [M21]’ and [M

(M]

22]

m
N

NEL

NEH

{N}
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Stiffness matrix, Eqs. 2.19 and 2.43.
Separation constant, Eq. 2.21.

Shell length.

Length of shell element.

Linear differential operators, Egs.
2.6, 2.7 and 1.46, respectively.
Assemblage mass matrix, Eq. 1.106.
Mass Matrices, Eq. 2.39.

Mass Matrix, Egs. 2.19 and 2.42,
Number of wvertical mode.

Constant = 4 x NEL + NER

Number of shell elements along the
shell length,

Number of shell elements in contact
with the liquid.

Number of "free surface elements'.
Initial hoop force resultant, Eq. 2.3,
Initial hoop force resultant evaluated
at the centroid of the element "e',
Eq. 2.17.

Vector of the interpolation functions,
Eq. 1.79.

Circumferential wave number.
Differential operatoer matrix,

Eq. 2.10.
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[P 1 Differential operator matrix for the
nth circumferential wave, Eq. 2.12.

P and Py Liquid hydrostatic and hydrodynamic
pressures, respectively.

[Q] Matrix of interpeclation functions, of
order 3 x 8, Eq. 1.77.

{q} The assemblage nodal displacement vec—
tor of the shell, Eq. 2.19.

19} The assemblage nodal displacement vec-
tor of the free surface, Eq. 2.39.

{g} and {é} Time independent nodal displacement
vectors of the shell and the free sur-

face, respectively.

R Tank radius.
Re Length of the free surface element "e'.
by Radial coordinate of the c¢ylindrical

coordinate system.

T Local radial coordinate.

Si Interpolation functions, Eq. 2.38.

{s} Vector of the interpolation functions,
Eq. 2.37.

%n(t) Functions of time, Eq. 2.21.

t Time.

u(t), Ul(t), and U2(t) Strain energies, Egqs. 2.1, 1.33 and

2.3, respectively.
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u, v, and w Shell displacements in the axial, tan-

gential, and radial directions,

respectively.

un(z,t), Vn(z,t) and wn(z,t) Displacement functions for the nth
circumferential wave.

{x} The assemblage nodzal displacement

vector of the overall system, Eq. 2.40.
{x} Time independent nodal displacement

vector of the overall system, Eq. 2.45.

x Shell coordinate (refer to Fig. I-b-i).
v Dummy wvariable, Appendix II-b-3.
z Axial coordinate of the cylindrical

coordinate system.

N

Local axial coordinate.

% and o, Coefficients defined in Appendix II-c.

Bi and Ei Coefficients defined in Appendix II-b
and II-c.

Y, Vibratory shear strain, Eq. 2.1.

8 Variational operater.

£q Normal strain in the middle surface in
the O-direction, Eq. 2.4.

ggz Nonlinear components of £g> Eq. 2.9,

ejn Roots of ’Jn(ejn) = 0.

£ Free surface displacement.

én(r,t) Free surface displacement function for

th . .
the n circumferential wave.
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éni Nodal displacement of the free surface,
Eq. 2.37.

{g}e Meodal displacement vector of the free
surface element "e", Eq. 2.37.

[@n] Diagonal matrix defined by Eq. 1.86.

& Circumferential coordinate of the
cylindrical coordinate system.

Ai Constants = dim ; 1 = 1,2,...

v Poisson's ratio.

DR Mass density of the liquid.

Oi, Ol, and Gi Initial stress field, Eq. 2.1,

z” 0 z0

T Oe, and Oze Vibratory stress field, Eg. 2.1.

¢ Liquid velocity potential function.

W, wj and I Circular natural frequencies.

v2 Laplacian operator.

() Differentiation with respect to time.
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Appendix 1I-b

Formulation of the Matrices of Eg. 2.39

Full development of the matrices involved in Eg. 2.39 is given in

the following sections

II-b-1. The Free Surface "Stiffness" Matrix [K ]
A

With the aid of the free surface displacement model (Eq. 2.37), the

last term in Eq. 2.36 can be written as

=

e

R R

RE SR g -

ﬂng'[ r SE(r)E(r,t)dr =mp g J. r + (e-1)R ){65}{5(rB{S(rﬂ {ikb} dr
0 0

I---‘

R
NER o\ .
- S 60 (o | (4 em)isErE@) 7)),
0]

NER
= :E: {SE} {E} . where
[ e _ 1 e 17
3 4 6 12
[Kg]e = ﬁpggRi 1 e = 1,2,..., NER
e L e 1
6~ 12 37 12

Because the displacements are matched at the nodes, the stiffnesses
are added at these locations; therefore, the assemblage stiffness matrix
and the nodal displacement vector can be written as follows:

NER NER
= [K and {qi

;;; . g ;Z; (g1,

ii

01
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Thus ,

R
ﬂng_j[‘ r 86(r) E(r,r) dr = {4q }T[KQ]{Q(t)} (1I~b-1)
0

11-b-2. The "Added Mass" Matrix [Mll]

In order to compute the elements of the mass matrix [Mll]’ the

following integrals

H.

H Az
f w(z,t)dz and [%(z,t)cos ( I:-I ) dz
"0

0

must be first determined in terms of the nodal displacements. With the

aid of Eg. 1.75, one can write

L
(=}
NEH g _
w(z,t) dz = :E: {(N(z)} {d(t)}e dz (1I-b-2),
0 = 0

H
0 e=1 0

51 L
Az new (€ - y(Fre-nr )]
and w(z,t)cos ; ) dz = :E: N(z)} {d(t)}ecos dz

(II-b-3)

where NEH is the number of shell elements in contact with the liquid.

Now, define the vectors {fo}e and {fi}e as the integrals

Le )
{£,17 = &t 4z = o, 0 e e 0 e “Li
0'e Z z = s » T i—z—’ 0, s '—2_3 —if (II_b“'l*),
0

and

=3

i

L
T
{fi}e f
0

E“ Os £i30 £440 0 0, 1

o Az + (e-1) L
{N(z)}T cos[ 1( e):| dz

(11-b-5)
.oy L.,
i7 18]e



where

i3

i4

i7

i8

w

- -ﬁé sin Bi(e-l) - (35 ~~£%) cos Bi(e-l)
. B B8,
T 1 a1

i By

- é sin Bi(e'l) + -GZ cos Bi(e—l) - —43~

L By By By
i = 1,2,...) ; and e = 1,2,

3
B3

1

2 .
- — sin B.e -
By

53

1

o

- (L + «—g~ sin B. (e-1) + 12 cos B,(e-1)- -*-6 sin 8.,e -
B‘ 6- T 4 1 1
€T i B-
L. i

6 o 12 D S S SRR W
5 sin B;(e-1) - = cos Bi(e 1) (Bi + sin Bie +

12 B.e

; cos Biels

By _

0

_BT* cos Bie 5

i A

} s

12 cos B e |; %
4 i f
By i
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The next step is to define the vectors {FO} and {Fi}‘as

NEH _ NEH
F b= Z fyd, and {F} = Z £, (11-b-6)
e=1 e=1

Therefore, Eqs. ITI-b-2 and I[I-b-3 can be rewritten as

3] H
#(z,t)dz = {F.14(t)) i ()\iz)d = (7,1 (4(0));
w(z,t)dz = FO q(t) and w(z,t) cos g/ dz = Fi q(t)};
0 0

1=1, 2,...) (II-b~7)
The third and fourth terms in Eq. 2.36 can then be expressed as
follows (omitting the subscript n)
)

B H - H Az H Az
ao([ Sw(z)dz)(‘[ﬁ(z,t)dz)+ Z ai(j Sw(z)cos( }11 )dz)([ﬁ(z,t)cos(—%—)dz)
4 0 i 0 0

i=1

o

agtsat i HET GoY + 3 ey 61T r )

i

i=1
o 6T (o w4 S e T Geo (I1-b-8)
! o ‘““o'‘Yo Z AR Rl q
j=1
Eq. II-b-8 leads to the definition of the mass matrix [Mll] as
M1 = a_{r 3r 3T + a (F}F,}T  (1I-b-9)
11 0 o0 to Z TR R
i=1

It is important to note that the series in Eq. II-b-9 converges very
rapidly and only the first few terms are needed for adequate represen-

tation of the infinite series.
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TI-b-3. The Mass Matrix [Mzzl
The eighth term in Eq. 2.36 gives rise to the definition of the mass

matrix [MZZ]' To calculate the elements of this matrix, consider first

the following integrals
R
. e
I, = %!~ r £{r,t) Jn(f%f—) dr 3 (3 = 1,2,...) (II~b-10)

With the aid of Egq. 2.37, one can write

R- -—
NER e e.(r+ (e-1) R .
I, j’ (¥ + (e-DR ){S(r)} {f(t)} [Jn( 2 e)] dr

(I1-b-11)

where NER is the number of the free surface elements. Now, define the

vectors {fj} as the integrals

. {r + (e-1)R
{s(r)} r + (e-1) Re) Jn [%Jn( R E)]df

——
o)
-
[
[}

=[5, f,0, 5 e = 1,2,..., NIR (II-b-12)
where 1
f = R2 (e-1) + (2~e)y—y2) J (B (e-1 + y)) dy
il = n\ in ’
0
1
f = RZ ((e—l)y + yz) J (8, (e-1 + y)) dy :
j2 e n \ jn
0
E.n R
Biﬂ = _Q_ESJ% (i =1,2,...); and y is a dummy variable.
NER
Let {F.} = £, II-b-13),
RN YR ey

e=1
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therefore, Eq. IT~-b-11 can be written as

T,
I = {hj} {4} (II-b-14)

Now, inserting Eq. II-b-14 into the eighth term of Eq. 2.36, one can

obtain R R
w £. T . eE.
(] s GBI e
j=1 0 0

PPN, T, T z
= EEI by {89} {Fj}{Fj} Gy = {84} vy, 1 {4y} (T1-b-15)

j=1

where [M,,] = 3 €j {Fj}{Fi}T (1I-b-16)

j=1 \

Again, it should be noted that only the first few terms of the series

are needed for adequate representation of the mass matrix [MZZ]'

II-b~4. The Coupling Mass Matrix [Mlzl
In order to determine the mass matrix [Mlz], two integrals have to
be evaluated. One of these integrals 1s already obtained in terms of the

free surface nodal displacements and can be expressed as
R
- €4n” T ,x
fr ORA ( R—) ar = ) 1E) (11-b-17)
0

where {Fj} is defined by Eq. II-b-13.
Using the shell displacement model (Eq. 1.75), the second integral

can be written as
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L

B
€, z NER (o €, (E+(e—1)L) _
Sw(z) cosh(—;’g—) dz Z f {Sd}e{N(z)}cosh Ju z & 1 az
0 e=]1 0

. (II-b-18)

Now, define the vectors {Ej}e as the integrals

L
€ ,E_‘—z—+(e—l)L
(F7 ==~/- (5N T cosh [—3“( = e)]dE
0

= [o0,0,%.,,%.,,0,0,F. ,F. ] . e=1,2,..., NEH
[ 337734 3777381
(11-b-19)

where

oo T S _ 12 -
fj3 = LE)‘((B? - Bj) sinh Bj (e-1) + B{* cosh Bj (e-1) +
3 J

6 sinh B,e - 12 cosh R.e 5
63 j 4 ]
j &

o= 12 (fi-sinh 8, (e-1) +-(il +-l;) cosh g, (e~1) +
47 Te : P2 3
B, Bj Bj

2 Sinh B.e - % cosh gje) ;

3 J
Bj Bj
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- _ -6 . 12
fj7 = Le( 3 sinh Bj(e—l) - cosh Bj(eel) +
3 3,
3 1
(j; Ll sinh B e + ig—cosh B_e) :
N ]
- 2{2 , 6
t’8 = L (——- sinh 8, {e-1) + — cosh B.(e-1) +
] € R d k|
B B,
J
i% sinh B,e - ¥%~ L cosh B e) ;
5 ge gt
J J 3
e, L
and Bj = —jéiié (j=1,2,...)

