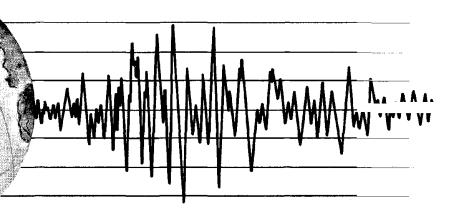
PR81-124000


REPORT NO. UCB/EERC-80/17 JULY 1980

EARTHQUAKE ENGINEERING RESEARCH CENTER

DYNAMIC RESPONSE OF SIMPLE ARCH DAMS INCLUDING HYDRODYNAMIC INTERACTION

by CRAIG S. PORTER ANIL K. CHOPRA

A report on research conducted under Grants ATA74-20554 and ENV76-80073 from the National Science Foundation.

COLLEGE OF ENGINEERING

UNIVERSITY OF CALIFORNIA · Berkeley, California REPRODUCED BY NATIONAL TECHNICAL INFORMATION SERVICE U.S. DEPARTMENT OF COMMERCE SPRINGFIELD, VA 22161 For sale by the National Technical Information Service, U.S. Department of Commerce, Springfield, Virginia 22161.

.

See back of report for up to date listing of EERC reports.

DISCLAIMER

The contents of this report reflect the views of the authors who are solely responsible for their accuracy. The contents do not necessarily reflect the views of the Earthquake Engineering Research Center, University of California, Berkeley.

50272-107			-					
REPORT DOCUMENTATION PAGE	1. REPORT NO. NSF/RA-800291	. 2.	3. Recipient's /	Accession No. 124000				
4. Title and Subtitle	1	<u>l</u>	5. Report Date	<u> </u>				
Dynamic R Including			July 1980					
-	, <u> </u>		6.					
7. Author(s) Craig S. Port	ter and Anil K. Chopra	······································	8. Performing Organization Rept. No. UCB/EERC-80/17					
9. Performing Organization Name a	nd Address	······································		sk/Work Unit No.				
Earthquake Engineeri	-	•						
University of Califo 47th and Hoffman Blv	ornia, Richmond Field Station	a j	4	or Grant(G) No.				
Richmond, California		• •	СО АТА74-	20554				
			(G) ENV76-					
12. Sponsoring Organization Name a			13. Type of Re	port & Period Covered				
National Science Fou	indation							
1800 G Street, N.W. Washington, D. C. 2	20550		L					
washington, b. c	10550		14.					
15. Supplementary Notes			1					
		•	¢					
×								
16. Abstract (Limit: 200 words)				· · · · · · · · · · · · · · · · · · ·				
The substructur	re method is adapted and gen	eralized for respo	mse analys	is of arch dams				
	n-downstream, cross-stream an		-	•				
	to be a segment of a circula:		-					
	enclosing a central angle of							
	ructures of the total system							
	ion of the first few natural							
	of the arch dam and fluid do							
	ed to determine the hydrodyna ses to arbitrary ground motic							
	the complex frequency response							
procedures developed		JUDG TUHOLTOWN GOT		the unur pro				
	lts are presented for the con	mplex frequency re	sponse fun	ctions for hydro-				
	rigid dams due to each of the		-					
	ressures with excitation free	÷	-					
	location on the upstream face							
	ssures on straight gravity da							
The responses c	of three arch dams, with dif:	ferent radius to h	eight rati	os, are analysed				
	: the dam alone without wate:							
	compressible in one case and							
	plex frequency response func-							
—	nts of ground motion upst:		_					
	component are presented.	These response re	sults are	discussed in				
detail.								
				· · ·				
				, •				
				:				
18. Availability Statement		19. Security Class (This	s Report)	21. No. of Pages				
Rel	lease Unlimited							
Ker (lease onimited	20. Security Class (This	s Page)	22. Price				

See Instructions on Reverse

OFTIONAL FORM 272 (4-77) (Formerly NTIS-35) Department of Commerce

.

DYNAMIC RESPONSE OF SIMPLE ARCH DAMS INCLUDING HYDRODYNAMIC INTERACTION

by

Craig S. Porter Anil K. Chopra

A Report on Research Conducted Under Grants ATA74-20554 and ENV76-80073 from the National Science Foundation

Report No. UCB/EERC-80/17 Earthquake Engineering Research Center University of California Berkeley, California

July 1980

ABSTRACT

The substructure method is adapted and generalized for response analysis of arch dams subjected to upstream-downstream, cross-stream and vertical components of ground motion. The arch dam is assumed to be a segment of a circular cylinder, bounded by vertical, radial banks of the river valley enclosing a central angle of 90°. The arch dam and impounded water are treated as two substructures of the total system and displacements of the dam are represented as a linear combination of the first few natural modes of vibration of the dam alone. For this simple geometry of the arch dam and fluid domain, mathematical solutions of the wave equation are presented to determine the hydrodynamic terms in the finite element equations for the dam. Responses to arbitrary ground motion can be obtained by Fourier synthesis procedures applied to the complex frequency response functions determined by the analysis procedures developed in this report.

Numerical results are presented for the complex frequency response functions for hydrodynamic pressures on rigid dams due to each of the three ground motion components. The variation of these pressures with excitation frequency, depth below the free surface of water and circumferential location on the upstream face of the dam is studied, and compared with the hydrodynamic pressures on straight gravity dams.

The responses of three arch dams, with different radius to height ratios, are analysed for three conditions: the dam alone without water, and the dam with full reservoir, considering water to be compressible in one case and neglecting water compressibility in the other case. The complex frequency response functions for accelerations

i

L Ł L L

at the dam crest due to the three components of ground motion -upstream-downstream component, cross-stream component and vertical component -- are presented. These response results lead to the following conclusions.

In general, hydrodynamic effects and water compressibility should be considered in analyzing the dynamic response of arch dams.

Water in the reservoir causes a decrease in the resonant frequencies of the dam; as much as 30 percent reduction was observed in in the cases analyzed. The decrease in a resonant frequency depends on the depth of water, mode number, whether the mode is symmetric or anti-symmetric and the radius to height ratio of the dam. Greater reductions are observed for dams with higher radius to height ratios and in the lower modes of vibration.

For all three components of ground motion, water compressibility has little influence on the response of the dam at excitation frequencies ω much smaller than ω_1^r , the fundamental resonant frequency of the fluid domain. At excitation frequencies $\omega > \omega_1^r$ the response to upstream-downstream and vertical components of ground motion is reduced by water compressibility effects. However, these effects may lead to an increase or decrease in the response to cross-stream ground motion, depending on the excitation frequency.

Dam-water interaction, considering water compressibility, affects the radial acceleration response of dams to upstream-downstream and cross-stream ground motions to a similar degree. However, the response to vertical ground motion is greatly increased by these effects. Just as in the case of gravity dams, vertical ground motion causes significant hydrodynamic pressures, which act in the horizontal plane on a cylindrical dam face, thus causing significant additional response.

ii

ł. L

The additional hydrodynamic forces caused by bank motions in the upstream-downstream or cross-stream directions may significantly affect the dynamic response of arch dams at some excitation frequencies. However, these effects of bank motions are generally smaller than the effects of dam-water interaction or of water compressibility. The effects of bank motion on dam response are roughly similar in magnitude for the two howizontal components of ground motion. In the case of vertical ground motion, the motion of the vertical banks produces no additional hydrodynamic forces and hence has no influence on the dam response.

ACKNOWLEDGEMENTS

This research investigation was conducted under grants from the National Science Foundation: Grants ATA74-20554 and ENV76-80073.

This report also constitutes Craig S. Porter's doctoral dissertation which has been submitted to the University of California, Berkeley. The dissertation committee consisted of Professors A.K. Chopra (Chairman), R.W. Clough and E.J. Pinney. Appreciation is expressed to Professors Clough and Pinney for reviewing the manuscript.

iv

TABLE OF CONTENTS

		<u> </u>	age							
ABS	TRACT	•••••••••••••••••••••••••••••••••••••••	i							
ACKNOWLEDGEMENTS										
TAB	LE OF	CONTENTS	v							
1.	INTRO	ODUCTION	1							
	1.1	Objectives	1							
	1.2	Review of Past Work	1							
	1.3	Scope	4							
2.	SYSTI	EM AND GROUND MOTION	7							
3.	EQUA	TIONS OF MOTION	9.							
	3.1	Finite Element Idealization	9							
	3.2	Equations of Motion: Dam	9							
	3.3	Equations of Motion: Fluid Domain	13							
4.		YSIS OF DAM RESPONSE TO HARMONIC UPSTREAM-DOWNSTREAM ND MOTION	15							
	4.1	Equations of Motion	15							
	4.2	Fluid Domain: Boundary Conditions	15							
	4.3	Complex Frequency Responses	16							
		4.3.1 Boundary Conditions	17							
		4.3.2 Hydrodynamic Pressures: Analytical Results	19							
		4.3.3 Hydrodynamic Pressures and Forces on Rigid Dams: Numerical Results	23							
		4.3.4 Dam Response	30							
	4.4	Singularities of the Solution	33							
	4.5	Analysis Neglecting Compressibility of Water	34							
	4.6	Dam with Empty Reservoir	36							
	4.7	Computer Program	36							

Page

5.		VCTC OF DIN DECRONCE TO ULDWONTO OPOCO OPDENN ODOUDD	
э.	ANAL MOTI	YSIS OF DAM RESPONSE TO HARMONIC CROSS-STREAM GROUND ON	39
	5.1	Equations of Motion	39
	5.2	Fluid Domain: Boundary Conditions	39
	5.3	Complex Frequency Response	4 0
		5.3.1 Boundary Conditions	41
		5.3.2 Hydrodynamic Pressures: Analytical Results	43
		5.3.3 Hydrodynamic Pressures and Forces on Rigid Dams: Numerical Results	46
		5.3.4 Dam Response	51
	5.4	Analysis Neglecting Compressibility of Water	53
6.		YSIS OF DAM RESPONSE TO HARMONIC VERTICAL GROUND	57
		ON	57
	6.1	Equations of Motion	57
	6.2	Fluid Domain: Boundary Conditions	57
	6.3	Complex Frequency Response	58
		6.3.1 Boundary Conditions	59
		6.3.2 Hydrodynamic Pressures: Analytical Results	60
		6.3.3 Hydrodynamic Pressures and Forces on Rigid Dams: Numerical Results	62
		6.3.4 Dam Response	65
	6.4	Analysis Neglecting Compressibility of Water	67
7.	HYDF	ODYNAMIC INTERACTION EFFECTS	69
	7.1	Scope of Chapter	69
	7.2	Fundamental Parameters	69
	7.3	Systems Analyzed	71
		7.3.1 System Properties	71
		7.3.2 Natural Frequencies and Mode Shapes	72

.

																	Page
	7.4	Present	ation c	f Res	ponse	Rest	ults	•	••	•	• •	•	•	• '	•	•	80
	7.5	Discuss	ion of	Respo	nse R	esult	ts .	•		•		•	•	•	•	•	107
		7.5.1	Modal F	lespon	ses .	• •	• •	•	•••	•		•	•		•	•	107
		7.5.2	Hydrody	namic	Effe	cts		•		•	• •	•	•	•	•	•	109
		7.5.3	Compari Motion						rio				đ		•		116
		7.5.4	Effects	of B	ank M	otioi	n .	•		•		•	•	•	•	•	117
8. (CONCI	USIONS			• • •	••		•		•		• •	•	-	•	•	123
REFE	RENCE	s			•••	•••	••	•	•••	•		-	-	•	•	•	127
APPE	NDIX	A - NOT	TATION .					•		•	• •		•	•	•	•	131
APPE	NDIX	B - FIN	NITE ELE	MENT I	PROPE	RTIES	5.	•		•	• •	•	•	•	•	•	139
APPEI	NDIX		RIVATION R HYDROI					NCY	RE		NSE						151
APPE	NDIX	D - CON	IPUTATIO	N OF 1	HYDRO	DYNAI	MIC 1	TER	MS	•			-	•	•	•	189
APPEI	NDIX	Ê - LIN	IIT ANAI	YSIS	•••	• •		•					•		-	-	199
APPEI	NDIX	F - SYM	IMETRY (DF <u>S</u> (ω))	• •		•				•	٠	•	٠	•	211
APPE	NDIX	G - DIN	MENSION	L ANA	LYSIS						. .	•	•	•	•		215
APPE	NDIX	H - USE	ERS GUII	E TO	COMPU	TER 1	PROG	RAM	•	•	• •	• •	•	•	-		223
APPE	NDIX	I - CON	IPUTER I	ROGRA	M LIS	TING	••	•.	••	•	• •	•	•	-	•	•	243
EART	hquar	KE ENGIN	NEERING	RESEA	RCH C	ENTE	R RE	POR	\mathbf{TS}			•	•		•		273

·

1. INTRODUCTION

1.1 Objectives

The dynamic response behavior of concrete arch dams is complicated because of their three dimensional geometry and the effects of impounded water. Improved understanding of the effects of the impounded water on the dynamics of concrete arch dams is essential to develop reliable procedures for computing the dynamic deformations and stresses in a dam subjected to prescribed ground motion. The objective of this work is to study the dynamic structural behavior and response of arch dams to ground motion, with special emphasis on identifying hydrodynamic effects in the response behavior.

1.2 Review of Past Work

During the past 25 years the finite element method has become the standard procedure for analysis of all types of complex civil engineering structures. Employing three-dimensional solid elements and thick shell elements, computer programs for finite element analysis of earthquake response of arch dams have been developed [1]. The principal limitation of computer programs presently available lies in the treatment of the dynamic effects of the impounded water; they have either been ignored or simplified to an extent that the results may be unreliable.

Early results of Westergaard's and Zangar's analyses of earthquake induced hydrodynamic pressures on rigid, straight dams with vertical upstream face [2] and sloping upstream face [3] provided a basis for added mass representation of hydrodynamic effects in analysis of dams. Because corresponding results for arch dams have not been

available in appropriate form, the results for straight gravity dams have been extrapolated and adapted in analyses of arch dams [4].

Under the assumption that the arch dam is a segment of a rigid cylinder -- thus having a constant radius -- bounded by vertical, radial banks of the river valley enclosing a central angle of 90°, the wave equation governing the hydrodynamic pressures was solved mathematically for prescribed harmonic motions of the boundaries [5]. This result along with Fourier Transform procedures permitted evaluation of hydrodynamic pressures due to arbitrary earthquake motions [6]. Although the dam was assumed to be rigid and only one direction of ground motion was considered in these studies, it was shown that water compressibility as well as curvature of the arch dam in plan has significant influence on hydrodynamic pressures.

Electrical analogue [7] and finite difference [8,9] procedures have been employed to model arbitrary, three-dimensional geometry of the reservior and dam. Neglecting water compressibility, hydrodynamic pressures due to prescribed accelerations of rigid dams [8] or flexible dams [9] were determined by these procedures.

The assumption of a rigid dam in the above mentioned analyses of hydrodynamic pressures omits fundamental features of the problem. The ground motion and the deformations of the upstream face of the dam will cause hydrodynamic pressures, and the structural deformations in turn will be affected by the hydrodynamic pressures on the upstream face of the dam. To break this closed cycle of cause and effect, the problem formulation must recognize the dynamic interaction between the dam and water.

A finite element or finite difference analysis of the complete dam-water system can account for the interaction effects [10,11,12].

However, these approaches appear to require prohibitive computational effort for problems of practical size. In other approaches to include hydrodynamic interaction effects, the equations of motion for the dam are numerically solved in the time domain with the hydrodynamic terms determined from finite difference solutions of the fluid domain [8].

Methods recently developed for analysis of gravity dams including hydrodynamic interaction contain two key ideas [13]. Firstly, the dam and the fluid domain are treated as two substructures of the total system, with the effects of the fluid expressed as frequencydependent terms in the governing equations for the dam. Secondly, these equations are transformed in terms of the first few modes of vibration of the dam, thus enabling drastic reduction in the number of unknowns leading to highly efficient solutions. The hydrodynamic terms in the structural equations are determined as solutions of the wave equation over the fluid domain for appropriate motions of the boundary. In analysis of gravity dam monoliths, two dimensional solutions for the wave equation had to be obtained. Explicit mathematical solutions were possible under the assumption that the upstream face is vertical and the reservoir extends to infinity in the upstream direction [13,14].

The earliest analyses [14,15] of response of gravity dams including hydrodynamic effects, a special case of the general procedure developed later [13], considered only the fundamental mode of vibration of the dam. Following identical steps, the corresponding one-mode analysis for arch dams subjected to upstream-downstream ground motion has been developed [16]. In this analysis explicit mathematical solutions for the fluid domain with the idealized geometry mentioned earlier were employed. Results of this analysis indicated that the earthquake response of arch dams with full reservoir is much larger than

the response with no water; and that water compressibility has significant influence on the hydrodynamic effects in response of dams.

The analysis procedure presented here is a generalization of the work mentioned above [16], being capable of including any number of modes of vibration of the dam thus making it possible to obtain results to any desired degree of accuracy; and considering the responses to all three -- upstream-downstream, cross-stream and vertical -- components of ground motion. The substructure method for formulating the governing equations in the frequency domain and their transformation to modal coordinates, which has proven to be an effective approach in twodimensional analysis of concrete gravity dams, is adapted and generalized for three dimensional analysis of arch dams.

1.3 Scope

The ground motion assumptions and description of the idealized geometry of the arch dam and reservoir are described in Chapter 2.

Chapter 3 presents the equations of motion governing the dam including fluid interaction. These equations are transformed to the undamped modal coordinates of the dam. Equations of motion governing the hydrodynamic pressure in the fluid are also presented.

In Chapters 4, 5 and 6 the equations governing the hydrodynamic pressures on the dam are solved for upstream-downstream, cross-stream and vertical components of ground motion, respectively. Results are presented and discussed for the special case of hydrodynamic pressures on rigid arch dams. In each of these chapters the hydrodynamic terms are then incorporated into the modal equations of motion of the dam. Versions of these equations are presented for the cases of no fluid, incompressible fluid and compressible fluid in the reservoir.

Using the analysis procedures of Chapters 3 thru 6, nondimensional numerical results for the harmonic response of arch dams having three different sets of geometric properties are presented in Chapter 7. Effects of hydrodynamic interaction, compressibility of water and bank motion on dam response are identified.

The more important conclusions of this investigation are summarized in Chapter 8.

,

Using the analysis procedures of Chapters 3 thru 6, nondimensional numerical results for the harmonic response of arch dams having three different sets of geometric properties are presented in Chapter 7. Effects of hydrodynamic interaction, compressibility of water and bank motion on dam response are identified.

The more important conclusions of this investigation are summarized in Chapter 8.

2. SYSTEM AND GROUND MOTION

The arch dam-water system investigated is shown in Fig. 2.1. The upstream face of the arch dam is a segment of a circular cylinder, radius R and height H_d , contained within radially extending banks enclosing a central angle of 90°. In addition, the geometry and the mass, stiffness and damping properties of the dam are all assumed to be symmetrical about the x-z ($\theta = 0$) plane. Except for these restrictions, the geometry and these properties of the arch dam are arbitrary. The reservoir, which has a horizontal bottom, is filled to a height H with water extending to infinity in the x (upstream) direction. The dam is presumed to be fixed at the base and at the banks.

In analyzing the earthquake response of the system, the dam material is considered to be linearly elastic and the deformation of the dam small, resulting in linear force-deformation relations for the dam. Water is considered to be compressible and inviscid, and only linear effects are included.

The earthquake ground motion is defined by the upstreamdownstream (x), cross-stream (y) and vertical (z) translational components or ground motion; the first two are horizontal and the latter is vertical. The upstream-downstream component of ground motion is along the plane of symmetry of the dam. The cross-stream (y) component is perpendicular to the plane of symmetry (Fig. 2.1). At any instant of time, the ground motion is identical throughout the reservoir bottom and banks, but the motion varies with time.

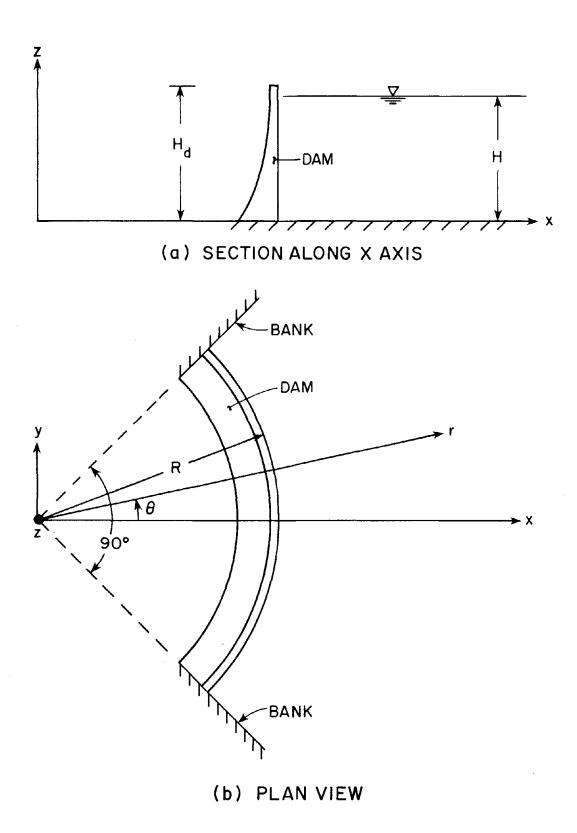


FIG. 2.1 ARCH DAM-RESERVOIR SYSTEM

3. EQUATIONS OF MOTION

3.1 Finite Element Idealization

A finite element idealization for an arch dam must reproduce the three-dimensional structural behavior of the dam. Many different types of finite elements have been proposed for analysis of three-dimensional structures. For arbitrary solids the eight-node isoparametric brick element with internal incompatible modes has proven to be very efficient - it provides a good approximation of the stress distribution with a minimum number of degrees of freedom (DOF). However, for an arch dam, significantly better performance can be obtained for a given cost of computation by modeling the dam with higher order elements that can better represent the complex geometric shape and can more closely approximate the thick shell structural behavior of the dam. In this study, the dam is idealized as an assemblage of curved thick shell elements - 16 node isoparametric brick elements with internal incompatible modes to improve bending behavior, see Appendix B. This element was selected from available element types used in ADAP (Arch Dam Analysis Program) [1].

3.2 Equations of Motion: Dam

The equations of motion for an arch dam, idealized as a thickshell finite element system and subjected to earthquake ground motion, including hydrodynamic effects, are:

$$\underline{\mathbf{m}} \ \underline{\ddot{\mathbf{v}}} + \underline{\mathbf{c}} \ \underline{\dot{\mathbf{v}}} + \underline{\mathbf{k}} \ \underline{\mathbf{v}} = - \ \underline{\mathbf{m}} \ \underline{\mathbf{e}}^{\mathbf{X}} \ \mathbf{\ddot{v}}_{g}^{\mathbf{X}}(t) - \ \underline{\mathbf{m}} \ \underline{\mathbf{e}}^{\mathbf{Y}} \ \mathbf{\ddot{v}}_{g}^{\mathbf{Y}}(t) - \ \underline{\mathbf{m}} \ \underline{\mathbf{e}}^{\mathbf{Z}} \ \mathbf{\ddot{v}}_{g}^{\mathbf{Z}}(t) - \ \underline{\mathbf{Q}}(t)$$
(3.1)

In this equation, \underline{v} is the vector of nodal point displacement relative to the ground, and

$$\underline{\mathbf{v}}^{\mathrm{T}} = \langle \mathbf{v}_{1}^{\mathrm{x}}, \mathbf{v}_{1}^{\mathrm{y}}, \mathbf{v}_{1}^{\mathrm{z}}, \mathbf{v}_{2}^{\mathrm{x}}, \mathbf{v}_{2}^{\mathrm{y}}, \mathbf{v}_{2}^{\mathrm{z}}, \ldots, \mathbf{v}_{n}^{\mathrm{x}}, \mathbf{v}_{n}^{\mathrm{y}}, \mathbf{v}_{n}^{\mathrm{z}}, \ldots, \mathbf{v}_{N}^{\mathrm{x}}, \mathbf{v}_{N}^{\mathrm{y}}, \mathbf{v}_{N}^{\mathrm{y}}, \mathbf{v}_{N}^{\mathrm{z}} \rangle$$

where v_n^X , v_n^y , and v_n^z are, respectively, the x-, y-, and z-components of the displacement of nodal point "n" (Fig. 3.1) and N is the number of unrestrained nodal points, those above the base and not on the banks, in the finite element idealization. The nodal point velocity and acceleration vectors are denoted by $\dot{\underline{v}}$ and $\ddot{\underline{v}}$ and the consistent mass, damping, and stiffness matrices for the finite element system by \underline{m} , \underline{c} , and \underline{k} , respectively. Neglected in the effective load terms of Eq. 3.1 is the mass matrix \underline{m}_g coupling DOF of the restrained nodal points, those on the base or on the banks, with the DOF of the unrestrained nodal points [17]. The pseudo-static influence vectors \underline{e}^X , \underline{e}^Y , and \underline{e}^Z , associated with three components of ground motion, are defined by:

$$\{e^{X}\}_{T}^{T} = \langle 1, 0, 0, 1, 0, 0, \dots 1, 0, 0, \dots 1, 0, 0 \rangle$$

$$\{e^{Y}\}_{T}^{T} = \langle 0, 1, 0, 0, 1, 0, \dots 0, 1, 0, \dots 0, 1, 0 \rangle$$

$$\{e^{Z}\}_{T}^{T} = \langle 0, 0, 1, 0, 0, 1, \dots 0, 0, 1, \dots 0, 0, 1 \rangle$$

The x-, y-, and z-components of earthquake ground acceleration are denoted by $v_q^X(t)$, $v_q^Y(t)$, and $v_q^Z(t)$, respectively.

In Eq. 3.1 Q(t) is the vector of nodal point loads associated with hydrodynamic pressures. As these pressures act only on the upstream face of the dam, the elements in Q(t) corresponding to nodal points not on the upstream face are zero. The subvector of Q(t)associated with the DOF of the nodal points on the upstream face, in contact with the water, is denoted by $Q^{f}(t)$. Because the hydrodynamic pressures act normal to the upstream face, which is a segment of a

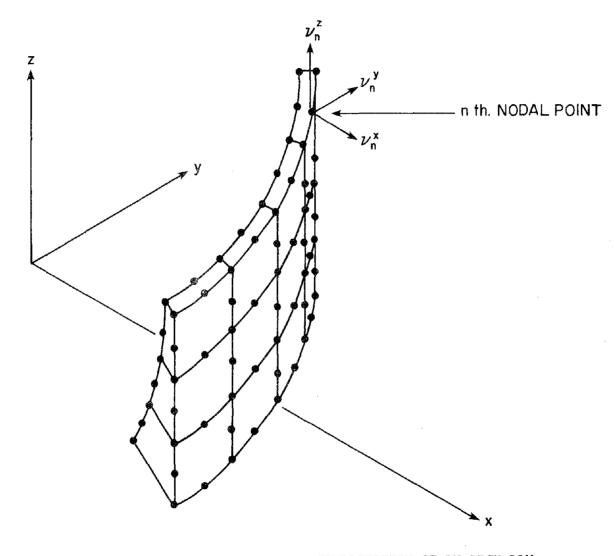


FIG. 3.1 FINITE ELEMENT IDEALIZATION OF AN ARCH DAM

segment of a circular cylinder, the elements of \underline{Q}^{f} associated with the vertical (z) DOF will be zero.

Standard procedures are available to evaluate the mass and stiffness properties of the finite element assemblage [18-20], which need not be described here; moreover the damping properties are best expressed in terms of the damping ratios, as will be described later, so that there is no need to evaluate the damping matrix.

Following procedures presented earlier for analysis of gravity dams [13] and axisymmetric towers [21], the displacements of the arch dam, including hydrodynamic interaction effects, are expressed as a linear combination of the natural modes of vibration ϕ_j of the dam (without water):

$$\underline{\mathbf{v}}(t) = \sum_{j=1}^{J} \mathbf{Y}_{j}(t) \underline{\boldsymbol{\phi}}_{j}$$
(3.2)

in which $Y_j(t)$ is the generalized displacement in the jth mode. These natural vibration modes are the solutions of the following eigenvalue problem

$$\underline{k} \ \underline{\phi}_{j} = \omega_{j}^{2} \ \underline{m} \ \underline{\phi}_{j}$$
(3.3)

where ω_j denotes the jth natural frequency of vibration of the dam. The expansion given in Eq. 3.2 is complete if J is equal to 3N, the total number of DOF of the finite element system, because the vectors $\underline{\phi}_j$ are linearly independent and span the space of dimension 3N. All modes contributing significantly to the response should be included in Eq. 3.2. Generally, the number of modes necessary is a small fraction of the total number of DOF.

Substituting Eq. 3.2 in Eq. 3.1 and utilizing the orthogonality properties of mode shapes, the equation governing the generalized displacement Y_{i} in the jth mode is

$$M_{j}\ddot{Y}_{j}(t) + C_{j}\dot{Y}_{j}(t) + K_{j}Y_{j}(t) = P_{j}(t) \quad j = 1, 2, 3, \dots, J \quad (3.4)$$

in which

$$\begin{split} M_{j} &= \Phi_{j}^{T} \underline{m} \Phi_{j} \text{ is the generalized mass} \\ C_{j} &= \Phi_{j}^{T} \underline{c} \Phi_{j} = 2\xi_{j} \omega_{j} M_{j} \text{ is the generalized damping} \\ \xi_{j} &= \text{ the damping ratio for the } j^{\text{th}} \text{ natural mode of vibration} \\ \kappa_{j} &= \Phi_{j}^{T} \underline{k} \Phi_{j} = \omega_{j}^{2} M_{j} \text{ is the generalized stiffness} \\ P_{j}(t) &= -\Phi_{j} \underline{m} \underline{e}^{X} \overline{v}_{g}^{X}(t) - \Phi_{j} \underline{m} \underline{e}^{Y} \overline{v}_{g}^{Y}(t) - \Phi_{j} \underline{m} \underline{e}^{Z} \overline{v}_{g}^{Z}(t) \\ &- \{\phi_{j}^{f}\}^{T} \underline{\rho}^{f}(t) \text{ is the generalized load} \end{split}$$

The vector $\underline{\phi}_{j}^{f}$ is a sub-vector of the jth mode shape $\underline{\phi}_{j}$ containing elements associated with the DOF on the upstream face of the dam. Two sub-vectors of $\underline{\phi}_{j}^{f}$ are introduced for use in section 4.3: $\underline{\phi}_{j}^{xf}$ and $\underline{\phi}_{j}^{yf}$, containing elements associated respectively with the x and y DOF of the nodal points on the upstream face.

3.3 Equations of Motion: Fluid Domain

Assuming water to be linearly compressible and inviscid, the pressures associated with small amplitude irrotational motion are governed by the wave equation in cylindrical coordinates (Fig. 2.1)

$$\frac{\partial^2 p}{\partial r^2} + \frac{1}{r} \frac{\partial p}{\partial r} + \frac{1}{r^2} \frac{\partial^2 p}{\partial \theta^2} + \frac{\partial^2 p}{\partial z^2} = \frac{1}{c^2} \frac{\partial^2 p}{\partial t^2}$$
(3.5)

in which $P(r,\theta,z,t)$ is the hydrodynamic pressure (in excess of hydrostatic pressure) and C is the velocity of sound in water. The following expressions relate the hydrodynamic pressure and displacements of any particle of water

$$\frac{w}{g} \frac{\partial^2 v^r}{\partial t^2} = - \frac{\partial p}{\partial r}$$

$$\frac{w}{g} \frac{\partial^2 v^{\theta}}{\partial t^2} = - \frac{1}{r} \frac{\partial p}{\partial \theta}$$
(3.6)
$$\frac{w}{g} \frac{\partial^2 v^z}{\partial t^2} = - \frac{\partial p}{\partial z}$$

where v^r , v^{θ} , and v^z are, respectively, the radial, tangential, and vertical components of water particle displacement; w is the unit weight of water, and g is the acceleration due to gravity.

Equation 3.5 together with appropriate boundary conditions at the reservoir boundaries -- the upstream face of the dam, the reservoir bottom, the free surface of the water, and the reservoir banks -defines the problem for the fluid domain.

The nodal force vector $Q^{f}(t)$ is the static equivalent of the hydrodynamic pressures on the upstream face $p_{c}(\theta,z,t) \equiv p(R,\theta,z,t)$. It may be computed from the pressures using the principle of virtual work wherein the variation of displacements between the nodal points is defined by the finite element interpolation functions. Appropriate coordinate transformations are necessary in carrying out these computations because the pressures are defined in the cylindrical coordinate system whereas the nodal loads are in the cartesian coordinate system.

4. ANALYSIS OF DAM RESPONSE TO HARMONIC UPSTREAM-DOWNSTREAM GROUND MOTION

4.1 Equations of Motion

The normal modes of vibration of arch dams with mass, stiffness, damping and geometric properties symmetric about the x-z ($\theta = 0$) plane fall into two categories: symmetric and antisymmetric relative to the same plane. Only the symmetric modes will be excited by the upstreamdownstream component of ground motion. For this excitation, the equations of motion are a special case of Eq. 3.4:

$$M_{j} \ddot{Y}_{j}^{x}(t) + C_{j} \dot{Y}_{j}^{x}(t) + K_{j} \dot{Y}_{j}^{x}(t) = - \phi_{j}^{T} \underline{m} \underline{e}^{x} \ddot{v}_{g}^{x}(t) - \{\phi_{j}^{f}\}^{T} \underline{\rho}^{f}(t)$$
$$j = 1, 2, 3, \dots, J \qquad (4.1)$$

in which $Y_j^{x}(t)$ is the generalized displacement associated with the jth symmetric mode of vibration.

4.2 Fluid Domain: Boundary Conditions

As defined in Section 3.2, $Q^{f}(t)$ in Eq. 4.1 is the vector of nodal forces associated with hydrodynamic pressures on the upstream face of the dam. These pressures, acting in the radial direction (normal to the upstream face which is a segment of a circular cylinder) are governed by the wave equation (Eq. 3.5) together with the following boundary conditions:

- The radial component of fluid motion at the upstream face of the dam (boundary r = R) is the same as the radial motion of the upstream face of the dam.
- The fluid motion normal to the banks (boundaries $\theta = \pm \pi/4$) is the same as the normal component of motion of the banks.

- There is no vertical motion of the fluid at the bottom of the reservoir.
- Fluid pressure at the free surface is zero. This implies that the effects of waves at the free surface are ignored; the associated errors are known to be small [6,22,23].
- Since the system, symmetrical about the x-z ($\theta = 0$) plane, is excited by the x-component of ground motion, the hydrodynamic pressures must be symmetric about the same plane.
- The radiation boundary condition not permitting any reflected waves applies at the upstream end $(r = \infty)$ of the reservoir.

4.3 Complex Frequency Responses

It is a property of linear time invariant systems that when the excitation is simple harmonic motion, the steady state response is also simple harmonic motion at the same frequency. The complex frequency response function $\bar{r}(\omega)$ describes the frequency dependence of the amplitude and phase of the response r(t). It has the property that when the excitation is the real part of $e^{i\omega t}$, the response is the real part of $\bar{r}(\omega)$ e^{i ω t}.

In studying the effects of structure-fluid interaction on the dynamics of arch dams, it is most appropriate and convenient to consider harmonic ground motion and to develop procedures to determine the complex frequency response functions for various response quantities of interest.

The response to harmonic ground acceleration in the x-direction, $\ddot{v}_{q}^{x}(t) = e^{i\omega t}$, can be expressed as follows:

" Hydrodynamic pressures on the dambface, sand of solution of

 $\begin{array}{rcl} & (0,1) & (0,$

• Radial accelerations of the upstream face of the dama

 $\ddot{\mathbf{v}}^{\mathbf{r}}(\mathbf{R},\boldsymbol{\theta},\mathbf{z},\mathbf{t}) = \left\{ \cos \theta^{\mathbf{x}} + \int_{j=1}^{J} \left[\phi_{j}^{\mathbf{x}\mathbf{f}}(\boldsymbol{\theta},\mathbf{z}) \cos \theta + \phi_{j}^{\mathbf{y}\mathbf{f}}(\boldsymbol{\theta},\mathbf{z}) \sin \theta \right] \ddot{\mathbf{x}}_{j,j}^{\mathbf{x}}(\boldsymbol{\omega}) \right\} e^{i\omega \mathbf{t}} \dots (4.2c)$ where $\phi_{j}^{\mathbf{x}\mathbf{f}}(\boldsymbol{\theta},\mathbf{z})$ and $\phi_{j}^{\mathbf{y}\mathbf{f}}(\boldsymbol{\theta},\mathbf{z})$ are the continuous function analogues for the vectors $\phi_{j}^{\mathbf{x}\mathbf{f}}$ and $\phi_{j}^{\mathbf{y}\mathbf{f}}$, defined in Section 3.2. These functions are obtained from the vectors and the finite element interpolation functions (see Appendix D).

4.3.1 Boundary Conditions

Using Eqs. 3.6 and 4.2, the boundary conditions of Section 4.2 can be expressed analytically as follows: and difference even and $\frac{\partial p}{\partial r}(\mathbf{R},\theta,z,t) = -\frac{w}{g} \left\{ \cos\theta + \sum_{j=1}^{J} \left[\phi_{j}^{xf}(0,z) \cos\theta + \phi_{j}^{yf}(\theta,z) \sin\theta \right] \tilde{\mathbf{x}}_{j,\omega}^{x}(\omega) \right\} e^{i\omega t}$ (4.3a) $\frac{\partial p}{r\partial\theta} (\mathbf{r}, \frac{\pi}{4}, z, t) = \frac{w}{g} \sin\frac{\pi}{4} e^{i\omega t}$ (4.3b) $\frac{\partial p}{\partial z} (\mathbf{r}, \theta, 0, t) = 0$ (4.3c) $\frac{\partial p}{\partial z} (\mathbf{r}, \theta, 0, t) = 0$ (4.3d) $\frac{\partial p}{\partial z} (\mathbf{r}, \theta, 0, t) = 0$ (4.3d) $\frac{\partial p}{\partial z} (\mathbf{r}, \theta, 0, t) = 0$ (4.3d) $\frac{\partial p}{\partial z} (\mathbf{r}, 0, z, t) = 0$ (4.3d)

In addition to these boundary conditions, no wave reflections are permitted at the upstream end of the reservoir $(r = \infty)$.

Because the governing wave equation as well as the boundary conditions are linear, the principle of superposition applies. The complex frequency response function for the hydrodynamic pressures on the dam face $\bar{p}_{c}(\theta, z, t)$ can therefore be expressed as:

$$\bar{p}_{c}(\theta, z, \omega) = \bar{p}_{0D}^{x}(\theta, z, \omega) + \bar{p}_{0B}^{x}(\theta, z, \omega) + \sum_{j=1}^{J} \bar{\tilde{Y}}_{j}^{x}(\omega) \bar{p}_{j}^{x}(\theta, z, \omega)$$
(4.4)

The complex frequency response functions \bar{p}_{0D}^{x} , \bar{p}_{0B}^{x} , and \bar{p}_{j}^{x} in Eq. 4.4 are defined as follows. $p_{0D}^{x}(\theta, z, t) = \bar{p}_{0D}^{x}(\theta, z, \omega) e^{i\omega t}$ is the solution of the wave equation (Eq. 3.5) at r = R (upstream face of the dam) for the following boundary conditions:

$$\frac{\partial p}{\partial r}$$
 (R, θ ,z,t) = $-\frac{w}{g}\cos\theta e^{i\omega t}$ (4.5a)

$$\frac{\partial p}{r\partial \theta} (r, \frac{\pi}{4}, z, t) = 0 \qquad (4.5b)$$

and those specified by Eqs. 4.3c to 4.3e. $p_{0B}^{\mathbf{x}}(\theta, \mathbf{z}, t) = \overline{p}_{0B}^{\mathbf{x}}(\theta, \mathbf{z}, \omega) e^{i\omega t}$ is the solution of the wave equation at $\mathbf{r} = \mathbf{R}$ for the following boundary conditions:

$$\frac{\partial p}{\partial r} (R, \theta, z, t) = 0 \qquad (4.6a)$$

$$\frac{\partial p}{r\partial \theta}$$
 (r, $\frac{\pi}{4}$, z, t) = $\frac{1}{\sqrt{2}} \frac{w}{g} e^{i\omega t}$ (4.6b)

and those specified by Eqs. 4.3c to 4.3e. $p_j^{x}(\theta, z, t) = \bar{p}_j(\theta, z, \omega) e^{i\omega t}$ is the solution of the wave equation at r = R for the following boundary conditions:

$$\frac{\partial p}{\partial r} (R, \theta, z, t) = -\frac{w}{g} \left[\phi_{j}^{xf}(\theta, z) \cos\theta + \phi_{j}^{yf}(\theta, z) \sin\theta \right] e^{i\omega t} \qquad (4.7a)$$

$$\frac{\partial p}{r \partial \theta} (r, \frac{\pi}{4}, z, t) = 0 \qquad (4.7b)$$

and those specified by Eqs. 4.3c to 4.3e.

The complex frequency response functions $\bar{p}_{OD}^{\mathbf{x}}(\theta, z, \omega)$, $\bar{p}_{OB}^{\mathbf{x}}(\theta, z, \omega)$, and $\bar{p}_{j}^{\mathbf{x}}(\theta, z, \omega)$ are for the hydrodynamic pressures on the upstream face of the dam for the following three excitations, respectively: (i) Acceleration of rigid dam in the x-direction but the reservoir banks remain stationary, (ii) Acceleration of only the reservoir banks in the x-direction, (iii) Acceleration $\bar{Y}_{j}^{\mathbf{x}}(\omega) = 1$ in the jth symmetrical natural mode of vibration of the dam (without water) but there is no motion of the dam base or reservoir banks.

4.3.2 Hydrodynamic Pressures: Analytical Results

The solutions of the wave equation for the three sets of boundary conditions presented in Section 4.3.1 are derived in Appendix C. The final expressions for $\bar{p}_{0D}^{x}(\theta,z,\omega)$, $\bar{p}_{0B}^{x}(\theta,z,\omega)$, and $\bar{p}_{j}^{x}(\theta,z,\omega)$ are as follows:

$$\bar{p}_{0D}^{\mathbf{x}}(\theta, z, \omega) = \frac{16\sqrt{2} \text{ wR}}{g\pi^2} \sum_{m=1}^{\infty} \sum_{n=0}^{\infty} \frac{(-1)^m}{(2m-1)} \frac{\varepsilon_n (-1)^n}{(1-16n^2)} \left[C_n (\lambda_m R) + i D_n (\lambda_m R) \right] \cos 4n\theta \cos \alpha_m z$$

$$\tilde{p}_{j}^{\mathbf{X}}(\theta, \mathbf{z}, \omega) = -\frac{16wR}{g\pi} \sum_{m=1}^{\infty} \sum_{n=0}^{\infty} \varepsilon_{n} \mathbf{I}_{mn}^{j} \left[C_{n}(\lambda_{m}R) + iD_{n}(\lambda_{m}R) \right] \cos 4n\theta \cos \alpha_{m} \mathbf{z}$$

$$\dots \dots (4.10)$$

where

$$R = radius of the upstream face of the dam$$

$$H = depth of water in the reservoir$$

$$C = velocity of sound in water (4720 ft/sec)$$

$$\omega = excitation frequency$$

$$\varepsilon_n = \begin{cases} 1 & n = 0 \\ 2 & n \neq 0 \end{cases}$$

$$J_n(x) = Bessel function of the first kind of order n$$

$$Y_n(x) = Bessel function of the second kind of order n$$

$$K_n(x) = modified Bessel function of the second kind of order n$$

$$\omega_1^r = \frac{\pi C}{2H} = the first resonant frequency of the water in the reservoir$$

$$\alpha_{\rm m} = \frac{(2{\rm m}-1)\cdot\pi}{2{\rm H}} \tag{4.11a}$$

$$\lambda_{\rm m} R = R \sqrt{|\alpha_{\rm m}^2 - \frac{\omega^2}{c^2}|} = \frac{\pi R}{2H} \sqrt{|(2m-1)^2 - (\frac{\omega}{\omega_{\rm l}^2})^2|}$$
(4.11b)

$$m_{\ell}$$
 = the largest integer "m" satisfying the inequality $\frac{\omega}{\omega_{1}^{r}}$ > (2m-1)

Expressions for functions C_n , D_n , E_m , F_m , U_{mn} , and V_{mn} differ depending on whether m is smaller or larger than m_{ℓ} . For $m \leq m_{\ell}$ they are as follows:

_

$$C_{n}(\lambda_{m}R) = \frac{\left[A_{n}(\lambda_{m}R) J_{4n}(\lambda_{m}R) + B_{n}(\lambda_{m}R) Y_{4n}(\lambda_{m}R)\right]}{\lambda_{m}R \left[A_{n}^{2}(\lambda_{m}R) + B_{n}^{2}(\lambda_{m}R)\right]}$$
(4.11d)

$$D_{n}(\lambda_{m}R) = \frac{\left[B_{n}(\lambda_{m}R) J_{4n}(\lambda_{m}R) - A_{n}(\lambda_{m}R) Y_{4n}(\lambda_{m}R)\right]}{\lambda_{m}R \left[A_{n}^{2}(\lambda_{m}R) + B_{n}^{2}(\lambda_{m}R)\right]}$$
(4.11e)

$$E_{m}(\lambda_{m}R) = \frac{(-1)^{m}}{(2m-1)\lambda_{m}R} \left\{ \sin[\lambda_{m}R\sin(\frac{\pi}{4} - \theta)] + \sin[\lambda_{m}R\sin(\frac{\pi}{4} + \theta)] \right\}$$
.....(4.11f)

$$\mathbf{F}_{\mathbf{m}}(\lambda_{\mathbf{m}}\mathbf{R}) = \frac{(-1)^{\mathbf{m}}}{(2\mathbf{m}-1)\lambda_{\mathbf{m}}\mathbf{R}} \left\{ \cos\left[\lambda_{\mathbf{m}}\mathbf{R}\,\sin\left(\frac{\pi}{4}-\theta\right)\right] + \cos\left[\lambda_{\mathbf{m}}\mathbf{R}\,\sin\left(\frac{\pi}{4}+\theta\right)\right] \right\}$$

$$\dots \dots \dots (4.11g)$$

$$U_{mn}(\lambda_{m}R) = \frac{(-1)^{m}(-1)^{n}}{(2m-1)} \left\{ T_{n}(\lambda_{m}R) C_{n}(\lambda_{m}R) + \frac{\pi}{4} A_{n}(\lambda_{m}R) D_{n}(\lambda_{m}R) \right\}$$
(4.11h)

$$V_{mn}(\lambda_{m}R) = \frac{(-1)^{m}(-1)^{n}}{(2m-1)} \left\{ T_{n}(\lambda_{m}R) D_{n}(\lambda_{m}R) - \frac{\pi}{4} A_{n}(\lambda_{m}R) C_{n}(\lambda_{m}R) \right\}$$
(4.11i)

where:

$$A_{n}(\lambda_{m}R) = J_{4n-1}(\lambda_{m}R) - J_{4n+1}(\lambda_{m}R)$$
(4.11j)

$$B_{n}(\lambda_{m}R) = Y_{4n-1}(\lambda_{m}R) - Y_{4n+1}(\lambda_{m}R)$$
(4.11k)

$$T_{n}(\lambda_{m}R) = \sum_{k=0}^{\infty} \varepsilon_{2k} J_{2k}(\lambda_{m}R) \frac{(16n^{2}+4k^{2}-1)}{(16n^{2}-4k^{2}-4k-1)(16n^{2}-4k^{2}+4k+1)}$$
.....(4.112)

--

For m > $\rm m_{l}$ the above listed functions are as follows:

$$C_{n}(\lambda_{m}R) = \frac{-\kappa_{4n}(\lambda_{m}R)}{\lambda_{m}R[\kappa_{4n-1}(\lambda_{m}R) + \kappa_{4n+1}(\lambda_{m}R)]}$$
(4.11m)

$$D_{n}(\lambda_{m}R) = 0.$$
 (4.11n)

$$E_{m}(\lambda_{m}R) = \frac{-(-1)^{m}}{(2m-1)\lambda_{m}R} \left[e^{-\lambda_{m}R \sin(\pi/4-\theta)} + e^{-\lambda_{m}R \sin(\pi/4+\theta)} \right]$$
(4.110)

$$F_{m}(\lambda_{m}R) = 0.$$
 (4.11p)

$$U_{mn}(\lambda_{m}R) = \frac{-(-1)^{m}}{(2m-1)} \quad G_{n}(\lambda_{m}R) \quad C_{n}(\lambda_{m}R) \quad (4.11q)$$

$$V_{mn}(\lambda_{m}R) = 0.$$
 (4.11r)

where:

$$G_{n}(\lambda_{m}R) = \int_{0}^{\pi/4} \left[\sin\left(\frac{\pi}{4} - \theta\right) e^{-\lambda_{m}R \sin(\pi/4 - \theta)} + \sin\left(\frac{\pi}{4} + \theta\right) e^{-\lambda_{m}R \sin(\pi/4 + \theta)} \right] \cos 4n\theta \ d\theta \qquad \dots \dots (4.11s)$$

In the above equations the Bessel functions are grouped so that the expressions for $C_n(\lambda_m R)$ and $D_n(\lambda_m R)$, Eqs. 4.11d,e and m, are well behaved functions (Appendix D).

The above solutions of the wave equation for the three sets of boundary conditions presented in Section 4.3.1 are for fluid domains described by Fig. 2.1. The fluid is bounded by the upstream face of the dam, which is a segment of a circular cylinder of radius R, and by radially extending banks enclosing a central angle of 90°. For arbitrary central angles standard analytical procedures are able to provide solutions of the wave equation for $\bar{p}_{OD}^{\mathbf{x}}(\theta, z, \omega)$ [5].

As the central angle approaches 180° and $R \rightarrow \infty$, representing a straight dam in the limit, $\bar{p}_{OD}^{X}(\theta, z, \omega)$ approaches the previously obtained [22] two-dimensional solution of the wave equation for a straight gravity dam (Appendix E).

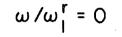
An eigen-frequency of the wave equation in the particular fluid domain under consideration corresponds to each pair of functions $\cos 4n\theta$, n = 0, 1, 2,.... and $\cos \alpha_m z$, m = 1, 2, 3,.... The hydrodynamic pressures $\bar{p}_{0D}^{\mathbf{x}}(\theta, z, \omega)$, $\bar{p}_{0B}^{\mathbf{x}}(\theta, z, \omega)$, and $\bar{p}_{j}^{\mathbf{x}}(\theta, z, \omega)$ are unbounded at the eigen-frequencies corresponding to n = 0 with m = 1, 2, 3,.... At all the other eigen-frequencies, the pressures are bounded and, as will be seen later, do not resonate. The resonant frequencies, the eigen-frequencies corresponding to n = 0 and m = 1, 2, 3,.... are $\omega_m^{\mathbf{r}} = (2m-1) \pi C/2H$. They are the same as the resonant frequencies obtained for two-dimensional fluid domains [22].

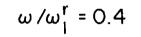
4.3.3 Hydrodynamic Pressures and Forces on Rigid Dams: Numerical Results

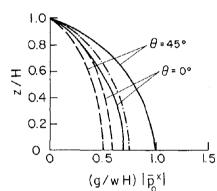
The complex valued frequency response functions $\bar{p}_{OD}^{\mathbf{x}}(\theta, \mathbf{z}, \omega)$ and $\bar{p}_{OB}^{\mathbf{x}}(\theta, \mathbf{z}, \omega)$ are for the hydrodynamic pressures on a rigid dam due to separate accelerations of the dam and of the banks, respectively, in the upstream-downstream direction. The response function for the total pressure $\bar{p}_{OT}^{\mathbf{x}}(\theta, \mathbf{z}, \omega)$ is the sum of the two functions. Numerical results for the absolute value (or modulus) of these frequency response functions are presented for the arch dam-water system of Fig. 2.1 with R/H = 1.5. For several values of the normalized excitation frequency, these functions are plotted over the upstream face at the base of the dam and over the depth valiable z at two selected values of the angular coordinate $\theta = 0$ (crown) and $\theta = 45^{\circ}$ (bank). Because the pressures are

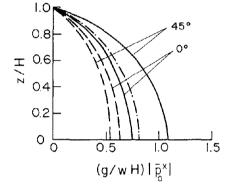
symmetric about the x-z (θ = 0) plane, pressures over only half of the base arch are presented. Each of Figs. 4.1 - 4.3 contains results for a particular normalized excitation frequency.

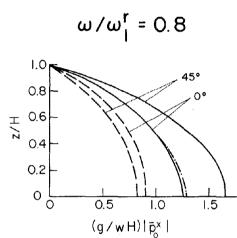
The complex-valued frequency response functions for hydrodynamic forces, acting in the radial direction, per unit length of circumference are:


$$\overline{F}_{0l}(\theta,\omega) = \int_{0}^{H} \overline{p}_{0l}^{\mathbf{x}}(\theta,z,\omega) dz , \quad l = D,B,T \qquad (4.12)$$


Variation of the absolute value (or modulus) of the complex-valued hydrodynamic forces (Eq. 4.12) with excitation frequency is presented in Fig. 4.4 for the arch dam-water system with R/H = 1.5 at θ = 0° (crown), θ = 22¹/₂° and θ = 45° (banks).


In Figs. 4.1 to 4.4 hydrodynamic pressures and forces have been normalized with respect to hydrostatic pressure at the base of the dam and hydrostatic force per unit of circumferential length $F_s = WH^2/2$, respectively. The excitation frequency is normalized with respect to the fundamental resonant frequency of the fluid domain, ω_1^r . When presented in this form, the results apply to all arch dam-fluid systems with the particular value of R/H; in this case R/H = 1.5.


Figures 4.1 to 4.4 also show the complex frequency response functions for hydrodynamic forces and pressures on rigid straight gravity dams due to ground motion acceleration transverse to the dam axis. These results were obtained for gravity dams with vertical upstream face [22].


The hydrodynamic forces (and pressures) on arch dams depend strongly on the excitation frequency: they increase as the excitation frequency approaches from above or below a resonant frequency ω_m^r of the HYDRODYNAMIC FORCES ON ARCH DAMS DUE TO MOTION OF DAM ONLY ______ DAM AND BANKS STRAIGHT GRAVITY DAMS _____

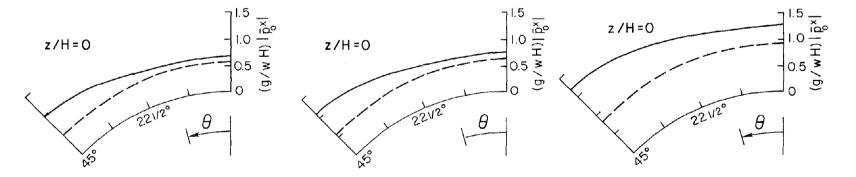


FIG. 4.1 COMPLEX FREQUENCY RESPONSES FOR HYDRODYNAMIC PRESSURES ON RIGID DAMS DUE TO UPSTREAM-DOWNSTREAM GROUND MOTION. RESULTS ARE FOR ARCH DAMS WITH R/H = 1.5 AND STRAIGHT GRAVITY DAMS.

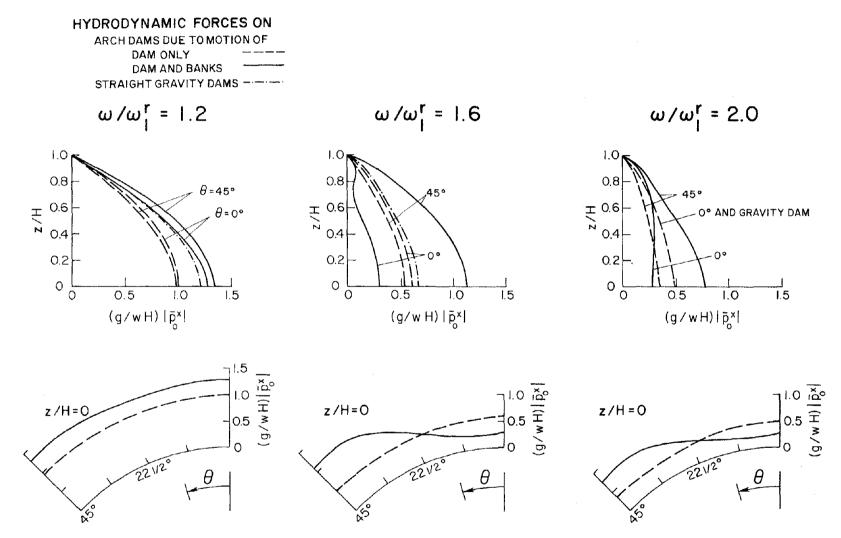


FIG. 4.2 COMPLEX FREQUENCY RESPONSES FOR HYDRODYNAMIC PRESSURES ON RIGID DAMS DUE TO UPSTREAM-DOWNSTREAM GROUND MOTION. RESULTS ARE FOR ARCH DAMS WITH R/H = 1.5 AND STRAIGHT GRAVITY DAMS.

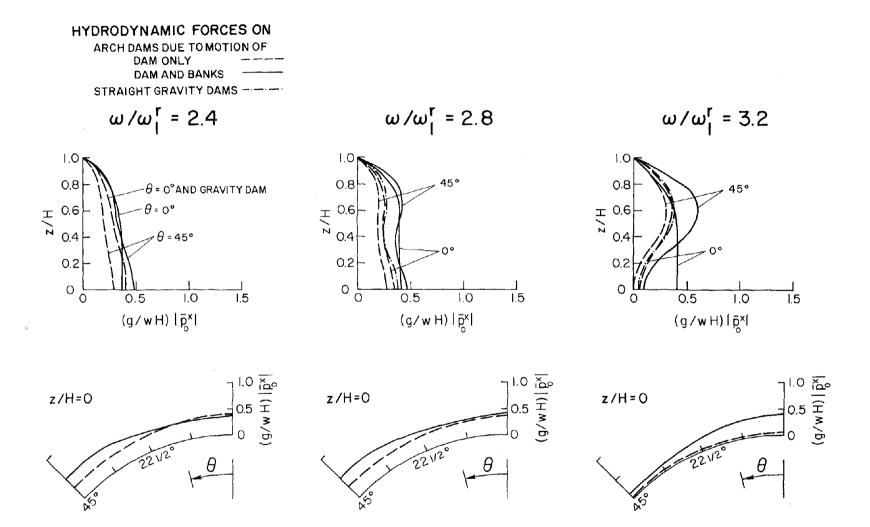


FIG. 4.3 COMPLEX FREQUENCY RESPONSES FOR HYDRODYNAMIC PRESSURES ON RIGID DAMS DUE TO UPSTREAM-DOWNSTREAM GROUND MOTION. RESULTS ARE FOR ARCH DAMS WITH R/H = 1.5 AND STRAIGHT GRAVITY DAMS.

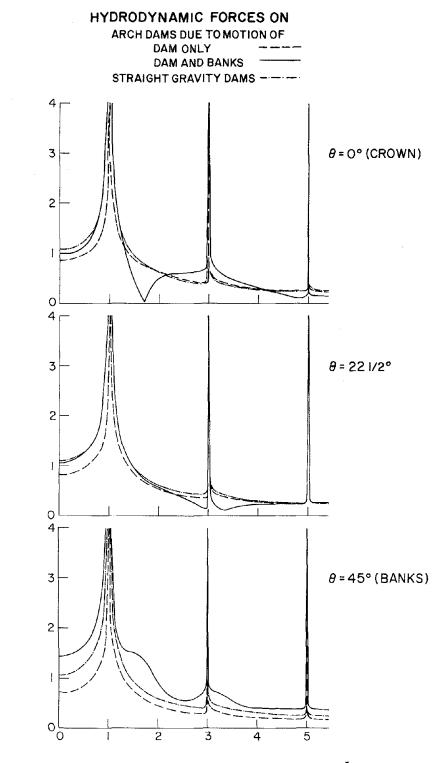


FIG. 4.4 COMPLEX FREQUENCY RESPONSES FOR HYDRODYNAMIC FORCE ON RIGID DAMS DUE TO UPSTREAM-DOWNSTREAM COMPONENT OF GROUND MOTION. RESULTS ARE FOR ARCH DAMS WITH R/H = 1.5 AND STRAIGHT GRAVITY DAMS.

Ľ

NORMALIZED HYDRODYNAMIC FORCE : g | Fl/

fluid domain. The forces are unbounded at these resonant frequencies. The response amplification becomes increasingly sharp and narrow banded at higher resonant frequencies. But for these very localized amplifications at the higher resonant frequencies, the response tends to decrease as the excitation frequency increases beyond the fundamental resonant frequency.

By comparing with results for straight gravity dams, it is apparent that the resonant frequencies are the same (see Section 4.3.2) but the hydrodynamic forces due to motion of the dam alone are influenced by the curvature of the dam. The forces are reduced at most excitation frequencies in a manner that the variation of forces with excitation frequency are affected little by curvature, at least for dams with R/H = 1.5.

The motion of banks modifies the hydrodynamic forces, increasing them for some excitation frequencies, decreasing them for others. The curvature of the dam influences the total -- due to motion of the dam and banks -- hydrodynamic force, resulting in larger forces at most excitation frequencies. At some frequencies, however, the forces are greatly reduced.

The variation of hydrodynamic pressures with depth and position along the arch depends on the excitation frequency (Figs. 4.1 to 4.3). The following observations are based on these results for arch dam-water systems shown in Fig. 2.1 with R/H = 1.5.

The hydrodynamic pressures due to motion of the dam alone vary little with θ , decreasing slightly from the crown to the banks. However, the pressures due to motion of the dam and banks vary significantly with θ , increasing from crown to banks for smaller excitation frequencies but decreasing for the higher frequencies.

At the crown and banks of arch dams, the pressures due to motion of the dam alone, and motion of both dam and banks at smaller excitation frequencies $(\omega/\omega_1^r < 1.2)$, vary with depth in a manner similar to the pressure-depth curve for straight gravity dams. The pressures on arch dams due to motion of the dam alone vary with depth similarly to pressures on straight dams even at higher excitation frequencies $(\omega/\omega_1^r > 1.2)$. At higher excitation frequencies $(\omega/\omega_1^r > 2)$, the pressures at all depths on the crown due to motion of the dam only are virtually identical to those on straight gravity dams.

At excitation frequencies $\omega < \omega_1^r$, the contributions of the motion of the banks lead to increases in hydrodynamic pressures on the dam. However, at $\omega > \omega_1^r$, there is no apparent systematic trend in the contribution of the motion of the banks to the hydrodynamic pressures. For a particular excitation frequency, and fixed θ , the pressures may increase at some depths and decrease at others; for a fixed depth below the water surface, the pressures may increase for some θ values and decrease for others.

4.3.4 Dam Response

As mentioned earlier $\underline{Q}^{f}(t)$ is the vector of loads at the nodal points on the upstream face of the dam associated with hydrodynamic pressures $p_{c}(\theta,z,t)$. These hydrodynamic loads due to harmonic ground acceleration are of the form $\underline{Q}^{f}(t) = \underline{\bar{Q}}^{f}(\omega) e^{i\omega t}$. The complex frequency response function for this load vector can, from Eq. 4.4, be expressed as:

$$\overline{\underline{Q}}^{f}(\omega) = \overline{\underline{Q}}_{0D}^{\mathbf{x}}(\omega) + \overline{\underline{Q}}_{0B}^{\mathbf{x}}(\omega) + \sum_{k=1}^{J} \overline{\underline{Y}}_{k}^{\mathbf{x}}(\omega) \overline{\underline{Q}}_{k}^{\mathbf{x}}(\omega)$$
(4.13)

where the force vectors $\underline{\tilde{Q}}_{0D}^{\mathbf{x}}(\omega)$, $\underline{\tilde{Q}}_{0B}^{\mathbf{x}}(\omega)$, and $\underline{\tilde{Q}}_{k}^{\mathbf{x}}(\omega)$ are static equivalents of the corresponding pressure functions $\overline{p}_{0D}^{\mathbf{x}}(\theta, z, \omega)$, $\overline{p}_{0B}^{\mathbf{x}}(\theta, z, \omega)$, and $\overline{p}_{k}^{\mathbf{x}}(\theta, z, \omega)$ and may be computed by applying the principle of virtual work, wherein the finite element interpolation functions describe the variation of displacement between nodal points. In Eq. 4.14 the hydrodynamic forces on the dam have been expressed in terms of the unknown generalized coordinate responses $\overline{Y}_{k}^{\mathbf{x}}(\omega)$.

For excitation $\ddot{v}_{g}^{x}(t) = e^{i\omega t}$, Eq. 4.1, after substitution of Eq. 4.13, becomes:

$$\left[-\omega^{2}M_{j}+i\omega C_{j}+K_{j}\right]\bar{\mathbf{y}}_{j}^{\mathbf{x}}(\omega) = -\phi_{j-}^{T}e^{\mathbf{x}} - \left\{\phi_{j}^{f}\right\}^{T}\left\{\bar{\mathbf{y}}_{0D}^{\mathbf{x}}(\omega) + \bar{\mathbf{y}}_{0B}^{\mathbf{x}}(\omega) - \omega^{2}\sum_{k=1}^{J}\bar{\mathbf{y}}_{k}^{\mathbf{x}}(\omega)\bar{\mathbf{y}}_{k}^{\mathbf{x}}(\omega)\right\}$$

$$\dots \dots (4.14)^{-1}$$

This set of equations may be expressed in matrix form as:

$$\begin{bmatrix} s_{11}(\omega) & s_{12}(\omega) & \dots & s_{1J}(\omega) \\ s_{21}(\omega) & s_{22}(\omega) & \dots & s_{2J}(\omega) \\ \vdots & & & \vdots \\ s_{J1}(\omega) & s_{J2}(\omega) & \dots & s_{JJ}(\omega) \end{bmatrix} \begin{pmatrix} \bar{y}_{1}^{x}(\omega) \\ \bar{y}_{2}^{x}(\omega) \\ \vdots \\ \vdots \\ \vdots \\ y_{1}^{u}(\omega) \end{pmatrix} = \begin{pmatrix} L_{1}^{x}(\omega) \\ L_{2}^{x}(\omega) \\ \vdots \\ \vdots \\ \vdots \\ \vdots \\ L_{J}^{u}(\omega) \end{pmatrix}$$
(4.15a)

or

$$\underline{\mathbf{S}}(\boldsymbol{\omega}) \quad \underline{\mathbf{Y}}^{\mathbf{X}}(\boldsymbol{\omega}) = \underline{\mathbf{L}}^{\mathbf{X}}(\boldsymbol{\omega}) \tag{4.15b}$$

where,

$$\begin{split} & S_{jk}(\omega) = -\omega^{2} \left\{ \phi_{j}^{f} \right\}^{T} \underline{\tilde{Q}}_{k}^{x}(\omega) \quad ; \quad j \neq k \\ & S_{jj}(\omega) = -\omega^{2} M_{j} + i\omega C_{j} + K_{j} - \omega^{2} \left\{ \phi_{j}^{f} \right\}^{T} \underline{\tilde{Q}}_{j}^{x}(\omega) \\ & L_{j}^{x}(\omega) = - \phi_{j}^{T} \underline{m} \underline{e}^{x} - \left\{ \phi_{j}^{f} \right\}^{T} \left\{ \underline{\tilde{Q}}_{OD}^{x}(\omega) + \underline{\tilde{Q}}_{OB}^{x}(\omega) \right\} \end{split}$$
(4.16)
$$\begin{aligned} & k = 1, 2, 3, \dots, J \\ & k = 1, 2, 3, \dots, J \end{aligned}$$

The frequency dependent matrix $\underline{S}(\omega)$ in Eq. 4.15 relates the generalized displacement vector $\underline{Y}^{\mathbf{X}}(\omega)$ to the corresponding generalized loads $\underline{L}^{\mathbf{X}}(\omega)$. Unlike in classical modal analysis the matrix $\underline{S}(\omega)$ is not diagonal because the vectors $\underline{\Phi}_{\mathbf{j}}$ are not the normal modes of the dam-fluid system; they are the modes of the dam alone (without water). It can be shown that $S(\omega)$ is a symmetric matrix (see Appendix F).

Solutions of Eq. 4.15 for a range of values of the excitation frequency ω would provide the complex frequency response functions for all the generalized displacements $\overline{Y}_{j}^{x}(\omega)$, $j = 1, 2, \ldots, J$. The frequency responses for generalized accelerations may be obtained from:

$$\bar{\tilde{\mathbf{y}}}_{j}^{\mathbf{x}}(\omega) = -\omega^{2} \, \bar{\mathbf{y}}_{j}^{\mathbf{x}}(\omega) \tag{4.17}$$

The complex frequency responses for acceleration at the nodal points of the dam are

$$\vec{\underline{v}}^{\mathbf{x}}(\omega) = \sum_{j=1}^{J} \vec{\underline{v}}^{\mathbf{x}}_{j}(\omega)$$
(4.18)

The contribution of the jth vibration mode of the dam to these accelerations is

$$\ddot{\vec{v}}_{j}^{\mathbf{x}}(\omega) = \ddot{\vec{v}}_{j}^{\mathbf{x}}(\omega) \quad \underline{\phi}_{j}$$
(4.19)

4.4 Singularities of the Solution

The hydrodynamic pressure functions $\bar{p}_{0D}^{X}(\theta, z, \omega)$, $\bar{p}_{0B}^{X}(\theta, z, \omega)$, and $\bar{p}_{j}^{X}(\theta, z, \omega)$ are unbounded at $\omega = \omega_{m}^{r}$, where $\omega_{m}^{r} = (2m-1)\pi C/2H$, m = 1,2,3,... is the mth resonant frequency of the fluid contained in the reservoir. Consequently, the elements of $\underline{S}(\omega)$ and $\underline{L}^{X}(\omega)$ defined in Eq. 4.16 are unbounded at these frequencies.

When J = 1, i.e. only the first vibration mode is included in the analysis, Eq. 4.16 reduces to one equation and the response at a resonant frequency can be obtained through a limiting process. If the excitation is only the motion of the base of the dam and the banks are stationary (i.e. $\bar{p}_{0B}^{X}(0,z,\omega) = 0$ and $\bar{Q}_{0B}^{X}(\omega) = 0$), the result of the limiting process is (see Appendix E)

$$\lim_{\omega \to \omega_{m}^{r}} \overline{\tilde{Y}}_{1}^{x}(\omega) = \frac{\sqrt{2} (-1)^{m}}{\pi (2m-1) I_{m0}^{1}}$$
(4.20)

where I_{m0}^{1} was defined in Section 4.3.2. However, the limiting process leads to unbounded response when the excitation includes the simultaneous motion of the dam base and reservoir banks.

When more than one vibration mode is included in the analysis, the limiting process leads to a system of equations such that $\underline{S}(\omega)$ is singular -- in particular all the J equations become identical -- and no solution can be obtained at frequencies ω_m^r . However, numerical solutions to the equations can be obtained for values of ω arbitrarily near these frequencies.

The set of governing equations, corresponding to Eq. 4.15, for concrete gravity dams were also singular at the resonant frequencies of the undamped fluid domain [13]. As discussed therein, such singularities are characteristic of the results from a substructure method of analysis applied to a system with no damping in one of the substructures, in this case the fluid domain.

4.5 Analysis Neglecting Compressibility of Water

Only the hydrodynamic terms are altered in Eq. 4.15 if water is assumed as incompressible. In this case the hydrodynamic pressure functions $\bar{p}_{0D}^{\mathbf{x}}(\theta, z, \omega)$, $\bar{p}_{0B}^{\mathbf{x}}(\theta, z, \omega)$ and $\bar{p}_{j}^{\mathbf{x}}(\theta, z, \omega)$ are independent of frequency and they may be obtained by taking limits of these functions (Eq. 4.8 - 4.10) as $C \rightarrow \infty$ or as values of these functions at $\omega = 0$:

$$\tilde{p}_{OD}^{X}(\theta, z, 0) = \frac{16\sqrt{2} \text{ WR}}{g\pi^{2}} \sum_{m=1}^{\infty} \sum_{n=0}^{\infty} \frac{(-1)^{m}}{(2m-1)} \frac{\varepsilon_{n}^{(-1)^{11}}}{(1-16n^{2})} C_{n}^{(\alpha_{m}R)} \cos 4n\theta \cos \alpha_{m} z$$
.....(4.21)

$$\overline{p}_{OB}^{\mathbf{x}}(\theta, z, 0) = \frac{2\sqrt{2} \text{ WR}}{g\pi} \left\{ \sum_{m=1}^{\infty} E_{m}(\alpha_{m}R) \cos \alpha_{m}z + \frac{8}{\pi} \sum_{m=1}^{\infty} \sum_{n=0}^{\infty} \varepsilon_{n} U_{mn}(\alpha_{m}R) \cos 4n\theta \cos \alpha_{m}z \right\}$$

$$\dots \dots (4.22)$$

$$\overline{p}_{j}^{\mathbf{x}}(\theta, z, 0) = -\frac{16WR}{\pi g} \sum_{m=1}^{\infty} \sum_{n=0}^{\infty} \varepsilon_{n} I_{mn}^{j} C_{n}(\alpha_{m}^{R}) \cos 4n\theta \cos \alpha_{m}^{z}$$
(4.23)

where all quantities except the following are defined in Section 4.3.2:

$$C_{n}(\alpha_{m}R) = \frac{-\kappa_{4n}(\alpha_{m}R)}{\alpha_{m}R [\kappa_{4n-1}(\alpha_{m}R) + \kappa_{4n+1}(\alpha_{m}R)]}$$
(4.24a)

$$E_{m}(\alpha_{m}R) = \frac{-(-1)^{m}}{(2m-1)\alpha_{m}R} \left[e^{-\alpha_{m}R} \sin(\pi/4 - \theta) + e^{-\alpha_{m}R} \sin(\pi/4 + \theta) \right]$$
(4.24b)

$$U_{mn}(\alpha_{m}R) = \frac{-(-1)^{m}}{(2m-1)} \quad G_{n}(\alpha_{m}R) \quad C_{n}(\alpha_{m}R) \quad (4.24c)$$

$$G_{n}(\alpha_{m}R) = \int_{0}^{\pi/4} \left[\sin(\frac{\pi}{4}-\theta) e^{-\alpha_{m}R} \sin(\pi/4-\theta) + \sin(\frac{\pi}{4}+\theta) e^{-\alpha_{m}R} \sin(\pi/4+\theta)\right] \cos 4n\theta \ d\theta$$

$$\dots \dots (4.24d)$$

In general, the functions \bar{p}_{0D}^{x} , \bar{p}_{0B}^{x} and \bar{p}_{j}^{x} are complex valued and depend on the excitation frequency (Eqs. 4.8, 4.9 and 4.10), but they are real valued and independent of frequency if compressibility of water is neglected. Equation 4.15 then becomes

$$-\omega^{2}(\underline{M} + \underline{M}^{a}) \ \underline{\bar{Y}}^{x}(\omega) + i\omega \underline{C} \ \underline{\bar{Y}}^{x}(\omega) + \underline{K} \ \underline{\bar{Y}}^{k}(\omega) = \underline{L}^{0x} + \underline{L}^{ax}$$
(4.25)

where \underline{M} , \underline{C} and \underline{K} are generalized mass, generalized damping and generalized stiffness matrices respectively; each is a diagonal matrix. $\underline{L}^{OX} = - \oint_{j=}^{T} \underline{e}^{X} \underline{M}^{a}$ is an "added mass" matrix defined by

$$M_{jk}^{a} = \{\phi_{j}^{f}\}^{T} \ \underline{\underline{o}}_{k}^{x}(0) \quad ; \quad j,k = 1,2,3,\dots,J \quad (4.26a)$$

 $\underline{\textbf{L}}^{ax}$ is an "added load" vector defined by

$$\mathbf{L}_{j}^{ax} = - \{\phi_{j}^{f}\}^{T} \{\overline{\underline{Q}}_{0D}^{x}(0) + \overline{\underline{Q}}_{0B}^{x}(0)\} \quad j = 1, 2, \dots, J$$
(4.26b)

When water is assumed to be incompressible, the hydrodynamic effects are thus equivalent to frequency independent added mass and load terms. Consequently, unlike the case including water compressibility and involving hydrodynamic terms that depend on frequency (Eqs. 4.15 - 4.16), Eq. 4.25 can be written directly in the time domain as:

$$(\underline{M} + \underline{M}^{a}) \underline{\ddot{Y}}^{X}(t) + \underline{C} \underline{\dot{Y}}^{X}(t) + \underline{K} \underline{\dot{Y}}^{X}(t) = (\underline{L}^{0X} + \underline{L}^{aX}) \underline{\ddot{v}}_{g}^{X}(t) \quad (4.27)$$

4.6 Dam With Empty Reservoir

Equations for complex frequency responses of the dam with no water in the reservoir may be obtained as a special case from Eqs. 4.16 and 4.17 simply by setting to zero the hydrodynamic loads $\bar{\varrho}_{0D}^{\mathbf{x}}$, $\bar{\varrho}_{0B}^{\mathbf{x}}$, and $\bar{\varrho}_{i}^{\mathbf{x}}$. The coefficients of Eq. 4.15 will then be:

$$s_{jk}(\omega) = 0 \quad j \neq k$$

$$s_{jj}(\omega) = -\omega^{2} M_{j} + i\omega c_{j} + K_{j} \qquad (4.28)$$

$$L_{j}^{x}(\omega) = -\Phi_{j}^{T} \underline{m} \underline{e}^{x} = L_{j}^{0x}(\omega)$$

The matrix $\underline{S}(\omega)$ is now diagonal since the natural modes of vibration of the dam, in terms of which Eq. 4.16 is developed, are also the natural modes of the system considered. Comparing Eqs. 4.16 and 4.28, it is apparent that the presence of water introduces added load terms in $\underline{L}^{\mathbf{X}}(\omega)$ and modifies $\underline{S}(\omega)$. The diagonal terms in $\underline{S}(\omega)$ are modified by an additive quantity and off-diagonal terms appear. Because the natural modes of vibration of the dam are not the normal coordinates of the dam-fluid system, the equations in terms of $\underline{Y}_{j}^{\mathbf{X}}$ (Eq. 4.15) are coupled.

4.7 Computer Program

Based on the analytical procedures described in this Chapter and Chapters 5 and 6, a computer program (Appendices H and I) has been written in FORTRAN IV to numerically evaluate the response of arch dams including reservoir interaction effects to horizontal and vertical components of harmonic ground motion. As the program is capable of including any number of modes of vibration of the dam, results can be

obtained to any desired degree of accuracy. Analysis with compressibility of water neglected or with the reservoir water absent are included in the program as special cases. This program generated the results in Chapter 7.

Ŀ

5. ANALYSIS OF DAM RESPONSE TO HARMONIC CROSS-STREAM GROUND MOTION

5.1 Equations of Motion

The analytical procedures and results developed in this Chapter for response of the dam to the cross-stream component of ground motion closely parallel those of Chapter 4. At the expense of some duplication, the presentation in this Chapter is self-contained.

Only the antisymmetric natural modes of vibration of the dam (see Section 4.1) will be excited by the y-component of ground motion. For this excitation, the equations of motion are a special case of Eq. 3.4:

$$M_{j} \ddot{Y}_{j}^{Y}(t) + C_{j} \dot{Y}_{j}^{Y}(t) + K_{j} Y_{j}^{Y}(t) = - \phi_{j}^{T} \underline{m} \underline{e}^{Y} \ddot{v}_{g}^{Y}(t) - \{\phi_{j}^{f}\}^{T} \underline{\rho}^{f}(t)$$

$$j = 1, 2, 3, \dots, J \qquad (5.1)$$

in which $Y_j^{Y}(t)$ is the generalized displacement associated with the jth antisymmetric mode of vibration.

5.2 Fluid Domain: Boundary Conditions

As defined in Section 3.2, $Q^{f}(t)$ in Eq. 5.1 is the vector of nodal forces associated with hydrodynamic pressures on the upstream face of the dam. These pressures, acting in the radial direction (normal to the upstream face) are governed by the wave equation (Eq. 3.5) together with the following boundary conditions.

> The radial component of fluid motion at the upstream face of the dam (boundary r = R) is the same as the radial motion of the upstream face of the dam.

- The fluid motion normal to the banks (boundaries $\theta = \pm \pi/4$) is the same as the normal component of motion of the banks.
- There is no vertical motion of the fluid at the bottom of the reservoir.
- Fluid pressure at the free surface is zero.
- Since the system, symmetrical about the x z (θ = 0) plane, is excited by the y-component of ground motion, the hydrodynamic pressures must be antisymmetric about the same plane.
- The radiation boundary condition not permitting any reflected wave applies at the upstream end (r = ∞) of the reservoir.

5.3 Complex Frequency Response

The response to harmonic ground acceleration in the y-direction, $\ddot{v}_{\alpha}^{y}(t) = e^{i\omega t}$, can be expressed as follows:

• Hydrodynamic pressures on the dam face,

$$P_{c}(\theta,z,t) = \bar{P}_{c}(\theta,z,t) e^{i\omega t}$$
 (5.2a)

Generalized accelerations,

$$\ddot{\mathbf{Y}}_{\mathbf{j}}^{\mathbf{y}}(t) = \ddot{\tilde{\mathbf{Y}}}_{\mathbf{j}}^{\mathbf{y}}(\omega) e^{i\omega t}$$
 (5.2b)

Radial accelerations of the upstream face of the dam,

$$\vec{v}^{r}(\mathbf{R},\theta,z,t) = \left\{ \sin\theta + \sum_{j=1}^{J} \left[\phi_{j}^{\mathbf{xf}}(\theta,z) \cos\theta + \phi_{j}^{\mathbf{yf}}(\theta,z) \sin\theta \right] \vec{\tilde{\mathbf{y}}}_{j}^{\mathbf{y}}(\omega) \right\} e^{i\omega t}$$

$$\dots \dots (5.2c)$$

where $\phi_j^{xf}(\theta,z)$ and $\phi_j^{yf}(\theta,z)$ are the continuous function analogues (Section 4.2) for the vectors ϕ_j^{xf} and ϕ_j^{yf} defined in Section 3.2.

5.3.1 Boundary Conditions

Using Eqs. 3.6 and 5.2, the boundary conditions of Section 5.2 can be expressed analytically as follows:

$$\frac{\partial p}{\partial r}(R,\theta,z,t) = -\frac{w}{g} \left\{ \sin\theta + \sum_{j=1}^{J} \left[\phi_{j}^{xf}(\theta,z) \cos\theta + \phi_{j}^{yf}(\theta,z) \sin\theta \right] \bar{Y}_{j}^{y}(\omega) \right\} e^{i\omega t}$$

$$\dots \dots (5.3a)$$

$$\frac{\partial p}{r\partial \theta}(r, \frac{\pi}{4}, z, t) = -\frac{w}{g}\cos(\frac{\pi}{4}) e^{i\omega t}$$
(5.3b)

$$\frac{\partial p}{\partial z}(r,\theta,0,t) = 0$$
 (5.3c)

$$p(\mathbf{r},\theta,\mathbf{H},\mathbf{t}) = 0 \tag{5.3d}$$

$$p(r,0,z,t) = 0$$
 (5.3e)

In addition to these boundary conditions, no wave reflections at the upstream end of the reservoir $(r = \infty)$ are permitted.

Because the governing wave equation as well as the boundary conditions are linear, the principle of superposition applies. The complex frequency response function for the hydrodynamic pressures on the dam face $p_c(\theta, z, t)$ can therefore be expressed as:

$$\bar{\mathbf{p}}_{c}(\theta, z, \omega) = \tilde{p}_{OD}^{Y}(\theta, z, \omega) + \tilde{p}_{OB}^{Y}(\theta, z, \omega) + \sum_{j=1}^{J} \bar{\tilde{\mathbf{Y}}}_{j}^{Y}(\omega) \tilde{p}_{j}^{Y}(\theta, z, \omega)$$
(5.4)

The complex frequency response functions \bar{p}_{0D}^{Y} , \bar{p}_{0B}^{Y} , and \bar{p}_{j}^{Y} in Eq. 5.4 are defined as follows. $p_{0D}^{Y}(\theta,z,t) = \bar{p}_{0D}^{Y}(\theta,z,\omega) e^{i\omega t}$ is the solution of the wave equation (Eq. 3.5) at r = R (upstream face of the dam) for the following boundary conditions:

$$\frac{\partial p}{\partial r}(R,\theta,z,t) = -\frac{w}{g}\sin\theta e^{i\omega t}$$
(5.5a)

$$\frac{\partial p}{r\partial \theta}(r, \frac{\pi}{4}, z, t) = 0$$
 (5.5b)

and those specified by Eqs. 5.3c to 5.3e. $p_{OB}^{Y}(\theta,z,t) = \bar{p}_{OB}^{Y}(\theta,z,\omega) e^{i\omega t}$ is the solution of the wave equation at r = R for the following boundary conditions:

$$\frac{\partial P}{\partial r}(R,\theta,z,t) = 0$$
 (5.6a)

$$\frac{\partial p}{r\partial \theta}(r, \frac{\pi}{4}, z, t) = -\frac{1}{\sqrt{2}} \frac{w}{g} e^{i\omega t}$$
 (5.6b)

and those specified by Eqs. 5.3c to 5.3e. The solution of the wave equation at r = R is $p_j^{Y}(\theta, z, t) = \overline{p}_j^{Y}(\theta, z, \omega) e^{i\omega t}$ for the following boundary conditions:

$$\frac{\partial p}{\partial r}(R,\theta,z,t) = -\frac{w}{g} \left[\phi_{j}^{xf}(\theta,z) \cos\theta + \phi_{j}^{yf}(\theta,z) \sin\theta \right] e^{i\omega t}$$
(5.7a)

$$\frac{\partial \mathbf{p}}{\mathbf{r}\partial\theta}(\mathbf{r},\frac{\pi}{4},\mathbf{z},\mathbf{t})=0$$
(5.7b)

and those specified by Eqs. 5.3c to 5.3e.

The complex frequency response functions $\bar{p}_{0D}^{Y}(\theta, z, \omega)$, $\bar{p}_{0B}^{Y}(\theta, z, \omega)$, and $\bar{p}_{j}^{Y}(\theta, z, \omega)$ are for the hydrodynamic pressures on the upstream face of the dam for the following three excitations, respectively: (i) accelerations of the rigid dam in the y-direction but the banks remain stationary, (ii) acceleration of only the reservoir banks in the y-direction, (iii) acceleration $\bar{Y}_{j}^{Y}(\omega) = 1$ in the jth antisymmetric natural mode of vibration of the dam (without water) but there is no motion of the dam base or reservoir banks.