NEH
If one defines the vectors {F.} by {F. .} = {£.}
3Ty ZJE’
e=1

then Eq. II-b-18 can be expressed as

H
£, Z- -
&w(z) cosh (Jg—) dz = {ﬁq}T{Fj} (11-b-20)
0

Inserting Egs. I11-b-17 and Il-b-20 into the fifth term of Eq. 2.36

to obtain

=]

H R .
; bj(f Sw(z) cosh (EjEZ) dz)(f T é(r,t) Jn(il;i) dr)
0

D

= 3 b 1sq) R HF TG - {sq}T(E b.{f.}{F.}T> 5oy}
. J 3 3 " N 3
j=1 i=1

(II-b—Zl)
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Eq. II-b-21 leads to the definition of the mass matrix [MlZ] as

Z {F }{F 3T (1T-5-22)

II-b~5. The Coupling Mass Matrix {lel

The sixth and seventh terms in Eq. 2.36 lead to the definition of

the mass matrix [M,,]. With the aid of Eqs. II-b-7 and 2.37, these

21

terms can be expressed as

R H X R x .
~ n+1 . ir
g, T SE(r)dr w(z,t) dz} + T Gg(r)l _ﬁ_ dr J .
0 0 0]
R
i A.z NER a1
(fw(z t)cos ; ) dz) = 50( r + (e~1)R )n (8L} {S(r)}dr)
e= l 0
0 Re
T m NER [k (r + (e~1)R )
{F b {d(e) 1( (r + (e-)R )0 823, T al = dﬁ).
i=1 e=1 0
T ..
és&} {q(t){) (I1-b=-23)

Now, define the vectors {fo}e ,{fi}e,{FO}, and {Fi} as follows:

e fOl
b, =f (F + (e-Dr )™ Hs@ar = ;
0 f02 e
R _ =
_ ¢ ME+ ED R i1
1, = (F + (DR )T ; s} dr = ] ;
0 fiZ
NER NER
Ty} = };l (Fg), 5 and (B = 2 {F) (TT-b-24)
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where
= R2+2 n+3 n+2
fOl = Tn:é“)‘(ﬂ_;ﬁ (e - {n+ 2+ e¥le - 1) ) ;
- RZ+2 n+3 n+3
Ty T Tyewy (& @3- et e DY)

1
o= R f((e-l)+<2~e)y—y2)zn(Bi<e—1+y>)dy;
0

1
§i2 = Ri[((ewl)y +y2) L (Bi(e~l+y))dy;
0

AR
Bi = 1He (i =1,2,...) 3 and vy is a dummy variable,.

Using the definitions in Eq. II-b-24, one can write Eq. II-b-23 in
the following convenient form

H

R R
o0 K.r
éo(f rn+16£(r)dr)([ ﬁ(Z,t)dZ) + §i<[r 5E(r)ln(*§ ) dr) .
0 0 0

i=1

H
. A RN, Ji T o - T,= ’
iz, )cos( ) az ) = &, Tea F HE TG+ ) s g NF, HF, V)
0

1
i=1

- @’ (3,7 T+ Y A Fpe)T) Ged = et 16w
i=1 (II-b-25)

Tt 1s worthwhile to indicate that [Ml2]T = [MQl]’ and therefore,

the overall mass matrix [M] is symmetric (refer to Appendix II-c).
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Appendix II-c

Symmetry of the Mass Matrix [M]

The proof of symmetry of the overall mass matrix

1
1
LT P fom-t (I1-c-1)
!
1

is given, in detail, in this appendix. It is clear from Eqs. 1.105,

I1-b-9, and II-b~16 that the matrices [MS], [Mlll, and [MZZ]’ respective-

ly, are symmetric. Therefore, it remains to show that [Mlz]T = [M21],

or equivalently, the analytical expressions used in the derivation of

these two matrices are identical.

]

Recalling the expression that led to the definition of [M12

(Eq. ITI-b-21), and using the definition of bj (Eq. 2.36), vield

- H R
Il = Z bj(f Sw(z) cosh(ejgz) dz)(j‘ré(r,t)\}n(i%i) dr)
3=1 5 0

i
2np2 €, Z
= :E: 5 ‘ §w(z) COSh(f%?_) dz |.
j=1 ; e, H _.n_
f—:jn sinh ( 31;1 )( 5 )Jn(ejn) 0

+

Jjn

™

R
. ejnr
r &£(r,t) Jn. R dr) (11-e-2)
0 €02 Aiz
Now, expanding cosh( JR ) in terms of cos( I ) where Ai =ig(i=0,1,2,

...), vields
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[e)
Q
w
o
q
=
N
SN’
il
Q
Q
Q
43}
TS
>»
m
N
\__/

R E,nH R EjnH cos}\i
where OLO = <€‘ H) sinh (_;L__R ) y and oci-—- 2<€jnH) 51nh< R ) x 2

Inserting Eq. IIl-¢-3 into Eq. II-c-2, one can obtain

R
® ?.'JerQ . €, T
Z 5 r £E(r,t) J (4:_1__) dr
: 2 n n\ R
j=1 EjnH - ~—~€2 Jn(ej_ﬂ) 0
in
B H

o 2 cos{A.) kiz
] Sw(z) dz + Z TR 12 féw(z)cos e dz (I1T-c~-4)

i
0 i=l l+(€j H) 0

Similarly, using the integrzl of Eq. II-b-25 which defines {MZI],

and with the aid of the definiticns of ao and a (Eq. 2.36), one can

write
R H - R
T
IZ _ 30 frn+15g(r)dr [i&(z,t)dz + Z jr SEL(r) I %’) dr
0 0 =LAD

H R
}\.Z e}
_[W(z t)cos ;)dz = Q =) j Sg(r)dr .[W(z t) dez
0 0

o 29 p COS(A )] R /K T A.z
+ Z fr6£(r)1 ‘ ) f@&(z,t) cos( ; ) dz
0

i=1 \ M ;

(IT-c-5)
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AT €. T
i . qn y .
Now, expand " and In( ;I ) in terms of Jn( R ) ; it follows that
oo £. r A.r e £, T
n o _ jn ; i - 3 g (__JE_) (I1T—c—6)
T —ZBjJn(R),andln<H) Bjn 2
j=1

j=1

where

R
€. T £, ¥ ‘ .
: : 2 n
B, = rn+l Jo\AR) dy r J2 2 tar) = S ;
0 E )

0 in o jn
in
and.
R R
_ (J\lr) €T 5 (€ oF
Gj = T In m Jn GL-*R dr r J ——3——R )dr
0 0
AR
- i
Z R }\i In 5
2 AR 2
He? (I—L)J(&) 1+<-~J‘—~)
in 2 n\ jn e, H
£ in
in

In view of Eq. II-c-6, Eg. II-c-5 can be written as

R
. = Z'ITRQ g, T
S ; [« e 5, ()«
) 0

=1 E? Hl__le_, Jn(e‘n
in e 3

H H
[ 0 2 cos()\i) f (}\iz
w(z,t)dz + - Ww(z,t) s __) d (LI-c~-7)
Z ()‘iR )2 w(z co 1 z c
0 i=1 {1+ 0

Because the interpolation functions for SE(r) and Sw(z) are taken

to be the same as those for E(r,t) and w(z,t), respectively, the
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expression given in Eq. IT-c¢~7 is in precisely the same form as that of

Eq. Il-c¢-4, and therefore

Toeom,] | (1I-c-8)

12] 21
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CHAPTER TIT

EARTHQUAKE RESPONSE OF DEFORMABLE LIQUID STORAGE TANKS

A method for analyzing the earthquake response of deformable, cylin-
drical.liquid storage tanks is presented. The method is based on super-
position of the free lateral vibrational modes obtained by a finite
element approach and boundary sclution techniques. A procedure for com-
puting the natural modes of vibration was given in the preceding chap-
ters, and the accuracy of these modes is confirmed by vibration tests of
full-scale tanks as shown in Chapter IV.

The first topic, presented in Sec. III-1l, is concerned with the
response of the cosb-type modes for which there is a single cosine wave
of deflection in the circumferential direction. The effective load
history resulting from a given ground motion is evaluated, and the
seismic response is obtained by superposition of the vertical modes
corresponding to n = 1. Furthermore, the earthquake response of de-
formable tanks is compared with that of similar rigid tanks to assess
the influence of wall flexdibility on their seismic behavior. Detailed
numerical examples are also presented to illustrate the variation of
the seismic response of two different classes of tanks, namely, 'broad"
and "tall" tanks.

The second section is devoted to examining the influence of the
cosnf—type modes on the earthquake response of tamks. Until recently,
it was thought that only the cosf-type modes would be excited signif-
icantly by seismic motions; however, shaking table experiments with

aluminum tank models [1,2] and vibration tests on full-scale tanks
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(refer to Chapter IV) show that cosnd-type modes do respond to base ex—
citations. For a perfect circular tank, cosnf-type modes cannot be
excited by rigid base motion; however, fabrication tolerances permit a
significant departure from the nominal circular cross section and
this tends to excite these modes. The importance of the cosnb-type
modes in an earthquake response analysis is evaluated by computing the
seismic response of a hypothetical irregular tank. The hydrodynamic
pressure consists therefore of two components: (i) the pressure that
would result in a perfectly circular tank, and (ii) a corrective pressure
arising due to cross-section irregularity.

In summary, the dynamic fluid pressure pd on the wall of the tank is

given by the superposition of four pressure components:

Py= Pp TPy tpytypy,

where the pressure components are:

Py = the long period component contributed by the convective fluid
motion (sloshing) in a tank with rigid walls;

Py = the impulsive f£luid pressure component which varies
in synchronism with the horizontal ground
acceleration;

Py = the short period component contributed by the cosfO-type
vibrations of the tank walls;

and P, = the contributions of the cosnf-type vibrations of the tank
walls.

Each of these four pressures has a different variation with time.
It can be expected that long period pressures, if sufficiently large,
will be effective in producing buckling quasi-statically. The effect of
the short period pressures will be important to the degree that they
influence the dynamic buckling process, or to the extent that high

stresses produced by them lead to possible fracture of the tank wall.
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ITT-1. Cos0-Type Response to Earthquake Excitatdion

The liquid storage tank under consideration is subjected to a
ground motion G(t) in the constant direction 6 = 0 as shown in
Fig., ITI-1, Tt is assumed that the tank has perfect circular cross sec-
tions of radius R. Under these assumptions, only the cosf-type modes
will be excited; therefore, its seismic response can be obtained by
superposition of the different vertical modes corresponding to n = 1.

The only special feature of the earthquake-response problem, com-
pared with any other form of dynamic leoading, is that the excitation is
applied in the form of support motions rather than by external loads;
thus the essential subject of the present discussion is the method of
defining the effective external load history resulting from a given
form of support motion. The evaluation of such effective loading can
be carried out by two different methods.

In the first approach, the effective earthquake load vector can be
derived in a manner entirely analogous to the development of the effec-
tive force vector for a lumped multi-degree of freedom system whose

equations of motion can be written as

M"Y + [c1iq) + [K1{q} = {0} (3.1)

where [M], [C], and [K] are the mass, damping, and stiffness matrices,
respectively; and {qt} is the total displacement vector which can be ex—

pressed as

(¢} = {g} + {rlc() 5.2)
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Tank Base

Fig. II1I-1. Tank Motion Due to Ground Excitation.
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where {q} is the relative displacement vector; l{r)} is the influence co-

efficient vector which represents the displacements resulting from a

unit support displacement; and G(t) is the ground displacement.
Substituting Eq., 3.2 into Egq. 3.1 leads to the relative-response

equations of motion

iM1{g} + [cl{q} + [KJ{q} = {p ..} (3.3)

eff

where

b = - (M]{x}G(e) (3.4)

The matrix equations of motion which govern the earthquake response
of the liquid-shell system are identical in form to the lumped-mass
equations described above, except that the off-diagonal cocefficients in
the overall mass matrix (of the shell and its base) introduce coupling
between the support displacement and the response degrees of freedom.

By partitioning the overall mass matrix into matrices associated with
the support degrees of freedom and into matrices asseociated with the
response degrees of freedom (off-base nodes), the equations of motion

can then be written as

11§} + [ 1160 + [C1{a)} + [KIla} = {0} (3.5),
and therefore, the effective force vector can be given by

I B I R R ERP RS (3.6)

where [MC] is the coupling mass matrix between the support displacement

and the response degrees of freedom; and {;}G(t) is the generalized
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displacement vector of the tank base. 1In most cases, the second term in
the right hand side of Eq. 3.6 contributes little to the earthquake ex-
citation load; however, it should be included in the formulation for
completeness [3].

The development of the effective earthquake load vector can also
be carried out by employing the expression of the work done by external
loads through arbitrary virtual displacements {6d}. This approach is
particularly effective in evaluating the force vector for an out-of-
round circular tank (refer to Sec. III-2); and therefore, it is adopted

throughout this investigation.

J1I-1-1. The Effective Force Vector

The total displacement wvector of the shell can be considered as the
sum of two components: the relative displacement vector {d} defined by
Eq. 1.31, and the displacement vector {dg} associated with the ground
displacement G(t); it can be written as

0

{dg} = ~-sin(8) ;G(t) (3.7)
cos(8)

The external forces acting on the shell due to ground motion G(t)
ineclude

(1) the distributed inertia force of the shell which is given by

0
(r} = -psh{lig} = -psh'é(t) —sin(8) (3.8);
cos(8)
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and (ii) the hydrodynamic pressure on the tank wall, assumed te be rigid.
This pressure can be obtained by substituting C(t) in Egq. 1.137 instead

of %n(z,t) and replacing the circumferential wave number n by 1; thus,

H
20w [ GE) cos(an) dn
p_(R,8,z,t) = —'—ﬁ& Z & Il(uiR) cos(aiz} cos (6]
& i=1, o, "I, {(a.R)
i 7171
20,G(t) = (DL o)
SR Z cos(aiz) cos(8) (3.9)

, 2.
=l o/ Il(aiR)

The work done by these external loads during arbitrary virtual dis-

placements

5ul cos(0)
{8d} = §v, sin(0) (3.10)

éwl cos(B)

can be expressed as

L 2m B 27
W= J//AJ//‘GIE}T{Sd}) RdBdz + “//ﬁu//ﬁ (pg(R,e,z,t)swl cos(S»Rdedz
0 0 0 0

(3.11)

Substituting Egqs. 3.8, 3,9, and 3.10 into Eq. 3.11 yields
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L
W = —pSWRé(t) J//Ph(—ﬁvl + 6wl)dz
0

i+l H

2TRp . G(t) ® {1) 1, (0.R) ,

~ *-E%*-— Z 5 14 . U//Pﬁwl cos(aiz) dz
i=1\ «.” "I, (a.R)

i 1Y74

0
L o H |
= ~é(t) pSﬂRu//ﬁ h(*-(Sv1 + Gwl)dz + -Zlbi .//p 6w1 cos(@iz)dz
0 Y00
(3.12)
where
2mRp, I, (¢ R) .

b R TR (3.13)

ai H Il(aiR)

With the aid of the shell displacement model (Eq. 1.74), the first

term in Eq. 3.12 becomes

L

NEL o — T — T —
pgn [ ntsv 4 dupas - o 1wty @, - wa’im
0 (3.14)
where
— T Le Le Léz Le Le Lez
e =053 7% 332> 11
(3.15)
and
_ NEL o —
{F} = } o mrRa“{f} (3.16)
e=l s e

Furthermore, the second term in Eq. 3.12 can be expressed as

H

.E b, d//h 8w, cos(uyz)dz = ) bi{éq}T{Fci)} = {8q11F)
=g =L (3.17)
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where {F(l)} is given by Eq. 1.143; and

o0 .
F o= ) o (3.18)
, i
i=1
It is important to note that the series in Eq. 3.18 comverges very
rapidly and only the first few terms are needed for adequate representa-
tion of the infinite series.
Substituting Fgs. 3.14, and 3.17 into Eq. 3.12, the virtual work

expression can then be written as

sw = -Ee)(8g} () + (7)) = -&o) (sa) T iF) (3.19);
and therefore, the effective earthquake load vector is given by

{P ..} = ={F}i(t) (3.20)

eff

I1I-1-2. Modal Analysis

The matrix equations which govern the earthquake response of the

undamped liquid-shell system are given by
MG + [KI{q} = {P_g¢} (3.21)

where {q} is the nodal displacement vector, [M] = [MS] + [DM]

[MS] and [DM] are the shell mass matrix (Eq. 1.106) and the added mass
matrix (Eq. 1.146), respectively, (K] = [KS] ; [KS] is the shell stiff-
ness matrix (Eq. 1.98), and {Peff} is the effective earthquake load

vector (Eq. 3.20). It should be noted that only the impulsive response
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is being investigated, and that the added stiffness matrix has been
neglected in Eq. 3.21 since its effect on the cosf-~type modes is insig-~
nificant as shown in Sec. II-1.

Eg. 3.21 can be solved directly by numerical integratiom; however,
in analyzing the earthquake response of liuear structures, it is
generally more efficient to use modal superposition to evaluate the
seismic response, since the support motion tends to execite strongly only
the lowest modes of vibration. Thus, good approximation of the earth-
quake response can be obtained by carrying out the analysis for only a
few natural modes.

Now, let

fq} = [a1n(e)) (3.22)

where [6] is a rectangular matrix of the order N X J which contains the
moedal displacement vectors associated with the lowest J natural frequen-
. . X % F3 ES
cies (i.e., [Q] = [{q}l s {q}z,'-.,{q}J]); N is the number of degrees of
freedom (4 % NEL); and {n(t)} is the modal amplitude vector.
Substituting Eq. 3.22 into Eq. 3.21 yields

POLQIE) + KIIMNY = TP ) (3.23)

Premultiply by [SJT and employ the definition of the effective load

vector (Egq. 3.20), one obtains

1 a8 + TGy = -8t e (3.24)

which can be written, more conveniently, as
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Fidiiny + BJiny = -1 (3.25)

where Eﬁj and EEJ are the generalized mass and stiffness matrices,
respectively, of the order J X J; and {g}é(t) is the generalized force
vector of the order J x 1.

Because of the orthogonality conditions of the natural modes,

namely,

*.T % _ %, T & _ . P ¢
{q}i[M]{q}j = {q}i[K]{q}j = 0 (i # 3) (3.26),

the generalized mass and stiffness matrices are diagonal. Furthermore,

the diagonal terms of the generalized stiffness matrix can be written as

X 2% 2, % T £

K,. = w,/ M,, = w7{qr.M{q}, ; 3§=1,2,...,7 3.27

43 5 M3 5 e Mgy 3 25 ( )
Therefore, Eq. 3,25 reduces to J independent differential equations for

the unknowns nj

2

Bt w . = - B 3 4= 1,2,....d 3.28
nj JnJ (t) F s ( )

b
F
x
M.
Jl1

Introducing damping into Eg. 3.28, then one can rewrite such equation

as follows

v . 2 .e
. F 20w, tw,. n, = =-p.6(t ; i o= 1,2,...d 3.29
Ny CJ 57y 5 Ny BJ (t) h) 32, ( )

where Bj are the modal participation factors defined by
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l‘:
. F.

B, = - 5 3=1,2,...0 (3.30)
M

The modal amplitudes nj(t) can be found by employing either the con-
volution integral or a step by step integration scheme; in this analysis,
we employ the integration scheme developed in [5]. For G(t) given by a

segmentally linear function, for b, st =t Eq. 3.29 becomes

i+l?

AG,

. . 2 . 5
. F20.w.n., +w. n, = -B.1G, +—— (t - t.) 3.31
nJ CJ JnJ J nJ BJ i At i ( )

where Aé. = E. - é. s and At = ¢, - t. = constant. The solution of -
i i+l i i+l i
Eq. 3.31 at time t = ti+l can be expressed in terms of that at t = ti
by [5]
N4 Ny Gy
; = [A(i:,w,!lt)] S [B(C,w,ﬂt,B)] G (3.32)
i+l i i+l

I

in which the subscript j is omitted for brevity. Therefore, if the
modal amplitude n(t) and its time derivative ﬁ(t) are known at tys then
the complete time history can be computed by a step by step application
of Eq. 3.32. The advantage of this method lies in the fact that for a
constant time interval At, the matrices [A] and [B] depend only on
¢, w, and B, and are constant during the calculation of the response.
Once the n's and their time derivatives are obtained, the displace-
ments, the force and moment resultants, and the hydrodynamic pressures )

can be evaluated as explained in the following subsection.
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ITI-1-3. Computer Implementation and Numerical Examples

A digital computer program has been written to compute the earth-
quake response of partly filled tanks by the methéd outlined in the
preceding subsections. The program '"RESPONSE" employs first the
program "FREE VIBRATION" to obtain the free vibrational modes. Then it
formulates the generalized mass and load vectors, and computes shell
nodal displacements and accelerations which are used to solve for the
shell force and moment resultants, for the hydrodynamic pressures, and

for base shear.

Example 1: A Tall Tank

The computer program is first utilized to estimate the earthquake
response of an open top tall tank whose vibrational wmodes are obtained
in Chapter I. The tank has the following dimensions: R = 24 ft,

L =72 ft, and h = 1 inch, and it is assumed to be full of water. The
input greound motion is the N-S component of the 1940 E1 Centro earth-
quake; only the first ten seconds of the record are employed in the
analysis and this portion is displayed in Fig. III-2-a. The modal
damping ratio of the liquid-shell system is assumed to be 27.

The time history of the relative radial component of shell accel-
eration at the tank top and in the 6 = 0 direction, w(0,L,t), is shown
in Fig. II1T-2~b for comparison with the ground acceleration; it is
clear that the relative acceleration is much greater than that of the
ground. Figures III-3-a and b show the time history of the radial and
tangential components of shell displacement, respectively, at the top

of the tank while Figs, III-4-a and b display the time history of the



~193-

- GROUND ACCELERATIGN
. Max.=(0.348 ¢

1 L 1

0.0 1.0 2.0

I [ I R | 1 ! ] J
3.0 4.

0.6 5.8

0.4

c.2

~-0.2

NORMAL IZED ACCELERATION
¢.o

-0.4

-0.5

-1.0~0.8

5. 6.0 7.0 8.0 9.0 10.0
[

Q g
TIME IN SECS ‘
(a) N-5 Component of the 1940 El Centro Larthquake.

1

Lo

w(0,72, 1)
L Max.=1.32 g

1 |
0.0 .0 2.0

(b) Time History of the Relative Radial Component of Shell Acceleration
at the Tank Top in the 8 = 0 Direction.

0.8

0.8

a..

0.2

-0.2

NORMAL IZED RCCELERATICN
-0.4 0.0

-1.6

-1.0-0.8

| | | | 1 1 L 1
3.0 4.0 5.0 6.0 7.0 8.0 9.0 10.0
TIME IN SECS

Fig. III-2



-194-

' w0, 72, 1)
Max.=0.44% in

0.8 0.8

0.4

=
o
e
L
g
& 1 t
[V}
—_— O
o5 CU\A/LN /
a I
HWL
[k
-
(o
=
Sef
[ds]
al
[
@
el
|
o
G
[ N T N R i 1 L
0.0 1.0 2.0 3.0 4.0 5.0 6.0 7.0 8.0 8.0 10.0
TIME [N SECS

(a) Time History of the Relative Radial Component of Shell Displacement
at the Tank Top in the & = 0 Direction.

o vig . T2.1)

@ Max.=0.443 in

Q

0.8

0.2 o.u
T
_—

-0.2

NORMALIZED DISPLACEMENT
J.0
—_—

-0.u

-1..-0.8 -0.6
.

ot 1 1 ! NG 1 1 L — |
0.0 1.0 2.0 3.0 4.0 5.0 6.0 7.0 8.0 8.0 10.0
TIME IN SECS

(b) Time History of the Relative Tangential Component of Shell Displace-—

ment at the Tank Top in the © =-% Direction.

Fig. III-3



-195-

radial components of acceleration and displacement, respectively, at
mid-height.

To check the accuracy of the time integration scheme employed in
Eq. 3.32, the maximum relative displacement wmax(O,L,t) is computed

using El Centro response spectrum; it can be approximately estimated by
0,L,t) = B S, 4 3.33
wmax( s ,t) - B d q47 ( . )

where B is the earthquake participation factor of the fundamental mode;
Sd is the spectral displacement corresponding to the fundamental period;
and 247 is the modal amplitude of the radial mode shape at the top of
the tank. Hence, wmax(O’L’t) = (1.55)(0.295)(1.0) = 0.457 inch which is
in close agreement with the wvalue of 0.445 inch obtained by time inte-
gration of Eq. 3.32 and superposition of 4 modes of vibration. This
also indicates that the displacement response of the tank is due mainly
to the fundamental mede.

Having obtained the relative displacements of the shell, the force
and moment resultants can be computed. Figure III-5 displays the time
histories of the membrane force resultant N computed at 3 ft and at
9 ft above the base. To compare these stresses with those induced in a
similar rigid tank, one can make use of Housner mechanical model [6].