5.3.2 Hydrodynamic Pressures: Analytical Results

The solution of the wave equation for the three sets of boundary conditions presented in Section 5.3.1 are derived in Appendix C. The final expression for $\bar{p}_{0D}^{Y}(\theta, z, \omega)$, $\bar{p}_{0B}^{Y}(\theta, z, \omega)$ and $\bar{p}_{j}^{Y}(\theta, z, \omega)$ are as follows:

$$\bar{p}_{0D}^{Y}(\theta, z, \omega) = \frac{32\sqrt{2} \text{ wR}}{g\pi^{2}} \sum_{m=1}^{\infty} \sum_{n=0}^{\infty} \frac{(-1)^{m}}{(2m-1)} \frac{(-1)^{n}}{(\mu_{n}^{2}-1)} \left[C_{n}(\lambda_{m}R) + iD_{n}(\lambda_{m}R) \right] \sin\mu_{n}\theta \cos\alpha_{m}z$$
.....(5.8)

$$\vec{p}_{OB}^{y}(\theta,z,\omega) = \frac{2\sqrt{2} w_{R}}{g\pi} \left\{ \sum_{m=1}^{\infty} \left[E_{m}(\lambda_{m}R) + iF_{m}(\lambda_{m}R) \right] \cos(\alpha_{m}z + \frac{16}{\pi} \sum_{m=1}^{\infty} \sum_{n=0}^{\infty} \left[U_{mn}(\lambda_{m}R) + iV_{mn}(\lambda_{m}R) \right] \sin(\alpha_{m}R) \cos(\alpha_{m}z) \right\}$$

.....(5.9)

$$\bar{p}_{j}^{Y}(\theta, z, \omega) = -\frac{32wR}{g\pi} \sum_{m=1}^{\infty} \sum_{n=0}^{\infty} I_{mn}^{j} \left[C_{n}(\lambda_{m}R) + iD_{n}(\lambda_{m}R) \right] \sin\mu_{n}\theta \cos\alpha_{m}z$$

$$\dots \dots \dots (5.10)$$

where:

$$\alpha_{\rm m} = \frac{(2m-1)\pi}{2H} \tag{5.11a}$$

$$\lambda_{\rm m} R = R \sqrt{|\alpha_{\rm m}^2 - \frac{\omega^2}{c^2}|} = \frac{\pi R}{2H} \sqrt{|(2m-1)^2 - (\frac{\omega}{\omega_{\rm l}^{\rm r}})^2|}$$
(5.11b)

$$I_{mn}^{j} = \frac{1}{H} \int_{0}^{\pi/4} \int_{0}^{H} \left[\phi_{j}^{xf}(\theta, z) \cos \theta + \phi_{j}^{yf}(\theta, z) \sin \theta \right] \sin \mu_{n} \theta \cos \alpha_{m} z \, dz d\theta \qquad \dots \dots \dots (5.11c)$$

1 . -

$$\mu_n = 4n + 2$$
 (5.11d)

 m_{ℓ} = the largest integer "m" satisfying the inequality $\frac{\omega}{\omega_{1}^{r}}$ > (2m-1)

Expressions for functions C_n , D_n , E_m , F_m , U_{mn} , and V_{mn} differ depending on whether m is smaller or larger than m_{ℓ} . For $m \leq m_{\ell}$ they are as follows:

$$C_{n}(\lambda_{m}R) = \frac{\left[A_{n}(\lambda_{m}R) J_{\mu}(\lambda_{m}R) + B_{n}(\lambda_{m}R) Y_{\mu}(\lambda_{m}R) \right]}{\lambda_{m}R \left[A_{n}^{2}(\lambda_{m}R) + B_{n}^{2}(\lambda_{m}R) \right]}$$
(5.11e)

$$D_{n}(\lambda_{m}R) = \frac{\begin{bmatrix} B_{n}(\lambda_{m}R) & J_{\mu}(\lambda_{m}R) - A_{n}(\lambda_{m}R) & Y_{\mu}(\lambda_{m}R) \end{bmatrix}}{\lambda_{m}R \begin{bmatrix} A_{n}^{2}(\lambda_{m}R) & + B_{n}^{2}(\lambda_{m}R) \end{bmatrix}}$$
(5.11f)

$$E_{m}(\lambda_{m}R) = \frac{(-1)^{m}}{(2m-1)\lambda_{m}R} \left\{ \sin \left[\lambda_{m}R \sin \left(\frac{\pi}{4} + \theta\right)\right] - \sin \left[\lambda_{m}R \sin \left(\frac{\pi}{4} - \theta\right)\right] \right\}$$
(5.11g)

$$F_{m}(\lambda_{m}R) = \frac{(-1)^{m}}{(2m-1)\lambda_{m}R} \left\{ \cos\left[\lambda_{m}R\sin\left(\frac{\pi}{4} + \theta\right)\right] - \cos\left[\lambda_{m}R\sin\left(\frac{\pi}{4} - \theta\right)\right] \right\}$$
(5.11h)

$$U_{mn}(\lambda_{m}R) = \frac{(-1)^{m}(-1)^{n}}{(2m-1)} \left\{ T_{n}(\lambda_{m}R) C_{n}(\lambda_{m}R) + \frac{\pi}{4} A_{n}(\lambda_{m}R) D_{n}(\lambda_{m}R) \right\}$$
(5.11i)

$$V_{mn}(\lambda_{m}R) = \frac{-(-1)^{m}(-1)^{n}}{(2m-1)} \left\{ T_{n}(\lambda_{m}R) D_{n}(\lambda_{m}R) - \frac{\pi}{4} A_{n}(\lambda_{m}R) C_{n}(\lambda_{m}R) \right\}$$
(5.11j)

where:

$$A_n(\lambda_m R) = J_{\mu_n} - 1 \begin{pmatrix} \lambda_m R \end{pmatrix} - J_{\mu_n} + 1 \begin{pmatrix} \lambda_m R \end{pmatrix}$$
(5.11k)

$$B_{n}(\lambda_{m}R) = Y_{\mu_{n}-1}(\lambda_{m}R) - Y_{\mu_{n}+1}(\lambda_{m}R)$$
(5.112)

$$T_{n}(\lambda_{m}R) = \sum_{k=0}^{\infty} \varepsilon_{2k} J_{2k}(\lambda_{m}R) \frac{(\mu_{n}^{2}+4k^{2}-1)}{(\mu_{n}^{2}-4k^{2}-4k-1)(\mu_{n}^{2}-4k^{2}+4k-1)}$$
(5.11m)

For m > m_{ℓ} the above listed functions are as follows:

$$C_{n}(\lambda_{m}R) = \frac{-\kappa_{\mu}(\lambda_{m}R)}{\lambda_{m}R[\kappa_{\mu}-1}(\lambda_{m}R) + \kappa_{\mu}+1}(\lambda_{m}R)]$$
(5.11n)

$$D_n(\lambda_m R) = 0.$$
 (5.110)

$$E_{m}(\lambda_{m}R) = \frac{-(-1)^{m}}{(2m-1)\lambda_{m}R} \left[e^{-\lambda_{m}R \sin(\pi/4+\theta)} - e^{-\lambda_{m}R \sin(\pi/4-\theta)} \right]$$

$$\dots \dots \dots (5.11p)$$

$$F_{m}(\lambda_{m}R) = 0.$$

$$U_{mn}(\lambda_{m}R) = \frac{-(-1)^{m}}{(2m-1)} G_{n}(\lambda_{m}R) C_{n}(\lambda_{m}R)$$
(5.11q)
(5.11q)

$$V_{mn}(\lambda_m R) = 0.$$
 (5.11r)

where:

$$G_{n}(\lambda_{m}R) = \iint_{0}^{\pi/4} \left[\sin(\frac{\pi}{4}+\theta) e^{-\lambda_{m}R\sin(\pi/4+\theta)} - \sin(\frac{\pi}{4}-\theta) e^{-\lambda_{m}R\sin(\pi/4-\theta)}\right] \sin\mu_{n}\theta \,d\theta$$
.....(5.11s)

For ground motion in the "y" direction and for the particular fluid domain under consideration an eigen-frequency of the wave equation corresponds to each pair of functions $\sin\mu_n \theta$, n = 0,1,2,3,..., and $\cos\alpha_m z$, m = 1,2,3,..., The hydrodynamic pressures $\tilde{p}_{OD}^Y(\theta, z, \omega)$, $\tilde{p}_{OB}^Y(\theta, z, \omega)$, and $\tilde{p}_j^Y(\theta, z, \omega)$ are bounded at all eigen-frequencies. This contrasts with the results for ground motion in the "x" direction in which case the pressure functions are unbounded at eigen-frequencies corresponding to n = 0, m = 1,2,3,...,

The eigenfunctions $\cos 4n\theta$ and $\cos \alpha_m z$ define the distribution of hydrodynamic pressures on the face of the dam due to the x-component of ground motion. For n = 0 and m = 1,2,3,..., the pressures are unbounded and independent of angular coordinate. The eigenfunctions $\sin \mu_n \theta$ defines the angular distribution of pressures due to the y-component of ground motion. Because this antisymmetric excitation produces antisymmetric eigenfunctions there are no eigenfunctions that are independent of angular coordinate and resonance (unbounded response) does not occur at any eigen-frequency. Furthermore, the antisymmetric excitation of the banks causes a canceling of pressures due to motion of the banks $\theta = + \pi/4$ with the pressures due to motion of the bank $\theta = - \pi/4$. Because of this canceling effect $\bar{p}_{OB}^{Y}(\theta, z, \omega)$ remains bounded at all eigen-frequencies.

5.3.3 Hydrodynamic Pressures and Forces on Rigid Dams: Numerical Results

The complex frequency response functions for hydrodynamic pressures and forces on rigid arch dams with R/H = 1.5 due to crossstream (y) acceleration of the dam alone as well as of dam and banks are presented in Figs. 5.1 - 5.4. These results are presented in a manner parallel to those for the upstream-downstream motion (Section 4.3.3 and Figs. 4.1 - 4.4). The pressures are now antisymmetric about



FIG. 5.1 COMPLEX FREQUENCY RESPONSES FOR HYDRODYNAMIC PRESSURES ON RIGID ARCH DAMS, R/H = 1.5, DUE TO THE CROSS-STREAM COMPONENT OF GROUND MOTION.

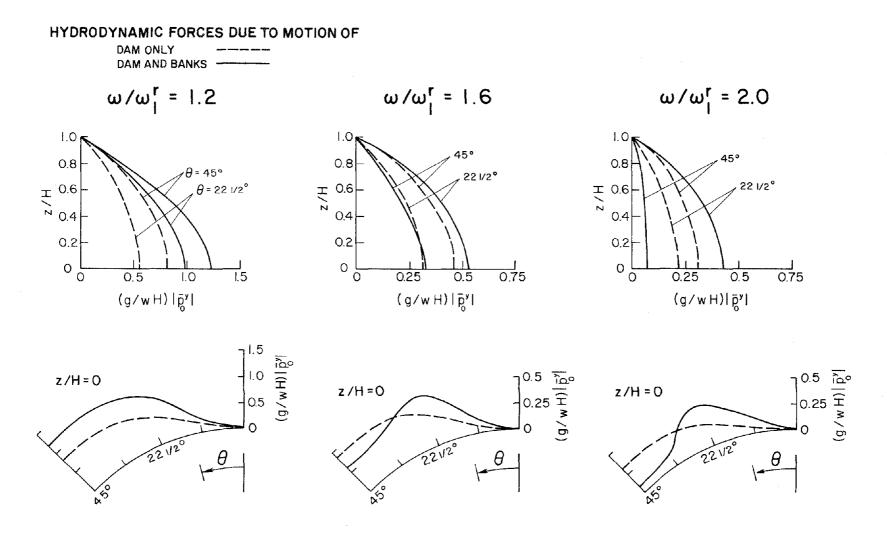
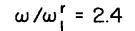
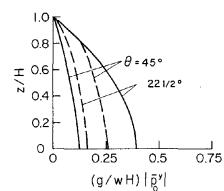
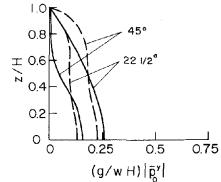
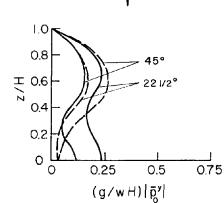



FIG. 5.2 COMPLEX FREQUENCY RESPONSES FOR HYDRODYNAMIC PRESSURE ON RIGID ARCH DAMS, R/H = 1.5, DUE TO THE CROSS-STREAM COMPONENT OF GROUND MOTION.


HYDRODYNAMIC FORCES DUE TO MOTION OF

DAM ONLY ------DAM AND BANKS ------




 $\omega / \omega_{\rm I}^{\rm r} = 2.8$

 $\omega/\omega_1^r = 3.2$

1

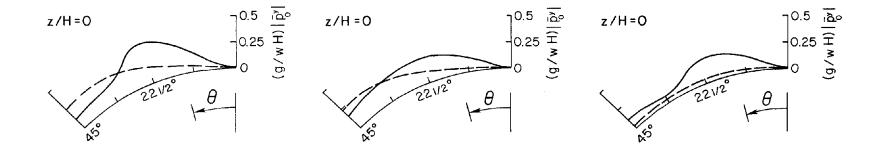


FIG. 5.3 COMPLEX FREQUENCY RESPONSES FOR HYDRODYNAMIC PRESSURES ON RIGID ARCH DAMS, R/H = 1.5, DUE TO THE CROSS-STREAM COMPONENT OF GROUND MOTION.



FIG. 5.4 COMPLEX FREQUENCY RESPONSES FOR HYDRODYNAMIC FORCE ON RIGID ARCH DAMS, R/H = 1.5, DUE TO THE CROSS-STREAM COMPONENT OF

GROUND MOTION.

the x-z (θ = 0) plane, being zero on that plane. The pressures on straight gravity dams due to cross-stream motion are also zero.

The hydrodynamic forces (and pressures) associated with crossstream motion depend significantly on the excitation frequency. However, in contrast to the results for upstream-downstream motion, the hydrodynamic forces due to cross-stream motion are bounded at all excitation frequencies with maximum response at or near $\omega/\omega_1^r = 1.0$. The forces due to cross-stream motion are considerably smaller than those due to upstream-downstream motion. The motion of banks modifies the hydrodynamic forces -- increasing them for some excitation frequencies, decreasing them for others.

The hydrodynamic pressures at the base of the dam due to motion of the dam alone increase from zero at the crown to a maximum value at the banks. The pressures due to motion of the dam and banks also attain their maximum value at the banks for smaller excitation frequencies but close to the mid-angle between the crown and the banks for the higher frequencies.

At excitation frequencies $\omega < \omega_1^r$, the contributions of the motion of the banks lead to reduction in hydrodynamic pressures on the dam. However, at $\omega > \omega_1^r$ there is no apparent systematic trend in the contribution of the bank motion to the hydrodynamic pressures. For a particular excitation frequency and fixed θ , the pressures may increase at some depths and decrease at others. For a fixed depth below the water surface, the pressures may increase for some θ values and decrease for others.

5.3.4 Dam Response

The vector of nodal point loads $\underline{g}^{f}(t)$ on the upstream face of the dam are associated with the hydrodynamic pressure $p_{c}(\theta,z,t)$. These

51

hydrodynamic loads due to harmonic ground acceleration are of the form $\underline{\varrho}^{f}(t) = \overline{\varrho}^{f}(\omega) e^{i\omega t}$. The complex frequency response function for this load vector can, from Eq. 5.4, be expressed as:

$$\bar{\underline{Q}}^{f}(\omega) = \bar{Q}_{0D}^{Y}(\omega) + \bar{Q}_{0B}^{Y}(\omega) + \sum_{k=1}^{J} \bar{\bar{Y}}_{k}^{Y}(\omega) \bar{Q}_{k}^{Y}(\omega)$$
(5.12)

where the force vectors $\overline{\underline{Q}}_{0D}^{Y}(\omega)$, $\overline{\underline{Q}}_{0B}^{Y}(\omega)$, and $\overline{\underline{Q}}_{k}^{Y}(\omega)$ are static equivalents (see Section 4.3.4) of the corresponding pressure functions $\overline{p}_{0D}^{Y}(\theta, z, \omega)$, $\overline{p}_{0B}^{Y}(\theta, z, \omega)$, and $\overline{p}_{k}^{Y}(\theta, z, \omega)$. For excitation $\overline{v}_{g}^{Y}(t) = e^{i\omega t}$, Eq. 5.1, after substitution of

Eq. 5.12, becomes

$$[-\omega^{2}M_{j}+i\omega C_{j}+K_{j}]\overline{Y}_{j}^{Y}(\omega) = -\phi_{j}^{T}m_{j}e^{Y} - \{\phi_{j}^{f}\}^{T} \left\{ \overline{Q}_{0D}^{Y}(\omega) + \overline{Q}_{0B}^{Y}(\omega) - \omega^{2}\sum_{k=1}^{J}\overline{Y}_{k}^{Y}(\omega)\overline{Q}_{k}^{Y}(\omega) \right\}$$

$$(5.13)$$

This set of equations may be expressed in matrix form as

$$\underline{S}(\omega) \quad \underline{\widetilde{Y}}^{Y}(\omega) = \underline{L}^{Y}(\omega) \tag{5.14}$$

where:

$$S_{jk}(\omega) = -\omega^{2} \{\phi_{j}^{f}\}^{T} \overline{Q}_{k}^{Y}(\omega) ; \quad j \neq k$$

$$S_{jj}(\omega) = -\omega^{2}M_{j} + i\omega C_{j} + K_{j} - \omega^{2} \{\phi_{j}^{f}\}^{T} \overline{Q}_{j}^{Y}(\omega)$$

$$i = 1, 2, 3, \dots, 3$$

$$k = 1, 2, 3, \dots, 3$$

The frequency dependent matrix $\underline{S}(\omega)$ in Eq. 5.14 relates the generalized displacement vector $\overline{\underline{Y}}^{Y}(\omega)$ to the corresponding generalized load vector $\underline{L}^{Y}(\omega)$. For reasons mentioned in Section 4.3.4 the matrix $\underline{S}(\omega)$ is not diagonal. It can be shown that $\underline{S}(\omega)$ is a symmetric matrix (see Appendix F).

53

Solutions of Eq. 5.14 for a range of values of the excitation frequency, ω , would provide the complex frequency response functions for all the generalized displacements $\bar{Y}_{j}^{Y}(\omega)$, j = 1, 2, 3, ..., J. The frequency responses for generalized accelerations may be obtained from

$$\vec{\tilde{Y}}_{j}^{Y}(\omega) = -\omega^{2} \vec{Y}_{j}^{Y}(\omega)$$
 (5.16)

The complex frequency responses for acceleration at the nodal points of the dam are

$$\overline{\mathbf{\tilde{v}}}^{\mathbf{y}}(\omega) = \sum_{\mathbf{j}=1}^{\mathbf{J}} \overline{\mathbf{\tilde{v}}}_{\mathbf{j}}^{\mathbf{y}}(\omega)$$
(5.17)

where the contribution of the $j\frac{th}{t}$ vibration mode of the dam to the acceleration is

$$\vec{\tilde{\mathbf{v}}}_{j}^{\mathbf{y}}(\omega) = \vec{\tilde{\mathbf{v}}}_{j}^{\mathbf{y}}(\omega) \quad \underline{\phi}_{j}$$
(5.18)

5.4 Analysis Neglecting Compressibility of Water

Only the hydrodynamic terms are altered in Eq. 5.14 and 5.15 if water is assumed as incompressible. In this case, the hydrodynamic pressure functions $\bar{p}_{0D}^{Y}(\theta, z, \omega)$, $\bar{p}_{0B}^{Y}(\theta, z, \omega)$ and $\bar{p}_{j}^{Y}(\theta, z, \omega)$ are independent of frequency and they may be obtained by taking limits of these functions (Eqs. 5.8 - 5.10) as $C \rightarrow \infty$ or as these functions at $\omega = 0$.

$$\bar{p}_{OD}^{Y}(\theta,z,0) = \frac{32\sqrt{2} \text{ wR}}{g\pi^{2}} \sum_{m=1}^{\infty} \sum_{n=0}^{\infty} \frac{(-1)^{m}}{(2m-1)} \frac{(-1)^{n}}{(\mu_{n}^{2}-1)} C_{n}(\alpha_{m}^{R}) \sin\mu_{n}\theta \cos\alpha_{m}^{Z}$$
.....(5.19)

$$\overline{p}_{OB}^{Y}(\theta, z, 0) = \frac{2\sqrt{2} \text{ wR}}{g\pi} \left\{ \sum_{m=1}^{\infty} E_{m}(\alpha_{m}R) \cos\alpha_{m}z + \frac{16}{\pi} \sum_{m=1}^{\infty} \sum_{n=0}^{\infty} U_{mn}(\alpha_{m}R) \sin\mu_{n}\theta \cos\alpha_{m}z \right\}$$
.....(5.20)

$$\bar{p}_{j}^{Y}(\theta,z,0) = -\frac{32wR}{g\pi} \sum_{m=1}^{\infty} \sum_{n=0}^{\infty} I_{mn}^{j} C_{n}(\alpha_{m}R) \sin\mu_{n}\theta \cos\alpha_{m}z \qquad (5.21)$$

where all quantities except the following are defined in Section 5.3.2

$$C_{n}(\alpha_{m}R) = \frac{-K_{\mu}(\alpha_{m}R)}{\alpha_{m}R[K_{\mu}-1(\alpha_{m}R) + K_{\mu}+1(\alpha_{m}R)]}$$
(5.22a)

$$E_{m}(\alpha_{m}R) = \frac{-(-1)^{m}}{(2m-1)\alpha_{m}R} \left[e^{-\alpha_{m}R} \sin(\pi/4+\theta) - e^{-\alpha_{m}R} \sin(\pi/4-\theta) \right]$$
(5.22b)

$$U_{mn}(\alpha_m R) = \frac{-(-1)^m}{(2m-1)} G_n(\alpha_m R) C_n(\alpha_m R)$$
(5.22c)

where:

In general, the functions \bar{p}_{0D}^{Y} , \bar{p}_{0B}^{Y} and \bar{p}_{j}^{Y} are complex valued and depend on the excitation frequency (Eqs. 5.8, 5.9 and 5.10), but they are real valued and independent of frequency if compressibility of water is neglected. Equation 5.16 then becomes

$$-\omega^{2}[\underline{M} + \underline{M}^{a}]\overline{\underline{Y}}^{Y}(\omega) + \underline{i} \omega \underline{C} \overline{\underline{Y}}^{Y}(\omega) + \underline{K} \overline{\underline{Y}}^{Y}(\omega) = \underline{L}^{OY} + \underline{L}^{aY}$$
(5.23)

where \underline{M} , \underline{C} , and \underline{K} are generalized mass, generalized damping and generalized stiffness matrices respectively; each is a diagonal matrix. $\underline{L}^{OY} = - \underline{\phi}_{j}^{T} \underline{M} \underline{e}^{Y}$. \underline{M}^{a} is an "added mass" matrix defined by

$$M_{jk}^{a} = \{\phi_{j}^{f}\}^{T} \ \overline{\underline{Q}}_{k}^{Y}(0) \qquad ; \qquad j,k = 1,2,3,\ldots,J \qquad (5.24a)$$

and $\underline{\textbf{L}}^{ay}$ is an "added load" vector defined by

$$L_{j}^{ay} = - \{\phi_{j}^{f}\}^{T} \{ \overline{\underline{Q}}_{0D}^{y}(0) + \overline{\underline{Q}}_{0B}^{y}(0) \} \quad ; \quad j = 1, 2, 3, \dots, J \quad (5.24b)$$

When water is assumed to be incompressible the hydrodynamic effects are thus equivalent to frequency independent added mass and load terms. Consequently, unlike the case including water compressibility and involving hydrodynamic terms that depend on frequency (Eqs. 5.14 and 5.15), Eq. 5.23 can be written directly in the time domain as

$$[\underline{M} + \underline{M}^{a}] \underline{\ddot{y}}^{Y}(t) + C \underline{\dot{y}}^{Y}(t) + K \underline{\dot{y}}^{Y}(t) = [\underline{L}^{0Y} + \underline{L}^{aY}] \underline{\ddot{v}}_{g}^{Y}(t)$$
(5.25)

6. ANALYSIS OF DAM RESPONSE TO HARMONIC VERTICAL GROUND MOTION

6.1 Equations of Motion

The analytical procedures and results developed in this chapter for response of the dam to the vertical (z-) component of ground motion closely parallel those of Chapters 4 and 5. Although at the expense of some repetition, the presentation in this chapter is self-contained.

Only the symmetric natural modes of vibration of the dam (see Section 4.1) will be excited by the z-component of ground motion. For this excitation, the equation of motion (Eq. 3.4) specializes to:

$$M_{j} \ddot{Y}_{j}^{Z}(t) + C_{j} \dot{Y}_{j}^{Z}(t) + K_{j} Y_{j}^{Z}(t) = - \phi_{j}^{T} \underline{m} \underline{e}^{Z} \ddot{v}_{g}^{Z}(t) - \{\phi_{j}^{f}\}^{T} \underline{\rho}^{f}(t) ;$$

$$j = 1, 2, 3, \dots, J \qquad (6.1)$$

where $Y_j^z(t)$ is the generalized displacement associated with the jth symmetric mode of vibration.

6.2 Fluid Domain: Boundary Conditions

In Eq. 6.1 $\underline{Q}^{f}(t)$ is the vector of nodal forces associated with hydrodynamic pressures on the upstream face of the dam. These pressures acting in the radial direction are governed by the wave equation (Eq. 3.5) together with the following boundary conditions:

- The radial component of fluid motion at the upstream face of the dam (boundary r = R) is the same as the radial motion of the upstream face of the dam.
- There is no fluid motion normal to the banks (boundaries $\theta = + \pi/4$)

- The vertical motion of the fluid at the bottom of the reservoir (boundary z = 0) is prescribed by the vertical component of ground acceleration.
- Fluid pressure at the free surface is zero.
- Since the system, symmetrical about the x-z ($\theta = 0$) plane, is excited by the z-component of ground motion the hydrodynamic pressures must be symmetric about $\theta = 0$.
- The radiation boundary condition not permitting any reflected waves applies at the upstream end ($r = \infty$) of the reservoir.

6.3 Complex Frequency Response

The response to harmonic ground acceleration in the vertical direction, $\ddot{v}_{g}^{z}(t) = e^{i\omega t}$, can be expressed as follows:

• Hydrodynamic pressures at the dam face,

$$p_{c}(\theta,z,t) = \bar{p}_{c}(\theta,z,\omega) e^{i\omega t}$$
 (6.2a)

· Generalized accelerations,

$$\ddot{\mathbf{Y}}_{j}^{\mathbf{Z}}(t) = \tilde{\mathbf{Y}}_{j}^{\mathbf{Z}}(\omega) e^{i\omega t}$$
(6.2b)

Radial accelerations on the upstream face of the dam

$$\ddot{\mathbf{v}}^{\mathbf{r}}(\mathbf{R},\boldsymbol{\theta},\mathbf{z},\mathbf{t}) = \left\{ \sum_{j=1}^{J} \left[\phi_{j}^{\mathbf{x}\mathbf{f}}(\boldsymbol{\theta},\mathbf{z}) \cos \boldsymbol{\theta} + \phi_{y}^{\mathbf{y}\mathbf{f}}(\boldsymbol{\theta},\mathbf{z}) \sin \boldsymbol{\theta} \right] \, \ddot{\vec{\mathbf{y}}}_{j}^{\mathbf{z}}(\boldsymbol{\omega}) \right\} \, \mathrm{e}^{\mathrm{i}\boldsymbol{\omega}\mathbf{t}} \quad (6.2c)$$

where $\phi_j^{xf}(\theta,z)$ and $\phi_j^{yf}(\theta,z)$ are the continuous analogue functions (see Section 4.2) for the vectors ϕ_j^{xf} and ϕ_j^{yf} defined in Section 3.2.

6.3.1 Boundary Conditions

Using Eqs. 3.6 and 6.2; the boundary conditions of Section 6.2 can be expressed analytically as follows:

$$\frac{\partial p}{\partial r}(R,\theta,z,t) = -\frac{w}{g} \begin{cases} \int_{j=1}^{J} [\phi_{j}^{xf}(\theta,z) \cos\theta + \phi_{j}^{yf}(\theta,z) \sin\theta] & \overline{\ddot{y}}_{j}^{y}(\omega) \end{cases} e^{i\omega t} (6.3a)$$

$$\frac{\partial p}{r\partial \theta}(r, \frac{\pi}{4}, z, t) = 0$$
 (6.3b)

$$\frac{\partial p}{\partial z}(r,\theta,0,t) = -\frac{w}{g} e^{i\omega t}$$
(6.3c)

$$p(\mathbf{r},\boldsymbol{\theta},\mathbf{H},\mathbf{t}) = 0 \tag{6.3d}$$

$$\frac{\partial \mathbf{p}}{\mathbf{r}\partial\theta}(\mathbf{r},0,\mathbf{z},\mathbf{t}) = 0 \tag{6.3e}$$

In addition to these boundary conditions, no wave reflections at the upstream end of the reservoir $(r = \infty)$ are permitted.

Because the governing wave equation as well as the boundary conditions are linear, the principle of superposition applies. The complex frequency response function for the hydrodynamic pressures on the dam face $p_c(\theta, z, t)$ can therefore be expressed as:

$$\bar{\mathbf{p}}_{c}(\theta,z,t) = \bar{\mathbf{p}}_{0}^{z}(\theta,z,t) + \sum_{j=1}^{J} \bar{\vec{\mathbf{y}}}_{j}^{z}(\omega) \bar{\mathbf{p}}_{j}^{z}(\theta,z,\omega)$$
(6.4)

The complex frequency response functions \bar{p}_0 and \bar{p}_j in Eq. 6.4 are defined as follows. The solution of the wave equation (Eq. 3.5) at r = R (upstream face of the dam) is $p_0^z(\theta, z, t) = \bar{p}_0^z(\theta, z, t) e^{i\omega t}$ for the following boundary conditions:

$$\frac{\partial p}{\partial r}(R,\theta,z,t) = 0$$
 (6.5)

and those specified by Eqs. 6.3b to 6.3e. The solution of the wave equation at r = R is $p_j^z(\theta, z, t) = \bar{p}_j^z(\theta, z, t) e^{i\omega t}$ for the following boundary conditions:

$$\frac{\partial p}{\partial z}(\mathbf{r},\theta,0,t) = 0 \tag{6.6}$$

and those specified by Eqs. 6.3a, 6.3b, 6.3d and 6.3e.

The complex frequency response functions $\bar{p}_0^z(\theta, z, \omega)$ and $\bar{p}_j^z(\theta, z, \omega)$ are for hydrodynamic pressures on the upstream face of the dam due to two excitations. $\bar{p}_0^z(\theta, z, \omega)$ corresponds to vertical, rigid-body accelerations of dam, the reservoir bottom and the banks. Because the banks and the upstream face of the dam are vertical, these pressures result only from excitation of the reservoir bottom. $\bar{p}_j^z(\theta, z, \omega)$ corresponds to acceleration $\bar{y}_j^z(\omega) = 1$ in the jth symmetric mode of vibration of the dam (without water) but there is no motion of the dam base, banks or reservoir bottom.

6.3.2 Hydrodynamic Pressures: Analytical Results

The boundary conditions in Section 6.3.1 for which $\bar{p}_{j}^{z}(\theta, z, \omega)$ is the solution of the wave equation also arose in the analysis for the x-component of ground motion (Section 4.3.1). The solution has been presented in Eq. 4.10.

The solution of the wave equation for the first set of boundary conditions in Section 6.3.1 is derived in Appendix C. The final expression for $\bar{p}_0^z(\theta, z, \omega)$ is:

$$\bar{p}_{0}^{Z}(\theta, z, \omega) = \frac{2wH}{g\pi} \frac{\sin \left[\frac{\pi}{2} \frac{\omega}{\omega_{1}^{r}} \left(1 - \frac{z}{H}\right)\right]}{\frac{\omega}{\omega_{1}^{r}} \cos \left[\frac{\pi}{2} \frac{\omega}{\omega_{1}^{r}}\right]}$$
(6.7)

This result for $\bar{p}_0^z(\theta, z, \omega)$ was obtained with the assumption that the reservoir bottom is rigid, resulting in complete reflection of the hydrodynamic waves at that boundary. This result is identical to the two-dimensional solution obtained for hydrodynamic pressures on gravity dams due to vertical ground motion [22,24]. The hydrodynamic pressures are unbounded at frequencies $\omega = \omega_m^r$, $m = 1, 2, 3, \ldots$ where $\omega_m^r = (2m-1) \frac{\pi c}{2H}$.

Analytical studies [22,24] indicated that the hydrodynamic pressures on rigid gravity dams due to earthquake motions when computed using Eq. 6.7 are unrealistically large. Thus Eq. 6.7 was modified to account for the deformability of the reservoir bottom and the partial reflection and refraction of the hydrodynamic waves at that boundary. The modification to $\bar{p}_0^{\rm Z}(\theta,z,\omega)$ was accomplished by solving a onedimensional problem in which the rock under the reservoir was assumed to be an elastic, isotropic homogeneous half space [25]. The resulting complex frequency response function for the pressure is:

$$\bar{p}_{0}^{\mathbf{Z}}(\theta, \mathbf{z}, \omega) = \frac{2\omega H}{g\pi \left(\frac{\omega}{\omega_{1}^{\mathbf{r}}}\right)} \frac{(1+\alpha)\sin\left[\frac{\pi}{2}\frac{\omega}{\omega_{1}^{\mathbf{r}}}\left(1-\frac{\mathbf{z}}{H}\right)\right]}{(1+\alpha)\cos\left[\frac{\pi}{2}\frac{\omega}{\omega_{1}^{\mathbf{r}}}\right] + i(1-\alpha)\sin\left[\frac{\pi}{2}\frac{\omega}{\omega_{1}^{\mathbf{r}}}\right]}$$
(6.8)

where α is a reflection constant given by $\alpha = (k-1)/(k+1)$, where $k = C_r w_r / C_w$ with w_r being the unit weight of rock and C_r the P-wave velocity in rock. For the case of rigid rock at the reservoir bottom $\alpha = 1$ and Eq. 6.8 reduces to the earlier result (Eq. 6.7). In contrast to Eq. 6.7, the pressures given by Eq. 6.8 are bounded at all excitation frequencies. This investigation employs Eq. 6.8, thereby accounting for the influence of deformability of the foundation rock on the hydrodynamic pressures. The solutions given in Eqs. 6.7 and 6.8 are independent of the angular coordinate, θ , and of the upstream radius of the dam, R. For a particular excitation frequency, the hydrodynamic pressures thus vary only with the z (depth) coordinate.

6.3.3 Hydrodynamic Pressures and Forces on Rigid Dams: Numerical Results

The complex valued frequency response function $\overline{p}_0^z(\theta, z, \omega)$ is for the hydrodynamic pressures on a rigid dam due to vertical ground motion. The hydrodynamic force, \overline{P}_0 , acting per unit length of circumference is the integral of \overline{p}_0^z over the depth of water. As noted earlier, \overline{p}_0^z is independent of the angular coordinate θ and the radius R of the upstream face of the dam. Hence, \overline{P}_0 also is independent of θ and R. Thus the results shown in Figs. 6.1 and 6.2 apply to all values of θ and all dam-water systems of Fig. 2.1. The results have been appropriately normalized so that they also apply to all arch dam-water systems independent of water depth H. The pressures and forces of Figs. 6.1 and 6.2 were computed from Eq. 6.8 with $\alpha = 0.85$, an appropriate value for the reflection constant.

The hydrodynamic forces (and pressures) depend strongly on the excitation frequency. Starting with the hydrodynamic value at very low excitation frequencies, the force is amplified several times at the fundamental resonant frequency. Because the partial refraction of hydrodynamic waves at the bottom of the reservoir has been considered, resonant response is finite. The hydrodynamic force at higher resonant frequencies is also finite, and much smaller than at the fundamental resonant frequency. Except for the local amplification near the higher resonant frequencies, the hydrodynamic force decreases as the excitation frequency increases beyond the fundamental resonant frequency.

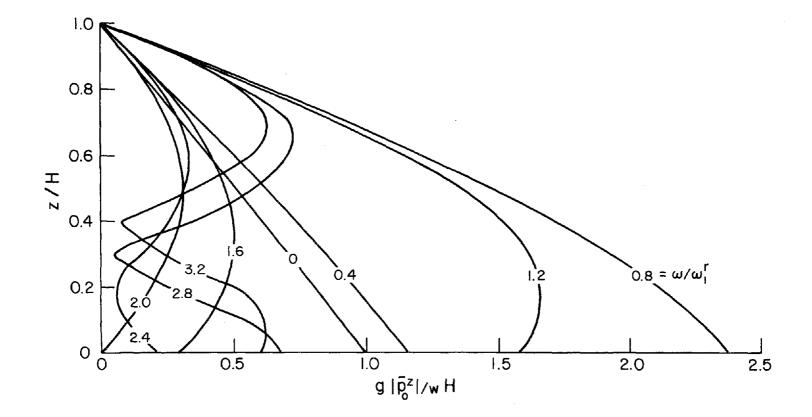


FIG. 6.1 COMPLEX FREQUENCY RESPONSES FOR HYDRODYNAMIC PRESSURES ON RIGID ARCH DAMS DUE TO VERTICAL GROUND MOTION; $\alpha = 0.85$. RESULTS ARE INDEPENDENT OF θ AND VALID FOR ALL R/H.

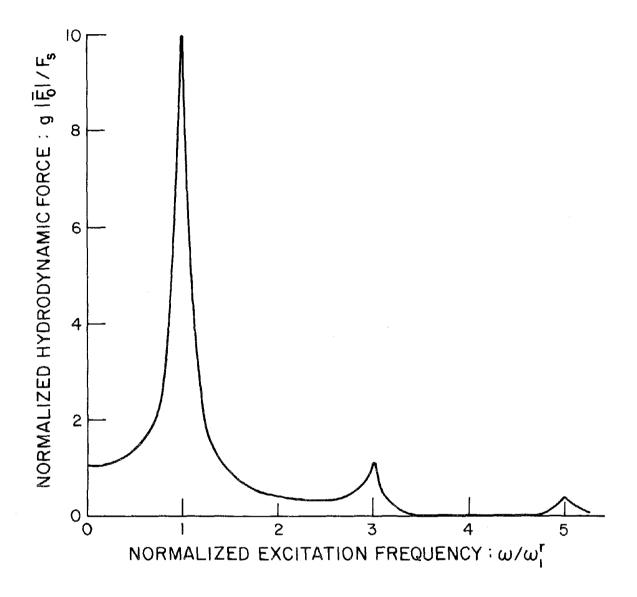


FIG. 6.2 COMPLEX FREQUENCY RESPONSE FOR HYDRODYNAMIC FORCE ON RIGID ARCH DAMS DUE TO VERTICAL GROUND MOTION; $\alpha = 0.85$. RESULTS ARE INDEPENDENT OF θ AND VALID FOR ALL R/H.

The variation of hydrodynamic pressure over depth depends strongly on the excitation frequency. At zero excitation frequency the hydrostatic pressure distribution is a straight line varying from zero at the free surface to a maximum value at the reservoir bottom. Starting with this straight line variation at zero frequency, the pressure distribution becomes increasingly complex with increasing excitation frequency.

6.3.4 Dam Response

The vector of nodal point loads, $\underline{Q}^{f}(t)$, on the upstream face of the dam are associated with the hydrodynamic pressures $p_{c}(\theta, z, t)$. These hydrodynamic loads due to harmonic ground acceleration are of the form $\underline{Q}^{f}(t) = \overline{\underline{Q}}^{f}(\omega) e^{i\omega t}$. The complex frequency response function for this load vector can, from Eq. 6.4, by expressed as:

$$\bar{\underline{Q}}^{f}(\omega) = \bar{\underline{Q}}_{0}^{z}(\omega) + \sum_{k=1}^{J} \bar{\underline{Y}}_{k}^{z}(\omega) \quad \bar{\underline{Q}}_{k}^{z}(\omega)$$
(6.9)

where the force vectors $\underline{\tilde{Q}}_{0}^{z}(\omega)$ and $\underline{\tilde{Q}}_{k}^{z}(\omega)$ are static equivalents (see Section 4.3.4) of the corresponding pressure functions $\bar{p}_{0}^{z}(z,\omega)$ and $\bar{p}_{\nu}^{z}(\theta,z,\omega)$.

For excitation $\ddot{v}_{g}^{z}(t) = e^{i\omega t}$, Eq. 6.1, after substitution of Eq. 6.9, becomes:

$$[-\omega^{2}M_{j} + i\omega C_{j} + K_{j}]\overline{\vec{Y}}_{j}^{Z}(\omega) = -\phi_{j}^{T}\underline{m}\underline{e}^{Z} - \{\phi_{j}^{f}\}^{T}\{\overline{\vec{Q}}_{0}^{Z}(\omega) - \omega^{2}\sum_{k=1}^{J}\overline{\vec{Y}}_{k}^{Z}(\omega)\overline{\vec{Q}}_{k}^{Z}(\omega)\}$$

$$\dots \dots (6.10)$$

This set of equations can be expressed in matrix form as:

$$\underline{\underline{S}}(\omega) \quad \underline{\underline{Y}}^{Z}(\omega) = \underline{\underline{L}}^{Z}(\omega)$$
 (6.11)

where:

$$\begin{split} s_{jk}(\omega) &= -\omega^{2} \left\{ \phi_{j}^{f} \right\}^{T} \overline{\underline{\mathcal{Q}}}_{k}^{z}(\omega) \quad ; \quad j \neq k \\ s_{jj}(\omega) &= -\omega^{2} M_{j} + i\omega C_{j} + k_{j} - \omega^{2} \left\{ \phi_{j}^{f} \right\}^{T} \overline{\underline{\mathcal{Q}}}_{j}^{z}(\omega) \\ L_{j}^{z}(\omega) &= - \phi_{j}^{T} \underline{\mathbf{m}} \underline{\mathbf{e}}^{z} - \left\{ \phi_{j}^{f} \right\}^{T} \underline{\underline{\mathcal{Q}}}_{0}^{z}(\omega) \end{split}$$

$$(6.12)$$

$$i = 1, 2, 3, \dots, J \\ k = 1, 2, 3, \dots, J$$

This coefficient matrix $\underline{S}(\omega)$ is identical to the matrix in Eq. 4.16 for the x-component of ground motion but different than the matrix in Eq. 5.15 for the y-component of ground motion.

The frequency dependent matrix $\underline{S}(\omega)$ in Eq. 6.1? relates the generalized displacement vector $\underline{\tilde{Y}}^{Z}(\omega)$ to the corresponding generalized loads $\underline{L}^{Z}(\omega)$. For reasons mentioned in Section 4.3.4, $\underline{S}(\omega)$ is not diagonal. It can be shown that $\underline{S}(\omega)$ is a symmetric matrix (Appendix F).

Solutions of Eq. 6.11 for a range of values of the excitation frequency, ω , would provide the complex frequency response function for all the generalized displacements $\tilde{Y}_{j}^{z}(\omega)$, $j = 1, 2, 3, \ldots, J$. The frequency responses for generalized accelerations may be obtained from:

$$\overline{\widetilde{Y}}_{j}^{z}(\omega) = -\omega^{2} \overline{Y}_{j}^{z}(\omega)$$
(6.13)

The complex frequency responses for acceleration at the nodal points of the dam are

$$\overline{\underline{v}}^{z}(\omega) = \sum_{j=1}^{J} \overline{\underline{v}}^{z}_{j}(\omega)$$
(6.14)

where the contribution of the j^{th} vibration mode of the dam to the acceleration is

$$\frac{\tilde{\vec{v}}_{j}}{\tilde{\vec{v}}_{j}}(\omega) = \tilde{\vec{v}}_{j}^{z}(\omega) \underline{\phi}_{j}$$
(6.15)

6.4 Analysis Neglecting Compressibility of Water

Only the hydrodynamic terms are altered in Eqs. 6.11 and 6.12 if water is assumed to be incompressible. In this case, the hydrodynamic pressure functions are obtained by taking the limits of $\bar{p}_0^z(z,\omega)$ and $\bar{p}_j^z(\theta,z,\omega)$ as $C \to \infty$ or as these functions at $\omega = 0$:

$$\bar{p}_0^z(z,0) = \frac{wH}{g} (1 - \frac{z}{H})$$
 (6.16)

and $\bar{p}_{j}^{z}(\theta,z,0)$ is given by Eq. 4.23.

In general, the functions $\bar{p}_0^z(z,\omega)$ and $\bar{p}_j^z(\theta,z,\omega)$ are complex valued and depend on the excitation frequency, but they are real valued and independent of frequency if compressibility of water is neglected. Equation 6.11 them becomes:

$$-\omega^{2}(\underline{M} + \underline{M}^{a}) \overline{\underline{Y}}^{z}(\omega) + i \omega \underline{C} \overline{\underline{Y}}^{z}(\omega) + \underline{K} \overline{\underline{Y}}^{z}(\omega) = \underline{L}^{0z} + \underline{L}^{az}$$
(6.17)

where M, C, and K are generalized mass, generalized damping and generalized stiffness matrices respectively; each is a diagonal matrix. $L^{Oz} = -\phi_{j}^{T} \underline{m} \underline{e}^{Z}$. \underline{M}^{a} is an "added mass" matrix defined by:

$$M_{jk}^{a} = \{\phi_{j}^{f}\}^{T} \bar{Q}_{k}^{Z}(0) ; j,k = 1,2,3,...,J \quad (6.18a)$$

 \underline{L}^{az} is an "added load" vector defined by:

$$L_{j}^{az} = - \{\phi_{j}^{f}\}^{T} \bar{Q}_{0}^{z}(0) ; j = 1, 2, 3, ..., J$$
 (6.18b)

When water is assumed to be incompressible the hydrodynamic effects are thus equivalent to frequency independent added mass and load terms. Consequently, Eq. 6.17 can be written directly in the time domain as:

$$(\underline{M} + \underline{M}^{a}) \underline{\ddot{Y}}^{Z}(t) + \underline{C} \underline{\dot{Y}}^{Z}(t) + \underline{K} \underline{Y}^{Z}(t) = (\underline{L}^{0Z} + \underline{L}^{aZ}) \underline{\ddot{v}}_{g}^{Z}(t).$$
(6.19)

7. HYDRODYNAMIC INTERACTION EFFECTS

7.1 Scope of Chapter

Using the analysis procedures developed in Chapters 3 - 6, numerical results for response of three arch dams with different radius to height ratios are presented in this chapter. Acceleration responses to harmonic ground motion applied separately in the x (upstream-downstream), y (cross-stream), and z (vertical) directions are presented. Based on these results, the effects of hydrodynamic interaction, compressibility of water and bank motion on dam response are identified.

7.2 Fundamental Parameters

The analysis procedure developed in Chapters 4 - 6 is for the idealized arch dams described in Chapter 2. The upstream face of the arch dam is a segment of a circular cylinder, radius R and height H_d , contained within radially extending banks enclosing a central angle of 90°. In addition, the geometry as well as mass, stiffness, and damping properties of the dam are all assumed to be symmetrical about the x-z (θ =0) plane. But for these restrictions, the geometric and material properties of the arch dam are arbitrary. Results presented in this chapter are for arch dams with trapezoidal radial section, the radial thickness varying linearly from B₁ at the crest to B₂ at the base.

As shown in Appendix G the frequency ω_j and mode shape ϕ_j of the j^{th} natural mode of vibration of the dam without water and the complex frequency response for generalized acceleration $\tilde{\ddot{Y}}_j$ in the j^{th} mode can be expressed in terms of dimensionless parameters as follows:

69

$$\omega_{j} = \frac{1}{H_{d}} \sqrt{\frac{Eg}{w_{d}}} f\left(v, \frac{B_{1}}{H_{d}}, \frac{B_{2}}{H_{d}}, \frac{R}{H_{d}}\right)$$
(7.1)

$$\Phi_{j} = \Phi_{j} \left(\frac{z}{H_{d}}, \theta, \frac{r}{H_{d}}, \frac{B_{1}}{H_{d}}, \frac{B_{2}}{H_{d}}, \frac{R}{H_{d}}, \nu \right)$$
(7.2)

$$\tilde{\ddot{Y}}_{j} = \tilde{\ddot{Y}}_{j} \left(\frac{\omega}{\omega_{1}}, \nu, \frac{B_{1}}{H_{d}}, \frac{B_{2}}{H_{d}}, \frac{R}{H_{d}}, \xi_{j}, \frac{w}{w_{d}}, \frac{\omega_{1}^{r}}{\omega_{1}}, \frac{H}{H_{d}}, \alpha \right)$$
(7.3)

where

	f	1	symbol for "a function of"
	^B 1	=	radial thickness of dam at the crest
	^B 2	=	radial thickness of dam at the base
	Е	=	modulus of elasticity of the dam concrete
	g	=	acceleration of gravity
	Н	=	depth of water
	на	F	height of the dam
	R	=	radius of upstream face of the dam
	r,θ,z	=	cylindrical coordinates of points on the dam
	^w d	=	unit weight of dam concrete
	w	=	unit weight of water
	α	н	reflection constant at reservoir bottom for hydrodynamic pressure waves defined in Section 6.3.2; pertinent only for vertical ground motion
	ν	=	Poisson's ratio
	ξ _j	=	damping ratio for the j^{th} mode of vibration of the dam
	ω	=	excitation frequency

 ω_1 = fundamental frequency of the dam

$$\omega_1^{L}$$
 = fundamental eigen-frequency of the fluid domain

Unlike gravity dams [13], the fundamental mode of vibration for thin arch dams does not necessarily provide the most significant response. Thus when studying thin arch dam response, several vibration modes that contribute significantly to the response should be considered. This combined response is

$$\overline{\underline{\ddot{v}}} = \sum_{j=1}^{J} \overline{\ddot{y}}_{j} \phi_{j} = \overline{\underline{\ddot{v}}} \left(\frac{\omega}{\omega_{1}}, \nu, \frac{z}{H_{d}}, \theta, \frac{r}{H_{d}}, \frac{B_{1}}{H_{d}}, \frac{B_{2}}{H_{d}}, \frac{R}{H_{d}}, \xi_{j}, \frac{w}{w_{d}}, \frac{\omega_{1}^{r}}{\omega_{1}}, \frac{H}{H_{d}}, \alpha \right) (7.4)$$

The parameters of Eqs. 7.3 and 7.4 -- not all are mutually independent -- are selected to be useful for interpreting response results and hydrodynamic interaction effects. For example, ω_1^r/ω_1 can be expressed in terms of other parameters as

$$\frac{\omega_{1}^{r}}{\omega_{1}} = \sqrt{\frac{C^{2}w_{d}}{Eg}} \frac{H_{d}}{H} f\left(v, \frac{B_{1}}{H_{d}}, \frac{B_{2}}{H_{d}}, \frac{R}{H_{d}}\right)$$
(7.5)

7.3 Systems Analyzed

7.3.1 System Properties

The results presented in this chapter are obtained from specific numerical values of the parameters given in Section 7.2. Based on a survey of geometry of thin arch dams, the crest and base widths are fixed at $B_1/H_d = 0.035$ and $B_2/H_d = 0.200$ but three different values of $R/H_d = 0.5$, 1.5, and 2.5 are selected. The properties chosen for mass concrete of the dam are $E = 5 \times 10^6$ psi, v = 0.17, and $w_d = 150$ pcf. For water in the reservoir, C = 4720 fps and w = 62.5 pcf. The damping ratio ξ_j for all normal modes of vibration of the dam are assumed to be the same and equal to 0.05. In the analysis of response to vertical ground motion, the reflection constant $\alpha = 0.85$. Results are presented for two values of the height parameter; for a full reservoir $H/H_d = 1.0$, for an empty reservoir $H/H_d = 0.0$. The normalized excitation frequency ω/ω_1 is varied from 0.0 to 4.0.

Because the dam properties are symmetrical about the x-z (θ =0) plane, only one-half of the dam with appropriate boundary conditions on the plane of symmetry is considered in the analysis. Half of the dam is idealized as an assemblage of 36 three-dimensional elements as shown in Fig. 7.1. Every element has a height of H_d/6, and an included angle of 7.5° which extends throughout the thickness of the dam. The finite element system is analyzed by the procedures presented in Chapters 4 - 6 including 10 natural modes of vibration of the dam.

7.3.2 Natural Frequencies and Mode Shapes of Vibration

Because the geometry and material properties of the dam are symmetric about the x-z (θ =0) plane, the natural modes of vibration can be separated into two categories: symmetric or antisymmetric about the same plane. As mentioned earlier, the symmetric modes are excited by ground motions in the upstream-downstream and vertical directions: whereas the antisymmetric modes are excited by cross stream ground motion. The first six symmetric and first six antisymmetric mode shapes and natural frequencies of vibration for the three dams -- R/H_d = 0.5, 1.5, and 2.5 -- under consideration are presented in Figs. 7.2 - 7.7. These are vibration properties of the dam without water.

In Figs. 7.2 to 7.7, mode shapes are plotted along the upstream face of the dam at the crest ($Z/H_d = 1.0$) and the radial component is

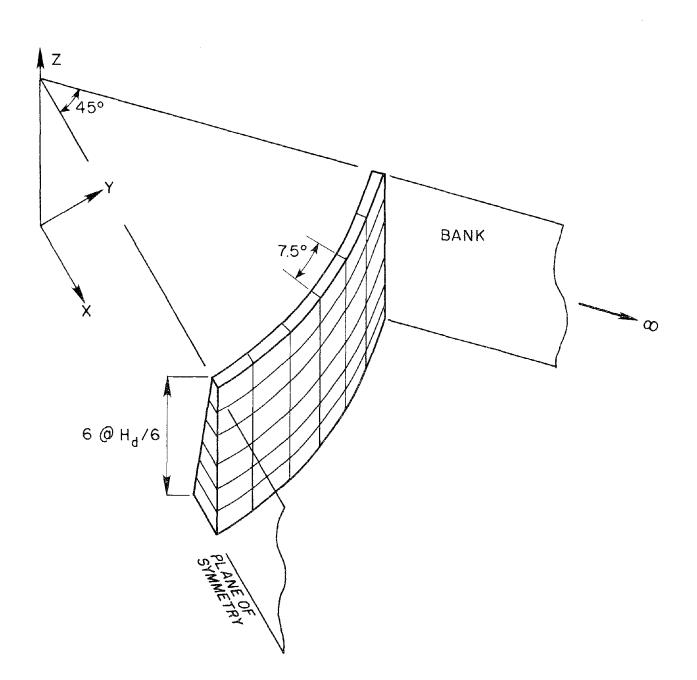


FIG. 7.1 FINITE ELEMENT IDEALIZATION OF HALF THE DAM USING SHELL ELEMENTS

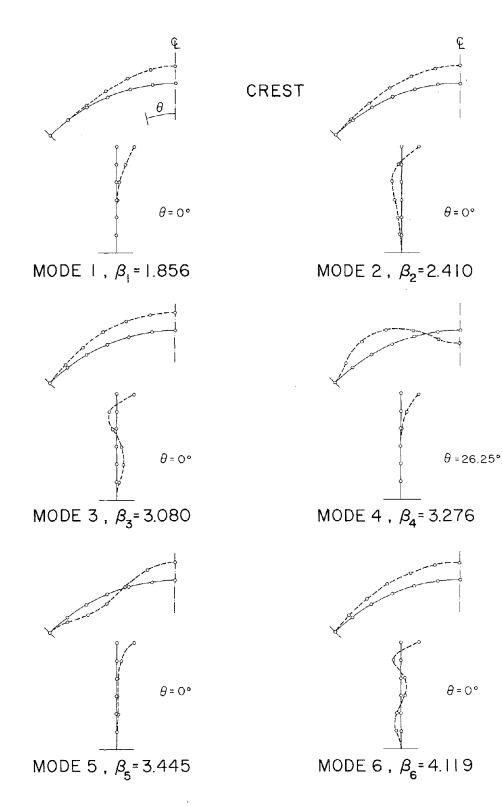


FIG. 7.2 NATURAL FREQUENCIES AND SHAPES OF SYMMETRIC VIBRATION MODES OF ARCH DAMS WITH $R/H_d = 0.5$. FREQUENCY OF jth MODE $\omega_j = (\beta_j/H_d) \sqrt{gE/w_d}$

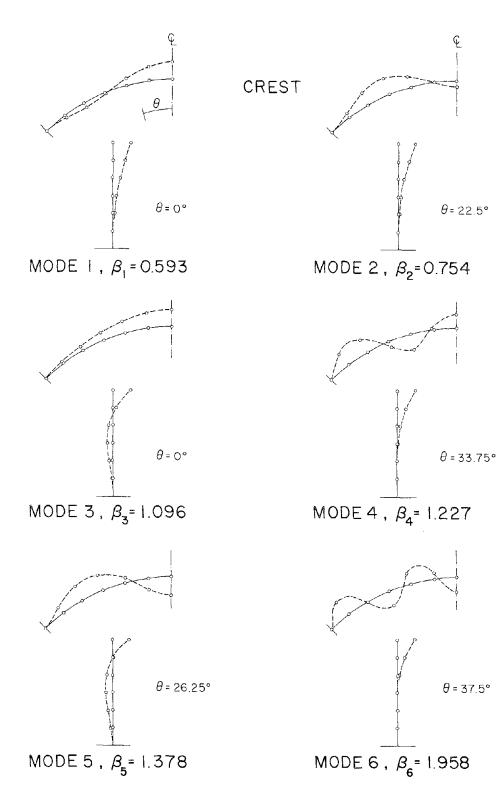
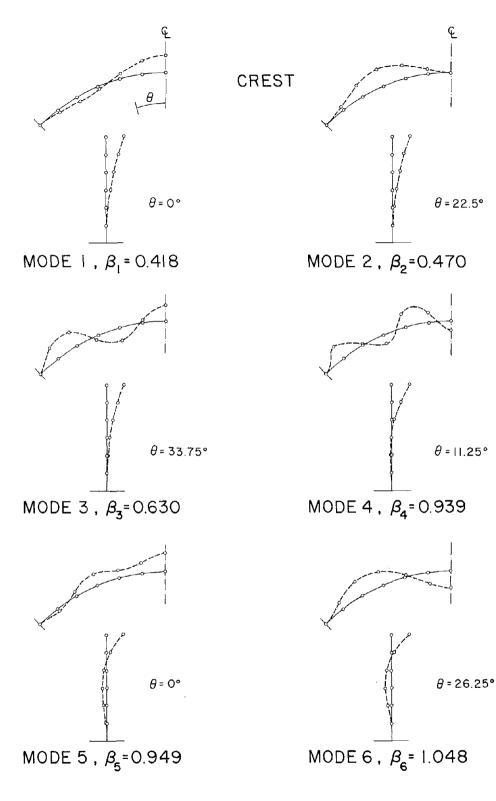
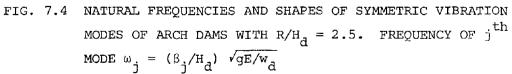




FIG. 7.3 NATURAL FREQUENCIES AND SHAPES OF SYMMETRIC VIBRATION MODES OF ARCH DAMS WITH $R/H_d = 1.5$. FREQUENCY OF jth MODE $\omega_j = (\beta_j/H_d) \sqrt{gE/w_d}$

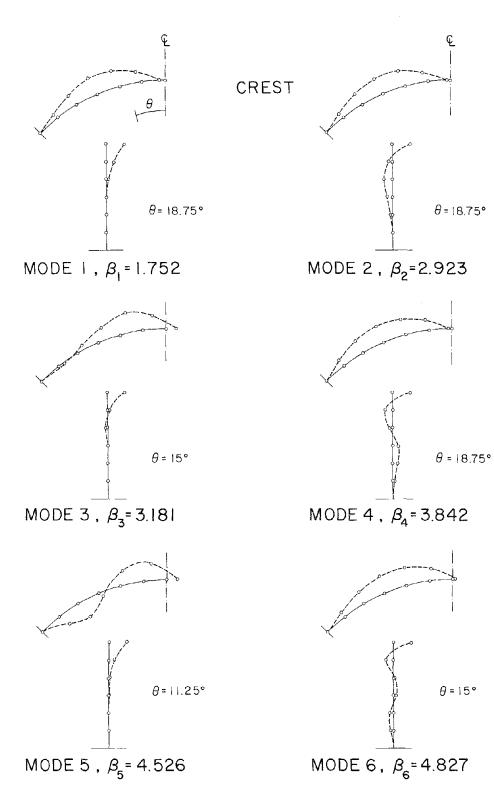


FIG. 7.5 NATURAL FREQUENCIES AND SHAPES OF ANTISYMMETRIC VIBRATION MODES OF ARCH DAMS WITH $R/H_d = 0.5$. FREQUENCY OF jth MODE $\omega_j = (\beta_j/H_d) \sqrt{gE/w_d}$

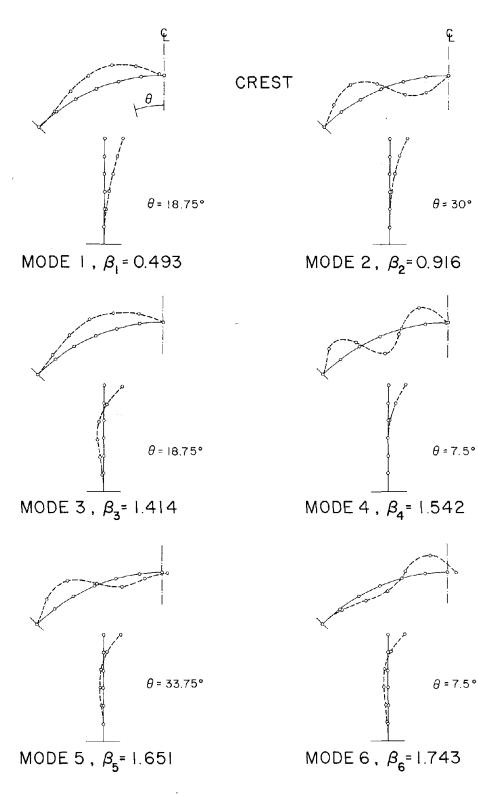


FIG. 7.6 NATURAL FREQUENCIES AND SHAPES OF ANTISYMMETRIC VIBRATION MODES OF ARCH DAMS WITH $R/H_d = 1.5$. FREQUENCY OF jth MODE $\omega_j = (\beta_j/H_d) \sqrt{gE/w_d}$

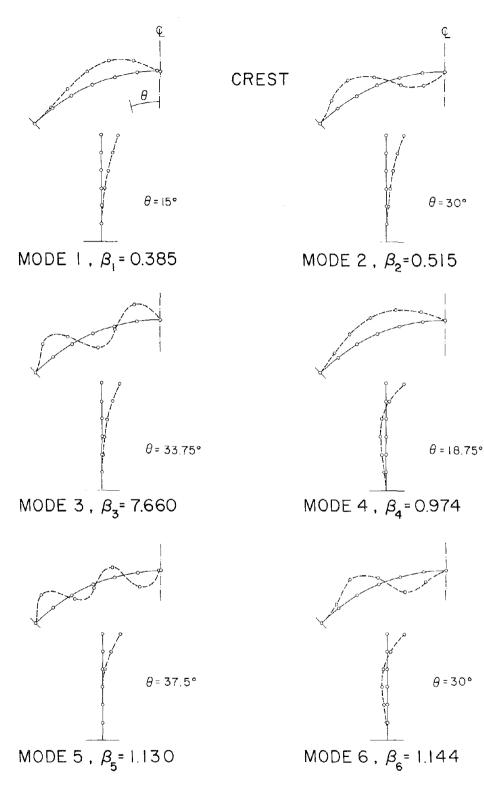


FIG. 7.7 NATURAL FREQUENCIES AND SHAPES OF ANTISYMMETRIC VIBRATION MODES OF ARCH DAMS WITH R/H_d = 2.5. FREQUENCY OF jth MODE $\omega_j = (\beta_j/H_d) \sqrt{gE/w_d}$ plotted over the depth at the particular value of θ where the mode shape attains its maximum value. Because the mode shapes are either symmetric or antisymmetric about the x-z (θ =0) plane, they are displayed over only half the dam. Similar to Eq. 7.1, the natural frequencies associated with each mode are shown in dimensionless form. The mode shapes apply to a dam of any height, modulus of elasticity and density, provided it has the same idealized geometry, same value of R/H_d, and same Poisson's ratio for which the results have been presented.

It is seen from Figs. 7.2 - 7.7 that the vibration frequencies and mode shapes change significantly with R/H_d . In particular, the fundamental frequency decreases as R/H_d increases. The vibration mode shapes may be visualized as a combination of vibration modes of the crest arch and of vertical cantilevers fixed at the base of the dam. For example, the sixth symmetric mode for dams with $R/H_d = 0.5$ (Fig. 7.2) can be described as a combination of the first arch mode and the fourth cantilever mode.

Dams with the smallest R/H_d are relatively stiff in the arch direction compared to the cantilever direction. Thus, the first arch mode combines with three cantilever modes to produce the first three vibration modes of the dam (Figs. 7.2 and 7.5). In contrast, dams with the largest R/H_d are relatively flexible in the arch direction compared to the cantilever direction. As a result, the first cantilever mode combines with three arch modes to produce the first three vibration modes of the dam (Figs. 7.4 and 7.7).

7.4 Presentation of Response Results

In order to identify the effects of the impounded water on the dynamic response of dams, each of the three dams (Section 7.3.1) is

80

analyzed for three conditions: the dam alone without water $(H/H_d = 0)$, and the dam with water at a depth equal to the dam height $(H/H_d = 1)$ considering water as compressible in one case and neglecting water compressibility effects in another case. The response of the dam to the three components of ground motion -- upstream-downstream component, cross-stream component, and vertical component -- was analyzed by the procedures of Chapters 4, 5, and 6, respectively.

For the symmetric dam-reservoir systems considered in this work, the natural modes of symmetric vibration of the dam are excited by ground motions in the upstream-downstream and vertical directions; whereas the antisymmetric modes are excited by cross stream ground motion. Considering the first ten natural modes of vibration, symmetric or antisymmetric as appropriate, the response of the three arch dams described in Section 7.3.1 to harmonic ground acceleration in each of the three directions, applied individually, was computed.

The acceleration response at selected locations on the crest of the three dams are presented in Figs. 7.8 to 7.31. The responses to upstream-downstream ground motion are presented in Figs. 7.8 to 7.16, to cross-stream ground motion in Figs. 7.17 to 7.25, and to vertical ground motion in Figs. 7.26 to 7.31. In each figure, the absolute value or modulus of the complex frequency response function for crest acceleration is plotted against the excitation frequency normalized relative to the fundamental natural frequency of the dam, in symmetric or antisymmetric vibration as appropriate. When presented in this form, the plots apply to dams of any height with the properties specified in Section 7.3.1. Furthermore, the response results excluding hydrodynamic effects or neglecting compressibility of water are independent of the

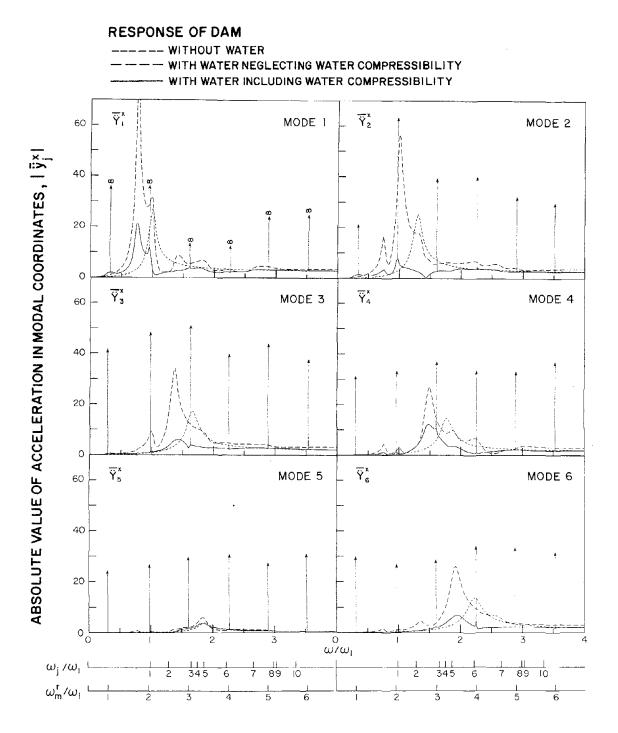


FIG. 7.8 COMPLEX FREQUENCY RESPONSES IN MODAL COORDINATES DUE TO UPSTREAM-DOWNSTREAM GROUND MOTION. RESULTS ARE FOR ARCH DAMS WITH R/H $_{\rm d}$ = 0.5

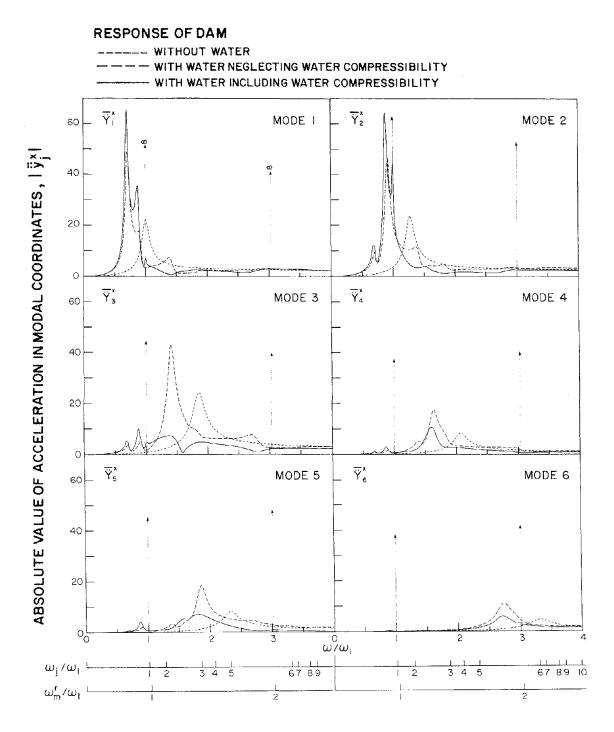


FIG. 7.9 COMPLEX FREQUENCY RESPONSES IN MODAL COORDINATES DUE TO UPSTREAM-DOWNSTREAM GROUND MOTION. RESULTS ARE FOR ARCH DAMS WITH R/H $_{\rm d}$ = 1.5

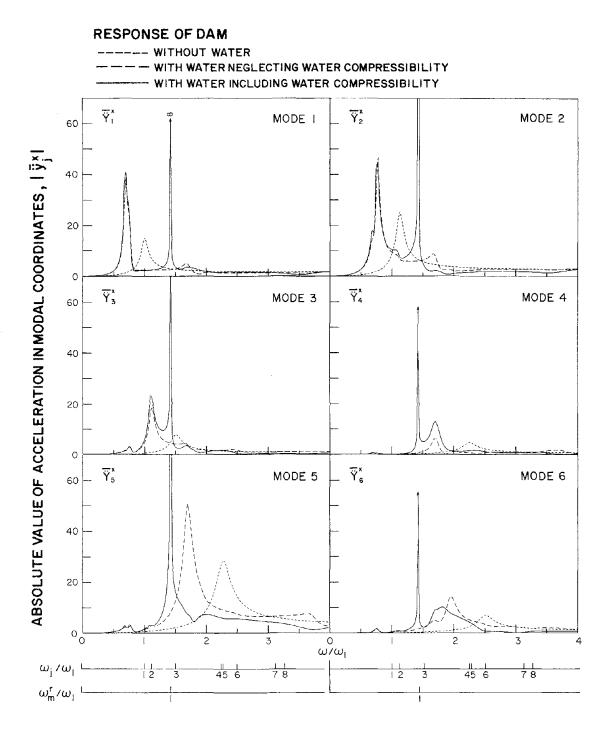


FIG. 7.10 COMPLEX FREQUENCY RESPONSES IN MODAL COORDINATES DUE TO UPSTREAM-DOWNSTREAM GROUND MOTION. RESULTS ARE FOR ARCH DAMS WITH $R/H_d = 2.5$

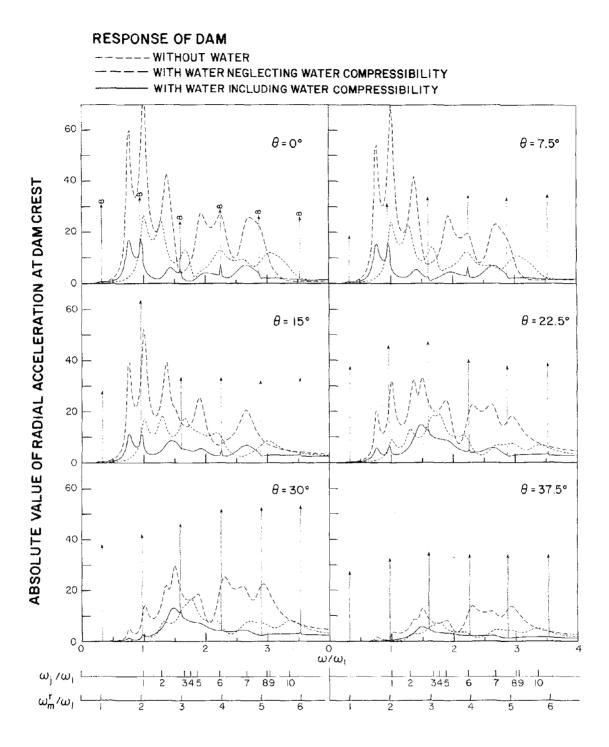


FIG. 7.11 COMPLEX FREQUENCY RESPONSES FOR RADIAL ACCELERATION AT $0 = 0^{\circ}$, 7.5[°], 15[°], 22.5[°], 30[°], AND 37.5[°] ALONG CREST OF THE DAM DUE TO UPSTREAM-DOWNSTREAM GROUND MOTION. RESULTS ARE FOR ARCH DAMS WITH R/H_d = 0.5

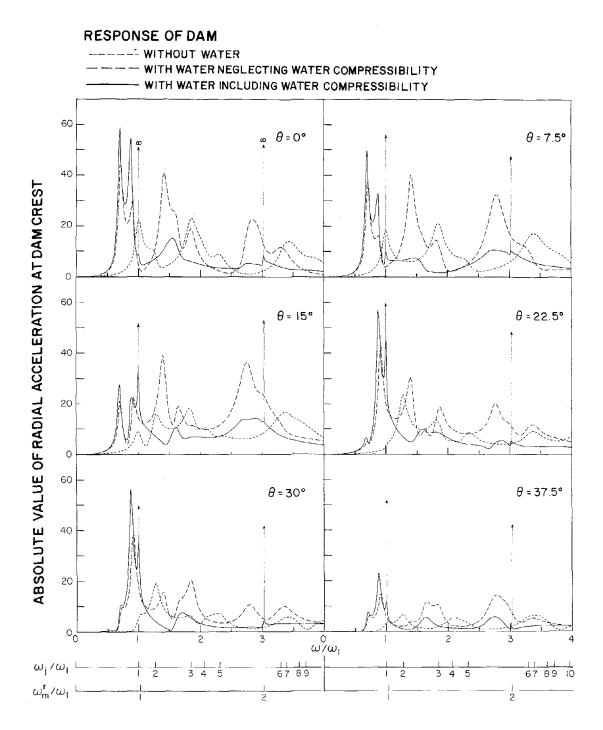


FIG. 7.12 COMPLEX FREQUENCY RESPONSES FOR RADIAL ACCELERATION AT $\Theta = 0^{\circ}$, 7.5°, 15°, 22.5°, 30°, AND 37.5° ALONG CREST OF THE DAM DUE TO UPSTREAM-DOWNSTREAM GROUND MOTION. RESULTS ARE FOR ARCH DAMS WITH R/H_d = 1.5

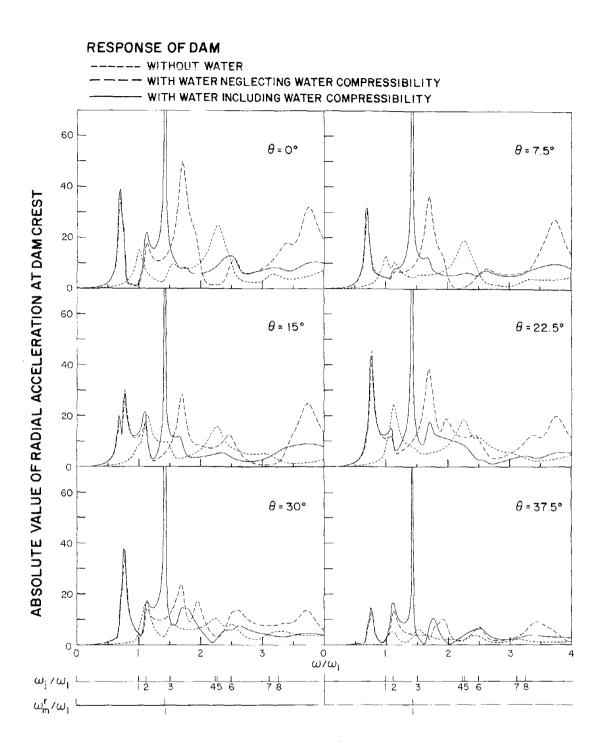


FIG. 7.13 COMPLEX FREQUENCY RESPONSES FOR RADIAL ACCELERATION AT $\theta = 0^{\circ}$, 7.5°, 15°, 22.5°, 30°, AND 37.5° ALONG CREST OF THE DAM DUE TO UPSTREAM-DOWNSTREAM GROUND MOTION. RESULTS ARE FOR ARCH DAMS WITH R/H_d = 2.5

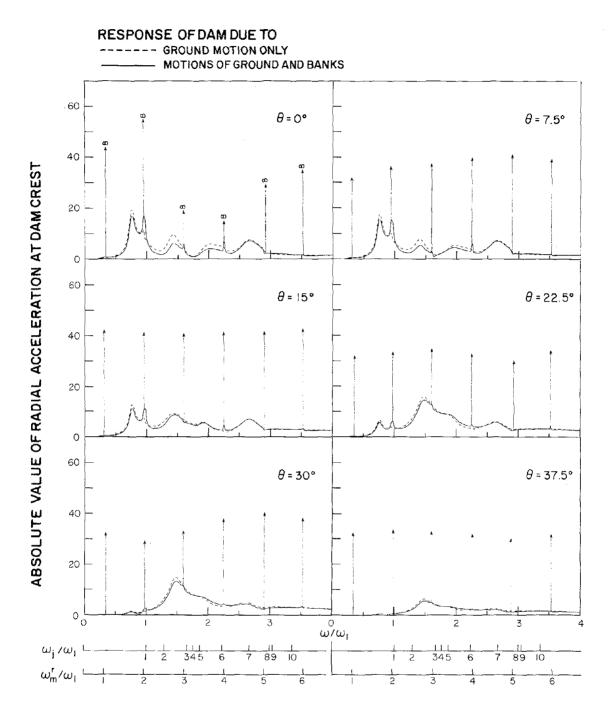


FIG. 7.14 COMPLEX FREQUENCY RESPONSES FOR RADIAL ACCELERATION AT $\theta = 0^{\circ}$, 7.5°, 15°, 22.5°, 30°, AND 37.5° ALONG CREST OF THE DAM. EXCITATIONS ARE (1) UPSTREAM-DOWNSTREAM GROUND MOTION ONLY, AND (2) UPSTREAM-DOWNSTREAM MOTIONS OF GROUND AND BANKS. RESULTS ARE FOR ARCH DAMS WITH R/H_d = 0.5

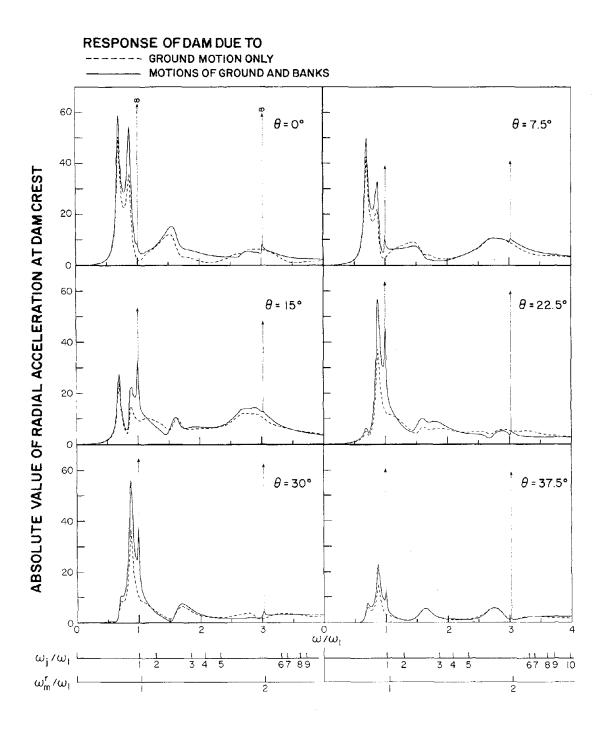


FIG. 7.15 COMPLEX FREQUENCY RESPONSES FOR RADIAL ACCELERATION AT $\theta = 0^{\circ}$, 7.5°, 15°, 22.5°, 30°, and 37.5° ALONG CREST OF THE DAM. EXCITATIONS ARE (1) UPSTREAM-DOWNSTREAM GROUND MOTION ONLY, AND (2) UPSTREAM-DOWNSTREAM MOTIONS OF GROUND AND BANKS. RESULTS ARE FOR ARCH DAMS WITH R/H_d = 1.5

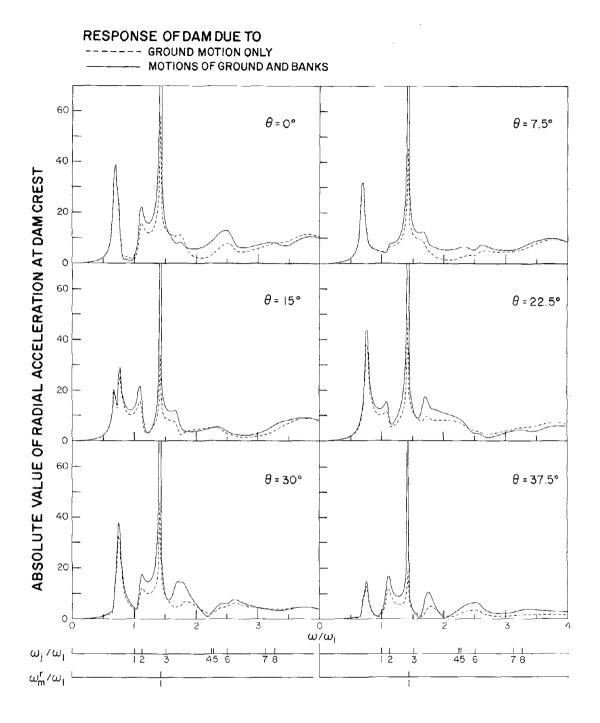


FIG. 7.16 COMPLEX FREQUENCY RESPONSES FOR RADIAL ACCELERATION AT $\theta = 0^{\circ}$, 7.5[°], 15[°], 22.5[°], 30[°], AND 37.5[°] ALONG CREST OF THE DAM. EXCITATIONS ARE (1) UPSTREAM-DOWNSTREAM GROUND MOTION ONLY, AND (2) UPSTREAM-DOWNSTREAM MOTIONS OF GROUND AND BANKS. RESULTS ARE FOR ARCH DAMS WITH R/H_d = 2.5

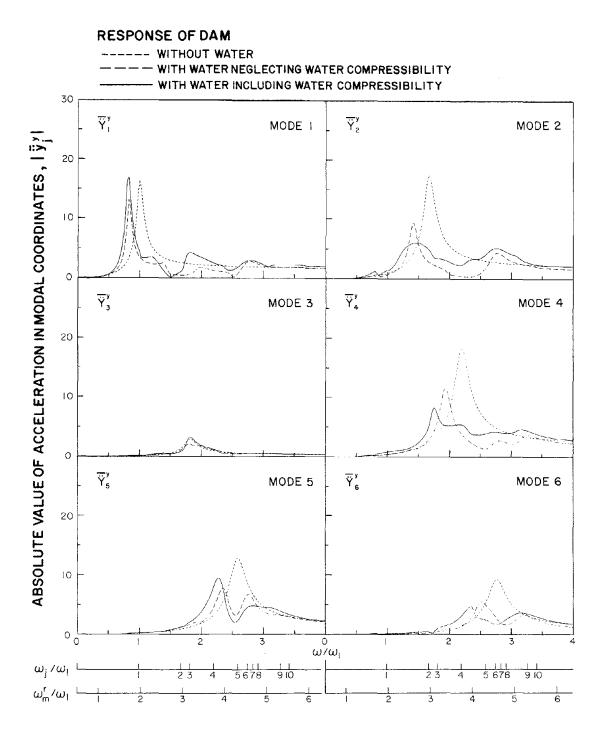


FIG. 7.17 COMPLEX FREQUENCY RESPONSES IN MODAL COORDINATES DUE TO CROSS-STREAM GROUND MOTION. RESULTS ARE FOR ARCH DAMS WITH R/H $_{\rm d}$ = 0.5

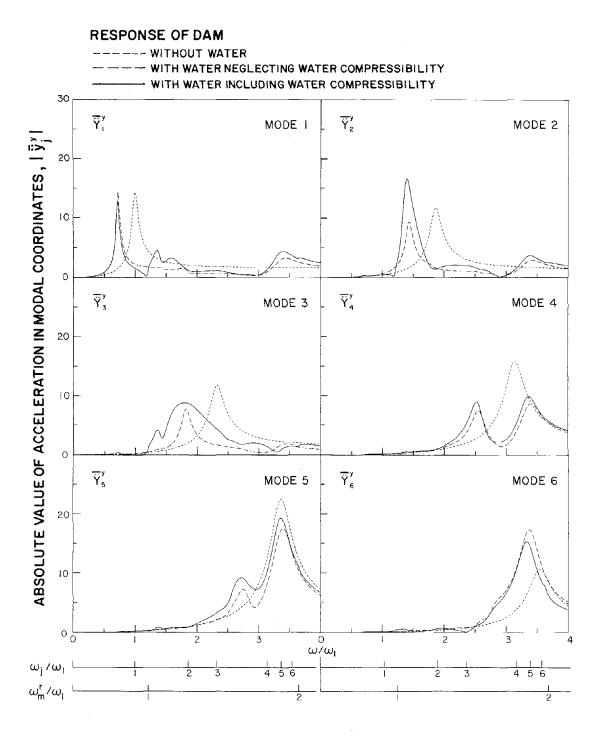


FIG. 7.18 COMPLEX FREQUENCY RESPONSES IN MODAL COORDINATES DUE TO CROSS-STREAM GROUND MOTION. RESULTS ARE FOR ARCH DAMS WITH $R/H_d = 1.5$

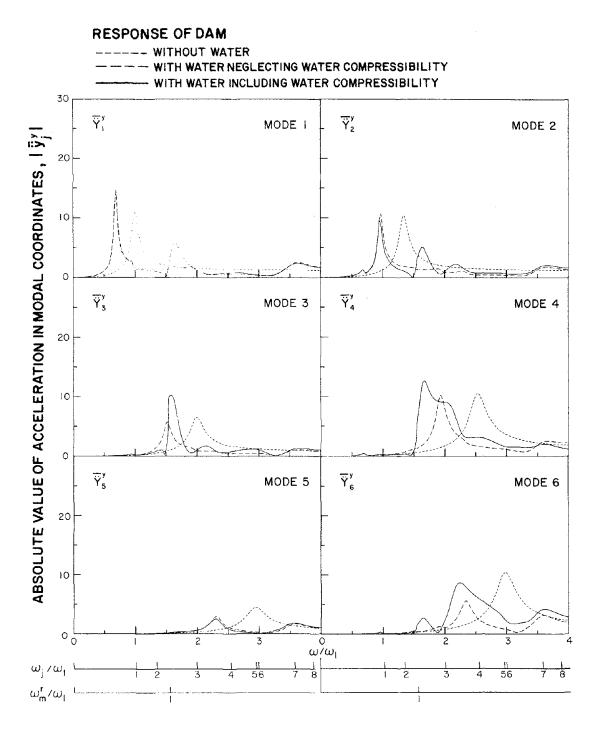


FIG. 7.19 COMPLEX FREQUENCY RESPONSES IN MODAL COORDINATES DUE TO CROSS-STREAM GROUND MOTION. RESULTS ARE FOR ARCH DAMS WITH R/H $_{\rm d}$ = 2.5

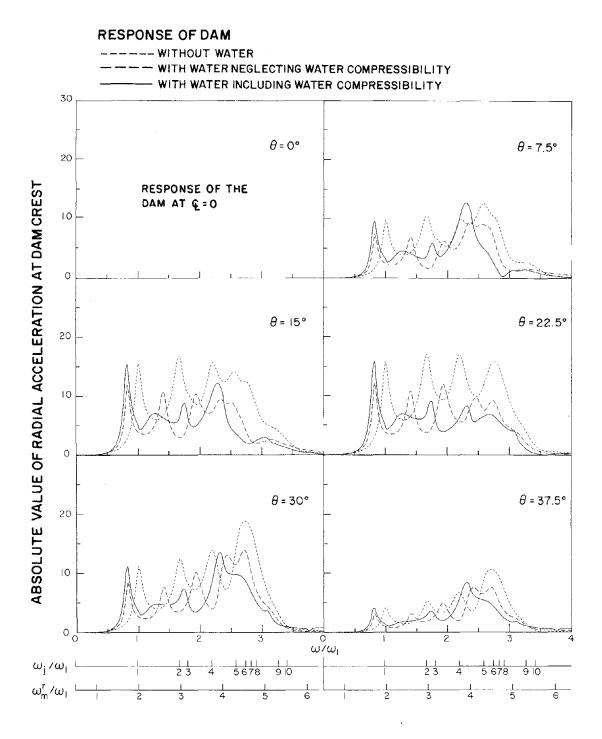


FIG. 7.20 COMPLEX FREQUENCY RESPONSES FOR RADIAL ACCELERATION AT $\theta = 7.5^{\circ}$, 15° , 22.5° , 30° , and 37.5° Along CREST OF THE DAM DUE TO CROSS-STREAM GROUND MOTION. RESULTS ARE FOR ARCH DAMS WITH R/H_d = 0.5

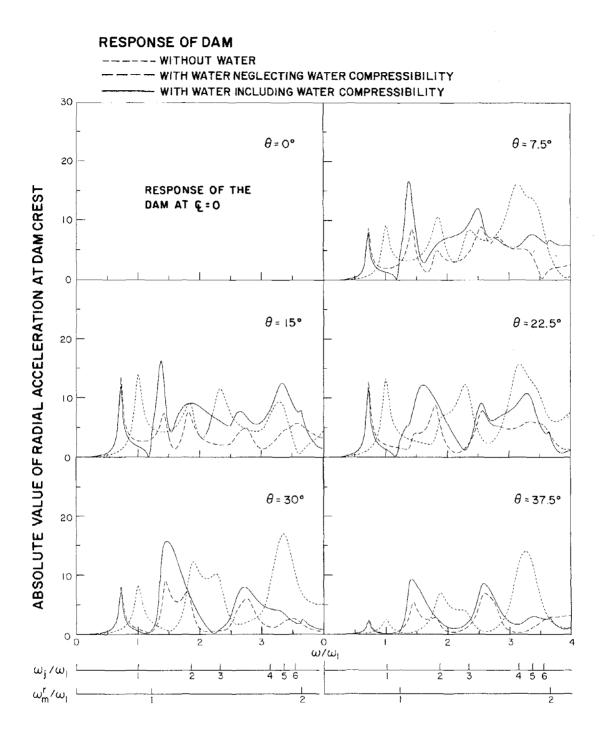


FIG. 7.21 COMPLEX FREQUENCY RESPONSES FOR RADIAL ACCELERATION AT $\theta = 7.5^{\circ}$, 15°, 22.5°, 30°, AND 37.5° ALONG CREST OF THE DAM DUE TO CROSS-STREAM GROUND MOTION. RESULTS ARE FOR ARCH DAMS WITH R/H_d = 1.5