The elements of such model are given by m

0= 0.902 m and HO = (0.375 H

where m is the total mass of the contained liquid. The impulsive

moment is therefore given by

M = (m H, + ms-%) G = 74.78 X 106 Ib. ft (3.34)
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which produces axial membrane force resultant
(NZ)' = 2% = 3443.8 Ib/in
max

it is clear that such force resultant is much lower than that in a
flexible tank. This is due to the fact that the impulsive loads arise
through acceleration of the shell. If the shell is flexible, two ac~
celeration components must be considered: (i) the acceleration of the
undeformed shell, i.e., the ground acceleration, and {ii) the relative
acceleration due to shell deformations. In a rigid tank, only the ac-
celeration of the undeformed shell is considered which introduces the
noticeable difference in the magnitude of shell stresses., To further
clarify this point, consider, for illustration purpose, that the masses

m, and m are attached to the tank wall by springs with stiffnesses that

0
simulate the fundamental natural period of the tank. To estimate the
impulsive moment, one has to employ the spectral acceleration which is

2.46 time the ground acceleration, and therefore, the maximum axial

membrane force is given by

(Nz) = 3443.8 %X 2,46 = 8471.8 Ib/in
max

which is in close agreement with that obtained by shell analysis.

The time history of the membrane force resultant N6 at a distance
of 6 ft above the base is shown in Fig. III-6-a; its maximum value is
2166 Ib/in. To compare with that obtained in a similar rigid tank, one

has to compute the hydrodynamic pressure. For a rigid tank, the maximum
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hydrodynamic pressure occurs at the bottom of the container; its value

is given by [6]

V3 p,ud
py(R,0,0,t) = —~‘¢-;' tanh (Mg%fi) = 4,92 psi  (3.35),

and consequently, the maximum dynamic membrane force resultant can be
computed by

NB(O,O,t)maX = (pd) - R = 1417 Ib/in
max

which is less than that of a flexible tank.

The time histories of the moment resultants Mz and MG are shown in
Figs. IIL-b-b and ¢, respectively; these moments have negligible effect
on the extreme fiber stresses of the shell.

As is known, the impulsive hydrodynamic pressure consists of two
components: one due to ground acceleration and one due to the relative
acceleration of the deformed shell. FigureS.IIIu7—a and b display the
time histories of these pressures at a distance of 7.2 ft above the
base. The maximum value of the hydrodynamic pressure due to ground
acceleration only is 3.63 psi which is less than that obtained by
Eq. 3.35; however, it is pointed out in [7] that the Housner model over-
estimates the hydrodynamic pressure for this particular H/R by about 33%
which indicates close agreement between the computed pressure and the
"exact" pressure in rigid tanks. The maximum additional pressure dus
to shell deformation at 7.2 ft above the base is 1.33 time that due to
ground acceleration; however, the ratio is much larger at higher eleva-

tions as shown in Fig. I1I-8, 1t should be noted that the wmaximum
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amplitudes of these two cowmponents of the impulsive hydrodynamic pres-
sure do not occur, in general, at the same time.

The impulsive base shear Qg(t) due to ground acceleration only and
the total impulsive base shear Q(t) are shown in Fig. III-9. The
maximum base shear (Qg(t))maX is in good agreement with that computed

for rigid tanks which is given by

B . - 5
(Qg) = (my +m)C_ 27.18 x 107 Ibs (3.36)
max

The slight difference between this value and that of the present
analysis is due to the fact that the Housner model overestimates the
impulsive mass my for tall tanks. The total impulsive base shear
is also checked by the method presented in [7] where the liquid-
shell system is analyzed using Flugge shell theory in combination
with a Ritz-type procedure and the natural modes of vibration

of uniform cantilever beams. The analysis gives a value of

52.47 % 105 Tbs which is in close agreement with the value of

51.08 x 105 Ibs obtained in the present analysis. It should be
noted that the analysis in [7] is applicable only to uniform shells
which are completely filled with liquid.

The troublesome aspect of analyzing the earthquake response of
storage tanks is to define the appropriate value of damping. Tt can
only be estimated from earthquake response of real tanks; unfortunately,
seismic response data from tanks during past earthquakes are not
available. Although a modal damping ratioc of 2% seems appropriate for

the liquid-shell system, the foundation soil also dissipates energy
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TABLE III-1

N-S COMPONENT OF THE 1940 EL CENTRO EARTHQUAKE

Damping
Rigid Tank
2%(>c) Sz(mt) 10%.\::7’:)
Maximum Radial
Component of Shell 0.445 0.344 0.296 _
Displacenent inch inch inch
w(0,72,t)
Ffi’:?;i‘sﬁii . 8375 6473 5564 3444
NZCO,B,t) Ib/in Ib/in 1b/in Ib/in
M?iimeRE‘;‘ﬁ%igﬁial 2166 1674 1439 1417
Ib/in Ib/in Ib/in Ib/in
Ne(0,6,t)
Maximum Base 5 5 5 5
Shear 51.08 x 10 39.47 x 10 33.94 x 10 27.18 x 10
Q(t) Ibs Ibs Ibs Ibs

* Computed by time integration.
*% Computed by response Spectrum.
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which cannot be exactly evaluated. For illustration purposes, Table
III-1 presents the maximum radial component of shell displacement, the
maximum axial and tangential force resultants and the maximum base
shear computed for different values of damping ratio ¢: it also dis-

plays those in a similar rigid tank for comparison,

Example 2: A Tall Tank (Comparison with Shaking Table Results)

To illustrate the effectiveness of the analysis under considera-
tion, the computed earthquake response of an open top tall tank is cow-
pared with that obtained by shaking table tests [Z]. The tank model is
made of aluminum whose modulus of elasticity is 10 x 106 psi and its
density is 0.244 x lO_3 lb-secz/in4. The model has the following
dimensions: R = 3.875 ft, L = 15 ft, and h = 0.09 inch in the lower
10 ft of its length and h = 98.063 inch in the upper 5 ft. The tank is
partly filled with water to a depth of 13 ft. The input motion is the
N-S component of the 1940 El Centro earthquake speeded by a factor of
1.73 and applied with a maximum acceleration of 0.5g as shown in Fig.
II1-10-a.

The time history of the computed radial component of shell accel-
eration at the tank top and in the O = 0 direction is displaved in
Fig. ITI-10-b for comparison with input acceleration. Figs. III-l1l-a
and b show the time history of the computed membrane force resultants
while Figs. III~12-a and b show the time history of both the impulsive
bage shear due to ground motion only and of the total impulsive base

shear, respectively. In addition, Table III-2 presents a comparison
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TABLE TI1I-2

COMPARISON WITH SHAKING TABLE TESTS [2]

Flexible Rigid (%)
(¢ = 2%)(*) (im uls‘gl only) Observed
(impulsive only) P tve only
Max. Radial
gzzpinent °i Shell 0.150 B 0.131
placemen inch inch
w {0,15,t)
Max. Axial
Force Resultant 418.1 155.3 362.6
1b/in ib/in 1b/in
N, (0,0.625,t)
1 —
Max. Base 4
Shear 3.90 x 10% 1.79 x 104 2.75 % 10
1bs 1bs 1bs
QL)
(%)

The input motion used in calculation of tank response is not

identical to the actually applied shaking table acceleration.

TABLE I11-3

COMPARISON OF SPECTRAL ACCELERATIONS

Spectral Acceleration (g)
Periods ELl Centro Record (Speeded Version) Shaking Table
T Input
secs
= 0% r =27 =17
0.077 2.80 1.45 0.95
0.100 2.45 1.43 0.88
0.200 1.92 1.18 2.08
0.400 2.57 1.28 1.56
0.800 0.60 0.35 0.49
1.200 0.46 0.32 0.38
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between the computed and observed response; it also displays the
response of a similar rigid tank for comparison.

Inspection of Table III-2 indicates that the computed and observed
responses are much higher than those computed for a rigid tank. 1t can
also be seen that the seismic response of a flexible fank computed by
the present method is higher than the obéerved response in a shaking
table test. However, one must keep in mind that the input acceleration
used in the calculation of the response is different than the actually
applied acceleration in these tests.

It is found that the input acceleration used in shaking table
tests does not exactly resemble the motion of the 1940 E1 Centro
earthquake, especially at the fundamental natural frequency of the
model as shown in Table TI1II-3. In this table, a comparison between
the spectral accelerations for different natural periods is made;
only the response spectrum for 1% damping ratio i1s available in {27, and
this is compared with the spectral values obtained from [5] for 0% and
2% damping ratios and for a maximum ground acceleration of 0.5g.
Because the response spectrum given in [5] is for the actual El Centro
record (not the speeded up version employed in the calculations), the
natural periods T are multiplied first by the 1.73 speed factor and
then emploved to obtain the spectral accelerations listed in Table
ITI-3.

For the fundamental period of vibration of the model, the spectral
acceleration of the actually applied motion is 0.95g for a 1% damping
ratio; however, the spectral acceleration of the record employed in

the calculation of the response is 1.45g for a 2% damping ratio. If
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one takes into account this difference in spectral accelerations and
modifies accordingly the observed response, one can achieve a good
correlation between the computed and observed responses. For example,
multiplication of the observed base shear of 2.75 x 104 1bs by a factor
of (1.45/0.95) vields a value of 4.19 x 104 1bs which is comparable to
a computed value of 3.9 x lO4 Ibs (note that the observed base shear
includes both the impulsive and convective components; however, for the
problem under consideration, the convective component is much smaller
than the impulsive one). The modification suggested above yields
reasonable values for all response quantities which are proportional to
the acceleration; however, those quantities which are directly propor-
tional to the spectral displacement are slightly underestimated. This
indicates that the observed fundamental period is higher than the com-
puted period by about 107.

In view of these results, one can conclude that the flexibility of
tank walls that are anchored to the base has a significant effect on
the seismic response of tanks. These dynamic stresses are much greater

than those computed assuming rigid walls.

Example 3: A Broad Tank

The computer program is also used to estimate the earthquake
response of an open top, fixed base, broad tank whose vibrational modes
were obtained im chapter I. The tank has the following dimensions:

R =60 ft, L = 40 ft, and h = 1 inch, and it is assumed to be full of
water. The input ground motion is the N-S component of the 1940 El
Centro earthquake shown in Fig. III-2-a3 and the modal damping ratios

are assumed to be 2%.
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The time history of the radial component of shell acceleration at
mid-height, w(0,20,t), is shown in Fig. III-13-a; it should be noted
that the maximum amplitude of the radial component of shell accelera-
tion occurs near the bottom of the tank not at the top as in tall tanks.
Figure IIT-13-b presents the time history of the radial component of
shell displacement at mid-height which is 2.7 times greater than the
radial component at the tank top shown in Fig. III~13~c., The time
history of the axial membrane force resultant at 1,67 ft above the
base is displayed in Fig. III-13-d. To compare this stress with that
induced in a similar rigid tank, one can make use of Housner's mecha-
nical model [6]. For the particular tank under consideration, the
parameters of such a model are given by m, = 0.38 m and Hy = 0.375 H.

The impulsive moment is therefore given by

6

M = (m i +nm )Ei = 60.53 x 10° 1b. ft
max

L
max 00 s 2

and consequently, the axial membrane force resultant can be computed by

M

(N) . = mif = 446 1b/in
Z 1 WR

which is much lower than that in a flexible tank. It should be noted
that the computed dynamic moment resultants (Mz and MS) in fixed-base
broad tanks are very high; however, in a real tank the wall is not
"built in" at the base and this reduces local bending stresses signi-
ficantly. Therefore, only the membrane stresses in a bread flexible

tank are compared to those of a similar rigid tank.
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Fig. ITI-15. Time History of Base Shear.
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Figure I11-14 displays the time history of the impulsive hydro-
dynamic pressures at three locations along the shell height.in the 6 =
0 direction. The hydrodynamic pressure components pg and P, due to
ground acceleration and due to shell deformation, respectively, are
plotted separately; it can be seen that the pressure component P, has
an axial distribution similar to that of pg which is in contrast to the
pressure distribution in a tall tank.

Finally, the impulsive base shear due to ground acceleration only

and the total impulsive base shear are shown in Fig. III-15,
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I1I-2. Cosnf-Type Response to Earthquake Excitation

In the preceding section, a method for analyzing the earthquake
response of a perfectly circular cylindrical tank was presented. The
seismic response is obtained by superposition of the cos 8-type modes
because the effective seismic load resulting from a given base motion
excites only modes having n = 1. Recently, shaking table tests with
aluminum tank models [1,21 and vibration tests on full-scale tanks
(refer to Chapter IV) show that cos nf-type modes do respond to base
excitations. In a perfect circular tank, cos nf@-type modes cannot be
excited by rigid base motion; however, fabrication tolerances in civil
engineering tanks permit a significant departure from a nominal circu-
lar cross section and this tends to excite these modes.

Little can be found in the literature about the importance of the
cos nf-type modes in an earthquake response analysis, The only inves-
tigation of the seismic response of an out-of-round tank is carried
out approximately by Veletsos and Turner [10,11]. They compute the
hydrodynamic pressure in an irregular rigid tank and apply it to a
flexible tank. It should be noted, however, that the hydrodynamic
pressures in a flexible tank may differ significantly from those of a
rigid tank.

Although a complete analysis of the effect of irvegularity of the
circular cross sections of the tank is beyond the scope of this study,
it seems logical to employ the free lateral vibrational modes obtained
earlier to explore approximately such effect. Since the magnitude and

distribution of fabrication error cannot be predicted, the influence
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of the cos nO-type modes can only be estimated by computing the seismic

response of a hypothetical irregular tank,.

I11~-2~1. Tank Geometry and Coordinate System

The irregular tank under consideration is shown in Fig. TIII-16.

It is a ground-supported, circular cylindrical liquid container of
nominal radius R, length L, and thickness h. The tank is partly filled
with an inviscid, incompressible liquid to a height H and is subjected
to ground excitation G(t)}.

A cylindrical coordinate system is used with the center of the
base being the origin. The radial, circumferential and axial coordi-
nates are denoted r, 6, and z, respectively. The cross sections of
the tank are assumed to be irregular but symmetrical about the line of
excitation, and therefore, the radius of the tank ﬁ(@,z) can be

expressed as

[eo]
X

R(r,0) = R{1+ > &, U (2) cos (n8) (3.37)
n=0

. . . . . th |
where wn(z) is an assumed distribution function of the n  circum-
ferential irregularity in the z-direction; and En are small numbers In

comparison to unity.

I17-2-2, The Effective Force Vector
The hydrodynamic pressure in an irregular tank consists of two

components;
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{i) the pressure that would result in a perfectly circular
tank, and

(ii) a corrective pressure arising due to cross-section

irregularity.

It is the purpose of this subsection to evaluate the corrective
component of the hydrodynamic pressﬁre, and consequently, compute the
effective earthquake load vector associated with irregularity of the
tank.

For illustration purpose, the radius ﬁ(@,z) is taken to bhe
R(8) = RI[1 + ¢ cos (nB)1 (3.38)

where the functions wn(z) of Eq. 3.37 are assumed to be 1.0 for the
particular n under consideration and zero for all other n, and the
subscript n of £, is omitted for brevity.

The velocity potentigl function, ¢(r,0,z,t), must satisfy the
Laplace equation (Eq. 1.1) as well as the following boundary condi-
tions:

1. At the rigid tank bottom

2 (r,8,0,6) = 0 (3.39)
2. At the quiescent liquid free surface (impulsive case)

o

ikt = {

at (rsegH,t) 0 (3. 50)

3. At the irregular liquid-shell interface
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3 ~ -

R (R,08,z,t) = Y\)(S,z,t) (3.41)
where Vv is the outward normal vector to the irregular shell surface;
and %v(e,z,t) is the component of shell velocity in the direction of
the wvector V.

If C denotes the contour of the boundary of the cross section,

then (12}

S = Grcos (e + g cos (heg) on C (3.42)

|

_ %9 _d8 _199dr

or ds r ¢80 ds on C (3.43)

where ds is the infinitesimal distance measured along the curve C.

The equation that describes the contour C is
r = R[1+ & cos (n8)] , (3.44)
and consequently,
dr = -nRe sin (n8) d& on C (3.45)

2
Since (ds)2 = (r d8)2 + (dr)” and € << 1, then

1dr _ _mne _, 2
o G Sin (n6) + 0™y , (3.46)
and
a9 _ 2
rs s 1+ 0(c™) (3.47)

The derivatives g%—(ﬁ,@,z,t) and %%—(ﬁ,@,z,t) can be expressed in
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terms of the derivatives at the circular contour as follows

2

gﬁ (R.8,2,t) = 2 (R,8,7,t) + R cos (n8) 2 (R,8,2,t) + 0(c2)
T ar 8r2
(3.48),
and
g—g« (R,8,2z,t) = %% (R,0,z,t) + 0(g) (3.49)

Now, it is assumed that the velocity potential function, ¢{(r,0,z,t),

can be expanded in a power series of £ as follows:
2
¢(r,9,z,t) = ¢O(r,8,z,t) + €¢1(r,9,z,t) + 0(e ) (3-50)

With the aid of Eq. 3.50, Egs. 3.48 and 3.49 can be rewritten as

o) o B(bo 3(ﬁ)l
5;’(R,8,Z,t) = ?ETV(R,G,Z,t) + g 7;?'(R,e,z,t) + &R cos (nB)-
32¢0 2
> (R,0,z,t) + 0(c™) (3.51),
or
and
Gl
3¢ - — 0 =
55—(R,6,z,t) = Zﬁ;’(R,G,z,t) + 0(g) (3.52)

Substituting Eqs. 3.46, 3.47, 3.51 and 3.52 into Eq. 3.43, one

can rewrite the left hand side of Eq. 3.41 as follows
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9¢ o¢
Elogs . 0 1 .
iy (R,08,z,t) 3z (R,8,z,t) + ¢ 5 (R,8,z,t) + R cos (nd)
82¢ n 3¢0 2
5 (R,0,z,t) + E’Sin {(n0) ?ﬁ;'(R,G,z,t) + 0(g™) (3.53)
or

The right hand side of Eq. 3.41 involves the velocity of the tank
normal to shell surface. This velocity consists of two components:
(i) a component directly proportional to ground velocity and this con-
tributes to the effective earthquake load vectors on the RHS of the

earthquake response equations

Mg} + [cilq} + (KI{q} = {P__.} (3.54);

and (ii) a component directly proportional to shell deformations and
this contributes to both the added mass matrices and the effective
earthquake load vectors of Eq. 3.54. To clarify this point, consider,
for example, the radial component of shell velocity ﬁl(z,t) cos {8).
This component contributes to the added mass matrix of the tank when it
vibrates in the cos (§)-mode. 1In addition, it contributes to the
effective earthquake load vectors when an out-~of-round tank, with an
irregularity proportional to cos (nf), vibrates in the cos (n-1)8-mode
and in the cos (n+l1)8-mode.

The tank velocity due to ground motion only in the direction of

the outward normal wvector v can be expressed as
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e
1

S [E(t) cos (6)] 1 + [-G(t) sin (&)1« [n € sin (n8)] + 0(&2)

il

é(t){cos(@) - n £ sin {B) sin (nB)} + 0(62) (3.55)

Now, it remains te define the velocity component due to shell deforma-
ticns. In the following analysis, we shall be concerned with the vibra-
tion of the tank in the (n-1)8-mode. The only component of shell
deformations that contributes to the effective load vector of the
(n-1)0-mode is the one proporticnal te cos (0)., Therefore, the

velocity %v due to shell deformation that contributes to the load

s
vector of cos (n-1)8-mode is

Y = %1(z,t) cos (8) + ;l(z,t) n £ sin (6) sin (nb) + 0(62)

.

(3.56)

Substituting Egqs. 3.53, 3.55, and 3.56 into Eq. 3.41 and equating
the terms on the LHS to those of equal order of £ on the RHS, then

Eq. 3.41 reduces to the following simultaneous equations:

a(b L4 Ll
7;9f(R,6,z,t) = {G(t) + w (z,0)} cos (8) (3.57);
T 1
and
2
30y by n 3,
. (R,8,z,t) + R cos (nB) arz (R,8,z,t) + i'sin (n8) 5 (R,6,z,t)
= {Gl(z,t) - (o)} n sin (9) sin (nd) (3.58)

The solution ¢l of Eq. 3.58 provides the hydrodynamic pressure

component that contributes to the effective load vector of the
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(n~1)6-mode, It is assumed that the irregularity of the tank does not
affect the LHS of Egq. 3.54; this is substantiated by the close agree-
ment between the computed and measured natural frequencies of full
scale tanks which are undoubtedly irregular.

The solution ¢O(r,6,z,t) of Eq. 3.57 which satisfies the Laplace

equation and Egs. 3.39 and 3.40 can be written as

¢O(r,6,z,t) = EE: Ai(t) Il(uir) cos (aiz) cos (D) (3.59)
i=1
where
. Li-Dnr .
ai = " 3 i 1,2,... (3.60)

The unknowns Ai(t) can be determined from Eq. 3.57 since

oo

2{: o A () T (@R) cos (xz) = G(e) + ¢1<z,t)
i=1

and, consequently,
H

%j/” {él<z,t) + G(t)] cos (a,2) dz
G

(3.61)

il

Ai(t)
B ai Il(aiR)

Substituting Eq. 3.59 into Egq. 3.58, one obtains
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[s.4]

3@1 ~ .
TE?-CR,B,z,t) = ~R cos (nd) EEJ ui Ai(t) 11(aiR) cos (aiz) cas (8)
i=1
T . .
- 3 sin n8Y 1| - 2{: Ai(t) Il(aiR) cos (aiz) sin (6)
i=1
+ {%l(z,t) - G(t)} n sin (8) sin (n®) (3.62)
Using the following trigonometric identities
cos (8) cos (nb) cos [{(n-1)6] ; cos [(n+1)6]

and (3.63)

cos [(n~1)0] - cos [{(n+l)B]
2

sin (8) sin (nf)

and retaining only those terms in Eq. 3.62 proportional to

cos [(n-1)8], one can write

KN

a(b’ (0] )
~§%* (R,8,z,t) = cos [(n-1)8] jz: [Ai(t) (— %-aiz ’Il(aiR)
i=1 '
+ §§11<aig)) cos (u,2). +—§»[él(z,t) - G(t)] (3.64)

where ¢l* indicates the part of the potential function ¢l which is
proportional to cos {(n-1)07.

The wvelocity potential function ¢l* mﬁst satisfy the Laplace
equation and the boundary conditions (Eqs. 3.39 and 3.40); therefore,

it takes the following form:
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¢1*(r,6,z,t) = 2{: Bi(t) In_l(air) cos (aiz) cos [(n-1)9] (3.65)

i=1

Substituting Eq. 3.65 into Eg. 3.64, one obtains

Z 0B, (e) I (a.R) cos (az) = Z[Ai(t) (~ % oci2 1, (R
i=1 i=1
+ gi-ll(aiR)) cos (uiz)] + %-[Gl(z,t) - é(t)] (3.66)

Therefore, the unknown functions Bi(t) can be expressed as follows:

_ 1 R 2 = o ‘
Bi(t) = . o Ai(t) (— 5 Oy Il(oeiR) + SR Il(ociR))
O -1y
H
+% / [\.fl(z,t) - G(t)] cos (a;2) dz (3.67)
0 : )

The hydrodynamic pressure pd’c which is proportional to

cos [(n-1)6] can be expressed as

) a(bl'k
P4 (R,0,z,t) = “E€0) T3 (R,0,z,t) (3.68)
= -co, 2 B () T__ (a,R) cos (a,z) cos [(n-1)6] (3.69)

i=1

The work done by such hydrodynamic lead during an arbitrary vir-

tual displacement éwn cos [(n-1)8] is given by

-1
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H 2m
Sw = '}/a J/ﬁ (pd* (R,8,z,t) dw__, cos {(H~1)9]) R db dz

0 0
00 H
= -ETFRQQ' E [Bi(t) In_l(uiR) / Swn_l cos ((xiz) dz:l (5.70)
i=1 0
The integral in Eq. 3.70 can be expressed as
H
- T (i)
./[. dwn—l cos (aiz) dz = {Sq}(n—l) {F 77} (3.71)
0

where {F(1>} is given by Eq. 1.143. If one writes

b,(e) = emRp, I . (a.R) éi(t) ; and {F} = :E: b, frid)y
i=l (3.72)

then the virtual work expression can be written as

T

W = —{Sq}(n_l) {F} (3.73),

and therefore, the effective earthquake load vector for the (n-1)8-

mode 1is given by
{Peff}(nﬂl) = —{F} (3.74)

It should be noted that the load vector defined by Eq. 3.74 can only be

evaluated if the response of the cos 8-type modes is known.
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T11-2-3. Computer Implementation and Numerical Examples

A digital computer program has been written to compute the earth-
quake response of partly filled irregular tanks by the method outlined
in the preceding subsections. The program "IRREGULAR" employs first the
program "RESPONSE" to obtain the earthquake response of the cosf-type
modes. Then it formulates the load vectors and computes shell nodal

displacements and accelerations.