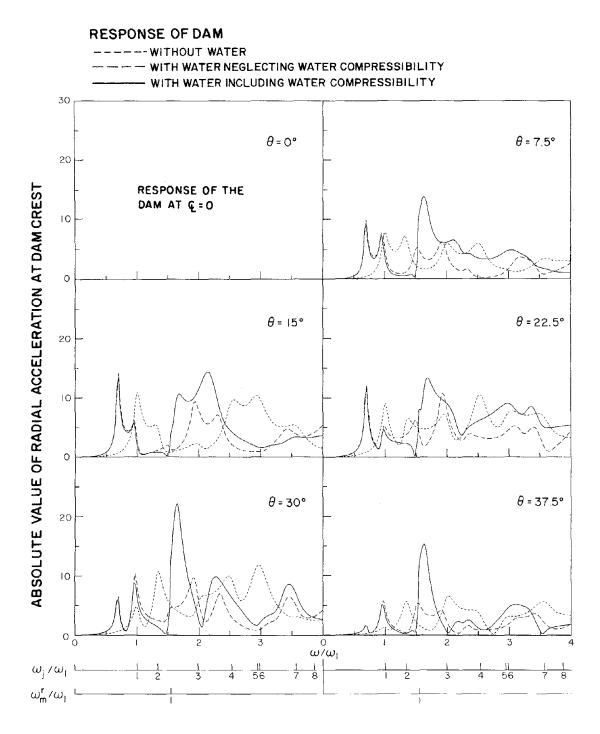


FIG. 7.22 COMPLEX FREQUENCY RESPONSES FOR RADIAL ACCELERATION AT $\theta = 7.5^{\circ}$, 15°, 22.5°, 30°, AND 37.5° ALONG CREST OF THE DAM DUE TO CROSS-STREAM GROUND MOTION. RESULTS ARE FOR ARCH DAMS WITH R/H_d = 2.5

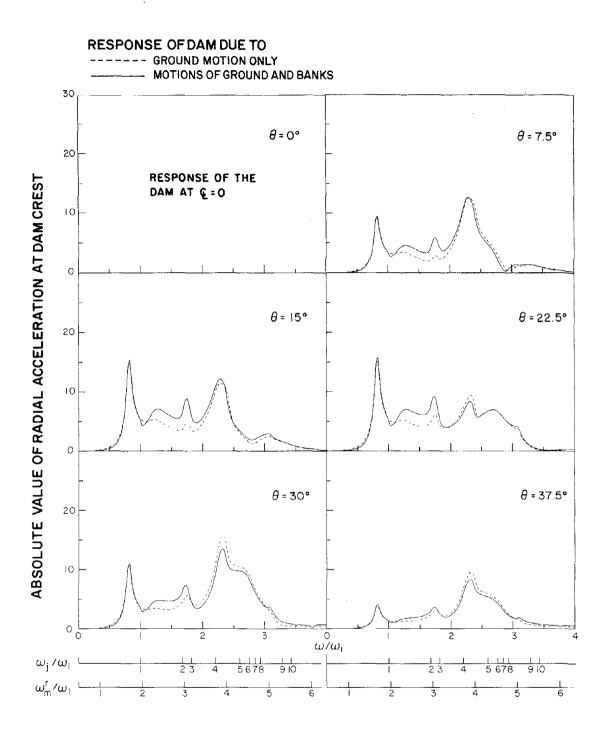


FIG. 7.23 COMPLEX FREQUENCY RESPONSES FOR RADIAL ACCELERATION AT $\theta = 7.5^{\circ}$, 15°, 22.5°, 30°, AND37.5° ALONG CREST OF THE DAM. EXCITATIONS ARE (1) CROSS-STREAM GROUND MOTION ONLY, AND (2) CROSS-STREAM MOTIONS OF GROUND AND BANKS. RESULTS ARE FOR ARCH DAMS WITH R/H_d = 0.5

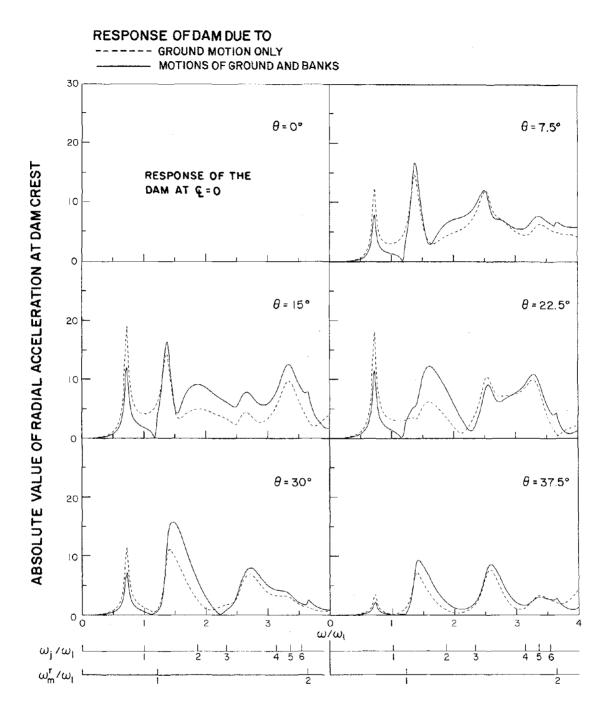


FIG. 7.24 COMPLEX FREQUENCY RESPONSES FOR RADIAL ACCELERATION AT $\theta = 7.5^{\circ}$, 15° , 22.5° , 30° , AND 37.5° ALONG CREST OF THE DAM. EXCITATIONS ARE (1) CROSS-STREAM GROUND MOTION ONLY, AND (2) CROSS-STREAM MOTIONS OF GROUND AND BANKS. RESULTS ARE FOR ARCH DAMS WITH R/H_d = 1.5

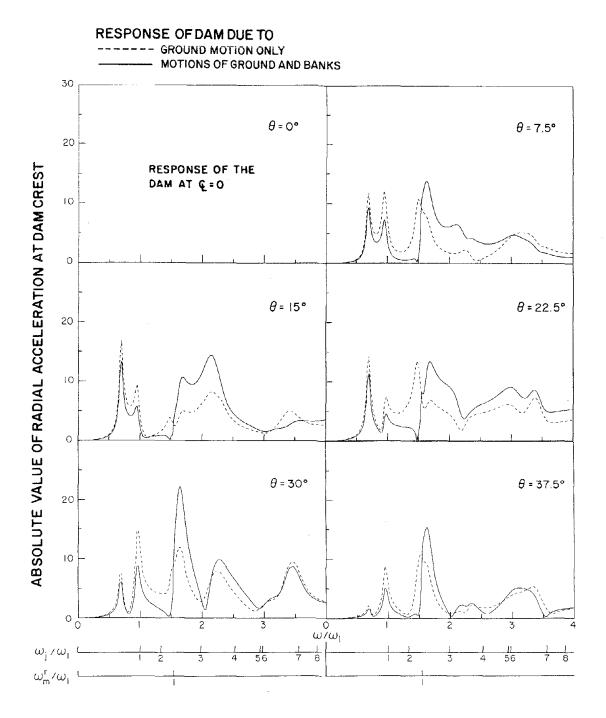


FIG. 7.25 COMPLEX FREQUENCY RESPONSES FOR RADIAL ACCELERATION AT $\theta = 7.5^{\circ}$, 15°, 22.5°, 30°, AND 37.5° ALONG CREST OF THE DAM. EXCITATIONS ARE (1) CROSS-STREAM GROUND MOTION ONLY, AND (2) CROSS-STREAM MOTIONS OF GROUND AND BANKS. RESULTS ARE FOR ARCH DAMS WITH R/H_d = 2.5

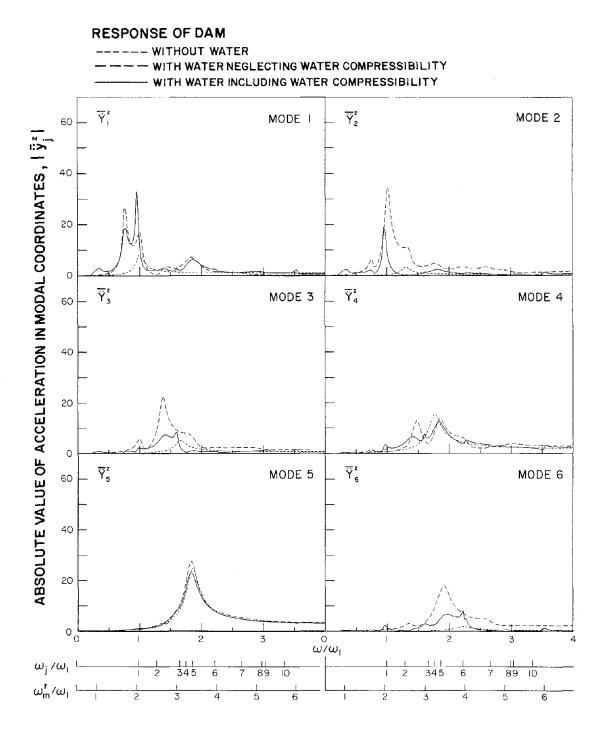


FIG. 7.26 COMPLEX FREQUENCY RESPONSES IN MODAL COORDINATES DUE TO VERTICAL GROUND MOTION. RESULTS ARE FOR ARCH DAMS WITH $R/H_d = 0.5$

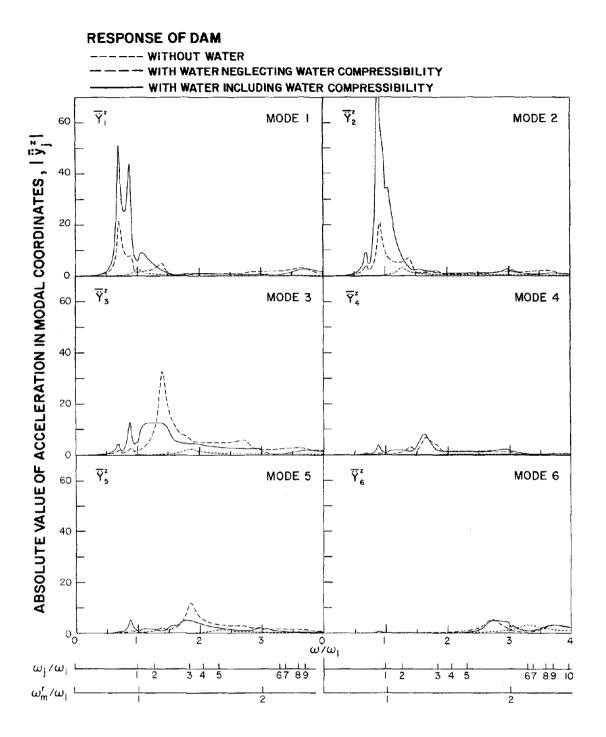


FIG. 7.27 COMPLEX FREQUENCY RESPONSES IN MODAL COORDINATES DUE TO VERTICAL GROUND MOTION. RESULTS ARE FOR ARCH DAMS WITH $\rm R/H_{d}$ = 1.5

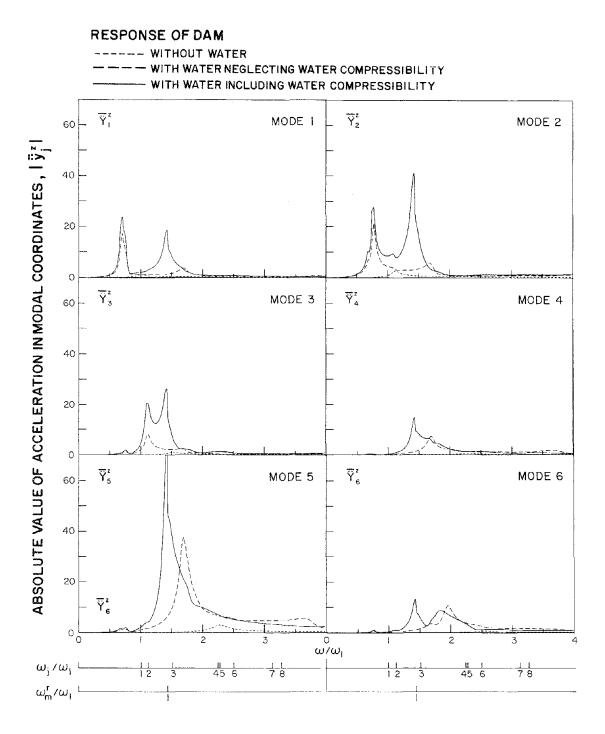


FIG. 7.28 COMPLEX FREQUENCY RESPONSES IN MODAL COORDINATES DUE TO VERTICAL GROUND MOTION. RESULTS ARE FOR ARCH DAMS WITH $R/H_d = 2.5$

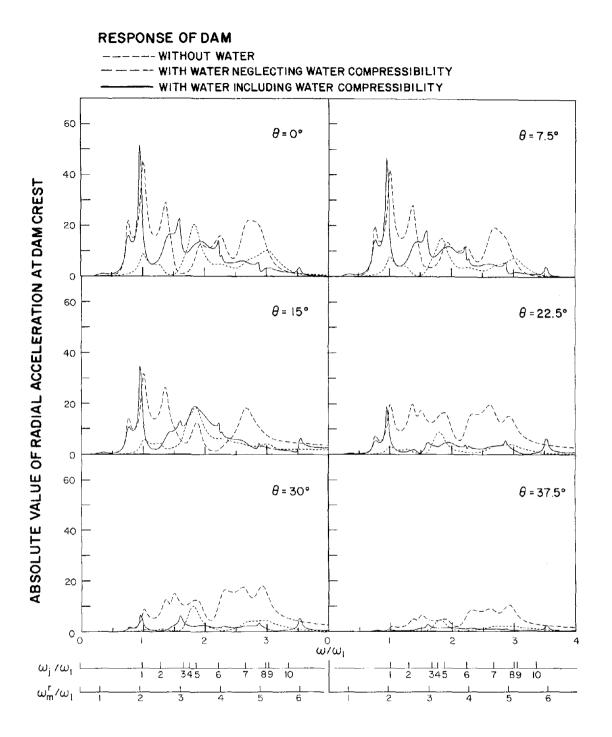


FIG. 7.29 COMPLEX FREQUENCY RESPONSES FOR RADIAL ACCELERATION AT $\theta = 0^{\circ}$, 7.5°, 15°, 22.5°, 30°, AND 37.5° ALONG CREST OF THE DAM DUE TO VERTICAL GROUND MOTION. RESULTS ARE FOR ARCH DAMS WITH R/H_d = 0.5

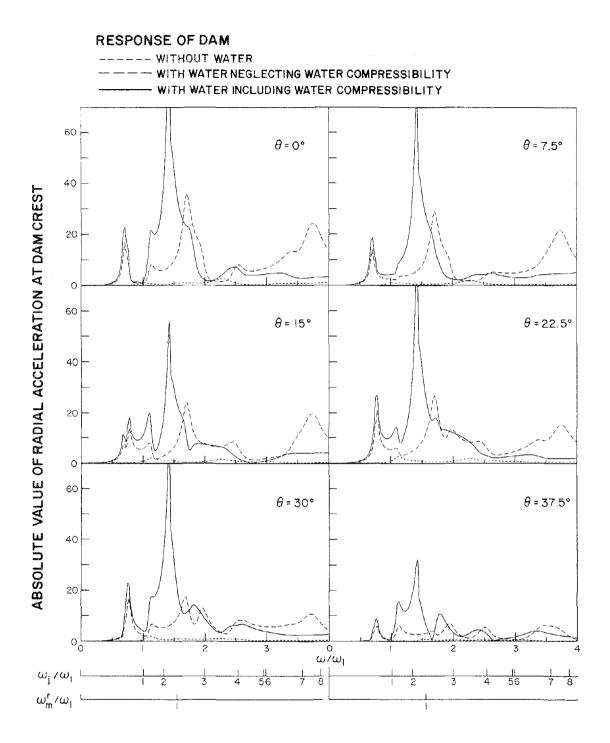


FIG. 7.30 COMPLEX FREQUENCY RESPONSES FOR RADIAL ACCELERATION AT $\theta = 0^{\circ}$, 7.5°, 15°, 22.5°, 30°, AND 37.5° ALONG CREST OF THE DAM DUE TO VERTICAL GROUND MOTION. RESULTS ARE FOR ARCH DAMS WITH R/H_d = 1.5

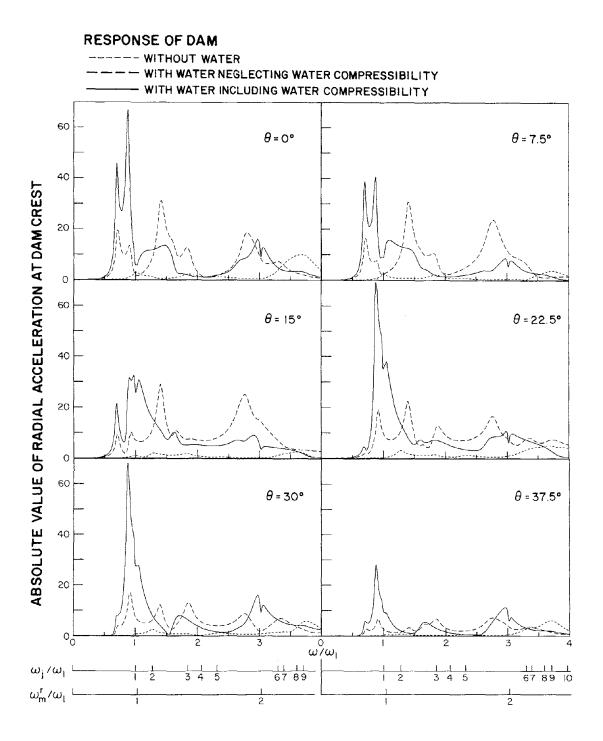


FIG. 7.31 COMPLEX FREQUENCY RESPONSES FOR RADIAL ACCELERATION AT $\Theta = 0^{\circ}$, 7.5°, 15°, 22.5°, 30°, AND 37.5° ALONG CREST OF THE DAM DUE TO VERTICAL GROUND MOTION. RESULTS ARE FOR ARCH DAMS WITH R/H_d = 2.5

modulus of elasticity of mass concrete of the dam. Also included to assist in interpretation of the results are two additional frequency scales, one identifying the natural frequencies of the vibration modes, symmetric or antisymmetric as appropriate, of the dam alone; the other locating the resonant frequencies of the fluid domain.

The absolute value or modulus of the complex frequency response functions in the modal (generalized) coordinates (Eqs. 4.17, 5.16 and 6.13) for the first six $(j = 1, 2, \dots, 6)$ of the ten modes included in the analysis is plotted against normalized excitation frequency. Such plots are presented in Figs. 7.8, 7.9, and 7.10 for dams with $R/H_d = 0.5$, 1.5, and 2.5, respectively, subjected to upstream-downstream ground motion. Similar plots corresponding to cross-stream ground motion are presented in Figs. 7.17 to 7.20, those associated with vertical ground motion in Figs. 7.26 to 7.28. The modal coordinate is defined at the location on the dam where the radial component of the mode shape attains its maximum value. For all of the dams investigated, this maximum mode shape value occurs at the crest of the dam at a location defined by the value of θ given in Figs. 7.2 to 7.4 for the symmetric modes and in Figs. 7.5 to 7.7 for the antisymmetric modes. Thus, the various modal responses are not defined at the same location on the crest and therefore are not directly comparable. However, the response at any location associated with any particular mode is simply the product of the modal coordinate and the value of the normalized mode shape -- maximum value of the radial component of the normalized mode shape is unity -- at that location (Eqs. 4.18, 5.17 and 6.14).

The complex frequency response functions for the accelerations at any nodal point on the dam can be determined from the corresponding

functions for the generalized modal accelerations $\bar{Y}_{j}^{x}(\omega)$, $\bar{Y}_{j}^{y}(\omega)$ or $\bar{Y}_{j}^{z}(\omega)$ and Eqs. 4.19, 5.18 or 6.15, respectively. The radial component of acceleration at several locations around the circumference -- $\theta = 0^{\circ}$, 7.5°, 15°, 22.5°, 30°, and 37.5° measured from the crown -- of the upstream edge of the crest of the dam were computed by combining the contributions of the first 10 modes. The responses due to upstreamdownstream ground motion are presented in Figs. 7.11 to 7.13 and those due to vertical ground motion in Fig. 7.29 to 7.31. In both cases, the response is symmetric about the x-z (θ =0) plane. The responses due to cross-stream ground motion, which are antisymmetric about the x-z plane, are presented in Figs. 7.20 to 7.22.

7.5 Discussion of Response Results

7.5.1 Modal Responses

The modal responses of the dam without water (H/H_d = 0) are representative of a multidegree of freedom system with constant mass, stiffness, and damping parameters. Each modal response curve is similar to the response behavior of a single-degree-of-freedom (SDOF) system, with resonance at the natural vibration frequency (the effect of damping, $\xi_j = 0.05$, on the resonant frequency is negligible) of the particular mode.

Whereas the responses in the natural modes of vibration of the dam are uncoupled when effects of water on the response of the dam are excluded, the modal responses become coupled when hydrodynamic effects are included (see Sections 4.3.4, 5.3.4 and 6.3.4). Such coupling is apparent in both cases -- with or without water compressibility -- from the response curve for any mode, wherein the primary response is at the resonant frequency of that mode but secondary, smaller peaks appear at the resonant frequencies of the other modes (Figs. 7.8 to 7.10, 7.17 to 7.19, 7.26 to 7.28).

Similar to many structures, the response of arch dams to earthquake ground motion indicates some tendency for larger response in the lower modes of vibration. The peak modal response of arch dams with $R/H_d = 0.5$ and 1.5 to upstream-downstream ground motion (Figs. 7.8 and 7.9) generally decreases with mode number; however, the response of the more flexible arch dams with $R/H_d = 2.5$ (Fig. 7.10) without water or including hydrodynamic effects but ignoring water compressibility, is especially significant in the fifth vibration mode. In the case of cross-stream ground motion, the peak modal responses of arch dams with $R/H_d = 0.5$ and 2.5 generally decrease, although not monotonically, with mode number; however, the response of arch dams with ${\rm R/H}_{\rm d}$ = 1.5 is rather large in the fifth and sixth modes of vibration (Figs. 7.17 to 7.19). The peak modal responses of arch dams, including hydrodynamic effects and water compressibility, to vertical ground motion similarly do not display any simple trends. For dams with $R/H_d = 0.5$, the peak response in the fifth mode is almost as large as in the first mode; for dams with $R/H_d = 1.5$, the response in the second mode is larger than in the first mode; and for dams with $R/H_d = 2.5$, the response in the fifth mode is much larger than in any other mode (Figs 7.26 to 7.28). That the largest modal response does not appear until the fifth or sixth mode in some cases illustrates the complicated response behavior of arch dams. Thus, although only the first few modes -- compared to the total number of DOF -- will generally suffice for predicting the response, the analysis must include all the modes having significant contributions to the response. In general, many more modes need to be included in predicting the response of arch dams compared to concrete gravity dams or

multistory buildings. The number of modes that need to be included depends on the response quantity of interest. Typically, fewer modes suffice for displacements, more modes are generally necessary for accelerations and for stresses.

Since the total response at any nodal point on the dam (Figs. 7.11 to 7.13, 7.20 to 7.22, 7.29 to 7.31) is a linear combination of the responses $\ddot{\breve{Y}}_{i}\left(\omega\right)$ in the first ten modes of vibration, it exhibits many characteristics of the individual modal responses. For example, the first two resonant peaks in the response, including hydrodynamic and water compressibility effects at the crown, $\theta = 0^{\circ}$ (Fig. 7.12), arise from the contributions of the first and second modes (Fig. 7.9), respectively. The response, including hydrodynamic and water compressibility effects at the fundamental resonant frequency, which is dominated by the first mode, can be seen to vary around the crest-arch (Fig. 7.12) similar to the first mode shape (Fig. 7.3). This variation depends on the excitation frequency. At any other excitation frequency this variation is more complicated, depending on the contributions of the various modes to the response at that frequency. Because the modal contributions vary with θ and each modal contribution varies differently, when they are all combined the distribution of acceleration around the arch is rather irregular, varying strongly with θ .

7.5.2 Hydrodynamic Effects

When water compressibility is neglected the effects of structurefluid interaction are frequency-independent and are equivalent to an added mass matrix and an added load vector in the modal equations (Eqs. 4.27, 5.25 and 6.19). Because of the added mass effects, the resonant frequencies of arch dams are reduced (Tables 7.1 and 7.2) and

MODE j	$R/H_{d} = 0.5$			R/H _d = 1.5			$R/H_{d} = 2.5$		
	^ω j ^{⁄ω} 1	PERCENT REDUCTION		w hs	PERCENT REDUCTION		in the	PERCENT REDUCTION	
		Incompressible Water	Compressible Water	[∞] j ^{∕ω} l	Incompressible Water		^w j∕wı	Incompressible Water	Compressible Water
1	1.00	24	25	1.00	30	30	1.00	30	31
2	1.299	23	26	1.272	28	31	1.125	31	31
3	1.660	17	16	1.848	24	26	1.506	26	27
4	1.765	16	17	2.069	21	22	2.245	24	24
5	1.857	1	1	2.324	20	22	2.270	25	38
6	2.220	14	13	3.302	17	18	2.506	22	27

TABLE 7.1: REDUCTION IN RESONANT FREQUENCIES OF SYMMETRIC VIBRATION MODES DUE TO HYDRODYNAMIC EFFECTS

MODE j	$R/H_d = 0.5$			$R/H_d = 1.5$			$R/H_{d} = 2.5$		
	ω _j /ω _l	PERCENT REDUCTION		10 10	PERCENT REDUCTION		10 Z0	PERCENT REDUCTION	
		Incompressible Water	Compressible Water	^ω j ^{/ω} 1	Incompressible Water	Compressible Water	^w j∕ ^w l	Incompressible Water	Compressible Water
1	1.000	18	18	1.000	28	28	1.000	30	30
2	1.669	15	13	1.861	23	25	1.338	27	29
3	1.816	1	0	2.318	21	23	1.989	24	21
4	2.193	12	20	3.132	19	19	2.530	24	34
5	2.584	9	12	3.352	0	0	2.935	22	22
6	2.755	8	15	3.539	5	6	2.972	22	25

i

TABLE 7.2: REDUCTION IN RESONANT FREQUENCIES OF ANTISYMMETRIC VIBRATION MODES DUE TO HYDRODYNAMIC EFFECTS

the apparent damping ratios are also reduced. Similar results were obtained earlier for concrete gravity dams [14,15,26]. The added loads are associated with hydrodynamic pressures in the radial direction on the cylindrical upstream face of the dam due to rigid body motion of the dam and banks. Motions in the upstream-downstream direction and the vertical direction cause large pressures compared to those due to cross stream motions (compare the pressures in Figs. 4.1, 5.1 and 6.1 at $\omega = 0$). As a result, when water compressibility is neglected, the resonant response to upstream-downstream or vertical ground motion is increased considerably (Figs. 7.8 - 7.10 and 7.26 - 7.28) whereas the resonant response to cross-stream ground motion is influenced little by hydrodynamic effects (Figs. 7.17 - 7.19).

When the compressibility of water is included, dam-water interaction introduces frequency-dependent terms in the equations of motion of the dam (Sections 4.3.4, 5.3.4 and 6.3.4). This frequency dependence accounts for the complicated shape of the response curves compared to the curves in which the hydrodynamic effects have been neglected or water is assumed to be incompressible. The behavior of the response to upstream-downstream ground motion is especially complicated at excitation frequencies in the neighborhood of ω_m^r , where the hydrodynamic terms become unbounded. This, in contrast to gravity dams [26], results in unbounded response at these frequencies (see Section 4.4 and Appendix E). This response amplification is detectable over only an extremely narrow bandwidth in the neighborhood of ω_m^r (Figs. 7.8 to 7.13). In contrast, the hydrodynamic forces due to cross-stream and vertical ground motions are bounded at the eigen-frequencies ω_m^r of the fluid domain (Sections 5.3.3 and 6.3.3), resulting in bounded response at these excitation frequencies (Figs. 7.17 to 7.22 and 7.26 to 7.31).

Dam-water interaction reduces the jth resonant frequency of the dam from ω_j to $\tilde{\omega}_j$. The following observations can be made from the percentage decrease in resonant frequencies summarized in Tables 7.1 and 7.2. The decrease in a resonant frequency depends on the mode number, whether the mode is symmetric or antisymmetric, and the R/H_d value for the dam. Greater reductions are observed for dams with higher R/H_d values and in the lower modes of vibration. But for a few exceptions, the reduction in resonant frequency is about the same whether compressibility is considered or not.

The resonant response in any vibration mode is influenced by whether $\widetilde{\omega}_{i}$, the resonant frequency of that mode including the effects of compressible water, is less than or greater than $\omega_1^{\mathbf{r}}$, the fundamental resonant frequency of the fluid domain. At excitation frequencies $\omega < \omega_1^r$ the frequency dependent terms in the equations of motion for upstream-downstream and cross-stream ground motions are real valued; the effect of water is equivalent to an added mass and load with their magnitude depending on the excitation frequency. In the equations of motion for vertical ground motion, the added mass term is real valued but the added load term is complex valued for $\alpha \neq 1$. This added mass, in addition to reducing the fundamental resonant frequency of the dam, has the indirect effect of reducing the apparent damping ratio. The reduced damping and added load results in narrower bandwidth and larger response at resonance. Such are the characteristics of response to upstream-downstream or vertical ground motions exhibited by those vibration modes of an arch dam with resonant frequency $\widetilde{\omega}_{1} \leq \omega_{1}^{r}$ (modes 1 and 2 in Figs. 7.9 and 7.27; modes 1, 2, and 3 in Figs. 7.10 and 7.28). The total responses display similar behavior at frequencies where these

modes have the more important contributions (Figs. 7.12, 7.13, 7.30 and 7.31). In the case of cross stream ground motion, the added mass reduces the resonant frequency. However, the added load is relatively small compared to the case of upstream-downstream ground motion (compare Figs. 4.1 to 4.3 with 5.1 to 5.3), leading to hardly any increase in resonant response over the value for the dam alone. Such is the response characteristic exhibited by those antisymmetric vibration modes of an arch dam with resonant frequency $\tilde{\omega}_{j} < \omega_{1}^{r}$ (mode 1 in Fig. 7.18 and modes 1 and 2 in Fig. 7.19). The total responses display similar behavior at frequencies where these modes have the more important contributions (Figs. 7.21 and 7.22).

At excitation frequencies $\omega > \omega_1^r$ the additional hydrodynamic terms in the equations of motion of the dam are complex valued for each of the three components of ground motion (Sections 4.3.2, 5.3.2 and 6.3.2). Thus, the effect of water is equivalent to frequency dependent additional mass, damping and load. The added mass is relatively small, and therefore the higher resonant frequencies are not reduced as much as the lower resonant frequencies (Tables 7.1, 7.2). In the case of upstream-downstream ground motion, the added damping is however significant, resulting in decreased resonant response for dams with $R/H_d = 0.5$ and 1.5 in those modes with resonant frequencies $\tilde{\omega}_i > \omega_1^r$ (all modes in Fig. 7.8, modes 3-6 in Fig. 7.9). Thus, the total response is also reduced in the frequency range including the higher resonant frequencies (Figs. 7.11, 7.12). The trends are not clear for arch dams with $R/H_d = 2.5$ but the influence of additional load appears to dominate the effect of additional damping, resulting in slightly increased resonant response (Fig. 7.10). The two competing effects of hydrodynamic interaction, additional damping and load, are

also present in the case of cross-stream or vertical ground motions. In the response of some modes to cross-stream ground motions the additional load effect is more significant resulting in larger resonant response (mode 1 in Fig. 7.17; modes 2 and 6 in Fig. 7.18; modes 3 and 4 in Fig. 7.19). For other modes the additional damping effect is dominant resulting in smaller resonant response (modes 2, 4, 5 and 6 in Fig. 7.17; modes 3, 4 and 5 in Fig. 7.18; modes 5 and 6 in Fig. 7.19). The additional load effect is dominant in the response of most vibration modes to vertical ground motion (Figs. 7.26 to 7.28).

The effects of compressibility of water on the dynamic response of an arch dam are also controlled by the values of $\tilde{\omega}_{j}$, the resonant frequencies of the dam, relative to ω_{1}^{r} , the fundamental resonant frequency of the fluid domain. At excitation frequencies ω much smaller than ω_{1}^{r} , the compressibility of water has little influence on the hydrodynamic terms in the equations of motion (Section 4.5, 5.4 and 6.4) and thus also on the response of the dam (Figs. 7.8 to 7.13, 7.17 to 7.22 and 7.26 to 7.31). If the resonant frequency of any mode $\tilde{\omega}_{j} \leq \omega_{1}^{r}$, water compressibility will have little influence on the response in that mode, except in the neighborhood of ω_{1}^{r} (modes 1 and 2 in Fig. 7.10, mode 1 in Fig. 7.18, modes 1 and 2 in Fig. 7.19).

The effect of water is equivalent to an added mass and load, independent of excitation frequency, when water compressibility is ignored (Section 4.5, 5.4 and 6.4). However, when water compressibility is included, this effect is equivalent to a frequency dependent added mass and load for $\omega < \omega_1^r$ but to added mass, load and damping at $\omega > \omega_1^r$ with damping increasing with ω . Thus, at excitation frequencies $\omega > \omega_1^r$, the response is reduced when water compressibility is included (Figs. 7.8 to 7.13). At excitation frequencies beyond a certain $\omega > \omega_1^r$, except

in the neighborhood of $\omega_{\rm m}^{\rm r}$, the hydrodynamic forces on rigid dams due to upstream-downstream and vertical ground motion (Figs. 4.4 and 6.2), and hence added loads in the equations of motions, are smaller than their values at $\omega = 0$, i.e. values corresponding to incompressible water. At these excitation frequencies, the combined effect of reduced load and increased damping associated with water compressibility effects reduces the response of the dam (Figs. 7.8 to 7.13 and 7.26 to 7.31). The response at these excitations frequencies is thus overestimated if water compressibility is neglected. At the above-mentioned excitation frequencies, the hydrodynamic forces due to cross-stream ground motion may be larger or smaller than the forces at $\omega = 0$, which also corresponds to incompressible water, depending on the value of θ and excitation frequency (Figs. 5.1 to 5.4). Thus, water compressibility may lead to an increase or decrease in the response at a particular location depending on the excitation frequency (Figs. 7.17 to 7.22).

7.5.3 Comparison of Response to Various Ground Motion Components

The relative significance of the three components of ground motion in the response of arch dams can be studied by comparing Figs. 7.11, 7.20 and 7.29 for dams with $R/H_d = 0.5$; Figs. 7.12, 7.21 and 7.30 for dams with $R/H_d = 1.5$; and Figs. 7.13, 7.22 and 7.31 for dams with $R/H_d = 2.5$. The radial acceleration response of dams without water is largest due to upstream-downstream ground motion, smaller due to crossstream ground motion and smallest due to vertical ground motion. Damwater interaction and water compressibility similarly affect dam response to upstream-downstream and cross-stream ground motions. However, the response to vertical ground motion is greatly increased by these effects, becoming larger than the response to upstream-downstream ground motion for some parameter values. Just as in the case of gravity dams [24], vertical ground motion causes significant hydrodynamic pressures acting in the horizontal plane on a cylindrical dam face, thus causing significant additional response.

7.5.4 Effects of Bank Motion

In all the preceding results, the excitation was simultaneous, identical motions of the ground and reservoir banks. Because it may not be reasonable to assume that the motion of ground and banks is identical, it is of interest to examine the influence of bank motions on the response. The response of arch dams with three different values of $R/H_d = 0.5$, 1.5, and 2.5, computed from two separate analyses are presented. The hydrodynamic effects included are due to motion of the ground only in one case, but due to motion of ground and banks in the other case. Ten modes of vibration and effects of water compressibility were included in the analysis. Results of response due to upstreamdownstream ground motion are presented in Figs. 7.14 to 7.16 and those due to cross-stream ground motion in Figs. 7.23 to 7.25.

The hydrodynamic forces due to bank motions may cause an increase or decrease in the response at a particular location on the dam, depending on the direction of ground motion, the excitation frequency ω and the R/H_d value for the dam. At $\omega < \omega_1^r$, the response at all locations on the dam increases in the case of upstream-downstream ground motion but decreases for cross-stream ground motion. At $\omega > \omega_1^r$ no systematic trend is apparent; depending on the excitation frequency the response of the dam at a particular location may increase or decrease. Even for a particular excitation frequency, the response may decrease at some locations and increase at others. The above-observed effects of bank motions on dam response are closely related to the influence of the bank motions on hydrodynamic pressures and forces on rigid dams (Figs. 4.1 to 4.4 and 5.1 to 5.4). The response to upstream-downstream ground motion at excitation frequencies $\omega = \omega_m^r$ is infinite if the effects of bank motions are included but finite otherwise. This is consistent with the analytical results of Section 4.4.

Although the effects of bank motion may be significant on the response at some excitation frequencies, they are generally smaller than the effects of dam-water interaction or of water compressibility. The effects of bank motion on dam response are roughly similar in magnitude for the two horizontal components of ground motion, and they increase as R/H_d increases.

In the case of vertical ground motion, the motion of the vertical banks produces no additional hydrodynamic pressures and hence no influence on the dam response (see Section 6.3.1).

8. CONCLUSIONS

The substructure method has been adapted and generalized for response analysis of arch dams subjected to upstream-downstream, crossstream and vertical components of ground motion. The arch dam and impounded water are treated as two substructures of the total system and displacements of the dam are represented as a linear combination of the first few natural modes of vibration of the dam alone. Responses to arbitrary ground motion can be obtained by Fourier synthesis procedures applied to the complex frequency response functions determined by the analysis procedures presented in this paper.

Structure-fluid interaction introduces additional terms -- which depend on excitation frequency when water compressibility is considered but are frequency-independent if water is assumed to be incompressible -in the equations of motion for a finite element idealization of the dam. These hydrodynamic terms in the structural equations are determined as solutions of the wave equation over the fluid domain for appropriate motions of the boundary. Mathematical solutions were possible for the simple geometry of the arch dam and fluid domain assumed in this paper. For pratical problems, numerical solutions of the wave equation would be necessary and are being developed [27].

The analysis procedure presented in this report permits the effects of structure-fluid interaction to be included rationally in dynamic response of arch dams. The simple geometry assumed for the arch dam and fluid domain would not be appropriate for analysis of practical problems but is useful in developing basic understanding of the hydrodynamic effects in the dynamic response of arch dams. The following conclusions are based on the response results presented in Chapter 7.

In general, hydrodynamic effects and water compressibility should be considered in analyzing the dynamic response of arch dams.

Water in the reservoir causes a decrease in the resonant frequencies of the dam; as much as 30 percent reduction was observed in the cases analyzed. The decrease in a resonant frequency depends on the depth of water, mode number, whether the mode is symmetric or anti-symmetric, and the radius to height ratio of the dam. Greater reductions are observed for dams with higher radius to height ratios and in the lower modes of vibration.

When water compressibility is considered, the hydrodynamic terms in the equations of motion are functions of ω , the excitation frequency. At $\omega < \omega_1^r$, the fundamental resonant frequency of the fluid domain, these hydrodynamic terms are real valued for upstream-downstream and crossstream ground motions, and the effect of water is equivalent to an added mass and load; for vertical ground motion, the added mass term is real valued but the added load term is complex valued if the reflection constant $\alpha \neq 1$. At $\omega > \omega_1^r$ the hydrodynamic terms are complex valued for each of the three components of motion, and the effect of water is equivalent to frequency-dependent additional mass, damping and load. As a result, the hydrodynamic effects in dam response depend on whether ω is less than or greater than ω_1^r , and on the ground motion component. These effects were discussed in some detail in Chapter 7.

For all three components of ground motion, water compressibility has little influence on the response of the dam at excitation frequencies ω much smaller than ω_1^r . At excitation frequencies $\omega > \omega_1^r$ the response to upstream-downstream and vertical components of ground motion is reduced if water compressibility is included. However, water compressibility effects may lead to an increase or decrease in the response to

cross-stream ground motion, depending on the excitation frequency.

Dam-water interaction, considering water compressibility, affects the radial acceleration response of dams to upstream-downstream and cross-stream ground motions to a similar degree. However, the response to vertical ground motion is greatly increased by these effects. Just as in the case of gravity dams, vertical ground motion causes significant hydrodynamic pressures. These pressures act in the horizontal plane on a cylindrical dam face, thus causing significant additional response.

The additional hydrodynamic forces caused by bank motions in the upstream-downstream or cross-stream directions may significantly affect the dynamic response of arch dams at some excitation frequencies. However, these effects of bank motions are generally smaller than the effects of dam-water interaction or of water compressibility. The effects of bank motion on dam response are roughly similar in magnitude for the two horizontal compontents of ground motion. In the case of vertical ground motion, the motion of the vertical banks produces no additional hydrodynamic forces and hence has no influence on the dam response.

REFERENCES

- R.W. Clough, J.M. Raphael, and S. Mojtahedi, "ADAP A Computer Program for Static and Dynamic Analysis of Arch Dams," Earthquake Engineering Research Center Report No. EERC 73-14, University of California, Berkeley, June 1973.
- 2. H.M. Westergaard, "Water Pressures on Dams During Earthquakes," Transactions, ASCE, Vol. 98, 1933.
- 3. C.N. Zangar, "Hydrodynamic Pressures on Dams Due to Horizontal Earthquake Effects," <u>Engineering Monograph No. 11</u>, U.S. Bureau of Reclamation, May 1952.
- R.W. Clough and A.K. Chopra, "Earthquake Response Analysis of Concrete Dams," in <u>Structural and Geotechnical Mechanics</u>, Editor W.J. Hall, Prentice-Hall, 1977.
- 5. S. Kotsubo, "External Forces on Arch Dams During Earthquakes," <u>Memoirs Faculty of Engineering</u>, Kyushu University, Fukuoka, Japan, Vol. 20, No. 4, 1961.
- P.R. Perumulswami and L. Kar, "Earthquake Hydrodynamic Forces on Arch Dams," Journal of Engineering Mechanics Division, ASCE, Vol. 99, No. EM5, October 1973.
- O.C. Zienkiewicz, and B. Nath, "Earthquake Pressures on Arch Dams -An Electric Analogue Solution," <u>Proceedings</u>, Institute of Civil Engineers, Vol. 25, Proc. Paper 6668, 1963, pp. 165-175.
- R. Priscu, A. Popovici, L. Ilie, and D. Stematiu, "New Aspects in the Earthquake Analysis of Arch Dams," in <u>Criteria and Assumptions</u> for Numerical Analysis of Dams, Ed. by D.N. Naylor, et al., Proceedings of an International Symposium, Swansea, United Kingdom, Sept. 1975, pp. 709-725.
- 9. T. Hatano, and K. Hiroshi, "Numerical Solution of Hydrodynamic Pressures During Earthquakes on Arch Dams," Technical Report: C-65002, Technical Laboratory, Central Research Institute of Electric Power Industry, Tokyo, Jan. 1966.
- 10. A.K. Chopra, E.L. Wilson and I. Farhoomand, "Earthquake Analysis of Reservoir-Dam Systems," <u>Proceedings</u>, Fourth World Conference on Earthquake Engineering, Santiago, Chile, Jan. 1969.
- O.C. Zienkiewicz and R.E. Newton, "Coupled Vibrations of a Structure Submerged in a Compressible Fluid," <u>International Symposium on</u> Finite Element Techniques, Stuttgart, May 1969.
- 12. T. Hatano and T. Nakagawa, "Seismic Analysis of Arch Dams Coupled Vibrations of Dam Body and Reservoir Water," Technical Report, Technical Laboratory No. 1, Central Research Institute of Electric Power Industry, Tokyo, Japan, November 1972.

- 13. P. Chakrabarti and A.K. Chopra, "Earthquake Analysis of Gravity Dams Including Hydrodynamic Interaction," <u>International Journal of</u> <u>Earthquake Engineering and Structural Dynamics</u>, Vol. 2, pp. 143-160, 1973.
- 14. A.K. Chopra, "Earthquake Behavior of Reservoir-Dam Systems," Journal of Engineering Mechanics Division, ASCE, Vol. 94, No. EM6, December 1968.
- 15. A.K. Chopra, "Earthquake Response of Concrete Gravity Dams," Journal of the Engineering Mechanics Division, ASCE, Vol. 96, No. EM4, August 1970.
- 16. P.R. Perumalswami and L. Kar, "Earthquake Behavior of Arch Dam-Reservoir Systems," <u>Proceedings</u>, Fifth World Conference on Earthquake Engineering, Rome, June 1973.
- 17. R.W. Clough and J. Penzien, <u>Dynamics of Structures</u>, McGraw-Hill, New York, 1975.
- 18. R.W. Clough and K.J, Bathe, "Finite Element Analysis of Dynamic Response," Advances in Computational Methods in Structural Mechanics and Design, 2nd U.S.-Japan Seminar, Berkeley, 1972. University of Alabama Huntsville Press, Huntsville, ALA., pp. 153-180.
- 19. K.J. Bathe, E.L. Wilson, and F.E. Peterson, "SAP IV A Structural Analysis Program for Static and Dynamic Response of Linear Systems," Earthquake Engineering Research Center Report No. EERC 73-11, University of California, Berkeley, June 1973.
- 20. O.C. Zienkiewicz, <u>The Finite Element Method in Engineering Science</u>, McGraw-Hill, London, 1971.
- 21. C.-Y. Liaw and A.K. Chopra, "Earthquake Analysis of Axisymmetric Towers Partially Submerged in Water," International Journal of Earthquake Engineering and Structural Dynamics, Vol. 3, No. 3, Jan.-March 1975, pp. 233-248.
- 22. A.K. Chopra, "Hydrodynamic Pressures on Dams During Earthquakes," Journal of the Engineering Mechanics Division, ASCE, Vol. 93, No. EM6, Proc. Paper 5695, December 1967, pp. 205-223.
- 23. J.I. Bustamante, E. Rosenblueth, I. Herrara, and A. Flores, "Prescision Hidrodinamica en Presas Y Depositos," "Boletin Sociedad Mexicana de Ingenieria Sismica," Vol. 1, No. 2, October 1963.
- 24. P. Chakrabarti, and A.K. Chopra, "Hydrodynamic Pressures and Response of Gravity Dams to Vertical Earthquake Component," <u>International Journal of Earthquake Engineering and Structural</u> Dynamics, Vol. 1, No. 4, April-June 1973, pp. 325-335.

- 25. E. Rosenblueth, "Presion' hidrodinamica en presas debida a la acceleracion vertical con refraccion' en el fonado," II, <u>Crongreso</u> Nacional de Ingenieria Sismica, Veracruz, Mexico, May 1968.
- 26. P. Chakrabarti, and A.K. Chopra, "Hydrodynamic Effects in Earthquake Response of Gravity Dams," Journal of the Structural Division, ASCE, Vol. 100, No. ST6, June 1974, pp. 1211-1224.
- 27. J.F. Hall and A.K. Chopra, EERC Report in preparation.

.

APPENDIX A - NOTATION

A _n ,B _n ,C _n		
$\mathbf{D}_{n}, \mathbf{E}_{m}, \mathbf{F}_{m}, \mathbf{G}_{n}$ $\mathbf{I}_{mn}^{j}, \mathbf{T}_{n}, \mathbf{U}_{m}, \mathbf{V}_{m}$	} =	quantities defined in Eq. 4.11 for upstream-downstream ground motion or in Eq. 5.11 for cross stream ground motion
Bl	=	radial thickness of the dam at the crest
^B 2	=	radial thickness of the dam at the base
c	=	damping matrix for the dam
С	-	velocity of sound in water
C j	=	generalized damping in the j^{th} mode of vibration of the dam (without water)
C _r	z	P-wave velocity in rock
E	=	modulus of elasticity for dam material
$\{e^X\}^T$	=	< 1,0,0,1,0,01,0,0,1,0,0 >
$\{\mathbf{e}^{\boldsymbol{Y}}\}^{\mathrm{T}}$	=	< 0,1,0,0,1,00,1,0,0,1,0 >
$\{e^{Z}\}^{T}$	=	< 0,0,1,0,0,10,0,1,0,0,1 >
^F O	=	hydrodynamic force acting per unit círcumferential length corresponding to P ₀
\bar{F}_0	=	complex frequency response function for ${\rm F}_{0}$
Fol	=	hydrodynamic force per unit circumferential length acting in the radial direction on the upstream face of the dam as defined in Eq. 4.12
Fol	=	complex frequency response function for ${\rm F}_{\rm Ol}$
Fs	=	hydrostatic force per unit circumferential length at the base of the dam

g	= acceleration of gravity
Н	= depth of water in the reservoir
н _d	= height of the dam
i	$=\sqrt{-1}$
j,k,l,m,n	= integer counters in summations
J	= number of generalized DOF included in an analysis
J _n (x)	= Bessel function of the first kind of order n
k	= stiffness matrix for the dam
k	$= C_r w_r / C w$
к ј	<pre>= generalized stiffness in jth mode of vibration of the dam (without water)</pre>
K _n (x)	= modified Bessel function of the second kind of order n
$\overline{r}_{\mathbf{x}}$	= generalized load vector defined by Eq. 4.15 and 4.16
$\overline{\Gamma}_{\lambda}$	= generalized load vector defined by Eq. 5.14 and 5.15
\overline{r}_{z}	= generalized load vector defined by Eq. 6.11 and 6.12
L ^{ax}	= generalized "added load" vector for incompressible water due to upstream-downstream ground motion
Lay	= generalized "added load" vector for incompressible water due to cross stream ground motion
L ^{az}	= generalized "added load" vector for incompressible water due to vertical ground motion
<u>r</u> _{0x}	= generalized load vector associated with the mass of the dam due to upstream-downstream ground motion
$\bar{r}_{0\lambda}$	= generalized load vector associated with the mass of the dam due to cross-stream ground motion

128

L ^{Oz}	=	generalized load vector associated with the mass of the dam due to vertical ground motion
m	=	consistent mass matrix for the dam
m _L	=	the largest integer "m" satisfying the inequality $\omega/\omega_1^r > (2m-1), m = 1, 2, 3,$
Mª	=	generalized "added mass" for incompressible water
M.j	=	generalized mass for the j^{th} natural mode of vibration of the dam (without water)
Ν	-	number of nodal points on the dam
q	=	hydrodynamic pressure in excess of hydrostatic
^p c	-	hydrodynamic pressure on the upstream face of the dam
pc	=	complex frequency response function for p_c
Pj	=	hydrodynamic pressure on the upstream face of the dam due to acceleration of the dam in its j^{th} natural mode of vibration
Pj.	=	complex frequence response function for p_j
P_0^z	=	hydrodynamic pressure on the upstream face of the dam due to vertical, rigid-body accelerations of the dam, reservoir bottom and the banks
$\bar{\mathbf{p}}_{0}^{\mathbf{z}}$		complex frequency response function for $\mathbf{p}_0^{\mathbf{z}}$
p_{OB}^{x}	=	hydrodynamic pressure on the upstream face of the dam due to acceleration of only the reservoir banks in the upstream-downstream direction.
\bar{p}_{0B}^{x}	=	complex frequency response function for $p_{OB}^{\mathbf{x}}$
p_{OB}^{Y}	=	hydrodynamic pressure on the upstream face of the dam due to acceleration of only the reservoir banks in the cross-stream direction
$\bar{\mathtt{p}}_{OB}^{Y}$	=	complex frequency response function for $\mathtt{p}_{\mathrm{OB}}^{\mathtt{y}}$

p^x OD = hydrodynamic pressure on the upstream face of the dam due to acceleration of the rigid dam in the upstreamdownstream direction but the banks remain stationary $\bar{\mathbf{p}}_{0D}^{\mathbf{x}}$ complex frequency response function for p_{OD}^{X} p^yOD = hydrodynamic pressure on the upstream face of the dam due to acceleration of the rigid dam in the crossstream direction but the banks remain stationary. \bar{p}_{0D}^{Y} = complex frequency response function for p_{OD}^{Y} = hydrodynamic pressure on the upstream face of the dam р_{0т} due to acceleration of the rigid dam and reservoir banks ($p_{0B} + p_{0D}$) р_{от} = complex frequency response function for p_{OT} = vector of nodal point loads associated with hydro-Q dynamic pressures õ complex frequency response function for Q ₽f = subvector of Q(t) associated with the DOF of the nodal points, on the upstream face of the dam, in contact with the water $\bar{\mathbf{Q}}^{\mathbf{f}}$ = complex frequency response function for Q^{f} $\bar{\underline{Q}}_{j}^{x}, \bar{\underline{Q}}_{j}^{y}, \bar{\underline{Q}}_{j}^{z}$ = hydrodynamic load vector defined as the static equivalent of the pressure function \bar{p}_{j}^{x} , \bar{p}_{j}^{y} , or \bar{p}_{j}^{z} respectively $\bar{\varrho}_{0B}^{x}, \bar{\varrho}_{0B}^{y}$ = hydrodynamic load vector defined as the static equivalent of the pressure function \bar{p}_{OB}^{X} or \bar{p}_{OB}^{Y} respectively $\bar{\underline{Q}}_{00}^{\mathbf{x}}, \bar{\underline{Q}}_{00}^{\mathbf{y}}$ = hydrodynamic load vector defined as the static equivalent of the pressure function \bar{p}_{0D}^{X} or \bar{p}_{0D}^{Y} respectively = radial coordinate of reservoir - dam system (see r Fig. 2.1)

R	3	radius of upstream face of the dam
<u>S</u>	E	coefficient matrix given in Eq. 4.16 for upstream- downstream ground motion or by Eq. 5.15 for cross stream ground motion
t	= .	time variable
<u>v</u>	=	vector of nodal point displacements relative to the ground
ž V	H	complex frequency response vector for total acceleration of the dam due to upstream-downstream ground motion (Eq. 4.19)
ÿ	=	complex frequency response vector for total acceleration of the dam due to cross-stream ground motion (Eq. 5.18)
īz V	=	complex frequency response vector for total acceleration of the dam due to vertical ground motion (Eq. 6.15)
v g		upstream-downstream component of earthquake ground acceleration
\ddot{v}_{g}^{y}	=	cross-stream component of earthquake ground acceleration
v g	=	vectical component of earthquake ground acceleration
₹x v. j	~	complex frequency response vector for acceleration of the dam in the j th symmetric mode due to upstream- downstream ground motion (Eq. 4.18)
₽y Ÿj	=	complex frequency response vector for acceleration of the dam in the j^{th} antisymmetric mode due to cross-stream ground motion (Eq. 5.17)
az v. ∽j	-	complex frequency response vector for acceleration of the dam in the j th symmetric mode of vibration of the dam due to vertical ground motion (Eq. 6.14)
v ^r	==	the radial component of water partical displacements
\mathbf{v}^{θ}	1	the tangential component of water partical displacements
v ^Z	=	the vertical component of water partical displacements

v _n	=	x- component of the displacement of nodal point "n" (Fig. 3.1)
v ^y n	=	y- component of the displacement of nodal point "n" (Fig. 3.1)
v ^z n	=	<pre>z- component of the displacement of nodal point "n" (Fig. 3.1)</pre>
w	-	unit weight of water
w _r		unit weight of ground rock
x,y,z		orthogonal cartesian coordinates (Fig. 2.1)
чj	=	j th generalized displacement of the dam
Ϋ́j	=	complex frequency response of Y.j
Y _n (x)	=	Bessel function of the second kind of order n
Y ^x j		generalized displacement of the dam associated with the jth symmetric mode of vibration due to upstream- downstream ground motion
ч ^у ј	=	generalized displacement of the dam associated with the j^{th} atisymmetric mode of vibration due to cross-stream ground motion
Y ^z j	22	generalized displacement of the dam associated with the j^{th} symmetric mode of vibration due to vertical ground motion
$\bar{\mathbf{y}}_{j}^{\mathbf{x}}$	=	complex frequency response for y_j^x
Ψ ^Y j	=	complex frequency response for Y_j^y
Ϋ́́z	=	complex frequency response for Y_j^z
α	=	reflection constant for the reservoir bottom associated with vertical ground motion $\alpha = (k - 1)/(k + 1)$
α _m	=	quantity defined in Eq. 4.11a or 5.11a

.

ξ _j	=	viscous damping ratio for the j th natural mode of vibration of the dam (without water)
ε n	=	numerical multiplier equal to 1 when $n = 0$ but equal to 2 when $n \neq 0$
λ_{m}	=	quantity defined in Eq. 4.11b or 5.11b
ν	=	Poisson's ratio
Φ _j		continuous function analogue of ϕ_j
Φj	=	j th mode shape vector of the dam (without water in the reservoir)
∲j ^f	H	sub-vector of the j th mode shape $\underline{\phi}_{j}$ containing elements associatiated with the DOF on the upstream face of the dam
∲j ^{xf}	=	sub-vector of ϕ_j^f containing elements associated with the x- DOF of the nodal points on the upstream face of the dam
Φ_j^{yf}	-	sub-vector of Φ_j^{f} containing elements associated with the y- DOF of the nodal points on the upstream face of the dam
θ	=	angular coordinate of reservoir-dam system (Fig. 2.1)
ω	=	circular frequency of harmonic ground motion
υ t	=	j th natural frequency of vibration of the dam (without water in the reservoir)
ω ^r m	-	$\frac{\pi C}{2H}$ (2m - 1) , m = 1,2,3, ; the m th eigen-frequency of the water in the reservoir
μ _n	=	summation index defined in Eq. 5.11

5.

APPENDIX B - FINITE ELEMENT PROPERTIES

B.l Introduction

A general form of the stiffness matrix \underline{k} for any finite element is given by

$$\underline{\mathbf{k}} = \int_{\text{Vol}} \underline{\mathbf{a}}^{\text{T}} \underline{\mathbf{c}} \underline{\mathbf{a}} \, \mathrm{dV} \tag{B.1}$$

where \underline{a} is the strain-displacement relationship and \underline{c} is the stress-strain law, i.e.

$$\varepsilon = a v$$
 (B.2)

$$\sigma = c \varepsilon$$
(B.3)

where \underline{v} is the nodal displacements, $\underline{\varepsilon}$ and $\underline{\sigma}$ are the element strains and corresponding stresses respectively.

B.2 Coordinate System

The shell-element used to descritize the dam is a 16-node curved solid element (see Fig. Bl). The locations of the nodes are defined by the right-handed rectangular Cartesian coordinate system (x, y, z) which is referred to as a global system. Within each element a local coordinate system (ξ , η , ζ) is defined such that ξ , η and ζ vary from -1 to 1; (0,0,0) is located at the centroid of the element (see Fig. Bl). The global coordinates are given in terms of the local coordinate system by

$$x = \sum_{i=1}^{16} h_i x_i$$

$$y = \sum_{i=1}^{16} h_i y_i$$

$$z = \sum_{i=1}^{16} h_i z_i$$
(B.4)

where the interpolation functions $\boldsymbol{h}_{\underline{i}}$ are given by

$$h_{1} = \frac{1}{8}(1 + \xi)(1 + \eta)(1 + \zeta)(\xi + \eta - 1)$$

$$h_{2} = \frac{1}{8}(1 - \xi)(1 + \eta)(1 + \zeta)(-\xi + \eta - 1)$$

$$h_{3} = \frac{1}{8}(1 - \xi)(1 - \eta)(1 + \zeta)(-\xi - \eta - 1)$$

$$h_{4} = \frac{1}{8}(1 + \xi)(1 - \eta)(1 + \zeta)(\xi - \eta - 1)$$

$$h_{5} = \frac{1}{8}(1 + \xi)(1 + \eta)(1 - \zeta)(\xi + \eta - 1)$$

$$h_{6} = \frac{1}{8}(1 - \xi)(1 + \eta)(1 - \zeta)(-\xi + \eta - 1)$$

$$h_{7} = \frac{1}{8}(1 - \xi)(1 - \eta)(1 - \zeta)(-\xi - \eta - 1)$$

$$h_{8} = \frac{1}{8}(1 + \xi)(1 - \eta)(1 - \zeta)(\xi - \eta - 1)$$

$$h_{9} = \frac{1}{4}(1 - \xi^{2})(1 + \eta)(1 + \zeta)$$

$$h_{10} = \frac{1}{4}(1 - \xi^{2})(1 - \eta)(1 + \zeta)$$

$$h_{12} = \frac{1}{4}(1 + \xi)(1 - \eta^{2})(1 + \zeta)$$

$$h_{13} = \frac{1}{4}(1 - \xi^{2})(1 + \eta)(1 - \zeta)$$

$$h_{14} = \frac{1}{4}(1 - \xi)(1 - \eta^{2})(1 - \zeta)$$

$$h_{15} = \frac{1}{4}(1 - \xi^{2})(1 - \eta)(1 - \zeta)$$

$$h_{16} = \frac{1}{4}(1 + \xi)(1 - \eta^{2})(1 - \zeta) \qquad (B.5)$$

B.3 Strain-Displacement Equations

The x, y and z components of displacements within an element $(v^{\rm X},~v^{\rm Y},~v^{\rm Z})$ are assumed to be of the following form:

$$v^{x} = \sum_{i=1}^{16} h_{i}v_{i}^{x} + h_{17}\alpha_{1}^{x} + h_{18}\alpha_{2}^{x} + h_{19}\alpha_{3}^{x} + h_{20}\alpha_{4}^{x} + h_{21}\alpha_{5}^{x}$$

$$v^{y} = \sum_{i=1}^{16} h_{i}v_{i}^{y} + h_{17}\alpha_{1}^{y} + h_{18}\alpha_{2}^{y} + h_{19}\alpha_{3}^{y} + h_{20}\alpha_{4}^{y} + h_{21}\alpha_{5}^{y}$$

$$v^{z} = \sum_{i=1}^{16} h_{i}v_{i}^{z} + h_{17}\alpha_{1}^{z} + h_{18}\alpha_{2}^{z} + h_{19}\alpha_{3}^{z} + h_{20}\alpha_{4}^{z} + h_{21}\alpha_{5}^{z}$$
(B.6)

where

$$h_{17} = \xi (1 - \xi^{2})$$

$$h_{18} = \eta (1 - \eta^{2})$$

$$h_{19} = (1 - \zeta^{2})$$

$$h_{20} = \xi \eta (1 - \zeta^{2})$$

$$h_{21} = \eta \xi (1 - \eta^{2})$$
(B.7)

 v_i^x , v_i^y and v_i^z are the x, y and z displacements of nodal point i. The fifteen degrees of freedom α_i^x , α_i^y and α_i^z , i = 1,5, are introduced in the element in addition to the nodal point displacements to impart better bending characteristics.* These additional degrees of freedom will be condensed out at the element level.

The strain-displacement equations are

$$\varepsilon^{XX} = \frac{\partial v^{X}}{\partial x} = \left\langle \underline{h}, x \right\rangle \left\{ \frac{\underline{v}^{X}}{\underline{\alpha}^{X}} \right\}$$

$$\varepsilon^{YY} = \frac{\partial v^{Y}}{\partial y} = \left\langle \underline{h}, y \right\rangle \left\{ \frac{\underline{v}^{Y}}{\underline{\alpha}^{Y}} \right\}$$

$$\varepsilon^{ZZ} = \frac{\partial v^{Z}}{\partial z} = \left\langle \underline{h}, z \right\rangle \left\{ \frac{\underline{v}^{Z}}{\underline{\alpha}^{Z}} \right\}$$

$$\varepsilon^{XY} = \frac{\partial v^{X}}{\partial y} + \frac{\partial v^{Y}}{\partial x} = \left\langle \underline{h}, y \right\rangle \left\{ \frac{\underline{v}^{X}}{\underline{\alpha}^{X}} \right\} + \left\langle \underline{h}, x \right\rangle \left\{ \frac{\underline{v}^{Y}}{\underline{\alpha}^{Y}} \right\}$$

$$\varepsilon^{XZ} = \frac{\partial v^{X}}{\partial z} + \frac{\partial v^{Z}}{\partial x} = \left\langle \underline{h}, z \right\rangle \left\{ \frac{\underline{v}^{X}}{\underline{\alpha}^{X}} \right\} + \left\langle \underline{h}, x \right\rangle \left\{ \frac{\underline{v}^{Z}}{\underline{\alpha}^{Z}} \right\}$$

$$\varepsilon^{YZ} = \frac{\partial v^{Y}}{\partial z} + \frac{\partial v^{Z}}{\partial y} = \left\langle \underline{h}, z \right\rangle \left\{ \frac{\underline{v}^{Y}}{\underline{\alpha}^{Y}} \right\} + \left\langle \underline{h}, z \right\rangle \left\{ \frac{\underline{v}^{Z}}{\underline{\alpha}^{Z}} \right\}$$
(B.8)

^{*}E.L. Wilson, R.L. Taylor, W. Doherty, and J. Ghaboussi, "Incompatible Displacement Models," Numerical and Computer Methods in Structural Mechanics (S.J. Fenves, N. Perrone, J. Robinson, and W.C. Schnobrich, eds.), Academic Press, Inc., New York, 1973, pp. 43-57.

where

$$\left\{ \underline{\mathbf{v}}_{1}^{\mathbf{x}} \right\}^{\mathrm{T}} = \left\langle \mathbf{v}_{1}^{\mathbf{x}} \quad \mathbf{v}_{2}^{\mathbf{x}} \quad \dots \quad \mathbf{v}_{16}^{\mathbf{x}} \right\rangle$$

$$\left\{ \underline{\mathbf{v}}_{1}^{\mathbf{y}} \right\}^{\mathrm{T}} = \left\langle \mathbf{v}_{1}^{\mathbf{y}} \quad \mathbf{v}_{2}^{\mathbf{y}} \quad \dots \quad \mathbf{v}_{16}^{\mathbf{y}} \right\rangle$$

$$\left\{ \underline{\mathbf{v}}_{1}^{\mathbf{z}} \right\}^{\mathrm{T}} = \left\langle \mathbf{v}_{1}^{\mathbf{z}} \quad \mathbf{v}_{2}^{\mathbf{z}} \quad \dots \quad \mathbf{v}_{16}^{\mathbf{z}} \right\rangle$$
(B.10)

$$\left\{ \underline{\alpha}^{\mathbf{X}} \right\}^{\mathrm{T}} = \left\langle \alpha_{1}^{\mathbf{X}} \quad \alpha_{2}^{\mathbf{X}} \quad \alpha_{3}^{\mathbf{X}} \quad \alpha_{4}^{\mathbf{X}} \quad \alpha_{5}^{\mathbf{X}} \right\rangle$$

$$\left\{ \underline{\alpha}^{\mathbf{Y}} \right\}^{\mathrm{T}} = \left\langle \alpha_{1}^{\mathbf{Y}} \quad \alpha_{2}^{\mathbf{Y}} \quad \alpha_{3}^{\mathbf{Y}} \quad \alpha_{4}^{\mathbf{Y}} \quad \alpha_{5}^{\mathbf{Y}} \right\rangle$$

$$\left\{ \underline{\alpha}^{\mathbf{Z}} \right\}^{\mathrm{T}} = \left\langle \alpha_{1}^{\mathbf{Z}} \quad \alpha_{2}^{\mathbf{Z}} \quad \alpha_{3}^{\mathbf{Z}} \quad \alpha_{4}^{\mathbf{Z}} \quad \alpha_{5}^{\mathbf{Z}} \right\rangle$$

$$(B.11)$$

The "," denotes partial derivative. Equation B.8 can be written in matrix form as

$$\underline{\varepsilon} = \begin{bmatrix} \underline{a} & | & \underline{a} \\ -\underline{v} & | & \underline{a} \\ -\underline{\alpha} \end{bmatrix} \quad \left\{ \begin{array}{c} \underline{v} \\ -\underline{\alpha} \\ \underline{\alpha} \end{array} \right\}$$
(B.12)

where

$$\underline{\mathbf{v}}^{\mathrm{T}} = \left\langle \left\{ \underline{\mathbf{v}}^{\mathrm{X}} \right\}^{\mathrm{T}}, \left\{ \underline{\mathbf{v}}^{\mathrm{Y}} \right\}^{\mathrm{T}}, \left\{ \underline{\mathbf{v}}^{\mathrm{Z}} \right\}^{\mathrm{T}} \right\rangle$$

$$\underline{\boldsymbol{\alpha}}^{\mathrm{T}} = \left\langle \left\{ \underline{\boldsymbol{\alpha}}^{\mathrm{X}} \right\}^{\mathrm{T}}, \left\{ \underline{\boldsymbol{\alpha}}^{\mathrm{Y}} \right\}^{\mathrm{T}}, \left\{ \underline{\boldsymbol{\alpha}}^{\mathrm{Z}} \right\}^{\mathrm{T}} \right\rangle$$
(B.13)

 \underline{a}_v and \underline{a}_α are matrices in terms of the derivatives of the interpolation functions. The sizes of \underline{a}_v and \underline{a}_α are 6 x 48 and 6 x 15 respectively.

Since the functions h_i are in terms of ξ , η and ζ the chain rule is applied in order to compute the derivatives with respect to the x, y, z system,

$$h_{i,x} = h_{i,\xi} \xi_{,x} + h_{i,\eta} \eta_{,x} + h_{i,\zeta} \zeta_{,x}$$

$$h_{i,y} = h_{i,\xi} \xi_{,y} + h_{i,\eta} \eta_{,y} + h_{i,\zeta} \zeta_{,y}$$

$$h_{i,z} = h_{i,\zeta} \xi_{,z} + h_{i,\eta} \eta_{,z} + h_{i,\zeta} \zeta_{,z}$$
(B.14)

In general, the chain rule can be written as

$$\begin{pmatrix} \frac{\partial}{\partial \xi} \\ \frac{\partial}{\partial \eta} \\ \frac{\partial}{\partial \eta} \end{pmatrix} = \begin{bmatrix} x, \xi & y, \xi & z, \xi \\ x, \eta & y, \eta & z, \eta \\ x, \zeta & y, \zeta & z, \zeta \end{bmatrix} \begin{pmatrix} \frac{\partial}{\partial x} \\ \frac{\partial}{\partial y} \\ \frac{\partial}{\partial z} \end{pmatrix} = \begin{bmatrix} J \end{bmatrix} \begin{pmatrix} \frac{\partial}{\partial x} \\ \frac{\partial}{\partial y} \\ \frac{\partial}{\partial z} \end{pmatrix}$$
(B.15)

The matrix [J] is known as the Jacobian matrix. The elements of the Jacobian matrix can easily be found using Eq. B.4. The derivatives required in Eq. B.15 are obtained using the inverse of Eq. B.16 as

$$\begin{pmatrix} \mathbf{h}_{i,\mathbf{x}} \\ \mathbf{h}_{i,\mathbf{y}} \\ \mathbf{h}_{i,\mathbf{z}} \end{pmatrix} = \begin{bmatrix} \mathbf{J} \end{bmatrix}^{-1} \begin{pmatrix} \mathbf{h}_{i,\boldsymbol{\xi}} \\ \mathbf{h}_{i,\boldsymbol{\eta}} \\ \mathbf{h}_{i,\boldsymbol{\zeta}} \end{pmatrix}$$
(B.16)

For given numerical values of ξ , η and ζ the derivatives of the interpolation function can be computed. Then from Eq. B.17 and B.16, all derivatives required for the numerical evaluation of the strain-displacement matrix, Eq. B.13, can be obtained.

140

B.4 Static Condensation

The standard static condensation procedure is applied to condense out the additional degrees of freedom α_i .

From Eq. B.13 and B.1, the element stiffness matrix can be written as

$$\frac{\tilde{k}}{\tilde{k}} = \int_{\text{Vol}} \left\{ \frac{a}{v} \right\} \frac{c}{c} \left\langle \frac{a}{v} - \frac{a}{\alpha} \right\rangle dV$$
(B.17)

In partitioned form

$$\underbrace{\underbrace{\widetilde{k}}}{\underline{\widetilde{k}}} = \begin{bmatrix} \underbrace{\widetilde{k}}_{VV} & \underbrace{\widetilde{k}}_{V\alpha} \\ \underbrace{\widetilde{k}}_{\alpha V} & \underbrace{\widetilde{k}}_{\alpha \alpha} \end{bmatrix}$$
(B.18)

where

$$\frac{\tilde{k}}{\tilde{k}}_{VV} = \int_{V01} \frac{a_{V}^{T}}{\omega_{V}} \frac{c}{\omega_{V}} \frac{a_{V}}{\omega_{V}} \frac{c}{\omega_{V}} \frac{a_{V}}{\omega_{V}} \frac{c}{\omega_{V}} \frac{a_{V}}{\omega_{V}} \frac{c}{\omega_{V}} \frac{a_{U}}{\omega_{V}} \frac{c}{\omega_{U}} \frac{a_{U}}{\omega_{V}} \frac{c}{\omega_{U}} \frac{a_{U}}{\omega_{U}} \frac{c}{\omega_{U}} \frac{a}{\omega_{U}} \frac{c}{\omega_{U}} \frac{c}{\omega_{U}} \frac{a}{\omega_{U}} \frac{c}{\omega_{U}} \frac{a}{\omega_{U}} \frac{c}{\omega_{U}} \frac{a}{\omega_{U}} \frac{c}{\omega_{U}} \frac{c}{\omega_{U}} \frac{a}{\omega_{U}} \frac{c}{\omega_{U}} \frac{c}{\omega_{U}} \frac{a}{\omega_{U}} \frac{c}{\omega_{U}} \frac{c$$

Nodal forces $\underline{\mathfrak{Q}}_v$ and $\underline{\mathfrak{Q}}_\alpha$ are related to the nodal displacements as

$$\begin{cases} \underline{Q}_{\mathbf{v}} \\ \underline{Q}_{\alpha} \end{cases} = \begin{bmatrix} \hat{\mathbf{k}} & \hat{\mathbf{k}} \\ \underline{\mathbf{k}}_{\mathbf{v}\mathbf{v}} & \underline{\mathbf{k}}_{\mathbf{v}\alpha} \\ \hat{\mathbf{k}}_{\alpha\mathbf{v}} & \hat{\mathbf{k}}_{\alpha\alpha} \end{bmatrix} \begin{cases} \underline{\mathbf{v}} \\ \underline{\mathbf{-}} \\ \underline{\mathbf{-}} \\ \underline{\mathbf{-}} \end{cases}$$
(B.20)

The work done by the nodal forces in deforming the element is

$$W = \frac{1}{2} \left\langle \underline{v}^{\mathrm{T}}, \alpha^{\mathrm{T}} \right\rangle \left\{ \begin{array}{c} \underline{Q}_{\mathrm{v}} \\ \underline{Q}_{\mathrm{v}} \end{array} \right\}$$
$$= \frac{1}{2} \underline{v}^{\mathrm{T}} \stackrel{\sim}{\underline{k}}_{\mathrm{vv}} \underline{v} + \alpha^{\mathrm{T}} \stackrel{\sim}{\underline{k}}_{\alpha \mathrm{vv}} \underline{v} + \frac{1}{2} \alpha^{\mathrm{T}} \stackrel{\sim}{\underline{k}}_{\alpha \alpha} \underline{\alpha} \qquad (B.21)$$

Minimizing W with respect to the additional degrees of freedom, i.e.

$$\frac{\partial W}{\partial \alpha_{i}^{x}} = \frac{\partial W}{\partial \alpha_{i}^{y}} = \frac{\partial W}{\partial \alpha_{i}^{z}} = 0 \qquad i=1,2,3,4,5 \qquad (B.22)$$

leads to

$$\underline{\alpha} = -\left[\frac{\gamma}{k\alpha\alpha}\right]^{-1} \frac{\gamma}{k\alpha\nu} \frac{\nu}{\omega}$$
(B.23)

Therefore

--- -

The condensed stiffness matrix of the element with respect to the nodal displacement amplitudes \underline{v} is

$$\underline{\mathbf{k}} = \frac{\hat{\mathbf{k}}}{\mathbf{v}\mathbf{v}} - \frac{\hat{\mathbf{k}}}{\mathbf{v}\alpha} \left[\frac{\hat{\mathbf{k}}}{\mathbf{k}_{\alpha\alpha}} \right]^{-1} \underline{\mathbf{k}}_{\alpha\mathbf{v}}$$
(B.25)

Similarly the condensed form of the strain-displacement transformation matrix is

$$\underline{\mathbf{a}} = \underline{\mathbf{a}}_{\mathbf{v}} - \underline{\mathbf{a}}_{\alpha} \left[\underbrace{\mathbf{k}}_{\alpha\alpha} \right]^{-1} \underbrace{\mathbf{k}}_{\alpha\mathbf{v}}^{\circ} \tag{B.26}$$

B.5 Numerical Integration of Element Stiffness Matrix

The element stiffness is given by Eq. B.26. The numerical integration necessary to form $\frac{\delta}{k_{VV}}$ is briefly discussed. Similar computations are involved in obtaining other matrices in Eq. B.26.

The expression for $\frac{\lambda}{k}$ in the local coordinate system (ξ , η , ζ) is

$$\frac{\mathcal{N}}{\mathbf{k}}_{\mathbf{v}\mathbf{v}} = \int_{-1}^{1} \int_{-1}^{1} \int_{-1}^{1} \frac{\mathbf{a}_{\mathbf{v}}^{\mathrm{T}} \mathbf{c}}{\mathbf{a}_{\mathbf{v}}} \mathbf{c} \mathbf{a}_{\mathbf{v}} \mathbf{J} \, d\xi \, d\eta \, d\zeta$$
(B.27)

where J is the determinant of the Jacobian matrix (Eq. B.16). The direct application of one-dimensional integration formulas yields

$$\frac{\tilde{k}}{\tilde{k}_{vv}} = \sum_{i=1}^{3} \sum_{j=1}^{3} \sum_{m=1}^{2} w_{i} W_{i} W_{i} J(\xi_{i}, \eta_{j}, \zeta_{m}) \left[\frac{a_{v}}{\omega} (\xi_{i}, \eta_{j}, \zeta_{m}) \right]^{T} \underline{c} \left[\underline{a}_{v} (\xi_{i}, \eta_{j}, \zeta_{m}) \right] \dots \dots (B.28)$$

where (ξ_i,η_j,ζ_m) are the integration points and W_i, W_j, W_m are approximate weight functions.

B.6 Consistent Mass Matrix

The mass matrix formulation for any element is based on the same displacement assumptions as those used to formulate the element stiffness matrix (Eq. B.6). The element displacements can be written is the form

$$\begin{cases} v^{X} \\ v^{Y} \\ v^{Z} \end{cases} = \left[H \right] \left\{ \underline{v} \right\}$$
 (B.29)

where \underline{v} is defined in Eq. B.14 and \underline{H} is a matrix of interpolation functions. The mass matrix for the element \underline{m} , is

$$\underline{\mathbf{m}} = \int_{\text{Vol}} \rho \, \underline{\mathbf{H}}^{\text{T}} \, \underline{\mathbf{H}} \, \mathrm{dV}$$
(B.30)

The volume integration is carried out analogous to the integration described for the stiffness matrix (Sec. B.5).

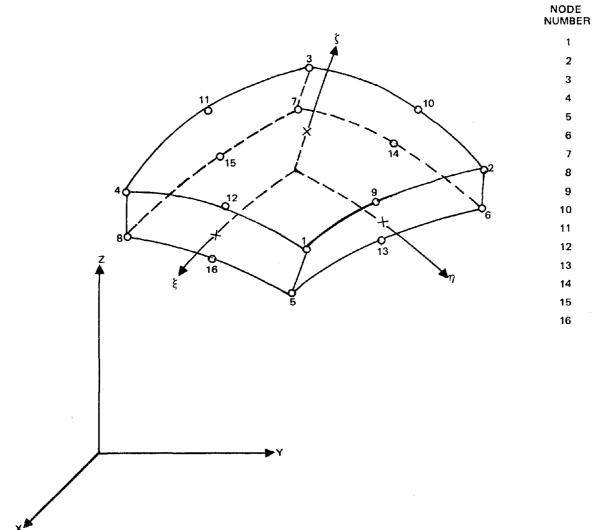


FIG. B1. 16 NODE SHELL ELEMENT

IODE JMBER	GLOBAL COORDINATE	LOCAL COORDINATE
t	(x ₁ , y ₁ , z ₁)	(1, 1, 1)
2	(x_2, y_2, z_2)	(-1, 1, 1)
3	(x ₃ , y ₃ , z ₃)	(-1, -1, 1)
4	(x_4, y_4, z_4)	(1, -1, 1)
5	(x ₅ , y ₅ , z ₅)	(1, 1, -1)
6	(x ₆ , y ₆ , z ₆)	(-1, 1, -1)
7	(x ₇ , y ₇ , z ₇)	(-1, -1, -1)
8	(x ₈ , y ₈ , z ₈)	(1, -1, -1)
9	(× ₉ , y ₉ , z ₉)	(0, 1, 1)
10	(×10, ^y 10, ^z 10)	(-1, 0, 1)
11	(×11, ×11, z11)	(0, -1, 1)
12	(x ₁₂ , y ₁₂ , z ₁₂)	(1, 0, -1)
13	(x ₁₃ , y ₁₃ , z ₁₃)	(0, 1, -1)
14	^{(x} 14 ^{, y} 14 ^{, z} 14 ⁾	(-1, 0, -1)
15	^{(x} 15' ^y 15' ^z 15 ⁾	(0, -1, -1)
16	^{(x} 16' ^y 16' ^z 16 ⁾	(1, 0, 1)

145

APPENDIX C - DERIVATIONS OF THE COMPLEX FREQUENCY RESPONSE FUNCTIONS FOR HYDRODYNAMIC PRESSURE

- C.l Preliminaries
- C.2 Ground Motion In Upstream-Downstream Direction C.2.1 Derivation of $\bar{p}_{OD}^{x}(\theta, z, \omega)$ C.2.2 Derivation of $\bar{p}_{OB}^{x}(\theta, z, \omega)$ C.2.3 Derivation of $\bar{p}_{j}^{x}(\theta, z, \omega)$
- C.3 Ground Motion In Cross-stream Direction
 - C.3.1 Derivation of $\bar{p}_{0D}^{Y}(\theta, z, \omega)$ C.3.2 Derivation of $\bar{p}_{0B}^{Y}(\theta, z, \omega)$
 - C.3.3 Derivation of $\bar{p}_{i}^{Y}(\theta, z, \omega)$
- C.4 Vertical Ground Motion C.4.1 Derivation of $\bar{p}_0^z(z,\omega)$

C.l Preliminaries

Appendix C presents the solution of the wave equation for the complex frequency response function for hydrodynamic pressures acting on the upstream face of the idealized arch dam. In cylindrical coordinates the governing equation for hydrodynamic pressure p is

$$\frac{\partial^2 p}{\partial r^2} + \frac{1}{r} \frac{\partial p}{\partial r} + \frac{1}{r^2} \frac{\partial^2 p}{\partial \theta^2} + \frac{\partial^2 p}{\partial z^2} = \frac{1}{c^2} \frac{\partial^2 p}{\partial t^2}$$
(C.1)

where C is the velocity of sound in water, t is time and r, θ and z are the radial, angular and depth coordinates respectively (see Fig. 2.1). For harmonic ground acceleration $\ddot{v}_{g}(t) = e^{i\omega t}$, the hydrodynamic pressures $p(r, \theta, z, t)$ can be expressed as

$$p(r,\theta,z,t) = \overline{p}(r,\theta,z)e^{i\omega t}$$
(C.2)

where ω is the excitation frequency and $\overline{p}(r,\theta,z)$ is the complex frequency response function for hydrodynamic pressure. In terms of \overline{p} the governing equation becomes

$$\frac{\partial^2 \overline{p}}{\partial r^2} + \frac{1}{r} \frac{\partial \overline{p}}{\partial r} + \frac{1}{r^2} \frac{\partial^2 \overline{p}}{\partial \theta^2} + \frac{\partial^2 \overline{p}}{\partial z^2} = -\frac{\omega^2}{c^2} \overline{p}$$
(C.3)

Letting $\overline{p} = \rho(r)\Theta(\theta)\zeta(z)$, Eq. C.3 separates into three equations as follows

$$\zeta''(z) + \alpha^2 \zeta(z) = 0$$
 (C.4a)

$$\Theta''(\theta) + \mu^2 \Theta(\theta) = 0 \qquad (C.4b)$$

$$\rho''(\mathbf{r}) + \frac{1}{\mathbf{r}} \rho'(\mathbf{r}) + \left(\frac{\omega^2}{c^2} - \frac{\omega^2}{r^2} - \frac{\mu^2}{r^2}\right) \rho(\mathbf{r}) = 0 \qquad (C.4c)$$

where ()' and ()" signify the first and second derivative of () with respect to its independent variable. α and μ are separation constants that will be determined from boundary conditions.

The following sections of Appendix C determine expressions for \overline{p} on the upstream face of the dam (r = R) by solving Eq. C.4a to C.4c for boundary conditions associated with horizontal ground motion in the upstream-downstream direction (Sec. C.2), horizontal ground motion in the cross-stream direction (Sec. C.3) and vertical ground motion (Sec. C.4).

C.2 Ground Motion In Upstream-Downstream Direction

C.2.1 Derivation of $\overline{p}_{OD}^{X}(\theta, z, \omega)$

 \overline{p}_{OD}^{X} is the complex frequency response function for the hydrodynamic pressures on the upstream face of the dam when the excitation is the acceleration of the rigid dam in the x direction but the banks remain stationary. From Chapter 4, Eq. 4.3 and 4.5 the boundary conditions for the governing equation (Eq. C.3) are

$$\frac{\partial p}{\partial r}$$
 (R, θ , z) = $-\frac{w}{g}\cos\theta$ (C.5a)

$$\frac{\overline{\partial p}}{r\partial \theta} (r, \pi/4, z) = 0$$
 (C.5b)

$$\frac{\overline{\partial p}}{\partial z}(r,\theta,0) = 0 \tag{C.5c}$$

 $\overline{p}(\mathbf{r},\theta,H) = 0 \tag{C.5d}$

$$\frac{\partial p}{r \partial \theta} (r, o, z) = 0 \tag{C.5e}$$

149

where w is the unit weight of water and g is the acceleration due to gravity. In addition to these boundary conditions, no wave reflections at the upstream end of the reservoir (r = B) are permitted.

The solution of Eq. C.4a together with the boundary conditions given in Eq. C.5c and C.5d yield

$$\zeta(z) = A_{m} \cos \alpha_{m} z \qquad m = 1, 2, \dots^{\infty} \qquad (C.6a)$$

where $\boldsymbol{\alpha}_{m}$ is the value of $\boldsymbol{\alpha}$ satisfying

$$\alpha_{\rm m} = \frac{(2\mathrm{m}-1)\,\mathrm{\pi}}{2\mathrm{H}} \tag{C.6b}$$

and ${\rm A}_{\rm m}$ are constants.

The solution of Eq. C.4b together with the boundary conditions given in Eq. C.5b and C.5e result in

where $\boldsymbol{\mu}_n$ is the value of $\boldsymbol{\mu}$ satisfying

$$\mu_n = 4n \tag{C.7b}$$

and B_n are constants.