Examples

The computer program is utilized to estimate the earthgquake response
of the cos36-type modes of two open top, broad and tall tanks with non-

¢ircular irregularity described by
R(8) = R(1 + £ cos68) (3.75)

The first tank has the following dimensions: R = 60 ft, L = 40 ft, and

h = 1 inch while the second one is 24 feet in radius, 72 feet in height,
and has a wall thickness of 1 inch. The tanks are assumed to be full of
water and to be subjected to fhe N-S component of the 1940 El Centro earth-
quake. The modal damping ratios are assumed to be 2%.

The inclusion of the deformation of the cosO-type meodes in computing
the load vector of the cosnB-type modes can be important. To clarify this,
define an "equivalent acceleration" as the sum of the ground acceleration
plus the acceleration contributed by the cosfS-type modes which excite the
cosnf-type vibrations of the tank wall. This acceleration differs from

the ground acceleration in two respects:
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1. The amplitudes of the "equivalent acceleration', and consequently
the amplitudes of the exciting force, are larger than the amplitudes of
the ground motion and the corresponding exciting force (Refs [10,11]),
respectively.

2. The frequency content of the "equivalent acceleration' is dif-
ferent from that of the ground; it is affected by the natural frequencies
of the cosf-type modes.

The amplitude of the response of the cosnf-type modes of the tank
wall is dependent on the value of €. For the broad tank and for a prac-
tical value of € = 0.01, the maximum amplitude of the radial component of
the cos56-type displacement at the top of the wall is about 40% of that of
the cosO-type displacement. However, for the same value of ¢, the ampli-
tude of the cos58-type mode of the tall tank is negligibly small as
compared to the displacement of the cosO-type modes. Therefore, one can
conclude that the effect of irregularity i1s more pronounced for broad tanks
than for tall tanks. It should be noted that a recent experimental study
on plastic models of tall tanks (refer to Sec. IV-5) showed that buckling
of these tanks is largely dependent upon the response of the cosB-type
modes and that the higher circumferential shell modes seem to have only a
secondary role.

The foregoing results concerning the response of the cosnf-type modes

are based on a very limited study aimed to providing a basis for which
later work can be developed; therefore, one must guard against drawing

broad cenclusions on the basis of such a limited study.
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I1T~-3. Appendices

Appendix I1I-a

List of Symbols

The letter symbols are defined where they are first introduced in

the text, and they are also summarized herein in alphabetical order:

Ai(t) Time dependent coefficients of the velocity
potential function ¢0, Eg. 3.59.

[a] 2 x 2 matrix defined by Eq. 3.32,

Bi(t) Time dependent coefficients of the velocity

potential function ¢l*, Eq. 3.65.

[B] 2 x 2 matrix defined by Eg. 3.32.

bi Coefficients defined by Eq. 3.13.

bi(t) Time dependent coefficients defined by Eq. 3.72.
[C1] Damping matrix, Eq. 3.1.

{DM] Added mass matrix defined by Eq. 1.130.

{d} Shell displacement vector, Eq. 1.31.

{dg} Shell displacement vector associated with ground

motion, Eq. 3.7.

{8d} Virtual displacement vector, Eq. 3.10.

{E}e Generalized displacement vector of the element
"e'", of order 8 x 1, Eq. 1.78.

ds Infinitesimal distance measured along the contour

of tank cross section.
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Indicate element, and occasionally used as the
number of the element "e

Unit base vectors in the r and 6 directions,
respectively.

Vector defined by Eq. 3.19 and by Eq. 3.72.

Vector defined by Eg. 1.143.

Vectors defined by Egs. 3.16 and 3.18, respec-
tively.

Inertia force vector, Eq. 3.8.

Vector defined by Eq. 3.25.

Vector defined by Eg. 3.15.

Ground displacement and its time derivatives.

Ground accelerations at time t = ti+l and
t = ti’ respectively, Eq. 3.31.

Acceleration of gravity

Liquid depth.

Equivalent heights of Housner model for rigid
tanks.

Shell thickness.

Thickness of the element 'e'.

Modified Bessel functions of the first kind of
order n.

Derivatives of In( ) with respect to the radial
coordinate.

Number of vertical modes used in superposition,

Eg. 3.22,
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Stiffness matrix, Eq. 3.1.

Shell stiffness matrix.

Generalized stiffness matrix, Eq. 3.25.

Shell length.

Element length.

Mass matrix, Eq. 3.1.

Shell consistent mass matrix, Eq. 1.106.

Coupling mass matrix, Eq. 3.5.

Generalized mass matrix, Eg. 3.25.

Bending moment resultants.

Maximum impulsive wall moment, Eq. 3.34.

Impulsive and convective masses of Housner model
for rigid tanks.

Shell mass per unit length.

Constant = 4 x NEL.

Number of shell elements.

Membrane force resultants,

Number of circumferential waves.

Effective earthquake load vector, Eq. 3.3.

Effective earthquake load wvector for the
cos (n-1)0-modes, Eq. 3.74.

Hydrodynamic pressures associated with shell
deformation and ground motion, respectively.

Rydrodynamic pressure component that contributes
to the load vector of the cos (n-1)§-modes,

Eq. 3.68.
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Rectangular matrix of the order N x J, Eq. 3,22,

Impulsive base shear associated with ground
motion only.

Total impulsive base shear.

Absclute acceleration vector, Eq. 3.1.

Nodal displacement vector and its time deriva-
tives, Eg. 3.1.

Virtual nodal displacement vector of the
cos (n-1)6-mode, Eq. 3,71.

Time independent nodal displacement wvector.

Radius of irregular tank, Eqs. 3.37 and 3.38,
respectively.

Nominal radius of tank.

Influence coefficient vector, Eq. 3.2.

Vector defined in Eq. 3.5.

Radial coordinate of the cylindrical coordinate
system.

Spectral displacement, Eq. 3.33.

Period of vibration.

Time.

Limits of the time interval under comnsideraticn,
Eq. 3.31.

Virtual work.

Shell displacements in the axial, tangential,

and radial directions, respectively.
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Displacement functions for the nth circumferen—
tial wave,

Shell displacements associated with ground motion.

Shell velocity in the direction of the normal
vector v and its components due to ground
motion and due to shell deformation, respec-
tively (Egs. 3.41, 3.55, and 3.56).

Axial coordinate of the cylindyrical coordinate
systemn.

Coefficients defined by Eq. 3.60.

Modal participation factors, Eq. 3.30.

Increment in ground acceleration = Gi+l - Gi,
Eg. 3.31.
Time interval = ti+l - ti’ Eq. 3.31.

Variational operator.

Small numbers in comparison to unity, Egqs. 3.37
and 3.38, respectively.

Damping ratios, Eq. 3.29.

Modal amplitude vector, Eq. 3.22.

Medal amplitudes and their time derivatives,
Eq. 3.29.

Circumferential coordinate of the cylindrical
coordinate system,

Outward normal vector.

Mass density of the liquid and the shell material,

respectively.
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Liquid velocity potential function.

Leading terms in the perturbation series of the
velocity potential function ¢, Eq. 3.50.

First perturbation term of the velocity potential
function ¢ which contributes to the load
vector of the cos (n~l)O-modes, Eq. 3.64.

Distribution function of the nth circumferential
irregularity in the z-direction, Eq. 3.37.

Circular natural frequencies.

Differentiation with respect to time.
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PART (B)
CHAPTER 1V

VIBRATION TESTS OF FULL-SCALE LIQUID STORAGE TANKS

Iv-1. Introduction

Adequate understanding of the behavior of complex systems is
enhanced by, and generally dependent upon, the comﬁined use of theore-~
tical and experimental techniques in support of each other. In the
first phase of this study, the dynamic analysis of liquid storage tanks
was accomplished by constructing a theoretical model that governs the
interaction between the liquid, the shell and the foundation. The
reliability of such analysis is largely dependent on the various assump-
tions employved in formulating this analytical model. Experimental
investigations are therefore essential to confirm the theoretical con-
cepts and to provide the quantitative data needed for design.

Natural earthquakes can be viewed as full-scale, large amplitude
experiments on structures. If the structural motion 1is recorded, it
offers an opportunity to study the behavior at dynamic force and defor-
mation levels directly relevant to earthquake-resistant design. Unfor-
tunately, seismic response data from liquid storage tanks are not
available and only the qualitative behavior during past earthquakes is
known. The limited information available from field observations of
earthquake damage demonstrates the need for experimental studies on
physical models as well as on full-scale tanks.

Although the only certain way to determine the parameters of major
interest in structural dynamic problems is by testing actual structures,

none of these tésts has been performed on full-scale tanks. In the
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past, experimental data were obtained by testing reduced-scale models;
however, most of these studies were concerned with dynamic problems
associated with aerospace applications [1]. It was not until recently
that an extensive experimental investigation of the seismic response of
%w—scale aluminum tank models was carried out at the University of
California, Berkeley [2,3]. The scaled models were attached to a 20-ft
square shaking table, and a hydraulic actuator system was controlled to
introduce the desired seismic input. These tests provided valuable
information about the seismic behavior of both broad and tall tanks and
showed that earthquake loading can also excite significantly the
cos nB-type modes (n > 1).

In recent years, ambient vibrations of real structures, due to
wind and microtremors, have been measured to estimate the natural fre-
quencies of vibration and the associated mode shapes. The method of
analysis utilizes the Fourier technique which enables the investigators
to understand and interpret the frequency content of the time signals.
However, the scope of ambient tests is limited because the investigator
has no control of the magnitude, duration, or the frequency content of
the exciting forces. The development ¢of a vibration generation system
with adequate speed control in the early 1960's enabled investigators
to conduct detailed studies of the dynamic characteristics of many
types of structures.

The present chapter is concerned primarily with experimental
dynamic studies which were performed on three full-scale water storage
tanks. A series of ambient and forced vibration tests was conducted

to determine the natural frequencies and, if possible, the mode shapes
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of vibration, to illustrate the effectiveness of the thecretical
analysis under consideration, and to select two tanks on which perma-

nent instruments would be installed to record future earthquakes.

IV-2. Description of the Tanks

Tests were performed on three ground supported, welded steel,
water storage tanks owned by the Metropolitan Water District of
Southern California. These tanks are employed to store "finished"
water for use in backwashing the rapid sand filters at the Weymouth
filtration plant in La Verne and at the Diemer filtration plant in
Yorba Linda. The backwash operation requires a large volume of water
in a short period of time: therefore, these "tall" tanks are effective
in providing the necessary pressure head and in reducing the size of
pumps that are required to supply the backwash water.

Each of these tanks consists of a circular cylindrical thin shell
having a height to diameter ratio greater than one. Each tank has a
different type of foundation, and this helps in assessing the influence
of support conditions on the dynamic characteristics. Figure IV-1
shows schematic sections of the tanks and their foundations, and Fig.
IV-2 shows an overall view of the two tanks, no. (1) and no. (2),
located at the Weymouth filtration plant.

The wash water tank no. (1)} is 48 ft in diameter, 71 ft in height,
and has a storage capacity of 1,000,000 gallons. The tank consists of

a thin steel shell of varying thickness; the maximum thickness at the

bottom is %%—inch and the minimum thickness at the top is %—inch. The
tank floor consists of a thin steel plate of %-inch in thickness and a

f%—inch sketch plate. The roof consists of a i%'inch steel plate,
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channel rafters, and four trusses. The tank is anchored to a 2 ft
thick R.C. slab on deep alluvium with 100 anchor bolts, each lg-inch
in diameter. More structural details can be seen in Fig. IV-3,

Tank no. (2), lecated also at the Weymouth filtration plant, is
60 ft in diameter, 64 ft in height, and has a storage capacity of
1,400,000 gallons of water, Tank thickness varies from %‘inch at the
bottom to %'inch at the top. The tank rests on a 2 ft wide, 12 ft deep
concrete ring wall without anchor bolts. After the test program was
completed, the Metropolitan Water District of Southern California
installed a strong-motion accelerograph on the roof, as shown in Fig.
IV-4, to record tank response during future ecarthgquakes {for more
details, refer to Sec. IV-5).