Recognizing Eq. C.4c as a form of Bessel's equation, the solution

involves the relationship between α_m^2 and $\frac{\omega^2}{c^2}$. If $\frac{\omega^2}{c^2}$ is greater than α_m^2 , Hankel functions of the first and second kind of order μ_n , $H_{\mu_n}^{(1)}(\lambda_m r)$ and $H_{\mu_n}^{(2)}(\lambda_m r)$, characterize the solution

$$\rho(\mathbf{r}) = C_{mn} H_{\mu_n}^{(1)}(\lambda_m r) + D_{mn} H_{\mu_n}^{(2)}(\lambda_m r)$$
(C.8a)

where

$$\lambda_{\rm m} = \sqrt{\left|\alpha_{\rm m}^2 - \frac{\omega^2}{c^2}\right|} \tag{C.8b}$$

and C and D are constants. $H_{\mu_n}^{(1)}(\lambda_m r)$ is associated with a con-

verging wave traveling toward the dam, which can be regarded as a wave reflected from an upstream boundary. Since there is no upstream boundary and thus no reflected waves permitted $C_{mn} = 0$. Therefore, Eq. C.8a becomes

$$\rho(\mathbf{r}) = D_{mn} H_{\mu}^{(2)}(\lambda_{m}\mathbf{r}) \quad \text{for } \frac{\omega^{2}}{c^{2}} < \alpha_{m}^{2} \qquad (C.9)$$

If $\frac{\omega^2}{c^2} > \alpha_m^2$, modified Bessel functions of the first and second

kind of order μ_n , I $_{\mu_n}(\lambda_m r)$ and K $_{\mu_n}(\lambda_m r)$, characterize the solution

$$\rho(r) = \mathop{\mathbb{E}}_{mn} \mathop{\mathbb{I}}_{n}(\lambda_{m}r) + \mathop{\mathbb{F}}_{mn} \mathop{\mathbb{K}}_{n}(\lambda_{m}r)$$
(C.10)

where E_{mn} and F_{mn} are coefficients determined by the boundary conditions. $I_{\mu_n}(\lambda_m r)$ becomes infinite as r approaches infinity, thus setting $E_{mn} = 0$

eliminates I (λ_{m} r) from the solution. Thus,

$$\rho(\mathbf{r}) = F_{mn} K_{\mu_n}(\lambda_m \mathbf{r}) \quad \text{for } \frac{\omega^2}{c^2} > \alpha_m^2$$
 (C.11)

Combining Eq. C.6a, C.7a, C.7b, C.8b, C.9b and C.11, the expression for \overline{p}_{OD}^{x} becomes

$$\overline{p}_{OD}^{\mathbf{x}}(r,\theta,z,\omega) = \sum_{m=1}^{m_{\ell}} \sum_{n=0}^{\infty} D_{mn} H_{4n}^{(2)}(\lambda_{m}r) \cos 4n\theta \cos \alpha_{m}z$$

+
$$\sum_{m=m_{l}+1}^{\infty} \sum_{n=0}^{\infty} F_{mn} \kappa_{4n}(\lambda_{m}r) \cos 4n\theta \cos \alpha_{m}z$$
 (C.12)

where m_{l} is the largest integer "m" satisfying the inequality $\frac{\omega}{C} > \alpha_{m}$. The constants D_{mn} and F_{mn} are determined such that \overline{p}_{OD}^{x} satisfies the boundary condition given in Eq. C.5a.

$$\sum_{m=1}^{m_{\hat{k}}} \sum_{n=0}^{\infty} D_{mn} \frac{d}{dR} \left[H_{4n}^{(2)}(\lambda_{m}R) \right] \cos 4n\theta \cos \alpha_{m}z$$

$$+ \sum_{m=m_{\hat{k}}+1}^{\infty} \sum_{n=0}^{\infty} F_{mn} \frac{d}{dR} \left[K_{4n}(\lambda_{m}R) \right] \cos 4n\theta \cos \alpha_{m}z$$

$$= - \frac{w}{g} \cos \theta \qquad (C.13)$$

Because the set of eigenfunctions $\cos 4n\theta \cos \alpha_m z$, $n = 0, 1, 2, ..., m = 1, 2, 3, ... are an orthogonal set of functions on the interval <math>(0 \le \theta \le \pi/4)$ $(0 \le z \le H)$, D_{mn} and F_{mn} can be found by classical eigenfunction expansion techniques as

$$D_{mn} = \frac{-\frac{w}{g} \int_{0}^{\pi/4} \cos \theta \cos 4n\theta \ d\theta \int_{0}^{H} \cos \alpha_{m} z \ dz}{\frac{d}{dR} \left[H_{4n}^{(2)} \left(\lambda_{m} R \right) \right] \int_{0}^{\pi/4} \cos^{2} 4n\theta \ d\theta \int_{0}^{H} \cos^{2} \alpha_{m} z \ dz}$$
(C.14)
$$F_{mn} = \frac{-\frac{w}{g} \int_{0}^{\pi/4} \cos \theta \cos 4n\theta \ d\theta \int_{0}^{H} \cos \alpha_{m} z \ dz}{\frac{d}{dR} \left[K_{4n}^{} \left(\lambda_{m} R \right) \right] \int_{0}^{\pi/4} \cos^{2} 4n\theta \ d\theta \int_{0}^{H} \cos^{2} \alpha_{m} z \ dz}$$
(C.15)

Evaluation of the integrals in Eq. C.14 and C.15 yields

$$\int_{0}^{H} \cos \alpha_{m} z \, dz = \frac{(-1)^{m+1}}{\alpha_{m}} \qquad m = 1, 2, 3, \dots \quad (C.16a)$$

$$\int_{0}^{H} \cos^{2} \alpha_{m} z \, dz = \frac{H}{2} \qquad m = 1, 2, 3, \dots \quad (C.16b)$$

$$\int_{0}^{\pi/4} \cos \theta \, \cos \, 4n\theta \, d\theta = \frac{\sqrt{2}}{2} \frac{(-1)^{n}}{(1-16n^{2})} \qquad n = 0, 1, 2, \dots \quad (C.16c)$$

$$\int_{0}^{\pi/4} \cos^2 4n\theta \ d\theta = \frac{\pi}{4\epsilon_n} \qquad n = 0, 1, 2, \dots \quad (C.16d)$$

where

$$\varepsilon_n \begin{cases} 1 & n = 0 \\ 2 & n = 1, 2, 3, \dots \end{cases}$$
 (C.16e)

The Hankel function can be expressed in terms of Bessel functions ${\bf J}_{4n}$ and ${\bf Y}_{4n}$ and differentiated to obtain

$$\frac{d}{dR} \left[H_{4n}^{(2)}(\lambda_{m}R) \right] = \frac{\lambda_{m}}{2} \left[A_{n}(\lambda_{m}R) - iB_{n}(\lambda_{m}R) \right]$$
(C.17a)

where $i = \sqrt{-1}$ and

$$A_{n}(\lambda_{m}R) = J_{4n-1}(\lambda_{m}R) - J_{4n+1}(\lambda_{m}R)$$
(C.17b)

$$B_{n}(\lambda_{m}R) = Y_{4n-1}(\lambda_{m}R) - Y_{4n+1}(\lambda_{m}R)$$
(C.17c)

The derivative of the Modified Bessel function ${\rm K}_{4n} \, (\lambda \, {\, {\rm m}} \, {\rm m})$ can be expressed as

$$\frac{d}{dR} \left[\kappa_{4n} (\lambda_{m} R) \right] = - \frac{\lambda_{m}}{2} \left[\kappa_{4n-1} (\lambda_{m} R) + \kappa_{4n+1} (\lambda_{m} R) \right]$$
(C.18)

The expressions for D_{mn} and F_{mn} can be rewritten by substituting Eq. C.16 and C.17 into Eq. C.14 for D_{mn} and Eq. C.16 and C.18 into Eq. C.15 for F_{mn} . After some simplification,

$$D_{mn} = -\frac{8\sqrt{2} w \varepsilon_n (-1)^n (-1)^{m+1}}{g\pi H (1-16n^2) \alpha_m \lambda_m} \left[\frac{A_n (\lambda_m R) + iB_n (\lambda_m R)}{A_n^2 (\lambda_m R) + B_n^2 (\lambda_m R)} \right]$$
(C.19a)

$$F_{mn} = + \frac{8\sqrt{2} w \epsilon_{n}(-1)^{n} (-1)^{m+1}}{g\pi H (1-16n^{2}) \alpha_{m} \lambda_{m}} \left[\frac{1}{K_{4n-1}(\lambda_{m}R) + K_{4n+1}(\lambda_{m}R)} \right]$$
(C.19b)

The complex frequency response function for pressure on the upstream face (r = R) of the dam, $\overline{p}_{OD}^{x}(\theta, z, \omega)$, is obtained by substituting the above expressions for D_{mn} and F_{mn} into Eq. C.12. Noting that

$$H_{4n}^{(2)}(\lambda_{m}r) = J_{4n}(\lambda_{m}r) - iY_{4n}(\lambda_{m}r)$$
(C.20)

and rearranging terms, Eq. C.12 becomes

$$\overline{p}_{OD}^{X}(\theta, z, \omega) = \frac{16\sqrt{2} w R}{g\pi^{2}} \sum_{m=1}^{\infty} \sum_{n=0}^{\infty} \frac{(-1)^{m}}{(2m-1)}$$

•
$$\frac{\varepsilon_n (-1)^n}{(1-16n^2)} \left[C_n (\lambda_m R) + i D_n (\lambda_m R) \right] \cos 4n\theta \cos \alpha_m z$$
 (C.21)

Expressions for C_n and D_n differ depending on whether m is smaller or larger than m_q . For $m \leq m_q$ they are as follows

$$C_{n}(\lambda_{m}R) = \frac{\left[A_{n}(\lambda_{m}R) J_{4n}(\lambda_{m}R) + B_{n}(\lambda_{m}R) Y_{4n}(\lambda_{m}R)\right]}{\lambda_{m}R\left[A_{n}^{2}(\lambda_{m}R) + B_{n}^{2}(\lambda_{m}R)\right]}$$
(C.22a)

$$D_{n}(\lambda_{m}R) = \frac{\left[B_{n}(\lambda_{m}R) J_{4n}(\lambda_{m}R) - A_{n}(\lambda_{m}R) Y_{4n}(\lambda_{m}R)\right]}{\lambda_{m}R\left[A_{n}^{2}(\lambda_{m}R) + B_{n}^{2}(\lambda_{m}R)\right]}$$
(C.22b)

where $A_n(\lambda_m R)$ and $B_n(\lambda_m R)$ are given in Eq. C.17b and C.17c, respectively. For $m > m_{\ell}$ the above listed functions are as follows:

$$C_{n}(\lambda_{m}R) = - \frac{K_{4n}(\lambda_{m}R)}{\lambda_{m}R[K_{4n-1}(\lambda_{m}R) + K_{4n+1}(\lambda_{m}R)]}$$
(C.22c)

$$D_{n}(\lambda_{m}R) = 0 \qquad (C.22d)$$

Kotsubo [5] obtained the pressure on the face of rigid arch dams for excitation $\ddot{v}_{g}^{x}(t) = -\alpha g \sin \omega t$. Taking the imaginary part of the pressure (Eq. C.2, C.21, and C.22) and multiplying by $-\alpha g$, the result given for p_{OD}^{x} specializes to Kotsubo's. C.2.2 Derivation of $\overline{p}_{OB}^{\mathbf{X}}(\theta, z, \omega)$

 $\overline{p}_{OB}^{X}(\theta,z,\omega)$ is the complex frequency response function for the hydrodynamic pressures on the upstream face of the dam when the excitation is the acceleration of the reservoir banks in the upstream-downstream direction but the dam remains stationary. From Chapter 4, Eq. 4.3c to 4.3e, 4.6a and 4.6b, the boundary conditions for the govern ing equation (Eq. C.3) are

$$\frac{\partial \overline{p}}{\partial r}$$
 (R, θ ,z) = 0 (C.23a)

$$\frac{\partial \vec{p}}{r \partial \theta} (r, \pi/4, z) = \frac{1}{\sqrt{2}} \frac{w}{g}$$
(C.23b)

$$\frac{\partial \overline{p}}{\partial z}$$
 (r, θ , o) = 0 (C.23c)

$$\overline{p}(r,\theta,H) = 0 \tag{C.23d}$$

$$\frac{\partial \overline{p}}{r \partial \theta} (r, o, z) = 0$$
 (C.23e)

In addition to these boundary conditions, no wave reflections at the upstream end of the reservoir $(r = \infty)$ are permitted.

Because the governing equation as well as the boundary conditions are linear, the principle of superposition applies. The complex frequency response function, \overline{p}_{OB}^{x} , can therefore be expressed as:

$$\overline{p}_{OB}^{\mathbf{x}} = \overline{p}_{OB}^{\mathbf{x}1} + \overline{p}_{OB}^{\mathbf{x}2}$$
(C.24)

 \overline{p}_{OB}^{x1} and \overline{p}_{OB}^{x2} in Eq. C.24 are defined as follows. \overline{p}_{OB}^{x1} is the solution of Eq. C.3 for motion of the banks with the dam removed. Thus, boundary

conditions C.23b to C.23e are satisfied but the boundary condition on the upstream face of the dam, Eq. C.23a, is not satisfied. \bar{p}_{OB}^{x2} is the solution of Eq. C.3 for the following boundary conditions:

$$\frac{\partial \overline{p}}{\partial r} (R, \theta, z) = - \frac{\partial \overline{p}_{OB}^{\times 1}}{\partial r} (R, \theta, z)$$
(C.25a)

$$\frac{\partial \overline{p}}{r \partial \theta}$$
 (r, $\pi/4$, z) = 0 (C.25b)

and those specified in Eq. C.23c to C.23e.

The complex frequency response function for hydrodynamic pressure due to motion of the banks with the dam removed $\frac{-x^1}{p_{OB}}$ can be obtained by superposing the response due to excitation of each of the two banks acting separately

$$\overline{p}_{OB}^{xl} = \overline{p}_{OB}^{1} + \overline{p}_{OB}^{2}$$
(C.26)

Consider the rectangular coordinate system \tilde{x} , \tilde{y} , z where \tilde{x} is directed along the bank $\theta = -\pi/4$, \tilde{y} along the bank $\theta = \pi/4$ and z is the vertical coordinate (see Fig. 2.1). The \tilde{x} and \tilde{y} coordinates are rotated 45° from the x and y coordinates shown in Fig. 2.1. Expressed in the rectangular coordinates \tilde{x} , \tilde{y} , z, the pressure function \overline{p}_{OB}^1 associated with excitation of only the bank $\tilde{x} = 0$ is governed by the two-dimensional equivalent of the equation of motion, Eq. C.3, and the boundary conditions given in Eq. C.23b to C.23d.

$$\frac{\partial^2 \overline{p}(\widetilde{x},z)}{\partial \widetilde{x}^2} + \frac{\partial^2 \overline{p}(\widetilde{x},z)}{\partial z^2} = -\frac{\omega^2}{c^2} \overline{p}(\widetilde{x},z)$$
(C.27)

$$\frac{\partial \overline{p}}{\partial \overline{x}} (o, z) = -\frac{1}{\sqrt{2}} \frac{w}{g}$$
(C.28a)

$$\frac{\partial \overline{p}}{\partial z}(\overline{x}, o) = 0$$
 (C.28b)

$$\overline{p}(\widetilde{x}, H) = 0 \tag{C.28c}$$

In addition to these boundary conditions, no wave reflections at the upstream end of the reservoir are permitted.

The application of standard separation of variable techniques yields the following expression

$$\overline{p}_{OB}^{1} = \frac{2\sqrt{2} w}{g\pi} \left\{ -\sum_{m=1}^{m_{\ell}} \frac{i(-1)^{m+1}}{(2m-1)\lambda_{m}} \cos \alpha_{m} z e^{-i\lambda_{m} \widetilde{x}} + \sum_{m=m_{\ell}+1}^{\infty} \frac{(-1)^{m+1}}{(2m-1)\lambda_{m}} \cos \alpha_{m} z e^{-\lambda_{m} \widetilde{x}} \right\}$$

$$(C.29)$$

where $\boldsymbol{\lambda}_m$ and \boldsymbol{m}_{l} have been defined previously.

The complex frequency response for hydrodynamic pressure \overline{p}_{OB}^2 due to similar excitation of only the bank $\tilde{y} = 0$ is obtained by exchanging \tilde{y} for \tilde{x} in the above equations (Eq. C.27 to C.29). Transforming \tilde{x} and \tilde{y} into the cylindrical coordinates, r and θ , the pressure function \overline{p}_{OB}^{x1} due to excitation of both banks (without dam) is obtained from Eq. C.26 as

$$p_{OB}^{\overline{\chi}1}(r,\theta,z) = \frac{2\sqrt{2}}{g\pi} \left\{ -\sum_{m=1}^{m_{f}} \frac{i(-1)^{m+1}}{(2m-1)\lambda_{m}} + e^{-i\lambda_{m}r \sin(\pi/4+\theta)} \right\}$$

$$\cdot \cos \alpha_{m}z \left[e^{-i\lambda_{m}r \sin(\pi/4-\theta)} + e^{-i\lambda_{m}r \sin(\pi/4+\theta)} \right]$$

$$+ \sum_{m=m_{f}+1}^{\infty} \frac{(-1)^{m+1}}{(2m-1)\lambda_{m}} \cos \alpha_{m}z \left[e^{-\lambda_{m}r \sin(\pi/4-\theta)} + e^{-\lambda_{m}r \sin(\pi/4+\theta)} \right] \right\}$$

$$+ e^{-\lambda_{m}r \sin(\pi/4+\theta)} \left] \right\}$$

$$(C.30)$$

 \overline{p}_{OB}^{x2} is obtained from the solution of Eq. C.3 and the boundary conditions given by Eq. C.23c to C.23e and C.25a to C.25b. The general form of the solution for \overline{p}_{OD}^{x} given in Eq. C.12 also applies to \overline{p}_{OB}^{x2} since all boundary conditions except C.25a are satisfied by Eq. C.12.

$$\overline{p}_{OB}^{x2}(r,\theta,z,\omega) = \sum_{m=1}^{m_{\ell}} \sum_{n=0}^{\infty} D_{mn} H_{4n}^{(2)}(\lambda_{m}r) \cos 4n\theta \cos \alpha_{m}z$$
$$+ \sum_{m=m_{\ell}+1}^{\infty} \sum_{n=0}^{\infty} F_{mn} K_{4n}(\lambda_{m}r) \cos 4n\theta \cos \alpha_{m}z \qquad (C.31)$$

The complete solution for \overline{p}_{OB}^{x2} is obtained when the coefficients D_{mn} and F_{mn} are determined so that the remaining boundary condition (Eq. C.25a) is satisfied. Using Eq. C.17a to C.17c, C.18, C.30 and C.31, the boundary condition given in Eq. C.25a becomes

159

$$\begin{split} &\sum_{m=1}^{n}\sum_{n=0}^{\infty}\frac{D_{mn}\lambda_{m}}{2}\left[A_{n}(\lambda_{m}R) - iB_{n}(\lambda_{m}R)\right]\cos 4n\theta\cos\alpha_{m}z\\ &-\sum_{m=m_{R}+1}^{\infty}\sum_{n=0}^{\infty}\frac{F_{mn}\lambda_{m}}{2}\left[K_{4n-1}(\lambda_{m}R) + K_{4n+1}(\lambda_{m}R)\right]\cos 4n\theta\cos\alpha_{m}z\\ &=\frac{2\sqrt{2}}{9\pi}\left\{\sum_{m=1}^{m_{R}}\frac{(-1)^{m+1}}{(2m-1)}\cos\alpha_{m}z\left[\sin(\pi/4-\theta) - e^{-i\lambda_{m}R}\sin(\pi/4-\theta)\right] + \sin(\pi/4+\theta) - e^{-i\lambda_{m}R}\sin(\pi/4+\theta)\right] + \sum_{m=m_{R}+1}^{\infty}\frac{(-1)^{m+1}}{(2m-1)}\\ &+\sin(\pi/4+\theta) - e^{-i\lambda_{m}R}\sin(\pi/4+\theta)\right] + \sum_{m=m_{R}+1}^{\infty}\frac{(-1)^{m+1}}{(2m-1)}\\ &+\sin(\pi/4+\theta) - e^{-\lambda_{m}R}\sin(\pi/4+\theta)\right] + \sin(\pi/4+\theta) \end{split}$$

Because the set of eigenfunctions $\cos 4n\theta$, n = 0, 1, 2, 3,... form an orthogonal set of functions on the interval 0 \leqslant 0 \leqslant $\pi/4$, D $_{mn}$ and F $_{mn}$ can be found by standard eigenfunction expansion techniques.

(C.32)

$$D_{mn} = \frac{16\sqrt{2} w (-1)^{m+1} \varepsilon_n \left[A_n (\lambda_m R) + iB_n (\lambda_m R)\right]}{\pi^2 g (2m-1) \lambda_m \left[A_n^2 (\lambda_m R) + B_n^2 (\lambda_m R)\right]} L_n (\lambda_m R)$$
(C.33)

$$F_{mn} = -\frac{16 \sqrt{2} w (-1)^{m+1} \varepsilon_n}{\pi^2 g (2m-1) \lambda_m \left[\kappa_{4n-1} (\lambda_m R) + \kappa_{4n+1} (\lambda_m R) \right]} G_n (\lambda_m R)$$
(C.34)

$$G_{n}(\lambda_{m}R) = \int_{0}^{\pi/4} \left[\sin(\pi/4-\theta) e^{-\lambda_{m}R} \sin(\pi/4-\theta) + \sin(\pi/4+\theta) e^{-\lambda_{m}R} \sin(\pi/4+\theta) \right] \cos 4n\theta \ d\theta \qquad (C.35)$$

$$L_{n}(\lambda_{m}R) = \int_{0}^{\pi/4} \left[\sin(\pi/4-\theta) e^{-i\lambda_{m}R} \sin(\pi/4-\theta) \right]$$

$$\begin{array}{c} -i\lambda R \sin(\pi/4+\theta) \\ +\sin(\pi/4+\theta) e \end{array} \cos 4n\theta \ d\theta \qquad (C.36)$$

A simplified form for the integral $L_n(\lambda_m^R)$ is obtained by expressing the exponential terms of Eq. C.36 as a series of Bessel functions and evaluating the resulting integrals. $L_n(\lambda_m^R)$ becomes

$$L_{n}(\lambda_{m}R) = (-1)^{n} \left\{ \frac{i\pi}{4} A_{n}(\lambda_{m}R) - \sum_{k=0}^{\infty} \varepsilon_{2k} J_{2k}(\lambda_{m}R) - \frac{\left[16n^{2} + 4k^{2} - 1\right]}{\left[16n^{2} - 4k^{2} - 4k - 1\right]\left[16n^{2} - 4k^{2} + 4k - 1\right]} \right\}$$
(C.37)

Thus, \overline{p}_{OB}^{x2} is given by Eq. C.31 with coefficients D_{mn} and F_{mn} defined in Eq. C.33 to C.35 and C.37.

The complex frequency response function for hydrodynamic pressures on the upstream face of the dam (r = R) when the excitation is the acceleration of the reservoir banks in the upstream-downstream direction but the dam remains stationary, $\overline{p}_{OB}^{x}(\theta, z, \omega)$, is obtained by superposing -see Eq. C.24 -- the expressions for \overline{p}_{OB}^{x1} (Eq. C.30) and \overline{p}_{OB}^{x2} (Eq. C.31,

C.33 to C.35 and C.37). After rearranging terms, the expression for $\overline{p}_{OB}^{\mathbf{X}}$ becomes

$$\overline{p}_{OB}^{\mathbf{x}}(\theta, z, \omega) = \frac{2\sqrt{2}}{g\pi} \left\{ \sum_{m=1}^{\infty} \left[E_{m}(\lambda_{m}R) + iF_{m}(\lambda_{m}R) \right] \cos \alpha_{m}z + \frac{8}{\pi} \sum_{m=1}^{\infty} \sum_{n=0}^{\infty} \varepsilon_{n} \left[U_{mn}(\lambda_{m}R) + iV_{mn}(\lambda_{m}R) \right] \cos 4n\theta \cos \alpha_{m}z \right\} \quad (C.38)$$

where $\alpha_{m},\;\lambda_{m}$ and ϵ_{n} are given by Eq. C.6b, C.8b and C.16e respectively. Expressions for functions ${\rm E}_{\rm m},~{\rm F}_{\rm m},~{\rm U}_{\rm mn},$ and ${\rm V}_{\rm mn}$ differ depending on whether m is smaller or larger than m_{ℓ} ; m_{ℓ} is the largest integer "m" satisfying the inequality $\frac{\omega}{C} > \alpha_{m}$. For $m < m_{\ell}$ they are as follows:

m=1 n=0

$$E_{m}(\lambda_{m}R) = \frac{(-1)^{m}}{(2m-1)\lambda_{m}R} \left\{ \sin\left[\lambda_{m}R \sin(\pi/4-\theta)\right] + \sin\left[\lambda_{m}R \sin(\pi/4+\theta)\right] \right\}$$
(C.39a)

$$F_{m}(\lambda_{m}R) = \frac{(-1)^{m}}{(2m-1)\lambda_{m}R} \left\{ \cos \left[\lambda_{m}R \sin (\pi/4-\theta) \right] + \cos \left[\lambda_{m}R \sin (\pi/4+\theta) \right] \right\}$$
(C.39b)

$$U_{mn}(\lambda_{m}R) = \frac{(-1)^{m}(-1)^{n}}{(2m-1)} \left\{ T_{n}(\lambda_{m}R) C_{n}(\lambda_{m}R) + \frac{\pi}{4} A_{n}(\lambda_{m}R) D_{n}(\lambda_{m}R) \right\}$$
(C.39c)

$$V_{mn}(\lambda_{m}R) = \frac{(-1)^{m}(-1)^{n}}{(2m-1)} \left\{ T_{n}(\lambda_{m}R) D_{n}(\lambda_{m}R) - \frac{\pi}{4} A_{n}(\lambda_{m}R) C_{n}(\lambda_{m}R) \right\}$$
(C.39d)

$$T_{n}(\lambda_{m}R) = \sum_{k=0}^{\infty} \varepsilon_{2k} J_{2k}(\lambda_{m}R)$$

$$\bullet \frac{(16n^{2} + 4k^{2} - 1)}{(16n^{2} - 4k^{2} - 4k - 1)(16n^{2} - 4k^{2} + 4k - 1)}$$
(C.39e)

 $C_n(\lambda_m R)$, $D_n(\lambda_m R)$, $A_n(\lambda_m R)$ and $B_n(\lambda_m R)$ are defined in Eq. C.22a, C.22b, C.17a and C.17b respectively. For $m > m_{\ell}$ the above listed functions are as follows:

$$E_{m}(\lambda_{m}R) = \frac{-(-1)^{m}}{(2m-1)\lambda_{m}R} \left[e^{-\lambda_{m}R \sin(\pi/4-\theta)} - \frac{-\lambda_{m}R \sin(\pi/4-\theta)}{e^{-\lambda_{m}R \sin(\pi/4+\theta)}} \right]$$

$$+ e^{-\lambda_{m}R \sin(\pi/4+\theta)}$$
(C.39f)

$$F_{m}(\lambda_{m}R) = 0 \qquad (C.39g)$$

$$U_{mn}(\lambda_{m}R) = \frac{-(-1)^{m}}{(2m-1)} C_{n}(\lambda_{m}R) G_{n}(\lambda_{m}R)$$
(C.39h)

$$V_{mn} \left(\lambda_{m} R \right) = 0 \tag{C.39i}$$

where $C_n(\lambda_m R)$ and $G_n(\lambda_m R)$ are defined in Eq. C.22c and C.35 respectively. Taking the imaginary part of the pressure (Eq. C.2, C.38 and C.39) and multiplying by $-\alpha g$, the result given for p_{OB}^{X} specializes to results obtained by Kotsubo [5] for excitation $\vec{v}_g^{Y}(t) = -\alpha g \sin \omega t$.

C.2.3 Derivation of
$$\overline{p}_{j}^{x}(\theta, z, \omega)$$

 \overline{p}_{j}^{x} is the complex frequency response function for the hydrodynamic pressures on the upstream face of the dam when the excitation is the acceleration $\overline{Y}_{j}^{x}(\omega) = 1$ (see Chapter 4, Eq. 4.4) in the $j\frac{\text{th}}{\text{f}}$ symmetric natural mode of vibration of the dam (without water). From Chapter 4, Eq. 4.3 and 4.7, the boundary conditions for the governing equation (Eq. C.3) are

$$\frac{\partial \overline{p}}{\partial r} (R, \theta, z) = -\frac{w}{g} \left[\phi_{j}^{xf}(\theta, z) \cos \theta + \phi_{j}^{yf}(\theta, z) \sin \theta \right]$$
(C.40a)

$$\frac{\partial \overline{p}}{r \partial \theta} (r, \pi/4, z) = 0$$
 (C.40b)

$$\frac{\partial \overline{p}}{\partial z} (r, \theta, o) = 0 \tag{C.40c}$$

$$\overline{p}(\mathbf{r},\boldsymbol{\theta},\mathbf{H}) = 0 \tag{C.40d}$$

$$\frac{\partial \overline{p}}{r \partial \theta}$$
 (r,o,z) = 0 (C.40e)

where ϕ_j^{xf} and ϕ_j^{yf} are the x and y components, respectively, of the j^{th} mode shape evaluated on the upstream face of the dam. In addition to these boundary conditions, no wave reflections are permitted at the upstream end of the reservoir $(r = \infty)$.

The general form of the solution for \overline{p}_{OD}^{X} given in Eq. C.12 also applies to \overline{p}_{j}^{X} since all boundary conditions except Eq. C.40a are satisfied by Eq. C.12. Thus,

$$\overline{p}_{j}^{x}(\mathbf{r},\theta,z,\omega) = \sum_{m=1}^{m} \sum_{n=0}^{\infty} D_{mn} H_{4n}^{(2)}(\lambda_{m}r) \cos 4n\theta \cos \alpha_{m}z$$
$$+ \sum_{m=m_{k}+1}^{\infty} \sum_{n=0}^{\infty} F_{mn} K_{4n}(\lambda_{m}r) \cos 4n\theta \cos \alpha_{m}z \qquad (C.41)$$

The complete solution for \overline{p}_{j}^{x} is obtained when the coefficients D_{mn} and F_{mn} are determined so that the remaining boundary condition (Eq. C.40a) is satisfied. Using Eq. C.17a to C.17c, C.18 and C.41, the boundary condition becomes

$$\sum_{m=1}^{m_{\ell}} \sum_{n=0}^{\infty} \frac{D_{mn} \lambda_{m}}{2} \left[A_{n} (\lambda_{m}R) - iB_{n} (\lambda_{m}R) \right] \cos 4n\theta \cos \alpha_{m}z$$

$$- \sum_{m=m_{\ell}+1}^{\infty} \sum_{n=0}^{\infty} \frac{F_{mn} \lambda_{m}}{2} \left[K_{4n-1} (\lambda_{m}R) - K_{4n+1} (\lambda_{m}R) \right] \cos 4n\theta \cos \alpha_{m}z$$

$$- K_{4n+1} (\lambda_{m}R) \cos \theta + \phi_{j}^{yf} (\theta, z) \sin \theta \right] \qquad (C.42)$$

Since the set of eigenfunctions $\cos 4n\theta \cos \alpha_m z$, n = 0, 1, 2, 3, ..., m = 1, 2, 3... form an orthogonal set of functions on the interval $(0 \le \theta \le \pi/4)$ $(0 \le z \le H)$, D_{mn} and F_{mn} can be found by standard eigenfunction expansion techniques.

$$D_{mn} = -\frac{16 \text{ w } \varepsilon_n}{\pi g \lambda_m} \frac{A_n (\lambda_m R) + iB_n (\lambda_m R)}{A_n^2 (\lambda_m R) + B_n^2 (\lambda_m R)} I_{mn}^j$$
(C.43a)

$$F_{mn} = \frac{16 \text{ w } \varepsilon_n \text{ I}_{mn}^{\text{J}}}{\pi g \lambda_m \left[K_{4n-1} \left(\lambda_m R \right) + K_{4n+1} \left(\lambda_m R \right) \right]}$$
(C.43b)

$$I_{mn}^{j} = \frac{1}{H} \int_{0}^{\pi/4} \int_{0}^{H} \left[\phi_{j}^{xf}(\theta, z) \cos \theta + \phi_{j}^{yf} \sin \theta \right]$$

• cos 4nθ cos $\alpha_{m}^{z} dz d\theta$ (C.43c)

Thus, \overline{p}_{j}^{x} is given by Eq. C.41 with coefficients D_{mn} and F_{mn} defined in Eq. C.43a and C.43b. After rearranging terms, the expression for \overline{p}_{j}^{x} becomes:

$$\overline{p}_{j}^{x}(\theta, z, \omega) = -\frac{16 \text{ w R}}{g\pi} \sum_{m=1}^{\infty} \sum_{n=0}^{\infty} \varepsilon_{n} \operatorname{I}_{mn}^{j} [c_{n}(\lambda_{m}^{R}) + iD_{n}(\lambda_{m}^{R})] \cos 4n\theta \cos \alpha_{m}^{z}$$
(C.44)

where $\alpha_{\rm m}$, $\lambda_{\rm m}$, $\varepsilon_{\rm n}$, and $I_{\rm mn}^{\rm j}$ are given by Eq. C.6b, C.8b, C.16e and C.43c respectively. Expressions for functions $C_{\rm n}(\lambda_{\rm m}R)$ and $D_{\rm n}(\lambda_{\rm m}R)$ differ depending on whether m is smaller or larger than m_{ℓ} . For $m \leq m_{\ell}$ they are given by Eq. C.22a and C.22b. For $m \geq m_{\ell} - C_{\rm n}(\lambda_{\rm m}R)$ is given by Eq. C.22c and $D_{\rm n}(\lambda_{\rm m}R) = 0$.

C.3 Ground Motion In Cross-Stream Direction

C.3.1 Derivation of $\overline{p}_{OD}^{Y}(\theta, z, \omega)$

 \overline{p}_{OD}^{Y} is the complex frequency response function for the hydrodynamic pressures on the upstream face of the dam when the excitation is the acceleration of the rigid dam in the y direction (cross-stream, Fig. 2.1) but

166

the banks remain stationary. From Chapter 5, Eq. 5.3c to 5.3e, 5.5a and 5.5b, the boundary conditions for the governing equation (Eq. C.3) are

$$\frac{\partial \overline{p}}{\partial r}$$
 (R, θ , z) = $-\frac{W}{g}\sin\theta$ (C.45a)

$$\frac{\partial \overline{p}}{r \partial \theta} (r, \pi/4, z) = 0$$
 (C.45b)

$$\frac{\partial \overline{p}}{\partial z} (r, \theta, o) = 0$$
 (C.45c)

$$\overline{p}(\mathbf{r},\theta,\mathbf{H}) = 0 \tag{C.45d}$$

$$\overline{p}(r,o,z) = 0 \tag{C.45e}$$

In addition to these boundary conditions, no wave reflections are permitted at the upstream end of the reservoir $(r = \infty)$.

The expression characterizing \overline{p}_{OD}^{Y} is obtained by following the same steps given in Section C.2.1 for determining \overline{p}_{OD}^{X} . The general form of \overline{p}_{OD}^{Y} satisfying all boundary conditions except C.45a is

$$\overline{p}_{OD}^{Y}(\mathbf{r},\theta,z) = \sum_{m=1}^{m_{\mathcal{L}}} \sum_{n=0}^{\infty} D_{mn} H_{\mu_{n}}^{(2)}(\lambda_{m}r) \sin \mu_{n}\theta \cos \alpha_{m}z$$

$$\infty \qquad \infty$$

+
$$\sum_{m=m_{l}+l} \sum_{n=0}^{\infty} F_{mn} K_{\mu_{n}}(\lambda_{m}r) \sin \mu_{n}\theta \cos \alpha_{m}z$$
 (C.46a)

where

$$\alpha_{\rm m} = \frac{(2{\rm m}-1)\pi}{2{\rm H}}$$
 (C.46b)

$$\mu_{n} = 4n + 2$$
 (C.46c)
$$\lambda_{m} = \sqrt{\alpha_{m}^{2} - \frac{\omega^{2}}{c^{2}}}$$
 (C.46d)

and m_{l} is the largest integer "m" satisfying the inequality $\omega/C > \alpha_{m}$. The coefficients D and F are determined such that p_{OD}^{y} satisfies the boundary condition given in Eq. C.45a. Substituting Eq. C.46 into Eq. C.45a, the boundary condition becomes

$$\sum_{m=1}^{m_{\chi}} \sum_{n=0}^{\infty} D_{mn} \frac{d}{dR} \left[H_{\mu_n}^{(2)} (\lambda_m R) \right] \sin \mu_n \theta \cos \alpha_m z$$

$$+ \sum_{m=m_{\chi}+1}^{\infty} \sum_{n=0}^{\infty} F_{mn} \frac{d}{dR} \left[K_{\mu_n}^{(2)} (\lambda_m R) \right] \sin \mu_n \theta \cos \alpha_m z$$

$$= - \frac{\omega}{g} \sin \theta \qquad (C.47)$$

The set of eigenfunctions $\sin \mu_n \theta \cos \alpha_m z$, n = 0, 1, 2, ..., m = 1, 2, 3,... form an orthogonal set of functions on the intervals ($0 \le \theta \le \pi/4$), ($0 \le z \le H$). Thus, D_{mn} and F_{mn} can be found by classical eigenfunction expansion techniques as

$$D_{mn} = -\frac{16\sqrt{2} w (-1)^{m+1} (-1)^{n}}{g\pi H (\mu_{n}^{2} - 1) \alpha_{m} \lambda_{m}} \left[\frac{A_{n} (\lambda_{m}^{R}) + iB_{n} (\lambda_{m}^{R})}{A_{n}^{2} (\lambda_{m}^{R}) + B_{n}^{2} (\lambda_{m}^{R})} \right]$$
(C.48a)

168

$$F_{mn} = \frac{16\sqrt{2} w (-1)^{m+1} (-1)^{n}}{g\pi H (\mu_{n}^{2} - 1) \alpha_{m} \lambda_{m}} \left[\frac{1}{\kappa_{\mu_{n}-1} (\lambda_{m}^{R}) - \kappa_{\mu_{n}+1} (\lambda_{m}^{R})} \right] \quad (C.48b)$$

$$A_n(\lambda_m R) = J_{\mu_n - 1}(\lambda_m R) - J_{\mu_n + 1}(\lambda_m R)$$
(C.48c)

$$B_{n}(\lambda_{m}R) = Y_{\mu_{n}-1}(\lambda_{m}R) - Y_{\mu_{n}+1}(\lambda_{m}R)$$
(C.48d)

After substituting the above expressions for D_{mn} and F_{mn} into Eq. C.46a and rearranging terms, the pressure on the upstream face (r = R) of the dam, $\overline{p}_{OD}^{Y}(\theta, z, \omega)$, becomes:

$$\overline{p}_{OD}^{Y}(\theta, z, \omega) = \frac{32\sqrt{2} w R}{g\pi^{2}} \sum_{m=1}^{\infty} \sum_{n=0}^{\infty} \frac{(-1)^{m}(-1)^{n}}{(2m-1)(\mu_{n}^{2}-1)}$$

$$\bullet \left[C_{n}(\lambda_{m}R) + iD_{n}(\lambda_{m}R) \right] \sin \mu_{n}\theta \cos \alpha_{m}z \qquad (C.49)$$

where α_{m} , μ_{n} and λ_{m} are given by Eq. C.46b to C.46d respectively. Expressions for $C_{n}(\lambda_{m}R)$ and $D_{n}(\lambda_{m}R)$ differ depending on whether m is smaller or larger than "m_l". For $m \leq m_{l}$ they are as follows:

$$C_{n}(\lambda_{m}R) = \frac{\left[A_{n}(\lambda_{m}R) J_{\mu_{n}}(\lambda_{m}R) + B_{n}(\lambda_{m}R) Y_{\mu_{n}}(\lambda_{m}R)\right]}{\lambda_{m}R\left[A_{n}^{2}(\lambda_{m}R) + B_{n}^{2}(\lambda_{m}R)\right]}$$
(C.50a)

$$D_{n}(\lambda_{m}R) = \frac{\left[B_{n}(\lambda_{m}R) J_{\mu_{n}}(\lambda_{m}R) - A_{n}(\lambda_{m}R) Y_{\mu_{n}}(\lambda_{m}R)\right]}{\lambda_{m}R\left[A_{n}^{2}(\lambda_{m}R) + B_{n}^{2}(\lambda_{m}R)\right]}$$
(C.50b)

where $A_n(\lambda_m R)$ and $B_n(\lambda_m R)$ are given by Eq. C.48c and C.48d. For $m > m_{\ell}$ the above functions are as follows:

$$C_{n}(\lambda_{m}R) = - \frac{K_{\mu_{n}}(\lambda_{m}R)}{\lambda_{m}R[K_{\mu_{n}}-1(\lambda_{m}R) + K_{\mu_{n}}+1(\lambda_{m}R)]}$$
(C.50c)

$$D_{n}(\lambda_{m}R) = 0$$
 (C.50d)

Kotsubo [5] obtained the pressure on the face of rigid arch dams for excitation $\dot{v}_g^{Y}(t) = -\alpha g \sin \omega t$. Taking the imaginary part of the pressure (Eq. C.2, C.49 and C.50) and multiplying by $-\alpha g$, the result given for p_{OD}^{X} specializes to Kotsubo's.

C.3.2 Derivation of $\overline{p}_{OB}^{Y}(\theta, z, \omega)$

 $\overline{p}_{OB}^{y}(\theta,z,\omega)$ is the complex frequency response function for hydrodynamic pressures on the upstream face of the dam when the excitation is the acceleration of the reservoir banks in the cross-stream direction but the dam remains stationary. From Chapter 5, Eq. 5.3c to 5.3e, 5.6a and 5.6b the boundary conditions for the governing equation (Eq. C.3) are

$$\frac{\partial p}{\partial r} (R, \theta, z) = 0 \tag{C.51a}$$

$$\frac{\partial \overline{p}}{r \partial \theta} (r, \pi/4, z) = -\frac{1}{\sqrt{2}} \frac{w}{g}$$
(C.51b)

 $\frac{\partial \overline{p}}{\partial z} (r, \theta, o) = 0 \qquad (C.51c)$

 $\overline{p}(\mathbf{r},\theta,\mathbf{H}) = 0 \tag{C.51d}$

 $\overline{p}(\mathbf{r},\mathbf{o},\mathbf{z}) = 0 \tag{C.51e}$

In addition to these boundary conditions, no wave reflections are permitted at the upstream end of the reservoir $(r = \infty)$.

Following the procedure of Section C.2.2, \overline{p}_{OB}^{Y} is expressed as the superposition of two functions

$$\overline{p}_{OB}^{Y} = \overline{p}_{OB}^{Y1} + \overline{p}_{OB}^{Y2}$$
(C.52)

The functions \overline{p}_{OB}^{y1} and \overline{p}_{OB}^{y2} are defined as follows. \overline{p}_{OB}^{y1} is the solution of Eq. C.3 for motion of the banks in the cross-stream direction with the dam removed. Thus, boundary conditions C.51b to C.51e are satisfied but the boundary condition on the upstream face of the dam, Eq. C.51a, is not satisfied. \overline{p}_{OB}^{y2} is the solution of Eq. C.3 for the following boundary conditions:

$$\frac{\partial \overline{p}}{\partial r} (R, \theta, z) = - \frac{\partial \overline{p}_{OB}^{YI}}{\partial \theta} (R, \theta, z)$$
(C.53a)
$$\frac{\partial \overline{p}}{r \partial \theta} (r, \pi/4, z) = 0$$
(C.53b)

(C.53b)

and those specified in Eq. C.51c to C.51e.

 $\overline{p}_{OB}^{y\perp}$ can be obtained by combining the response due to excitation of each of the banks acting independently (with the dam removed). As in Appendix C.2.2, define \overline{p}_{OB}^1 and \overline{p}_{OB}^2 as the complex frequency response functions for excitation of the banks $\widetilde{x} = 0$ and $\widetilde{y} = 0$ respectively (\widetilde{x} and \widetilde{y} are defined in Appendix C.2.2). For cross-stream excitation

$$\overline{p}_{OB}^{y1} = \overline{p}_{OB} - \overline{p}_{OB}^2$$
(C.54)

where \overline{p}_{OB}^1 is given by Eq. C.29. \overline{p}_{OB}^2 is obtained by exchanging \widetilde{y} for \widetilde{x} in Eq. C.29. Transforming \widetilde{x} and \widetilde{y} into cylindrical coordinates r and $\theta,$ the pressure function \overline{p}_{OB}^{y1} due to excitation of both banks (with dam removed) is obtained from Eq. C.54 and C.29 as

$$\overline{p}_{OB}^{\mathbf{y}\mathbf{l}}(\mathbf{r},\theta,\mathbf{z},\omega) = \frac{2\sqrt{2}}{g\pi} \left\{ -\sum_{m=1}^{m_{\mathcal{L}}} \frac{\mathbf{i}(-1)^{m+1}}{(2m-1)\lambda_{m}} \right\}$$

$$\bullet \cos \alpha_{m} z \left[e^{-i\lambda_{m} \mathbf{r}} \sin(\pi/4-\theta) - e^{-i\lambda_{m} \mathbf{r}} \sin(\pi/4+\theta) \right]$$

$$+ \sum_{m=m_{\mathcal{L}}+1}^{\infty} \frac{(-1)^{m+1}}{(2m-1)\lambda_{m}} \cos \alpha_{m} z \left[e^{-\lambda_{m} \mathbf{r}} \sin(\pi/4-\theta) - e^{-\lambda_{m} \mathbf{r}} \sin(\pi/4+\theta) \right]$$

$$- e^{-\lambda_{m} \mathbf{r}} \sin(\pi/4+\theta) \right\}$$
(C.55)

 \overline{p}_{OB}^{y2} is obtained from the solution of Eq. C.3 and the boundary conditions given by Eq. C.51c to C.51e, C.53a and C.53b. The genral form of the solution for \overline{p}_{OD}^{y} given in Eq. C.46 also applies to \overline{p}_{OB}^{y2} since all boundary except C.53a are satisfied by Eq. C.46.

$$\overline{p}_{OB}^{y2}(r,\theta,z,\omega) = \sum_{m=1}^{m_{Q}} \sum_{n=0}^{\infty} p_{mn} H_{\mu_{n}}^{(2)}(\lambda_{m}r) \sin \mu_{n}\theta \cos \alpha_{m}z + \sum_{m=m_{Q}+1}^{\infty} \sum_{n=0}^{\infty} F_{mn} K_{\mu_{n}}(\lambda_{m}r) \sin \mu_{n}\theta \cos \alpha_{m}z \qquad (C.56)$$

The complete solution for \overline{p}_{OB}^{y2} is obtained when the coefficients D_{mn} and F_{mn} are determined so that the remaining boundary condition (Eq. C.53a) is satisfied. Substituting Eq. C.55 and C.56 into Eq. C.53a, the boundary condition becomes

$$\begin{split} &\sum_{m=1}^{m}\sum_{n=0}^{\infty}\frac{D_{mn}\lambda_{m}}{2}\left[A_{n}\left(\lambda_{m}R\right) - iB_{n}\left(\lambda_{m}R\right)\right]\sin\mu_{n}\theta\cos\alpha_{m}z\\ &-\sum_{m=m_{k}+1}^{\infty}\sum_{n=0}^{\infty}\frac{F_{mn}\lambda_{m}}{2}\left[K_{\mu_{n}-1}\left(\lambda_{m}R\right) + K_{\mu_{n}+1}\left(\lambda_{m}R\right)\right]\sin\mu_{n}\theta\cos\alpha_{m}z\\ &=\frac{2\sqrt{2}}{9\pi}\sqrt{\sum_{m=1}^{m}}\left\{\sum_{m=1}^{m_{k}}\frac{(-1)^{m+1}}{(2m-1)}\cos\alpha_{m}z\left[\sin\left(\pi/4-\theta\right)e^{-i\lambda_{m}R}\sin\left(\pi/4-\theta\right)\right.\\ &-\sin\left(\pi/4+\theta\right)e^{-i\lambda_{m}R}\sin\left(\pi/4+\theta\right)\right] + \sum_{m=m_{k}+1}^{\infty}\frac{(-1)^{m+1}}{(2m-1)}\\ &\cdot\cos\alpha_{m}z\left[\sin\left(\pi/4-\theta\right)e^{-\lambda_{m}R}\sin\left(\pi/4-\theta\right)\right]\\ &-\sin\left(\pi/4+\theta\right)e^{-\lambda_{m}R}\sin\left(\pi/4+\theta\right)\right] \end{pmatrix} \end{split}$$
(C.57)

where Eq. C.46c, C.48c and C.48d define μ_n , $A_n(\lambda_m R)$ and $B_n(\lambda_m R)$. Because the set of eigenfunctions sin $\mu_n \theta$, n = 0, 1, 2, ... form an orthogonal set of functions on the interval $0 \le \theta \le \pi/4$, D_{mn} and F_{mn} can be found by standard eigenfunction expansion techniques as

$$D_{mn} = \frac{32\sqrt{2} w (-1)^{m+1} \left[A_n(\lambda_m R) + iB_n(\lambda_m R)\right]}{\pi^2 g(2m-1) \left[A_n^2(\lambda_m R) + B_n^2(\lambda_m R)\right]} L_n(\lambda_m R)$$
(C.58)

$$F_{mn} = -\frac{32\sqrt{2} w (-1)^{m+1}}{\pi^2 g (2m-1) \left[{K_{\mu_n} - 1 {\lambda_m^R} + K_{\mu_n} + 1 {\lambda_m^R} \right]} G_n (\lambda_m^R)$$
(C.59)

$$G_{n}(\lambda_{m}R) = \int_{0}^{\pi/4} \left[\sin(\pi/4+\theta) e^{-\lambda_{m}R \sin(\pi/4+\theta)} \right]$$

$$-\lambda_{m} R \sin(\pi/4-\theta) \left[\sin \mu_{n} \theta d\theta \right]$$
(C.60)

$$L_{n}(\lambda_{m}R) = \int_{0}^{\pi/4} \left[\sin(\pi/4+\theta) e^{-i\lambda_{m}R} \sin(\pi/4+\theta) \right]$$

$$- \sin(\pi/4-\theta) e^{-i\lambda_{m}R \sin(\pi/4-\theta)} \sin \mu_{n}\theta \, d\theta \qquad (C.61)$$

A simplified form for the integral $L_n(\lambda_m R)$ is obtained by expressing the exponential terms as a series of Bessel functions and evaluating the resulting integrals. $L_n(\lambda_m R)$ becomes

$$L_{n}(\lambda_{m}R) = (-1)^{n} \left\{ \sum_{k=0}^{\infty} \varepsilon_{2k} J_{2k}(\lambda_{m}R) - \frac{\left(\mu_{n}^{2} + 4k^{2} - 1\right)}{\left(\mu_{n}^{2} - 4k^{2} - 4k - 1\right)\left(\mu_{n}^{2} - 4k^{2} + 4k - 1\right)} - \frac{i\pi}{4} A_{n}(\lambda_{m}R) \right\}$$
(C.62)

where

$$\varepsilon_{2k} = \begin{cases} 1 \\ 2 \\ k = 1, 2, 3, \dots \end{cases}$$
(C.63)

Thus, \overline{p}_{OB}^{y2} is given by Eq. C.56 with coefficients D_{mn} and F_{mn} defined in Eq. C.58 to C.60 and C.62.

 \overline{p}_{OB}^{Y} is obtained by superposing -- see Eq. C.52 -- the expressions for \overline{p}_{OB}^{Y1} (Eq. C.55) and \overline{p}_{OB}^{Y2} (Eq. C.58 to C.60 and C.62). After rearranging terms, the expression for $\overline{p}_{OB}^{Y}(\theta, z, \omega)$ on the upstream face of the dam (r = R) becomes

$$\overline{p}_{OB}^{Y}(\theta, z, \omega) = \frac{2\sqrt{2} w R}{g\pi} \left\{ \sum_{m=1}^{\infty} \left[E_{m}(\lambda_{m}R) + iF_{m}(\lambda_{m}R) \right] \cos \alpha_{m} z + \frac{16}{\pi} \sum_{m=1}^{\infty} \sum_{n=0}^{\infty} \left[U_{mn}(\lambda_{m}R) + iV_{mn}(\lambda_{m}R) \right] \sin \mu_{n} \theta \cos \alpha_{m} z \right\}$$

$$\dots \dots (C.64)$$

where $\alpha_{\rm m}$, $\mu_{\rm n}$, $\lambda_{\rm m}$ and $\varepsilon_{\rm n}$ are given by Eq. C.46b, c, d and C.63 respectively. Expressions for functions $E_{\rm m}$, $F_{\rm m}$, $U_{\rm mn}$ and $V_{\rm mn}$ differ depending on whether m is smaller or larger than m_{ℓ} . For $m \leq m_{\ell}$ they are as follows

$$E_{m}(\lambda_{m}R) = \frac{(-1)^{m}}{(2m-1)\lambda_{m}R} \left\{ \sin\left[\lambda_{m}R \sin(\pi/4+\theta)\right] - \sin\left[\lambda_{m}R \sin(\pi/4-\theta)\right] \right\}$$
(C.65a)

$$F_{m}(\lambda_{m}R) = \frac{(-1)^{m}}{(2m-1)\lambda_{m}R} \left\{ \cos\left[\lambda_{m}R\sin\left(\pi/4+\theta\right)\right] - \cos\left[\lambda_{m}R\sin\left(\pi/4-\theta\right)\right] \right\}$$
(C.65b)

$$U_{mn}(\lambda_{m}R) = \frac{(-1)^{m}(-1)^{n}}{(2m-1)} \left\{ T_{n}(\lambda_{m}R) C_{n}(\lambda_{m}R) + \frac{\pi}{4} A_{n}(\lambda_{m}R) D_{n}(\lambda_{m}R) \right\}$$
(C.65c)

$$\nabla_{mn} (\lambda_{m}R) = -\frac{(-1)^{m}(-1)^{n}}{(2m-1)} \left\{ T_{n} (\lambda_{m}R) D_{n} (\lambda_{m}R) - \frac{\pi}{4} A_{n} (\lambda_{m}R) C_{n} (\lambda_{m}R) \right\}$$
(C.65d)

$$T_{n}(\lambda_{m}R) = \sum_{k=0}^{\infty} \varepsilon_{2k} J_{2k}(\lambda_{m}R)$$

$$\bullet \frac{(\mu_{n}^{2} + 4k^{2} - 1)}{(\mu_{n}^{2} - 4k^{2} - 4k - 1)(\mu_{n}^{2} - 4k^{2} + 4k - 1)}$$
(C.65e)

 $A_n(\lambda_m R)$, $B_n(\lambda_m R)$, $C_n(\lambda_m R)$ and $D_n(\lambda_m R)$ are defined in Eq. C.48a, C.48b, C.50a and C.50b respectively. For $m > m_{\ell}$ the above listed functions are as follows:

$$E_{m}(\lambda_{m}R) = -\frac{(-1)^{m}}{(2m-1)\lambda_{m}R} \left[e^{-\lambda R \sin(\pi/4-\theta)} - e^{-\lambda_{m}R \sin(\pi/4-\theta)} \right]$$
(C.65f)

$$F_{m}(\lambda_{m}R) = 0$$
 (C.65g)

$$U_{mn}(\lambda_{m}R) = -\frac{(-1)^{m}}{(2m-1)} C_{n}(\lambda_{m}R) G_{n}(\lambda_{m}R)$$
(C.65h)

$$V_{mn}(\lambda_{m}R) = 0$$
 (C.65i)

where $C_n(\lambda_m R)$ and $G_n(\lambda_m R)$ are defined in Eq. C.50c and C.60 respectively.

Taking the imaginary part of the pressure (Eq. C.2, C.64 and C.65) and multiplying by - αg , the result given for p_{OB}^{Y} specializes to results obtained by Kotsubo [5] for excitation $\ddot{v}_{g}^{Y}(t) = -\alpha g \sin \omega t$.

C.3.3 Derivation of $\overline{p}_{j}^{Y}(\theta, z, \omega)$

 \overline{p}_{j}^{Y} is the complex frequency response function for the hydrodynamic pressures on the upstream face of the dam when the excitation is the acceleration $\overline{Y}_{j}^{Y}(\omega) = 1$ (see Chapter 5, Eq. 5.4) in the jth antisymmetric natural mode of vibration of the dam (without water). From Chapter 5, Eq. 5.3c to 5.3e, 5.7a and 5.7b, the boundary conditions for the governing equation (Eq. C.3) are

$$\frac{\partial \overline{p}}{\partial r} (R, \theta, z) = -\frac{w}{g} \left[\phi_{j}^{xf}(\theta, z) \cos \theta + \phi_{j}^{yf}(\theta, z) \sin \theta \right]$$
(C.66a)

$$\frac{\partial \overline{p}}{r \partial \theta} (r, \pi/4, z) = 0$$
 (C.66b)

$$\frac{\partial \overline{p}}{\partial z}$$
 (r, θ , o) = 0 (C.66c)

 $\overline{p}(\mathbf{r},\boldsymbol{\theta},\mathbf{H}) = 0 \tag{C.66d}$

$$\overline{p}(r,o,z) = 0 \tag{C.66e}$$

where ϕ_j^{xf} and ϕ_j^{yf} are the x and y components, respectively, of the $j^{\underline{\text{th}}}$ antisymmetric mode shape evaluated on the upstream face of the dam. In addition to these boundary conditions, no wave reflections are permitted at the upstream end of the reservoir $(r = \infty)$.

The general form of the solution for \overline{p}_{OB}^{Y} given in Eq. C.46 also applies to \overline{p}_{j}^{Y} since all boundary conditions except Eq. C.67a are satisfied by Eq. C.46. Thus

$$\overline{p}_{j}^{Y}(r,\theta,z) = \sum_{m=1}^{m_{\mathcal{L}}} \sum_{n=0}^{\infty} D_{mn} H_{\mu_{n}}^{(2)}(\lambda_{m}r) \sin \mu_{n}\theta \cos \alpha_{m}z$$
$$+ \sum_{m=m_{\mathcal{L}}+1}^{\infty} \sum_{n=0}^{\infty} F_{mn} K_{\mu_{n}}(\lambda_{m}r) \sin \mu_{n}\theta \cos \alpha_{m}z \qquad (C.67)$$

The complete solution for \overline{p}_j^y is obtained when the coefficients D_{mn} and F_{mn} are determined so that the remaining boundary condition (Eq. C.66a) is satisfied. Using Eq. C.67 and Bessel function equalities, the boundary condition becomes

$$\begin{split} \sum_{m=1}^{m_{\ell}} \sum_{n=0}^{\infty} \frac{D_{mn} - \lambda_{m}}{2} \left[A_{n} (\lambda_{m} R) - i B_{n} (\lambda_{m} R) \right] & \sin \mu_{n} \theta \cos \alpha_{m} z \\ + \sum_{m=m_{\ell}+1}^{\infty} \sum_{n=0}^{\infty} \frac{F_{mn} - \lambda_{m}}{2} \left[K_{\mu_{n}-1} (\lambda_{m} R) + K_{\mu_{n}+1} (\lambda_{m} R) \right] & \sin \mu_{n} \theta \cos \alpha_{m} z \\ + \left[K_{\mu_{n}+1} (\lambda_{m} R) \right] & \sin \mu_{n} \theta \cos \alpha_{m} z \\ & = - \frac{w}{g} \left[\phi_{j}^{xf} (\theta, z) \cos \theta + \phi_{j}^{yf} (\theta, z) \sin \theta \right] \end{split}$$
(C.68)

Since the set of eigenfunctions $\sin \mu_n \theta \cos \alpha_m z$, n = 0, 1, 2, ... form an orthogonal set of functions on the interval ($0 \le \theta \le \pi/4$) ($0 \le z \le H$), D_{mn} and F_{mn} can be found by standard eigenfunction expansion techniques as

$$D_{mn} = -\frac{32 \text{ w}}{\pi g \lambda_m} \frac{A_n (\lambda_m R) + iB_n (\lambda_m R)}{A_n^2 (\lambda_m R) + B_n^2 (\lambda_m R)} I_{mn}^j$$
(C.69a)

$$F_{mn} = \frac{32 \text{ w}}{\pi g \lambda_m} \frac{I_{mn}^{J}}{K_{\mu_n} - 1 (\lambda_m^{R}) + K_{\mu_n} + 1 (\lambda_m^{R})}$$
(C.69b)

where

$$I_{mn}^{j} = \frac{1}{H} \int_{0}^{\pi/4} \int_{0}^{H} \left[\phi_{j}^{xf}(\theta, z) \cos \theta + \phi_{j}^{yf}(\theta, z) \sin \theta \right] \sin \mu_{n} \theta \cos \alpha_{m} z \, dz \, d\theta \qquad (C.69c)$$

Thus, \overline{p}_{j}^{Y} is given by Eq. C.67 with coefficients D_{mn} and F_{mn} defined in Eq. C.69a and C.69b. After rearranging terms, the expression for \overline{p}_{j}^{Y} on the upstream face of the dam becomes:

$$\overline{p}_{j}^{Y}(\theta, z, \omega) = -\frac{32 \text{ w r}}{g\pi} \sum_{mn} \sum_{mn} \left[c_{n}(\lambda_{m}R) + iD_{n}(\lambda_{m}R) \right] \sin \mu_{n}\theta \cos \alpha_{m}z \qquad (C.70)$$

where $\alpha_{\rm m}$, $\mu_{\rm n}$, $\lambda_{\rm m}$, $A_{\rm n}(\lambda_{\rm m}R)$, $B_{\rm n}(\lambda_{\rm m}R)$ and $I_{\rm mn}^{\rm j}$ are given by Eq. C.46b to C.46d, C.48c, C.48d and C.69c respectively. Expressions for $C_{\rm n}(\lambda_{\rm m}R)$ and $D_{\rm n}(\lambda_{\rm m}R)$ differ depending on whether m is smaller or larger than m_{ℓ} . For $m \leq m_{\ell}$ they are given by Eq. C.50a and C.50b. For $m \geq m_{\ell} C_{\rm n}(\lambda_{\rm m}R)$ is given by Eq. C.50c and $D_{\rm n}(\lambda_{\rm m}R) = 0$. C.4 Vertical Ground Motion

C.4.1 Derivation of $\overline{p}_{O}^{Z}(z,\omega)$

 $\overline{P}_{O}^{Z}(z,\omega)$ is the complex frequency response function for the hydrodynamic pressures on the upstream face of the dam when the excitation is the vertical, rigid-body accelerations of the dam, the reservoir bottom and the banks. From Chapter 6, Eq. 6.3b to 6.3e and 6.4, the boundary conditions for the governing equation (Eq. C.3) are

$$\frac{\partial \overline{p}}{\partial r}$$
 (R, θ ,z) = 0 (C.71a)

$$\frac{\partial \overline{p}}{r \partial \theta} (r, \pi/4, z) = 0$$
 (C.71b)

$$\frac{\partial \overline{p}}{\partial z}(r,\theta,o) = -\frac{w}{g}$$
(C.71c)

$$\overline{p}(r,\theta,H) = 0 \tag{C.71d}$$

$$\frac{\partial \overline{p}}{r \partial \theta}$$
 (r,o,z) = 0 (C.71e)

In addition to these boundary conditions, no wave reflections at the upstream end of the reservoir $(r = \infty)$ are permitted.

For ease in satisfying the boundary conditions, the separated equations of motion (Eq. C.4a to C.4c) are rewritten as

$$\zeta''(z) + \left(\frac{\omega^2}{c^2} - \lambda^2\right) \zeta(z) = 0 \qquad (C.72a)$$

$$\Theta''(\theta) + \mu^2 \Theta(\theta) = 0 \qquad (C.72b)$$

$$\rho''(\mathbf{r}) + \frac{1}{r} \rho'(\mathbf{r}) + \left(\lambda^2 - \frac{\mu^2}{r^2}\right) \rho(\mathbf{r}) = 0 \qquad (C.72c)$$

where λ and μ are separation constants.

The solution of Eq. C.72b together with the boundary conditions given in Eq. C.71b and C.71e yields

$$\Theta(\theta) = B_n \cos \mu_n \theta \tag{C.73a}$$

where $\boldsymbol{\mu}_n$ is the value of $\boldsymbol{\mu}$ satisfying

$$\mu_n = 4n$$
 $n = 0, 1, 2, ...$ (C.73b)

and B_n are undetermined coefficients.

The solution of Eq. C.72c that satisfies boundary condition C.71a and the condition assuring no wave reflections at the upstream end of the reservoir depends on the form of λ . If λ is an imaginary number, a solution does not exist. When $\lambda = 0$ Eq. C.72c reduces to an equation of the Euler type. The general solution is

$$\rho(\mathbf{r}) = \begin{cases} A_{0} + B_{0} \ln \mathbf{r} & \mu_{n} = 0, \ \lambda = 0 \\ \mu_{n} - \mu_{n} & \mu_{n} \neq 0, \ \lambda = 0 \end{cases}$$
(C.74)

where A_0 , B_0 , A_1 and B_1 are constants and μ_n are the values of μ defined in Eq. C.73b. Evaluating the constants such that $\rho(\mathbf{r})$ satisfies the appropriate boundary condition results in $A_1 = B_0 = B_1 = 0$. Thus when $\lambda = 0$ there is a solution only in the case n = 0,

$$\rho(\mathbf{r}) = \mathbf{A} \qquad \text{for } \lambda = 0 \tag{C.75}$$

When λ is a real number Eq. C.72c is a form of Bessel's equation. Hankel functions of the first and second kind of order μ_n , $H_{\mu_n}^{(1)}(\lambda r)$ and $H_{\mu_n}^{(2)}(\lambda r)$, characterize the solution. However, as explained in Section C.2.1, $H_{\mu_n}^{(1)}(\lambda r)$ is omitted from the solution because it can be regarded as a wave reflected from the upstream boundary $(r = \infty)$. The solution is

$$\rho(\mathbf{r}) = D_{mn} \frac{H_{\mu}^{(2)}}{\mu_{n}} (\lambda_{mn} \mathbf{r}) \qquad n = 0, 1, 2...; \quad (C.76)$$
$$m = 1, 2, 3...$$

where D is a constant and λ_{mn} are the values of λ that satisfy the boundary condition given by Eq. C.71a.

The solution of Eq. C.72a involves the relationship between λ_{mn}^2 and ω^2/C^2 . If ω^2/C^2 is greater than λ_{mn}^2 (including $\lambda_{mn} = 0$) the solution of Eq. C.72a that satisfies boundary condition Eq. C.71d is

$$\zeta(z) = E_{mn} \sin \left[(H - z) \sqrt{\frac{\omega^2}{c^2} - \lambda_{mn}^2} \right]$$
(C.77)

where E_{mn} is a constant. If ω^2/C^2 is less than λ_{mn}^2 the solution that satisfies the boundary condition is

$$\zeta(z) = F_{mn} \sinh\left[(H - z) \sqrt{\lambda_{mn}^2 - \frac{\omega^2}{c^2}}\right]$$
(C.78)

Combining Eq. C.73, C.75, C.76, C.77 and C.78 the expression for $\overline{p}_{a}^{Z}(r,z,\omega)$ becomes

$$\overline{p}_{0}^{z}(\mathbf{r},z,\omega) = A_{0} \sin\left[\frac{\omega}{c} (H-z)\right]$$

$$+ \sum_{m=1}^{m_{Q}} \sum_{n=0}^{\infty} D_{mn} H_{4n}^{(2)} (\lambda_{mn}\mathbf{r})$$

$$\cdot \cos 4n\theta \sin\left[(H-z) \sqrt{\frac{\omega^{2}}{c^{2}} - \lambda_{mn}^{2}}\right]$$

$$+ \sum_{m=m_{Q}+1}^{\infty} \sum_{n=0}^{\infty} E_{mn} H_{4n}^{(2)} (\lambda_{mn}\mathbf{r})$$

$$\cdot \cos 4n\theta \sinh\left[(H-z) \sqrt{\frac{\omega^{2}}{c^{2}} - \lambda_{mn}^{2}}\right] \qquad (C.79)$$

where m_{ℓ} is the largest value of m such that $\frac{\omega}{C} > \lambda_{mn}$. \overline{p}_{O}^{Z} satisfies the remaining boundary condition if the constants are

$$A_{O} = \frac{w}{g} \cdot \frac{1}{\frac{\omega}{c} \cos\left(\frac{\omega H}{c}\right)}$$
(C.80a)

$$D_{mn} = E_{mn} = 0 \tag{C.80b}$$

After substituting Eq. C.80 into Eq. C.79 and rearranging terms, the complex frequency response for pressure $\overline{p}_{o}^{z}(z,\omega)$ becomes

$$\overline{p}_{O}(z,\omega) = \frac{2 w H}{g\pi} \frac{\sin\left[\frac{\pi}{2} \frac{\omega}{\omega_{1}^{r}} \left(1 - \frac{z}{H}\right)\right]}{\frac{\omega}{\omega_{1}^{r}} \cos\left[\frac{\pi}{2} \left(\frac{\omega}{\omega_{1}^{r}}\right)\right]}$$
(C.81a)

$$\omega_1^r = \frac{\pi C}{2H}$$
(C.81b)

Kotsubo [5] obtained the pressure on the face of rigid arch dams for excitation $\tilde{v}_g^z(t) = -\alpha g \sin \omega t$. Taking the imaginary part of the pressure (Eq. C.2 and C.81) and multiplying by $-\alpha g$, the result given for p_o^z specializes to Kotsubo's.

APPENDIX D - COMPUTATION OF HYDRODYNAMIC TERMS

This appendix presents the method used in the computer program (Appendix H) to compute the hydrodynamic loads on the dam due to horizontal excitation of the arch dam - reservoir system.

D.1 Ground Motion in the Upstream-Downstream Direction

The vector of nodal point loads associated with hydrodynamic pressures on the upstream face of the dam due to harmonic ground motion in the upstream-downstream direction (see Chapter 4, Section 4.3.4) is

$$\underline{\bar{\varrho}}^{f}(\omega) = \underline{\bar{\varrho}}_{OD}^{x}(\omega) + \underline{\bar{\varrho}}_{OB}^{x}(\omega) + \sum_{k=1}^{J} \overline{\bar{Y}}_{k}^{x}(\omega) \underline{\bar{\varrho}}_{k}(\omega)$$
(D.1)

where the force vectors $\underline{\bar{Q}}_{OD}^{x}$, $\underline{\bar{Q}}_{OB}^{x}$ and $\underline{\bar{Q}}_{k}^{x}$ are static equivalents of the corresponding pressure functions $\underline{\bar{p}}_{OD}^{x}$, $\underline{\bar{p}}_{OB}^{x}$, and $\underline{\bar{p}}_{k}^{x}$ (Chapter 4, Eq. 4.8 to 4.10). Taking advantage of the symmetry of the mode shapes, dam geometry and pressure functions and applying the principle of virtual work, the generalized hydrodynamic loads can be expressed in integral form as

$$\left\{\phi_{j}^{f}\right\}_{OD}^{T} \stackrel{\mathbf{x}}{=} 2 \int_{O}^{H} \int_{O}^{\pi/4} \phi_{j}^{fr}(\theta, z) \bar{p}_{OD}^{x}(\theta, z, \omega) \ \mathrm{R} \ \mathrm{d}\theta \ \mathrm{d}z \qquad (D.2a)$$

$$\left\{\phi_{j}^{f}\right\}^{T} \underline{\underline{\tilde{Q}}}_{OB}^{X} = 2 \int_{O}^{H} \int_{O}^{H} \int_{O}^{\pi/4} \phi_{j}^{fr}(\theta, z) \ \underline{\bar{p}}_{OB}^{X}(\theta, z, \omega) \ \mathbb{R} \ d\theta \ dz \qquad (D.2b)$$

$$\left\{\phi_{j}^{f}\right\}^{T} \underline{\tilde{\varrho}}_{k}^{x} = 2 \int_{0}^{H} \int_{0}^{\pi/4} \phi_{j}^{fr}(\theta, z) \ \bar{p}_{k}^{x}(\theta, z, \omega) \ R \ d\theta \ dz \qquad (D.2c)$$

185

where ϕ_j^{f} is a sub-vector of the $j^{\underline{th}}$ symmetric mode shape ϕ_j of the dam (without water in the reservoir) containing elements associated with DOF on the upstream face of the dam. $\phi^{fr}(\theta,z)$ is the continuous function analogue for the radial component of ϕ_j^{f} . Since the pressure acts normal to the upstream face of the dam, only the radial component of the mode shape (i.e., the component normal to the upstream face) is required for determining the generalized hydrodynamic loads. Note that in Chapter 4, $\phi_j^{fr}(\theta,z)$ is expressed in terms of its x and y components (see Fig. 2.1) as

$$\phi_{j}^{\text{fr}}(\theta,z) = \phi_{j}^{\text{fx}}(\theta,z) \cos \theta + \phi_{j}^{\text{fy}}(\theta,z) \sin \theta \qquad (D.3)$$

Substitution of the expressions for pressure from Chapter 4 (Eq. 4.8 to 4.11) into Eq. D.2 and interchanging integration and summation gives

$$\begin{split} \left\{ \phi_{j}^{f} \right\}^{T} \tilde{\underline{Q}}_{OB}^{x} &= \frac{32\sqrt{2} |w| R^{2} H}{g\pi^{2}} \sum_{m=1}^{\infty} \sum_{n=0}^{\infty} \frac{(-1)^{m}}{(2m-1)} \frac{\varepsilon_{n}^{(-1)}}{(1-16n^{2})} I_{mn}^{j} \\ & \cdot \left[C_{n}^{(\lambda_{m}R)} + iD_{n}^{(\lambda_{m}R)} \right] \end{split} \tag{D.4} \\ \left\{ \phi_{j}^{f} \right\}^{T} \tilde{\underline{Q}}_{OB}^{x} &= \frac{4\sqrt{2} |w| R^{2} H}{g\pi} \left\{ \frac{1}{H} \int_{0}^{H} \int_{0}^{\pi/4} \phi_{j}^{fx}^{(\theta, z)} \\ & \cdot \left[\sum_{m=1}^{\infty} \left[E_{m}^{(\lambda_{m}R)} + iF_{m}^{(\lambda_{m}R)} \right] \cos \alpha_{m}^{z} \right] d\theta dz \\ & + \frac{8}{\pi} \sum_{m=1}^{\infty} \sum_{n=0}^{\infty} \varepsilon_{n} I_{mn}^{j} \left[U_{mn}^{(\lambda_{m}R)} + iV_{mn}^{(\lambda_{m}R)} \right] \right\} \tag{D.5}$$

$$\left\{\phi_{j}^{f}\right\}^{T} \underline{\underline{o}}_{k} = \frac{32 \text{ w } \text{R}^{2} \text{H}}{g\pi} \sum_{m=1}^{\infty} \sum_{n=0}^{\infty} \varepsilon_{n} \text{I} \frac{j_{1} \text{ k}}{mn} \left[C \left(\lambda \text{ R}\right) + \text{iD} \left(\lambda \text{ R}\right) \right]$$
(D.6)

where $C_n(\lambda_m R)$, $D_n(\lambda_m R)$, $E_m(\lambda_m R)$, $F_m(\lambda_m R)$, $U_{mn}(\lambda_m R)$, $V_{mn}(\lambda_m R)$, α_m , λ_m , ε_n , and I_{mn}^j are given in Eq. 4.11. I_{mn}^j can be rewritten using Eq. 4.11c and D.3 as

$$I_{mn}^{j} = \frac{1}{H} \int_{0}^{H} \int_{0}^{\pi/4} \phi_{j}^{fr}(\theta, z) \cos 4n\theta \cos \alpha_{m} z \, d\theta \, dz \qquad (D.7)$$

The expressions C_n , D_n , U_{mn} and V_{mn} needed to compute the generalized loads (Eq. D.4 to D.6) can be obtained using standard Bessel function evaluation techniques. The functions C_n and D_n are discussed further in Appendix E. However, the procedure for determining I_{mn}^{j} and the integral portion of Eq. D.5 require additional explanation.

Using the finite element descritization of the dam, the mode shapes on the upstream face of the dam, ϕ_j^{fr} , are obtained at the upstream face nodal points. Each sixteen node shell element (Fig. H2 and H3) used in the descritization of the dam is oriented such that one of the eight node surfaces coincides with the upstream face. Since the upstream face is a segment of a circular cylinder of radius R, it is convenient to descritize the dam so that the eight node surface associated with element e is defined in cylindrical coordinates (Fig. 2.1) by two values of the height coordinate (z_1^e, z_2^e) and two values of the angular coordinate (θ_1^e, θ_2^e) ; the value of the radial coordinate is the constant upstream radius R. Thus, the location of the nodes on the upstream surface are defined by the global coordinate system (θ, z) . Within this surface element a local coordinate system (ξ, η) is defined such that ξ and η vary from -1 to 1 (see Fig. D1). The global coordinates are given in terms of the local coordinates as

$$\theta^{e} = \frac{1}{2}(1 - \xi)\theta_{1}^{e} + \frac{1}{2}(1 + \xi)\theta_{2}^{e}$$
(D.8a)

$$z^{e} = \frac{1}{2}(1 - \eta)z_{1}^{e} + \frac{1}{2}(1 + \eta)z_{2}^{e}$$
 (D.8b)

For a particular element e, the values of the mode shape vectors $\underline{\phi}_{j}^{rf}$ are given at the eight nodal points on the upstream face of the dam. $\underline{\phi}_{j}^{rf}$ can be expressed as a continuous function within element e as

$$\phi_{j}^{\text{fre}}(\theta, z) = \sum_{i=1}^{8} N_{j}(\xi, \eta) \phi_{ji}^{\text{fre}}$$
(D.9)

where φ_{ji}^{fre} is the value of $\underline{\varphi}_{j}^{fr}$ at the $i\frac{th}{m}$ nodal point of element e. The interpolation functions N are

$$N_{1} = \frac{1}{4}(1 - \xi)(1 - \eta)(-\xi - \eta - 1)$$

$$N_{2} = \frac{1}{4}(1 - \xi)(1 - \eta)(\xi - \eta - 1)$$

$$N_{3} = \frac{1}{4}(1 + \xi)(1 + \eta)(\xi + \eta - 1)$$

$$N_{4} = \frac{1}{4}(1 - \xi)(1 + \eta)(-\xi + \eta - 1)$$

$$N_{5} = \frac{1}{2}(1 - \xi^{2})(1 - \eta)$$

$$N_{6} = \frac{1}{2}(1 + \xi)(1 - \eta^{2})$$

$$N_{7} = \frac{1}{2}(1 - \xi^{2})(1 + \eta)$$

$$N_{8} = \frac{1}{2}(1 - \xi)(1 - \eta^{2})$$

(D.10)

The integral I_{mn}^{j} (Eq. D.7) can be written as the sum of contributions from each eight node element on the upstream face of the dam within the region acted upon by the hydrodynamic forces $(0 \le \theta \le \pi/4), (0 \le z \le H)$. Letting NEL represent the number of elements within the integration region and substituting Eq. D.8, D.9, and D.10 into Eq. D.7, the integral becomes

$$\mathbf{I}_{mn}^{j} = \frac{1}{H} \sum_{e=1}^{NEL} \left(\frac{\theta_{2}^{e} - \theta_{1}^{e}}{2} \right) \left(\frac{z_{2}^{e} - z_{1}^{e}}{2} \right) \int_{-1}^{1} \int_{-1}^{1} \int_{-1}^{1} \cdot \left[\sum_{i=1}^{8} N_{i}(\xi, \eta) \phi_{ji}^{fre} \right] \cos \alpha_{m} \left[\left(\frac{z_{1}^{e} + z_{2}^{e}}{2} \right) + \left(\frac{z_{2}^{e} - z_{1}^{e}}{2} \right) \eta \right] \\ \cos 4n \left[\left(\frac{\theta_{1}^{e} + \theta_{2}^{e}}{2} \right) + \left(\frac{\theta_{2}^{e} - \theta_{1}^{e}}{2} \right) \xi \right] d\xi d\eta \qquad (D.11)$$

In the computer program described in Appendix H the above integral (Eq. D.11) is computed by direct integration within each element e. Although numerical integration schemes (such as Gaussian quadrature) could be used to compute I_{mn}^{j} , the oscillating nature of cos $4n\theta$ and $\cos \alpha_{m} z$ for large values of m and n is difficult to capture with low order polynomial approximations.

The integral in Eq. D.5, I^j, can be written as

$$I^{j} = \int_{O}^{H} \int_{O}^{\pi/4} \phi_{j}^{fr}(\theta, z) \psi(z) d\theta dz \qquad (D.12)$$

$$\psi(z) = \sum_{m=1}^{\infty} \left[E_{mn}(\lambda_m R) + iF_m(\lambda_m R) \right] \cos \alpha_m z \qquad (D.13)$$

I^j can be written as the sum of contributions from each eight node element on the upstream face of the dam within the region acted upon by the hydrodynamic forces ($0 \le \theta \le \pi/4$) ($0 \le z \le H$). For a particular eight node element e, $\psi(z)$ can be expressed as

$$\psi^{e}(z) = \sum_{i=1}^{8} N_{i}(\xi, \eta) \psi_{i} = \left\{ \underline{N} \right\}^{T} \left\{ \underline{\psi}^{e} \right\}$$
(D.14)

where N_i is the interpolation functions given in Eq. D.10 and ψ_i^e is the values of $\psi(z)$ at nodal point i associated with element e. $\left\{\underline{N}\right\}$ and $\left\{\underline{\psi}^e\right\}$ are column vectors with elements N_i and ψ_i . Substituting Eq. D.8, D.9 and D.14 into Eq. D.12, I^j can be written as

$$\mathbf{I}^{j} = \sum_{e=1}^{NEL} \left(\frac{\theta_{2}^{e} - \theta_{1}^{e}}{2} \right) \left(\frac{z_{2}^{e} - z_{1}^{e}}{2} \right) \left\{ \underline{\psi}^{e} \right\}^{T}$$
$$\cdot \int_{-1}^{1} \int_{-1}^{1} \left\{ \underline{N} \right\} \left\{ \underline{N} \right\}^{T} d\xi d\eta \left\{ \underline{\phi}_{j}^{fre} \right\}$$
(D.15)

The direct application of one-dimensional numerical integration formulas yields the value of the integral in Eq. D.15 as

$$\int_{-1}^{1} \int_{-1}^{1} \{\underline{N}\}\{\underline{N}\}^{T} d\xi d\eta = \sum_{i=1}^{3} \sum_{k=1}^{3} W_{i} W_{k} \{\underline{N}(\xi_{i},\eta_{k})\} \{\underline{N}(\xi_{i},\eta_{k})\}^{T}$$
(D.16)

where (ξ_i,η_k) are the integration points and W_i, W_k are appropriate weight functions.

D.2 Ground Motion in the Cross-Stream Direction

The vector of nodal point loads associated with hydrodynamic pressures on the upstream face of the dam due to harmonic ground motion in the cross-stream direction (see Chapter 5, Section 5.3.4) is

$$\underline{\underline{\tilde{\varrho}}}^{\mathrm{f}}(\omega) = \underline{\underline{\tilde{\varrho}}}_{\mathrm{OD}}^{\mathrm{Y}}(\omega) + \underline{\underline{\tilde{\varrho}}}_{\mathrm{OB}}^{\mathrm{Y}}(\omega) + \sum_{k=1}^{\mathrm{J}} \overline{\tilde{\mathrm{Y}}}_{k}^{\mathrm{Y}}(\omega) \underline{\underline{\tilde{\varrho}}}_{k}(\omega) \quad (D.17)$$

where the force vectors $\underline{\tilde{Q}}_{OD}^{Y}$, $\underline{\tilde{Q}}_{OB}^{Y}$ and $\underline{\tilde{Q}}_{k}^{Y}$ are static equivalents of the corresponding pressure functions \bar{p}_{OD}^{Y} , \bar{p}_{OB}^{Y} and \bar{p}_{k}^{Y} respectively (Chapter 5, Eq. 5.8 to 5.10). The generalized hydrodynamic loads can be expressed in integral form as

$$\left\{\phi_{j}^{f}\right\}^{T} \underline{\tilde{\varrho}}_{OD}^{Y} = 2 \int_{O}^{H} \int_{O}^{\pi/4} \phi_{j}^{fr}(\theta, z) \ \bar{p}_{OD}^{Y}(\theta, z, \omega) \ R \ d\theta \ dz \quad (D.18a)$$

$$\left\{\phi_{j}^{f}\right\}_{OB}^{T} \stackrel{\mathbb{Q}}{\underline{o}}_{OB} = 2 \int_{O}^{H} \int_{O}^{\pi/4} \phi_{j}^{fr}(\theta, z) \tilde{p}_{OB}^{Y}(\theta, z, \omega) \ R \ d\theta \ dz \quad (D.18b)$$

$$\left\{\phi_{j}^{f}\right\}^{T} \underline{\tilde{\varrho}}_{k}^{Y} = 2 \int_{0}^{H} \int_{0}^{\pi/4} \phi_{j}^{fr}(\theta, z) \ \bar{p}_{k}^{Y}(\theta, z, \omega) \ R \ d\theta \ dz \qquad (D.18c)$$

where ϕ_j^{f} is a sub-vector of the $j^{\underline{th}}$ antisymmetric mode shape ϕ_j of the dam (without water) containing elements associated with DOF on the upstream face of the dam. $\phi_j^{fr}(\theta, z)$ is the continuous function analogue of ϕ_j^{f} . Substitution of the expressions for pressure from Chapter 5 (Eq. 5.8 to 5.11) into Eq. D.18 and interchanging integration and summation gives

$$\left\{ \phi_{j}^{f} \right\}^{T} \underline{\tilde{\varrho}}_{OD}^{Y} = \frac{64\sqrt{2} w R^{2} H}{g\pi^{2}} \sum_{m=1}^{\infty} \sum_{n=0}^{\infty} \frac{(-1)^{m}}{(2m-1)} \frac{(-1)^{n}}{(\mu_{n}^{2}-1)} I_{mn}^{j}$$

$$\bullet \left[C_{n} (\lambda_{m}R) + iD_{n} (\lambda_{m}R) \right]$$
(D.19)

$$\left\{\phi_{j}^{f}\right\}^{T} \underline{\tilde{\varrho}}_{OB}^{Y} = \frac{4\sqrt{2} w R^{2} H}{g\pi} \left\{\frac{1}{H} \int_{O}^{H} \int_{O}^{\pi/4} \phi_{j}^{fr}(\theta, z)\right\}$$

•
$$\left[\sum_{m=1}^{\infty} \left[E_{m}(\lambda_{m}R) + iF_{m}(\lambda_{m}R) \right] \cos \alpha_{m}z \right] d\theta dz$$

$$+ \frac{16}{\pi} \sum_{m=1}^{\infty} \sum_{n=0}^{\infty} I_{mn}^{j} \left[U_{mn}(\lambda_{m}R) + iV_{mn}(\lambda_{m}R) \right] \right\}$$
(D.20)

$$\left\{ \phi_{j}^{f} \right\}_{\underline{\tilde{Q}}_{k}}^{T} = - \frac{64\sqrt{2} w R^{2} H}{g^{T}} \sum_{m=1}^{\infty} \sum_{n=0}^{\infty} I_{mn}^{j} I_{mn}^{k}$$

$$\cdot \left[C_{n} (\lambda_{m}^{R}) + i D_{n} (\lambda_{m}^{R}) \right]$$

$$(D.21)$$

where C_n , D_n , E_m , F_m , U_{mn} , V_{mn} , α_m , λ_m , and I_{mn}^j are given in Eq. 5.11. I_{mn}^j can be rewritten as

$$I_{mn}^{j} = \frac{1}{H} \int_{0}^{H} \int_{0}^{\pi/4} \phi_{j}^{fr}(\theta, z) \sin \mu_{n} \theta \cos \alpha_{m} z \, d\theta \, dz \qquad (D.22)$$

The expressions C_n , D_n , U_{mn} , and V_{mn} can be obtained using standard Bessel function evaluation techniques. The procedures for determining I_{mn}^{j} and the integral portion of Eq. D.20 parallel those already discussed in the previous section (D.1).

D.3 Vertical Ground Motion

The vector of nodal point loads associated with hydrodynamic pressures on the upstream face of the dam due to harmonic vertical ground motion (see Chapter 6, Section 6.3.4) is

$$\underline{\tilde{\varrho}}^{f}(\omega) = \underline{\tilde{\varrho}}_{o}^{z}(\omega) + \sum_{k=1}^{J} \overline{\tilde{Y}}_{k}^{z}(\omega) \quad \underline{\tilde{\varrho}}_{k}^{z}(\omega)$$
(D.23)

where the force vectors $\underline{\tilde{Q}}_{O}^{z}(\omega)$ and $\underline{\tilde{Q}}_{k}^{z}(\omega)$ are static equivalents of $\bar{p}_{O}^{z}(\omega)$ and $\bar{p}_{k}^{z}(\omega)$. Since \bar{p}_{k}^{z} is identical to the corresponding function, \bar{p}_{k}^{x} , associated with upstream-downstream ground motion (see Chapter 6), the generalized hydrodynamic load is given by Eq. D.6. Applying the principle of virtual work, the generalized load associated with $\underline{\tilde{Q}}_{O}^{z}$ can be expressed in the integral form as

$$\left\{\phi_{j}^{f}\right\}^{T} \underbrace{\bar{\varrho}}_{o}^{z} = 2 \int_{o}^{H} \int_{o}^{\pi/4} \phi_{j}^{fr}(\theta, z) \quad \bar{p}_{o}^{z}(\theta, z, \omega) \quad R \ d\theta \ dz \qquad (D.24)$$

where \overline{p}_{O}^{Z} is given by Eq. 6.8 in Chapter 6. The procedures for determining the above integral follow those already presented in Section D.1 for evaluating the integral portion of Eq. D.5.

APPENDIX E - LIMIT ANALYSIS

E.l Bessel Function Behavior

The analytical expressions for hydrodynamic pressures on arch dams given in Chapters 4, 5 and 6 involve Bessel functions of the first kind $J_n(x)$, Bessel functions of the second kind $Y_n(x)$ and modified Bessel functions of the second kind $K_n(x)$ where n is an integer and the argument x is a real number greater than zero. In the expressions for pressures on the dam (Eq. 4.8 to 4.11 and 5.8 to 5.11), the Bessel functions occur in the following form. For $m \leq m_{\varrho}$

$$C_{n}(x) = \frac{A_{n}(x) J_{4n}(x) + B_{n}(x) Y_{4n}(x)}{x \left[A_{n}^{2}(x) + B_{n}^{2}(x)\right]} \quad n = 0, 1, 2, ... \quad (E.1)$$

$$D_{n}(x) = \frac{B_{n}(x) J_{4n}(x) - A_{n}(x) Y_{4n}(x)}{x \left[A_{n}^{2}(x) + B_{n}^{2}(x)\right]} \qquad n = 0, 1, 2, \dots$$
(E.2)

where

$$A_n(x) = J_{4n-1}(x) - J_{4n+1}(x)$$
 (E.3)

$$B_{n}(x) = Y_{4n-1}(x) - Y_{4n+1}(x)$$
 (E.4)

For $m > m_0$

$$C_{n}(x) = -\frac{K_{4n}(x)}{x \left[\frac{K_{4n-1}(x) + K_{4n+1}(x)}{4n+1} \right]} \qquad n = 0, 1, 2, \dots \quad (E.5)$$

$$D_n(x) = 0$$
 $n = 0, 1, 2, ...$

the function given in Eq. E.1, E.2 and E.5 are plotted in Fig. El to E3. Although the individual Bessel functions $J_n(x)$ and $Y_n(x)$ oscillate about their null values, and $Y_n(x)$ and $K_n(x)$ are unbounded at x = 0, the composite functions $C_n(x)$ and $D_n(x)$ are very well behaved (Fig. El to E3). As shown in the figures, as x approaches zero $C_n(x)$ and $D_n(x)$ have limiting values of

$$\lim_{x \to 0} C_n(x) = -\frac{1}{8n} \qquad n = 0, 1, 2, \dots \qquad (E.6)$$

$$\operatorname{Lim}_{\mathbf{x} \to \mathbf{0}} \mathbf{n}_{\mathbf{n}}(\mathbf{x}) = \begin{cases} \pi/4 & n = 0, \ m \leq m_{g} \\ 0 & n = 0, \ m > m_{g} \\ 0 & n = 1, 2, 3... \end{cases} (E.7)$$

Notice that as x approaches zero $C_0(x)$ is the only unbounded function (Eq. E.6 and E.7). In the expressions for hydrodynamic pressures on the dam (Eq. 4.8 to 4.11 and 5.8 to 5.11) the argument x, of the functions $C_n(x)$ and $D_n(x)$ approaches zero as the frequency of excitation approaches the resonant frequencies of the water in the reservoir.

E.2 Gravity Dam Pressures as Limits of Arch Dam Pressures

This section of Appendix E shows that as the central angle of the dam approaches 180° and $R \rightarrow \infty$, representing a straight dam in the limit, $\bar{p}_{OD}^{\mathbf{x}}(\theta, \mathbf{z}, \omega)$ approaches the previously obtained [22] two-dimensional solution of the wave equation for a straight gravity dam. For an arch dam with central angle $2\theta_{a}$, $\bar{p}_{OD}^{\mathbf{x}}(\theta, \mathbf{z}, \omega)$ can be found as a generalization of Eq. 4.8.

$$\bar{p}_{OD}^{x}(\theta, z, \omega) = \frac{8 \text{ w R}}{g\pi} \frac{\sin \theta_{a}}{\theta_{a}} \sum_{m=1}^{\infty} \sum_{n=0}^{\infty} \frac{(-1)^{n}}{2m-1} \frac{\varepsilon_{n}(-1)^{n}}{(1-\mu_{n}^{2})}$$

$$\cdot \left[C_{n}(\lambda_{m}^{R}) + iD_{n}(\lambda_{m}^{R}) \right] \cos \mu_{n}^{\theta} \cos \alpha_{m}^{z} \qquad (E.8)$$

where

$$\mu_n = \frac{n\pi}{\theta_a} \qquad n = 0, 1, 2, \dots \qquad (E.9a)$$

and m_{ℓ} , w, ε_n , λ_m , α_m are given in Eq. 4.11. Expressions for C_n and D_n differ depending on whether m is smaller than m_{ℓ} or larger than m_{ℓ} . For $m \leq m_{\ell}$ they are as follows

$$C_{n}(\lambda_{m}R) = \frac{\left[A_{n}(\lambda_{m}R) J_{\mu_{n}}(\lambda_{m}R) + B_{n}(\lambda_{m}R) Y_{\mu_{n}}(\lambda_{m}R)\right]}{\lambda_{m}R\left[A_{n}^{2}(\lambda_{m}R) + B_{n}^{2}(\lambda_{m}R)\right]}$$
(E.9b)

$$D_{n}(\lambda_{m}R) = \frac{B_{n}(\lambda_{m}R) J_{\mu}(\lambda_{m}R) - A_{n}(\lambda_{m}R) Y_{\mu}(\lambda_{m}R)}{\lambda_{m}R \left[A_{n}^{2}(\lambda_{m}R) + B_{n}^{2}(\lambda_{m}R)\right]}$$
(E.9c)

where

$$A_{n}(\lambda_{m}R) = J_{\mu_{n}-1}(\lambda_{m}R) - J_{\mu_{n}+1}(\lambda_{m}R)$$
(E.9d)

$$B_{n}(\lambda_{m}R) = Y_{\mu_{n}-1}(\lambda_{m}R) - Y_{\mu_{n}+1}(\lambda_{m}R)$$
(E.9e)

For m > m_g the above functions are as follows:

$$C_{n}(\lambda_{m}R) = - \frac{K_{\mu_{n}}(\lambda_{m}R)}{\lambda_{m}R[K_{\mu_{n}}-1 (\lambda_{m}R) + K_{\mu_{n}}+1 (\lambda_{m}R)]}$$
(E.9f)

$$D_{n} \left(\lambda_{R} \right) = 0 \tag{E.9g}$$

The above expressions specialize to those given in Eq. 4.8 and 4.11 for dams with $\theta_a = \pi/4$ (90° included angle from bank to bank).

In order to extract the gravity dam pressure expression, $\overline{p}_{g}(z,\omega)$, from the above expression for arch dams let $\theta_{a} = \pi/2$ (giving $\mu_{n} = 2n$), $R \neq \infty$ and $\theta = 0$. In addition multiply the numerator and denominator of Eq. E.8 by λ_{m} and rearrange terms. $\overline{p}_{OD}^{x}(o,z,\omega)$ can now be written as

$$\overline{p}_{OD}^{\mathbf{x}}(\mathbf{o},\mathbf{z},\omega) = \frac{32 \text{ w H}}{g\pi^{3}} \left\{ \sum_{m=1}^{\infty} \frac{(-1)^{m} \cos \alpha_{m} \mathbf{z}}{(2m-1) \sqrt{\left|(2m-1)^{2} - \left(\frac{\omega}{\omega_{1}^{r}}\right)^{2}\right|}} \right.$$
$$\cdot \lim_{R \to \infty} \sum_{m=0}^{\infty} \frac{\varepsilon_{n}(-1)^{n}}{(1-4n^{2})} \lambda_{m}^{R} \left[C_{n}(\lambda_{m}^{R}) + iD_{n}(\lambda_{m}^{R}) \right] \right\}$$
(E.10)

where, from Eq. 4.11b,

$$\lambda_{\rm m}^{\rm R} = \frac{\pi R}{2 \rm H} \left[\sqrt{\left| (2m-1)^2 - \left(\frac{\omega}{\omega_{\rm l}^{\rm r}} \right)^2 \right|} \right]$$
(E.11)

The limit of $\lambda_{m}RC_{n}(\lambda_{m}R)$ and $\lambda_{m}RD_{n}(\lambda_{m}R)$ as $R \rightarrow \infty$ can be obtained from Eq. E.9 by replacing the Bessel functions by their asymptotic expansions and taking the limit of the resulting expression. For $m \leq m_{\ell}$ the limiting process gives

$$\lim_{R \to \infty} \lambda_m^R C_n(\lambda_m^R) = 0 \qquad n = 0, 1, 2, \dots \qquad (E.12a)$$

$$\lim_{R \to \infty} \lambda_{m} R D_{n} (\lambda_{m} R) = 1/2 \qquad n = 0, 1, 2... \qquad (E.12b)$$

For $m > m_{\ell}$ the limits are

$$\lim_{R \to \infty} \lambda_{m} R C_{n}(x) = -1/2 \qquad n = 0, 1, 2, ... \quad (E.12c)$$

$$\lim_{R \to \infty} \lambda_m R D_n(\mathbf{x}) = 0 \qquad n = 0, 1, 2, \dots \qquad (E.12d)$$

Substituting the limiting values from Eq. E.12 into Eq. E.10 and taking the limit within the summation term by term. $p_{OD}^{X}(o,z,\omega)$ can be written as follows:

$$\bar{p}_{OD}^{x}(0,z,\omega) = \frac{16 \text{ w H}}{g\pi^{3}} \left\{ \sum_{m=1}^{m_{\mathcal{L}}} \frac{i(-1)^{m} \cos \alpha_{m} z}{(2m-1)\sqrt{\left|(2m-1)^{2} - \left(\frac{\omega}{\omega_{1}^{r}}\right)^{2}\right|}} \sum_{n=0}^{\infty} \frac{\varepsilon_{n}(-1)^{n}}{(1-4n^{2})} \right\}$$

$$-\sum_{m=m_{g}+1}^{\infty} \frac{(-1)^{m} \cos \alpha_{m} z}{(2m-1) \sqrt{\left|(2m-1)^{2} - \left(\frac{\omega}{\omega_{1}^{r}}\right)^{2}\right|}} \sum_{n=0}^{\infty} \frac{\varepsilon_{n} (-1)^{n}}{(1-4n^{2})} \right\}$$
(E.13)

Removing the absolute value sign and noting that

$$\sum_{n=0}^{\infty} \frac{\varepsilon_n (-1)^n}{(1-4n^2)} = \frac{\pi}{2}$$
 (E.14)

The expression given in Eq. E.13 can be written as

$$\bar{p}_{OD}^{x}(o,z,\omega) = \frac{8 \text{ w H}}{g\pi^{2}} \sum_{m=1}^{\infty} \frac{(-1)^{m-1}}{(2m-1)\sqrt{|(2m-1)^{2} - (\frac{\omega}{\omega_{1}^{r}})^{2}|}} \cos \alpha_{m} z \qquad (E.15)$$

The above equation is identical to the corresponding expression, $\overline{p}_{g}(z,\omega)$, for straight gravity dams [22].

E.3 Dam Response at Resonant Frequencies of Fluid Domain

If only the fundamental vibration mode of the dam is included, the response at a resonant frequency of the fluid domain can be obtained through a limiting process. If the excitation is only the motion of the base of the dam in the upstream-downstream direction and the banks are stationary (i.e., $\bar{p}_{OB}^{X}(\theta, z, \omega) = \bar{Q}_{OB}^{X}(\theta, z, \omega) = 0$), the response of the dam (from Chapter 4, Eq. 4.14 and 4.17) can be written as follows:

$$\overline{\widetilde{Y}}_{1}^{x}(\omega) = \frac{L_{1}^{OX} + B_{1}(\omega)}{M_{1}\left[-1 + 2i\xi_{1}\left(\frac{\omega_{1}}{\omega}\right) + \left(\frac{\omega_{1}}{\omega}\right)^{2}\right] - B_{2}(\omega)}$$
(E.16)

where

- L_1^{OX} = Generalized force due to the mass of the dam M_1 = Generalized mass of the dam in its fundamental mode of vibration
 - ξ = Damping ratio of the dam in its fundamental mode of vibration
- $\vec{Y}_1^{\mathbf{x}}(\omega) = \text{Complex frequency response function for generalized accel$ eration of the dam in its fundamental mode of vibration

 ω = Excitation frequency

 ω_1 = Fundamental natural frequency of the dam

The functions due to hydrodynamic loads on the dam, $B_1(\omega)$ and $B_2(\omega)$, are given in Appendix D (Eq. D.4 and D.6 respectively) as

$$B_{1}(\omega) = \frac{32\sqrt{2} w R^{2}H}{g\pi^{2}} \sum_{m=1}^{\infty} \sum_{n=0}^{\infty} \frac{(-1)^{m}}{(2m-1)} \frac{\varepsilon_{n}(-1)^{n}}{(1-16n^{2})} I_{mn}^{1} \left[C_{n}(\lambda_{m}R) + iD_{n}(\lambda_{m}R) \right]$$
....(E.17)

$$B_{2}(\omega) = -\frac{32 w R^{2} H}{g \pi} \sum_{m=1}^{\infty} \sum_{n=0}^{\infty} \varepsilon_{n} \left(I_{mn}^{1} \right)^{2} \left[C_{n} (\lambda_{m} R) + i D_{n} (\lambda_{m} R) \right]$$
(E.18)

where I_{mn}^{1} , ε_{n} , C_{n} and D_{n} are given in Chapter 4, Eq. 4.11. Restating Eq. 4.11b,

$$\lambda_{\rm m} R = \frac{\pi R}{2H} \sqrt{\left| (2m-1)^2 - \left(\frac{\omega}{\omega_{\rm l}^{\rm r}}\right)^2 \right|}$$
(E.19)

where the $m^{\underline{th}}$ resonant frequency of the fluid domain is

$$\omega_{\rm m}^{\rm r} = (2m-1) \frac{\pi C}{2H}$$
 m = 1,2,3,... (E.20)

When the excitation frequency ω equals the M resonant frequency $\omega_M^r,$

$$\lambda_{\rm m} R = \begin{cases} 0 & {\rm m} = M \\ \sqrt{\left| (2m-1)^2 - (2M-1)^2 \right|} & {\rm m} \neq M \end{cases}$$
(E.21)

The investigation into Bessel function behavior (Section E.1) shows that

$$\lim_{\substack{\omega \to \omega_{\rm M}}} C_{\rm n}(\lambda_{\rm m} R) = \begin{cases} -\infty & {\rm n} = 0 \\ -\frac{1}{8{\rm n}} & {\rm n} = 1, 2, 3, \dots \end{cases}$$
(E.22)

$$\lim_{\substack{\omega \to \omega_{M}}} D_{n}(\lambda_{m}R) = \begin{cases} 0 & n = 1, 2, 3, \dots \\ \pi/4 & n = 0 & \omega \neq (\omega_{M}^{r})^{+} & (E.23) \\ 0 & n = 0 & \omega \neq (\omega_{M}^{r})^{-} \end{cases}$$

where $\omega \div (\omega_{M}^{r})^{-}$ signifies that $\omega < \omega_{M}^{r}$ in the limiting process and conversely $\omega \div (\omega_{M}^{r})^{+}$ signifies that $\omega > \omega_{M}^{r}$ in the limiting process. $C_{n}(\lambda_{m}R)$ and $D_{n}(\lambda_{m}R)$ are smooth functions and are bounded for all values of $\lambda_{m}R$ except when n = 0 and $\lambda_{m}R \Rightarrow 0$ (i.e., when $\omega \Rightarrow \omega_{M}^{r}$). However, the $\lim_{\omega \Rightarrow \omega_{M}^{r}} C_{n}(\lambda_{m}R)$ and $\lim_{\omega \Rightarrow \omega_{m}^{r}} D_{n}(\lambda_{m}R)$ exist for all m = 1, 2, 3, ... and for n = 1, 2, 3, However, $\lim_{\omega \Rightarrow \omega_{M}^{r}} C_{0}(\lambda_{m}R)$ does not exist (i.e., $\lim_{\omega \Rightarrow \omega_{M}^{r}} C_{0}(\lambda_{m}R) \Rightarrow -\infty$). Thus, both the functions $B_{1}(\omega)$ and $B_{2}(\omega)$, Eq. E.17 and E.18 and consequently the numerator and denominator of Eq. E.16 contain terms that become unbounded as $\omega \Rightarrow \omega_{M}^{r}$.

The limit of Eq. E.16 as $\omega \rightarrow \omega_M^r$ can be obtained by factoring out the term that becomes unbounded, $C_o(\lambda_m R)$. Dividing both numerator and denominator by $C_o(\lambda_m R)$ and taking the limit, Eq. E.16 can be rewritten as

$$\operatorname{Lim}_{\substack{\omega \to \omega_{\mathrm{M}}^{\times}}} \overline{\tilde{Y}_{1}^{\times}}(\omega) = \frac{\frac{1}{C_{\mathrm{O}}(\lambda_{\mathrm{m}}^{\mathrm{R}})} + \frac{B_{1}(\omega)}{C_{\mathrm{O}}(\lambda_{\mathrm{m}}^{\mathrm{R}})}}{\frac{M_{1}\left(-1 + 2i\xi_{1}\left(\frac{\omega_{1}}{\omega}\right) + \left(\frac{\omega_{1}}{\omega}\right)^{2}\right)}{C_{\mathrm{O}}(\lambda_{\mathrm{m}}^{\mathrm{R}})} - \frac{B_{2}(\omega)}{C_{\mathrm{O}}(\lambda_{\mathrm{m}}^{\mathrm{R}})}}$$
(E.24)

Referring to Eq. E.17 and E.18, all terms in the numerator and denominator of Eq. E.24 approach zero as $\omega \rightarrow \omega_m^r$ except the term in $B_1(\omega)$ and $B_2(\omega)$ associated with m = M, n = 0. Thus, the limiting value of Eq. E.21 is

$$\lim_{\omega \to \omega_{\rm M}^{\rm r}} \bar{\mathbf{Y}}_{\rm l}^{\rm X}(\omega) = \frac{\sqrt{2} (1)^{\rm M}}{\pi (2M1) \mathbf{I}_{\rm MO}^{\rm l}}$$
(E.25)

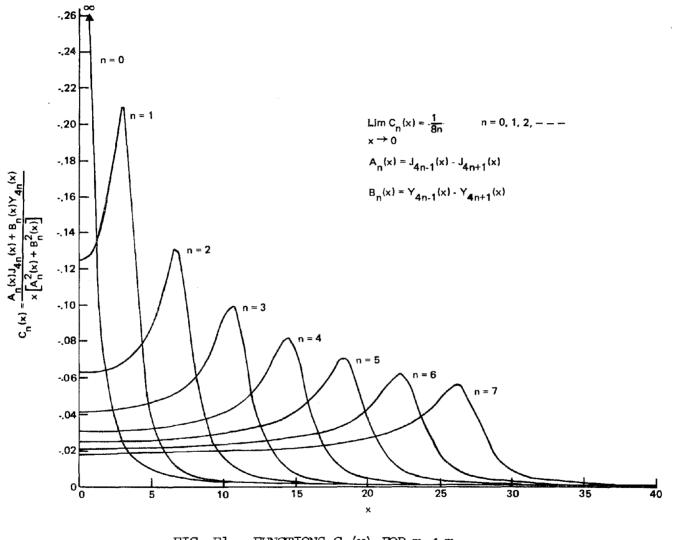


FIG. E1. FUNCTIONS $C_n(x)$ FOR $m \leq m_{\ell}$

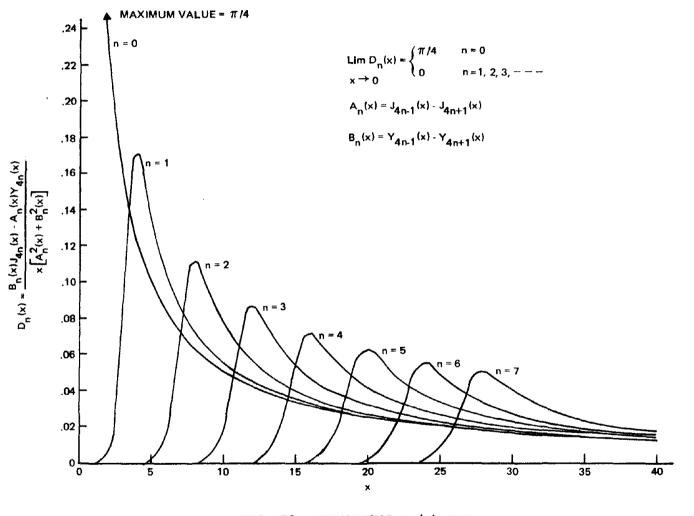


FIG. E2. FUNCTIONS $D_n(x)$ FOR $m \le m_{\ell}$

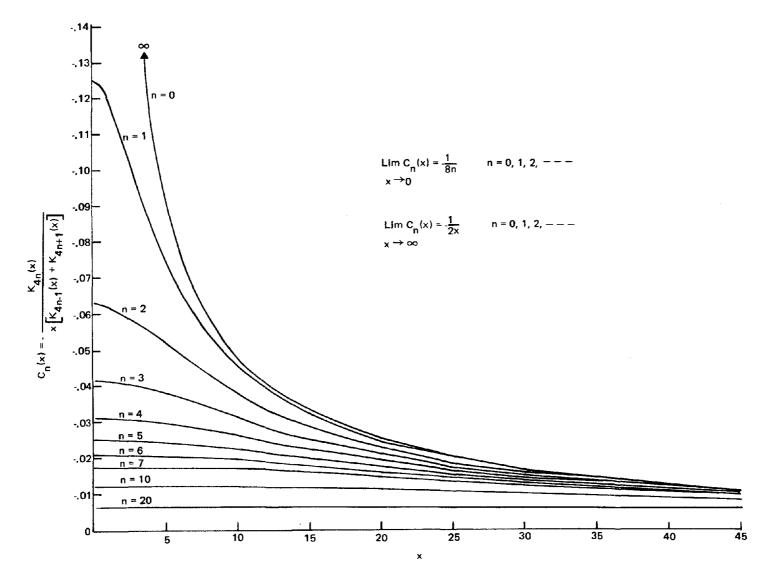


FIG. E3. FUNCTIONS $C_n(x)$ FOR $m > m_{\ell}$

APPENDIX F - SYMMETRY OF
$$\underline{S}(\omega)$$

F.1 Ground Motion In The Upstream-Downstream Direction

It can be shown that the matrix $\underline{S}(\omega)$ is symmetric. This is most conveniently demonstrated by expressing S_{jk} , for $j \neq k$ (Eq. 4.16) in integral form.

$$S_{jk}(\omega) = +2\omega^2 \int_{0}^{\pi/4} \int_{0}^{H} \phi_{j}^{f}(\theta, z) \overline{p}_{k}^{x}(\theta, z, \omega) dz d\theta$$
 (F.1)

The symmetric (with respect to θ) model vector $\underline{\phi}_{j}^{f}$ has been replaced by its continuous analogue $\phi_{j}^{f}(\theta, z)$ and the continuous pressure distribution $\overline{p}_{k}^{x}(\theta, z, \omega)$ replaces the load vector $\underline{\overline{Q}}_{k}^{x}(\omega)$. Using expressions for \overline{p}_{k}^{x} given in Eq. 4.10, Eq. F.1 may be expressed as

$$S_{jk}(\omega) = -\omega^{2} \frac{32 \text{ w R}}{g\pi} \int_{0}^{\pi/4} \int_{0}^{H} \left\{ \sum_{m=1}^{\infty} \sum_{n=0}^{\infty} \varepsilon_{n} \mathbf{I}_{mn}^{k} \right\}$$
$$\bullet \left[C_{n}(\lambda_{m}R) + iD_{n}(\lambda_{m}R) \right] \cos 4n\theta \cos \alpha_{m}z$$
$$\phi_{j}^{f}(\theta, z) dz d\theta$$
(F.2)

where ε_n , α_m , $\lambda_m R$, I_{mn}^k , C_n and D_n are defined in Eq. 4.11. The term I_{mn}^k (Eq. 4.11c) is an integral involving the mode shape ϕ_k^f . Recognizing that

$$\phi_{k}^{f}(\theta,z) = \phi_{k}^{xf}(\theta,z) \cos \theta + \phi_{k}^{yf}(\theta,z) \sin \theta$$
 (F.3)

where $\phi_k^{\text{xf}}(\theta,z)$ and $\phi_k^{\text{yf}}(\theta,z)$ are the x and y components of $\phi_k^f(\theta,z)$, I_{mn}^k can be written as

$$\mathbf{I}_{mn}^{k} = \frac{1}{H} \int_{0}^{\pi/4} \int_{0}^{H} \phi_{k}^{f}(\theta, z) \cos 4n\theta \cos \alpha_{m} z \, dz \, d\theta \qquad (F.4)$$

Substituting Eq. F.4 into F.2 and rearranging,

$$\begin{split} \mathbf{S}_{\mathbf{j}\mathbf{k}}(\omega) &= -\omega^2 \; \frac{32 \; w \; \mathbf{R}}{g \pi H} \; \int_{\mathbf{O}}^{\pi/4} \; \int_{\mathbf{O}}^{\mathbf{H}} \left\{ \sum_{m=1}^{\infty} \sum_{n=0}^{\infty} \varepsilon_n \right. \\ & \left. \int_{\mathbf{O}}^{\pi/4} \; \int_{\mathbf{O}}^{\mathbf{H}} \phi_{\mathbf{k}}^{\mathbf{f}}(\sigma, \tau) \; \cos \; 4n\sigma \; \cos \; \alpha_m \tau \; d\tau \; d\sigma \right. \\ & \left. \left[\mathbf{C}_n(\lambda_m \mathbf{R}) \; + \; i \mathbf{D}_n(\lambda_m \mathbf{R}) \right] \; \cos \; 4n\theta \; \cos \; \alpha_m z \right\} \\ & \left. \phi_{\mathbf{j}}^{\mathbf{f}}(\theta, z) \; dz \; d\theta \end{split}$$
 (F.5)

Interchanging the integral and summation signs and rearranging,

$$\begin{split} \mathbf{S}_{jk}(\omega) &= -\omega^2 \; \frac{32 \; w \; R}{g\pi H} \int_{0}^{\pi/4} \int_{0}^{H} \left\{ \sum_{m=1}^{\infty} \sum_{n=0}^{\infty} \varepsilon_n \right\} \\ &= \int_{0}^{\pi/4} \int_{0}^{H} \phi_{j}^{\mathbf{f}}(\sigma, \tau) \; \cos \; 4n\sigma \; \cos \; \alpha_m \tau \; d\tau \; d\sigma \\ &= \left[\mathbf{C}_{n}(\lambda_m R) \; + \; \mathbf{i} \mathbf{D}_{n}(\lambda_m R) \right] \; \cos \; 4n\theta \; \cos \; \alpha_m z \\ &= \phi_{k}^{\mathbf{f}}(\theta, z) \; dz \; d\theta \end{split}$$

(F.6)

$$= +2\omega^2 \int_0^{\pi/4} \int_0^H \phi_k^f(\theta, z) \, \overline{p}_j^x(\theta, z, \omega) \, dz \, d\theta \qquad (F.7)$$

$$= s_{kj}(\omega)$$
 (F.8)

Thus, the matrix $S(\omega)$ is symmetric.

F.2 Ground Motion In The Cross-Stream Direction

Express s_{jk} for $j \neq k$ (Eq. 5.15) in integral form.

$$s_{jk}(\omega) = +2\omega^2 \int_{0}^{\pi/4} \int_{0}^{H} \phi_{j}^{f}(\theta, z) \overline{p}_{k}^{Y}(\theta, z, \omega) dz d\theta \qquad (F.9)$$

in which the antisymmetric (with respect to θ) modal vector $\underline{\phi}_{j}^{f}$ has been replaced by its continuous analogue ϕ_{j}^{f} (θ, z) and the continuous pressure distribution $\overline{p}_{k}^{y}(\theta, z, \omega)$ replaces the load vector $\underline{\overline{Q}}_{k}^{y}(\omega)$. Using expressions for \overline{p}_{k}^{y} given in Eq. 5.10 and the mode shape relationship of Eq. F.3, $S(\omega)$ may be expressed

$$s_{jk}(\omega) = -\omega^2 \frac{64 \text{ w R}}{g\pi H} \int_0^{\pi/4} \int_0^H \left\{ \sum_{m=1}^\infty \sum_{n=0}^\infty \right\}$$

$$\int_{0}^{\pi/4} \int_{0}^{H} \phi_{k}^{f}(\sigma,\tau) \sin \mu_{n} \sigma \cos \alpha_{m} \tau \, d\tau \, d\sigma$$

$$\bullet \left[C_{n}(\lambda_{m}R) + iD_{n}(\lambda_{m}R) \right] \sin \mu_{n} \theta \cos \alpha_{m} z \right\}$$

$$\phi_{j}^{f}(\theta,z) \, dz \, d\theta \qquad (F.10)$$

where μ_n , α_m , λ_m , C_n and D_n are defined in Eq. 5.11. Interchanging the integral and summation signs and rearranging,

$$\begin{split} \mathbf{S}_{\mathbf{j}\mathbf{k}}(\omega) &= -\omega^2 \, \frac{64 \ \mathbf{w} \ \mathbf{R}}{g\pi H} \int_{\mathbf{0}}^{\pi/4} \int_{\mathbf{0}}^{\mathbf{H}} \left\{ \sum_{m=1}^{\infty} \sum_{n=0}^{\infty} \right. \\ & \left. \int_{\mathbf{0}}^{\pi/4} \int_{\mathbf{0}}^{\mathbf{H}} \phi_{\mathbf{j}}^{\mathbf{f}}(\sigma,\tau) \, \sin \, \mu_n \sigma \, \cos \, \alpha_m \tau \, d\tau \, d\sigma \right. \\ & \left. \left[\mathbf{C}_n(\lambda_m \mathbf{R}) \, + \, i \mathbf{D}_n(\lambda_m \mathbf{R}) \right] \, \sin \, \mu_n \theta \, \cos \, \alpha_m z \, \right\} \\ & \phi_{\mathbf{k}}^{\mathbf{f}}(\theta,z) \, dz \, d\theta \end{split}$$
(F.11)

$$= +2\omega^{2} \int_{0}^{\pi/4} \int_{0}^{H} \phi_{k}^{f}(\theta, z) \overline{p}_{j}^{Y}(\theta, z, \omega) dz d\theta \qquad (F.12)$$

$$= S_{kj}(\omega)$$
 (F.13)

Thus, the matrix $\underline{S}\left(\omega\right)$ is symmetric.

APPENDIX G - DIMENSIONAL ANALYSIS

In this appendix dimensionless variables will be found for three quantities: the frequency ω_j and mode shape $\underline{\phi}_j$ of the $j\frac{th}{n}$ natural mode of vibration of the dam without water and the complex frequency response function for generalized acceleration of the dam--including hydrodynamic interaction effects--in the $j\frac{th}{m}$ mode of vibration of the dame, $\overline{\ddot{Y}}_j$.

The π theorem assures that any physical quantity can be expressed in terms of dimensionless combinations of variables. This theorem may be stated as follows:

"Any function of N variables

$$f(P_1, P_2, P_3, P_4, \dots P_N) = 0$$
 (G.1)

may be expressed in terms of (N-K) π products

$$f(\pi_1, \pi_2, \pi_3, \dots, \pi_{N-K}) = 0$$
 (G.2)

where each π product is a dimensionless combination of an arbitrary selected set of K variables and one other; that is,

$$\pi_{1} = f(P_{1}, P_{2}, \dots P_{K}, P_{K+1})$$

$$\pi_{2} = f(P_{1}, P_{2}, \dots P_{K}, P_{K+2})$$

$$\pi_{N-K} = f(P_{1}, P_{2}, \dots P_{K}, P_{N})$$
(G.3)

K is equal to the number of fundamental dimensions required to describe the variables P. If the problem is one in mechanics, all quantities P may be expressed in terms of mass, length and time, and K = 3. In thermodynamics, all quantities may be expressed in terms of mass, length, time and temperature, and K = 4. The arbitrarily selected set of K variables may contain any of the quantities $P_{\underline{i}}$ with the restriction that the K set itself may not form a dimensionless combination."*

A set of dimensionless parameters characterizing ω_{j} , ϕ_{j} and \overline{Y}_{j} will be obtained using the π theorem from a set of variables for the specialized arch dam-water system described in Section 7.2. Denoting dimensions M, L and T as mass, length and time respectively, the variablee that describe the system along with their dimensions are:

Symbol	Name	Dimensions
Bl	radial thickness of dam at the crest	${f L}$
^B 2	radial thickness of dam at the base	\mathbf{L}
С	velocity of sound in water	LT^{-2}
Ε	modulus of elasticity of the dam concrete	$ML^{-1}T^{-2}$
Н	depth of water in the reservoir	$\mathbf L$
н d	height of dam	L
R	radius of upstream face of the dam	L
r	radial coordinate of points on the dam	L
θ	angular coordinate of points on the dam	Dimensionless
Z	vertical coordinate of points on the dam	Ŀ
Ÿj	complex frequency response function for generalized acceleration of the dam in- cluding hydrodynamic interaction effects	Dimensionless
α	reflection constant at reservoir bottom for hydrodynamic pressure waves defined in Section 6.3.2; pertinent only for vertical ground motion	Dimensionless
ξ. j	damping ratio for the j th mode of vibration of the dam	Dimensionless

^{*}A.M. Kuethe and J.D. Schetzer, Foundations of Aerodynamics, John Wiley and Sons, Inc., New York, second edition, 1959.

<u>Ф</u> .ј	mode shape vector of $j^{\underline{th}}$ natural mode of vibration of the dam	Dimensionless
ρ _d	mass density of dam concrete	ML ⁻³
ρ	mass density of water	ML ⁻³
ν	Poisson's ratio	Dimensionless
ω	excitation frequency	T^{-1}
ω _j	$j\frac{th}{dt}$ natural frequency of the dam	T-1

Dimensionless Parameters for ω_j

.

The $j \frac{th}{dt}$ natural frequency of the dam (without water in the reservoir) is a function of the following variables:

$$\omega_{j} = f(B_{1}, B_{2}, R, V, E, H_{d}, \rho_{d})$$
(G.4)

Write Eq. G.4 in the form of Eq. G.1:

$$f(\omega_{j}, B_{1}, B_{2}, R, v, E, H_{d}, \rho_{d}) = 0$$
 (G.5)

There are eight variables and three fundamental dimensions. Thus, there are five π products. If E, H_d and ρ_d are chosen as the K set denoted in the π theorem, the π products are

$$\pi_{i} = f(\omega_{j}, E, H_{d}, \rho_{d})$$

$$\pi_{2} = f(B_{1}, E, H_{d}, \rho_{d})$$

$$\pi_{3} = f(B_{2}, E, H_{d}, \rho_{d})$$

$$\pi_{4} = f(R, E, H_{d}, \rho_{d})$$

$$\pi_{5} = f(\nu, E, H_{d}, \rho_{d})$$
(G.6)

The π theorem guarantees that the π products above can be made dimensionless. As an example, a dimensionless combination of the variables in π_1 can be found in the form $\omega_j E^a H^b_d \rho^c_d$, where a, b and c are constants. In terms of its dimensions the quantity $\omega_j E^a H^b_d \rho^c_d$ becomes

$$\binom{1}{\mathrm{T}^{-1}} \binom{1}{\mathrm{ML}^{-1}} \binom{-2}{\mathrm{T}^{-2}}^{\mathrm{a}} \binom{1}{\mathrm{L}^{\mathrm{b}}} \binom{1}{\mathrm{ML}^{-3}}^{\mathrm{c}}$$
(G.7)

For π_1 to be dimensionless the exponents of M, L and T must be zero. Thus,

M:
$$a + c = 0$$

L: $-a + b - 3c = 0$ (G.8)
T: $-1 - 2a = 0$

Solving the above set of simultaneous equations gives a = -1/2, b = 1and c = 1/2. The π product becomes

$$\pi_{1} = \omega_{j} H_{d} \sqrt{\frac{\rho_{d}}{E}}$$
(G.9)

Following the same procedure, the other π products are

$$\pi_{2} = \frac{B_{1}}{H_{d}}$$

$$\pi_{3} = \frac{B_{2}}{H_{d}}$$

$$\pi_{4} = \frac{R}{H_{d}}$$

$$\pi_{5} = v \qquad (G.10)$$

In terms of the dimensionless π products given above, Eq. G.5 can be written

$$f\left(\omega_{j}H_{d}\sqrt{\frac{\rho_{d}}{E}},\frac{B_{1}}{H_{d}},\frac{B_{2}}{H_{d}},\frac{R}{H_{d}},\nu\right) = 0 \qquad (G.11)$$

An expression for ω_{i} is obtained from Eq. G.ll as

$$\omega_{j} = \frac{1}{H} \sqrt{\frac{E}{\rho_{d}}} f\left(\frac{B_{1}}{H_{d}}, \frac{B_{2}}{H_{d}}, \frac{R}{H_{d}}, \nu\right)$$
(G.12)

Dimensionless Parameters for ϕ_1

For small damping, the mode shape vector, $\frac{\phi}{j}$, is a function of the following variables

$$\underline{\phi}_{j} = f(B_{1}, B_{2}, R, r, \theta, z, v, E, H_{d}, \rho_{d})$$
(G.13)

Write Eq. G.13 in the form of Eq. G.1:

$$f(\phi_j, B_1, B_2, R, r, \theta, z, v, E, H_d, \rho_d) = 0$$
 (G.14)

There are eleven variables, three fundamental dimensions and, thus, eight π products. Choosing E, H_d and ρ_d as the K set denoted in the π theorem and following the same procedures as used above for ω_j , Eq. G.14 can be written in terms of the eight π products (see Eq. G.2) as

$$f\left(\frac{\phi_{j}}{H_{d}},\frac{B_{1}}{H_{d}},\frac{B_{2}}{H_{d}},\frac{R}{H_{d}},\frac{r}{H_{d}},\theta,\frac{z}{H_{d}},\nu\right) = 0 \qquad (G.15)$$

An expression for $\underline{\varphi}_{,}$ is obtained from Eq. G.15 as

$$\frac{\phi}{j} = f\left(\frac{B_1}{H_d}, \frac{B_2}{H_d}, \frac{R}{H_d}, \frac{r}{H_d}, \theta, \frac{z}{H_d}, \nu\right)$$
(G.16)

Dimensionless Procedures for $\overline{\ddot{Y}}_{i}$

 $\vec{\tilde{Y}}_{j}$ is a function of the following variables $\vec{\tilde{Y}}_{j} = f(\omega, \nu, B_{1}, B_{2}, R, \xi_{j}, \rho, C, H, \alpha, E, H_{d}, \rho_{d})$ (G.17)

Write Eq. G.17 in the form of Eq. G.1:

$$f(\vec{\ddot{Y}}, \omega, \nu, B_1, B_2, R, \xi_j, \rho, C, H, \alpha, E, H_d, \rho_d)$$
(G.18)

There are fourteen variables, three fundamental dimensions and, thus, eleven π products. Choosing E, H_d and ρ_d as the K set denoted in the π theorem and following the procedures used above for ω_j , Eq. G.18 can be written in terms of the eleven π products (see Eq. G.2) as

$$f\left(\overline{\overline{Y}}_{j}, \omega H_{d} \sqrt{\frac{\rho_{d}}{E}}, \nu, \frac{B_{1}}{H_{d}}, \frac{B_{2}}{H_{d}}, \frac{R}{H_{d}}, \xi_{j}, \frac{\rho}{\rho_{d}}, \frac{\rho}{\rho_{d}}\right)$$
$$C\left(\sqrt{\frac{\rho_{d}}{E}}, \frac{H}{H_{d}}, \alpha\right) = 0 \qquad (G.19)$$

An alternate form of the above equation can be obtained by substituting the expression for the fundamental natural frequency of the dam ω_1 , from Eq. G.12 into Eq. G.19.

$$f\left(\overline{\widetilde{Y}}_{j}, \frac{\omega}{\omega_{1}}, \nu, \frac{B_{1}}{H_{d}}, \frac{B_{2}}{H_{d}}, \frac{R}{H_{d}}, \xi_{j}, \frac{\rho}{\rho_{d}}, \frac{1}{2}\right)$$

$$C\sqrt{\frac{\rho_{d}}{E}}, \frac{H}{H_{d}}, \alpha\right) = 0 \qquad (G.20)$$

The fundamental resonant frequency of the water in the reservoir, $\omega_1^{\bf r} = \frac{\pi c}{2 \rm H} , \text{ normalized with respect to } \omega_1 \text{ (Eq. G.12) can be written as}$

$$\frac{\omega_{1}^{r}}{\omega_{1}} = C \sqrt{\frac{\rho_{d}}{E}} \frac{H_{d}}{H} f\left(\frac{B_{1}}{H_{d}}, \frac{B_{2}}{H_{d}}, \frac{R}{H_{d}}, \nu\right)$$
(G.21)

Using Eq. G.21 in place of the π product $C\sqrt{\frac{\rho_d}{E}}$, in Eq. G.20 and rearranging terms, Eq. G.20 yields the following expression for $\overline{\ddot{Y}}_j$:

$$\overline{\widetilde{Y}}_{j} = f\left(\frac{\omega}{\omega_{1}}, \nu, \frac{B_{1}}{H_{d}}, \frac{B_{2}}{H_{d}}, \frac{R}{H_{d}}, \xi_{j}, \frac{\rho}{\rho_{d}}, \frac{\omega_{1}^{r}}{\omega_{1}}, \frac{H}{H_{d}}, \alpha\right) \quad (G.22)$$

APPENDIX H - USER'S GUIDE TO COMPUTER PROGRAM

Identification

RADHI: Response of Arch Dams Including Hydrodynamic Interaction To Harmonic Ground Motion

Programmed: Craig Porter, University of California, Berkeley, 1978.

General Description of the Program

The FORTRAN IV computer program RADHI was written for the purpose of investigating the effects of hydrodynamic interaction on the dynamic structural behavior and response of arch dams. The program calculates the modal response of arch dams including hydrodynamic interaction to any of the three components of harmonic ground motion: horizontal ground motion in the upstream-downstream direction, horizontal ground motion in the cross-stream direction and vertical ground motion. The response both including and neglecting the hydrodynamic effects due to motion of the reservoir banks is calculated for the horizontal components of ground motion excitation. The water in the reservoir can be treated as either compressible or incompressible. The response of the dam alone (without water in the reservoir) can also be obtained.

The computer program is based on the sub-structure analysis procedure developed in Chapters 3, 4, 5 and 6 in which the dam-reservoir system is restricted to the special geometries and conditions described in Chapter 2 and Fig. 2.1. Briefly, the upstream face of the dam is a segment of a circular cylinder contained within radially extending banks enclosing a central angle of 90°. The reservoir, which is filled with water of constant depth, extends to infinity in the radial direction. The dam properties are treated as symmetrical about the x - z ($\theta = 0$) plane. The dam is fixed at the base and at the banks.

The overlay feature available for use with CDC computers has been used in the program. The program is composed of several portions which are treated as overlays. Each overlay is loaded into the memory when needed; it is removed from memory when its operations are completed. This feature has resulted in a significant reduction of the storage requirements of the program.

Description of the Overlays

The program is composed of a main overlay, three primary overlays, and three secondary overlays. The functions of the different overlays are described below:

- 0.L. (0,0) reads in the main control parameters of the problem and directs the control to different primary overlays depending upon the problem type. This main overlay remains in the memory during the entire execution time.
- O.L. (1,0) reads in nodal point and element data for the arch dam and forms the element stiffness and consistent mass matrices. The element mass and stiffness matrices are written on tape. This information is later used in forming the global mass and stiffness matrices for the arch dam. The element subroutines utilized in this overlay were taken from the program ADAP [1].
- O.L. (2,0) assembles the global mass and stiffness matrices for the dam from the element matrices and solves an eigenvalue problem to compute natural frequencies and mode shapes of the dam (without water in the reservoir). This overlay was taken from the program ADAP [1].

O.L. (3,0) computes the hydrodynamic loads, the inertia loads of the dam due to ground motion excitation, and solves for the complex frequency response for acceleration of the dam in its modal coordinates. Secondary overlays (3,1), (3,2), and (3,3) compute the complex frequency response functions due to excitation in the upstream-downstream, cross-stream, and vertical directions respectively. Note that the response to ground motions in the upstream-downstream and vertical directions require symmetrical mode shapes, while the response to cross-stream ground motion requires anti-symmetric mode shapes.

Saving Mode Shapes and Frequencies

In the dynamic analysis of arch dams, evaluation of the natural frequencies and mode shapes consumes a significant part of the excitation time. Thus, the possibility of using previously evaluated and stored mode shapes and frequencies was built into the program. To utilize this option, the program should be run first to compute the mode shapes and frequencies of the dam (without water in the reservoir). At the end of this job, the data on logical units 1, 8, 9, and 10 should be copied on physical tape(s) and be supplied to the program in subsequent runs for computing the response to harmonic ground motion. The physical tape(s) transfers the following information:

Logical Unit 1 ... Element data

- 8 ... Nodal point data
- 9 ... Structure mass matrix
- 10 ... Mode shapes and frequencies

Subsequent runs require no element and nodal point data cards. Assuming the program exists in binary form, the deck setup and control cards (as required for the CDC 6400 computer at the University of California, Berkeley) for the first and subsequent jobs are shown below:

1. First job

Job card LGO, INPUT. REWIND, TAPE1, TAPE2, TAPE3 REQUEST, SAVE, HI, I, B. (tape number), WRITE, (output user name) COPYBF, TAPE1, SAVE COPYBF, TAPE8, SAVE COPYBF, TAPE9, SAVE COPYBF, TAPE10, SAVE 7-8-9 Program in binary form 7-8-9 Data cards 6-7-8-9 2. Subsequent jobs Job card REQUEST, SAVE, HI, I, B. (tape number) COPYBF, SAVE, TAPE1 COPYBF, SAVE, TAPE8 COPYBF, SAVE, TAPE9 COPYBF, SAVE, TAPE10 REWIND, TAPE1, TAPE8, TAPE9, TAPE10

LGO, INPUT 7-8-9 Program in binary form 7-8-9 Data Cards 6-7-8-9

Input Data

A. HEADING CARD (12A6)

This card contains information to be printed as heading for the output

B. MASTER CONTROL CARDS

Two or three of the following cards will be required depending on the type of problem:

Card 1. This card is required for all problems (615).

Columns 1-5 NUMNP Number of nodal points in the system.

- 6-10 MTOT Size of available blank common (see note below).
- 11-15 NF Number of mode shapes of the dam to be included in the analysis
- 16-20 NDYN Parameter identifying type of analysis to be performed.
 - =1 If mode shapes and frequencies are to be computed only.
 - =2 For including the hydrodynamic analysis
- 21-25 IMODE =1 If mode shapes and frequencies are to be stored on tape or read from tape.

=0 Otherwise

26-30 IPRM = 1 If printout of mode shapes is to be surpressed

=0 Otherwise

Note: The smallest size of the blank common which is required by the program is

MTOT = 7* NUMNP + 4* NMAT + 3970

where NUMNP = Number of nodal points

NMAT = Number of different materials for elements of the dam.

It should be emphasized that the value of MTOT as computed by the above equation, in cases of large structural systems (many degrees of freedom), may be quite inadequate to use. This is because a large number of blocks of equations may be formed and result in excessive exection time. In any problem, the number of blocks of equations (NBLOCK) will be determined from the value of MTOT and other prescribed parameters. In general, larger values of MTOT will result in smaller values of NBLOCK.

In most cases of practical interest (arch dam analysis using a fine mesh) the maximum storage capacity of the computer should be used and the size of blank common (MTOT) should be computed accordingly. This will result in the smallest value of NBLOCK for a particular case. When analyzing small structural systems, partial storage of the computer, and hence a smaller value of MTOT, may be used as long as NBLOCK = 1. In short, the value of NBLOCK should be selected in such a way that the smallest value for NBLOCK is obtained without any waste of computer storage. The user will be able to prescribe MTOT properly after some experience.

Card 2. This card is required for all problems (2F10).

Columns 1-10 RADIUS Radius of upstream face of dam measured in feet.

- 11-20 RADHT Radius divided by the height of the dam (non-dimensional number).
- Card 3. This card is required only when previously computed mode shapes are to be read from tape (315).
- Columns 1-5 MBAND Bandwidth of the system of equilibrium equations as computed in the previous run. 6-10 NUMEL Total number of elements in the dam. 11-15 NEQ Number of equations (degrees of freedom) of the system as computed in the previous

run.

C. NODAL POINT COORDINATES AND BOUNDARY CONDITION CARDS (I5, 3F10, 3I5) No cards are required when mode shapes are to be read from tape. In any other case, one card per nodal point is required unless some nodal points are to be generated.

Columns 1-5 NODE Nodal point number

6-15 ANGLE Angle measured in radians from the center of the dam. The maximum angle occurs at the banks where ANGLE = $\pi/4$.

16-25 HEIGHT Vertical coordinate measured in feet

26-35 THICK Radial distance from the vertical upstream face of the dam to the nodal point measured in feet (always a positive number).

36-40 v^X-displacement 41-45 v^Y-displacement 46-50 v^Z-displacement

fixity code: zero or blank for free component, one for fixed comcomponent.

- Note 1: These cards must be in increasing nodal point numbering sequence. However, if a set of cards is omitted, the corresponding nodal points are generated at equal intervals on a straight line connecting two nodal points for which coordinates are supplied.
- Note 2: Due to the symmetry of the problem only half the dam is descritized (see Fig. H1). Input for ground motion in the x direction (upstream-downstream direction) and in the z direction (vertical direction) requires symmetrical boundary conditions for nodal points on the plane of symmetry of the dam. That is, the v^Y-displacement for nodal points on the plane of symmetry must be fixed (a one in card column 41-45). Input for ground motion in the y direction (cross-stream direction) requires anti-symmetrical boundary conditions for nodal points on the plane of symmetry of the dam. That is, the v^X-displacement for nodal points on the plane of symmetry must be fixed (a one in card column 36-40).
- Note 3: The dam must be descritized such that all elements have the same included angle and the same height on the upstream surface. Hydrodynamic considerations impose this requirement.

Note 4: The dam is only one element thick.

D. THREE-DIMENSIONAL THICK SHELL ELEMENT DATA

No cards are required if mode shapes are to be read from tape. Otherwise supply the following cards:

1. Control Card (315)

Columns	5	The	number	2

6-10 Total number of elements

11-15 Number of different materials (NMAT)

2. Material Properties Cards (I5, 3F10)

One card is required for each material type:

Columns 1-5 Material identification number (\leq NMAT)

6-15 Modulus of elasticity (pounds/(foot)²)

16-25 Poisson's ratio

26-35 Weight density of material (pounds/(foot)³)

3. Acceleration of Gravity Card (F10)

One card is required

- Columns 1-10 Acceleration due to gravity (ft/sec²)
- 4. Element Cards

Arch dam elements are numbered from one to the total number of elements. Element cards must be in ascending order. Two cards are required for each element:

Card 1. (315)

Columns 1-5 Element number

10 The number 3 (integration order)

11-15 Material number (if left blank material number equals 1).

Card 2. (16I5)		
Columns 1-5		
6-10		2
11-15		3
16-20		4
21-25		5
26-30		6
31-35	Global nodal point	7
36-40	numbers of nodes	8
41-45	(See Fig. H2)	9
46-50		10
51-55		11
56-60		12
61-65		13
66-70		14
71-75		15
76-80)		16

- Note 1: A typical 20 element mesh is shown in Fig. H1. Element number one must be adjacent to the base and plane of symmetry of the dam. Elements in the z direction must be numbered in ascending order. After reaching the top element in a column of elements the next element numbered must be the base element of the next column of elements associated with an increase in θ .
- Note 2: Due to the way that the hydrodynamic terms couple to the arch dam nodal points, the global nodal points correspond to the local element nodal points in a specific manner. The element

surface containing the local element nodal points 5, 6, 7, 8, 13, 14, 15, and 16 corresponds to the upstream face of the dam (i.e., the face of the dam in contact with the water in the reservoir). Local nodal point 5 has the largest ANGLE (angle from the center of the dam) and the largest HEIGHT (vertical coordinate) of any nodal point associated with a particular element. Loosely speaking, the axis (Fig. H2) of each element must be lined up approximately with the vertical, z, axis of the arch dam (Fig. H1).

E. HYDRODYNAMIC CARDS

The following cards are required only if hydrodynamic loads are included in the analysis.

Card 1. (215, 3F10, 315)

Column	1-5	NUMELZ	Number of elements in z direction
	6-10	NUMELT	Number of elements in θ direction
	11-20	TW	Half the included angle of the element
			(radians)
	21-30	ZW	Element half height (ft)
	31-40	HWATER	Depth of the reservoir (ft)
	41-45	NTERM	Number of terms associated with the ζ
			direction in the series solution for
			hydrodynamic loads (see Eq. 4.8 to
			4.10 and 5.8 to 5.10)
	46-50	MIERM	Number of terms associated with the
			z direction in the series solution for
			hydrodynamic loads (see Eq. 4.8 to

4.10 and 5.8 to 5.10)

- -55 IXYZ Parameter identifying the direction of ground motion
 - =1 Horizontal ground motion in upstreamdownstream direction (along x axis in Fig. 2.1)
 - =2 Horizontal ground motion in cross-stream direction (along y axis in Fig. 2.1)
 - =3 Ground motion in vertical direction

Note 1: (NUMELZ) * (NUMELT) = Total number of elements (NUMELZ) * (zw + zw) = Height of dam (NUMELT) * (tw + tw) = $\pi/4$ radians (dam half angle)

- Note 2: The number of terms, NTERM and MTERM, required to approximate the infinite series solution varies with the reservoir natural frequency, the radius of the dam, and the frequency of excitation. For most earthquake excitation problems NTERM = MTERN = 10 is adequate.
- CARD 2. (2F10, 2I5)
- Columns 1-10 DAMP Damping factor to be applied to all modes 11-20 ALPHA Coefficient of refraction between water and ground rock below reservoir. This may be computed as ALPHA = (k-1)/(k+1), where k = $C_r w_r / cw$ with w_r and w being the unit weights of rock and water respectively, C_r the P-wave velocity in rock and C the velocity of sound in water (4720 ft/sec). ALPHA < 1. Used only for vertical excitations.

-25 INCOMP Parameter for incompressible water solution =0 Water treated as compressible

=1 Water assumed to be incompressible

- -30 NPUNCH Parameter for punching complex frequency response results (see note below) =0 Does not punch results
 - >1 Punches results
- Note: If NPUNCH >1, a set of complex frequency response results are punched for each excitation frequency. For horizontal ground motion in the upstream-downstream direction and in the cross-stream direction, two cards are punched for every mode shape included in the analysis. Thus, if 10 modes are included (NF = 10) and if results are required for 50 excitations, the total number of punched cards equals 1000. Punched results for vertical ground motion have only one card per mode shape per excitation frequency.

F. EXCITATION FREQUENCY CARDS

One card with format F10 is required for each excitation frequency. A negative frequency card terminates the program.

Column 1-10 WWIDAM Excitation Frequency, ω , normalized with respect to the fundamental natural frequency of the dam, ω_1^d .

Output

The following is printed by the program:

- 1. Program control information
- 2. Coordinates of nodal points on the dam
- 3. Material property parameters

- 4. Nodal point shell element connectivity information
- 5. Natural frequencies and mode shapes of the dam (without water in the reservoir) unless surpressed according to the options provided in Card B.
- 6. Hydrodynamic input parameters
- 7. The real and imaginary components together with the absolute value of the complex frequency response function for modal acceleration $(\overset{.}{Y_j}(\omega), j = 1, 2, ... NF)$ of the dam in each mode for each input excitation frequency.

EXAMPLE

The response of an arch dam-reservoir system to vertical ground motion with 58 nodal points descritizing half the dam illustrates the preparation of input data for this program. Figure H3 shows the nodal point numbering scheme for the example. The input data is obtained from the following parameters.

> Radius to upstream face = 450 ft. Height of dam = 300 ft. Depth of water in the reservoir = 300 ft. Modulus of elasticity of dam = 720 x 10^6 psf Poisson's ratio of dam = .17 Weight density of dam = 150 psf Acceleration due to gravity = 32.2 ft/sec² Modal damping ratio = 5% Coefficient of refraction between water and ground rock = 0.85 Size of available blank common = 12,000 Number of frequencies for modal analysis = 1

Radial width of the dam at the crest = 12.6 ft. Radial width of the dam at the base = 50.0 ft. The dam has a constant cross-section normal to the radial coordinate Excitation frequencies are $\omega/\omega_1 = 0.100$ and 0.500 Half the dam is divided into six elements Ten terms for each summation are used to approximate the infinite series for the hydrodynamic loads.

The input data required for the dynamic response analysis of the dam is presented on the following page.

	EXAMPLI				NODE	ARCH	DAM	MESH	- MARC	H 197	'8						
	58120		1	2													
		50.		1.5	~ ~		~ ~										
	1	. 0		~	0.0		0.0	1	1	1							
	5	. 0		30	0,0	,	0.0	-	1								
	6	, 0			0.0		50.0	1	1	1							
	10	.0		30	0.0		12.6		1								
	11		309		0.0		0.0	1	1	1							
	13		309	3(0.0		0.0										
	14		309		0.0		50.0	1	1	1							
	16		309	30	0.0	1	12.6		_								
	17		618		0.0		0.0	1	1	1							
	21		618	30	0.0		0.0	-									
	22		618		0,0		50.0	1	1	1							
	26		618	30	0.00	1	12.6										
	27		927		0.0		0.0	1	1	1							
1	29		927	30	0.0	_	0.0										
	30		927		0.0		50.0	1	1	1							
	32		927	30	0.0	1	12,6										
	33		236		0.0		0.0	1	1	1							
	37		236		0.0		0.0										
	38		236		0		50.0	1	1	1							
	42		236		0.0		12.6		_								
	43		345		0.0	· Ľ	0.0	1	1	1							
	45		545		0.0		0.0										
	46		545		0.0		0.0	1	1	1							
	48		545	31	0.0	1	12.6										
	49		8540		0.0		0.0	1	1	1							
	53		8540	ुरा	0.0	-	0.0	1	ì	1							
	54		8540	~	0.0		50.0	1	1	1							
	58		664 0	31	00.0		12.6	1	1	1							
	2	6 0000	1		.17	1 6	-										
	32.2		000.		.17	13	30.0										
	32.Z	3															
	24	22	6	8	19	17	1	3	23	14	7	15	18	11	2	12	
	24	3	0	Ŷ	13	17	ĩ	3	20	14		10	10	11	2	12	
	26	24	8	10	21	19	3	5	25	15	9	16	20	12	4	13	
	3	24	U U	10	E 1	1.5		v	2.7	10	3	10	20	14	4	15	
	40	38	22	24	35	33	17	19	39	30	23	31	34	27	18	28	
	4	. 3	<u>C.</u> , C. ,	6 - -7	00	00	17	1.34	90	00	20	01	94	61	10	20	
	42	40	24	26	37	35	19	21	41	31	25	32	36	28	20	29	
	5	3	<u></u> •••	20	97	00	1.3	6 21	~~ 1		20	UC.	30	20	20	5 2	
	56	54	38	40	51	49	33	35	55	46	39 ື	47	50	43	34	44	
	6	3	00	-0	01		00	00	ΨŪ		05		00	40	34	~ ~ ~	
	58	56	40	42	53	51	35	37	57	47	41	48	52	44	36	45	
	2	3		1309		5.	300		10	10	3	-0	VE	n-g ~~g	30		
	0.05	~	0,85			- ·	0.00	•	1.0		v						
	. 100		÷, ••														
	500																

-1

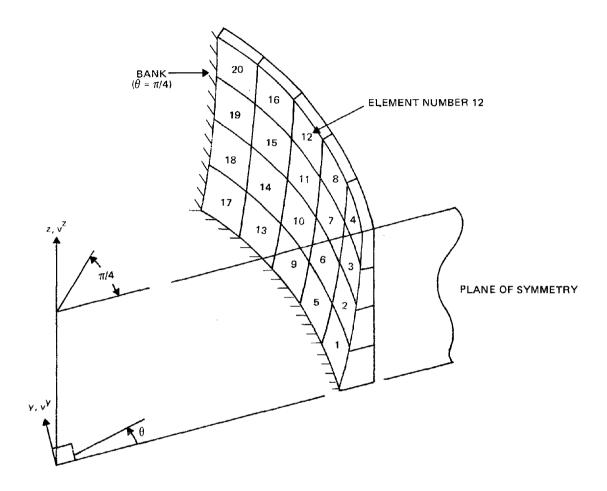


FIG. H1. ELEMENT NUMBERING OF AN ARCH DAM DEMONSTRATED WITH A 20 ELEMENT MESH

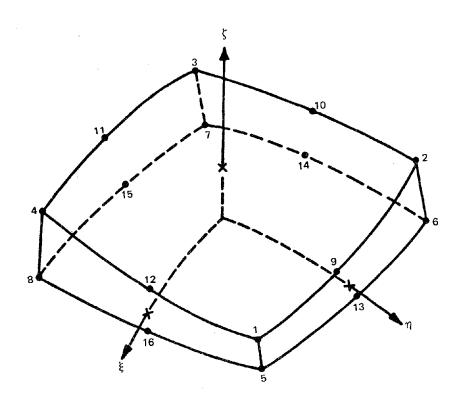
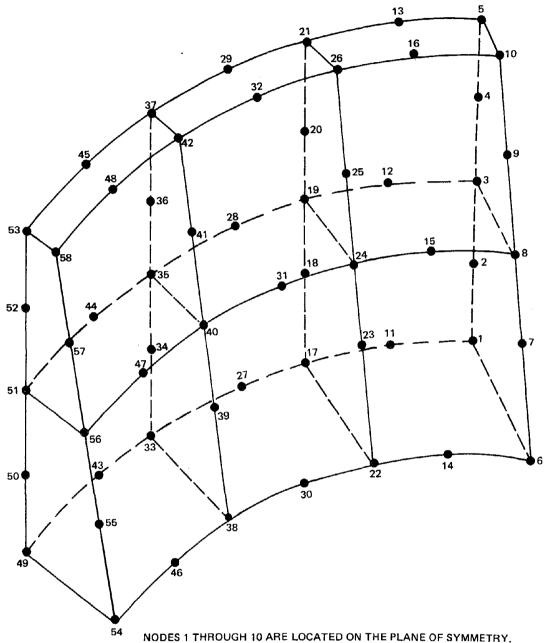



FIG. H2. LOCAL ELEMENT NUMBERING - THREE DIMENSIONAL THICK SHELL

NODES 49 THROUGH 58 ARE LOCATED ON THE BANK.

FIG. H3. EXAMPLE PROBLEM - NODAL POINT NUMBERING OF 5B NODE, 6 ELEMENT ARCH DAM

. ٤		
LOCAL NODAL POINT NUMBER	GLOBAL COORDINATES {θ ^e , z ^e }	LOCAL COORDINATES (ξ, η)
1	$(\theta_1^{\mathbf{e}}, z_1^{\mathbf{e}})$	(-1, -1)
2	$(\theta_{2'}^{e}, z_{1}^{e})$	(1, -1)
3	(θ_2^e, z_2^e)	(1, 1)
4	$(\theta_1^{\mathbf{e}}, \mathbf{z}_2^{\mathbf{e}})$	(-1, 1)
5	$\left(\frac{\theta_1^{e}+\theta_2^{e}}{2}, z_1^{e}\right)$	(0, -1)
6	$\left(\theta_{2}^{e}, \frac{\mathbf{Z}_{1}^{e} + \mathbf{Z}_{2}^{e}}{2} \right)$	(1, 0)
7	$\left(\frac{\theta_1^e+\theta_2^e}{2}, z_2^e\right)$	(0, 1)
8	$\left(\theta_{1}^{e}, \frac{Z_{1}^{e}+Z_{2}^{e}}{2}\right)$	(-1, 0)

FIG. Dl. Local Global Corrdinates of Eight Node Surface Element on Upstream Face of the Dam

APPENDIX I - COMPUTER PROGRAM LISTING

EXAMPLE				NODE	ARCH I	AM M	ЕSН —	MARCH	1978						
5812	50.	1	2 1.5												
			1.5			• •									
1	• C		7	0.0		0.0	1	1	1						
5	• 0		21	0.00		0.0		1							
6	•0			0.0		50.0	1	1	1						
10	• 0		3.	10.0	-	12.5		1							
11		309	-	0.0		0.0	1	٩	1						
13		309	5(0.00	_	0.0									
14		369	_	0.0		50.0	1	1	1						
16		309	3,	10.0		12.6									
17		618		0.0		0.0	1	1	1						
21		518	30	0.00		0.0									
22		518		0.0		50.0	1	1	1						
26		518	30	0.0	1	12.6									
27		927		0.0		0.0	1	1	1						
29		27	?(0.00		0.0									
30	.39	927		0.0		50.0	1	1	1						
32		727	- 30	0.00	1	12.6									
33		236		0.0		0.0	1	1	1						
37	. 52	236	3 (0.00		0.0									
38	• 5 2	236	Ο.	0	-	50.0	1	1	1						
42	.52	276	30	0.90		12.6									
43	.65	545	0).J	0	0.0	1	1	7						
45	. 6 5	545	3 (0.00		0.0									
. 46	.63	545	(Ĵ.Ũ	50	0.0	1	1	1						
48	.65	545	7	0.00		12.6									
49	.78	8540		0.0		0.0	1	1	1						
53		540	30	0.00		0.0	1	1	1						
54		3540		0.0	-	50.0	1	1	1						
58		3540	30	0.00		12.6	1	1	1						
2	6	1													
	00000			.17	15	50.0									
32.2				• •											
1	3														
24	22	6	ò	19	17	1	3	23	14	7	15	18	11	2	12
2	3	•	•	• •	••		-			-					
25	24	8	10	21	19	3	5	25	15	9	16	20	12	4	13
	3	-				-	-			,	-		-		-
40	38	22	24	35	33	17	19	39	30	23	31	34	27	18.	28
4	3	L 4.	L 7						~ •		÷ .				
42	40	24	26	37	35	19	21	41	31	25	32	36	28	20	29
5	3	C 7		، ر		• /			J •	2.5		20	2.0	L V	
56	54	38	40	51	49	33	35	55	46	39	47	50	43	34	44
20 6	3	οÇ	÷0	1	47	ر ر	ر ر	23	- -0	17		20		24	77
58	56	40	42	53	51	35	37	57	47	41	48	52	44	36	45
2	3		1309		5.	300		10	10	3	40	26		20	. 4.7
0.05		0.85		<i>K</i> :	. •	500	•	1 C	ιU	د					
100	1	0.20													

.100, .500 -1.

	DVERLAY(XFILE.C.O)	RADII	L
	PROGRAM RADHI (INPUT, DUTPUT, PUNCH, TAPE5=INPUT, TAPE6=OUTPUT, TAPE1,	RAUH	2
	 TAPE2, TAPE3, TAPE4, TAPE7, TAPE8, TAPE9, TAPE10, TAPE11, TAPE99) 	RADH	3
	CCMMON/JUNK/HED(12),DUM(388)	RADH	4
	COMMON / MISC / NBLOCK+NEQB+LL+NF+LB +NDYN	KADH	5
	COMMON / ELPAR/ NPAR (141, NUMNP, MBAND, NELTYP, N1, N2, N3, N4, N5, MILT, NE		6
	. ,NG, NUNNPF , IPRINT , NLM , NUMEL.WATL, IMASS, TVOL, NE QEST, 1400E		7
	. IPRA ,NESH ,MESHEN ISYM, WDEN, T(10)	RADH	9
	CONMON/RADDU/RADIUS,RADHT	RADH	ğ
r		RADH	10
č	PROGRAM CONTROL DATA	RADH	11
ř	PRODUCT CONTROL DATA	RADH	12
-	READ (5+100) HLD+NUMNP+MTOT+NF+NDYN+IMODE+1PRM	RADH	ii ii
	NELTYP= 1	RADH	14
		RADH	15
	NLH=0	RADH	10
	NEQE ST=0	RADI	17
	ESTVOL = 0.0	RADH	18
	NESH#O	RADH	19
	NE SHFN=0	RADH	20
	WATL=0.0	RADH	21
	WDEN#0.0	RADH	22
	WRITE(6,200)HED,NUMNP,MTOT,NF	RADH	23
	READ 1500, RADIUS, RADHT	RADH	
	PRINT 1600, RADIUS, RADHT	RADH	25
	2 TVDL=0.0	RAUH	20
	NUNNPF=NUMNP	RADH	27
	IF(IMODE.LE.U.UR.NDYN.LE.1) GO TO 3	RADH	
	READ(5+400) MBANU+NUMEL,NEQ	RADH	29
	WRITE(6, 201 IMBAND, NUMEL, NEQ	RADH	33
	HRITELGOZUIINDARDANUMEL,NEW 3 IMASS≕I	RADH	31
	IF(IMUDE.GI.O.ANU.NDYN.GI.1) GO TU 4	RADH	32
~	IFIIMODE.GI.U.AND.NUTN.GI.I/ GU IU 4	RADH	33
C	THOUT WATE AND CEENENT OFT	RADH	34
Ç	INPUT JOINT DATA AND ELEMENT DATA	RADH	35
C	FORM ELEMENT STIFFNESSESSTIFF. ON TAPE 2 -	RADH	36
C	FORM CONSISTANT MASS MATRIX	RADH	37
C		RADH	38
_	CALL OVERLAY(SHXFILE, 1, 0, 6HRECALL)	RADII	39
C	SOLVE FUR NATURAL FREQUENCIES AND MODE SHAPES DIRECTLY BY SUBSPAC		
ç		RADH	41
C C	1 TERATION	RADH	
L		RADH	43
	4 CALL OVERLAY(5HXFILE.2.0.6HRECALL) IF(NDYN.LE.1)STOP	RADH	43
~	1 CINO 174 - C - 11 3 1 UM	RADA	44
C C	SOLVE FOR HYDRUDYNAMIC FREQUENCY RESPONSE FUNCTIONS	RADH	40
	SULVE FUR HIDRODINAMIL FREQUENCY RESPONSE FUNCTIONS	RADH	47
C		RADH	4.9
С	CALL OVERLAY(5HXFILE,3,0,6HRECALL)	клон	49
L	C \$100	KADH	50
	STOP 100 FORMAT(12A6/615)	RADA	
	200 FORMAT(1), 12A6///	RADH	52
		RADH	-
	. 28H NUMBER UF WOUAL POINTS = ,1577 1 28H REQU: BLANK COMM. STORAGE= ,1577	RADH	54
	1 28H NUMBER OF FREQUENCIES = ,15////)	КАОН	55
	201 FORMAT(37HOHALF BANDWIDTH	RADH	56 .
		RADH	57
	. 37H TUTAL NU. UF ELEMENTS	нОАх	58
	400 FORMAT(315)	BADH	59
	400 FORMAT(315) 1500 FORMAT(2F10.0]	8 ADH	59
	1500 FORMAT(2710-01 1600 FORMAT(//9H RAD1US =,F10-3.LOX.8H RADH) =,F10-4///)	RAOH	61
	TOMA LANINALIANSA VANTA9 →1LIA931[AVIOL VANHI …1(TA44///)	IS ALCON	01

С С С

6666 666 666

С С С ε

SUBROUTINE ERROR(N)	ERRÚ	1
WRITE(6,2000)N	ERRÚ	2
Format(2instorage exceeded by ,15)	Ekků	3
Stop	Epro	4
End	Erru	5

	SUBROUTINE PRINTULIU, D.B.NEQB, NUMNPF, LL, NBLOCK, NEQ, NT, NF)	PRIN	1
	DIMENSION B(NEQ8+LL), D(5,LL), ID(NUMNPF, 3)	PRIN	2
	REWIND NI	PRIN	3
	READ(NT)	PPIN	4
2	REWIND 8	PRIN	5
-	READ (8) ID	PRIN	6
	N=NEQ	PRIN	1
	NN=NEQB*NBLUCK	PRIN	8
	WRITE(6,2005)	PRIN	
	N=NUMNPE	PRIN	10
с		PRIN	11
-	DD 500 KK=1.NUMNPF	PRIN	12
	4=3	PEIN	13
	DO 250 [l=1,3	PRIN	14
	00 100 L=1.LL	PF1N	15
100	D(1,L)=U.	PRIN	16
	IFIN.GT.NNI GL TU 150	PRIN	17
	1F (M_EQ_0) GU TU 150	PR1N	18
	READ (NT) B	PKIN	19
		PRIN	20
150	1F(1D(N, 1).LT.1) GO TO 250	PRIN	21
	K=M-NN	PRIN	22
	M=H-1	PRIN	23
C		PRIN	24
	DQ 200 L=1+LL	PRIN	25
200	D(I+L)=8(K+L)	PRIN	26
	1=I-L .	981N	21
¢		PRIN	28
	DO 251 K=1, 3	PPIN	29
	IF(ID(N,K).NE.0) GO TO 252	PRIN	30
251	CONTINUE	PEIN	31
	GD TA 253	PRIN	32
	WRITE(6,2004) N,(L,(D(1,L1,1=1,3),L=1,L1)	PRIN	33
	CUNTINUE	PRIN	34
500	N=N-1	PRIN	35
	RETURN	PRIN	36
	FURMAT(1H0,13,15,7X,103E12.3/(19.7X,3E12.3))	PRIN	37
2005	FORMAT(17H1MODE SHAPES///,5H NODE,11X,1HX,11X,1HY,11X,1HZ)	PEIN	33
	END	PPIN	39

OVERLAY(XFILE.1.0)	MAIN	
PROGRAM MAINI	MAIN	
COMMON A(1)	MAIN	
COMMON / RADID / RADIUS + RADHT	MAIN	
COMMON / ELPAK/ NPAR(14).NUMNP.MBAND.NELTYP.N1.N2.N3.N4.N5.MTOT.NE	OMAIN.	
, NG, NUMNPF , IPRINT , NEM , NUMEL, WATL, DUM(2), NEQEST, IMUDE	MAIN	
MASTIF, MESH, MESHFN , ISYM, WDEN	MAIN	
COMMON /JUNK/ MM.L.K.NTAG.SIG(318)	MAIN	
N1=1	MAIN	
N2=N1+3+NUMNP	MAIN	
N3=N2+NUMNP	MAIN	
N4=N3+NUMNP	MAIN	
N5=N4+NUM&P	MALN	
N6=N5+NUMNP	MAIM	
IF(N6.GI.MTOT) CALL ERROR(N6-MTUT)	MAIN	
CALL INPUTNS(A(N1), A(N2), NUMNP, NUMNPF, NEW, NEWEST)	MAIN	
MBAND=0	MAIN	
NUMEL=Q	MAIN	
REWIND 1	MAIN	
REWIND 2	MAIN	
READ (5.1001) NPAR	MAIN	
WRITE (1) NPAR	MAIN	
NUMEL=NUMEL+NPAR(2)	MAIN	
NT=N6+NPAR(3)	MAIN	
N8=N7+NP AR [3]	MAIN	
N9=N8+NP AR [3]	MAIN	
N10=N9 +NPAR[3]	ALL I	
N11=N10+63*63	JAIN	
IF(NIL_GT_MIOT) CALL ERBOR(NIL-MIOT)	MAIN	
CALL ELST 3DIA (N 10), NPAR(2), NPAR(3), NPAR(4), A(N1), A(N2), A(N3)		
A(N4), A(N6), A(N7), A(NB), A(N9), NUMNPH, A(N5))	MALN	
RETURN	MAIN	
 FORMAT (1415)	MAIN	
END	MAIN	

SUBROUTINE INPUTNSCID;COORD,NUMNP,NUMNPF,NEQ,NEQEST)	1 NP U	ĩ
C	INPU	2
COMMON/RADDUZRADIUS, RADHT	INPU	3
COMMON A411	INPU	4
DIMENSION IDINUMNP, 31, COORDINUMNP, 4), DXY2(3)	INPU	5
C	INPU	6
C READ COORDINATE ARRAY	INPU	7
c	INPU	3
N00E = 1	INPU	4
5 NCD=NQDE	INPU	10
IF(NODE_EQ-NUMNPIGOTO II	INPU	-ī i
READ 2000.NUDE.ANGLE.HEIGHT.THICK.(ID(NODE.K).K=1.3)	LNPU	12
COURDINUDE, 1) = (RADIUS - THICK) *COS(ANGLE)	INPJ	13
COORD(NODE.2) = (RADIUS - THICK) *5IN(ANGLE)	INPU	14
CODRD(NODE+3)= HEIGHT	INPU	15
IF(NODE - NOD + LE + 1) GOTO 5	INPU	16
INT = NG JE + NUO -1	INPU	17
STEP = INI+1	1 NPU	18
80 6 J=1.3	INPU	19
6 $DXYZ(J) = (COURD(NUDE, J) - COURD(NUD, J))/STEP$	INPU	20
NODG NUD	INPU	21

	CO 10 I=1,1NI NCDG= NCDG + 1	INPU	22
	009 J=1,3	INPU	23
		INPU	24
0	COORD(NODG, J) = COURD(NOD, J) + DXYZ(J)	ENPU	25
	IDINODG.J)= IDINODE.J) NOD= NOD + 1	INPU	26
10		INPU	27
	IF(NODE.LT.NUMNP) GUTO 5	INPU	28
11	DO 20 I=1.NUMNP	INPU	29
	COORD(1, 4) = 0.0	INPU	30
20	CONTINUE	INPU	31
	PRINE 35+ (NODE+(COURD(NODE+J)+J=1+4)+(1D(NODE+K)+K=1+3)+NEDE=L+N		32
	1MNP J	INPU	33
C		INPU	34
	BER UNKNOWNS	INPU	35
144	NEQ = 0	INPU	36
	DO 140 I = $I_{\rm P}NUMNPF$	INPU	37
	$DO \ 140 \ J = 1,3$	INPU	38
	IF(1D(1,J)-1) 137,138,138	INPU	39
137	NEQ = NEQ + 1	INPU	40
	$ID(I_{+}J) = NEQ$	INPU	41
	GO TO 140	INPU	42
		INPU	43
140	CONTINUE	INPU	44
	IF(NEUEST.EQ.0) GU TO 160	INPU	45
	IF(NEQEST.EQ.NEQ) GB TO 160	INPU	46
	WRITE(6,1000) NEU,NEQEST	INPU	47
	STOP	INPU	48
160	CONTINUE	INPU	49
	REWIND 8	INPU	50
	WRITE (8) ID	INPU	51
	WRITE(8) COORD	INPU	52
	RETURN	INPU	53
	FORMATI////18H NODAL COORDINATES //	INPU	54
	1 5H NODE 8X, 1HX, 11X, 1HY, 11X, 1HZ, 11X, 1HT, 5X, 13HIOX IDY 10Z/	INPU	55
	2(15,4(3x,F9.3),315))	INPU	56
1000	FORNAT125H CALCULATED NO. OF EQNS.=15/	INPU	57
	25H ESTIMATED NO. OF EQNS.=15)	INPU	58
2000	FORMAT(15,3F10.0,315)	INPJ	59
	END	1NP U	60

	SUBROUTINE ELSTED (S,NEDEL,NMAT,NLD, D, X,Y,Z, EE, ENU, RHU, ALPT,	ELST	1
	NUMAP+TEMRI	ELST	2
C		ELST	3
Ç	STIFNESS SUBRUUTINE FOR 48 D.F. ISUPARAMETRIC3D THICK SHELL ELEM.	ELST	4
C	LINEAR ELASTIC ISOTROPIC MATERIAL	ELST	5
C	NINT#NINT#(NINT-1) GAUSSIAN INTEGRATION RULE USED	ELST	6
С	NINT=1,2,3,4	ELST	7
C		ELST	8
	DIMENSION S(63,63)	ELSI	, q
	DIMENSION X (NUMNPI+Y (NUMNPI+Z (NUMNP), ID (NUMNP,3) + TEMR (NUMNP)	EL ST	10
	DIMENSIÓN EELI), ENULI), RHOLLI, ALPTILI	ELST	11
	DIMENSION STPTS(10,3) ,NDIR(10), 100(6,2)	FIST	12
	COMMON/EM/LM(48)+NU+NS+SS(48+48)+RF(48+4)+XM(48+48)+SA(40+48)+	FLST	13
	• SF(40.4)	ELST	L4
	COMMON / GASS/ XK14.4).WGT(4.4).IPERM(3)	FUST	15
	CCMNON /JUNK/ E1, E2, E3, DET, MLD(4), KLD(4), MULT(4), NP(16), INP(16),	ELST	16
	+ A(3,3),P(3,21),B(3,3),XX(16,4),Q(19),OL(16),	LLST	17

	11148),XLF141,YLF(4),ZLF(4),TLF(4),PLF(4),	ELST	13
	REFI, INEL, ININT, IMAT, IINC, TTEMP, NEL, ML, NINT, MAT,	ELST	19
	INC.TAG.TEMP.SKIP.L.J.K.L.FAC.CC1.CC2.CC3.CC4.G.	F L S T	20
	DEN.FACT.GI.GG.C1.C2.C3.C.K1.K2 .TR(4).TH1CK(8)	CLST	21
	COMMON /ELPAR/ NPAR(14),NUMN ,MBAND,NELTYP,N1,N2,N3,N4,N5,MTUT,NE(22 23
c	• +N6+NUMNPF +IPRINT +NLM +NUMEL+WATL+IMASS+TVOL+DMM(6)+#DEN	ELST	24
Ľ	DATA XK / 0., 0., 0.,	ELST	25
		ELST	2.6
		LLST	27
	38611363115941,3399810435849, .3399810435849, .86113a3115941/ DATA WGI / 2.000, 0., 0., 0.,	ELST	23 29
		ELST	30
		ELST	31
	3 .3476548451375, .6521451548625, .6521451548625, .3478548451375/	ELST	32
	DATA IPERN / 2.3,1 /	ELST	33
	DATA STPTS / 1., 1., -1., -1., 0., 0., 0., 0., 0., 0., 0.,	ELST ELST	34
	. U., 0., 0., 0., 1., 1., 1., -1., 0., 0., 0., 1., -1., 1., -1., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0	ELST	36
	DATA IPP/1+2+3+1+2+3+1+2+3+1/	LLSI	37
С		ELST	38
C		ELST	39
	00 9 1=1, 6930	ELST	40 41
	9 LMU+D≠0 ITP≖3	ELST	42
	WRITE(6, 3002) NODEL, NMAT	ELST	43
С		ELSI	44
С	MATERIAL PROPERTIES	ELST	45
	WRITE (6,1300)	ELST	46 47
	DO 1 I≖l₂NMAT READ (5,1001) N,EE(N),ENU(N),RHO(N)	ELST	48
		ELST	49
	1 WRITE 16,2001) N. EE(N), ENU(N), RHD(N)	ELST	50
	READ(5,1003) GRAV	ELST	51
	REFT= 0.0 IF[GRAV.Ew.0.] ⊎RAV=386.0	ELST ELST	52 53
	WRITE(6,2003) GRAV	ELST	54
С		ELST	55
-	WRITE (6,1301)	ELST	55
	NEL=0	ELST	57
	30 READ (5,1000) INEL, ININT, IMAT, IINC, MLD, IG, IGG, INP	FLST	53 59
	DD 39 I=1,4 39 MULT(1)=1	ELST	60
	IF(IINC.EQ.0) IINC=L	FLST	61
	IF(IMAT.EQ.0) IMAI=1	ELST	62
	40 NEL=NEL+1	ELST	63 64
	NL=INEL-NEL IFIML) 50,55,60	ELST	65
	50 WRITE (6.4003) INEL	ELST	66
	STOP	ELST	67
	55 DO 56 [=l+16	ELST	68
	56 NP(I)=INP(I)	ELST	69 7:0
	N INF=ININT Mat=lmaj	ELST	71
	INC = IINC	ELST	72
	TAG=1HI	ELST	73
	SK1P=949.	ELST	74
	1F(N1N1) 33,33,57	ELST ELST	75 76
	33 NINT=IABS(NINT) SKIP=1.	ELST	77
	IF(NIN(.EQ.0) SK1P=0.	ELST	78
	ST CONTINUE	ELST	79

		DD 59 I = 1,4		ELST	80
		KLD(I)=IABS(MLD(I))		ELST	81
		IFIMLD(I)1 58,58,59		ELST	82
		NULT(I)=0		ELST	83
	28	CONT+NUE		ELST	84
_		GO TO 62		ELST	85
C				ELST	86
		$DU \ 61 \ I = 1.16$		ELST	87
	61	NP(1)=NP(1)+1NC		ELST	88
		TAG=1H		ELST	89
		00 64 1=1,4		ELST	90
		KLD(I)=KLD(I) +MULT(I)		ELST	- 91
	62	WRITE(0,2000) NEL.NP.NINT.MAT		ELST	92
С				ELST	93
		$00 \ 10 \ i = 1 + 16$		ELST	94
		K=NP(1)		ELST	95
		XX(I+L}=X K}		ELST	96
		XX(1,2)=Y(K)		ELST	91
		XX([,3]=Z(K)		LUST	98
		XX(1,4) = TEMR(K)		ELST	. 99
	10	CONTINUE		ELST	
		K=MA T		ELST	101
		FAC = EE(K)/((12.*ENU(K))*(1.+ENU(K)))		ELST	
		CCTT=FAL*(1.+ENU(K))		ELST	
		IF(SKIP) 70,70,63		ELST	
	63	SKIP=SKIP-1.		ELST	
		CC1=1ENU(K)		ELST	
		CC2=ENU(K)		€LS⊺	
		CC3=.5-ENUIKI		EL S T	
		DEN = RHO(K)		ELSĨ	
C				ELST	
		L 3=63*63		FLST	
		UQ 100 1=1,L3		ELST	
	100	5(1)=0.		ELST	
		00 110 l=1,48		ELST	
	110	TT(1)=0.		ELST	
		UO 120 1=1.16		ELST	
	120	DL(1)=0.		EL S T	
		L3=48*48		LLST	
		00 121 I=1, L3		ELSI	
	121	XM[]]=0.0		ELST	
		00 123 1=1, 160		ELST	
	123	SF(1)=0.0		ELST	
_		VQL=0.0		ELST	
C				ELSI	
ç		LOOP OVER NINT##3 INTEGRATION POINTS		ELST	
¢				ELS1	
		MINT=NINI-1		EL ST	
		00 300 LX = 1, NINT		ELST	
		E1=XK(LX,N[NT)		ELST	
		$E_{2} = XK(LY, NIN^{T})$		FLST	
		DO 300 LZ = 1. MINT		ELSI	
~		E3=XK(LZ,MINT)		ELST	
С		CALL FUNCTED SAN		ELS1	
~		CALL FUNCT(1.SA)		ELSI	
С		A - DATING CONTRACTOR NUMBER AND THE MENTS		ELST	
		G = WGT(LX,NIN1)*WGT(LY,NINT)*WGT(LZ,MINT)		ELST	
		GV≖G≠DET		ELST	
		GT=G		ELSI	
		GG=G*DET *DEN	-	ELST	
		GGG=GG/GRAV		ELST	
		G=G+FAC/DEI		ELST	141

	C2=G+CC2
	C3=G+CC3
C	
č	CONSISTENT MASS MATRIX
ĉ	CONSTSTEME MASS MATRIX
÷	
	DO 130 I=1. 16
	11=(1-1)*3
	DO 130 J=I. 16
	£* £113=6.6
	HH≈Q12J*Q(JJ*GGG
	DO 130 K=1,3
	K1=11+K
	₭₰₻₰₰₳₭
	XM(K]+XJ}+XM(K]+KJ}+HH
130	XM(KJ+KI)=XM(KI+KJ)
C	
č	ADD CONTRIBUTION TO STIFFNESS MATRIX
č	AD CONTRIBUTION TO STITTICES HARRIN
311	VOL+GV
	00 300 1=1,21
	K3 # 341
	K2 = K3 - 1
	K1 = K2 - 1
	U1=5A(1,1)
	VI=SA(I+2)
	WI=SA(1,3)
	00 300 J=1,21
	L3 = 3 * J
	L2 = L3 - 1
	LI = L2 - 1
	UJ=SA(J, L)
	VJ=SA(J,2)
	₩J=SA(J,3)
	AA=A 1+A1
	NA=NI+A7
	An=A ten1
	A M=A I #M?
	MA≃M1+ A1
	S{Ki,Ll) = S{K1,Ll) + Ci+UU + C3+{VV+WW}
	S(K2+L2) = S(K2+L2) + C1+VV + C3+(WW+UU)
	S(K3,L3) = S(K3,L3) + C1 + WW + C3 + (UU + VV)
	S(K1,L2) = S(K1,L2) + C2+UV + C3+VU
	S(K1+L3) = S(K1+L3) + C2+UW + C3+WU
	S(K2,L3) = S(K2,L3) + C2*VW + C3*WV
	IF (I.EQ.J) GO TO 300
	S(K2+L1) = S(K2+L1) + C2+VU + C3+UV
	S(K3+L1) = S(K3+L1) + C2+WU + C3+UW
	$S(K3_{1}L2) = S(K3_{1}L2) + C2*WV + C3*VW$
200	CONTINUE
340	TVOL=TVOL+VOL
2000	
3000	FORMAT(14H ELEM. VOL. = E15.7)
~	PRINT 3000, VOL
ç	
č	STATIC CONDENSATION
c	
406	DO 710 H=1, 15
	MN=64-M