The third tank, located at the Diemer filtration plant, has the

following dimensions: R = 30 ft and L = 80 ft., Its wall consists of

thin steel plates, each 8 ft high; their thicknesses are: 1%,‘%, '%,
‘%%, ‘f%, '%, g,, {%», %* and %/inch. The tank is anchored to a 5 ft

thick R.C. foundation slab supported by 97 R.C. caissons. Each caisson
is 2.5 ft in diameter and approximately 30 ft deep. Figure IV-5 shows

schematic views of the tank and its foundatiom.

IV-3. Experimental Arrangements and Procedures

The purpose of this section is to present a brief description of
the instrumentation used in both ambient and forced vibration tests.
This section is also intended to outline the measuring procedures, and

it contains a discussion of the data reduction procedures.
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1IV=-3-1. Description of the Instruments

One can categorize the instrumentation used in the test program
in three groups: motion sensing instruments, signal conditioning and
recording instruments, and vibration generation instruments; the latter
were used only in the sinusoidal forced vibration tests. A brief
description of these instruments is presented herein; however, for a
complete description of the instruments one can refer to Refs. [4,5,6].

Vibration measurements were made using up to eight S55-~1 Ranger
seismometers as the motion sensing instruments. The Ranger is a
velocity-type transducer with a nominal period of 1 sec. Its high
sensitivity and its small size make it suitable for vibration measure-
ments of many types of structures. Since the natural frequencies of
the seismometers are in the same range of the measured frequencies
and since the natural period and damping are not identical for each
instrument, relative calibration must be made at all the frequencies of
interest. It should also be noted that absolute calibration of the
Rangers in the field is wvery difficult; however, it is not necessary
to know the absolute values of the amplitudes of vibration since the
main objective is to identify the mode shapes and this requires only
the relative amplitudes of the recorded motions.

Two four-channel signal conditioners were used during the tests
to amplify and to filter the outputs from the Rangers. During the
ambient tests, it was decided to filter out all frequencies higher than
20 cps: however, during forced vibration tests the low-pass filter was
set to a cut-off frequency of 5 ¢ps. An HP oscillograph recorder

having eight channels was used to monitor the ambient vibrations which
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were also recorded on two four-channel HP tape recorders. During the
forced vibration tests, the oscillograph recorder was the main
recording instrument and only few samples were recorded on the tape
recorders.

One or two vibration generators were used in the sinusoidal
steady~state resonant tests, Briefly, a shaker consists of two
counter-rotating baskets which may be loaded with a variable number of
lead weights. The resulting sinusoidal force can be aligned in any
fixed direction. ¥ach shaker has a control console; however, in a
master—-slave set up, one uses only the master console to run the two

shakers simultaneously at the same frequency.

IV-3-~2, Orientation of the Instruments

Measurements of ambient and forced vibrations were made at
selected points along the shell height, at the roof circumference,
and around the tank bottom.

The first series of tests was conducted to measure the axial
pattern of vibrational modes of tank no. (1). Six Ranger seismometers
were mounted along the tank height to measure the radial motion of the
shell as shown in Fig. IV-6. In addition, two seismometers were placed
on the foundation slab oriented to detect vertical motion and thus to
obtain a measurement of the amount of rocking of the base of the tank,

The objective of the second series of tests was to monitor the
motion around the circumference. However, it was impractical in this
preliminary investigation to mount the transducers around the tank at

arbitrarily selected elevations and, therefore, it was decided to
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Fig. IV-6. Plan View Showing the Seismometers Used to
Record the Radial Component of Shell
Velocity Along the Height of Tank No. (1).

depend on measurements made along the circumference of the roof to
identify the number of circumferential waves, n. Three Rangers were
placed on an aluminum plate in such a way that three orthogonal
components of the motion at a point could be measured. This package of
transducers was moved from point to point and the motion was recorded
at ten different locations around the perimeter.

One vibration generator, shown in Fig. IV-7, was used in the
forced vibration test. It was anchored to a concrete glab resting on
the ground adjacent to the tank. The horizontal sinusoidal force
exerted by the vibration generator was transmitted through the ground

and produced small amplitude vibrations of the tank.
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Fig. IV-~7. Views Showing
the Shaker Used in the
Sinusoidal Steady—-State
Tests of Tank No. (1).

¥igure IV-8 is a schematical diagram showing the experimental
set-up and the instrumentation used in testing tank no. (1). Slight
variations in the orientation of the instruments and in the measuring

procedures were made for the other two tanks. These will be discussed,

as they occur, in the following sections.

IV-3-3. Ambient Vibration Tests

The first stage of the testing program involved the measurements
of the response of the tanks to ambient excitation. The ambient forces

which excite these tanks are the result of wind currents and
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microseismic waves. These tests provide a quick means for identifying
the natural frequencies of vibration. In addition, ambient tests were
performed in such a way that the mode shapes can alsc be obtained, and
these were compared with those obtained by forced vibration tests,
Since the installation of a vibration generating system requires a
great deal of work, ambient tests were conducted as a replacement for
forced vibration testing of tank no. (3).

During the tests, the tanks were maintained full whenever possible.
The water level was continuously monitored at the main operating panel-
board, and if the water level meter indicated a drop of more than 3 to
4 ft during any run, the test would be repeated.

As mentioned previously, ambient vibrations were recorded on Both
tape and oscillograph recorders. The recording instruments were first
adjusted to make sure that the signals were within their limits of
operation; then, the motion was recorded for about five minutes for
each run. Figure IV-9 shows sample traces from the oscillograph
recorder made simultanecusly during ambient vibration tests of tank
no. (1).

The tape-recorded data were converted in the laboratory to a
digital format on magnetic tape compatible with the Caltech IBM 370/158
digital computer. The digitization was at a rate of 40 equally-spaced
points per second which resulted in a Nyquist frequency of 20 Hz. The
computer program "FOURIER" was employed to compute a Fast Fourier
Transform for each seismometer record; it utilizes the subroutine
"RHARM'' which is available from the Caltech computer program library.

The resulting Fouriler Amplitude Spectra are used to identify the
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natural frequencies of vibration. Figure IV-10 displays the Fourier
amplitude spectrum of the radial velocity recorded at station no. (4)
of tank no. (1).

Ambient vibration tests have their advantages and limitations.
One of thege limitations 1s the inability to distinguish between those
peaks in the spectrum which are due to structural vibrations and those
which are due to mechanical and electrical noise. However, as a result
of the relatively large wind forces acting on such tall tanks, the
spectral peaks due to structural response were much higher, in most
cases, than the noise level; and this facilitated the identification
of the natural frequencies and the associated mode shapes.

The procedure for determining the mode shapes was to divide the
spectral amplitude of the response at a given station by the spectral
amplitude of the simultaneousiy recorded response at the reference
station. This ratio was multiplied by the calibration factor which
was previously obtained by a calibration test (in a calibration test,
the seismometers were aligned side by side and the relative magnicudes
of their output for the particular frequency under consideration were
computed). The phase of the response was compared to that of the
reference instrument to determine the signs of the modal amplitudes.

A comparison between the measured and computed frequencies and mode

shapes is presented in Sec. IV-4,

IV-3-4. TForced Vibration Tests

Steady-state forced vibration tests were conducted on both wash

water tanks at the Weymouth filtration plant. Only one vibration
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generator was used in testing tank no. (1) while both shakers were used
for tank no. (25. The response of the tanks was recorded on the
‘oscillograph recorder and the frequency of the vibrators was varied in
increments over the desired frequency range. At each incremental fre—
quency, the vibrators are held at a constant frequency long enough for
all transient effects to decay, so only the steady-state response of
the tank is recorded. The accuracy of visually measuring the response
amplitudes from the osciliograph charts was checked by recording the
time signals on a tape recorder, obtaining a Fourier amplitude spectrum
for the recorded motion, and comparing its maximum amplitude with that
obtained by the oscillograph recorder.

The force produced by the shakers is proportional to the square of
the exciting frequency. Their maximum frequency is about 9.5 Hz:
however, measurements of tank vibrations were made in the frequency
range of 2 to 4 cps partly due to the thinness of the slab to which
the shakers were anchored, and partly because the fundamental frequen-
cies of the circumferential waves of interest lie in this range.

Data reduction procedures were similar to those made for ambient
tests. However, the determination of the response curves was more
invelved and time consuming because several factors had to be employed:
1) the calibration factor, 2) the scale factor which accounts for the
scale set by the oscilleograph recorder, 3) the attenuation factor which
takes into consideration the reduction of signal amplitudes set by the
signal conditioner, and 4) the normalization factor to normalize the

response for unit input force.
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IV-4. Presentation and Discussion of Test Results

The vast amount of data recorded in the test program is far too
much for detailed presentation in this report. Only selected data
which provide a qualitative indication of the general nature of the
dynamic behavior as well as the quantitative evidence for verification
of the theoretical analysis are presented.

One phonomenon that was clearly observed in the recorded motion
was that significant cos nl-type vibrations of the tank wall were
developed. This can be seen in Figs, IV-1l, IV-12, and IV-13 in which
samples of the Fourier spectra of radial velocities are displayed.
These modes were anticipated in the ambient tests because of the
nature of the excitation which tends to excite many modes. However,
in a forced vibration test, a perfect circular cylindrical shell should
exhibit only cos O-type modes with no cos nO-type deformations of the
walls. Figure IV-14 shows the steady-state response of tank no. (1) in
the frequency range 2.40 to 2,45 cps, The response of the tank attains
its maximum value in this range at a frequency of 2.42 cps which cor-
responds to the fﬁndamental frequency of a shell mode having a circum-—
ferential wave number n = 3. This can also be seen in Fig. IV~15 in
which the resgponse curve is plotted. This indicates that cosnd-type
modes can be excited by rigid base motion presumably because of the
initial irregularity of the shell. Similar behavior was observed for
other values of n., These cosnf-type deformations were previously
observed experimentally in shaking table tests [2,3]. It is thought

that shell modes having n greater than 4 were observed in those tests
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but had been identified as being of lower order because only eight dis-
placement transducers per section had been employed. Figures IV-1l6-a
and b show the axial and circumferential patterns of the cos56~-mode
based on ambient and forced vibration measurements; and it is clear that
the roof does restrain the tank top against radial deformations. The
computed natural frequency is 2.46 cps which is in close agreement with
the measured one of 2.42 cps. The computed mode shape is also pre-
sented in the same figure for comparison.

The fundamental frequency of the cosf-modes is clearly identified
from Fig. IV~-1l-a in which the Fourier amplitude spectrum of the radial
component of shell velocity of the tank top is displayed. The roof
restrains the tank top against cosnd-type deformations and only the
cosf-type modes are observed. The natural frequency is 3.01 cps which

is less than that computed assuming rigid foundation. The computed
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w = 2.40 ¢cps w =2.42 cps
Max. =1.121 Max.=(.588
w=2.43 cps w=2.45 cps
Max.= 1.569 Max.=0.952

Fig. IV-14, Steady-State Respouse of Tank no. (1)
(Frequency Range 2.40 to 2.45 cps).
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frequencies of the second and third axial modes of the cos6-type defor-
mation are 10.38 and 15.11 cps, respectively; these are in reasonable
agreement with those measured (9.6 and 14.3 c¢ps, respectively). It
should be noted that modes with frequencies higher than 4 cps were
measured only during ambient vibrations, Figure IV-10 illustrates one
of the Fourier amplitude spectra with frequency range up to 20 cps.

No attempt was made In the test program to measutre sloshing fre-
quencies of the liquid; these can be reasonably estimated by testing
small-gcale rigid tanks. However, Fig. IV~1l-a indicates a peak at a
frequency corresponding to the computed sloshing frequency of the liquid,
and this was attributed to the low-frequency sloshing waves.

The foundation conditions had a noticeable influence on the re-
sponse of the cosf-type modes. Figure IV-1/ shows sample traces from
the Brush recorder (similar to the oscillograph recorder but with two
channels only) made simultaneously during forced vibration test of

tank no. (1) at the foundation level. These records show that the two
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Fig. IV-16. Comparison Between Computed and Measured Mode Shapes.
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vertical seismometers (7) and (8) have the same amplitude and are 180o
out of phase. This rocking motion coccurs at 3.01 cps and is clearly
seen in the Fourier amplitude spectrum shown also in Fig., IV-17. The
interaction of the cosnfO-type deformation with the foundation was found
to be insignificant. This was expected because a distributed radial
force varying as cosnb with n = 2 has no lateral resultant force.
Rocking motion was not observed in tank no. (3) which had a very rigid
foundation. Tank no. (2), which is not anchored to the foundation, ex-
hibited behavior slightly different from the other two tanké, However,
it is believed that it would behave much differently with a high level
of excitation.