 ELST
 142

 ELST
 143

 ELST
 144

 ELST
 144

 ELST
 147

 ELST
 147

 ELST
 147

 ELST
 147

 ELST
 147

 ELST
 147

 ELST
 152

 ELST
 153

 ELST
 152

 ELST
 153

 ELST
 154

 ELST
 155

 ELST
 156

 ELST
 156

 ELST
 156

 ELST
 160

 ELST
 164

 ELST
 166

 ELST
 167

 ELST
 166

 ELST
 167

 ELST
 168

 ELST
 173

 ELST
 174

 ELST
 174

 ELST
 174

 ELST
 174

 ELST
 174

 ELST
 174
 </tr

1

C1=G+CC1

•

r	M0≖MN-1 ?	ELST 204 ELST 205
с с	STIFFNESS MATRIX - S	ELST 206
č	ATTICK VALUATION CONTRACTOR	ELST 207
•	SP=S(MN, MN)	ELST 208
	DC 650 1=1,MO	ELST 209
65	SIMN, IJ=SII, MNJ/SP	ELST 210
	D0 700 K=1,M0	ELST 211
	SP=S(MN,K)	ELST 212
	D0 700 J=1,K	ELST 213
) S[J.K]=S[J.K] - SP*S[J.MN]	ELST 214
	CONTINUE	ELST 215
۵.		ELST 216
n	1 00 760 I=1,48	ELST 217
	DD 760 J=I,48	ELST 218
74	SS(1,1]=S(1,1) SS(1,1)=SS(1,1)	ELST 219 ELST 220
c .		ELST 221
č	SAVE ELASTIC PROPERTIES	ELST 222
c c		ELST 223
•	SA(17,1)=CC1	ELST 224
	SA(17+2)=CC2	ELST 225
	SA(17,3)=CC3	ELST 226
	SA(17,4)=FAC	ELST 221
	DQ 505 1=1,7	ELST 228
	5 SA(1)=SF(1)	ELST 229
70	CONTINUE	ELST 230
ç	ALEXANDER LOUD	ELST 231
ç	DISTRIBUTED LOAD	ELST 232
Ļ	DQ 410 J=1.48	ELST 233 ELST 234
	DC 410 J=1.4	ELST 235
414) RF(J+[)=0.	ELST 236
с ^т		ELST 237
	0 = []= 0	ELST 238
	D0 551 1=1. 16	ELST 239
	1 I=NP(I)	ELST 240
	DO 550 J=1.3	ELST 241
	1+L1=L1	ELSI 242
	LM4IJ}=ID(II;J)	EL\$1 243
) CONTINUE	ELST 244
55	L CONTINUE	ELST 245
	NS=1	ELST 246
~	ND=48	ELST 247 ELST 248
C 70	L CONTINUE	ELST 249
10	CALL WRITET (MBAND, NDIF)	ELST 250
¢		FLST 251
č	CHECK IF LAST ELEMENT	ELST 252
č		ELST 253
	IF(N3DEL-NEL) 50,600,590	ELSI 254
59] [F[ML] 30,30,40	ELST 255
C		ELST 256
	C RETURN	ELST 257
C	n non-use date and the second strategies	ELST 258
	D FORMAT 1415,412,2X,40X ,215/16151	ELST 259
	L FORMAT (15,3F10.0)	ELST 260
	3 FORMAT(F10.2) 5 FORMAT(F10.2)	ELST 261
	0 FORMAT(16,X,815/7X,815,19,112/) 1 FORMAT (X,15,3E15,4)	ELSI 262 ELSI 263
	B FORMAT (///35HACCELERATION DUE TO GRAVITY =,F10.2///)	ELST 264
	FORMAT (9HIMATERIAL LOX THE 12X 2HNU LOX 3HRHO,/BH NUMBER,/)	ELST 265

1301 FORMAT (30HL+++16 NODE SULID ELEMENT DATA ///	ELST	
• 8H ELEMENT 10X 15HCONNECTED NODES 17X 21HINTEGRATION MATERIAL/	ELST	267
• 8H NUMBER 3X, 36H1 2 3 4 5 6 7 8 6X, 5HCRDER	ELST.	268
. 7X , 3HNU./	ELST	269
•11X•36H9 10 11 12 13 14 15 16 //)	ELST	270
4003 FORMAT (36HOELEMENT CARD ERROR, ELEMENT NUMBER= 16)	ELST	271
3002 FORMAT (31HL16 - NODE SOLID ELEMENTS ///	ELST	272
- 24H NUMBER OF ELEMENTS ,15 //	ELST	273
• 24H NUMBER OF MATERIALS••• •(5 ///)	ELST	274
END	ELST	275

	SUBROUTINE FUNCT (KK+O)	FUNC	1
c		FUNC	2
	DIMENSION D(40,1),B8(3)	FUNC	3
	COMMON /GASS/ XK(4,4),WGT(4,4),IPERM(3)	FUNC	4
	COMMON /JUNK/ R ,S ,T ,DET,MLD(4),KLD(4),MULT(4),NP(16), INP(16),	FUNC	5
	• A(3,3),P(3,21)+B(3,3),XZ(16,4)+Q(19),DL(16)	F UNC	6
C		FUNC	7
	R2=2•+(l(K++2))	FUNC	8
	S2=2.*(1(S**2))	FUNC	9
	RN=_125*(1R)	FUNC	10
	SP=1++S	FUNC	11
	SN=1 S	FUNC	12
	TP=1++T	FUNC	13
	TN=1T	FUNC	14
	RPSP= R+S-L.	FUNC	15
	RPSN= R-S-1.	FUNC	16
	RNSP=-R+S-1.	FUNC	17
	KNSN≠−R−S−L+	FUNC	18
	XPP= 2.+A+S	FUNC	19
	XPN≏ 2.*K-S	FUNC	20
	XNP=−2 • # R + S	FUNC	21
	XNN=-2.**	FUNC	22
	YPP= R+(2_+\$)	FUNC	23
	YPN= R-(2.*5)	FUNC	24
	YNN=-R-(2.*S)	FUNC	25
	XX=+125	FUNC	26
C		FUNC	27
С	SHAPE FUNCTIONS	FUNC	28
C		FUNC	29
	Q{ L}=RP +SP +IP +RP SP	FUNC	30
	Q1 2)=RN*SP*TP*RNSP	FUNC	31
	Q(3)=RN+SN+TP+RNSN	FUNC	32
	Q(4)=RP #SN #TP # RP SN	FUNC	33
	Q{ 5}=RP*SP*TN*RPSP	FUNC	34
	Q(6)=RN + SP + TN + RN SP	FUNC	35
	Q(7)≖RN *SN *TN * RN SN	FUNC	36
	Q[8]=RP*SN*TN*RPSN	FUNC	37
	Q(9)=K2*SP*TP*XX	FUNC	38
	Q(10)=RN*S2*TP	FUNC	39
	Q{11}=R2 * \$N * T P * XX	FUNC	40
	Q[12]=RP *S2 *TP	FUNC	41
	Q(13)=R2 *SP *TN * XX	FUNC	42
	Q(14)=RN*S2*TN	FUNC	43
	Q(15)=R2 *SN *TN *XX	FUNC	44
-	Q{L6}=RP#S2#TN	FUNC	45
C		FUNC	46

č	DERIVATIVES OF SHAPE FUNCTIONS	
c	20 VD C+0	
	0 XR=5*R XS=-4.*S	
	P(1,1)= XX*SP*TP*XPP	
	P(1,2)=-XX*SP*TP*XNP	
	P(1,3)=-XX* SN*TP*XNN	
	P(1,4)= XX* SN*TP*XPN	
	P(1+5)= XX+SP+TN+XPP	
	PIL+6J=-XX*SP*TN*XNP	
	P(1,7)=-XX+SN+TN+XNN	
	P(1,B) = XX + SN + TN + XPN	
	P(1,9) = XR * SP * TP	
	P(1,10)=-XX+52+TP	
	P(1,11)= XR*SN*TP	
	P[1+12}= XX#52#TP	
	P(1+13)= XR+SP+TN	
	P(1+14)=-XX*S2*TN	
	P(1,15)= XR*SN#TN	
	P(1,16)= XX*52*TN	
	P[1,17]=1(3.*R*R)	
	P(1,18)=0.	
	P(1,19)=0.	
	P(1,20)=S*(1.0-(3.0*R*R])	
~	P(1+21) = S + (1+0-(S+S))	
c	P(2,1) = RP * TP * YPP	
	P(2,2)= RN+TP+YNP	
	P{2,3}=-RN*TP*YNN	
	P{2,4}=-RP*IP*YPN	
	P12,51= RP*IN*YPP	
	P(2,6) = RN + TN + YNP	
	P12.7)=-KN*TN*YNN	
	P(2,8)=-RP*TN*YPN	
	P(2,9) = R2 * TP * XX	
	P(2,10)= XS*TP*RN	
	P(2,11)=-R2#TP#XX	
	P(2,12)= XS*TP*RP	
	P12+13]= K2+TN+XX	
	P(2,14)= XS#TN#RN	
	P(2, 15) = -R2 + IN + XX	
	P(2,16)= XS*TN*RP	
	P(2,17)=0.	
	P(2,18)=1,-(3.*\$*5)	
	P{2,19}=0. P{2,20]=R*(1.0-{R*R})	
	P(2,21)=R*(1,0-(3,0*S*S))	
с	F121211-R-11:0-13:0-3-311	
C C	P(3,1) = RP * SP * RP SP	
	P(3,2) = RN + SP + RN SP	
	P(3,3) = RN + SN + KN SN	
	P(3,4)= RP+SN+RPSN	
	P(3,5)=-RP+SP+RPSP	
	P(3,6)=-RN*SP*RNSP	
	P(3,7)=-RN*SN*RNSN	
	P(3,8)=-KP*SN*RPSN	
	P(3,9)= H2+SP+XX	
	P(3,10) = RN+S2	
	P(3,11) = R2 * SN * XX	
	P(3, 12) = RP + S2	
	P(3+13)=-R2*SP*XX	
	P{3,141≠-RN*S2	

FUNC 47 FUNC 47 FUNC 50 FUNC 50 FUNC 51 FUNC 52 FUNC 53 FUNC 55 FUNC 55 FUNC 55 FUNC 55 FUNC 55 FUNC 57 FUNC 60 FUNC 70 FUNC 7

			1	
		#13,15}=-R2#5N#XX	FUNC 10	19
		P(3,16)=-RP*52	FUNC 11	. J
		P(3,17)=0.	FUNC 11	11
		P(3,18)=0.	FUNC 11	. 2
		P[3, 19]=-2.+1	FUNC 11	3
		P(3,20)=0.0	FUNC 11	4
		P(3,21)=0.0	FUNC 11	. 5
C			FUNC 11	.6
ĉ		JACOBIAN MATRIX A	FUNC 11	1
ĉ			FUNC 11	3
•		DO 200 I=1.3	FUNC 11	
		DG 200 J=1-3	FUNC 12	
		C=0.	FUNC 12	
		DO 150 K=1.16	FUNC 12	
	150	C=C+P(1+K)+X2(K+J)	FUNC 12	
		A(1, J)=C	FUNC 12	
		IF (KK.EQ.3) GU TO 600	FUNG 12	
c		I TREESE OUT 1000	FUNC 12	
č		INVERT JACOBIAN	FUNC 12	
č		THACKL THOODING	. FUNC 12	
c		DO 300 L=1,3	FUNC 12	
		J±IPERM(1)	FUNC 13	
		K=IPERM(J)	FUNC 13	
		B(I,I) = A(J,J) + A(K,K) - A(K,J) + A(J,K)	FUNC 13	
		B(I,J)=A(K,J)*A(I,K)-A(I,J)*A(K,K)	FUNC 13	
	300	B(J,I)=A(J,K)*A(K,1)-A[J,I)*A(K,K)	FUNC 13	
		DET=A(1,1)*B(1,1)+A(1,2)*B(2,1)+A(1,3)*B(3,1)	FUNC 13	
С			FUNC 13	
С		MATRIX OF X-Y-Z DERIVATIVES	FUNC 13	
¢			FUNC 13	
		00 400 [=1+3	FUNC 13	
		DO 400 J=1,22	FUNC 14	
		C=0.	FUNC 14	
		DO 350 K=1,3	FUNC 14	12
	350	C=C+B{1,K}*P{K,J}	FUNC 14	•3
	400	D(J,I)≠C	FUNC 14	4
C			FUNC 14	+5
~	600	RETURN	FUNC 14	16
€			FUNG 14	17
-		END	FUNC 14	8

	SUBROUTINE WAITETIMBANDANDIFI	WRIT	L
	COMMON/EM/LM(48),ND,NS,S(48,48),P(48,4),XM(48,48),ST(40,48),	WK [T	2
	1 17(40.4)	WRIT	3
C		WRIT	4
č	CALCULATION OF BAND WIDTH AND WRITES ELEMENT MATRICES ON TAPES	WRIT	5
	MIN=100000	WRIT	0
	MAX=0	n RIT	7
	DO 450 L=1,ND	WRIT	8
	IF (LM(L).EQ.0) 60 TO 450	WRIT	9
	IF (LM(L).GT.MAX) MAX=LM(L)	WRIT	10
	IF (LM(L), LT.MIN) MIN=LM(L)	WRIT	11
45	0 CONTINUE	WEIT	12
	NDIF=MAX-N(N+1	WR I T	13
	IF (NDIF+GT+MBAND) MBAND≖NDIF	WRIT	14
	PRINT 2, NDIF	WR I I	15
	2 FORNAT(7H MBAND=15)	WRIT	16
	· · ·		

C DO 1 I=1, 48 IF(XM(1,1).1.0.0) STOP 1 CONTINUE WRITE (1) NS.ND.LM.ST.TT.XM WRITE (2) LM.ND.NS.S.P. XM REFURN	- 6.2 -	WRIT WRIT WRIT WRIT WRIT WRIT WRIT	17 18 19 20 21 22 23
END		WRI (WRIT	23

	OVERLAY(XFILE+2+0) PROGRAM EIGSSP	EIGS	t
с	FRUGRAM E1033F	EIGS	2
č	PROGRAM TO COMPUTE SMALLEST EIGENVALUES AND ASSOCIATED VECTORS IN	EIGS	3
č	THE GENERALIZED EIGENVALUE PROBLEM		4
		EIGS	5
C C	A¢V≠RT#B#V (A POS DEF+B DIAG NONNEG DEF)	E 16 S	6
č		EIGS	1
L		E1GS	3
	COMMON / ELPAR/ NPAR(14), NUMNP. MBAND. NELTYP. N1. N2. N3. N4. N5. MTOT. NE	QE 16 S	3
	NG, NUMNPF , IPRINT , NLM , NUMEL, WATL, IMASS, TVOL, NEGEST, IMODE		
	. , IPRM , MESH , MESHEN , ISYM, WDEN		11
	COMMON /JUNK/ HED(12)	EIGS	12
	COMMON / MISC / NULOCK, NEQB, LL, NF, LB, NDYN	E165	13
	COMMON /TAPES/NSIIF,NRED,NL,NR,NT,NMASS	ELGS	-14
	COMMON A(16000)	£16S	15
c		e1GS	16
С		E1G5	17
	MTEMP=MTOT	EIGS	18
	IF(MTOT-EQ.O) MTOT=MTEMP	EIGS	19
	NST IF=4	EIGS	2.0
	NMA S S≖9	EIGS	21
	NRE D= 10	E1G5	22
	NL = 2	EIGS	23
	NR≠3	EIGS	24
	NT = 7	EIGS	25
		EIGS	26
	1=0	EIGS	27
	NV=2*NF	ELGS	23
	1F (NF+GT-8) NV=NF+12	EIGS	29
	NEOB=NTQT/(2*MBAND+1)	EIGS	30
	5 NBLDCK=(NEQ-1)/NEQB+1	EIGS	31
		EIGS	
	IF(II.GT.LOO) STOP	EIGS	32
	IF (NEQB. GT.NEQ] NEQB≈NEQ	FIGS	34
	NWA=NEQB*MBAND		
	NWX=NEQB	EIGS	35
	NTB=(MBAND-2)/NEQB+1	EIGS	36
	IF (NIB.GE.NBLOCK) NIB=NBLOCK-1	EIGS	37
		ELGS	38
	NWVV=NWV+(//IB+1)	EIGS	39
	N2=NWV+NEQB+NV	EIGS	40
	IF(N2.LE.HTUT) GU TO 10	E 1 G S	4 i
	NEQB=(MTOT+NV)/(1+NV)	EIGS	42
	GU TU 5	E I G S	43
	10 N3=NWA+NWV+NWVV+NEUB+2*NV	E165	44
	IF(N3-LE-MIUT) GU TO 20	EIGS	45
	NEQB=(MTUT-2*NV)/(MBANO+NV+NV*(1+NTB)+1)	EIGS	46
	GO TO 5	EIGS	47
	20 N4=NV*(3*NV+2*NEQB*3)+NEQB*4BAND	E1G5	48

	IF(N4.LE.MIDI) GD TO 40	£165	49
	NEQB=(NTOT-NV*(3+3*NV))/(MBAND+2*NV)	EIGS	50
	GO TO 5	ELGS	51
40	NE2B=2*NEQB	EIGS	52
	PRINT 1000.NEU.MBAND.NBLOCK.NEQB.NF	EIGS	53
	IFIIMODE.GT.O.AND.NDYN.GT.LJ CO TO 50	F (G S	54
45	N2=N1+MBAND*NE2B	£165	55
4.7	CALL ASMBLB(A(N1)+A(N2)+NUMEL+NBLOCK+NE2B+LL+MBANO+NEQ+MASWAT)	EIGS	56
50	IF(INDDE_EQ.O.UR.NDYN.EQ.1) GD TO 300	E 1 G S	57
	IMODE= 10	EIGS	59
	REWIND 7	E 1 G S	59
	REWIND IMUDE	EIGS	60
	READ(INQUE) NBTP+NEQ8TP+NEQTP+NETP+MBTP	E 16 S	-61
	IFINBTP.NE.NBLUCKI GO TO 2	EIGS	62
	IF(NEQBTP_NE_NEQ8) GO TO 2	EIGS	63
	IF(NEQIP.NE.NEQ) GO TO 2	EIGS	64
	IF(NETP-NE-NE) GU TO 2	EIGS	65
	IF(M8TP.NE.MBAND)GGTO 2	EIGS	66
	READ(IMODE) (A(1), [=1, NF)	EIGS	67
	WRITE(7) (A(1), I=1, NF)	E165	68
	WRITE(6,1001) (11,A(1)), I=1, NF)	£1GS	64
	NQF=NEQ8*NF	EIGS	70
	DO I I=1, NBLUCK	E165	71
	READ(INUDE) [A(K], K=1, NQF)	EIGS	72
1			
1	WRITE(7) (A(K), K=1, NQF)	F 1 G 5	73
		E1GS	74
	N2=N1+5*NUMNP	ELGS	75
	N3=N2+5+NF	6165	76
	IF(IPRM .NE.O) GO TO 3	EIGS	77
	CALL PRINTD(A(N1),A(N2),A(N3),NEQB,NUMNP,NF,NBLUCK,NEQ ,7,NF)	61G S	78
3	CONTINUE	FIGS	79
	RETURN	EI6S	80
2	WRITE(6,1000) NEUTP, NBTP, NBTP, NEUBTP, NFTP	E 1 G S	d 1
	STOP	EIGS	82
Ç		LIGS	43
300	NWA=NEU B*MBAND	E 1G S	84
	NHV=NV+NEUB	EIGS	85
	NT B={MBANU-2}/NEAB+1	FIGS	86
	IF (NTB.GE.NBLUCK) NTB=NBLOCK-1	E165	87
	NW YV=NW V*(NIB+1)	EIGS	88
	N=2*NwA+NEUB	FIGS	87
	N2=N#V+NEU3+NV	1165 1165	93
	N3=NWA+NWV+NWVV+NEQB+2*NV	E165	91
	N4=NV#(3*NV+2*NE48+3)+NEQ8*MBAND	EIGS	92 93
_	N5=N#A+6*NV+NEQB	EIGS	
C		EIGS	94
	IF (N2.GI.N) N=N2	E 1 G S	95
	IF (N3.GI.N) N=N3	EIGS	96
	IF (N4.CT.N) N=N4	EIGS	97
	IF (NS.GI.N) N=NS	EIGS	93
	IF (MTUT-N) 400,500,500	EIGS	99
400	PRINT LOID-N	E 1 G S	100
	STOP	E 1 G S	101
с		6 I G S	102
500	CALL SSPACEB (NEQ, MBAND, NBLOCK, NEQB, NF, NV, NWA, NWV, NWV, NTB)	EIGS	103
	ITP=0	EIGS	
	IFIIMUDE.NE.UJ ITP=10	EIGS	
	IF(ITP.EU.0) 60 TO 700	FIGS	
	REWIND 7	EIGS	
	REWIND I TP	£165	
560	WRITE(ITP) NBLOCK, NEQB, NEQ, NF, MBAND	£165	
,,,,,	NOF=NEOB +NF	EIGS	

READ(7) WRITE(IT	(A(I), I=I, NF) P) {A(I), I=I, NF)	11	E165 111 E165 112
	I=1. NOLOCK		EIGS 113
READ(7)	[A[1], I=1, NQF)		EIGS 114
600 WRITE(11	P) (A(1), I=1, NQF)		EIG5 115
с			EIGS 116
700 RETURN			EIGS 117
C			EIGS 118
1000 FORMAT	(LH1,20HPROBLEM INFORMATION //		EIGS 119
1	/30H NU OF EQUATIONS 14		EIGS 120
2	/30H 1/2 8ANDWIDTH OF A 14		E1GS 121
3	/30H ND OF BLOCKS		EIGS 122
4	/30H NU OF EQNS PER BLOCK 14		EIGS 123
5	/30H NO OF FREQUENCIES REQD 14 J		EIGS 124
	9H FREWS. /(15,F12.6))		EIGS 125
	140HOFOR EXECUTION NEED TO INCREASE MIDT TO 161		E165 120
END			EIGS 127

	SUBROUTINE SSPACEB (NEQ: MBAND, NBLOCK, NEQ8, NF, NV, NWA, NWV, NHVV, NT8) SSPA	ı
¢		SSPA	2
	COMMON /TAPES/NSTIF+NRED,NL,NR,NT,NMASS	SSPA	3
	COMMON A(1)	SSPA	4
	COMMON /ELPAR/ NPAR(14),NUMNP,MB ,NELTYP,N1,N2,N3,N4,N5,M1UT,NQ	2SSPA	5
	+N6, NUMNPF +IPRINT +INOD+NUMEL, DUM(5)+IPRM	SSPA	6
С		SSPA	7
	NITEM=10	SSPA	в
¢	FACTORIZE STIFFNESS MATRIX	SSPA	9
	N2=1+NWA	SSPA	10
	N3=N2+N#A	SSPA	11
	CALL SECOND (TIMI)	SSPA	12
	CALL DECOMP (A(1)+A(N2)+A(N3)+NEQB+MBAND+NBLOCK+NWA+NTB+NSCH+NEG		13
	CALL SECUND (TIM2)	S S P A	14
C		SSPA	15
C	ESTABLISH STARTING TRANSFORMATION VECTORS ON TAPE NR	SSPA	16
	N2=1+Nw V	SSPA	17
	N3=N2+NEQB	SSPA	18
	CALL INVECT (A(L),A(N2),A(N3),NBLOCK,NEQB,NV)	5 SP A	19
	CALL SECOND (TIM3)	SSPA	20
	FINL=FIM2-TIML	SSPA	21
	TIM2=IIM3-IIM2 ~~~~	SSPA	22
	PRINT LOUO,TIML	SSPA	23
	PRINT 1010+11M2	SSPA	24
C C	•	SSPA	25
G	PERFORM SUBSPACE ITERN	SSPA	59
	DO 100 #=1.NV	SSPA	27
10		SSPA	28
	NITE=0	SSP 4	54
20		SSPA	30
	PRINT 1020,NITE	S SP A	31
	CALL SECOND (TIMI)	SSPA	32
	N1=1+2+NV	SSPA	33
	NZ=N1+NWA	SSPA	34
	N3=N2+NHV	SSPA	35
	N4=N3+NwVV	SSPA	36
	CALL REDBAK (AIN1), A(N2), A(N3), A(N4), NEQB, NV, NWA, NWV, NVV, NTB,	SSPA	37
	INBLOCK)	SSPA	38
C		SSPA	39

C S	DEVE SUBSPACE EIGENVALUE PROBLEM	SSPA	40
	N2= L+NV	SSPA	41
	N3=N2 +N V	SSPA	42
	N4=N3+N V≠N V	SSPA	43
	N5= N4+N V*N V	SSPA	44
	N9=N2 +M A +V A	SSPA	45
	N7=N6+NWV	SSPA	46
	N8=N7+N #Y	S SP A	47
	N9≕Ň8 +N V	SSPA	48
	CALL SECOND (TIM2)	SSPA	49
	CALL EIGSOL (A(1),A(N2),A(N3),A(N4),A(N5),A(N6),A(N7),A(N8),A(N9	ESSPA-	50
	1, NF+NV+N6LUCK+NEQ8+NITE+MBAND)	SSPA	51
	CALL SECOND (TIM3)	SSPA	52
	TIM X= TIM3- TIM1	SSPA	53
	TIM2=TIM3-TIM2	SSPA	54
	PRINT 1030.TIM1	SSPA	55
	PRINT 1040.TIM2	SSPA	50
C		SSPA	57
•	IF (NITE-LT-NITEN) GO TO 200	SSPA	58
C		SSPA	59
•	PIL=ATANLL, 1*4.	5SPA	63
	PRINT 1055	SSPA	61
	DB 210 1=1. NF	SSPA	62
	FREO=Å(I)	SSPA	63
	FREQ=SQRT(FREy)/2./PII	SSPA	64
	PRINT 1056. L.FREQ	SSPA	65
210	CONTINUE	SSPA	66
2.10	PRINT 1050	SSPA	67
	PRINT 1060. (A(1), [=1, NF)	SSPA	6.8
300	CONTINUE	SSPA	69
300	IF(IPRM.NE.O) GU TO 310	SSPA	70
	NI#I	SSPA	71
	N2=N1+5*NUMNP	SSPA	72
	N3=N2+5*NF	SSPA	73
	CALL PRINTDIAIN11, A(N2), A(N3), NEQB, NUMNPF, NF, NBLOCK, NEQ, NR, NF)	SSPA	74
310	RETURN	SSPA	15
c		SSPA	75
	FORMAT (34HUTIME FOR STIFFNESS FACTORIZATION F6.2)	SSPA	77
	FORMAT (42HOTIME FOR GENERATION OF INITIAL IR-VECTORS F6.2)	SSPA	78
	FORMAT 11H1.11HNO OF [TERN [4]	SSPA	79
	FORMAT (24HOTIME USED IN ITERN STEP F6.2)	SSPA	80
	FORMAT (25HOTIME FOR EIGENVALUE SOLN F6.2)	SSPA	81
	FORMAT (1H1.20HTHE FINAL EIGENVALUES ARE /)	SSPA	82
	FORMATI37HI FREQUENCIES IN CYCLE PER SECOND ARE//)	SSPA	83
	FORMAT (10X, 15, 5HF10.4)	SSPA	84
1060		SSPA	85
	END	SSPA	36
		221.4	

	SUBROUTINE EIGSUL (DL,RTOLV, AR, BR, VEC, VL, VR, D, XM, NF, NV, NBLOCK,	EIG	1
	INEQB .N ITE .MB)	EIG	2
c		EIG	3
	COMMON /TAPES/NSTLF,NRED,NL,NR,NT,NMASS	EIG	4
	DIMENSION ARING.NV).BR(NV.NV),VEC(NV.NV).VL(NEQB.NV),VR(NEQ8,NV)	ŁIG	5
	DIMENSION D(NV), DL(NV), RTOLV(NV), XMINEQB, MB)	E1G	6
	COMMON / ELPAR/ NPAR(14), NUMNP, MBAND, NELTYP, N1, N2, N3, N4, N5, MTOT, NEL	ELG	1
	. NG. NUMNPF . IPRINT .NLM .NUMEL.WATL . [MASS, TVOL	EIG	з
C		E1G	4

	NITEM=10	160	E16
	RTOL=1.0E-04		E I G
	TOL J=1.0E-12		EIG
	REWIND NMASS		EIG
	REWIND NT		613 513
~	REWIND NR		EIG
C			EIG
Ç F	IND PROJECTIONS OF MASS AND STIFFNESS OPERATORS		EIG
	D0 100 1=1,NV		EIG
	D0 100 J=I,NV		EIG
	AR(1, J)=0.0		EIG
100	BR(I,J)=0.0		EIG
	DO 200 N=1.NBLUCK		EIG
	BACKSPACE NL		C 1 G
	READ INLI VL		EIG
	BACKSPACE NL		EIG
	READ (NR) VR		E 1 G
101	DG 220 I=1,NV		EIG
	D0_220_J=1+NV		EIG
	AR T=0.0		EIG
	D0 230 K=1,NEQ8		EIG
230	ART=ART+VL(K, LI*VR(K, J)		EIG
220	AR(1, J) = AR(1, J) + ART		EIG
200	CONTINUE		EIG
	DO 290 I=1,NV		EIG
	00 290 J=1,1		£16
	BR(I,J)=BR(J,I)		EIG
290	AR(I, J) = AR(J, I)		EIG
c			£16
	DD 291 N=1. NBLUCK		E1G
291	READ (NL)		616
	CALL TRANSMIXM, VL .VR .BR .NEQ8, MB .NV .NMASS.NL .NT .NBLOCK		LIG
C			ÉIG
c			EIG
	DLVE EIGENVALUE PROBLEM		EIG
289	CONTINUE		EIG
	CALL JACOBI (AR. BR. VEC. D. VL. N. TOLJ)		ÉIG
	DG 295 J=1+NV		EIG
	XMM=SQRI(BREJ,J))		EIG
	DO 295 K=1,NV		513
295	VEC(K.J)=VEC(K.J)/XMM		EIG
¢	A		E1G
Ç Al	RRANGE EIGENVALUES		EIG
	NV1 = NV - 1		E I G
440	I S= 0		EIG
	DD 400 I=1,NV1		£IG
	IF (D(1+1).GE.D(1)) GO TO 400		E16
	IS=IS+1		EIG
	BT = BR(1+1,1+1)		EIG
	DT=D(1+1)		£ i G
	BR(1+1,1+1)=UR(1,1)		£16
	D(1+1)=D(1)		ŧIG
	BR(1,1)=BT		EIG
	D(I)=DI		EIG
	ĐO 420 K=1.NV		£16
	TEMP=VECIK,I+1)		EIG
	VEC{K, [+1]=VEC[K, []		EIG
420	VEC(K+I)=TEMP		EIG
400	CONTINUE		E 1 G
<i>c</i>	IF (IS.6T.0) G0 TO 440		61G
C C			EIG
C C)	HECK FOR CONVERGENCE		F16

	DO 300 (=1.NV	,1	EIG	12	C
	DIF=ABS(DL(I)-D(I))	,	FIG	73	REWIND NT
300	RTOLV[]=D]F/U[]		εig	74	NMAX=MB/ NEQE
	PRINT 1040		EIG	75	IF (NMAX.GT.N
	PRINT 1000,(RTULV(I),I=L,NV)		EIG	76	NEV=NEQB*NV
	00 320 1=1.NF		£1G	77	111=0
	IF (RTULV(1).GT.RIOL) GO TO 340		÷16	7.11	CALL SECOND
320	CONTINUE		E 1 G	79	DU 400 N=1;
	PRINT 1050,RTUL		E 1 G	80	REWIND NMASS
	NITE=NITEN		EIG	8 L	00 5 l≠L, N£
	GU TO 350		ELG	82	5 C(I)=0.0
340	IF INITE.LT.NITEMI GO TO 360		EIG	83	NR=N-NMA X
	PRINT 1060		E1G	84	IF(NR.GT.O)
350	DU 354 1=1.NV		EIG	85	NK=0
••••	DL[1]=D([]		E 1 G	86	GO TO 20
	IF(D([]_LE.0.0) STOP		EIG	87	6 00 10 i≠1, M
354	D(1)=SQRT(D(1))		EIG	88	BACK SPACE NU
	M=NT		EIG	89	[]]=[]]+1
	NT=NL		E1G	90	10 READ(NMASS)
	NL=M		EIG	91	20 READ (NMASS)
	M=NR		EIG	92	NR=NR+1
	NR=NL		EIG	93	BACK SPALE NO
	NL=M		EIG	94	READ (ND) A
	REWIND NR		£16	95	BACK SPACE NO
	WRITE(NK) $(D(I), I=1, NF)$		EIG	96	[1]=[]]=
	PRINT 1055. ((1.D(1)). I=1. NF)		£1G	97	IF(NR.EQ.N)
1055	FORMAT(7H FREQS./14H N FREQ. /(15,F10.4))		LIC	93	I START=(N-NP
10,77	GO TO 430		616	49	DO 50 [=1. N
c	30 10 430		EIG	100	NXM= ISTART+N
	ALCULATE APPROXIMATE EIGEN DIRECTIONS		ĔÌĞ	101	I STAR T=1 STAP
360	DO 410 I=1.NV		EIG	102	NDIF=MB-ISTA
410	DU = 10 1 - 10 1 DU = 10 1 - 10 1		610	103	IFINDIF+LI+I
410	REWIND NR		EIG	104	NH=NEOB
430	REWIND NI		EIG	105	IF(NDIF.LT.
430	DO 460 N=1,NBLOCK		EIG	106	00 40 K=1, 8
	READ INTI VR		EIG	107	NA=1-K
	DO 480 $J=1.NV$		EIG	108	NC=1-NEQB
	DO 480 I=1.NEQB		EIG	109	NXM=NXM-1+NE
	JEMP=0.0		EIG	110	IF(XM(NXM).
	D0 500 K=1.NV		81G	111	DQ 30 J=1. N
500	TEMP=TEMP+VR(I.K)*VEC(K.J)		£10	112	NA=NA+NEUB
			EIG	113	NC≖NC+NEQB
480	VL(I,J)=TEMP		£16	114	30 CINCI=CINCI
460	WRITE (NR) VL		EIG	115	40 CONTINUE
С	ACT100		E10	115	50 CONTINUE
	RETURN FORMAT (1)() DOULL ()		£1G	117	GG TO 20
	FORMAT (1H , 12E11.4)		616	118	100 CONTINUE
1040			£16	118	C C CONTINUE
1050				120	DQ 150 I=1.
1060			E16		DU 150 1-1; NXM≐NEQB*1
	END		£16	121	DD 140 K=1.

SUBROUTINE TRANSMIX4,A,C,B,NEQB,MB,NV,NMASS,ND,NT,NBLOCK)	TRAN	
	TRAN	
THIS SUBROUTINE FORMS BEAT*XM*A, WRITES C=XM*A ON TAPE N1.	TRAN	
A AND XM ARE READ FROM TAPES ND AND NMASS.	TRAN	
	TRAN	4
DIMENSION XM(NEQB,MB),A(NEQB,NV),8(NV,NV),C(NEQB,NV)	TRAN	

		TRAN	7
C	REWIND NT	TRAN	ġ
	NMAX=MB/NEU8+2	TRAN	9
	IF(NMAX.GT.NBLUCK) NMAX=NBLOCK	TEAN	10
	NEV=NEQB*NV	TEAN	11
	$i \mathbf{T} = 0$	TRAN	i 2
	CALL SECOND(TI)	TRAN	13
	DU 400 N=1, NULULK	TRAN	14
	REWIND NMASS	TGAN	15
	00 5 l≠l, NEV	1644	16
5	C(I]=0.0	TKAN	17
	NR=N-NMA X	TiAN	18
	IF(NR.GT.O) GO TL 6	THAN	19
	NK=0	TEAN	20
	GO TO 20	TRAN	21
6	00 10 1=1, NR	TRAN	22
	BACK SPACE NU III≖III+I	TPAN TRAN	23 24
10	READ(NHASS)	TRAN	25
	READ(NHASS) XM	TRAN	26
20	NR=NR+1	FRAN	27
	BACK SPACE ND	THAN	28
	READ (ND) A	TPAN	29
	BACK SPACE ND	TEAN	30
		TRAN	31
	IF(NR.EQ.N) GG TO 100	THAN	32
	1 START = (N - NR - 1) * NEQB + 1	TRAN	33
	DO 50 [=1, N£GB	TRAN	34
	NXM=ISTART#NEQ3+1	1 N A V	35
	I STAR T=1 STAR T+1	18AN	36
	NDIF=MB-1START +1	FRAN	37
	IFINDIFILITI GU TO 20	IRAN	3.5
	NH=NEQB	TRAN	34
	IF(NDIF-LI-NM) NM=NDIF	TRAN TRAN	40 41
	00 40 K=1, NM	TEAN	41
	NA= 1-K NC= 1-NEDB	TRAN	43
	NCHINCWD NXM≐NXM−1+NEUB	TRAN	44
	1F(XM(NXN),EQ.U,U) GD TU 40	TRAN	45
	DC = 30 J = 1, NV	TRAN	46
	NA=NA+NEUB	TRAN	47
	NC≖NC+NEQB	TRAN	48
30	C(NC) = C(NC) + XM(NXM) + A(NA)	TRAN	49
40	CONTINUE	TPAN	50
50	CONTINUE	TRAN	51
	GG TU 20	TEAN	52
	CONT INUÉ	TRAN	53
Ç		FRAN	54
	DG 150 I=1, NE4B	TRAN	55
	NXM=NEQB+1	TPAN	56
	DO 140 K=1, I	TRAN	57
	NXM≅NXM+I-NEQB	TRAN TRAN	58
	11=1+1-K 1F{11.G1.M8} GU 10 140	TRAN	59 60
	1F(11.61.MB) 60 10 140 1F(XM(NXM).60.0.0) 60 TU 140	18AN	61
	NA=K-NEQB	TPAN	61
	NC=1-NEQB	TRAN	63
	DO 130 $J=1$, NV	TRAN	64
	NA=NA+NEQ8	TRAN	65
	NC=NC+NEQB	1RAN	66
130	CINC = CINCI+XMINXMI*ALNAI	18AN	67
140	CONTINUE	TRAN	68

	IF(I.EQ.NEQB) GU TO 150	X A N	69
	11=1+1	RAN	70
	DO 145 K=11, NEQB	AN	71
	[J=K-1+1	RAN	72
	IF(IJ.GT.MB) GO TO 150	RAN	73
	NXM=NXM+NEQ8	RAN	74
	IF(XM(NXM).EQ.0.0) GO TO 145	₹AN	75
	NA=K-NEQ B	RAN	76
	NC=1-NEQB	RAN	77
	QQ 155 J=1, NV	(AN	78
	NA≠NA+NE QB	2 A N	79
	NC≠NC+NE Q8	AN	80
155	C(NC)=C(NC)+XM(NXM)+A(NA)	₹ A N	81
145	CONTINUE	λAN.	82
150	CONTINUE	KΑN	83
	I B=N	₹ A N	84
	DU 300 L=2, NMAX	(AN	85
	18=18+1	AN	86
	IF(IB.GI.NBLUCK) GO TO 350	₹ A N	87
	BACK SPACE ND	AN	88
	READ (ND) A	< A N	84
	BACKSPACE ND	 KAN	90
	111=111+1	<an< td=""><td>91</td></an<>	91
	ISTART=([B-N] +NEQB +2	άN	92
	DO 180 I=1, NEQB	AN	93
	I START=I START-1	RAN	94
	NDIF=MB-ISFART+1	RAN	95
	IF(NDIF.LT.L) GO TO 180	RAN	96
	NXM=1ISTART-21*NEUB+L	AN	97
	NM=NEQB	AN	93
	LFINDIF.LI.NH) NH=NDIF	AN	99
	DO 160 $K=1$, NM	KAN -	
	NXM=NXM+NEQB	₹A.N	
	IFIXMINXMI.EQ.0.01 GB TO 160	¢ΔN	
	NA=K~NEQB	4 N	
	NC=1-NEQB	AN	
	00 170 J=1, NV	A N	
	NA≈NA+NEQB	RAN RAN	
	NC=NC+NE QB	CAN CAN	
	C(NC)=L(NC)+XM(NXH)+AtNA)	≺AN ₹AN	
	CONTINUE	<an< td=""><td></td></an<>	
	CONTINUE	AN AN	
	CONTINUE	₹ALN	
	DO 310 $I=1$. ITT	≺AN ≺AN	
310	READ (ND)	AN AN	
	WRITE(NT) C	(A 1 (A 1	
4 00		SAN SAN	
	NEV=NV*NV DO 410 [=1, NEV	SAN	
		AN	
410	B(I)=0.0 REWIND NI	AN.	
	DO 450 N=1, NBLOCK	RAN	
	BACKSPALE ND	AN	
	READINUL A	AN	
	BACKSPACE NU	20.0	
	READ INIJ C	RAN	
	DO 440 I=1. NV	AN	
	DD 440 J=1, NV	RAN .	
	CI=0.0	AN	
	DO 430 K=1, NEQB	AV	
430	CT=CT+A(K,1)+((K,J)	< AN	
	B(1, J)=B(1, J)+LT	AN	

	SUBROUTINE ASMBL8(A,SMS,NUMEL,NBLUCK,NE2B,LL,MBAND,NEQ,MASWAT)		1
ç		ASMB	2
0 0 0 0 0	FORMS GLOBAL EQUILIBRIUM EQUATIONS IN BLOCKS	ASM B	3
<u> </u>		ASMB	4
ι c		ASMB	5
C C	THIS VERSION ASSEMBLES GLOBAL MASS MATRIX	ASMB	6
C		ASMB	1
	DIMENSION A(NE28, MBAND), STIF(4850), SMS(NEQ)	A SMB	8
	COMMON/EM/LN(48).ND,NS,S(48,48).P(48,4),XM(48,48).ST(22,48).	ASMB	9
	1 TT(12.4)	ASMB	10
	EQUIVALENCE (STIF,LM)	ASMB	11
	NEQB=NE2 B/2	ASMB	12
	K≠NEQ8+1	ASMB	13
	X=NBLOCK	ASMB	14
	MB=SQRT(X)	ASMB	15
	MB=MB/2+1	ASMB	16
	N£BB=MB*NEZB	ASMB	17
c	MM=1	ASMB	19
ι.		ASMB	19
	NSHIFT=0 Rewind 4	ASMB	20
	REWIND 9	ASMB	21
~	KENINU 9	A SMB	22
С С		ASMB	23
c c	FORM EQUATIONS IN BLOCKS (2 BLOCKS AT A TIME)	ASMB	24
L	DO 1000 M=1.NBLUCK .2	4 SM 8	25
	DO 100 H=1,NE28	ASMB	26
	DO 100 J=1, MEAND	ASMB	27
	100 A(I,J)=0.	ASMB	28
c	100 Ally37-0.	ASMB	29
÷	REWIND 7	ASMB	30
	REWIND 2	ASMB	31
	NA=7	ASMB	32
	NUME=NUM 7	ASMB	33
	IF (NM.NE.1) GG TO 75	ASMB	34
	NA=2	A 5 M B A 5 M B	35
			36 37
	NUM7 =0	A SM B A SM B	
C		ASMB	38
č	75 DO 700 N=1+NUME	- ASMB	40
	READ INAL STIF	- ASMB ASMB	
	00 600 1=1.NU	ASMA	41 42
		45MB	42
	II=LM(I)+NSHIFI	ASMB	43
		ASHD	**

450	CONTINUE	2.2	TRAN 131
	DO 460 I=1, NV		TKAN 132
	00 460 J=I. NV		TRAN 133
460	B{J,1}=B{I,J}		TRAN 134
	CALL SECOND(72)		TRAN 135
	T 2=T 2-T 1		TRAN 136
	PRINT 2000		TRAN 137
	PRINT 1000, T2		TRAN 138
	RETURN		TRAN 139
1000	FORMAT(F10.4)		TRAN 140
2000	FURMATI41H TIME FOR FORMING GENERALIZED MASS MATRIX	1	16 4 N 141
	END		TRAN 142

	IF (II.LE.0.0R.(1.GT.NE2B) GO TO 600	ASMB ASMB	45		IF(M.EQ.NBL
	DO 500 J=1.ND	ASMB			WRITE(9) ((
	JJ=LM(J)+LMN	ASMB	48	100	1 NSHIFT=NSHI
	IF(JJ) 500,500,400	A 5 M B	40	100	RETURN
	A([]+JJ]=A([]+JJ]+S([+J])				
500 (CUNTINUE	ASMB	50		ENO
600 (CONTINUE	ASMa	51		
:		ASMB	52		
	DETERMINE IF STIFFNESS IS TO BE PLACED ON TAPE 7	ASMB	53		
		ASMO	54		
	IF (MH.GT.1) GO TU 700	ASMB	55		
	00 650 i=1,ND	ASMB	56		
	II=LM(I) -NSHIFT	ASMB	57		SUBROUT INE
	IFIII.GT.NE2B.AND.II.LE.NEBB) GD TD 660	ASMB	53	C	
	CONTINUE	ASMB			COMMON /TA
		ASMB	60		DIMENSION
	GO TO 700	ASMB		C	
	WRITE (7) STIF	ASMB		-	NV1=NV-1
	NUM7=NUM 7+1	ASMB			KK=1
		ASMB			IND=0
	CONTINUE	ASMB		90	NBV=KK*((N
	WRITE[4] ([A[[,J],[=1,NEQB],J=1,MBAND]			10	
	IFIM.EQ.NBLOCKJ GO TO 1000	ASMB			IF (NBV.GT
	WRITE(4) ((A(1,J),I=K,NE2B),J=1,MBAND)	ASMB			IF (NOV.EQ
	IF (MM.EQ.MB) MM=0	ASMB			IF INBV.GI
	MM=MM+1	ASMO			IF (NEV.EQ
1000 #	NSHIFT=NSHIFT+NE2B	8 M 2 4	70		N8 V N= 0
C		ASMB	71		ICOUNT=0
	MM# 1	ASMO	72		LL.≖0
	NSHIFT=0	ASMB	73	C	
	00 1001 H=1.NBLOCK.2	ASMB	74		REWIND NMA
	DD 101 I=1, NE28	ASMB	75		REWIND NST
	DO IOI J=1, MBAND	ASMB	70	60	READ INMAS
		ASMB	77		READ INSTI
	A([,J]=0.0 Rewind 7	ASMB	78		ICOUNT=ICU
		ASMB	79		DO 20 1=1,
	REWIND 2	ASMB			IF (VA(I).
	NA=7	ASMB			VAL1)=XMLI
	NUME=NUM 7	A SM8		20	CONTINUE
	IF(MM.NE.1) GO TO 76	ASMB		د د	CONTINUE
	NA=2			C C	NNV = NEQ B / N
	NUM E= NUM EL	ASMB			
	NUN7=0	ASMB			DO 40 L=1.
76	DO 701 N=1, NUMEL	ASMB			RT=0.0
	READ (NA) STIF	ASMB			NN=L≯NN V
1	DU 601 [=1, ND	ASMB	9.8		DO 34 L=1.
ŕ	LAN=1-LH(1)	ASM8	89		I€ (VA(I).
	II=LM(I)-NSHIFT	ASMB	90		RT=VA(I)
	IF (11-LE-U-UR-11-GT-NE2B) GO TO 601	ASMB	91		1 = L
	DO 501 J=L: NŪ	A\$M8	92	34	CONTINUE
	JJ=LM(J)+LMN	ASMB			DO 30 [=NN
	IF(JJ) 501,501,401	ASMB			IF (VA(I).
		ASM8			RT=VALLI
	$A(II_{\circ}JJ) = A(II_{\circ}JJ) + XM(I_{\circ}J)$	ASMB			[j=]
	CONTINUE	ASMB		30	CONTINUE
501	CONTINUE			30	IF (VA(LJ)
501 601		ASMB			
501 601	IF(MM.GI.1) GD TU 701	ASMe	- 99		NB V N≕ NB V N+
501 601	DO 651 [=], ND				
501 601	DD 651 [=1, ND 1]=Lm(1)-NSH1FT	A SM B	100		GO TO 40
501 601	DO 651 [=], ND	А 5 М В А 5 М В	100 101	32	L1.=i.L+1
501 601	DO 651 (=1, NO 11=lm(1)-NSHIFT 1f(11_6T.we26.and.11.le.neb81 GO TO 661	А 5 М В А 5 М В А 5 М В	100 101 102	32	LL=LL+1 IEQ(LL)=(I
501 601 651	DO 651 (=1, NO II=LM(1)-NSHIFT IF(II.6T.NE26.AND.II.LE.NE88) GO TO 661 CONTINUE	А 5 М В А 5 М В	100 101 102	32	L1.=i.L+1
501 601 651	DO 651 (=1, NO 11=LM(1)-NSHIFT IF(II:GT.NE2B.AND.11.LE.NEBB1 GO TO 661 CONTINUE GO TO 701	А 5 М В А 5 М В А 5 М В	100 101 102 103	32	LL=LL+1 IEQ(LL)=(I
501 601 651 661	DO 651 (=1, NO II=LM(1)-NSHIFT IF(II.6T.NE26.AND.II.LE.NE88) GO TO 661 CONTINUE	А 5 М В Л 5 М В Л 5 М В А 5 М В	100 101 102 103 104	32	LL.≕LL+1 IEQ(LL)=(I IF (LL.GE.

003 0		SMB 4			WRITE(9) ((A(I,J),I=1,NEQB),J=1,MBAND)	5 A	АЅМВ 107 АЅМВ 108
		SM8 4-			IF(M_EQ.NBLOCK) GO TO 1001		
	A	SMB 4	7		WRITE(9) ((A(1,J),I=K,NE28),J=1,MBAND)		ASMB 109
	A	SMB 4	8	1001	NSHIFT=NSHIFT+NE2B		ASMB 110
	A	5MB 4	a		RETURN		ASM3 111
	A	SMB 5	0		END		ASM8 112

4240	22					
ASMB	56					
ASMB	57		SUBROUTINE INVECT (VA.XM.IEQ.NBLOCK.NEQB.NV)		INVE	1
ASMB	59	С.			INVE	Z
ASMB	59	•	COMMON /TAPES/NSTIF,NRED,NL,NR,NT,NMASS		INVE	3
ASMB	60		DIMENSION VA(NEQB+NV)+XM(NEQB)+IEQ(1)		INVE	4
		c	DINCHSIENC SHINEQUARY ANTHEODY FILSTI	1	INVE	5
ASMB	61	c	NV 1 = NV - 1		INVE	6
ASMB	62					
ASMB	63		KK=1		INVE	7
ASMB	64		IND=0		INVE	8
ASMB	65	90	NBV=KK*([NVI-[]/NBLOCK+1])		INVE	. 9
ASMB	65		IF (NBV.GI.NEWB) NBV=NEQB		INVE	10
ASMB	67		IF (N8V.EQ.NEQ8) IND≠1		INVE	11
ASMB	63		IF [NBV.GI.NEQB] NBV=NEQB		INVE	12
ASMO	69		IF (NBV.EQ.NEQB) IND=1		INVE	13
ASM8	70		N8 V N= 0		1 NV E	14
ASMB	71		ICOUNT=0		INVE	15
ASMB	72		LL=0		INVE	16
ASMB	73	C				11
ASMB	74	C	REWIND NHASS		INVE	18
	75		REWIND NSTIF		INVE	19
ASMB		<i>(</i> n			INVE	20
ASMB	76	60	READ INMASSE XM			
ASMB	77		READ (NSTIF) VA		INVE	21
4 S M B	78		ICOUNT=ICUUNT+L		INVE	22
ASMB	79		00 20 1=1,NE48		INVE	23
A SM B	80		IF (VA(I).EQ.0.0) GO TO 20		INVE	24
ASMB	81		VA[1]=XM(1]/VA(1)		INVE	25
ASMB	82	20	CONTINUE		INVE	26
ASMB	83	C			INVE	27
ASMB	84		NNV = NEQB/NBV		INVE	28
ASMB	85		DO 40 L=1.NBV		INVE	29
ASMB	86		RI=0.0		1 NV E	30
ASMB	87		NN=L*NNV		INVE	31
ASMa	สม		DO 34 L=1.NN		INVE	32
ASM8	89		IF (VA(1).LT.RT) GO TO 34		INVE	33
ASMB	84 90		RT=VA([]		INVE	34
			IJ=I		INVE	35
ASMB	91				INVE	36
ASM8	92	34			INVE	37
ASMB	93		DO 30 I=NN.NEQ8			
ASMB	94		IF (VA(I).LE.KT) GO TO 30		INVE	38
ASMB	95		RT=VALLI		INVE	39
ASMB	96		1 J = 1		INVE	40
ASMB	97	30	CONTINUE		INVE	41
ASMB	69		IF (VA(1J).NE.0.0) GO TO 32		INVE	42
ASMe	99		NBVN=NBVN+1		LNVE	43
ASMB	100		G0 T0 40		INVE	44
ASMB	101	32	Lł.≖LL+l	,	INVE	45
ASMB			IEQ[LL]=(ICUUNT-1)*NEQB+1J		I NV E	46
ASMB			IF (LL.GE.NVI) GU TO 50		INVE	47
ASMB			Vi([]]=0.0		INVE	48
ASMB		40	CONTINUE		INVE	49
		40	IF (INU.EQ.1) GO TO 45		INVE	50
ASMB	100		IT LINDVEWALF OU FU 42		TINNE	30

25Ĵ

	IF ((NBVN.EQ.0).0R.([COUNT.EQ.NBLOCK)] GD TO 45 NBV∞KK*((NV1-LL-1)/(NBLOCK~[COUNT]+1)	5	1NVE 1NVE	51
	IF INBV.GT.NEQB) NBV=NEQB		ILVE	53
	NBVN=0		INVE	54
С	1041-0		INVE	55
¥5	IF (ICOUNT-LT-NBLOCK) GO TO 60		INVE	56
42	IF {INU.EQ.13 GU TO 47		ENV E	57
	KK=2*KK		INVE	-58
	GO TO 90		INVE	59
47	PRINT 1000		INVE	60
77	STOP		INVE	61
ç	310F		INVE	62
Š50	REWIND NHASS		INVE	63
	REWIND NR		INVE	64
	DO 100 L+1.NBLOCK		INVE	65
	READ INMASSE XM		INVE	66
	DO 120 I=1.NEG8		INVÉ	67
	VA(1,1)=XM(1)		INVE	6.8
	DB 120 J≠2+NV		INVE	69
120	VA(1, J) = 0.0		INVE	70
	DO 140 K=2.NV		INVE	71
			INVE	12
	NLE=(L-1)*NEuB		INVE	13
	NRI=L*NEU8		INVE	74
	IF (IX-NLE) 140+140+160		ENVE	15
160	IF (NRI-II) 140,180,180		INVE	76
180	II=II-NLE		INVE	77
	VA(II•K}=1.		1 NVE	78
140	CONTINUE		1 NV E	-79
	WRITE (NR) VA		INVE	80
100	CONTINUE		INVE	8 L
	PRINT 1010		INVE	82
	PRINT 1020-(1EQ(1)-1=1-NV1)		INVE	83
С			INVE	84
-	RETURN		ENVE	-85
1000)	INVE	86
1010			INVE	87
1020			INVE	83
	END		I N V E	89

	SUBROUT INE REDBAK (A.VA.VV.MAXB.NEQB.NV.NWA.NWV.NWV.NTB.NBLUCK)	REDB	L
C		REDS	- 2
	COMMON /TAPES/NSTIF,NRED.NL.NR.NT.NMASS	REDB	3
	DIMENSION A(NWA)+VA(NWV)+VV(NWVV)+MAXB(NEQB)	REUB	4
C		кера	5
	NE8=NIB*NEQ8	REDB	6
	NEBT≖NEB+NEQB	REDB	7
C		REDA	в
С	REDUCE VECTORS ON TAPE NR	REDB	9
	REWIND NRED	RED3	10
	REWIND NR	керв	11
	REWIND NL	PEUB	12
	REWIND NT	REDB	13
	READ (NRED) A,MAX8	REDB	14
	15V=N78+1	REDB	15
	L1=0	ĸeub	16
	DO 10 L=1.1SV	RED3	17

	READ (NR) VA	REDB	18
	K=0	 REDB	19
	KK≖LL	 REDB	2 (
	DO 20 J=1,NV	REDB	21
	D0 30 1=1,NEG8	REUB	2.2
	K≃K+1	REDB	2
	KK=KK+1	REDa	24
30	VV(KK) = VA(K)	REDB	2 :
20	KK=KK+NEB	REDJ	20
10	LL=LL+NEQB	REUB	21
	ISA#1	KEDB	2.6
с		REDB	24
500	DO 100 I=1,NEQ8	REDB	30
200	IL=I+NEQ8	REDB	31
	MAX=MAX B(I)	REDB	32
	1=0	REDB	33
	DO 120 II=IL.MAX.NEQB	REDO	34
	JEJ+1	REDB	3
	C=A(11)		36
	IF (C) 110.120.110	REDB REDB	
110			37
110	J]= I I = I	RÉÐB	31
		REDB	- 39
	DO 140 $L=1$, NV	REDB	4:
	AA(KK)=AA(KK)-C#AA(37)	REDB	41
	KK=KK+NEBT	REDB	42
140		REDB	43
120		REDB	44
100		REDB	4
	00 200 I=1.NEQ8	REDS	46
	C=A(1)	REDB	41
	IF (C) 180,200,180	REDB	42
180		REDB	4
	DO 210 L=1 NV	REDB	54
	VV(KK)=VV(KK)/C	REDU	51
210		REDB	52
200		REDB	53
	IF (ISA.EQ.NBLUCK) GO TO 400	REDB	54
	READ (NRED) A, MAXB	REDB	5.
	ISA=ISA+I	REDB	- 5 (
¢		REDB	5
C	STORE REDUCED VELTURS ON TAPE NT	REDB	5 :
	K≖O	REDB	5
	KK= 0	REUB	- 60
	DÚ 240 J≖l,NV	REDB	61
	DO 220 I=1,NEQB	៩៩១៩	67
	K=K+1	REDS	- 6 '
	✓ KK = KK + I	REDB	64
220	AV(K]=AA(KK)	8E08	6
240	KK=KK+NEB	REDB	66
	WRITE (NT) VA	86038	61
	X=1	RED8	66
	DO 310 J=1+NV	REDB	6
	00 300 1=1.NE8	RLUB	70
	KK=K+NE wB	REDH	71
	VV(K) = VV(KK)	REUB	72
300		REDB	7
310		REDI	74
	IF (ISV.EQ.NBLOCK) GO TO 500	REDB	79
	READ (NR) VA	REDB	7
	15V=15V+1	REDB	77
	KK=NEB	9408	78
	K=0	REDB	79

	DO 330 J=1,NV	6.5	REDB	80
	00 320 1=1,NEQB		REDB	81
	K=X+1		REDB	82
	KK= KK + I		REDB	83
320	VV[KK]=VA(K)		REDS	84
330	KK≠KK+NEB		REDB	85
	GO TO 500		REDB	86
С			REDB	87
C 8/	ACKSUBSTITUTE VECTORS ON TAPE NT		REDB	88
400	BACKSPACE NRED		REDB	89
	I SA = 1		REDB	90
420	00 600 I=1,NEQ8		REDB	91
	J=NEQB+1-I		REDB	92
	HAX=MAXB(J)		REDA	93
	IF (A(J)) 440.600.440		REDB	94
440	KK= J		REDB	95 95
	00 620 L=1,NV		REDB	95
	JJ=KK+1		REDB	9 B
			REDB	99
	C=VV(KK) D0 640 11=1L+MAX+NEQ8		REDB	
	C=C-A[[])*VV(JJ)		REDB	
640	77=77+J C=C=VIII+AA1221		REDB	
640	VV4KKJ=C		REDB	
620	KK=KK+NEBT		REDB	
600	CONTINUE		REDB	
	KK=0		REDB	106
	K=0		8608	107
	D0 660 J=1+NV		REDB	108
	DD 670 1=1,NEQB		REDB	109
	X=X+1		REDS	110
	KK=KK+1		REDG	
670	VA(K)=VV(KK)		REDB	
660	KK≭KK +NEB		RED8	
	WRITE (NL) VA		REDB	
	IF (ISA.EQ.NBLOCK) GO TO 800		REDB	
	BACKSPACE NRED		REDS	
	READ [NRED] A, MAXB		REDB	
	BACKSPACE NRED		REDB	
	ISA=[SA+1		REDB	
	BACKSPACE NI Read (NT) va		REDB	
	BACKSPACE NI		REDS	
	K=NEBI		REDB	
	DD 700 J=1.NV		REDA	
	DQ 720 1=1.NEB		REDB	
	KK≠K−NE QB		REDB	
	VV(K)=VV(KK)		8609	127
720	K=K-1		REDB	128
700	K=K+NEd T+NEB		REDB	129
	K=0		REDB	
	KK=0		REDB	
	DO 740 J=1,NV		REDO	
	DQ 760 I=1,NEQB		REDB	
	K=K+1		REDB	
	KK=KK+1		REDB	
760	VV(KK)=VA(K)		REDB	
740	KK=KK+NEB		REDB	
	GD 10 420		REDB REDB	
800	RETURN		REDB	
	END		NLO D	140

	SUBROUTINE JALOBI (A, B, X, EIGV, D, N, RTOL)	JACO	1
c		JACO	2
	DIMENSION A(N.N).B(N.N).X(N.N).EIGV(N).D(N)	JACU	з
C		JACO	4
	NSMAX=15	JACU	5
	$DO \ 10 \ i=1,N$	JACO	6
	D([]=A([,[)/B([,])	JACJ	7
10	EIGV(I)=U(I)	JACO	8
	IF (N_EQ.1) RETURN	JACO	9
	DO = 30 I = 1 + N	JACO	t o
	DC 20 J=1,N	JACO	11
20	x(1,J)=0.		12
30	X(1,1}=1.0		13
	NSWEEP=0		14
	NR≠N-1		15
C			16
C	WE START ITERATION		17
40	NSWEEP=NSWEEP+1		18
	PRINT 1000,NSWEEP		19
	EPS=(0.01**NSWEEP)**2		50
	DO 50 J=1+NR		21
	1+1		22
	00 50 K=JJ+N		23
	TI=A(J,K}*A{J,K}		24
	TB=A(J,J)*A(K,K)		25
	EPTOLA=ABS(IT/YB)		26
	TT=B(J,K)*B(J,K)		27
	TB=B(J+J)+B(K+K)		28
	EPTOLB=TT/18		29
	IF (IEPTULA.LT.EPS).AND.(EPTULB.LT.EPS)) GO TO 50		30
	AKK=AlK,K)*B(J,K)-B(K,K)*A(J,K)		31
	$AJJ=A(J_{*}J)*B(J_{*}K)-B(J_{*}J)*A(J_{*}K)$		32
	AB = A(J, J) * B(K, K) - A(K, K) * B(J, J)		33
	CHECK=(AB*AB+4.0*AKK*AJJ)/4.0		34
	IF (CHECK) 60,70,70		35
60	PRINT 1004.CHECK		36
-	STOP		37
70	SQCH= SQRT (CHECK)		38
	D1×AB/2 . 0+ SQCH D2≠AB/2 . 0- SQCH		39
	02#AB/2.0~5QLA DEN=D1		40
	IF (ABS(D2).GT.ABS(D1)) DEN=02		41
	IF (DEN) 90,80,90		42
80	CA=0.		43
80	CG=-A{J,K}/A{K,K}		44
	GO TO LUO		45
90	CA=AKK/DEN		46
10	CG=-AJJ/DEN		47
C	60A3370EN		48
c	WE PERFORM THE GENERALIZED ROTATION		49 50
័លេ			50 51
95	JP 1=J+1		52
,,	1~1~1~1 ↓ ↓ ↓ ↓		52 53
	KP 1=K+1		73 54
	KM1=K-1		55
С			55 56
~	IF (JN1-1) 120,110,110		50 57

110	DO 105 I=1,JM1	JACO JAC	58
	AJ=A(1,J)	ÚJAČÓ	59
	BJ=B([.J)	JACO	60
	AK=A({,K)	JACO	61
	BK=B(I,K)	JACU	62
	At I + J }= AJ + CG + AK	JACO	63
	BII+JJ=BJ+CG+BK	JACO	64
105	A(I,K)=AK+CA*AJ	JACO	65
105 C	B(I+K)=BK+CA+8J	UDAL UDAL	66 67
120	IF (KP1-N) 130,130,140	JACO	68
130	DO 125 I=KP1+N	JACO	69
110	AJ=A[J,I]	JACO	70
	BJ=B(J,[)	JACO	71
	AK=A(K, I)	JACO	72
	BK=B(K, [)	JACO	73
	A(J, [)= AJ+CG*AK	JACO	74
	B[J,[]=BJ+CG+BK	JACÜ	75
	A(K+[]=AK+CA*A3	JACU	76
125	B(K+I)=BK+CA+BJ	GOAL	77
C		JACO	78
140	IF (JP1-KM1) 150,150,180	JACO	79
150	DO 160 I=JP1,KM1	JACO	80
		JACO	81
		UDAL UDAL	82 83
	AK≖A(l,K) 8K=8(l,K)	JACO	84
	ALJ.E.I. HAJ+CG*AK	JACO	85
	B(J,I)=BJ+CG+BK	JACO	86
	ALL.KI=AK+CA+AJ	JACO	87
160	B{I+K}=BK+CA*BJ	JACU	88
180	AK=A(K,K)	JACO	89
	BK=B(K,K)	DAL	90
	A[K;K]=AK+2+CA+A[J;K]+CA+CA+A[J;J]	JACU	91
	B(K,K)=BK+2*CA*B(J,K)+CA*CA#B(J,J)	JACO	92
	A1J,J}=A{J,J}+2*CG*A{J,K}+CG*CG*AK	UDAL	93
	B(J+J)=B(J+J)+2*CG*B(J+K)+CG*CG*BK	JACO	94
	A(J, K)=0.0	JACU	95
~	B(J-K)=0.0	ODAL	96
с с	UPDATE EIGENVECTORS	OJAL DJAL	97 98
C I	DO 190 1=1.N	JACO	99
	00 190 1-t+(JACU	
	XK=X{I.K}	JACO	
	X{I+J}=XJ+CG+XK	JACO	
190	X(1,K)=XK+CA*XJ	JACO	
C		JACO	104
50	CONTINUE	JACG	105
C		JACO	106
	DO 220 I=1,N	JACJ	
220	$EIGV[I] = A(I_0I)/B(I_1I)$	UQAL	
	PRINT 1005	JACO	
~	PRINT 1002.(ELGV(1),I=1.N)	GOAL	
c c	CHECK FOR CONVERGENCE	JACO JACO	
	DO 240 [=1.	JACU	
	TOL=RTOL+D(1)	UDAC COAL	
	DIF=ABS(E(GV(1)-0(1))	UDAU UDAU	
240	IF (DIF.GT.FUL) GO TO 300	JACO	
c T		JACO	
č	CHECK IF ALL OFF-DIAG ELEMENTS ARE SATISFACTORILY SMAL		
	EPS=RTUL**2	JACO	119

	i			
	DD 260 J≕laNk	79	JACO 12	^
	jj=j+1		JACO 12	
	D0 260 K≠JJ+N		JACO 12	
	TT=A(J,K]*A(J,K)		JACO 12	3
	TB=A(J,J}*A(K,K)		JACO 12	4
	EP SA=AB S(TT/TB)		JACO 12	5
	TT=8(J+K)*8(J+K)		JACO 12	6
	TB=B(J,J]*B(K,K)		JACO 12	7
	EP S8=TT/TB		JACU 12	8
	IF ((EPSA.LT.EPS).AND.(EPSB.LT.EPS)) GO TO 260		JACU 12	q
	GO TO 300		JACU 13	
260	CONTINUE		JACO 13	1
C			JACO 13.	Ż
	DO 310 I=1,N		JACU 13.	
	DD 310 J=I,N		JACO 13	
	B[J+I]=B[[+J]		JACO 13	
310	A[J,1}=A[1,J]		JACU 13	
	RETURN		JACO 13	
Ç			JACO 13	
300	DO 320 I=1.N		JACU 139	
320	D([]=EIGV(])		JACU 14	
	IF INSWEEP.LT.NSMAX) GD TD 40		JACU 14	
	DO 330 I=1.N		JACU 14	
	DO 330 J=I,N		JACO 14	
	B(J,1;=B(I,J)		JACU 14	
330	Alj+ii=A(i+J)		JACO 14:	
<i>c</i>	RETURN		JACO 14	
с . ооо	EDDNAT (140 16400 OF CURED = 16)		JACO 14	
1000	FORMAT (1H0,14HN0 OF SWEEP = 14)		JACO 14	
1002	FORMAT (1H ,12E11.4) Format (8Hocheck = E20.14)		JACO 14	
1004			JACO 150	
1005	FORMAT (24HUCUKRENT EIGENVALUES ARE) END		JACO 15	
	CIND		JACU 15	2

	SUBROUTINE DECOMP (A.B.MAXB.NEQB.MBAND.NBLOCK.NWA.NTB.NSCH.NEQ)	DECO	1
С		0600	2
	COMMON JIAPES/NSTIF,NRED,NL,NR,NT,NMASS	DECU	3
	OLMENSION A(NWA),B(NWA),MAXB(YEQB)	DECO	4
C		DECO	5
	NEQ81=NEQ8-1	DECO	6
	NI=NL	DECO	ĩ
	N2=NR	UECO	8
	REWIND NSTIF	DECO	9
	REWIND NRED		
		DECO	10
	REWIND N1	JECO	11
	REWIND N2	0260	12
	NSCH=0	DECO	13
ç		DECO	14
	DO 600 N=1.NBLCCK	DECO	15
	IF IN.NE.13 GD TO 10	DECU	16
	READ (NSTIF) A	DECO	17
	GO TO 110		
		DECO	18
10	IF (NTB-EQ-1) GO TO 110	DECO	19
	REWIND NI	DECO	20
	REWIND N2	JECO	21
	READ INLE A	DECO	22
C		DECO	23
~			£ 3

C FA	CTORIZE LEADING BLOCK	DECO	24
110	DD 300 I=1.NEQ81	DECID	25
	PIV=A(I)	DECO	26
		DECO	27
	IF (PIV) 120,115,130		
115	1 f = (N→1 1 + NEQB+1	0600	28
	1F (LI.GY.NEQ) GO TO 520	DECID	29
	PRINT 1000,11	DECO	30
		DECO	31
	STOP		
120	NSCH=NSCH+1	DECO	32
130	IH=1+NWA-NEQB	DECO	33
		0.030	34
140	IF [A[[H]] 160,150,160		35
150	IH= IH-NEQB	OE C O	
	GO TO 140	O D 3 G	30
160	HAXBII) = [H	DECO	31
100		DEC D	33
	JL=1+i		39
	l I == l	SEC D	
	DD 200 J=JL, NEQB	DECD	40
	11=11+NEQB	DECO	41
		DEC O	42
	IF (11-NWA) 170,170,300		4.3
170	C=A(II)	DECO	
	{F (C) 180.200.180	0200	44
180	C=C/PIV	DECO	45
100		DECO	46
	KK=J		
	MAX≖MAXB(I)	0600	47
	DO 250 JJ=II,MAX,NEQB	OFCO.	48
	A{KK}=A{KK}-U*A{JJ}	DECO	49
250	KK=KK+NEQ8	DECO	50
200	A(II)=C	DECO	51
		DECO	52
300	CONTINUE		
	IF (A(NEQB1) 80,60,70	030	53
60	II=N*NEQB	DECO	54
	IF []].GT.NEQJ GU TO 520	JECO	55
	PRINT 1000,11	DECO	56
	STOP	JECO	57
		JECO	58
80	NSCH=NSCH+1		
70	DO 50 J≖NEQ8+NWA→NEQ8	DECO	59
50	IF [A[J]_NE_O_G] MAXB(NEQB)=J	0036	6Q
C		DECO	61
	RRY OVER INTO TRAILING BLOCKS	UFC D	62
1. UA		DECO	63
	DO 400 NN=1,NTB		
	LE L(NN+N).GT.NBLOCKI GD TO 400	DECU	64
	NI=N1	9500	65
	IF ((N.EQ.1).OR.(NN.EQ.NTB)) NI=NSTLF	DECU	66
	READ (NI) B	DECO	67
	DO 420 I=1.NEQB	DECO	68
			69
	11=11	JECO	
	DD 440 K=liNEQB	DECO	10
	IF [11-NWA] 410,410,440	DECO	71
410	C=A(11)	DECO	72
410		DECD	73
	LF [C] 430,440,430		
430	C=C/A(K)	DFCD	74
	MAX=MAXBEK }	DEC U	75
	KK∓ I	DECO	16
	DO 460 JJ=11,MAX,NEQB	9500	77
	BIKK)=BIKK)-C+AIJJ	DECO	78
		DECO	79
460	KK≠KK+NEQ8		
	A{ [] }=C	DEC O	90
440	II=II-NEQBI	OFCO	81
420	IL=IL+NEUB	DECO	82
72.0	IF (NTB.NE.1) GU TU 480	DECO	83
		DECO	84
	WRITE (NRED) A.MAXB		
	DO 500 l=1,NWA	υείδ	92

**

,

UVERLAY(XFILE.3.0)	RGYD	ı
PROGRAM HYDRO	HYDR	
COMMON / MISC / NBLOCK+NEQB+LL,NF+LB ,NI	DYN HYDR	
CUMMON / ELPAR/ NPAR (14) + NUMNP + MBAND + NEL	TIDE TYP.NJ.N2.N3.N4.N5.MTOT NEWYDD	4
NG, NUMNPF . (PRINT , NLM , NUMEL, WATH	A IMASS TVOL NEGEST INDUE WOD	5
IPRM .MESH .MESHEN . ISYN, WDEN, T(10)	HYDR	
CUMMUN/RADOD/RADIUS, RADHT	нурк	
COMMON/HYD/NUMELZ,NUMELT,TW,ZW,HWATER,N	TERM • MTERM • IXYZ HYDR	
C	HYDR	
READ(5,1000)NUMELZ,NUMELT,TW,ZW,HWATER,	NTERM, MTERM, IXYZ HYDR	
WRITE(6,2000) NUMELZ, NUMELT, TW, ZW, HWATER,	NIERM, MTERM HYDR	
NTERM= NIERM + 1	HYDR	12
500 GUTU(1,2,3) IXYZ	HYDR	13
C	HYDR	14
C HORIZONTAL EXCITATION IN X DIRECTION	HYDR	15
C	HYDR	16
1 CALL OVERLAY(SHXFILE,3,1,6HRECALL)	HYDR	17
GOTO 600	HYDR	
	HYDR	
C HORIZONTAL EXCITATION IN Y DIRECTION	HYDR	
•	HYDR	
Z CALL OVERLAY(5HXFILE,3,2,6HRECALL) GDTU 600	HYDR	
	HYDR	
C C VERTICAL EXCITATION	HYDR	
C VERTICAL EXCITATION	HYDR	
3 CALL OVERLAY(SHXFILE.3.3.6HRECALL)	HYDR	
600 KETURN	HYDR	
1000 FORMAT (215,3F10.0.315)	HYDR	
2000 FORMAT(///33H NUMBER ELEMENTS IN Z DIREC	HYDR HYDR	
I //37H NUMBER ELEMENTS IN THETA DI		
2 //29H ELEMENT HALF ANGLE -RADIANS		31 32
3 //22H ELEMENT HALF HEIGHT = FIO.5		33
4 //22H DEPTH OF RESERVOIR = +F12.6		34
5 //28H NUMBER OF N TERMS - NTERM =		35
6 //28H NUMBER OF M TERMS - MTERM =		
END	HYDR	37
	11 OK	21

500	A(1)=8(1)		86
	GO TO 600	0£CO 8	37
480	WRITE (N2) B	01030	38
400	CONTINUE	8 0036	39
	M=N1	DECU 9	90
	N1=N2	DEC0 9	₹1
	NZ=M	DECO 9	2
520	WRITE INREDI A,MAX8	DECO 9	33
600	CONTINUE	0EC0 9	4
C		DECO 9	95
	RETURN	DECO 9	₹6
1000	FORMAT L22HOPIVUT IS ZERO IN ROW 14)	DECD 9	
	END		8

DIMENSION GLUADINE), FF(NEQ), DO(NUMNP,3), IRX(NEQ), XM(NEQB, MBAND) C C++++++++++++++++++++++++++++++++++	GMTX GMTX	1 2 3 4 5 5 7 8 9 10 11 12 13 14
DIMENSION GLUADINE), FF(NEQ), DO(NUMNP, 3), IRX(NEQ), XM(NEQB, MBAND) C C++++++++++++++++++++++++++++++++++	GMTX GMTX GMTX GMTX GMTX GMTX GMTX GMTX	3 4 5 7 8 9 10 11 12 13
C C+++++++++++++++++++++++++++++++++++	GMTX GMTX GMTX GMTX GMTX GMTX GMTX GMTX	5 7 8 9 10 11 12 13
C+++++++++++++++++++++++++++++++++++++	GMTX GMTX GMTX GMTX GMTX GMTX GMTX GMTX	8 9 10 11 12 13
C THIS SUBROUTINE FURMS THE NODAL LOADS DUE TO GROUND MOTION C EXCITATION OF THE D+M ALONE - FF= (MASS)*(INFLUENCE COEFF IRX) C REWIND 9 REWIND 9 REWIND 8 REWIND 8 REAL (8) ID	GMTX GMTX GMTX GMTX GMTX GMTX GMTX GMTX	7 8 9 10 11 12 13
C EXCITATION UF THE D+M ALONE - FF= (MASS) ≠(INFLUENCE COEFF IRX) C************************************	GMTX GMTX GMTX GMTX GMTX GMTX GMTX GMTX	7 8 9 10 11 12 13
C+++++++++++++++++++++++++++++++++++++	GMTX GMTX GMTX GMTX GMTX GMTX GMTX GMTX	8 9 10 11 12 13
C REWIND 9 REWIND 8 READ (8) ID	GMTX GMTX GMTX GMTX GMTX GMTX GMTX	9 10 11 12 13
REWIND 9 Rewind 3 Read (8) ID	GMTX GMTX GMTX GMTX GMTX	11 12 13
REWIND 8 READ (8) ID	GMTX GMTX GMTX GMTX	12 13
READ (8) ID	GMTX GMTX GMTX	12 13
	GMT X GMT X	
	GMT X GMT X	
50 IRX(1)= 0	GMTX	
D0 100 J≤1+NUMNP	GMTX	15
NNN = 10(J, IXYZ)		16
IFINNN-LT.I)GOTO 100	GMTX	17
[Rx (NN)] = 1	GMTX	18
LOC CONTINUE	GMTX	19
DO 200 1=1,NEQ	GMTX	20
200 FF(1)= 0.0	GMTX	21
NLOC 0	GMTX	22
DO 400 N=1.NBLUCK	GMTX	23
READ (9) XM	GMTX	24
DQ 375 [=1,NEQ8	GMTX	25
IR = I + NLOC	GMTX	26
IFLIR.GT.NEQIGUTO 500	GMTX	27
00 275 J=1, MBANO	GMTX	28
$\mathbf{J}\mathbf{J} = \mathbf{I}\mathbf{R} + \mathbf{J} - \mathbf{I}$	GMTX	29
IF(JJ-GT-NEJ)GUTG 300	GMTX	30
$K = 1R \times (JJ)$	GMT X	31
LF(K.EQ.0]GOTO 275	GMTX	32
FF(IR) = FF(IR) - XM(I,J)	GMTX	33
275 CONTINUE	GMTX	34
300 K= [RX([K]	GMTX	35
1F{K.EQ.03G0T0 350	GMTX	36
DO 325 J=2,M8ANO	GMTX	37
IR = IR + I	GMTX	38
IFLIR.GT.NEQJGUTO 350	GMTX	39
325 FF(IR)= FF(IR) - XM1I,J)	GMTX	40
350 CONTINUE	GMTX	41
375 CONTINUE	GMTX	42
400 NLOC= NLOC + NEQB	GMTX	43
500 CENTINUE	GMTX	44
RETURN	GMIX	45
END	GMTX	46

	SUBROUTINE LUADI(GLOAD, FF, B, NEQB, NBLOCK, NF, NEQ)	LOAD	1
	DIMENSION GLOAD(NF), FF(NEQ), B(NEQB,NF)	LUAD	2
C		LCAJ	3
C***	●客琳 举事事事 素素 教育 素素 考察 专会 教学校 表示 安全	CAUJ®	4
C	THIS SUBROUTINE TRANSFORMS THE NODAL LOADS (STORED IN FF) TO	LGAD	5
c	MODAL LUADS (STURED IN GLOAD). THESE LOADS ARE DUE TO GROUND	LGAD	6
C	MOTION EXCITATION OF THE DAM ALUNE.	LGAO	7
C***	*******	*LUAD	8
C		LUAD	ų
	REWIND 7	LUAD	10

	READ (7)	25	LOAD	11
	DO 50 1=1+NBLOCK		LOAD	12
50	READ (7)		LOAD	13
	DO 100 I=1+NF		LUAD	14
100	GLOAD(1) = 0.0		LUAD	15
	NN= -NEQB		LUAD	16
	DD 500 N=1.NBLOCK		LOAD	17
	BACK SPALE 7		LOAU	18
	READ (7) B		LOAD	19
	BACKSPACE 7		LOAD	20
	NN= NN + NEQB		LÜAD	21
	DO 250 1=1.NF		LOAD	22
	DO 200 L=1,NEQ8		LUAD	23
	NNN= NN + L		LOAD	24
	IF(NNN.GT.NEQ)GDTO 200		LUAD	25
	GLOAD(I) = GLOAD(I) + B(L,I) + FF(NNN)		LOAD	26
200	CONTINUE		LUAD	27
250	CONTINUE		LOAD	28
500	CUNTINUE		LUAD	29
	DO 500 L=1.NF		LOAD	30
600			LGAD	31
	RETURN		LUAD	32
2000	FORMAT (7X+17+8X+F12+3)		LOAD	33
2000	END		LUAD	34
	w.1w		L L H D	

DIMENSION PHIRINUMEL.8.NF).LLM(NUMEL.24].8(NEQ8T.NF).LMTEMP(50) BEV DIMENSION SC(8.2].SHAPE(5.8].PMODE(5) BEV REWIND 7 BEV READ(7) BEV READ(7) BEV READ(1) BEV C READ ELEMENT-NODE LOCATION MATRIX FOR EACH ELEMENT INTO MATRIX LLMBEV L C READ ELEMENT-NODE LOCATION MATRIX FOR EACH ELEMENT INTO MATRIX LLMBEV L C DO 100 I=1.NUMEL BEV C READ(1) BEV C READ(1) LMTEMP DO 90 J=1.3 BEV L LLM(1.J1)= LMTEMP(K) BEV L LLM(1.J1)= LMTEMP(K) BEV 2 J1= J1+3 BEV 2 LLM(1.J1)= LMTEMP(K) BEV 2 J1= J1+3 BEV 2 J1= J1+3 BEV 2 J1= J1+3 BEV 2 J1= J1+3 BE		SUBROUTINE BEVIPHIR.LLM.B.LMTEMP.NEQBT.NUMEL.NF.NBLOCK.NEQB.	BEV	1
DINENSION SCI8.21.SHAPE(5.8].PMODE(5) REWIND 7 REWIND 7 REWIND 7 REWIND 1 REWIND 1 REWIND 1 REWIND 1 REWIND 1 BEV C C C C C C C C C C C C C		1 NUMELZANUMELTANZAZWHAZWHTOPAZWATWATWATER)	BEV	2
REWIND 7 BEV READ(7) BEV READ(1) BEV C READ(1) C BEV C READ ELEMENT-NODE LOCATION MATRIX FOR EACH ELEMENT INTO MATRIX LLMBEV C BEV C BEV C BEV C BEV C BEV C BEV DO 100 I=1,NUMEL BEV READELL LMTEMP BEV DU 90 J=1,3 BEV J1= J BEV LLMI 1,J1= LMTEMP(K) BEV J1= J1+3 BEV K= 17+J BEV LLMI 1,J1= LMTEMP(K) BEV J1= J1+3 BEV LUMI 1,J1= LMTEMP(K) BEV J1= J1+3 BEV K = 41+J BEV LLMI 1,J1= LMTEMP(K) BEV			BEV	3
READ(17) BEV REWIND 1 BEV READ(1) BEV C BEV D0 100 I=1.NUMEL BEV READII LMTEMP BEV D0 90 J=1.3 BEV J1= J BEV LLM(I,J1)= LMTEMP(K) BEV LLM(I,J1)= LMTEMP(K) BEV LLM(I,J1)= LMTEMP(K) BEV J1= J1+3 BEV K= 17+J BEV LLM(I,J1)= LMTEMP(K) BEV J1= J1+3 BEV K= 14+J BEV LLM(I,J1)= LMTEMP(K) BEV J1= J1+3 BEV K= 23+J BEV LLM(I,J1)= LMTEMP(K) BEV J1= J1+3 BEV LLM(I,J1)= LMTEMP(K) BEV J1= J1+3 BEV LLM(I,J1)= LMTEMP(K) BEV J1= J1+3 BEV LLM(I,J1)= LMTEMP(K) B		DIMENSION SC18+21+SHAPE15+81+P40DE(5)	BEV	4
REWIND 1 3EV READ(1) BEV C BEV C READ(1) C BEV C BEV C BEV C BEV C BEV D 100 I=1,NUMEL READ(1) LMTEMP BEV DU 90 J=1,3 BEV J1= J BEV LLMI(1,J)= BEV BEV BEV J1= J1+3 BEV K= 23+J BEV J1= J1+3 BEV LLMI(1,J)= BEV LLMI(1,J)= BEV J1= J1+3 BEV SEV J LLMI(1,J)= BEV J1= J1+3 BEV		REWIND 7	BEV	5
READ(1) BEV C READ ELEMENT-NODE LOCATION MATRIX FOR EACH ELEMENT INTO MATRIX LLMBEV E C READ ELEMENT-NODE LOCATION MATRIX FOR EACH ELEMENT INTO MATRIX LLMBEV E C D0 100 I=1,NUMEL BEV E D0 100 J=1,3 BEV BEV I J1= J BEV BEV I LLM(1,J)= LHTEMP(K) BEV I I J1= J1+3 BEV I I LLM(1,J)= LHTEMP(K) BEV 2 J J1= J1+3 BEV I ILLM(1,J)= EV 2 LLM(1,J)= LHTEMP(K) BEV 2 J J 2 J I EV 2 LLM(1,J)= LMTEMP(K) BEV 2 J J 3 3 2 2 2 1 3		READ(7)	BEV	6
C BEV C READ ELEMENT-NODE LOCATION MATRIX FOR EACH ELEMENT INTO MATRIX LLMBEY L C D0 100 I=1,NUMEL BEV I READII BEV BEV D0 90 J=1,NUMEL BEV BEV READII MTEMP BEV D0 90 J=1,3 BEV BEV J1= J BEV BEV LLM(1,J1)= LMTEMP(K) BEV BEV J1= J1+3 BEV BEV K= 17+J BEV BEV LLM(1,J1)= LMTEMP(K) BEV 2 J1= J1+3 BEV 2 K= 17+J BEV 2 LLM(1,J1)= LMTEMP(K) BEV 2 J1= J1+3 BEV 2		REWIND 1	9EA	1
C READ ELEMENT-NODE LOCATION MATRIX FOR EACH ELEMENT INTO MATRIX LLMBEY BEV C BEV BEV C BEV BEV D0 100 I=1,NUMEL BEV BEV READILL LMTEMP BEV I D0 90 J=1,3 BEV I J1= J BEV BEV K= 20+J BEV I LLMI(1,J)= LMTEMP(K) BEV I J1= J1+3 BEV I K= 17+J BEV I LLMI(1,J)= LMTEMP(K) BEV 2 J1= J1+3 BEV I LLMI(1,J)= LMTEMP(K) BEV 2 J1= J1+3 BEV 2 LLMI(1,J)= LMTEMP(K) BEV 2 J1= J1+3 BEV 2 LLMI(1,J)= LMTEMP(K) BEV 2 J1= J1+3 BEV 2 LLMI(1,J)= LHTEMP(K) BEV 2 J1= J1+3 BEV 2 LLMI(1,J)= LHTEMP(K) BEV 2 J1= J1+3 BEV 2 LLMI(1,J)= LHTEMP(K) BEV		READ(1)	BEV	8
C BEV BEV I D0 100 I=1.NUMEL BEV BEV I READ111 LMTEMP BEV I D0 90 J=1.3 BEV I J1= J BEV BEV LLM(I,J1)= LMTEMP(K) BEV I J1= J1+3 BEV I LLM(I,J1)= LMTEMP(K) BEV I J1= J1+3 BEV I LLM(I,J1)= LMTEMP(K) BEV I LLM(I,J1)= LMTEMP(K) BEV I J1= J1+3 BEV I LLMT(I,J1)= LMTEMP(K) BEV I	C		BEV	9
D0 100 I=1,NUMEL BEV I READIII LMTEMP BEV D0 90 J=1,3 BEV J1= J BEV ILMI(I,J1)= LMTEMP(K) BEV J1= J1+3 BEV K= 17+J BEV LLMI(I,J1)= LMTEMP(K) BEV J1= J1+3 BEV J1= J1+3 BEV		READ ELEMENT-NODE LOCATION MATRIX FOR EACH ELEMENT INTO MATRIX	LLMBEV	LO
READ(11 LMTEMP BEV 1 DU 90 J=1,3 BEV 1 J1= J BEV 1 K= 20+J BEV 1 J1= J1+3 BEV 1 K= 17+J BEV 1 LLM(1,J)= LMTEMP(K) BEV 2 J1= J1+3 BEV 2 K= 17+J BEV 2 J1= J1+3 BEV 2 LLM(1,J)= LMTEMP(K) BEV 2 J1= J1+3 BEV 2 LLM(1,J1)= LMTEMP(K) BEV 2 J1= J1+3 BEV 2 J1= J1+3 <t< td=""><td>C</td><td></td><td>BEV</td><td>11</td></t<>	C		BEV	11
DU 90 J=1,3 BEV 1 J1= J BEV 1 K= 20+J BEV 1 LLM(1,J1)= LMTEMP(K) BEV 1 J1= J1+3 BEV 1 K= 17+J BEV 1 LLM(1,J1)= LMTEMP(K) BEV 2 J1= J1+3 BEV 2 K= 14+J BEV 2 LLM(1,J1)= LMTEMP(K) BEV 2 J1= J1+3 BEV 2 K= 23+J BEV 2 LLM(1,J1)= LMTEMP(K) BEV 2 J1= J1+3 BEV 2 J1= J1+3 BEV 2 J1= J1+3 BEV 2 J1= J1+3 BEV			BEV	12
J1= J K= 20+J LLM(1,J1)= LMTEMP(K) J1= J1+3 K= 17+J LLM(1,J1)= LMTEMP(K) J1= J1+3 K= 17+J LLM(1,J1)= LMTEMP(K) J1= J1+3 K= 14+J LLM(1,J1)= LMTEMP(K) BEV 22 LLM(1,J1)= LMTEMP(K) BEV 22 LLM(LMTEMP(K) BEV 22 LLM(LMTEMP(K) BEV 22 L		READELL LATEMP	8£V	13
K= 20+J BEV 1 LLM(1,J)=LMTEMP(K) BEV 1 J1= J1+3 BEV 1 K= 17+J BEV 2 J1= J1+3 BEV 2 LLM(1,J)=LMTEMP(K) BEV 2 J1= J1+3 BEV 2 K= 14+J BEV 2 LLM(1,J1)=LMTEMP(K) BEV 2 J1= J1+3 BEV 2 J1= J1+3 BEV 2 J1= J1+3 BEV 2 J1= J1+3 B			BEV	14
LLM(I,J1)= LMTEMP(K) BEV J1= J1+3 BEV K= 17+J BEV LLM(1,J1)= LMTEMP(K) BEV J1= J1+3 BEV K= 14+J BEV LLM(1,J1)= LMTEMP(K) BEV J1= J1+3 BEV K= 12+J BEV LLM(1,J1)= LMTEMP(K) BEV J1= J1+3 BEV J1= J1+3 BEV J1= J1+3 BEV J1= J1+3 BEV			BEV	15
J1= J1+3 BEV E K= 17+J BEV 2 LLM(1,JJ)= LMTEMP(K) BEV 2 J1= J1+3 BEV 2 LLM(1,J1)= LMTEMP(K) BEV 2 LLM(1,J1)= LMTEMP(K) BEV 2 J1= J1+3 BEV 3			BEV	16
K= 17+J BEV 1 LLM(1,JL)= LHTEMP(K) BEV 2 J1= J1+3 BEV 2 K= 14+J BEV 2 LLM(1,JL)= LMTEMP(K) BEV 2 J1= J1+3 BEV 2			BEV	17
LLN(1, J1)= LHTEMP(K) BEV 2 J1= J1+3 BEV 2 LLM(1, J1)= LHTEMP(K) BEV 2 J1= J1+3 BEV 2 LLM(1, J1)= LHTEMP(K) BEV 2 J1= J1+3 BEV 2 LLM(1, J1)= LHTEMP(K) BEV 2 J1= J1+3 BEV 2 LLM(1, J1)= LHTEMP(K) BEV 2 J1= J1+3 BEV 2 LLM(1, J1)= LHTEMP(K) BEV 2 J1= J1+3 BEV 3		E+1L =1L	BEV	18
J1= J1+3 BEV 2 K= 14+J BEV 2 LLM(1,J1)= LMTEMP(K) BEV 2 J1= J1+3 BEV 2		K= 17+J	BEV	19
K= 14+J BEV 2 LLM(1,JL)= LMTEMP(K) BEV 2 J1= J1+3 BEV 2 K= 23+J BEV 2 LLM(1,JL)= LMTEMP(K) BEV 2 J1= J1+3 BEV 2 LLM(1,JL)= LMTEMP(K) BEV 2 J1= J1+3 BEV 2 LLM(1,JL)= LMTEMP(K) BEV 2 J1= J1+3 BEV 2 J1= J1+3 BEV 3 K= 38+J BEV 3			BEV	20
LLM(1,JL)= LMTEMP(K) BEV 2 J1= J1+3 BEV 2 K= 23+J BEV 2 LLM(1,JL)= LHTEMP(K) BEV 2 J1= J1+3 BEV 2 K= 41+J BEV 2 LLM(1,JL)= LHTEMP(K) BEV 2 J1= J1+3 BEV 2 J1= J1+3 BEV 2 J1= J1+3 BEV 2 J1= J1+3 BEV 2			BEV	21
J1= J1+3 BEV 2 K= 23+J BEV 2 LLM(1+J1)= LMTEMPIK) BEV J1= J1+3 BEV 2 K= 41+J BEV 2 LLM(1,J1)= LMTEMPIK) BEV J1= J1+3 BEV 2 J1= J1+3 BEV 2 K= 38+J BEV 3		. K= 14+J	8E V	22
K= 23+J B(V 2 LLM(1+,1)= BEV 2 J1= J1+3 BEV 2 K= 41+J BEV 2 LLM((+,1)= LMFEMP(K) J1= J1+3 BEV 3 K= 38+J BEV 3			BEV	23
LLM[1,J1]= LHTEMP[K] BEV 2 J1= J1+3 BEV 2 K= 41+J BEV 2 LLM[1,J1]= LHTEMP[K] BEV 2 J1= J1+3 BEV 3 K= 38+J BEV 3		£+1L =1	BEV	24
J1= J1+3 BEV 2 K= 41+J BEV 2 LLM([,JL)= LMTEMP(K) BEV 2 J1= J1+3 BEV 3 K= 38+J BEV 3		K= 23+J	BEV	25
K= 41+J BEV 2 LLM([+,JL]= LMTEMP(K) BEV 2 J1= J1+3 BEV 3 K= 38+J BEV 3			BEV	26
LLM(I,JL)= LMTEMP(K) 3EV 2 J1= J1+3 8EV 3 K= 38+J 8EV 3			BEV	27
J1= J1+3 BEV 3 K≑ 38+J BEV 3			BEV	28
K≑ 38+J BEV 3		LLM([+JL)= LMTEMP1K)	BEV	29
			BEV	30
LLN(1,J1)= LMTEMP(K) BEV 3			BEV	31
		LLM(1,J1)= LMTEMPIK)	BEV	32

		JI= JI+3	SEV
		K= 47+J	હEV BEV
		LLMII,JL)= LMIEMP(K)	368
		Jl= Jl+3 K= 44+J	BEV
		LLM(I,JL)= LMTEMP(K)	SEV
	an	CONTINUE	BEV
		CONTINUE	BEV
£			BEV
č		READ MODE SHAPE FROM TAPE 7 INTO MATRIX B	нEV
C			öEV
		NN= (NBLOCK-1)*NEUR + 1	B £ V
		00 200 K=1.NBLUCK	8 F V
		NNEQB= NN + NEUB - 1	SFA
		READ(/)((B(N,L),N=NN,NNEQB),(=1,NF))	BEV
	200	NN= AN - NEQB	38 V
С			8EV
C		FORM NODE SHAPE IN RADIAL DIRECTION AT EACH UPSTREAM NUDE-	6 E V
С		STORE RADIAL MUDE SHAPE IN MATRIX PHIR	3EV
C			BEV
		NN= 0	BEV BEV
		THETAL = 0.0	5 E V
		THETA2= TW Theta3= Tw + Tw	BEV
			BE-V
		DD 900 1=1.NUMELT SC(1.1)= SIN(THETA1)	8EV
		SC(1,2)= CUS(THETA1)	BEV
		SC(2.L)= SIN(THETA3)	BEV
		SC(2,2)= COS(THETA3)	BŁV
		S((3,1) = S((2,1))	BEV
		SC(3,2)= SC(2,2)	BEV
		SC(4,1) = SC(1,1)	B€V
		SC(4,2) = SC(1,2)	8 E V
		SC(5,1)= SIN(THETA2)	8 E V
		SC(5,2)= COS(THETA2)	BEV
		SC(6+1)= SC(2+1)	BLV
		SC(6,2)= SC(2,2)	BEV
		SC(7,1)= SC(5,1)	BEV
		SC(7,2)= SC(5,2)	BEV
		SC(8,1) = SC(1,1)	BEV
		SC(8,2/= SC(1,2)	8 E V
		DO 800 J=1, NUMELZ	BEV BEV
		K= J + NN	BEV
		DO 700 L≂i,NF Li≖ l	6 E V
		$L^{2} = L^{2} + 1$	BEV
		DO 550 NNN=1,8	BŁ.V
		PHIR(K, NNN, L) = 0.0	BEV
		LLX= LLN(K+L1)	BEV
		LLY= LLM(K,L2)	θt.V
		IF(LLY.LT.1)GOTO 510	3 E.V
		PHIR(K,NNN,L)=BILLY,L)*SC(NNN,L)	BEV
	510	IF(LLX.LI.11GOTO 520	8 E V
		PHIRIK,NNN+L)= PHIR(K,NNN+L) + B(LLX+L)+SC(NNN+2)	BEV
	520	Li = L1 + 3	13 E V
		L2= L1 + 1	BEV
		CONTINUE	3 L V
		CONTINUE	NEV
	800	CONTINUE	BEV
		NN# NN + NUMELZ	BEV BEV
		THETA1= THETA3 THETA2= THETA3 = TH	BEV BEV
		THETA2= THETA1 + JW	., C V

			6 J		
		THETA3= THETA2 + TW		8EV	95
	900	CONTINUE		BEV	96
Ç				BEV	- 97
С		ADJUST RADIAL MODE SHAPES TO ACCOUNT FOR DIFFERENCES		BEV	98
ē		BETWEEN DAM HEIGHT AND RESERVOIR HEIGHT		BEV	99
č				BEV	100
¢				BEV	101
		DD 990 I=1,NUMELZ		BEV	102
		HEHI		8EV	103
		HT= H+Zw+ZW		BEA	104
		N2= I		8EV	105
		ZWHTOP= (HWATER-H)/[2.0*HWATER]		8EV	106
		C1= ABS(1ZWH-ZWHTUP)/ZWHI		BEV	107
		IF(C1.LT.0.10)6010 991		BEV	108
		EF(HWATER-LT-HIJGOTO 930		BEV	109
		GOTO 990		BEV	110
	0.20	SC(1,1)= 1.0		BEV	111
	300	SC(2,1) = -1.0		BEV.	
				BEV.	113
		SC(3,1)= 1.0			
		SC(4,1) = 0.0		8EV	114
		SC(5,1) = -1.0		BEV	115
		SC(1.2)= {ZwHTUP+ZWHTOP-ZWH1/ZWH		BEV	116
		SC(2,2)= SC(1,2)		ΒΕν	117
		SC(3,2)= {/WHIUP-/WH)//WH		BEV	118
		SC(4+2)= SC(1+2)		BEV	119
		SC(5,2) = SC(3,2)		BEV	120
		D0 940 J=1,5		8EV	121
		S=SC(J.1)		8EV	122
		T = SC(J, 2)		BEV	123
		SHAPE(J, 1)= 0.25*(1.0-S)*(1T)*(-S-T-L.)		BEV	124
		SHAPE(J_{2}) = 0.25*(1.+S)*(1T)*(S-T-1.)		BEV	125
		SHAPE(J, 3)= 0.25*(1.+S)*(1.+T)*(S+T-1.)		BEV	126
		SHAPE(J.4)= 0.25*(1S)*(1.+T)*(-S+T-1.)		BEV	127
		SHAPE(J+5)= 0.5*(1S*5)*(1T)		BEV	128
		SHAPE(J,6)= 0.5#(1.+S)#(1T+T)		BEV	129
		SHAPE(J, 7) = 0.5 + (1 S + S) + (1. + T)		BEV	130
		SHAPE(J,8)= 0.5*(1S)*(1T*T)		BEV	131
	940	CONTINUE		BEV	135
		K≖ NZ		BEA	133
		DO 970 J=1,NUMELT		BEV	134
		DO 960 L=1,NF		3E-V	135
		00 950 N=1+5		BEV	136
		PMODE(N) = 0.0		BEV	137
		00 950 M=1.8		BEV	138
		PMUDE(N) = PMUDE(N) + PHIR(K,M,L)*SHAPE(N,M)		BEV	139
	950	CUNTINUE		BEV	140
	4.10	PHIR(K,3,L)= PHODE(1)		BEV	141
		PHIR(K,4,L) = PHODE(2)		BEV	142
		PHIR(K.6,L) = PHODE(3)		BEV	143
		PHIR(K,7,L) = PHODE(4)		BEV	144
		PH[R(K,8;L) = PMODE(5)		BEA	145
	960	CONTINUE		8EV	146
		K= K + NUMELZ		867	147
	970	CONTINUE		BEV	148
		GOTO 991		θEV	149
	990	CONTINUE		BEV	150
		CONTINUE		BEV	151
		RETURN		BEV	152
		END		8EV	153
				004	1 2 3

		0.0.1.4	1
	SUBROUTINE BESSJY(X. BESJ. BESY (NMAX, NYMAX)	BEJY	
	DIMENSION BESJI200), BESY(200), TJI200)	BEJY	2
	EULER=0.577215664901533	BEJY	3
	PI=2.0/3.1415926535898	BEJY	- 4
	NU22=20	BEJY	5
	IF(10X) 2,2,3	8EJY	6
•		9634	7
2	HATN=[1.05]*X*25.		
	GOTO 4	BEJY	8
3	HATN=35+/(3.5-ALUG(X1)	BEJY	4
4	NU=HAÎN	BEJY	10
	N=IABS(NMAX)+1	BEJY	11
	NU2 = NU + 2	BEJY	12
	D0.5 J = NU2 N	BEJY	13
		BEJY	14
_	TJ(J) = 0.		
5	CONTINUE	BEJY	15
	TJ(NU+1)=0.00001	3 E J Y	16
	00 6 J=1,NU	BEJY	17
	K=NU+1-J	BEJY	18
	FK=K+K	BEJY	19
6	TJ(K)=FK *TJ(K+1)/X-TJ(K+2)	BEJY	20
	SUM=0.0	BEJY	21
		BEJY	
	DO 7 J=3,NU,2		2 ?.
7	SUM# SUM+TJ(J)	SEJY	23
	SUM=SUM+SUM	BEJ Y	24
	TK=1./(TJ(1)+SUM)	BLJY	25
	00 8 J=1 •N	BEJY	26
8	BESJ(J)=TK+TJ(J)	BEJY	27
	1F(NMAX) 98, 98, 55	BEJY	28
66	L=X/5.0	BEJY	24
	IF(L-11300,300,301	BEJY	30
202		8CJY	31
201	X82=1./(64.*X*X)		
	x64= X82* X82	BEJY	32
	POX=14.5*X82+459.375*X84-150077.8125*X84*X82	B€JY	33
	X8=•125/X	BEJY	34
	X83≠X8≠X82	BEJY	35
	QQX=-X8+37.5*X83-7441.875*X83*X82+3623307.1875*X83*X84	BEJY	30
	XP4=X-0.5/P1	BEJY	37
	$TI = S \hat{v} R T(P(/x))$	BEJY	38
	BESY11)=TI+(PDX*SIN(XP4)+QOX*COS(XP4))	BEJY	39
		afjy	40
	GOTD 302	BLJY	41
300	DX=X		
	0 SUM 1=0+0	BEJY	42
	DSUM2=0.0	BEJY	43
	DX2= •25*DX*DX	8F1A	44
	DXX=1.0	8EJY	- 45
	0T=1.0	BEJY	46
	D0 99 H=1,NU22	BEJY	41
	DT=-DT	BÉJY	40
	DFFN= M	REJY	49
		BEJY	
	DFM=1.0/(OFFM*DFFM)		50
	DX3=DX2+DFM	BEJY	- 51
	DXX=DXX*DX3	BEJY	5 ?
	DSUM2=DSUM2 + 1./DFFM	SEJY	53
-99	D SUM I = DS UMI + DT = DX X = D SUM2	SEJY	54
	BESY(1)=PI*(BESJ(1)*(EULER+ALOG(.5*DX))-DSUM1)	BEJY	55
302	BESY121= (BESJ121*BESY(1)-(P1/X))/BESJ(1)	BEJY	50
	N= NYMAX + 1	BEJY	57
	00 10 J#3+N	13F 3 A	5.1
	FM=(J+J-4)	SELA	59
	1.11-1.4.4-41	01.01	

<u>ج</u>۲

SUBROUTINE BESNKS(X, KMAX, FK)	BENK	1	
DIMENSIUN F11501, FK(200)	BENK	2	
1F(X-2.) 2,3,3	BENK	3	
2 T==5+X	BENK	4	
Ĭ =Ĭ ★ Ţ	BENK	5	
FK(1)= {{{{{.00000740*T+.00000750}*T+.00262698}*T+.03488590}*T+	3 EN K	6	
1 .230697561#I+.42278420)#I57721566	BENK	7	
FK(2)= {{{{({{(00004686*!00110404}*T01919402}*T18156897}*T-	BENK	8	
1 .672785791*1+.154431441*T+1.	BENK	9	
CALL BESNIS (X,2,FI)	BENK	10	
T2=.5*ALUG(T]	BENK	11	
FK(1)=FK(1)-T2*F[())	BENK	1.2	
FK(2)=FK(2)/X+T2*F1(2)	3 ENK	13	
T=2°/X	BENK	14	
GG 10 1	8ENK	15	
3 I=2./X	BENK	16	
FK11)= 11(11.00053208*T00251540)*T+.00587872)*T01062446)*T+	3 ENK	17	
1 .02189568) * T07832358) * T+1.25331414	BENK	18	
FK(2)= {{{{00068245*1+.003256141*T007803531*1+.015042681*T-	BENK	19	
1 .03655620) * 1 + . 23498619) * 1 + 1 . 25331414	BENK	20	
TI = EXP(-X)/SURT(X)	SENK	21	
FK11)=FK11)+T1	BENK	22	
FK12]= FK (2) +T 1	BENK	23	
L CONTINUE	BENK	24	
AA= 1.0	BENK	25	
1F(X_LE+1+0)AA=1+0E-275	BEAK	2.6	
FK(1)∞ AA*FK(1)	BENK	21	
FK121=AA *FK(2)	SENK	28	
D8 4 N≠↓•KMAX	BENK	29	
DK=N-2	BENK	30	
4 FK(N)=T+UK+FK(N-1)+FK(N-2)	BENK	31	
RETURN	BENK	32	
END	BENK	33	

SUBROUTINE BESNIS(X,NMAX,FI) DIMENSION FI(50), PI1200) SUM=0. 1 = xJMAX=1+21 $I \ge 2./X$ JM2 = JM2 + 2 D0 4 J = JM2,NMAX PI(J) = 0. 4 CONTINJE PI(JMAX+1)=1.E-20 D0 1 J=1.JMAX K=JMAX+2-J JK=K-1

98 RETURN BEJY	86JY 60 86JY 61 86JY 62
----------------	-------------------------------

BENT 2 BENT 3

 3ENI
 3

 3ENI
 5

 3ENI
 5

 3ENI
 5

 3ENI
 6

 SENI
 7

 3ENI
 8

 SENI
 9

 3ENI
 10

 SENI
 11

 3ENI
 12

 3ENI
 14

	SUBROUTINE CSYMEL(A, B, NN, LL)	CSYM
		GSYM
(COMPLEX A(15,15),B(15,2)	C5 YM
		CSYM
	DO 475 N≈1,NN	LSYM
1	N1= N+1	CSYM
		CSYM
1	FORM D(N.L)	CSYM
		CSYM
	DQ 150 L=1,LL	CSYM
150	B(N + L) = B(N + L) / A(N + N)	C SYM C SYM
		CSYM
	CHECK FOR LAST EQUATION	CSYM
	C	CSYM
	[F[N+NN] 200,500,200	CSYM
200	20 150 L-N1 NN	CSYM
200	DO 450 J=N1,NN	CSYM
	FOOM WIN 11	CSYM
1	FORM HIN, J)	CSYM
	IFICABS(AIN: J11) 250,450,250	CSYM
	A(N, J) = A(N, J) / A(N, N)	CSYM
250	A SNE JI- A ENEJIZA SNE I	CSYM
	MODIFY A([,J)	CSYM
	HODIEL ATTICE	CSYM
	DQ 300 I=J,NN	CSYM
	$A[I_*J] = A[I_*J] = A[I_*N] * A[N_*J]$	CSYM
	A(J,1)=A(I,J)	CSYM
100	AC3617-A(1657	CSYM
	MODIFY BILL	CSYM
		CSYM
	00 400 L=1+LL	CSYM
	B(J,L) = B(J,L) - A(J,N) * B(N,L)	CSYM
	CONTINUE	CSYM
475	CONTINUE	CSYM
		CSYM
	BACK-SUBSTITUTIUN	CSYM
		CSYM
500	N 1 = N	CSYM
	N= N-1	CSYM
	LF(N) 700,700,550	CSY4
		CSYM
	00 600 L=1,LL	CSYM
	00 600 J≠ N1+NN	C SYM
600	$B(N_{T}L) = B(N_{T}L) - A(N_{T}) * B(J_{T}L)$	CSYM
		CSYM
	GUTU 500	ČSYM
		LSYM

PI(K-L)=UK+TZ+PI(K)+P[(K+L)1 SUM=SUM+PI(K)SUM=SUM+PI(K)A=EXP(X)/(PI(L)+SUM)DU 2 N=1,NMAX2 FI(N)=A+PI(N)RETUGNEND

	SUBROUTINE HINMLEPHIR.HINM.CDN.AA.CDM.	HINN	1
:	NUMELZ .NUMELT, NZ. ZWH, ZWHTOP, TW, NTERM, MTERM, NF, NUMELI	HINM	2
	DIMENSION PHIRINUMEL, 8, NF1, HINMINTERM, MTERM, NF1,	HINM	3
	E CONTINUMELT IN TERM , 31 , AA (NTERM + 31 + COMINUMELZ + MTERM + 31	HINM	4
	DIMENSION CC(3)	HINM	5
c		HINM	6
C****	********	******H]NM	7
C	THIS SUBROUTINE FORMS THE INTEGRAL IIN, M.LI	HINM	8
	***************************************		9
Ç		HENM	10
	DO 100 N=1,NIERM	HINM	11
	00 100 M≠1,MTERM	HINM	12
	DQ = 100 L = 1.NF	HINM	13
	H[NM(N,H,L) = 0.0	HINM	14
100	CUNTINUE	HINM	15
	Ĩ₩4≠ 4.0¥Ĩ₩	HINM	16
	ANGLE= IW4	HINM	17
	DO 200 N=2.NTERM	HINM	18
		HINM	19
	CL= SIN(ANGLE) C2= COS(ANGLE)	HINM HINM	20 21
	$C_2 = COSTANGLE7$ $C_2(1) = (C_2 - C_1/ANGLE)/AN$	RINM	22
	$CC(2) = 2.0 \times CC(1) / ANGLE$	HINM	23
	CC(3) = C1/AN	HINM	23
	DO 150 I=LINUMELT	HINM	25
	DU 150 $J = 1, 3$	HINM	26
150	CON(I,N,J) = CC(J)	HINM	27
	ANGLE = ANGLE + IW4	HINM	28
200	ANGLEC= TW4	HINM	29
	00 300 I = 1, NUMELT	HINM	30
	ANGLE= ANGLEC	HINM	31
	DO 250 N=2.NTERM	HINM	32
	C1= SIN(ANGLE)	HINM	33
	C2= CUS(ANGLE)	HINM	34
	CON(I.N.I)=CON(I,N.L)*C1	HINM	35
	CON11,N,2)=CDN(1,N,2)=C2	HINM	36
	CON(1,N,3)=CON(1,N,3)+C2	HINM	37
	ANGLE= ANGLE + ANGLEC	HINM	38
250	CONTINUE	HINM	39
	ANGLEC≠ ANGLEC + TW4 + TW4	HINM	40
300	CONTINUE	HINM	4 L
	PI= 3.1415926536	HINM	42
	PIZ= PI#ZWHTOP	HINM	43
	PLN= 0.5*P1	HINM	44
	ANGLE= 0.5+P.Z	HINM	45
	00 350 H=1. ATERM	HINM	46
	C1= SIN(ANGLE)	HINM	47
	C2= COS(ANGLE) CDM(NZ,M,1)= iC2 - C1/ANGLE)/PLM	. HINM	48 49
	$CDM(NZ,M,Z) = 2.0 \times CDM(NZ,M,Z)/ANGLE$	HINM HINM	49 50
	COM(NZ,M,3) = C1/PLM	HINM	51
	ANGLE= ANGLE + PIZ	- HINM	52
	PLM= PLM + PI	HINM	53
350	CUNTINUE	HINM	54
570	~ ~ · · · · · · · · · · · · · · · · · ·		- 1

700 RETURN END

8ENI 15 8ENI 16 8ENI 17 8ENI 18 8ENI 19 8ENI 20 8ENI 21 8ENI 22

1

CSYM 49 CSYM 50

	IF(NZ-EQ-1)GOTU 400	HINM	55
	NNZ= NZ-1	HINM	56
	PIZ= PI*ZWH	HINM	57
	PLM= 0.5*PI	H1N4	58
	ANGLE= 0.5*P12	HINM	59
	DO 375 M=1, MTERM	HINM	60
	CI= SIN(ANGLE)	HINM	61
	C2= COS(ANGLE)	HINM	62
	CC(1) = (C2 - C1/ANGLE)/PLM	HINM	63
	CC(2)= 2.0*CC(1)/ANGLE	HINN	64
	CC(3)= C1/PEN	HINM	65
	DD 370 I=1, NNZ	HINM	66
	DO 370 J#1,3	HINM	67
370	CDM(I,M,J) = CC(J)	HINM	68
	ANGLE= ANGLE + PIZ	BINM	69
	PLM= PLM + PI	HINM	70
	CONTINUE	HINM	71
400	P1Z= 0.5*P1+Z8H	HINM	72
	P122= P12	HINM	73
	ANGLEC = -PIZ	HINM	74
	DO 500 I=1,NZ	HINM	75
1	IFII.EQ.NZIPIZ2= 0.5*PI*ZWHTOP	HINM	16
			77
	ANGLEC= ANGLEL + PIZ + PIZ2	HINM	
	ANGLE= ANGLEC	HINM	78
	00 450 M=1,MTERN	HINM	79
	C1= SIN(ANGLE)	HINM	80
	C2= COS(ANGLE)	HINM	81
	$CDM(I_1M_1I) = CDM(I_1M_1I) + CI$	HINM	82
	CDN(I,N,2) = CDN(I,N,2) * C2	HINM	83
	CDM(I,M.3)= CDM(I,M.3)*C2	HINM	84 ·
	ANGLE= ANGLE + ANGLEC + ANGLEC	HINM	85
450	CONTINUE	HINM	86
5.00	CONTINUE	HINM	87
100			
	NN= O	HINM	88
	DO 900 I=1.NUMELT	HINM	89
	DO 800 J=1.NZ	HINM	90
		HINM	91
	K=J + NN		
	DO 700 L=1.NF	HINM	92
	Cl= 0.25*(PHIR(K,1,L)*PHIR(K,2,L)*PHIR(K,3,L)*PHIR(K,4,L))	HINM	93
	C5= C1	HINM	94
	C6= C1	HINM	95
	C1= 0_5*(PHIR(K,5,L) +PHIR(K,6,L) + PHIR(K,7,L) +PHIR(K,8.L))-C1	німч	96
	C2= 0.5*(PHIR(K,7,L) - PHIR(K,5,L))	HINM	97
	C3 = 0.54 (PHIR(K, 6, L) - PHIR(K, 8, L))	HINM	98
	$C4= O_*25*(PHIR(K_*1,L) - PHIR(K_*2,L) + PHIR(K_*3,L) - PHIR(K_*4,L))$	HINM	99
	C5= C5 ~ 0+5*(PHLK(K+6+L1 + PHIR(K+8+L))	HINM	100
	C6 = C6 - C.5 * (PHIR(K, 5, L) + PHIR(K, 7, L))	HINM	101
		HINM	
	C7= 0.25*(PHIR(K,3,L) + PHIR(K,4,L) - PHIR(K,1,L) - PHIR(K,2,L))		
	C7 = C7 + 0.5 = (PHIR(K, 5+L) - PHIR(K, 7+L))	HINM	103
	C8= 0.25*(PHIR(K,2,L) + PHIR(K,3,L) - PHIR(K,1,L) - PHIR(K,4,L))	HINM	104
	C8= C8 + 0.5+(PHIR(K.8.L) ~ PHIR(K.6.L))	HINM	105
	AA(1.1)= TW4#(C1+C6/3.0)	HINM	
	AAE1,2}= TW4*1C2+ C7/3.01	HINM	107
	AA(1,3)= TH4+C5	HINM	108
	DC 600 N=2.NTERM	HINM	
	AA(N,I) = C6*CDN(1,N,2) + (C1+C6)*CDN(1,N,3) + C3*CDN(1,N,1)	HINM	110
	AA(N,2)= C7*CDN(1,N,2) + (C2+C7)*CDN(1,N,3) + C4*CDN(1,N,1)	H NM	111
	AA(N,3)= C5*CDN(I,N,3) + C8*CDN(I,N,1)	HINM	
000	CONTINUE	HINM	
	DO 650 N=1-NTERM	HINM	114
	DO 650 M=1.MTERM	H1NM	115
	$HINM(N_0N_0L) = HINM(N_0N_0L) + AA(N_0Z) + CDM(J_0M_0L) +$	HENM	

700 800	CONTINUE CONTINUE CONTINUE NN= NN + CONTINUE RETURN	+	{AA(N+3)	٠	AA(N,1})*CDM(J,M,3) HINA HINA HINA HINA HINA HINA HINA HINA	4	118 119 120 121 122
	RETURN END					HIN		

	SUBROUTINE BEV2(PHIR, POB, LLM, TNN, NUMEL, NF, NUMELZ, NUMELT, NZ, ZWH, ZWH TUP, TW, NEQW)	BEV2 BEV2	
		BEVZ	
	DIMENSION PHIR(NUMEL,8,NF),POB(NEQW,NF),LLM(NUMEL,8),TNN(8,8,2)		
	DIMENSION STIBL,HIBL,SHAPE(8)	BEV 2	
C		BEV2	

C	THIS SUBROUTINE FURMS THE INTEGRAL ASSOCIATED WITH THE PRESSURE	BEV2	
С	DUE TO THE MOVEMENT OF THE RESERVOIR BANKS - POB	8EV2	
C ****	******	**8EV2	
С		BEV 2	
	DATA ST/ .774596669,0.0,774596669/	BEV2	
	DATA H/. 555555564, 6888888889, 55555556/	BEV 2	
c		BEV2	
č	FORM THE LLM ARRAY WHICH ASSIGNS A LOCATION TO EACH NODAL POINT	BEV2	
č	IN EACH ELEMENT LOVERED BY WATER	BEV2	
č	IN EACH ELEMENT COTENED BY RATEN	BEV2	
L I	NN≖ -NUMELZ	BEV2	
	NEQ2= 0	BEV2	
	DD 100 I=1,NUMELT	BEV2	
	NN= NN + NUMELZ	BEV2	
	NEQ1 = NEQ2 + 1	BEV2	
	NEQ2= NEQ1 +NZ + NZ + 1	BEV2	
	NEQ3= NEQ2 + NZ + L	BEV2	
	DO 100 J=1.NZ	BEV2	
	K=NN+J	BEV2	
	LLM(K+1) = NEQ1	BEV2	
	LLN(K,2) = NEU3	8EV2	
	LLN(K,3) = NEU3 + 2	BEV 2	
	L(M(K, 4) = NEU1 + 2	8EV2	
	LLMIK, SI = NEU2	BEV2	
	LLM(K.6) = NEQ3 + 1	BEV2	
	LLM(K,7) = NEQ2 + 1	BEV2	
	LLM(K.8) = NEQ1 + 1	BEV2	
	NEQL= NEQL + 2	8EV2	
	NEQ2= NEQ2 + 1	BEV2	
	NEQ3= NEQ3 + 2	BEV2	
	CONTINUE	8675	
¢		BEV2	
C,	FORM THE TNN ARRAY - 64 ELEMENT ARRAY FORMED BY INTEGRATING	BEV2	
C	SHAPE(I)*SHAPE(J) OVER THE ~1. TO 1. RECTANGLE	BEV2	
c		8EV2	
	DO 200 K=1,8	8EV2	
	DO 200 L=K.8	BEV2	
200	$1 \times 1 = 0.0$	BEV2	
	QQ 400 $I = 1, 3$	BEV2	
	S = SI(1)	BEV2	
	DC 400 J=1.3	BEV2	

		HST= H{11*H{J}}	BEV 2	49
		SHAPE(1) = 0.25*(1S)*(1T)*(-S-T-1.)	BEV2	50
		SHAPE(2) = 0.25*(1.+S)*(1T)*(S-T-1.)	3EV2	51
		SHAPE(3) = 0-25*(1-+5)*(L++T)*(S+T-L-)	BEV2	52
		SHAPE(4)= 0.25+(1S)+(1.+T)+(-S+T-1.)	BEV2	53
		SHAPE151= 0.5*(15*S)*(1T)	BEV2	54
		SHAPE(6) = 0.5*(1.+S)*(1T*T)	BEV2	55
		SHAPE(7) = 0.5*(1S*S)*(1.+T)	BEV2	56
		SHAPE(8) = 0.5+(1S)*(1T+T)	BEV2	57
		DD 300 K=1,8	BEV 2	58
		Cl= HST*SHAPE(K)	BEVZ	59
		DO 300 L=K+8	8 E V 2	60
	300	$TNN(K_{+}L_{+}1) = TNN(K_{+}L_{+}1) + C1 + SHAPE(L)$	BEV2	61
	400	CONTINUE	BEV2	62
		C1= ZWH+TW	BEV 2	63
		C2= ZWHTOP*TW	8EV2	64
		00 500 K=1,8	BEVZ	65
		DO 500 L=K,8	BEV2	66
		TNN(K,L,2) = C2 * TNN(K,L,1)	BEV2	67
		TNN(K,L,L)= Cl+TNN(K,L+L)	96 A 3	68
		TNN(L,K,1) = TNN(K,L,1)	BEV2	69
	500	TNN(L,K,2) = TNN(K,L,2)	BEV2	70
C			BEV2	71
C		FORM POB ARRAY - THIS ARRAY RESULTS FROM MULTIPLYING TNN BY THE	BEV2	72
C		MODE SHAPES. THE RESULTS FOR EACH ELEMENT ARE STORED IN POB AT	BFV2	73
c		LOCATIONS GIVEN BY THE LLM ARRAY	BEV2	74
C			BEV2	75
		D0 600 1=1,NEQW	8EV2 8EV2	76
	4.00	D0 600 L=1+NF	BEVZ	78
	600	PDB(1+L)= 0.0 NN= -NUMELZ	BEV2	79
		DO 900 I=1. NUMELI	BEV2	80
		NN= NN + NUMEL2	BEV2	31
		DG 900 J=1+NZ	BEV2	82
		K = NN + J	BEV2	83
		M= 1	BEV2	84
		IF(J_EQ_NZ)M=2	BEV2	85
		DD 750 L=1+NF	BEVZ	86
		DO 700 KK=1.8	BEVZ	87
		NEO1= LLM(K+KK)	BEV2	88
		C1=0.0	8672	89
		00 650 NNN=1,8	BEV 2	90
		C2= PHIR (K, NNN, L)	BEV2	91
		IF(C2.EQ.0.0)G010 650	8EV2	92
		C1 = C1 + C2 + INN(KK+NN+M)	BEV2	93
	650	CONTINUE	BEV2	94
		POB(NEQ1,L) = POB(NEQ1,L) + C1	BEV2	95
		CONTINUE	BEV2	96
		CONTINUE	BEV2	97
		RETURN	BEV2	98
		END	8EV2	99

OVERLAY(XFILE,3,1)	XHYD	ι
PROGRAM XHYDRU	XHYD	2
COMMON / MISC / NBLOCK, NEQB, LL, NF, LB , NDYN	хнүр	3
COMMON /ELPAR/ NPAR(14),NUMNP,MBAND,NELTYP,N1,N2,N3,N4,N5,	MTOT, NECXHYD	4
. →N6• NUMNPF → IPRINT →NEM →NUMEL,WATL, IMASS.TVOL,NEQES	T, LMODE XHYD	5

		NO /
	HEN JISYM, WDEN, T(10) XH	
COMMON/RADDU/RADIUS		YD 7
COMMON ZH Y D Z NUMELZ . /	IUMELT, TW, ZW, HWATER, NTERM, MTERM, IXYZ XH	YU 8
COMMON ALLI		YD 9
C		YD 10
NEQBT≃ NEQB*NBLOCK	XH	YÐ 11
NEOW= 1	XH	YO 12
NODEZ≈ L		
NI= 1	XH	YD 14
N2= N1 + NF	хн	YD 15
		YD 16
N3= N2 + NEQ		
N4= N3 + NUMNP=3		YD 17
N5≖ N4 + NEQ	XH	YD 18
N6= N5 + NEQB*MBAND	x H	YD 19
IF(N6.GI.NTUT)CALL		YD 20
C	HX	YD 21
CALL GHENXEALNII.AC	N21,A(N3),A(N41,A(N5),NUMNP,NUMEL,NEQB, XH	YU 22
1 MBAND+NF+NBLU		YU 23
C		YD 24
N4= N3 + NEQB*NF	XH	YU 25
IFIN4.GT.MIUTICALL	ERRORING-HTOTE XH	YO 26
		YO 27
WRITE(6,3000)		
C	хн	YO 28
CALL LUADIIA(NI).A	IN2), 4(N3), NEQB, NBLOCK, NF, NEQ) XH	YU 29
C		YD 30
IFINWATER.EQ.0.01GC		YD 31
ZWH= ZW/HWATER	хн	YD 32
N3= N2 + 8+NUMEL+NF	хн	YD 33
N4= N3 + 24+NUMEL		YD 34
NS= N4 + NEQBT*NF		YD 35
N6= N5 + 50	XH	YÐ 36
IFING.GT.HTOTICALL	FRRDR(N6-MTDT) XH	YU 37
C		YD 38
		YD 39
1 NUNELZ,NUMELT,	NZ,ZWH,ZWHTDP,ZW,TW,HWATER} XH	YD 40
C	XH	YD 41
N4= N3 + MTERM#NTER	M#NE XH	YU 42
N5= N4 + NTERM*NUM		YD 43
N6= N5 + NTERM#3		YD 44
N7= N6 + MIERM*NUME	LZ*3 XH	YD 45
FENT.GT.NTOTILALL	ERROR(N7-MTOT) XH	YD 46
C		YD 47
		YD 48
1 NUMELZ, NUMELT,	NZ.ZWH.ZWHTOP,TW.NTERM.NTERM.NF.NUMEL) XH	YU 49
C	хн	YD 50
NEQW=(3+NZ+2)+NUMEL		YD 51
N5= N4 + NEQH≉NF		YD 52
N6= N5 + 8*NUMEL	XH'	YD 53
N7= N6 + 128	XH	YD 54
IFINT.GT.MTOT)CALL		YD 55
C		YD 56
CALL BEV2(A(N2)+A(N	41, A(N5), A(N6), NUMEL, NF, NUMELZ, NUMELT, NZ, XH	YD 57
1 ZWH-ZWHTOP-TW	I+NEQW) XH	YO 58
C		YD 59
NODEZ= NZ + NZ + 1		YD 60
500 KKMAX= NTERM + NTER	M + L4 XH	YD 61
N1= 1	AD.	YD 62
		EA 68
NZ= NI + NF	XH	YD 63
NZ= N1 + NF N3= N2 + B*NUMEL*NF	XH XH	YD 64
N2= N1 + NF N3= N2 + B≠NUMEL≠NF N4= N3 + MTERM*NTEF	: XH : XH : (M*NF XH	YD 64 YD 65
NZ= N1 + NF N3= N2 + B*NUMEL*NF	XH XH	YD 64 YD 65

.

	SUBROUTINE XHURIZIGLOAD, HINM, PDB, FNK, COSLAM, AB, BB, PBR, PBI,	хноя	1
	1 RADIUS "HWAIER "NF "NTERM, MTERM "NODEZ "KKMAX "NEQW", NUMELT.	XHOR	2
	2 ZWH. ZWHTOP. TW)	XHOR	3
	DINENSION HINMINIERM, MTERM, NF), POU(NEQW, NF), FNK(NTERM, KKMAX),	XHOR	4
	2 COSLAMINODEZ, MTERM) + AB(MTERM) + BB(MTERM) + PBR(NEQW) + PBI(NEQW) +	XHOR	5
	3 GLOADINEJ	XHOR	6
	DIMENSION BJK(200), BV(200), GMN(31), WDAM(15)	XHOR	Ĩ
	RFAL JNR (31)	XHOR	8
	COMPLEX S(15,15).F(15,2), SS(15,15), FF(15,2)	XHOR	3
С		XHOR	10
	*****	** XHOS	11
č	THIS SUBROUTINE CALCULATES THE COMPLEX FREQUENCY RESPONSE	XHDR	12
č	FUNCTIONS FOR HURIZONTAL GROUND MOTION IN X DIRECTION	XHDR	13
	*****	** XHOR	14
č		XHOR	15
	REWIND 7	XHOR	16
	READ(7)(WDAM(L),L=1,NF)	XHOK	17
	KEAD (5, 1 UGO JUANP, AL PHA, INCOMP, NPUNCH	XHOR	18
	WRITE(6,2000)DAMP	XHDR	19
	PI= 3.141592653	XHOR	20
	RH01= 9.88540019*RADTUS*RADTUS*H₩ATER	хнок	21
	RH02=4501581579*RH01	XHOR	2.2
	RH03=1767766953*RH01	XHOR	23
	IFIHWATER.EQ.0.01GOTO 24	XHOR	24
C		XHER	2.5
	RCONST= 0.5*P1*RADIUS/HWATER	XH0 R	26
	W1= 4720.D*P1/(HWATER + HWATER)	XHDR	27
	LELENCOMP.GT.OJGUTO 8	XHOR	28
	WRITE(6,3000)w1	хнск	29
	DD 7 M=L.MTERH	XHUK	30
	7 WRITE(6,3500)M,HINM(1,M,1)	XHOR	31
	6010 9	XHOR	32
	8 WRITE(6,6000)	XHOR	33
	INCOMP= 1	XHOR	34
	9 DU 10 NN=1,NTERM	XHOR	35
	$N = NN - \lambda$	хнок	36
	AN= 16*N*N	XHOR	37
	KMAX = N + N + 16	XHOR	38
	$DC \ 10 \ KK = 1 \ KMAX$	XHOR	39
	$C1 \pm KK = 1$	XHOR	40
	C2= 4.0*C1	XHOR	41

CALL XHORIZ(AINI).a(N3).a(N4).a(N5).a(N6).a(N7).a(N8).a(N9). XHYO I A(N10).kADIUS.IIMATER.NF.NTERM.MTERM.NUDE2.KKMAX.NEQW.NUMELT. 2 ZWH.ZWHTOP.IWI XHYO XHYO

3000 FORMAT (///78H GENERALIZED LOAD FOR HORIZONTAL GROUND MOTION IN X DXHYD 80

XHYD 68 XHYD 69 XHYD 70 XHYD 71 XHYD 72 XHYD 73 XHYD 74

75 16 71 хну ј

хнүр

XHYD

XHYD 78

XHYD 79

XHYD 81

XHYD 92

34

LUADI

N7≕ NG + NODEZ*MTERN NB= N7 + MTERM N9= N8 + MTERM N10≈ N9 + NEQN N11= N10 + NEQN IF[N11.ST.MTOT]CALL ERRDK(N11-MTOT]

LIRECTION - STRUCTURE DNLY,/TX.24H FREQ NUMBER

C

С

L 2

RETURN

END

		C3≖ C2¢C1	XHOR	42
	10	FNK(NN+KK)= (AN+C3-1.0)/((AN-C3-C2-1.0)*(AN-C3+C2-1.0))	XHOR	43
c			XHOR	44
		ZH= -ZwH	XHOR	45
		DO 15 J=1+NODEZ	XHDR	46
		C1= -0.5*Pl	XHÜR	47
		C2= ZWH	XHOR	48
		IFIJ-GI.(NUDEZ-2))C2= ZWHTDP	хноч	49
		ZH= ZH + C2	хнок	50
		C3= 1.0	XHŪR	51
		DO 15 M=1. MTERM	XHOR	52
		CI = CI + PI	хноя	53
		C3= -C3	XHOR	54
		EM= M+H-1	XHOR	55
		COSLAM(J,M)= (L3/EM)+(COS(C1+ZH))	хнок	56
-	15	CONTINUE	XHOR	57
С			XHOR	58
	24	WRITE(6,4000)	XHOR	59
C			XHOR	60
c	~ ~		XHDK	61
	25	READ(5,1000)ww10AM	XHOR	62
¢			XHOR	63
		IF(WWIDAM.LT.O.0)GOTO 900	XHDR	64
		W≓ WÚAN(1)*W¥IDAM	XHOR	65
		IFLINCUMP.EQ.21GDTD 860	XHOR	66
		C1= 0.0	XHOR	67
		C2= 0.0	XHOR	68
		DD 40 L=1,NF	XHOR	69
		F(L,1) = CMPLX(C1,C2)	XHUR	70
		F(L+2) = CMPLX(C1,C2)	XHOR	71
		DO 60 K=1,NF	хнок	72
		S(L.K)= CMPLX(C1,C2)	XHD 8	73
	40	CONTINUE	XHOR	74
		IF[HWATER.EQ.0.0]GOVO 860	XHDR	75
		WWL= W/Wl 1F(INCOMP.EQ.1)WW1=0.0	KHOR	76
			XHOR	77
		MAX= 0.5*(WWI + 1.0) EM= 1.0	XHOR	78
			XHOR	79
		DO 100 M=1.MTERM	XH0K	80
		ARG= ABSI(WWI-EA)*(WWI+EM)) JMR(M)= RCUNST*SQRT(ARG)	XHUR	81
		IF(JMR(M) - ROUS) + SQR((ARG))	XHUR	82
	2.00	EN# EN+2.0	XHOR	83
	100	C1M= 1.0	XHOR XHOR	84
		DQ 500 N=1,MTERM	XHUR	85
		61M≖ +C1M	XHOR	86 87
		EM= N+M-1	XHOR	88
		C2M= -C1M/EM	XHOR	89
		X= JMR(M)	XHOR	90
		IFIMAX.LT.MIGGTO 300	XHOR	91
		NBESSY= 4*(NIEKM-11 + 1	XHUR	92
		NBESSJ= NBESSY + 30	XHOR	93
		IFIX.LT.O.J.AND.NTERM.GT.111NBESSY= 41	XHOK	94
		CALL BESSJY(X,BJK,BY,NBESSJ,NBESSY)	XHUR	95
		CIN= C2A	XHOR	96
		DU 200 NN=1+NTERM	XHOR	97
		C1N = -C1N	XHOR	98
		N= NN-1	XHOR	99
		N6= 4*N	XHOR	
		KMAX= N+N+15	XHOR	
		FL= 0.5*BJK(1)*FNK(NN.1)	XHOR	
		NX= 0.5*(1.05*X+25.)	XHOR	

	00 125 K=1, KMAX	a.	хноя	
	IF(K.GT.NX)GUTO 130		XHOR XHOR	
125	KK= K+1 FL= FL + BJK{KK+K}*FNK{NN+KK}		XHDR	
	FL= FL + FL		XHUR	
	1F(X-LI-0-1-ANU-NN-GT-11)GOTD 176		XHUR	
	IF(NN.EQ.IJGOTO 150		хнон	
	AMN = BJK(N4J - BJK(N4+2)		XHOR	
	8MN* 8Y(N4) - 8Y(N4+2)		хнру Уруу	
	C2= 2.0 GOTO 175		XHUR	
150	AMN= -2.0+BJK(2)		XHDR	
••••	BMN= -2.0+87(2)		XHUR	116
	C2= 1.0		XHDR	
175	C111= AMN/BMN		XHUR	
	C2= C2/((AMN*C111 + BMN)*JMR(M))		XHOR	
	CMN= C2+(C111+8JK(N4+1) + BY(N4+1)) DMN= C2+(BJK(N4+1)- C111*8Y(N4+1))		XHOR XHOR	
	GOTO 177		XHDR	
176	CMN=-1+0/FLDAJ(N4)		XHCR	123
	OMN= 0.0		XHOR	
	AMN= 0.0		XHOR	
177	C3= C1N+CMN		XHOR XHOR	
	C4= C1N+DHN C5= 0.78539816*AMN		XHOR	
	EB= FL4C3 + L5+C4		XHUR	
	HB= FL+C4 - C5+C3		XHOR	130
	ED= -C3*FNK(NN.1)		XHOR	
	HD = -C4 * FNK (NN + 1)		XHDR	
	DO 180 L=1.NF		XHOR XHOR	
	$F(L,L) \approx F(L,L) + HINM(NN,M,L) \oplus CMPLX(EB,HB)$ $F(L,2) \approx F(L,2) + HINM(NN,M,L) \oplus CMPLX(ED,HD)$		XHDR	
	DO 180 K=L.NF		XHOR	
	C1= HINM(NN,N,L)*HINM(NN,M,K)		XHOR	
	$S(L_*K) = S(L_*K) + C1 * CMPLX (CMN_*DMN)$		XHOR	
	CONTINUE		XHDA	
200	CONTINUE GDTO Saa		XHOR XHOR	
3.00	NBESK= 4*(NTERM-1) + 2		XHUR	
	CALL BESNKS(X,NBESK,BJK)		XHOR	
	CALL G(X,NTERM, 100,GMN)		XHOR	
	C1N= -C2M		XHOR	
	DG 400 NN=1+NTERM Cln= -Cln		XHDR XHOR	
	N4= 4*(NN-1)		XIIDK	
	1FINN.EU.1)GUTD 350		XHGR	
	CMN= +BJK{N4+1]/(1BJK(N4) + BJK(N4+2))*JMR(M)}		XHDR	
	CHN≕ CHN + CHN		XHOR	
100			XHOR XHOR	
	CMN= -8JK(1)/((BJK(2) + BJK(2))*JMR{M)) EB= C2M*CMN*GMNINN)		XHOR.	
	ED = C1N + GMN + FNK (NN, 1)		XHOR	
	C1= 0.0		XHOR	156
	DU 375 L=1.NF		хнок	
	C2= EB+H1NM(NN, M,L)		XHOR	
	C3= ED#HINM(NN,M,L) F(L,1)= F(L,1) + CMPLX(C2,C1)		XHOR XHUR	
	F(L,2) = F(L,2) + CMPLX(C3,C1)		XHOR.	
	00 375 K+L,NF		XHOR	
	C2= CHN+HINH(NN,M,L)+HINH(NN,M,K)		хнок	
	S(L,K) = S(L,K) + CMPLX(C2,C1)		XHOR	
375	CONTINUE		XHOR	165

	400	CONTINUE	XHOR XHOR	
	200	CONTINUE DD 600 L≃l,NF	XHOR	
		F(L+1) = RHO2*F(L+1)	XHOR	
	400	F(L+2)= RH02+F(L+2)	XHOR	
C	000		XHOR	
С-				
č		CALCULATE THE LOAD ASSUCIATED WITH THE INTEGRAL TERM FOR	XHOR	
č		PRESSURE DUE TO THE MOVEMENT OF THE RESERVOIR BANKS	XHOR	
Ē			XHOR	175
		NEQ1= 0	XHÜR	176
		ANG= ~ TW	XHOR	ι77
		NODET≈ NUMELT + NUMELT + 1	XHDR	
		NNN= 2	XHOR	
		NCONST= 1	XHOR	
		DO 750 NTHETA= 1, NODET	XHOR	
		NCONST= -NCONST	XHOR	
		NNN= NNN + NCONST	XHDR	
		ANG= ANG + IW C1= SIN(.7853981635 - ANG)	XHOR XHOR	
		C2= SIN(-7853981635 + ANG)	XHOR	
		DU 710 N=1,MTERM	XHOR	
		C3= C1*JMRLNI	XHOR	
		C4= C2*JMREM)	XHOR	
		IFINAX.LT.M)GUTO 200	XHOR	
		AB(M)= (SIN(L3) + SIN(C4))/JMR(M)	XHOR	
		BB(M) = (COS(C3) + COS(C4)) / JMR(M)	XHOR	
		GQTO 710	XHOR	193
	700	AB(M)≈ -(EXP(-C3) + EXP(-C4))/JMR(M)	XHOR	194
		B8(M)≈ 0.0	XHOR	195
	710	CONTINUE	XHOR	
		DO 740 I=1,NODEZ,NNN	XHQR	
		NEQ1 = NEQ1 + 1	XHOR	
		C3= 0.0	XHUR	
		C4= 0.0	XHDR	
		00 730 M=1,MTERM	XHOR	
		(3≠C3 + AB(M)+COSLAM((+M) 15(MAY + T H) COTO 720	XHOR XHOR	
		IF(MAX_LI_M) GUIU 730 C4= C4 + BB(M)*CUSLAM(I+M)	XHOR	
	720	CONTINUE	XHOR	
	130	PBR(NEQL)= C3	XHOR	
		PBI(NEQ1) = C4	XHOR	
	740	CONTINUE	XHOR	
		CONTINUE	XHOR	209
C			XHOR	210
		DO 850 L=1,NF	XHOR	211
		C3= 0.0	XHOR	
		C4= 0+0	XHO'S	
		DO 800 N=1,NEQW	XHOR	
		C3 = C3 + PBRIN) * PUBIN + L1	XHOR	
		C4=C4 + PBI(N) + POB(N,L)	XHOR	
	800	CONTINUE	XHOR	
		F(L,1) = F(L,1) + RHO3 * CMPLX(C3,C4)	XHOR XHOR	
r.		CONT INUE		
- C+ - C			XHOR	
-	860	RHOlW≓ RHOl*w≑w	XHOR	
	2.44	00 865 L=1.NF	XHCR	
		D0 865 K=L,NF	XHOR	
		SS(L,K)= RHO1W#S(L,K)	хнок	
		SS(K+L)= SS(L+K)	XHOR	226
	665	CONTINUE	XHDR	221

₩₩= ~₩#₩ DO 875 L=1,NF XHOR 22H XHDR 229 FF(L,21= F(L,2) + GLOAD(L) XHDR 230 FF(L,1)= F(L,1) XHDR 231 C1= WW + WDAN(L)+WDAM(L) XHUR 232 C2= W#WDAM(L)#(DAMP+DAMP) **KHOR 233** SSIL.LI= SSIL.LI + CMPLXICI.C2) XHDR 234 875 CONTINUE XHOR 235 CALL CSYNEQ(SS, FF NF, 2) XHUR 236 С XHGR 237 PRINT COMPLEX FREQUENCY RESPONSE FUNCTIONS FOR ACCELERATION----XHOR 238 С THE CUMPLEX FREQUENCY RESPONSE FOR DISPLACEMENT OF DAM ARE STURED XHOR 239 C IN VECTOR FF AS FOLLOWS -- FF(L, 1) = DISPLACEMENT DUE TO Γ. XHDR 240 HYDRODYNAMIC PRESSURE ON THE DAM CAUSED BY MOVEMENT OF XHGR 241 £ RESERVOIR BANKS, FF(L,2)= DISPLACEMENT DUE TO GROUND MOTION PLUS XHOR 242 DISPLACEMENT DUE TO HYDRODYNAMIC PRESSURE CAUSED BY DAM MOVEMENT, XHOR 243 С С Γ. XHOR 244 DO 885 L=1.NF C1= WW*REAL(FF(L,1)) XHDR 245 XHDR 246 C2= WH#AIMAG(FF(L,1)) XHGR 247 C3= WW#REAL(FF(L,2)) XHOR 243 C4= WW*A(MAG(FF(L.2)) XHDR 249 65= 61+63 XHOR 250 C6= C2+C4 XHDR 251 C7= C5*C5 + C6*C6 XH0K 252 C8= SQRT (C7) XHOR 253 WRITE(6,50001 WW1DAM, WDAM(L),C1,C2,C3,C4,C5,C6,C8 XHDR 254 IFINPUNCH.GT.OJPUNCH 7000, WWIDAM, WDAM(L), C1, C2, C3, C4, C5, C6, C8 XHUR 255 885 CONTINUE XHOR 256 IFLINCOMP.GT.OFINCOMP= 2 XHOR 257 XHOR 258 C GOTO 25 XH08 259 XHDR 260 C 900 RETURN XH08 261 . 1000 FORMAT (2 F10.0,215) XHOR 262 2000 FORMAT(////22H MUDAL DAMPING RATIO =, FLO.4+//) XHUR 263 3000 FORMAT (////41H FUNDAMENTAL FREQUENCY OF THE RESERVOIR .=+F12.6+////XHOR 264 739H INTEGRAL I(M.O) FOR CALCULATING LIMITS) XHOR 265 3500 FORMAT(/10X,3H ((,12,4H 0)=,E13.6) XHDR 266 4000 FORMATI///LOX, BTH COMPLEX FREQUENCY RESPONSE FOR ACCELERATION -- HXHOR 267 IORIZONTAL GROUND MOTION IN X DIRECTION.//16H EXCITATION FREQ, 2 12H DAN FREQ,24H HACCEL - BANK MOTION, 3 24H HACCEL - GMIN+DMIN, XHOR 268 XHDR 269 XHOR 270 361 -----HACCEL - TOTAL-----. 4 XHDR 271 /3X, LOH W/WDAM(1), 7X, 9H RAD/SEC . 5 XHOR 272 IMAG . 6 24H REAL XHOR 273 IMAG , 24H REAL XHER 274 IMAG 36H ABS VALUED XHUR 275 REAL R 5000 FORMAT (//2F13.6.2X.7E12.4) XHUR 276 6000 FORMATE////30H INCOMPRESSIBLE WATER SULUTION, XHOR 277 /30H -----.//) XHOR 278 1 7000 FURMAT (2513.6,/7811.4) XHOK 279 END XHDR 280 SUBROUTINE GEX.NTERM. [1.GMN] G С G 2

THIS SUBROUTINE COMPUTES GMN USING SIMPSONS RULE

C

ç			G
•	DIMENSION GANINTERMI AAAI2011		Ĝ
	JJ = II + II + I		6
	H= [[+]]		G
	H= 0.7853981635/H	14	6
	ANG= 0.0	10 A	ů
	D0 20 J=1,JJ		C
	C1= SIN(0.7853981635 - ANG)		U
	C2= SIN(0.7853981635 + ANG)		ċ
	$AAA(J) = C1 \neq EXP(-X \neq C1) + C2 \neq EXP(-X \neq C2)$		Ğ
2	D ANG= ANG + H		Ĝ
-	DO 50 N=1.NTERM		Ĝ
	GMN(N)= 0.0		Ğ
	[F(N.EQ.11G010 35		6
	HN4= 4*1 N-11		Ğ
	HN4= HN4*H		Ğ
	ANG2 = HN4		Ğ
	ANG3= HN4 + HN4		G G
	C3= AAA(1)		Ġ
	00 30 4=1.14		Ğ
	J= I+I→I		Ğ
	C1= C3		Ğ
	C2= 4.0*AAA{J+L}*COS(ANG2)		Ğ
	C3 = AAA(J+2J*CUS(ANG3))		Ğ
	GMN(N)= GMN(N) + C1+C2+C3		Ğ
	ANG2= ANG3 + HN4		Ğ
3	O ANG3= ANG2 + HN4		õ
-	GOTO 45		Ğ
3	5 00 40 1=1,11		ő
2	J = I + I - I		ŭ
4	O[GMN(N)] = GMN(N) + AAA(J) + 4.0*AAA(J+1) + AAA(J+2)		6 0
	5 GMN(NI= (H/3.0)*6MN(N)		
	a CONTINUE		5 0
	RETURN		Ğ
	END		o o

OVERLAY(XFILE,3,2)	YHYD	1
PROGRAM YHYDRO	YHYD	2
COMMON / MISC / NULOCK, NEQB, LL, NE, LB , NOYN	AHA9	Э
COMMON ZELPARZ NPAR(14);NUMNP;MBAND;NELTYP;N1;N2;N3;N4;N5;MTOT;	CYHY030	4
,N6, NUMNPF , IPRINT , NLM , NUMEL, WATL, INASS, TVOL, NEGEST, IMOL	ЭЕ ҮНҮӨ	5
• IPRM • MESH • MESHFN • ISYM • WDEN • T(10)	YHYD	6
COMMON/RADDU/RADIUS, RADHT	YHYD	7
COMMON/HYD/NUMELZ,NUMELT,TW,ZW,HWATER,NTERM,NTERM,IXYZ	1 HY J	8
COMMON A(1)	YHYD	9
	YHYD	lŋ
NEQBT= NEQB*NBLUCK	YHYÐ	11
NEQW= 1	YHYU	12
NODE Z= 1	YHYU	13
N1= 1	YHYD	14
N2= N1 + NF	YHYD	15
N3= N2 + NEQ	YHYD	16
N4= N3 ← NUMNP#3	YHY D	17
N5= N4 + NEQ	4HAD	13
NG= N5 + NEQB*MBAND	YHYD	19
IF(N6.GT.HTDT)CALL_ERROR(N6-MTDT)	YHYD	20
	YHYD	21

C

¢

Ġ

3

264

В

10

11

12

13

14 15

16

Lł

18

19

20

21

22

23

24

25

26 27

28

29

30

31

32 33

34 35

36 37

	CALL GMTNXLA(N1).A(N2).A(N3).A(N4).A(N5).NUMNP.NUMEL.NEQB.	AHAD	22
	1 MBAND+NF+NBLCCK+NEQ+[XYZ]	YHYO	23
C		YHY D	24
	N4= N3 + NEQB*NF	YHYO	25
	IF(N4.GT.MTOIICALL ERROR(N4-MTOT)	YHYD	26
	WRITE(6, 3000)	YHYD	27
C		YHYD	28
	CALL LOADI(A(NI),A(N2),A(N3),NEQB,N8LOCK,NF,NEQ)	YHYD	29
C		YHYD	30
	IF(HWATER-EQ-0-01GOTO 500	YHYD	31
	ZWH= ZW/HWATER	YHYO	32
	N3= N2 + 84NUMEL*NF	YHYD	33
	N4= N3 + 24*NUMEL	YHYD	34
	N5= N4 + NEOBT+NF	YHYD	35
	N6≖ N5 + 50	YHYD	36
	IF(NG_GT.MTOTICALL ERROR(NG+MTOT)	YHYD	37
c		YHYD	38
-	CALL BEV(A(N2), A(N3), A(N4), A(N5), NEQBT, NUMEL, NF, NBLOCK, NEQB,	YHYD	39
	1 NUTELZ, NUMELT, NZ, ZWH, ZWH TOP, ZW, TW, HWATER)	YHYD	40
C		YHYD	41
÷.	N4= N3 + MTERM+NTERM+NF	YHYD	42
	NS= N4 + NTERM+NUMELT+3	YHYD	43
	NG= NS + NTERM+3	YHYD	44
	NT= NG + MTERM+NUMELZ+3	YHYD	45
	IFINT_GT.MTOTICALL ERRORINT-MTOT)	YHYD	40
С		YHYD	47
•	CALL HYINHL(A(N2),A(N3),A(N4),A(N5),A(N6),	YHYÐ	48
	1 NUNELZ, NUHELT, NZ, ZWH, ZWHTOP, TW, NTERM, MTERM, NF, NUMEL)	YHYD	49
С		YHYD	50
٠	NEQN≔(3¢NZ+2) +NUNELT + NZ +NZ + 1	YHYD	51
	NS= N4 + NEQUENF	YHYD	52
	NG= NS + 80NUMEL	YHYD	53
	N7= N6 + 128	YHYD	54
	IF(N7.GT.NTOTICALL ERROR(N7-MTOT)	YHYU	55
c		YHYD	56
~	CALL BEV2(A(N2),A(N4),A(N5),A(N6),NUMEL,NF+NUMEL2.NUMELT+NZ+	YHYD	57
	1 ZWH,ZWHTOP,TW,NEGW)	YHYD	58
C		YHYD	59
۰.	NODEZ= NZ + NZ + 1	YHYD	60
	500 KKMAX= NTERM + NTERM + 14	YHYD	61
	NI= 1	YHYD	62
	N2∓ N1 + NF	YHYD	63
	N3≖ N2 + B*NUMEL≉NF	YHYD	64
	N4= N3 + MTERM*NTERM*NF	YHYD	65
	N5= N4 + NEQU+NF	YHYD	66
	N6= N5 + NTERMAKKMAX	YHYD	61
	NT= N6 + NDDEZ*MTERM	YHYD	68
	N8= N7 + MTERM	YHYD	69
	N9= NB + MTERM	YHYD	70
	NIO= N9 + NEQW	YHYD	71
	N11= N10 + NEQW	YHYD	72
	IF(NIL_GT_MTOT) CALL ERROR(NIL-HTOT)	YHYD	73
ε		YHYD	74
-	CALL YHORIZIA(N11.A(N31.A(N4).A(N51.A(N6).A(N7).A(N81.A(N9).	YHYD	75
	1 A(NIO), RADIUS, HWATER, NF, NT ERM, MT ERM, NODE Z, KKMAX, NEQW, NUMELT,		16
	2 ZWH.ZWHTOP, IW)	YHYD	77
с		YHYD	78
•	RETURN	YHYD	79
2	1000 FORMAT(///78H GENERALIZED LOAD FOR HORIZONTAL GROUND MOTION (N Y		80
2	11RECTION - STRUCTURE UNLY,/7X,24H FREQ NUMBER LOAD)	YHYD	81
	END	YHYD	82
	LIT		

.

	SUBROUTINE HYINHLIPHIR, HINH, CON, AA, COM,	HYIN
Ł	NUMELZ,NUMELT.NZ,ZWH,ZWHTOP,TW,NTERM,MTERM,NF,NUMELJ	HYIN
	DIMENSION PHIRINUMEL,8,NF),HINM(NTERM,MTERM,NF),	HYIN
1		HYIN
	DIMENSION CC131	HYIN

		HYIN
	THIS SUBROUTINE FORMS THE INTEGRAL I(N+M+L) FOR Y EXCITATION ***********	
****	*******	HYIN
	DO 100 N=1.NIERM	HYIN
	DO 100 M=1.MTERM	HYIN
	DQ 100 L=1.NF	HY IN
	HINM(N,N,L) = 0.0	HYIN
	CONTINUE	HYIN
	TW4= 4.0*TW	HYIN
	ANGLE= IW + IW	HYIN
	00 200 N=1,NTERM	HYIN
	AN=N-1	HYIN
	AN = AN + 0.5	HYIN
	C1= SIN(ANGLE)	HYIN
	C2= COS(ANGLE)	HYIN
	CC(1)= (C2-C1/ANGLE)/AN	HYIN
	CC(2)= 2+0*CC(1)/ANGLE	HYIN
	EC(3)= C1/AN	HY I N
	DO 150 I=1,NUMELT	HYIN
	DO 150 J≖1,3	HYIN
	CDN(I,N,J)= CC(J)	HYIN
	ANGLE= ANGLE + TW4	HYIN
	ANGLEC≓ TW	HYIN
	DO 300 [#1.NUMELT	HYIN
	DO 250 N=1,NTERM	HYIN
	$\Delta N = N - 1$	HYIN
	AN= 4.0*AN + 2.0	HYEN HYEN
	ANGLE= AN*ANGLEC	HYIN
	CI= COS(ANGLE)	HYIN
	C2= SIN(ANGLE) CDN(I,N,I)=CDN(I,N,I)*CL	HY1N
	CDN(1,N, 2)=CDN(1,N, 2)=CDN(1,N, 2)=C2	HYIN
	CDN(1, N, 3) = CDN(1, N, 3) + C2	HYIN
	CONTINUE	HYIN
	ANGLEC = ANGLEC + TW + TW	HYIN
	P1= 3.1415926536	HYIN
	PIZ= PI+ZWHTOP	HYIN
	PLM= 0.5*P1	HYIN
	ANGLE= 0.5+PIZ	HYIN
	DO 350 H=1.NTERM	HYIN
	C1= SIN(ANGLE)	HYIN
	C2= COS(ANGLE)	HYIN
	CDM[NZ+M+1]= (C2 - C1/ANGLE)/PLM	HYIN
	CDM(NZ+M+2)= 2.0*CDM(NZ+M+1)/ANGLE	HYIN
	COMENZ,M.3)= CL/PLM	HYIN
	ANGLE= ANGLE + PIZ	HYIN
	PLN= PLN + PI	HYIN
	CONTINUE	HYIN
	IFINZ.EQ.LIGOTO 400	HYIN
	NNZ = NZ - 1	HYIN

	PIZ= PI*ZWH	HY EN	58
	PLM= 0.5*P[HYIN	59
	ANGLE= 0.5*PIZ	HYLN	60
	DQ 375 N=1, MTERM	HYIN	61
	CI= SIN(ANGLE)		
		HYIN	62
	C2= COS(ANGLE)	HATZ	63
	CC(1)= (C2 - C1/ANGLE)/PLM	HYIN	64
	CC12J= 2.0*CC11J/ANGLE	HYEN	65
	CC(3)= C1/PLM	HYIN	66
	00 370 I=1+NNZ	HYIN	67
	00 370 J=1,3	HAIN	68
370	$CDM(I_0,N_0,J) = CC(J)$	HYIN	69
	ANGLE= ANGLE + PIZ	HAIN	70
	PLN= PLN + PI	HY I N	71
375	CONTINUE	HYIN	72
	PIZ= 0.5*PI*ZWH	HYIN	73
400			
	PIZZ= PIZ	HYIN	74
	ANGLEC= -PIZ	4Y I N	- 75
	D0 500 [=1+NZ	HYIŅ	76
	IF(I_EU_NZ)PIZZ= 0.5*PI*ZWHTOP	HYIN	17
	ANGLEC= ANGLEC + PIZ + PIZ2	HYIN	73
	ANGLES ANGLEC	HYIN	79
	DO 450 H=1.HTERN	HYIN	84
	CI= SIN(ANGLE)	HYIN	81
	C2= CDS(ANGLE)	HYIN	82
	CDM(1,M,1) = CDM(1,M,1) + C1	HY1N	33
	CDM(I+M+2) = CDM(I+M+2)*C2	HYIN	84
	CDM(1,M,3)= CDM(1,M,3)0C2	HYIN	85
	ANGLE= ANGLE + ANGLEC + ANGLEC	HYIN	86
	CONTINUE	HYIN	87
500	CONTINUE	HYDI	88
	NN= 0	HYIN	89
	DO 900 I=1,NUMELT	HYIN	90
	DU = 800 J=1.NZ	HYIN	91
	K=J + NN	HYIN	92
	00 700 L=1,NF	HY [N	93
	Cl= 0.25*(PH1R(K,1+L+PH1R(K,2,L)+PH1R(K,3,L)+PH1R(K,4+L))	HYIN	94
	C5= C1	BY IN	95
	C6= C1	HYIN	96
	C1= 0.5*(PHIR(K,5.L) +PHIR(K,6.L) + PHIR(K,7.L) +PHIR(K,8.L))-CL	HYLN	97
	C2= 0.5*(PHIR(K.7.L) - PHIR(K.5.L))	HYIN	98
	C3 = 0.5*(PHIR(K,6,L) - PHIR(K,8,L))	HYIN	99
	C4= 0.25+(PHIR(K,1,L) - PHIR(K,2,L) + PHIR(K,3,L) - PHIR(K,4,L))	HYIN	
	C5 = C5 - 0.5 + (PHIR(K, 6, L) + PHIR(K, 8, L))	HYIN	101
	$C6 = C6 - 0.5*(PHER(K_{7}, L) + PHER(K_{7}, L))$	HYEN	102
	C7= 0.25*(PHIR(K,3,L) + PHIR(K,4,L) - PHIR(K,1,L) + PHIR(K,2,L))	HYLN	103
	C7= C7 + 0.5*(PHIR(K, 5.1) - PHIR(K, 7.1))	HYIN	
	$C8= 0.25*(PHIR(K,2,L) + PHIR(K,3_0L) - PHIR(K,1,L) - PHIR(K,4,L))$	HYIN	
	$C8 = C8 + 0.5 + (PHIR(K_{1}8_{1}L) - PHIR(K_{1}6_{1}L))$	HAIN	
	DO 600 N=1.NTERM	HYIN	107
	AA(N,1)= C6*CDN(1,N;2) + (C1+C6)*CDN(1,N,3) - C3*CON(1,N,1)	HYIN	103
	AA(N,2)= G7*CON(1,N,2) + (C2+C7)*CON(1,N,3) - C4*CON(1,N,1)	HYIN	109
	AA(N,3) = C5*CON(1,N,3) + C8*CDN(1,N,1)	HYIN	
600	CONT INUE	HYIN	
000			
	00 650 N=1,NTERM	HYIN	
	DO 650 M=1.MTERM	HYIN	113
	HINN(N,M,L)= HINM(N,M,L) + AA(N,2)+COM(J,M,1) +	HYIN	114
1	LAA(N+3)*CDM(J+M+2) + [AA(N+3) + AA(N+1))*CDM(J+M+3)	HYIN	115
	CONTINUE	HYIN	
	CONTINUE	HYIN	
	CONTINUE		
000		HYIN	
	NN= NN + NUMELZ	H¥14	113

.

	ω_{i} ,		
	SUBROUTINE YHORIZ(GLOAD.HINM.POB.FNK.COSLAM.AB.BB.PBR.PBL.	YHOR	1
	1 RADIUS, HWATER, NF, NTERM, MTERM, NODEZ, KKMAX, NEQW, NUMELT,	YHOR	2
	2 ZWH, ZWHTUP, TW)	YHOR	
	DIMENSION HINMINTERM.MTERM.NFI.POB(NEQW.NF).FNK(NTERM.KKMAX).	YHUR	4
	2 COSLAM(NODEZ, MTERM), AB(MTERM), BB(MTERM), PBR(NEQW), PBI(NEQW),	YHOR	5
	3 GLD AD(NF)	YHOR	6
	DIMENSION BJK (200), BY (200), GMN (31), WDAM (15)	YHUR	7
	REAL JMR(31)	YHOR	8
	CUMPLEX St15,15,1+(15,2),SS(15,15,+FF(15,2)	YHOR	9
C.		YHUR	10
	***************************************		11
ç	THIS SUBROUTINE CALCULATES THE COMPLEX FREQUENCY RESPONSE	YHOR	12
C	FUNCTIONS FOR HORIZONTAL GROUND MOTION IN Y DIRECTION	YHOR	13
ι.». -	***************************************		14
Ļ	REWIND 7	YHOR	15
	READ(7)(WDAM(1),1=1,NF)	YHOR	16
	READ(5)10001DAMP, ALPHA, INCOMP, NPUNCH	YHOR	17
	WRITEIG, 2000 DAMP	YHOR	18 19
	PI= 3.141592653	YHUR	20
	RHD1= 19./7080038*RADIUS*RADIUS*HWATER	YHOR	21
	RH02= 4501581579*RH01	YHOR	22
	RH03= 0883883476*RH01	YHOR	23
	IFINATER.EQ.0.01GDTO 24	YHOR	24
C		YHOR	25
	RCONST= 0.5+PI+KADIUS/HWATER	YHOR	26
	WI= 4720.0*PI/(HWATER + HWATER)	YHOR	27
	IF(INCOMP.GT.OIGOTO 8	YHUR	28
	WRITE(6+3000)W1	YHOR	29
	GUTO 9	YHOR	30
	8 WRITE(6,6000)	YHUR	31
	INCOMP= 1	YHOR	32
	9 DU 10 NN=1+NTERM	YHOR	33
	N = NN - 1	YHOR	34
	AN= 16*N*N + 16*N + 4	YHOR	35
	KMAX=N+N+16	YHOR	36
	DO 10 KK \simeq 1, KMAX	YHUR	37
	C1=KK → 1 C2= 4+0≇C1	YHDR	38
	C2= 4.0+C1 C3= C2+C1	YHOR	39
	10 FNK(NN,KK) = (AN+C3-1.0)/[(AN-C3-C2-1.0)]*(AN-C3+C2-1.0)]	YHOR	40
ç	10 THREWINN' THREE TROFFLATES - C2 TROFFLATES - C2 TROFFLATES - C3 + C2 + C7 + C3 + C2 + C2 + C7 + C3 + C2	YHOR YHUR	41 42
¢	Zн≃Zин	YHOR	43
		YHOR	44
	Cl= -0.5*P1	YHOR	45
	C2≠ 2WH	YHOR	46
	$IF(J_GT_(NODEZ-2))C2 = ZWHTOP$	YHOR	47
	ZH= ZH + C2	YHOR	48
	C3= 1.0	YHOR	49
	00 15 M=1.MTERM	YHOR	50
	C1= C1 + PI	YHOR	51
	C3= -C3	YHOR	52
	EM= #+M-1	YHOR	53

900 CONTINUE	HYIN 120
Refurn	Hyin 121
Eng	Hyin 122

		COSLAN(J+N)= (C3/EM)*(COS(CL*ZH))	AHDS	54
	15	CONTINUE	AHOK	55
c			AHUR	56
-		WRITE(6+4000)	YHUR	57
c			YHOR	53
			YHUK	59
c			YHUR	65
		READ(5,1000)wwLDAM	YHOK	
C				-61
		IF(WWIDAH.LI.O.OIGOFO 900	YHUR	b 5
		₩= ₩ÐAM(1 ¥₩W1UAM	AHOK	6 f
		IF(INCOMP.EQ.2)GGT0 850	YHBR	64
		C1 = 0.0	YHOK	65
		C2= 0.0	YHER	65
			YHOR	67
		DO = 40 L = 1, NF	YHOR	53
		F(L,1)= CMPLX(C1,C2)	YHOR	69
		$F(L_1,2) = (MPLX(L),C2)$	YHUR	70
		D0 40 K=1+NF		
		$S(L \cdot K) = CMPLXIC1 \cdot C2$	YHOR	71
	40	CONTINUE	YHOR	15
		IF(HWATEK.EQ.0.0)GUTO 860	YHOR	73
		WW1= H/W1	YHUR	74
		IF(INCUMP.EQ.1) www.l=0.0	YHOK	75
		$MAX = 0.5 * \{WW1 + 1 = 0\}$	YHOR	76
			YHOR	17
		EM= 1.0	YHOR	78
		DU 100 M=L.MTERM	YEUR	79
		ARG≈ ABS((WW1-EM)≠(WW1+EM))		
		JMR(M)= RCONSI+SQRT(ARG)	YHDR	80
		IF{JMR{M}.LT.0.00001}JMR[M]= 0.00001	YHÚR	81
	100	EM+2.0	YHOR	82
		CIM= 1.0	YHOR	83
		DD 500 M=1, MTEKM	YHOK	84
		CIM= -CIM	YHDR	85
			YHDR	85
			YHOR	87
		C2M≈ -C1M/EM	YHUR	88
		X= JMR(M)		
		IF(MAX_LT_M)GUTU 300	YHCK	34
		NBESSY= 4*(NTERM+1) + 3	YHOR	90
		NBESSJ= NBESSY + 30	AHO 4	91
		IF(X_LT.O.L.AND.NTERM.GT.LL)NBESSY= 43	үно к	92
		CALL BESSJY(X,BJK,BY,NBESSJ;NBESSY)	A DHA	93
		C1N= C2M	YNGR	94
		DO 200 NN=1+N (EKM	YHOR	95
		CIN= -CIN	YHOR	95
		N = NN + 1	YHOR	97
			YEAR	98
		$N4=4\pi N+2$	YHOX	99
		KMAX= N+N+15	YUUA	
		$FL = 0.5 \neq BJK(1) \notin FNK(NN, 1)$		
		NX= 0.5*(1.05*X+25.)	YHOR	
		DD 125 K=1.KMAX	X HC 4	
		EF(K.GT.NX)GOTU 130	YHúA	
		KK= K+1	YHOR	104
	125	FL = FL + BJK(KK+K) * FNK(NN+KK)	YHCR	105
		FL = FI + FL	YHDR	106
		IFIX.LT. 0. 1. ANU. NN. GT. 111 GUTO 176	YPOR	107
		AMN = BJK(N4) - BJK(N4+2)	AHOR	104
			YHOR	109
		BMN=BY(N4) - BY(N4+2)	YHUR	
		C2= 1.0	YHDA	
	175	CIII= AMN/BMN		
		C2= C2/((ANN*C111 + BMN)*JMR(M))	YHOR	
		CMN= C2+(Clil+BJK(N4+L1 + BY(N4+1))	YHUR	
		DMN= C2*(BJK(N++1) - C(1)+BY(N++1))	YHCX	
		GCY0 1/7	YHUR	115

	176	CNN= -0.5/FLUAT(N4)	YHOR	115
		DMN≠ 0.0	YHGR	117
		AMN= 0.0	YHOR	118
	177	C3= C1N*CMN	YHCR	119
		C 4≕ C1N® DMN	үнэк	120
		C5= 0_78539816*AMN	YHOR	121
		E8= FL*C3 + C5*C4	YUHY	122
		HB= FL+C4 - C5+C3	YHCR	123
		ED= C3+FNK(NN+1)	YHOR	124
		HD= C4*FNK(NN+1)	YHUR	125
		DU 180 L=1,NF	AHOR	126
		F(L.L) = F(L.L) - HINM(NN, M.L)*CMPLX(EB, HB)	YHOR	
		F(L,2) = F(L,2) + HINM(NN,N,L)*CMPLX(ED,H0)	YHOR	
		DO 180 K=L,NF	YHDR	
		CI= HINM(NN,M,L)*HINM(NN,N,K)	YHOR	
		$S(L_K) = S(L_K) + C1*CMPLX(CMN+DMN)$	үнэж	
	1 00	CONTINUE	YHOR	
		CONTINUE	YHOR	
	200	GOTO 500	YHUR	
	200	NBESK= 4*(NTERM-1) + 4	YHOR	
	200		YHOR	
		CALL BESNKS(X,NBESK,BJK)	YHOR	
		CALL GVEX,NTERM, LOD, GMN)	YHOR	
		CIN= C2M		
		DU 400 NN=1,NTERM	YHOR	
		CIN = -CIN	AHO 3	
		$N4 = 4 \times (NN - 1) + 2$	AHOR	
		CMN = -BJK(N4+1)/((BJK(N4) + BJK(N4+2)) + JMR(M))	YHOR	
	355	EB= C2M*CMN*GMN(NN)	Y CHY	
		ED= CIN*CHN*FNK(NN+1)	AHOK	
		C1 = 0.0	YHOR	
		00 375 L=1.NF	YHOR	
		C2= EB*HINM(NN,M,L)	YHÜR	
		C3= ED#HINM(NN,M,L)	YHOR	
		F(L,1) = F(L+1) + CMPLX(C2+C1)	YHDR	
		$F(L_1,2) = F(L_1,2) + CMPLX(C3,C1)$	ACHA SHOW	
		DO 375 K-L,NF	YHOR	
		C2= CMN*HINM(NN+M+L)*HINM(NN+M+K)	YHGR	
		S(L,K) = S(L,K) + CMPLX(C2,C1)	YHOR	
	375	CONTINUE	AHOR A	
	400	CONTINUE	AUDK	155
	500	CONTINUE	A HG K	156
		UO 600 L=1,NF	YHOR	157
		F(L,1) = RHO2*F(L,1)	YHCR	158
	600	F(L,2) = RH02*F(L,2)	YHOR	159
С			YHOR	160
C-			YHOR	161
c		CALCULATE THE LUAD ASSOCIATED WITH THE INTEGRAL TERM FOR	YHUR	162
C		PRESSURE JUE TO THE MOVEMENT OF THE RESERVOIR BANKS	AURA	163
č			YHOR	164
-		NEQ1= 0	YHOR	165
		ANG= -Tw	YHOR	165
		NODET= NUMELI + NUMELI + 1	YHOR	167
		NNN= 2	YHOR	168
		NCONST = 1	YHOR	
		DO 750 NTHETA= 1,NODET	YHOR	170
		NCONST= -NCUNST	YHUR	171
		NNN= NNN + NCONST	YHOR	
		ANG= ANG + Tw	YHOR	
		C1= SIN(.7853981635 - ANG)	YHOR	
		C2= SIN(.7853981635 + ANG)	YHOR	
		DD 710 M=1.MTERM	YHOR	
		C3= C1+JHR(N)	YHOR	