No axial mode shapes were obtained for tank no. (2) and tank no.
(3) because it was impractical to place the seismometers along a
generator of the shell (in testing tank no. (1), the seismometers were
mounted on the vertical ladder which is firmly connected to the shell).
However, the circumferential pattern of these modes was identified from
measurements made around the perimeter of the roof. Figures IV-18-a
and b display the computed and measured circumferential patterns of
modes having n = 3 and n = 4, respectively. Figure IV-19 displays
Fourier amplitude spectrum of the radial component of shell velocity
recorded at station no. {(4) on tank no. (3). The circumferential modes
with n up to 5 were identified from the ambient measurements. The
availability of the computed frequencies and the good correlation be-
tween the measured and the computed frequencies helped in identifying
the mode number with n = 6. It should be mentioned that the low-pass

filter of the signal conditioner was set, by mistake, to 4 cps in
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Fig. IV-18. Comparison Between Computed and Measured Citcumferential
Pattern of the Radial Component of Shell Velocity
of Tank no. (3).

testing the third tank and therefore the peaks in the range 4 to 5 cps
do not appear in their respective magnitude. Also, the high peak at

3.45 cps is attributed to environmental noise which was also cobserved
in the calibration test. Figure IV-20 shows a comparison between the

computed and measured frequencies of tank no. (3).

CONCLUSIONS
The following conclusions were drawn from the results of the tests
reported here:

(1) Significant cosnd-type deformations were developed in the
tanks in response to ambient and forced excitations.

(2) The roof and the foundation do have a noticeable influence on
the dynamic characteristics of liquid storage tanks.
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(3) Field measurements of the natural frequencies and mode
shapes showed good agreement with the computed values.

(4) The behavicr of unanchored tanks cannot be well observed
with such a low level of excitation,

IV-5 Experimental Investigation of the Dynamic Buckling of Liquid-
Filled Model Tank

In a vibration test of full-scale tank, one can only measure the
structural response under a low level of excitation, partly due to the
difficulty of generating large dynamie forces, and partly due to the con-
cern about the safety of the structure, Therefore, the dynamic buckling
failure of liquid-filled tanks can only be studied by conducting vibra-
tion tests on scaled models. A separate experimental investigation of
the buckling phenomenon of plastic models was conducted at Caltech [8].
The plastic models were mounted on a small shaking table and were sub-
jected to a harmonic base excitation. The study provided results of
practical interest; a brief sumnary of these results i1s presented herein.

Before carrying out the buckling tests, the natural frequencies of

vibration and the associated mode shapes were determined. A comparison
between the measured and the computed frequencies showed a very good
agreement for all values of n except for n = 1. For this particular n,
the measured frequency was less than the cowputed ome by about 15%. It
is believed that this disagreement is most likely due to the flexibility

of the shaking table in the rocking mode [8].

Buckling tests were then carried out by fixing the frequency of ex-
citation and increasing the amplitude of the shaking table motion until
buckling occurs. Theoretically, the buckling was assumed to occur when

the axial membrane stress at the bottom of the tank reaches the classical

value
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o = Eh/ (R / 3(1-v?)

Test results, when correlated with the theoretical level of excitation re-
quired to cause buckling (computed from the analysis of Chapter III modi-
fied for harmonic excitation), indicated that buckling of tanks is largely
dependent upon the n = 1 response as shown in Fig. IV-21. No "knockdown'
factor was used to account for the imperfection of the tank cross-gection.
It is of interest to note that the higher circumferential shell modes

(n = 2) seem to have only a secondary role as seen in Fig. IV-21. TFor

more details, refer to reference [8].
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IV-6, Seismic Instrumentation of Liquid Storage Tanks

It is becoming increasingly customary to provide important struc—
tures with permanently installed instrumentation systems to record
future earthquake motions. Proper placement of such instruments can
vield valuable information about the response of the structure at
dynamic force and deformation levels directly relevant to earthquake-
resistant design.

As far as the earthquake response of anchored tanks is concerned,
those records can throw light on the actual dynamic properties of the
liquid-shell system and offer an opportunity to compare these values
with those obtained by vibration tests. Furthermore, conventional
vibration tests are not suitable for unanchored tanks and many ques-—
tions about their behavior cannot be answered with such a low level of
excitation.

The purpose herein is to recommend minimum instrument requirements
to cover these two distinct types of ground-supported, liquid storage
tanks. It is suggested that the two wash water tanks located at the
Weymouth filtration plant be instrumented.

Adequate definition of the input ground motion is necessary Lo get
any valuable information about the behavior of these tanks. Tor this
purpose, it is recommended that one instrument be located at the
foundation level in the immediate vicinity of each tank; one in the
grounds maintenance building and one in the polymer storage building
as shown in Fig. IV-22. These accelerographs must be firmly bolted
down to the concrete foundation slabs. 1In the event of instrument

malfunction, the ground motion measured by the other instrument can
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Fig. IV-22. Part Plan of the Weymouth Filtration Plant Showing the
Proposed Stroung Motion Instrumentation System.
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be used as the input for both tanks, thus ensuring some useful informa-
tion. To investigate the effect of the soil-tank interaction (mainly
a rocking motion), the accelerograph at station l-a can be replaced by
two instruments mounted on the foundation slab of tank no. (1) at the
two ends of the principal diameter,

One instrument should be located at the top of each tank to record
its response. The instruments should be situated to record the two
horizontal components of motion in the radial and tangential directions
of the tank as well as the vertical component of acceleration. It is
believed that these instruments will provide adequate information about
the cos O-type response (basic response) of the tanks., However, vibra-
tion tests showed that cos nO-type deformations of the tank walls were
developed in response to ground motion induced by the vibration genera-
tor. Since the magnitude of such deformations is dependent on4the
irregularity of the tank which is unknown, -and since the number of
instruments required to measure and interpret‘tﬁéée modes is econo-
mically not feasible, no attempt will be made fo sensé these motions;
however, the relative importance of the cos nf-~type modes as compared
to the cos 6-type modes can be crudely estimated by placing one instru-—
ment at the mid-height of each tank.

In view of test results, the Metropolitan Water District of
Southern California has installed two strong-motion accelerographs at
the locations 2-a and 2-c to record ground motion and tank response,
respectively, during future earthquakes. An effort is underway to

provide other instruments for tank no. (1). It is hoped that this
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instrumentation program will yield valuable information about the basic
seismic response of liquid storage tanks which eventually will lead to
an improvement in the design of such structures to resist earthquakes.
It should also be noted that the proposed instrumentation system
represents the minimum requirements to obtain the essential data needed
for refinement of the theoretical analysis. Therefore, if one wants to
obtain a full understanding of the seismic hehavior of tanks, various
types of transducers must be installed to measure strains in the
cylindrical shell, to measure the dynamic change in pressures at the
liquid-shell interface, and to measure the free surface displacements

{(wave—height).



-274-

REFERENCES OF CHAPTER IV

Abramson, H.N., ed., "The Dynamic Behavior of Liquids in Moving
Containers,' NASA SP-106, National Aeronautics and Space Adminis-
tration, Washington, D.C., 1966.

Clough, D.P., "Experimental Evaluation of Seismic Design Methcods
for Broad Cylindrical Tanks," University of California Earthquake
Engineering Research Center, Report No. UC/EERC 77-10, May 1977,

Niwa, A., "Seismic Behavior of Tall Liquid Storage Tanks,”
University of California Earthquake Engineering Research Center,
Report No. UC/EERC 78-04, February 1978.

Foutch, D.A., "A Study of the Vibrational Characteristics of Two
Multistory Buildings,' Earthquake Fngineering Research Laboratory,
EERL 76—03, California Institute of Technology, Pasadena, California,

September 1976.

Abdel-Ghaffar, A.M., and Housner, G.W., "An Analysis of the Dynamic
Characteristics of a Suspension Bridge by Ambient Vibration
Measurements,' Earthquake Engineering Research Laboratory, EERL
77-01, California Institute of Technology, Pasadena, California,
January 1977.

Hudson, D.E., "Synchronized Vibration Generators for Dynamic Tests
of Full-Scale Structures,” EERL, California Institute of Technology,
Pasadena, California, 1962,

Hudson, D.E., "Dynamic Tests of Full-Scale Structures," Journal of
the Engineering Mechanics Division, ASCE, Vol. 103, December 1977,
pp. 1141-1157.

Shih, C., and Babcock, C.D., "Scale Model Buckling Tests of a Fluid
Filled Tank Under Harmonic Excitatiomn," submitted for presentation at
the 1980 Pressure Vessels and Piping Conference, ASME, San Francisco.




-275-

PART (C)

SIMPLIFIED STUDIES OF THE SEISMIC RESPONSE
OF LIQUID STORAGE TANKS

With few exceptions, current seismic design procedures for liquid
storage tanks are based on the mechanical model derived by Housner for
rigid tanks (Fig. C-1). However, the results of the first two phases of
the study indicate that wall flexibility has a significant effect on the
hydrodynamic pregsures, The principal aim of this part of the study is
to provide practicing engineers with simple, fast, and sufficiently
accurate tools for estimating the seismic response of liquid storage
tanks.

A similar mechanical analog, which takes into account the deformabi-
lity of the tank wall, is developed. The model, shown in Fig. C-2, is
based on the results of the finite element analysis of the liquid-shell
system presented in Part A of this report. The parameters of such a
model are displayed in charts which facilitate the calculations of the
equivalent masses, their centers of gravity, and the periods of vibra-
tion. The equivalent masses mr, me, and m_ correspond to the forces
associated with ground motion, wall deformation, and liquid sloshing,
respectively. Once the parameters of the mechanical model of the par-
ticular tank under consideration are found, the maximum seismic loadingl
can be predicted by means of a response spectrum characterizing the
design earthquake., This procedure can be easily used by practicing

engineers to compute the earthquake response of deformable tanks.
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A simplified analysis is also developed to investigate the inter-
action between the foundation soil and liquid storage tanks. The sig-
nificance of such interaction for the response of rigid tanks is first
evaluated. The combined effect of wall flexibility and soil deforma-
bility is then investigated using the simplified model shown in
Fig. C-3. 1In this approach, the tank is assumed to behave as a vertical
cantilever beam with bending and shear stiffness, and the foundation
soil is represented by a discrete system of springs and dampers. Such
analysis is applicable only to "tall" tanks.

The research that was carried out in the final phase of the study
provided results that should be of interest to practicing engineers,
Therefore, it was decided to present these results in a separate
Earthquake Engineering Research Laboratory report which also includes
recommended design provisions for the seismic design of cylindrical

liquid storage tanks.
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SUMMARY AND CONCLUSIONS

The study develops a method of dynamic analysis for the free lateral
vibrations of ground-supported, cylindrical liquid storage tanks. A
method is also presented to compute the earthquake response of both
perfect circular and irregular tanks; it is based on superposition of
the free lateral vibrational modes,

Natural frequencies of vibration and the associated mode shapes are
found through the use of a discretization scheme in which the elastic
shell is modeled by finite elements and the fluid region is treated as a
continuum by boundary solution techniques., In this approach, the number
of unknowns is substantially less than in those analyses where both tank
wall and fluid are subdivided into finite elements.

Detailed numerical examples are presented to illustrate the appli-
cability and the effectiveness of the analysis and to investigate the
dynamic characteristics of tanks with widely different properties.
Furthermore, a rigorous comparison with previous results obtained' by
other investigators is made.

Ambient and forced vibration tests are conducted on three full-
scale water storage tanks to determine their dynamic characteristics.
These frequencies and mode shapes are determined for small amplitude
vibrations and, hence, indicate the structural behavior in the range of
linear response. Comparison with previously computed mode shapes and
frequencies shows good agreement with the experimental results, thus
confirming both the accuracy of the experimental determination and the

reliability of the method of computation.
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The study also develops a method which allows, from the engineering
point of view, a simple, fast and sufficiently accurate estimate of the
dynamic response of liquid storage tanks to earthquakes.

It is believed that the research presented in this report advances
the understanding of the dynamic behavior of liquid storage tanks, and

provides results that should be of practical value.