		C4= C2*JMR(M)	AHOK	
		IF(MAX_LT_H)GDTO 700	YHDR	179
		AB(M) = (SIN(C4) + SIN(C3))/JMR(M)	YHOR	180
		BB(M)= (COS(C4) - CDS(C3))/JMR(M)	YHDR	181
		GOTO 710	YHOR	182
	700	AB(M)= -(EXP(-C4) - EXP(-C3))/JMR(M)	YHOR	183
		BB(M)= 0.0	YHDR	184
	710	CONTINUE	YHOR	
		DO 740 1=1, NUDEZ, NNN	YHDR	
		NEQ1 = NEQ1 + 1	YHOR	
		C3= 0.0	YHDR	
		C 4≠ 0.0	YHOR	
		DO 730 M=1,NTERM	AUUA	
		C3=C3 + AB(N) + COSLAM(I,M)	YHOR	
		IF(MAX.LT.H) GOTO 730	YHOR	
		C4= C4 + BB(M)*CUSLAM(1.M)	YHOR	
	730	CONTINUE	YHDR	
		PBR(NEQ1) = C3	YHDR	195
		₽BI(NEQ1)≠ C4	YHDR	196
	740	CONTINUE	YHOR	191
	750	CONTINUE	YHOR	198
С			YHOR	
		00 850 L=1,NF	YHOR	
		C3= 0,0	YHOR	
		C 4= 0.0	YHDR	
		DO 800 N=1.NEQW	YHOR	
		C3 = C3 + PBR(N) + POB(N, L)	YHOR	
		C4= C4 + PBI(N)*POB(N,L)		
			YHOR	
	900	CONTINUE	YHOR	
		F(L.1)= F(L.1) + RHO3*CMPLX(C3,C4)	YHDR	
_		CONTINUE	YHOR	208
Ç-		***************************************		
ς ε			YHÜR	210
		RHOI⊯≈ RHOI≄W≉W -	YHOR YHOR	210 211
		RHO1M= RHO1≠W≠W - D0 865 L=1-NF	YHÜR	210 211
		RHOI⊯≈ RHOI≄W≉W -	YHOR YHOR	210 211 212
		RH01₩= RH01¥₩¥₩ D0 865 L=1+NF D0 865 K=L-NF S(L_K1# RH01₩=S(L_K)	YHOR YHOR YHOR	210 211 212 213
		RHD1#= RHO1≠₩≠₩ 00 865 L=1+NF 00 865 K=L,NF	YHOR YHOR YHOR YHOR YHOR	210 211 212 213 214
	860	RH01₩= RH01¥₩¥₩ D0 865 L=1+NF D0 865 K=L-NF S(L_K1# RH01₩=S(L_K)	YHOR YHOR YHOR YHOR	210 211 212 213 214 214 219
	860	RHD1W= RH01*₩*₩ D0 865 L=1+NF D0 865 K≠L+NF SS(L+K1= RH01₩*S€L+K) SS(K+L1= SS(L+K1	YHOR YHOR YHOR YHOR YHOR YHOR YHOR	210 211 212 213 214 214 215 216
	860	RHD1W= RH01*W*W D0 865 L=1-NF D0 865 K=L.NF SS(L.K1= RH01W*S(L.K) SS(K=1)= SS(L.K1 Continue	YHOR YHOR YHOR YHOR YHOR YHOR YHOR YHOR	210 212 212 212 214 215 214 215 216 216
	860	RHD1W= RH01*W*W D0 865 L=1-NF D0 865 K=L-NF SS(L-K1= RH01W*S(L-K) SS(K+L1= SS(L-K) CONTINUE HW= -W*W D0 875 L=1+NF	YHOR YHOR YHOR YHOR YHOR YHOR YHOR YHOR	210 211 212 213 214 215 216 216 211 218
	860	RH01W= RH01*W*W D0 865 L=1*NF D0 865 K=L*NF SS(L*K*RH01W*S(L*K) SS(L*K*RH01W*S(L*K) CONTINUE CONTINUE HW= -W*W D0 875 L=1*NF Ff(L*2) = F(L*2) + GLOAD(L)	YHOR YHOR YHOR YHOR YHOR YHOR YHOR YHOR	210 211 212 213 214 219 216 217 216 217 218 217
	860	RH01W= RH01*W*W D0 865 L=1+NF D0 865 K=L-NF SS(L,K)= RH01W*S(L,K) SS(K,L)= SS(L,K) CONTINUE NW= -W*W D0 875 L=1+NF FF(L,2)= F(L,2) + GL0AD(L) FF(L,1)= F(L,1)	YHOR YHOR YHOR YHOR YHOR YHOR YHOR YHOR	210 211 212 213 214 215 214 215 216 216 216 216 216 216 216 216 216 216
	860	RHOlW= RHOL*W*W D0 865 L=1.NF D0 865 K=L.NF SS(L,K)= RHOLW*S(L,K) SS(K,L)= SS(L,K) CONTINUE NW= -W*W D0 875 L=1.NF FF(L.2)= F(L.2) + GLOAD(L) FF(L,1)= F(L,1) CL= WK + WDAM(L)*WJAM(L)	YHOR YHOR YHOR YHOR YHOR YHOR YHOR YHOR	210 211 212 213 214 215 214 216 211 216 211 216 211 216 210 220 221
	860	RHO1W= RHO1*W*W D0 865 L=1+NF D0 865 K=L+NF SS(L+Ki= RHO1W*S(L+K) SS(L=1= SS(L+Ki CONTINUE WH= -W*W D0 875 L=1+NF FF(L=2) = F(L+2) + GLOAD(L) FF(L=1) = F(L+2) + GLOAD(L) FF(L=1) = F(L+1) C1= WH + WDAM(L)*WJAM(L) C2= W*WDAM(L)*WJAM(L)	YHOR YHOR YHOR YHOR YHOR YHOR YHOR YHOR	210 211 212 213 214 215 216 217 216 217 216 217 216 217 220 221 222
	860 865	RHOlW= RHOL*W*W DO 865 L=1-NF DO 865 K=L-NF SS(L,K)= RHOLW*S(L,K) SS(K,L)= SS(L,K) CONTINUE WW= -W*W DO 875 L=1+NF Ff(L,2)= F(L,2) + GLOAO(L) Ff(L,1)= F(L,1) Cl= W*WDAM(L)*(DAMP+DAMP) SS(L,L)= SS(L,L) + CMPLX(CL,C2)	YHOR YHOR YHOR YHOR YHOR YHOR YHOR YHOR	210 211 212 213 214 215 216 217 216 217 216 220 221 222 221 222 222
	860 865	RH01W= RH01*W*W D0 865 L=1+NF D0 865 K=L,NF SS(L,K)= RH01W*S(L,K) SS(L,K)= SS(L,K) CONTINUE WH= -W*W D0 875 L=1+NF FF(L,2) = F(L,2) + GLOAD(L) FF(L,1)= F(L,1) C1= WH + WGAM(L)*(DAMP+DAMP) C2= W*WDAM(L)*(DAMP+DAMP) SS(L+L)= SS(L,L) + CMPLX(C1,C2) CONTINUE	YHOR YHOR YHOR YHOR YHOR YHOR YHOR YHOR	210 211 212 213 214 215 216 216 216 220 221 222 222 222 222 222 224
ć	860 865	RHOlW= RHOL*W*W DO 865 L=1-NF DO 865 K=L-NF SS(L,K)= RHOLW*S(L,K) SS(K,L)= SS(L,K) CONTINUE WW= -W*W DO 875 L=1+NF Ff(L,2)= F(L,2) + GLOAO(L) Ff(L,1)= F(L,1) Cl= W*WDAM(L)*(DAMP+DAMP) SS(L,L)= SS(L,L) + CMPLX(CL,C2)	YHOR YHOR YHOR YHOR YHOR YHOR YHOR YHOR	210 211 212 213 214 215 216 216 216 216 220 221 222 222 222 222 225
c	860 865	RHD1W= RH01*W*W D0 865 L=1-NF D0 865 K=L-NF SS(L,K)= RH01W*S(L,K) SS(K,L)= SS(L,K) CONTINUE O0 875 L=1+NF FF(L,2)= F(L,2) + GLOAD(L) FF(L,1)= F(L,1) C1= WK + WGAM(L)*WJAM(L) C2= W*WDAM(L)*(JAMP+DAMP) SS(L,L)= SS(L,L) + CMPLX(C1,C2) CONTINUE CALL CSYMEQ(SS.FF.NF.2)	YHOR YHOR YHOR YHOR YHOR YHOR YHOR YHOR	214 211 212 213 214 215 216 211 218 220 221 222 222 222 222 222 225 225 225
c	860 865	RHOIM= RHOIMWAW D0 865 L=1+NF D0 865 K=L+NF SS(L,KH= RHOIMWAS(L,K) SS(L,KH=RHOIMWAS(L,K) SS(L,KH=SS(L,KH CONTINUE MH= -WAW D0 875 L=1+NF FF(L,2) = F(L,2) + GLOAD(L) FF(L,1) = F(L,2) + GLOAD(L) FF(L,1) = F(L,2) + GLOAD(L) FF(L,1) = F(L,1) + GLOAD(L) C1= WK + WDAM(L)+WJAM(L) C2= WAWDAM(L)+(DAMP+DAMP) SS(L,L) = SS(L,L) + CMPLX(CL,C2) CONTINUE CALL CSYMEQ(SS.FF.NF.2) PRINI CUMPLEX FREQUENCY RESPONSE FUNCTIONS FOR ACCELERATION		210 211 212 213 214 215 216 220 221 222 222 222 222 222 222 222 222
c	860 865	RHOIW= RHOI*W*W D0 865 L=I=NF D0 865 K=L.NF SS(L,K)= RHOIW*S(L,K) SS(K,L)= SS(L,K) CONTINUE WH= -W*W D0 875 L=I=NF FF(L,2)= F(L,2) + GLOAD(L) FF(L,1)= F(L,1) CL= WK + WOAM(L)*WUAM(L) C2= W*WOAM(L)*(UAMP+DAMP) SS(L,L)= SS(L,L) + CHPLX(CI,C2) CONTINUE CALL CSYMEQ(SS.FF.NF.2) PRINI CUMPLEX FREQUENCY RESPONSE FUNCTIONS FOR ACCELERATION THE COMPLEX FREQUENCY RESPONSE FOR DISPLACEMENT OF DAM ARE STORED		210 211 212 213 214 215 216 220 221 226 221 222 224 226 227 226 227 226 227 226 227 226
c	860 865	RHOIM= RHOIMWAW DO 865 L=1+NF DD 865 K=L+NF SS(L,K)= RHOIMWAS(L,K) SS(L,K)= SS(L,K) CONTINUE HW= -WAW DO 875 L=1+NF Ff(L,2) = F(L,2) + GLOAD(L) Ff(L,1)= F(L,2) + GLOAD(L) Ff(L,1)= F(L,2) + GLOAD(L) C1= WA + WOAM(L)*(DAMP+DAMP) SS(L+L)= SS(L,L) + CHPLX(C1,C2) CONTINUE CALL CSYMEQ(SS.FF+NF+2) PRINI CUMPLEX FREQUENCY RESPONSE FUNCTIONS FOR ACCELERATION THE COMPLEX FREQUENCY RESPONSE FUNCTIONS FOR ACCELERATION THE COMPLEX FREQUENCY RESPONSE FUNCTIONS FOR ACCELERATION THE COMPLEX FREQUENCY RESPONSE FUNCTIONS FOR ACCELERATION	YHOR YHOR YHOR YHOR YHOR YHOR YHOR YHOR	210 211 212 212 214 215 214 216 220 221 226 220 222 222 224 226 227 226 227 226 227 226 227 226 227 226 227
C	860 865	RHOIM= RHOI*W*W D0 865 L=1+NF D0 865 K=L.NF SS(L,Ki= RHOI#*S(L,K) SS(L,Ki= SS(L,Ki CONTINUE WH= -W*W D0 875 L=1:NF FF(L,2) = F(L,2) + GLOAD(L) FF(L,1)= F(L,1) C1= WH + WOAM(L)*WOAM(L) C2= W*WOAM(L)*(OAMP+DAMP) SS(L,L)= SS(L,L) + CHPLX(C1,C2) CONTINUE CALL CSYMED(SS.FF.NF.2) PRINT COMPLEX FREQUENCY RESPONSE FUNCTIONS FOR ACCELERATION THE COMPLEX FREQUENCY RESPONSE FUNCTIONS FOR ACCELERATION THE COMPLEX FREQUENCY RESPONSE FUNCTIONS FOR ACCELERATION THE COMPLEX FREQUENCY RESPONSE FOR DISPLACEMENT OF DAM ARE STORED IN VECTOR FF AS FOLLOWS FF(L,1)= DISPLACEMENT OF		210 211 212 212 214 215 216 217 216 220 221 222 222 222 222 222 222 222 222
C	860 865	RHOIM= RHOI*W*W D0 865 L=1.NF D0 865 K=L.NF SS(L,Ki= RHOIW*S(L,K) SS(L,Ki= SS(L,Ki CONTINUE MW= -W*W D0 875 L=1.NF Ff(L,2)= F(L,2) + GLOAO(L) Ff(L,1)= F(L,1) C1= WK + WGAM(L)*WJAM(L) C2= W*WDAM(L)*(DAMP+DAMP) SS(L,L)= SS(L,L) + CMPLX(C1,C2) CONTINUE CALL CSYMEQ(SS.FF.NF.2) PRINT CUMPLEX FREQUENCY RESPONSE FUNCTIONS FOR ACCELERATION THE COMPLEX FREQUENCY RESPONSE FOR DISPLACEMENT OF DAM ARE STORED IN VECTOR FF AS FOLLOWS FF(L,1)= DISPLACEMENT OF HYDRODYNAMIC PRESSURE ON THE DAM CAUSED BY MOVEMENT OF RESERVOIR BANKS. FF(L,2)= DISPLACEMENT DUE TO GROUND MOTION PLUS	YHOR YHOR YHOR YHOR YHOR YHOR YHOR YHOR	210 211 212 212 214 215 216 217 216 220 221 226 227 226 227 226 227 226 227 226 227 226 227 226 227 226 227 226 227 226 227 226 227 226 227 227
C	860 865	RHOIM= RHOI*W*W D0 865 L=1+NF D0 865 K=L.NF SS(L,Ki= RHOI#*S(L,K) SS(L,Ki= SS(L,Ki CONTINUE WH= -W*W D0 875 L=1:NF FF(L,2) = F(L,2) + GLOAD(L) FF(L,1)= F(L,1) C1= WH + WOAM(L)*WOAM(L) C2= W*WOAM(L)*(OAMP+DAMP) SS(L,L)= SS(L,L) + CHPLX(C1,C2) CONTINUE CALL CSYMED(SS.FF.NF.2) PRINT COMPLEX FREQUENCY RESPONSE FUNCTIONS FOR ACCELERATION THE COMPLEX FREQUENCY RESPONSE FUNCTIONS FOR ACCELERATION THE COMPLEX FREQUENCY RESPONSE FUNCTIONS FOR ACCELERATION THE COMPLEX FREQUENCY RESPONSE FOR DISPLACEMENT OF DAM ARE STORED IN VECTOR FF AS FOLLOWS FF(L,1)= DISPLACEMENT OF	YHOR YHOR YHOR YHOR YHOR YHOR YHOR YHOR	210 211 212 212 214 215 216 217 216 220 221 226 227 226 227 226 227 226 227 226 227 226 227 226 227 226 227 226 227 226 227 226 227 226 227 227
C	860 865	RHOIM= RHOI*W*W D0 865 L=1.NF D0 865 K=L.NF SS(L,Ki= RHOIW*S(L,K) SS(L,Ki= SS(L,Ki CONTINUE MW= -W*W D0 875 L=1.NF Ff(L,2)= F(L,2) + GLOAO(L) Ff(L,1)= F(L,1) C1= WK + WGAM(L)*WJAM(L) C2= W*WDAM(L)*(DAMP+DAMP) SS(L,L)= SS(L,L) + CMPLX(C1,C2) CONTINUE CALL CSYMEQ(SS.FF.NF.2) PRINT CUMPLEX FREQUENCY RESPONSE FUNCTIONS FOR ACCELERATION THE COMPLEX FREQUENCY RESPONSE FOR DISPLACEMENT OF DAM ARE STORED IN VECTOR FF AS FOLLOWS FF(L,1)= DISPLACEMENT OF HYDRODYNAMIC PRESSURE ON THE DAM CAUSED BY MOVEMENT OF RESERVOIR BANKS. FF(L,2)= DISPLACEMENT DUE TO GROUND MOTION PLUS	YHOR YHOR YHOR YHOR YHOR YHOR YHOR YHOR	210 211 212 212 214 215 216 220 221 222 222 222 222 222 222 222 222
C	860 865	RHOIM= RHOI*W*W D0 865 L=1.NF D0 865 K=L.NF SS(L,Ki= RHOIW*S(L,K) SS(L,Ki= SS(L,Ki CONTINUE MW= -W*W D0 875 L=1.NF Ff(L,2)= F(L,2) + GLOAO(L) Ff(L,1)= F(L,1) C1= WK + WGAM(L)*WJAM(L) C2= W*WDAM(L)*(DAMP+DAMP) SS(L,L)= SS(L,L) + CMPLX(C1,C2) CONTINUE CALL CSYMEQ(SS.FF.NF.2) PRINT CUMPLEX FREQUENCY RESPONSE FUNCTIONS FOR ACCELERATION THE COMPLEX FREQUENCY RESPONSE FOR DISPLACEMENT OF DAM ARE STORED IN VECTOR FF AS FOLLOWS FF(L,1)= DISPLACEMENT OF HYDRODYNAMIC PRESSURE ON THE DAM CAUSED BY MOVEMENT OF RESERVOIR BANKS. FF(L,2)= DISPLACEMENT DUE TO GROUND MOTION PLUS		210 211 212 212 214 215 216 220 221 222 222 222 222 222 222 222 222
C	860 865	RHOIM= RHOI*N*W DO 865 L=1.NF DO 865 K=L.NF SS(L,K)= RHOIM*S(L,K) SS(L,K)= RHOIM*S(L,K) CONTINUE MN= -W*W DO 875 L=1.NF FF(L,2) = F(L,2) + GLOAD(L) FF(L,1)= F(L,1) C1= W* WOAM(L)*(DAMP+DAMP) SS(L,L)= SS(L,L) + CHPLX(CL,C2) CONTINUE C2= W*WOAM(L)*(DAMP+DAMP) SS(L,L)= SS(L,L) + CHPLX(CL,C2) CONTINUE CALL CSYMED(SS.FF.NF.2) PRINT COMPLEX FREQUENCY RESPONSE FUNCTIONS FOR ACCELERATION THE COMPLEX FREQUENCY RESPONSE FUNCTIONS FOR ACCELERATION THE COMPLEX FREQUENCY RESPONSE FOR DISPLACEMENT OF DAM ARE STORED IN VECTOR FF AS FOLLOWS FFL,1]= DISPLACEMENT OF RESERVOIR BANKS. FFL,2]= DISPLACEMENT DUE TO GROUND MOTION PLUS DISPLACEMENT DUE TO HYDRODYNAMIC PRESSURE CAUSED BY DAM MOVEMENT.		210 211 212 213 214 215 214 216 220 221 222 224 226 227 226 227 226 227 226 227 226 227 226 227 226 227 226 227 226 227 226 227 226 227 226 227 226 227 226 227 226 227 226 227 226 227 226 227 226 227 214 216 227 214 216 227 214 216 227 214 216 227 216 227 216 227 227 227 227 227 227 227 227 227 22
C	860 865	RHOIME RHOIMENE D0 865 L=1.NF D0 865 K=L.NF SS(L,K)= RHOIMES(L,K) SS(L,K)= RHOIMES(L,K) CONTINUE WH= -WEW D0 875 L=1.NF FF(L,2) = F(L,2) + GLOAD(L) FF(L,1)= F(L,2) + GLOAD(L) FF(L,1)= F(L,1) + GHPLX(CL,C2) CONTINUE C2= WEWDAM(L)=WDAM(L) C2= WEWDAM(L)=NF CALL CSYMED(SS.FF.NF.2) PRINI COMPLEX FREQUENCY RESPONSE FUNCTIONS FOR ACCELERATION THE COMPLEX FREQUENCY RESOLUTE TO HUDRONY AND FUNCTION FUNCTIN	А М М М М М М М М	210 211 212 212 214 216 216 220 221 222 222 222 222 222 222 222 222
C	860 865	RHOLW= RHOL*W*W D0 865 L=1.NF D0 865 K=L.NF SS(L,K)= RHOLW*S(L,K) SS(K,L)= SS(L,K) CONTINUE WHT -W*W D0 875 L=1.NF FF(L,2)= F(L,2) + GLOAD(L) FF(L,1)= F(L,1) CL= W* + WOAM(L)+WUAM(L) C2= W*WOAM(L)+(DAMP+DAMP) SS(L,L)= SS(L,L) + CHPLX(CL,C2) CONTINUE CALL CSYMED(SS.FF.NF.2) PRINT CUMPLEX FREQUENCY RESPONSE FUNCTIONS FOR ACCELERATION THE COMPLEX FREQUENCY RESPONSE FUNCTIONS FOR ACCELERATION THE COMPLEX FREQUENCY RESPONSE FUNCTIONS FOR ACCELERATION THE COMPLEX FREQUENCY RESPONSE FOR DISPLACEMENT OF DAM ARE STORED IN VECTOR FF AS FOLLOWS FF(L,1)= DISPLACEMENT OF RESERVOIR BANKS. FF(L,2)= DISPLACEMENT DUE TO RESERVOIR BANKS. FF(L,2)= DISPLACEMENT DUE TO D1 865 L=1.NF C1= WW*RLAL(FF(L,1)) C2= W*AIMAG(FF(L,1))	AHOR AHOR AHOR AHOR AHOR AHOR AHOR AHOR	210 211 212 212 212 215 216 2216 2216 2216
C	860 865	RHOlW= RHOL*W+W D0 865 L=1+NF D0 865 K=L+NF SS(L,K)= RHOLW*S(L,K) SS(L,K)= RHOLW*S(L,K) SS(L,K)= SS(L,K) CONTINUE WH= -W*W D0 875 L=1+NF Ff(L,2)= F(L,2) + GLOAD(L) Ff(L,1)= F(L,2) + GLOAD(L) Ff(L,1)= f(L,1) Cl= WK + WDAM(L)*WJAM(L) C2= W*WOAM(L)*(OAMP+DAMP) SS(L,L)= SS(L,L) + CMPLX(CL,C2) CONTINUE CALL CSYMEQ(SS,FF,NF,2) PRINT CUMPLEX FREQUENCY RESPONSE FUNCTIONS FOR ACCELERATION THE COMPLEX FREQUENCY RESPONSE	Истранаранаранаранаранаранаранаранаранаран	210 211 212 212 212 215 216 220 221 222 222 222 222 222 222 222 222
C	860 865	RHOLW= RHOL*W*W D0 865 L=1.NF D0 865 K=L.NF SS(L,K)= RHOLW*S(L,K) SS(K,L)= SS(L,K) CONTINUE WHT -W*W D0 875 L=1.NF FF(L,2)= F(L,2) + GLOAD(L) FF(L,1)= F(L,1) CL= W* + WOAM(L)+WUAM(L) C2= W*WOAM(L)+(DAMP+DAMP) SS(L,L)= SS(L,L) + CHPLX(CL,C2) CONTINUE CALL CSYMED(SS.FF.NF.2) PRINT CUMPLEX FREQUENCY RESPONSE FUNCTIONS FOR ACCELERATION THE COMPLEX FREQUENCY RESPONSE FUNCTIONS FOR ACCELERATION THE COMPLEX FREQUENCY RESPONSE FUNCTIONS FOR ACCELERATION THE COMPLEX FREQUENCY RESPONSE FOR DISPLACEMENT OF DAM ARE STORED IN VECTOR FF AS FOLLOWS FF(L,1)= DISPLACEMENT OF RESERVOIR BANKS. FF(L,2)= DISPLACEMENT DUE TO RESERVOIR BANKS. FF(L,2)= DISPLACEMENT DUE TO D1 865 L=1.NF C1= WW*RLAL(FF(L,1)) C2= W*AIMAG(FF(L,1))	AHOR AHOR AHOR AHOR AHOR AHOR AHOR AHOR	210 211 212 212 212 212 212 212 212 222 22

<u>66= 62+64</u> YH0	R 240
	R 241
	R 242
WRITE(6,5000)HWIDAM,WDAMIL1,C1,C2,C3,C4,C5,C6,C8 YH0	R 243
	R 244
	R 245
IFEINCOMP+GT+O)INCOMP= 2 YH	R 246
C YHC	R 247
GOTO 25 YHU	R 248
C YHC	R 249
900 RETURN YHO	R 250
	R 251
2000 FORMAT(////22H MODAL DAMPING RATIO =.F10.4.//I YH	R 252
3000 FORMAT(////41H FUNDAMENTAL FREQUENCY OF THE RESERVOIR =+F12+6+//) YHO	R 253
4000 FORMATI///10X,87H COMPLEX FREQUENCY RESPONSE FOR ACCELERATION HYH	R 254
IORIZONTAL GROUND MOTION IN Y DIRECTION. //IGH EXCITATION FREQ. YHO	R 255
	R 256
	8 257
	R 258
	R 259
A 0.11/ 0.51/ 4.110	R 260
	R 261
	R 262
	R 263
	R 264
	8 265
	R 266
2	R 267

		SUBROUTINE GY(X+NTERM+11+GMN)	GY	1
		DIMENSION GMN(NTERM),AAA(201)	GΥ	2
Ç			GY	3
C		THIS SUBROUTINE CALCULATES GMN(ASSOCIATED WITH THE EXCITATION	GΥ	4
С		IN THE Y DIRECTIONE USING SIMPSONS RULE	GY	5
С			GΥ	6
		4 + 11 + 11 = LL	GΥ	7
		H= 11+11	GΥ	3
		H= 0.78534816357H	GY	9
		ANG= 0.0	GY	10
		LL, I = L = C = C = C = C = C = C = C = C = C	GY	11
		C1= SEN(0.7653981635 - ANG)	GΥ	12
		C2= SIN(0.7853981635 + ANG)	GΥ	13
		AAA(J) = C2*EXP(+X*C2) - C1*EXP(-X*C1)	GΥ	14
	20	ANG= ANG + H	GY	15
		00 50 N=1.NTERM	GY	16
		GMN(N)= 0.0	GΥ	17
		$HNG = 4 \neq (N-1) + 2$	GY	18
			ĞΫ	19
		ANG2 = HN4	GΥ	20
		ANG3= HN4 + HN4	ĞY	21
		C3= 0.0	ĞY	22
		DO 30 1=1,11	GY	23
		.]= [+[-1	ĞŸ	24
		C1= C3	ĞŶ	25
		C2= 4.0*AAA(j+L)*SIN(ANG2)	ĞΥ	26
		C3= AAAI J+21*SIN(ANG3)	GY	27
		GMN(N) = GMN(N) + C1+C2+C3	GY	28

	OVERLAY(XFILE,3,3)	ZHYD	ł
	PROGRAM ZHYDRO	ZHYU	2
	COMMON / MISC / NOLOCK, NEQB, LL, NF, LB , NDYN	ZHYD	3
	COMMON ZELPARZ NPAR(14).NUMNP.MBAND.NELTYP.N1.N2.N3.N4.N5.MTOT.		4
	. , NG, NUNNPF , IPRINT . NLM . NUMEL, WATL. IMASS, TVOL, NEGEST, IMO.		5
	• , IPRN _ MESH , MESHFN , ISYM, WDEN, T(10)	ZHYD	6
	COMMON/RADDD/RADIUS, RADHT	ZHYD	7
	COMMON/HYD/NUMELZ:NUMELT:TW;ZW;HWATER:NTERM:MTERM:IXYZ	ZHYD	8
	COMMON A(1)	ZHYU	9
		ZHYD	10
	NEQBT= NÉQB*NBLOCK	ZHYD	11
	NI= 1		12
	N2≠ N1 + NF	ZHYD	13
	N3∓ N2 + NEQ		14
	N4= N3 & NUMNP*3	ZHYU	15
	N5= N4 + NEQ		15
	NG= N5 + NEQB*MBAND		17
	IF(N6.GT.MTOTICALL ERROR(N6-MTOT)		18
		ZHYD	19
	CALL GHINXIAIN11+AIN2)+AIN3)+AIN4)+AIN5)+NUMNP+NUMEL+NER8+	ZHYD	
	1 MOANDINFINBLOCKINEQILXYZ)	ZHYD	
	•	ZHY D	22
	N4≖ N3 ♦ NEQU≉NF	ZHYD	
	IF(N4.GI.MTOFICALL ERROR(N4-MTOT)		24
	WRITE(6,3000)	ZHYÐ	25
		ZHYO	26
	CALL LUADI(A(N1),A(N2),A(N3),NEQ8,NBLUCK,NF,NEQ)	ZHYD	
		ZHYU	28
	IFIHWATER.EQ.0.0JG0TU 500		29
	ZWH= ZW/HWATER	ZHYÐ	30
	N3= N2 + 8*NUMEL*NF	ZHYD	31
	N4= N3 + 24*NUMEL	ZHY J	32
	N5= N4 + NEQBI+NF	ZHYD	33
	N6= N5 + 50	ZHYD	34
	IFING.GI.MIDTICALL ERROR(NG-MTOT)	ZHYD	35
		ZHYD	3.5
	CALL BEVIA(N21, A(N3), A1N4), A1N51, NEQBT, NUMEL, NF, NBLOCK, NEQB,	ZH¥U	31
	1 NUMELZ,NUMELT,NZ,ZWH,ZWHTOP,ZW,TW,HWATER)	ZHYD	38
		ZHYD	34
	N4# N3 + MTERM#NTERM#NF	ZHYD	40
	N5= N4 + NTERM#NUMELT#3	ZHYU	41
	N6= N5 + NTERM+3	214 Y U	42
	N7= N6 + MIERM*NUMELZ*3	ZHYJ	43
	IF(N7.GT.MTGF)CALL ERROR(N7-MTGT)	ZHYU	4 4
		Z H Y D	45
	CALL HINML(A(N2),A(N3),A(N4),A(N5),A(N6),NUMELZ,NUMELT,NZ,ZWH,	ZHYD	46
	1 ZWHTUP,TW,NTERM,MTERM,NF,NUMEL)	ZHYU	47
	· ·	SHAD	4 ರ
5	00 N3= N2 + 8*NUMEL∞NF	ZHYD	49
	CALL VERTICIAINII, A(N2), A(N3), NUMELT, NUMELZ, NUMEL, NZ, TW.	ZHYJ	50

GY GY GY GY GY GY 29 30 31 32 33 34

. 1

С

ANG2≖ ANG3 + HN4 30 ANG3≖ ANG2 + HN4 GMN(N)≖ (H/3.0) +GMN(N) 50 CONFINUE RETURN END

		SUBROUTINE VERTICIGE DAD, PHIR, HINM, NUMELT, NUMELZ, NUMEL, NZ, TW,	VERJ	
	1	L ZWH+ZWHTUP+NF+NTERM+MTERM+RADIUS+HWATER)	VERT	
		DIMENSION BJK(200),BY(200),GMN(31),WDAM(15)	VERT	
		DIMENSIUN GLOAD(NE),PHIRENUMEL,8,NE},HINM(NTERM,MTERM,NE)	VERT	
		REAL JMR(31)	VERT	
		COMPLEX S(15,15),F(15),SS(15,15),FF(15)	VERT	
Ç		************	VERT	
		THIS SUBROUTINE CALCULATES THE COMPLEX FREQUENCY RESPONSE	VERT	2
Ç		FUNCTIONS FOR VERTICAL GROUND MOTION	VERT	10
C		\$\$\$\$##################################		1
C			VERT	i
6		REWIND 7	VERT	i
		READ (71 (WOAM (L) + L =) + NF)	VERT	1
		READ(5.1000)DAMP.ALPHA, INCOMP, NPUNCH	VERT	1
		IFIALPHA.EU.Q.QJALPHA=1.0	VERT	- î.
		WRITE(6,2000)DAMP, ALPHA	VERT	1
		PI= 3.141592653	VERT	i
		RHU1= 9.88540019*RA01US*RA01US*HWATER	VERT	- î
		VRH0= -1.573310304*RADIUS#HWATER#HWATER*TW	VERT	2
		IFIHWATER-EN-0-04GOTO 24	VERT	2
С			VERT	2
-		RCONST= 0.5*Pl*RADIUS/HWATER	VERT	2
		W1= 4720.0*PI/(HWATER + HWATER)	VERT	2
		IFTINCOMP.GT.DIGUTO 8	VERT	2
		WRITE(6. 3000) W1	VERT	2
		GOTO 24	VERT	2
	8	WRITE(6,6000]	VERT	2:
	-	INCOMP= 1	VERT	2
С			VERT	3
	24	WRITE16,4000)	VERT	فر
C			VERT	3
C			VERF	- 3
	25	READ(5,L000)HHIDAM	VERT	3
C			VERT	3
		IFIWWIDAM.LT.0.03GOTD 900	VERT	3
		H= WUAM(L)+WHIUAM	VERT	3
		IF(INCOMP+EQ-2)GDT0 860	VERT	3
		C1= 0.0	VERT	- 3
		C2= 0.0	VERT	- 4
		00 40 L=1,NF	VERT	4
		F(L) = LMPLX(C1+C2)	VERT	- 4
		DD 40 K=L,NF	VERT	4
	40	SIL,KJ= CMPLX(CI,C2)	VERT	-4
		IFIHWATER-EQ.D.DIGOTO 860	VERT	4
		Wh1= W/W1	VERT	4
		IF(INCUMP.E0.1) WH 1=0.0	VERT	4
		[F(HWL_LT_1.0E+05)WW1= 1.0E-05	VERT	4
		MAX = 0.5 + (WW1 + 1.0)	VERI	4
		EM-= 1.0	VERT	- 50

21

L ZWH, ZWHTUP, NF, NTERM, MTERM, RADIUS, HWATER) ZHYD 51 C RETURN ZHYD 52 3000 FORMAT(///61H GENERALIZED LOAD FOR VERTICAL GRDUND MUTION - STRUCTZHYD 54 IURE CNLY, 7X, 24H FRED NUMBER LUAD) ZHYD 55 END ZHYD 56

		DO 100 M=1, MTERN	VERT	51
		ARG= ABS((WW1-EM)*(WW1+EM))	VERT	52
		JNR [M] = HCONST & SQRT (ARG)	VERT	53
		IF (JMR (N).LT.0.00001 JMR (N) = 0.00001	VERT	54
	100	EH=EH+2.0	VERT	55
	400		VERT	
		DO 500 M=1, NTERM		56
		X= JMR(N)	VERT	57
		IF(MAX_LT_M)GUIU 300	VERT	58
		NBESSY= 4*(NTERM-11 + 1	VERT	59
		IF(X.LT.O.1.AND.NTERM.GT.11INBESSY= 41	VERT	60
		CALL BESSJY (X+BJK+BY+NBESSY+NBESSY)	VERT	61
		DO 200 NN=1 NTERM	VERT	62
			VERT	
		N4= 4*(NN-1)		63
		IFIX.LT.U.I.AND.NN.GT.IIIGOTO 176	VERT	64
		IF(NN+E2+1160TU 150	VERT	65
		AMN = BJK(N4) - BJK(N4+2)	VERT	66
		BMN= BY(N4) - BY(N4+2)	VERT	67
		$C_{2} = 2 \cdot 0$	VERT	68
		G010 175	VERT	69
			VERT	70
	100	AMN= -2.0*BJK(2)		
		BMN= -2.0*8¥(2)	VERT	71
		C2= 1.0	VERT	72
	175	CILI= AMN/BMN	VERT	73
		C2= C2/((AMN*C111 + BMN)*JMR(M))	VERT	74
		CMN = C2*(C111*3JK(N4+1) + BY(N4+1))	VERI	75
		DMN = C2*(BJK(N4+1) - C111*BY(N4+1))	VERI	16
		GOTO 177	VERT	77
	175	CMN= -1.0/FLUAT(N4)	VERT	78
		DNN = 0.0	VERT	19
	177	DO 180 L=L_NF	VÉRT	80
		D0 180 K≖L,NF	VEPT	81
		CI= HINM(NN+M+LI+HINM(NN+M+K)	VERT	52
		S(L,K) = S(L,K) + GL*CMPLX(CMN,OMN)	VERT	83
	1.00	CONTINUE	VERT	84
	200	CONTINUE	VERT	85
		G0T0 500	VERI	86
3			VERT	87
С			VÉRT	88
-	3.00	NBESK= 4*(NTERM - 1) + 2	VERT	89
		CALL BESNKS(X+NBESK+BJK)	VERT	90
			VERT	91
		DD 400 NN=1,NTERM		
		N4= 4*[NN-1]	VERT	92
		IF(NN-EQ.L)6010 350	VERT	93
		CMN= -BJK(N4+1)/[(BJK(N4) + BJK(N4+2)]*JMR(M)]	VERT	94
		CMN= CMN + CMN	VERT	95
		GOT0 355	VERT	96
	350	CMN= -BJK(1)/((BJK(2) + BJK(2))*JMR(M))	VERT	97
		C1=0.0	VERT	98
	200		VERT	99
		00 375 L=1,NF		
		00 375 K=L.NF	VERT	
		C2= CMN+HINM(NN+M+L)+HINM(NN+M+K)	VERT	
		$S(L_*K) = S(L_*K) + CHPLX(C2+C1)$	VERT	102
	375	CONTINUE	VERT	103
		CONTINUE	VER 1	104
		CONTINUE	VERT	
r	200	GUITETOL ,	VERT	
С		CALL WAS PARAMETER OF MURIES AND THE AUTOR TO MURIE AND		
		CALL VZL DAD(PHIR, F, NUMELT, NUMEL Z, NZ, ZWH, ZWHTOP, TW, NUMEL, NF,	VERT	
	1	WW1.VRHD.ALPHA)	VERT	
¢			VERT	109
Ĉ.			VERT	
~	9.68	RHO1W= RHO1*W#W	VERT	
	500	00 865 L≠1, NF	VERT	
		55 507 E-1410		

ı.

		00 865 K=L,NF	VERT	
		SS(L,K)= RHU1W*S(L,K)	VERT	
		SS(K,L)= SS(L,K)	VERT	
	865	CONTINUE	VERT	
		王王 - 王 - 王 - 王 - 王 - 王 - 王 - 王 - 王 - 王 	VERT	
		DO 875 L=1,NF	VERT	113
		FF(L)= F(L) + GLDAD(L)	VERT	119
		Cl= WW + WDAM(L)*WDAM(L)	VERT	120
		C2= ₩*WDAM(L)*(DAMP + DAMP)	VERT	
		SS(LyL)= SS(L+L) + CMPLX(C1+C2)	VERT	122
	875	CONTINUE	VERT	123
С			VERT	124
		CALL CSYMEQ(SS+FF:NF+1)	VERT	125
С			VERT	126
		DD 885 L=1.NF	VERT	127
		Cl= WW*REAL(FF(L))	VERT	128
		C2= WW*AIMAG(FF(L))	VERT	129
		C3= C1*C1 + L2*C2	VERT	130
		C4= SQRT(C3)	VERT	131
		WR[TE(6,500Q]W, NH1DAM, WDAM(L), C1, C2, C4	VERT	132
		IF(NPUNCH.GT-0JPUNCH 7030,W.WWIDAM.WDAM(L);C1,C2,C4	VERI	133
	885	CONTINUE	VERT	134
		IF(INCOMP+GI+O)INCOMP= 2	VERT	135
С			VERT	136
		GOTO 25	VERT	137
С			VERT	138
		RETURN	VERT	
		FORMAT (2F10+0+215)	VERT	
2	2000	FORMAT(////22H MUDAL DAMPING RATIO =+F10+4+	VERT	141
		<pre>1 //39H RESERVOIR BOTTOM REFRACTION CONSTANT =+E10.4+//)</pre>	VERT	
		FORMAT(////41H FUNDAMENTAL FREQUENCY OF THE RESERVOIR =,F12.6;//)		
4		FORMAT(/////X.TOH COMPLEX FREQUENCY RESPONSE FOR ACCELERATION	VVERT	144
	ł	LERTICAL GROUND MOTION,//16H EXCLIATION FREQ,12H W/WIDAM .	VERT	145
		2 12H DAM FREQ .	VERT	140
		3 45HCOMPLEX FREQ RESPONSE	VERT	147
		4 /6X+8H RAD/SEC+16X+8H RAD/SEC+8X+5H REAL+10X+5H IMAG+	VERT	
		5 TX, LOH ABS VALUE)	VERT	
		FORMAT(//1X+F13+6+2F12+4+2X+3E15+4)	VERT	
ŧ		FORMAT(////30H INCOMPRESSIBLE WATER SOLUTION.	VERT	
		1 /30H,//}	VERT	152
1	1000	FORMAT(3F13+6+3E11+4)	VERT	
		END	VERT	154

	SUBROUTINE VZLUADIPHIR.F.NUMELT.NUMELZ.NZ.ZWH.ZWHTOP.TW.NUMEL.NF.	V2L0	1
	1 WW1,VRH0,ALPHA1	VZEO	2
	DIMENSION PHIR (NUMEL,8,NF),VEGAD(15),V(8)	VZLO	3
	CUMPLEX F(NF)	VILO	4
C		VZLO	5
[****	*******	*VZLU	6
C	THIS SUBROUTINE FORMS THE GENERALIZED LOAD ASSOCIATED WITH	VZLU	7
С	HYDRODYNAMIC PRESSURE DUE TO VERTICAL GROUND MOTION ACTING	VZLO	8
C	ON THE RIGED DAM.	VZLO	9
C ****	** ************	*VZLO	10
ċ		VZLO	11
	DO 100 L=1,NF	VZLO	12
100	V = 0.0	VZLŪ	13
	A= 1.570796327*##1	VZLO	14

		VZŁU	15
	C1= (1.0 + ALPHA)*COS(A) C2= (1.0 - ALPHA)*SIN(A)	VZLU	16
	VRHOL= (VRHO*(1.0+ALPHA))/(WW1*WW1*(C1*C1 + C2*C2))	VZLO	17
	VRHOR= VRHOL+CI	VZLO	18
	VRH0I= -VRH0I*C2	VZLO	19
	NN=NUMELZ	V210	20
	DO 900 NTHETA= 1.NUMELT	VZLU	21
	NN= NN + NUMELZ	V219	22
	ZC= -ZWH	VZLU	23
	2C= -Zw⊓ DO 900 N= 1.NZ	VZLO	24
	NNUMEL= NN + N	VZLO	
		VZLO	26
	ZC= ZC + ZWH + ZWH	VZLO	27
		VZLO	29
	IF(N_EQ_NZ)AL=A+ZWHTOP	VZLO	29
	IF(N.EQ.NZ)ZC=ZC-ZWH+ZWHTOP	VZLO	
	A2= A*(1,-2C)	VZEU VZEU	31
	SCI= SIN(AI)	VZLU	32
	SC2= COS(A1)	V2L0	33
	C1 = SC1 + SIN(A2)		
	C2= (SC2 - SC1/AIJ + COS(A2))	V71.0	34
	C3= (12.0/A1)*(SC2 - SC1/A1) + SC1)*SIN(A2)	VZLO	35
	V(1) = C3/2.0 - C1/3.0 - C2/6.0	VZLO	36
	V(2) = V(1)	VZLO	37
	V(3) = (3/2.0 - (1/3.0 + C2/6.0)	VZLO	38
	V(4)= V(3)	VZLU	39
	V(5)= 0.666666666666666666666666666666666666	VZEC	
	V(6) = C1 - C3	V2L0	
	V(7)= 0.666666666666666666666666666666666666	VZLU	42
	V(8) = V(4)	VZLO	43
	D0 800 L=1,NF	VZLU	44
	DC 800 l=1,8	VZLO	
	VLOAD(LI≈ VLUAD(L) + V(I)*PHIR(NNUMEL,[,£)	VZLU	
800	CONTINUE	VZLO	47
900	CONTINUE	VZLO	48
	UD 950 L≈1,NF	VZED	49
	C1= VRHOR+VLOAD(L)	V7L0	50
	C2= VRHOI*VLOAD(L)	VZLU	51
950	F(L) = CNPLX(C1,C2)	V2L0	52
	RETURN	V21.0	53
	END	VZLU	54

EARTHQUAKE ENGINEERING RESEARCH CENTER REPORTS

NOTE: Numbers in parenthesis are Accession Numbers assigned by the National Technical Information Service; these are followed by a price code. Copies of the reports may be ordered from the National Technical Information Service, 5285 Port Royal Road, Springfield, Virginia, 22161. Accession Numbers should be quoted on orders for reports (PB -----) and remittance must accompany each order. Reports without this information were not available at time of printing. Upon request, EERC will mail inquirers this information when it becomes available.

- EERC 67-1 "Feasibility Study Large-Scale Earthquake Simulator Facility," by J. Penzien, J.G. Bouwkamp, R.W. Clough and D. Rea - 1967 (PB 187 905)A07
- EERC 68-1 Unassigned
- EERC 68-2 "Inelastic Behavior of Beam-to-Column Subassemblages Under Repeated Loading," by V.V. Bertero 1968 (PB 184 888)A05
- EERC 68-3 "A Graphical Method for Solving the Wave Reflection-Refraction Problem," by H.D. McNiven and Y. Mengi-1968 (PB 187 943)A03
- EERC 68-4 "Dynamic Properties of McKinley School Buildings," by D. Rea, J.G. Bouwkamp and R.W. Clough 1968 (PB 187 902)A07
- EERC 68-5 "Characteristics of Rock Motions During Earthquakes," by H.B. Seed, I.M. Idriss and F.W. Kiefer 1968 (PB 188 338)A03
- EERC 69-1 "Earthquake Engineering Research at Berkeley," 1969 (PB 187 906)All
- EERC 69-2 "Nonlinear Seismic Response of Earth Structures," by M. Dibaj and J. Penzien 1969 (PB 187 904)A08
- EERC 69-3 "Probabilistic Study of the Behavior of Structures During Earthquakes," by R. Ruiz and J. Penzien 1969 (PB 187 886)A06
- EERC 69-4 "Numerical Solution of Boundary Value Problems in Structural Mechanics by Reduction to an Initial Value Formulation," by N. Distefano and J. Schujman - 1969 (PB 187 942)A02
- EERC 69-5 "Dynamic Programming and the Solution of the Biharmonic Equation," by N. Distefano 1969 (PB 187 941)A03
- EERC 69-6 "Stochastic Analysis of Offshore Tower Structures," by A.K. Malhotra and J. Penzien 1969 (FB 187 903) A09
- EERC 69-7 "Rock Motion Accelerograms for High Magnitude Earthquakes," by H.B. Seed and I.M. Idriss 1969 (PB 187 940) A02
- EERC 69-8 "Structural Dynamics Testing Facilities at the University of California, Berkeley," by R.M. Stephen. J.G. Bouwkamp, R.W. Clough and J. Penzien - 1969 (PB 189 111)A04
- EERC 69-9 "Seismic Response of Soil Deposits Underlain by Sloping Rock Boundaries," by H. Dezfulian and H.B. Seed 1969 (PB 189 114)A03
- EERC 69-10 "Dynamic Stress Analysis of Axisymmetric Structures Under Arbitrary Loading," by S. Ghosh and E.L. Wilson 1969 (PB 189 026)Al0
- EERC 69-11 "Seismic Behavior of Multistory Frames Designed by Different Philosophies," by J.C. Anderson and V. V. Bertero 1969 (PB 190 662)A10
- EERC 69-12 "Stiffness Degradation of Reinforcing Concrete Members Subjected to Cyclic Flexural Moments," by V.V. Bertero, B. Bresler and H. Ming Liao 1969 (PB 202 942)A07
- EERC 69-13 "Response of Non-Uniform Soil Deposits to Travelling Seismic Waves," by N. Dezfulian and H.B. Seed-1969 (PB 191 023)A03
- EERC 69-14 "Damping Capacity of a Model Steel Structure," by D. Rea, R.W. Clough and J.G. Bouwkamp 1969 (PB 190 663) A06
- EERC 69-15 "Influence of Local Soil Conditions on Building Damage Potential during Earthquakes," by H.B. Seed and I.M. Idriss 1969 (PB 191 036)A03
- EERC 69-16 "The Behavior of Sands Under Seismic Loading Conditions," by M.L. Silver and H.B. Seed 1969 (AD 714 982) A07
- EERC 70-1 "Earthquake Response of Gravity Dams," by A.K. Chopra-1970 (AD 709 640)A03
- EERC 70-2 "Relationships between Soil Conditions and Building Damage in the Caracas Earthquake of July 29, 1967," by H.B. Seed, I.M. Idriss and H. Dezfulian - 1970 (PB 195 762)A05
- EERC 70-3 "Cyclic Loading of Full Size Steel Connections," by E.P. Popov and R.M. Stephen 1970 (PB 213 545)A04
- EERC 70-4 "Seismic Analysis of the Charaima Building, Caraballeda, Venezuela," by Subcommittee of the SEAONC Research Committee: V.V. Bertero, P.F. Fratessa, S.A. Mahin, J.H. Sexton, A.C. Scordelis, E.L. Wilson, L.A. Wyllie, H.B. Seed and J. Penzien, Chairman - 1970 (PB 201 455)A06

- EERC 70-6 "The Propagation of Love Waves Across Non-Horizontally Layered Structures," by J. Lysmer and L.A. Drake 1970 (PB 197 896)A03
- EERC 70-7 "Influence of Base Rock Characteristics on Ground Response," by J. Lysmer, H.B. Seed and P.B. Schnabel 1970 (PB 197 897)A03
- EERC 70-8 "Applicability of Laboratory Test Procedures for Measuring Soil Liquefaction Characteristics under Cyclic Loading," by H.B. Seed and W.H. Peacock 1970 (PB 198 016)A03
- EERC 70-9 "A Simplified Procedure for Evaluating Soil Liquefaction Potential," by H.B. Seed and I.M. Idriss 1970 (PB 198 009)A03
- EERC 70-10 "Soil Moduli and Damping Factors for Dynamic Response Analysis," by H.B. Seed and I.M. Idriss 1970 (PB 197 869)A03
- EERC 71-1 "Koyna Earthquake of December 11, 1967 and the Performance of Koyna Dam," by A.K. Chopra and P. Chakrabarti 1971 (AD 731 496)A06
- EERC 71-2 "Preliminary In-Situ Measurements of Anelastic Absorption in Soils Using a Prototype Earthquake Simulator," by R.D. Borcherdt and P.W. Rodgers - 1971 (PB 201 454)A03
- EERC 71-3 "Static and Dynamic Analysis of Inelastic Frame Structures," by P.L. Porter and G.H. Powell 1971 (PB 210 135)A06
- EERC 71-4 "Research Needs in Limit Design of Reinforced Concrete Structures," by V.V. Bertero 1971 (PB 202 943)A04
- EERC 71-5 "Dynamic Behavior of a High-Rise Diagonally Braced Steel Building," by D. Rea, A.A. Shah and J.G. Bouwhamp 1971 (PB 203 584)A06
- EERC 71-6 "Dynamic Stress Analysis of Porous Elastic Solids Saturated with Compressible Fluids," by J. Ghaboussi and E. L. Wilson 1971 (PB 211 396)A06
- EERC 71-7 "Inelastic Behavior of Steel Beam-to-Column Subassemblages," by H. Krawinkler, V.V. Bertero and E.P. Popov 1971 (PB 211 335)A14
- EERC 71-8 "Modification of Seismograph Records for Effects of Local Soil Conditions," by P. Schnabel, H.B. Seed and J. Lysmer - 1971 (PB 214 450)A03
- EERC 72-1 "Static and Earthquake Analysis of Three Dimensional Frame and Shear Wall Buildings," by E.L. Wilson and H.H. Dovey - 1972 (PB 212 904)A05
- EERC 72-2 "Accelerations in Rock for Earthquakes in the Western United States," by P.B. Schnabel and H.B. Seed-1972 (PB 213 100)A03
- EERC 72-3 "Elastic-Plastic Earthquake Response of Soil-Building Systems," by T. Minami 1972 (PB 214 868)A08
- EERC 72-4 "Stochastic Inelastic Response of Offshore Towers to Strong Motion Earthquakes," by M.K. Kaul 1972 (PB 215 713)A05
- EERC 72-5 "Cyclic Behavior of Three Reinforced Concrete Flexural Members with High Shear," by E.P. Popov, V.V. Bertero and H. Krawinkler - 1972 (PB 214 555)A05
- EERC 72-6 "Earthquake Response of Gravity Dams Including Reservoir Interaction Effects," by P. Chakrabarti and A.K. Chopra ~ 1972 (AD 762 330)A08
- EERC 72-7 "Dynamic Properties of Pine Flat Dam," by D. Rea, C.Y. Liaw and A.K. Chopra-1972 (AD 763 928)A05
- EERC 72-8 "Three Dimensional Analysis of Building Systems," by E.L. Wilson and H.H. Dovey 1972 (PB 222 438) A06
- EERC 72-9 "Rate of Loading Effects on Uncracked and Repaired Reinforced Concrete Members," by S. Mahin, V.V. Bertero, D. Rea and M. Atalay - 1972 (PB 224 520)A08
- EERC 72-10 "Computer Program for Static and Dynamic Analysis of Linear Structural Systems," by B.L. Wilson, K.-J.Bathe, J.E. Peterson and H.H.Dovey 1972 (PB 220 437)A04
- EERC 72-11 "Literature Survey Seismic Effects on Highway Bridges," by T. Iwasaki, J. Penzien and R.W. Clough 1972 (PB 215 613)A19
- EERC 72-12 "SHAKE-A Computer Program for Earthquake Response Analysis of Horizontally Layered Sites," by P.B. Schnabel and J. Lysmer - 1972 (PB 220 207)A06
- EERC 73-1 "Optimal Seismic Design of Multistory Frames," by V.V. Bertero and H. Kamil 1973
- EERC 73-2 "Analysis of the Slides in the San Fernando Dams During the Earthquake of February 9, 1971," by H.B. Seed, K.L. Lee, I.M. Idriss and F. Makdisi - 1973 (PB 223 402)Al4

- EERC 73-3 "Computer Aided Ultimate Load Design of Unbraced Multistory Steel Frames," by M.B. El-Hafez and G.H. Powell 1973 (PB 248 315)A09
- EERC 73-4 "Experimental Investigation into the Seismic Behavior of Critical Regions of Reinforced Concrete Components as Influenced by Moment and Shear," by M. Celebi and J. Penzien 1973 (PB 215 884)A09
- EERC 73-5 "Hysteretic Behavior of Epoxy-Repaired Reinforced Concrete Beams," by M. Celebi and J. Penzien 1973 (PB 239 568)A03
- EERC 73-6 "General Purpose Computer Program for Inelastic Dynamic Response of Plane Structures," by A. Kanaan and G.H. Powell-1973 (PB 221 260)A08
- EERC 73-7 "A Computer Program for Earthquake Analysis of Gravity Dams Including Reservoir Interaction," by P. Chakrabarti and A.K. Chopra 1973 (AD 766 271)A04
- EERC 73-8 "Behavior of Reinforced Concrete Deep Beam-Column Subassemblages Under Cyclic Loads," by O. Küstü and J.G. Bouwkamp 1973 (PB 246 117)Al2
- EERC 73-9 "Earthquake Analysis of Structure-Foundation Systems," by A.K. Vaish and A.K. Chopra 1973 (AD 766 272)A07
- EERC 73-10 "Deconvolution of Seismic Response for Linear Systems," by R.B. Reimer 1973 (PB 227 179) A08
- EERC 73-11 "SAP IV: A Structural Analysis Program for Static and Dynamic Response of Linear Systems," by K.-J. Bathe, E.L. Wilson and F.E. Peterson - 1973 (PB 221 967)A09
- EERC 73-12 "Analytical Investigations of the Seismic Response of Long, Multiple Span Highway Bridges," by W.S. Tseng and J. Penzien - 1973 (PB 227 816)Al0
- EERC 73-13 "Earthquake Analysis of Multi-Story Buildings Including Foundation Interaction," by A.K. Chopra and J.A. Gutierrez 1973 (PB 222 970)A03
- EERC 73-14 "ADAP: A Computer Program for Static and Dynamic Analysis of Arch Dams," by R.W. Clough, J.M. Raphael and S. Mojtahedi 1973 (PB 223 763)A09
- EERC 73-15 "Cyclic Plastic Analysis of Structural Steel Joints," by R.B. Pinkney and R.W. Clough 1973 (PB 226 843) A08
- EERC 73-16 "QNAD-4: A Computer Program for Evaluating the Seismic Response of Soil Structures by Variable Damping Finite Element Procedures," by I.M. Idriss, J. Lysmer, R. Hwang and H.B. Seed - 1973 (PB 229 424)A05
- EERC 73-17 "Dynamic schavior of a Multi-Story Pyramid Shaped Building," by R.M. Stephen, J.P. Hollings and J.G. Bouwkamp 1973 (PB 240 718)A06
- EERC 73-18 "Effect of Different Types of Reinforcing on Seismic Behavior of Short Concrete Columns," by V.V. Bertero, J. Hollings, O. Küstü, R.M. Stephen and J.G. Bouwkamp - 1973
- EERC 73-19 "Olive View Medical Center Materials Studies, Phase I," by B. Bresler and V.V. Bertero 1973 (PB 235 986)A06
- EERC 73-20 "Linear and Nonlinear Seismic Analysis Computer Programs for Long Multiple-Span Highway Bridges," by W.S. Tseng and J. Penzien 1973
- EERC 73-21 "Constitutive Models for Cyclic Plastic Deformation of Engineering Materials," by J.M. Kelly and P.P. Gillis 1973 (PB 226 024)A03
- EERC 73-22 "DRAIN 2D User's Guide," by G.H. Powell 1973 (PB 227 016)A05
- EERC 73-23 "Earthquake Engineering at Berkeley 1973," (PB 226 033)All
- EERC 73-24 Unassigned
- EERC 73-25 "Earthquake Response of Axisymmetric Tower Structures Surrounded by Water," by C.Y. Liaw and A.K. Chopra 1973 (AD 773 052)A09
- EERC 73-26 "Investigation of the Failures of the Olive View Stairtowers During the San Fernando Earthquake and Their Implications on Seismic Design," by V.V. Bertero and R.G. Collins - 1973 (PB 235 106)A13
- EERC 73-27 "Further Studies on Seismic Behavior of Steel Beam-Column Subassemblages," by V.V. Bertero, H. Krawinkler and E.P. Popov - 1973 (PB 234 172)A06
- EERC 74-1 "Seismic Risk Analysis," by C.S. Oliveira 1974 (PB 235 920)A06
- EERC 74-2 "Settlement and Liquefaction of Sands Under Multi-Directional Shaking," by R. Pyke, C.K. Chan and H.B. Seed 1974
- EERC 74-3 "Optimum Design of Earthquake Resistant Shear Buildings," by D. Ray, K.S. Pister and A.K. Chopra-1974 (PB 231 172)A06
- EERC 74-4 "LUSH A Computer Program for Complex Response Analysis of Soil-Structure Systems," by J. Lysmer, T. Udaka, H.B. Seed and R. Hwang - 1974 (PB 236 796)A05

- EERC 74-5 "Sensitivity Analysis for Hysteretic Dynamic Systems: Applications to Earthquake Engineering," by D. Ray 1974 (PB 233 213)A06
- EERC 74-6 "Soil Structure Interaction Analyses for Evaluating Seismic Response," by H.B. Seed, J. Lysmer and R. Hwang 1974 (PB 236 519)A04
- EERC 74-7 Unassigned
- EERC 74-8 "Shaking Table Tests of a Steel Frame ~ A Progress Report," by R.W. Clough and D. Tang 1974 (PB 240 869)A03
- EERC 74-9 "Hysteretic Behavior of Reinforced Concrete Flexural Members with Special Web Reinforcement," by V.V. Bertero, E.P. Popov and T.Y. Wang 1974 (PB 236 797)A07
- EERC 74-10 "Applications of Reliability-Based, Global Cost Optimization to Design of Earthquake Resistant Structures," by E. Vitiello and K.S. Pister - 1974 (PB 237 231)A06
- EERC 74-11 "Liquefaction of Gravelly Soils Under Cyclic Loading Conditions," by R.T. Wong, H.B. Seed and C.K. Chan 1974 (FB 242 042)A03
- EERC 74-12 "Site-Dependent Spectra for Earthquake-Resistant Design," by H.B. Seed, C. Ugas and J. Lysmer 1974 (PB 240 953)A03
- EERC 74-13 "Earthquake Simulator Study of a Reinforced Concrete Frame," by P. Hidalgo and R.W. Clough 1974 (PB 241 944)Al3
- EERC 74-14 "Nonlinear Earthquake Response of Concrete Gravity Dams," by N. Pal-1974 (AD/A 006 583)A06
- EERC 74-15 "Modeling and Identification in Nonlinear Structural Dynamics I. One Degree of Freedom Models," by N. Distefano and A. Rath - 1974 (PB 241 548)A06
- EERC 75-1 "Determination of Seismic Design Criteria for the Dumbarton Bridge Replacement Structure, Vol.I: Description, Theory and Analytical Modeling of Bridge and Parameters," by F. Baron and S.-H. Pang - 1975 (PB 259 407)A15
- EERC 75-2 "Determination of Seismic Design Criteria for the Dumbarton Bridge Replacement Structure, Vol. II: Numerical Studies and Establishment of Seismic Design Criteria," by F. Baron and S.-H. Pang-1975 (PB 259 408)All (For set of EERC 75-1 and 75-2 (PB 259 406))
- EERC 75-3 "Seismic Risk Analysis for a Site and a Metropolitan Area," by C.S. Oliveira 1975 (PB 248 134)A09
- EERC 75-4 "Analytical Investigations of Seismic Response of Short, Single or Multiple-Span Highway Bridges," by M.-C. Chen and J. Penzien 1975 (PB 241 454)A09
- EERC 75-5 "An Evaluation of Some Methods for Predicting Seismic Behavior of Reinforced Concrete Buildings," by S.A. Mahin and V.V. Bertero - 1975 (PB 246 306)Al6
- EERC 75-6 "Earthquake Simulator Study of a Steel Frame Structure, Vol. I: Experimental Results," by R.W. Clough and D.T. Tang-1975 (PB 243 981)Al3
- EERC 75-7 "Dynamic Properties of San Bernardino Intake Tower," by D. Rea, C.-Y. Liaw and A.K. Chopra-1975 (AD/A008 406) A05
- EERC 75-8 "Seismic Studies of the Articulation for the Dumbarton Bridge Replacement Structure, Vol. I: Description, Theory and Analytical Modeling of Bridge Components," by F. Baron and R.E. Hamati - 1975 (PB 251 539)A07
- EERC 75-9 "Seismic Studies of the Articulation for the Dumbarton Bridge Replacement Structure, Vol. 2: Numerical Studies of Steel and Concrete Girder Alternates," by F. Baron and R.E. Hamati - 1975 (PB 251 540)Al0
- EERC 75-10 "Static and Dynamic Analysis of Nonlinear Structures," by D.P. Mondkar and G.H. Powell 1975 (PB 242 434)A08
- EERC 75-11 "Hysteretic Behavior of Steel Columns," by E.P. Popov, V.V. Bertero and S. Chandramouli 1975 (PB 252 365)All
- EERC 75-12 "Earthquake Engineering Research Center Library Printed Catalog," 1975 (PB 243 711) A26
- EERC 75-13 "Three Dimensional Analysis of Building Systems (Extended Version)," by E.L. Wilson, J.P. Hollings and H.H. Dovey - 1975 (PB 243 989)A07
- EERC 75-14 "Determination of Soil Liquefaction Characteristics by Large-Scale Laboratory Tests," by P. De Alba, C.K. Chan and H.B. Seed - 1975 (NUREG 0027)A08
- EERC 75-15 "A Literature Survey Compressive, Tensile, Bond and Shear Strength of Masonry," by R.L. Mayes and R.W. Clough 1975 (PB 246 292)Al0
- EERC 75-16 "Hysteretic Behavior of Ductile Moment Resisting Reinforced Concrete Frame Components," by V.V. Bertero and E.P. Popov - 1975 (PB 246 388)A05
- EERC 75-17 "Relationships Between Maximum Acceleration, Maximum Velocity, Distance from Source, Local Site Conditions for Moderately Strong Earthquakes," by H.B. Seed, R. Murarka, J. Lysmer and I.M. Idriss - 1975 (PB 248 172)A03
- EERC 75-18 "The Effects of Method of Sample Preparation on the Cyclic Stress-Strain Behavior of Sands," by J. Mulilis, C.K. Chan and H.B. Seed 1975 (Summarized in EERC 75-28)

- EERC 75-19 "The Seismic Behavior of Critical Regions of Reinforced Concrete Components as Influenced by Moment, Shear and Axial Force," by M.B. Atalay and J. Penzien - 1975 (PE 258 842)All
- EERC 75-20 "Dynamic Properties of an Eleven Story Masonry Building," by R.M. Stephen, J.P. Hollings, J.G. Bouwkamp and D. Jurukovski - 1975 (PB 246 945)A04
- EERC 75-21 "State-of-the-Art in Seismic Strength of Masonry An Evaluation and Review," by R.L. Mayes and R.W. Clough 1975 (PB 249 040)A07
- EERC 75-22 "Frequency Dependent Stiffness Matrices for Viscoelastic Half-Plane Foundations," by A.K. Chopra, P. Chakrabarti and G. Dasgupta 1975 (PB 248 121)A07
- EERC 75-23 "Hysteretic Behavior of Reinforced Concrete Framed Walls," by T.Y. Wong, V.V. Bertero and E.P. Popov 1975
- EERC 75-24 "Testing Facility for Subassemblages of Frame-Wall Structural Systems," by V.V. Bertero, E.P. Popov and T. Endo 1975
- EERC 75-25 "Influence of Seismic History on the Liquefaction Characteristics of Sands," by H.B. Seed, K. Mori and C.K. Chan 1975 (Summarized in EERC 75-28)
- EERC 75-26 "The Generation and Dissipation of Pore Water Pressures during Soil Liquefaction," by H.B. Seed, P.P. Martin and J. Lysmer - 1975 (PB 252 648)A03
- EERC 75-27 "Identification of Research Needs for Improving Aseismic Design of Building Structures," by V.V. Bertero 1975 (PB 248 136)A05
- EERC 75-28 "Evaluation of Soil Liquefaction Potential during Earthquakes," by H.B. Seed, I. Arango and C.K. Chan-1975 (NUREG 0026)A13
- EERC 75-29 "Representation of Irregular Stress Time Histories by Equivalent Uniform Stress Series in Liquefaction Analyses," by H.B. Seed, I.M. Idriss, F. Makdisi and N. Banerjee - 1975 (PB 252 635)A03
- EERC 75-30 "FLUSH A Computer Program for Approximate 3-D Analysis of Soil-Structure Interaction Problems," by J. Lysmer, T. Udaka, C.-F. Tsai and H.B. Seed 1975 (PB 259 332)A07
- EERC 75-31 "ALUSH A Computer Program for Seismic Response Analysis of Axisymmetric Soil-Structure Systems," by E. Berger, J. Lysmer and H.B. Seed 1975
- EERC 75-32 "TRIP and TRAVEL Computer Programs for Soil-Structure Interaction Analysis with Horizontally Travelling Waves," by T. Udaka, J. Lyomer and H.B. Seed 1975
- EERC 75-33 "Predicting the Performance of Structures in Regions of High Seismicity," by J. Penzien 1975 (PB 248 130)A03
- EERC 75-34 "Efficient Finite Element Analysis of Seismic Structure Soil Direction," by J. Lysmer, H.B. Seed, T. Udaka, R.N. Hwang and C.-F. Tsai - 1975 (PB 253 570)A03
- EERC 75-35 "The Dynamic Behavior of a First Story Girder of a Three-Story Steel Frame Subjected to Earthquake Loading," by R.W. Clough and L.-Y. Li - 1975 (PB 248 841)A05
- EERC 75-36 "Earthquake Simulator Study of a Steel Frame Structure, Volume II Analytical Results," by D.T. Tang 1975 (PB 252 926)AlO
- EERC 75-37 "ANSR-I General Purpose Computer Program for Analysis of Non-Linear Structural Response," by D.P. Mondkar and G.H. Powell - 1975 (PB 252 386)A08
- EERC 75-38 "Nonlinear Response Spectra for Probabilistic Scismic Design and Damage Assessment of Reinforced Concrete Structures," by M. Murakami and J. Penzien 1975 (PB 259 530)A05
- EERC 75-39 "Study of a Method of Feasible Directions for Optimal Elastic Design of Frame Structures Subjected to Earthquake Loading," by N.D. Walker and K.S. Pister - 1975 (PB 257 781)A06
- EERC 75-40 "An Alternative Representation of the Elastic-Viscoelastic Analogy," by G. Dasgupta and J.L. Sackman 1975 (PB 252 173)A03
- EERC 75-41 "Effect of Multi-Directional Shaking on Liquefaction of Sands," by H.B. Seed, R. Pyke and G.R. Martin 1975 (PB 258 781)A03
- EERC 76-1 "Strength and Ductility Evaluation of Existing Low-Rise Reinforced Concrete Buildings Screening Method," by T. Okada and B. Bresler 1976 (PB 257 906)All
- EERC 76-2 "Experimental and Analytical Studies on the Hysteretic Behavior of Reinforced Concrete Rectangular and T-Beams," by S.-Y.M. Ma, E.P. Popov and V.V. Bertero 1976 (PB 260 843)Al2
- EERC 76-3 "Dynamic Behavior of a Multistory Triangular-Shaped Building," by J. Petrovski, R.M. Stephen, E. Gartenbaum and J.G. Bouwkamp - 1976 (PB 273 279)A07
- EERC 76-4 "Earthquake Induced Deformations of Earth Dams," by N. Serff, H.B. Seed, F.I. Makdisi & C.-Y. Chang 1976 (PB 292 065)A08

- 278
- EERC 76-5 "Analysis and Design of Tube-Type Tall Building Structures," by H. de Clercq and G.H. Powell 1976 (PB 252 220) Alo
- EERC 76-6 "Time and Frequency Domain Analysis of Three-Dimensional Ground Motions, San Fernando Earthquake," by T. Kubo and J. Penzien (PB 260 556)All
- EERC 76-7 "Expected Performance of Uniform Building Code Design Masonry Structures," by R.L. Mayes, Y. Omote, S.W. Chen and R.W. Clough - 1976 (PB 270 098)A05
- EERC 76-8 "Cyclic Shear Tests of Masonry Piers, Volume 1 Test Results," by R.L. Mayes, Y. Omote, R.W. Clough - 1976 (PB 264 424)A06
- EERC 76-9 "A Substructure Method for Earthquake Analysis of Structure Soil Interaction," by J.A. Gutierrez and A.K. Chopra 1976 (PB 257 783)A08
- EERC 76-10 "Stabilization of Potentially Liquefiable Sand Deposits using Gravel Drain Systems," by H.B. Seed and J.R. Booker-1976 (PB 258 820)A04
- EERC 76-11 "Influence of Design and Analysis Assumptions on Computed Inelastic Response of Moderately Tall Frames," by G.H. Powell and D.G. Row 1976 (PB 271 409)A06
- EERC 76-12 "Sensitivity Analysis for Hysteretic Dynamic Systems: Theory and Applications," by D. Ray, K.S. Pister and E. Polak 1976 (PB 262 859)A04
- EERC 76-13 "Coupled Lateral Torsional Response of Buildings to Ground Shaking," by C.L. Kan and A.K. Chopra-1976 (PB 257 907)A09
- EERC 76-14 "Seismic Analyses of the Banco de America," by V.V. Bertero, S.A. Mahin and J.A. Hollings 1976
- EERC 76-15 "Reinforced Concrete Frame 2: Seismic Testing and Analytical Correlation," by R.W. Clough and J. Gidwani 1976 (PB 261 323)A08
- EERC 76-16 "Cyclic Shear Tests of Masonry Piers, Volume 2 Analysis of Test Results," by R.L. Mayes, Y. Omote and R.W. Clough - 1976
- EERC 76-17 "Structural Steel Bracing Systems: Behavior Under Cyclic Loading," by E.P. Popov, K. Takanashi and C.W. Roeder 1976 (PB 260 715)A05
- EERC 76-18 "Experimental Model Studies on Seismic Response of High Curved Overcrossings," by D. Williams and W.G. Godden 1976 (PB 269 548)A08
- EERC 76-19 "Effects of Non-Uniform Seismic Disturbances on the Dumbarton Bridge Replacement Structure," by F. Baron and R.E. Hamati 1976 (PB 282 981)Al6
- EERC 76-20 "Investigation of the Inelastic Characteristics of a Single Story Steel Structure Using System Identification and Shaking Table Experiments," by V.C. Matzen and H.D. McNiven - 1976 (PB 258 453)A07
- EERC 76-21 "Capacity of Columns with Splice Imperfections," by E.P. Popov, R.M. Stephen and R. Philbrick 1976 (PB 260 378)A04
- EERC 76-22 "Response of the Olive View Hospital Main Building during the San Pernando Earthquake," by S. A. Mahin, V.V. Bertero, Λ.Κ. Chopra and R. Collins - 1976 (PB 271 425)A14
- EERC 76-23 "A Study on the Major Factors Influencing the Strength of Masonry Prisms," by N.M. Mostaghel, R.L. Mayes, R. W. Clough and S.W. Chen 1976 (Not published)
- EERC 76-24 "GADFLEA A Computer Program for the Analysis of Pore Pressure Generation and Dissipation during Cyclic or Earthquake Loading," by J.R. Booker, M.S. Rahman and H.B. Seed - 1976 (PB 263 947)A04
- EERC 76-25 "Seismic Safety Evaluation of a R/C School Building," by B. Bresler and J. Axley 1976
- EERC 76-26 "Correlative Investigations on Theoretical and Experimental pynamic Behavior of a Model Bridge Structure," by K. Kawashima and J. Penzien 1976 (PB 263 388)All
- EERC 76-27 "Earthquake Response of Coupled Shear Wall Buildings," by T. Srichatrapimuk 1976 (PB 265 157)A07
- EERC 76-28 "Tensile Capacity of Partial Penetration Welds," by E.P. Popov and R.M. Stephen 1976 (PB 262 899)A03
- EERC 76-29 "Analysis and Design of Numerical Integration Methods in Structural Dynamics," by H.M. Hilber 1976 (PB 264 410)A06
- EERC 76-30 "Contribution of a Floor System to the Dynamic Characteristics of Reinforced Concrete Buildings," by L.F. Malik and V.V. Bertero 1976 (FB 272 247)Al3
- EERC 76-31 "The Effects of Seismic Disturbances on the Golden Gate Bridge," by F. Baron, M. Arikan and R.E. Hamati 1976 (PB 272 279)A09
- EERC 76-32 "Infilled Frames in Earthquake Resistant Construction," by R.E. Klingner and V.V. Bertero 1976 (PB 265 892)Al3

- UCB/EERC-77/01 "PLUSH A Computer Program for Probabilistic Finite Element Analysis of Seismic Soil-Structure Interaction," by M.P. Romo Organista, J. Lysmer and H.B. Seed - 1977
- UCB/EERC-77/02 "Soil-Structure Interaction Effects at the Humboldt Bay Power Plant in the Ferndale Earthquake of June 7, 1975," by J.E. Valera, H.B. Seed, C.F. Tsai and J. Lysmer 1977 (PB 265 795)A04
- UCB/EERC-77/03 "Influence of Sample Disturbance on Sand Response to Cyclic Loading," by K. Mori, H.B. Seed and C.K. Chan - 1977 (PB 267 352)A04
- UCB/EERC-77/04 "Seismological Studies of Strong Motion Records," by J. Shoja-Taheri 1977 (PB 269 655)A10
- UCB/EERC-77/05 "Testing Facility for Coupled-Shear Walls," by L. Li-Hyung, V.V. Bertero and E.P. Popov 1977
- UCB/EERC-77/06 "Developing Methodologies for Evaluating the Earthquake Safety of Existing Buildings," by No. 1 -B. Bresler; No. 2 - B. Bresler, T. Okada and D. Zisling; No. 3 - T. Okada and B. Bresler; No. 4 - V.V. Bertero and B. Bresler - 1977 (PB 267 354)A08
- UCB/EERC-77/07 "A Literature Survey Transverse Strength of Masonry Walls," by Y. Omote, R.L. Mayes, S.W. Chen and R.W. Clough 1977 (PB 277 933)A07
- UCB/EERC-77/08 "DRAIN-TABS: A Computer Program for Inelastic Earthquake Response of Three Dimensional Buildings," by R. Guendelman-Israel and C.H. Powell ~ 1977 (PB 270 693)A07
- UCB/EERC-77/09 "SUBWALL: A Special Purpose Finite Element Computer Program for Practical Elastic Analysis and Design of Structural Walls with Substructure Option," by D.Q. Le, H. Peterson and E.P. Popov - 1977 (PB 270 567)A05
- UCB/EERC-77/10 "Experimental Evaluation of Seismic Design Methods for Broad Cylindrical Tanks," by D.P. Clough (PB 272 280)Al3
- UCB/EERC-77/11 "Earthquake Engineering Research at Berkeley 1976," 1977 (FB 273 507)A09
- UCB/EERC-77/12 "Automated Design of Earthquake Resistant Multistory Steel Building Frames," by N.D. Walker, Jr. 1977 (PB 276 526)A09
- UCB/EERC-77/13 "Concrete Confined by Rectangular Hoops Subjected to Axial Loads," by J. Vallenas, V.V. Bertero and E.P. Popov 1977 (PB 275 165)A06
- UCB/EERC-77/14 "Seismic Strain Induced in the Ground During Earthquakes," by Y. Sugimura 1977 (PB 284 201)A04
- UCB/EERC-77/15 "Bond Deterioration under Generalized Loading," by V.V. Bertero, E.P. Popov and S. Viwathanatepa 1977
- UCB/EERC-77/16 "Computer Aided Optimum Design of Ductile Reinforced Concrete Moment Resisting Frames," by S.W. Zagajeski and V.V. Bertero - 1977 (PB 280 137)A07
- UCB/FERC-77/17 "Earthquake Simulation Testing of a Stepping Frame with Energy-Absorbing Devices," by J.M. Kelly and D.F. Tsztoo 1977 (PR 273 506)A04
- UCB/EERC-77/18 "Inelastic Behavior of Eccentrically Braced Steel Frames under Cyclic Loadings," by C.W. Roeder and E.P. Popov - 1977 (PB 275 526)Al5
- UCB/EERC-77/19 "A Simplified Procedure for Estimating Earthquake-Induced Deformations in Dams and Embankments," by F.I. Makdisi and H.B. Seed - 1977 (PB 276 820)A04
- UCB/EERC-77/20 "The Performance of Earth Dams during Earthquakes," by H.B. Seed, F.I. Makdisi and P. de Alba 1977 (PB 276 821)A04
- UCB/EERC-77/21 "Dynamic Plastic Analysis Using Stress Resultant Finite Element Formulation," by P. Lukkunapvasit and J.M. Kelly 1977 (PB 275 453)A04
- UCB/EERC-77/22 "Preliminary Experimental Study of Seismic Uplift of a Steel Frame," by R.W. Clough and A.A. Huckelbridge 1977 (PB 278 769)A08
- UCB/FERC-77/23 "Earthquake Simulator Tests of a Nine-Story Steel Frame with Columns Allowed to Uplift," by A.A. Huckelbridge - 1977 (PB 277 944)A09
- UCB/EERC-77/24 "Nonlinear Soil-Structure Interaction of Skew Highway Bridges," by M.-C. Chen and J. Penzien 1977 (PB 276 176)A07
- UCB/EERC-77/25 "Seismic Analysis of an Offshore Structure Supported on Pile Foundations," by D.D.-N. Liou and J. Penzien 1977 (PB 283 180)A06
- UCB/EERC-77/26 "Dynamic Stiffness Matrices for Homogeneous Viscoelastic Half-Planes," by G. Dasgupta and A.K. Chopra -1977 (PB 279 654)A06
- UCB/FERC-77/27 "A Practical Soft Story Earthquake Isolation System," by J.M. Kelly, J.M. Eidinger and C.J. Derham -1977 (PB 276 814)A07
- UCB/EERC-77/28 "Seismic Safety of Existing Buildings and Incentives for Hazard Mitigation in San Francisco: An Exploratory Study," by A.J. Meltsner - 1977 (PB 281 970)A05
- UCB/EERC-77/29 "Dynamic Analysis of Electrohydraulic Shaking Tables," by D. Rea, S. Abedi-Hayati and Y. Takahashi 1977 (PB 282 569)A04
- UCB/EERC-77/30 "An Approach for Improving Seismic Resistant Behavior of Reinforced Concrete Interior Joints," by B. Galunic, V.V. Bertero and E.P. Popov - 1977 (PB 290 870)A06

UCB/EERC-78/01	"The Development of Energy-Absorbing Devices for Aseismic Base Isolation Systems," by J.M. Kelly and D.F. Tsztoo - 1978 (PB 284 978)A04
UCB/EERC-78/02	"Effect of Tensile Prestrain on the Cyclic Response of Structural Steel Connections, by J.G. Bouwkamp and A. Mukhopadhyay - 1978
UCB/EERC-78/03	"Experimental Results of an Earthquake Isolation System using Natural Rubber Bearings," by J.M. Eidinger and J.M. Kelly - 1978 (PB 281 686)A04
UCB/EERC-78/04	"Seismic Behavior of Tall Liquid Storage Tanks," by A. Niwa - 1978 (PB 284 017)Al4
UCB/EERC-78/05	"Hysteretic Behavior of Reinforced Concrete Columns Subjected to High Axial and Cyclic Shear Forces," by S.W. Zagajeski, V.V. Bertero and J.G. Bouwkamp - 1978 (PB 283 858)Al3
UCB/EERC-78/06	"Inelastic Beam-Column Elements for the ANSR-I Program," by A. Riahi, D.G. Row and G.H. Powell - 1978
UCB/EERC-78/07	"Studies of Structural Response to Earthquake Ground Motion," by O.A. Lopez and A.K. Chopra – 1978 (PB 282 790)A05
UCB/EERC-78/08	"A Laboratory Study of the Fluid-Structure Interaction of Submerged Tanks and Caissons in Earthquakes," by R.C. Byrd - 1978 (PB 284 957)A08
UCB/EERC-78/09	"Model for Evaluating Damageability of Structures," by I. Sakamoto and B. Bresler - 1978
UCB/EERC-78/10	"Seismic Performance of Nonstructural and Secondary Structural Elements," by I. Sakamoto - 1978
UCB/EERC-78/11	"Mathematical Modelling of Hysteresis Loops for Reinforced Concrete Columns," by S. Nakata, T. Sproul and J. Penzien - 1978
UCB/EERC-78/12	"Damageability in Existing Buildings," by T. Elejwas and B. Bresler - 1978
UCB/EERC-78/13	"Dynamic Behavior of a Pedestal Base Multistory Building," by R.M. Stephen, E.L. Wilson, J.G. Bouwkamp and M. Button - 1978 (PB 286 650)A08
UCB/EERC-78/14	"Seismic Response of Bridges - Case Studies," by R.A. Imbsen, V. Nutt and J. Penzien - 1978 (PB 286 503)AlO
UCB/EERC-78/15	"A Substructure Technique for Nonlinear Static and Dynamic Analysis," by D.G. Row and G.H. Powell - 1978 (PB 288 077)Al0
UCB/EERC-78/16	"Seismic Risk Studies for San Francisco and for the Greater San Francisco Bay Area," by C.S. Oliveira - 1978
UCB/EERC-78/17	"Strength of Timber Roof Connections Subjected to Cyclic Loads," by P. Gülkan, R.L. Mayes and R.W. Clough - 1978
UCB/EERC-78/18	"Response of K-Braced Steel Frame Models to Lateral Loads," by J.G. Bouwkamp, R.M. Stephen and E.P. Popov - 1978
UCB/EERC-78/19	"Rational Design Methods for Light Equipment in Structures Subjected to Ground Motion," by J.L. Sackman and J.M. Kelly - 1978 (PB 292 357)A04
UCB/EERC-78/20	"Testing of a Wind Restraint for Aseismic Base Isolation," by J.M. Kelly and D.E. Chitty - 1978 (PB 292 833)A03
UCB/EERC-78/21	"APOLLO - A Computer Program for the Analysis of Pore Pressure Generation and Dissipation in Horizontal Sand Layers During Cyclic or Earthquake Loading," by P.P. Martin and H.B. Seed - 1978 (PB 292 835)AO4
UCB/EERC-78/22	"Optimal Design of an Earthquake Tsolation System," by M.A. Bhattí, K.S. Pister and E. Polak - 1978 (PB 294 735)A06
UCB/EERC-78/23	"MASH - A Computer Program for the Non-Linear Analysis of Vertically Propagating Shear Waves in Horizontally Layered Deposits," by P.P. Martin and H.B. Seed - 1978 (PB 293 101)A05
UCB/EERC-78/24	"Investigation of the Elastic Characteristics of a Three Story Steel Frame Using System Identification," by I. Kaya and H.D. McNiven - 1978
UCB/FERC-78/25	"Investigation of the Nonlinear Characteristics of a Three-Story Steel Frame Using System Identification," by I. Kaya and H.D. McNivgn + 1978
UCB/BERC-78/26	"Studies of Strong Ground Motion in Taiwan," by Y.M. Hsiung, B.A. Bolt and J. Penzien - 1978
UCB/EERC-78/27	"Cyclic Loading Tests of Masonry Single Piers: Volume 1 - Height to Width Ratio of 2," by P.A. Hidalgo, R.L. Mayes, H.D. McNiven and R.W. Clough - 1978

UCB/EERC-78/28 "Cyclic Loading Tests of Masonry Single Piers: Volume 2 - Height to Width Ratio of 1," by S.-W.J. Chen, P.A. Hidalgo, R.L. Mayes, R.W. Clough and H.D. McNiven - 1978

UCB/EERC-78/29 "Analytical Procedures in Soil Dynamics," by J. Lysmer - 1978

- UCB/EERC-79/01 "Hysteretic Behavior of Lightweight Reinforced Concrete Beam-Column Subassemblages," by B. Forzani, E.P. Popov, and V.V. Bertero - 1979
- UCB/EERC-79/02 "The Development of a Mathematical Model to Predict the Flexural Response of Reinforced Concrete Beams to Cyclic Loads, Using System Identification," by J.F. Stanton and H.D. McNiven - 1979
- UCB/EERC-79/03 "Linear and Nonlinear Earthquake Response of Simple Torsionally Coupled Systems," by C.L. Kan and A.K. Chopra - 1979
- UCB/EERC-79/04 "A Mathematical Model of Masonry for Predicting Its Linear Seismic Response Characteristics," by Y. Mengi and H.D. McNiven - 1979
- UCB/EERC-79/05 "Mechanical Behavior of Lightweight Concrete Confined by Different Types of Lateral Reinforcement," by M.A. Manrique, V.V. Bertero and E.P. Popov - 1979
- UCB/EERC-79/06 "Static Tilt Tests of a Tall Cylindrical Liquid Storage Tank," by R.W. Clough and A. Niwa - 1979
- UCB/EERC-79/07 "The Design of Steel Energy Absorbing Restrainers and Their Incorporation Into Nuclear Power Plants for Enhanced Safety: Volume 1 - Summary Report," by P.N. Spencer, V.F. Zackay, and E.R. Parker - 1979
- UCB/EERC-79/08 "The Design of Steel Energy Absorbing Restrainers and Their Incorporation Into Nuclear Power Plants for Enhanced Safety: Volume 2 - The Development of Analyses for Reactor System Piping," "Simple Systems" by M.C. Lee, J. Penzien, A.K. Chopra, and K. Suzuki "Complex Systems" by G.H. Powell, E.L. Wilson, R.W. Clough and D.G. Row - 1979
- UCB/EERC-79/09 "The Design of Steel Energy Absorbing Restrainers and Their Incorporation Into Nuclear Power Plants for Enhanced Safety: Volume 3 - Evaluation of Commerical Steels," by W.S. Owen, R.M.N. Pelloux, R.O. Ritchie, M. Faral, T. Ohhashi, J. Toplosky, S.J. Hartman, V.F. Zackay, and E.R. Parker - 1979
- UCB/EERC-79/10 "The Design of Steel Energy Absorbing Restrainers and Their Incorporation Into Nuclear Power Plants for Enhanced Safety: Volume 4 - A Review of Energy-Absorbing Devices," by J.M. Kelly and M.S. Skinner - 1979
- UCB/EERC-79/11 "Conservatism In Summation Rules for Closely Spaced Modes," by J.M. Kelly and J.L. Sackman - 1979

- UCB/EERC-79/12 "Cyclic Loading Tests of Masonry Single Piers Volume 3 - Height to Width Ratio of 0.5," by P.A. Hidalgo, R.L. Mayes, H.D. McNiven and R.W. Clough - 1979
- UCB/EERC-79/13 "Cyclic Behavior of Dense Coarse-Grained Materials in Relation to the Seismic Stability of Dams," by N.G. Banerjee, H.B. Seed and C.K. Chan - 1979
- UCB/EERC-79/14 "Seismic Behavior of Reinforced Concrete Interior Beam-Column Subassemblages," by S. Viwathanatepa, E.P. Popov and V.V. Bertero - 1979
- UCB/EERC-79/15 "Optimal Design of Localized Nonlinear Systems with Dual Performance Criteria Under Earthquake Excitations," by M.A. Bhatti - 1979
- UCB/EERC-79/16 "OPTDYN A General Purpose Optimization Program for Problems with or without Dynamic Constraints," by M.A. Bhatti, E. Polak and K.S. Pister - 1979
- UCB/EERC-79/17 "ANSR-II, Analysis of Nonlinear Structural Response, Users Manual," by D.P. Mondkar and G.H. Powell - 1979
- UCB/EERC-79/18 "Soil Structure Interaction in Different Seismic Environments," A. Gomez-Masso, J. Lysmer, J.-C. Chen and H.B. Seed - 1979
- UCB/EERC-79/19 "ARMA Models for Earthquake Ground Motions," by M.K. Chang, J.W. Kwiatkowski, R.F. Nau, R.M. Oliver and K.S. Pister - 1979
- UCB/EERC-79/20 "Hysteretic Behavior of Reinforced Concrete Structural Walls," by J.M. Vallenas, V.V. Bertero and E.P. Popov - 1979
- UCB/EERC-79/21 "Studies on High-Frequency Vibrations of Buildings I: The Column Effects," by J. Lubliner - 1979
- UCB/EERC-79/22 "Effects of Generalized Loadings on Bond Reinforcing Bars Embedded in Confined Concrete Blocks," by S. Viwathanatepa, E.P. Popov and V.V. Bertero - 1979
- UCB/EERC-79/23 "Shaking Table Study of Single-Story Masonry Houses, Volume 1: Test Structures 1 and 2," by P. Gülkan, R.L. Mayes and R.W. Clough - 1979
- UCB/EERC-79/24 "Shaking Table Study of Single-Story Masonry Houses, Volume 2: Test Structures 3 and 4," by P. Gulkan, R.L. Mayes and R.W. Clough - 1979
- UCB/EERC-79/25 "Shaking Table Study of Single-Story Masonry Houses, Volume 3: Summary, Conclusions and Recommendations," by R.W. Clough, R.L. Mayes and P. Gülkan - 1979

- UCB/EERC-79/26 "Recommendations for a U.S.-Japan Cooperative Research Program Utilizing Large-Scale Testing Facilities," by U.S.-Japan Planning Group - 1979
- UCB/EERC-79/27 "Earthquake-Induced Liquefaction Near Lake Amatitlan, Guatemala," by H.B. Seed, I. Arango, C.K. Chan, A. Gomez-Masso and R. Grant de Ascoli - 1979
- UCB/EERC-79/28 "Infill Panels: Their Influence on Seismic Response of Buildings," by J.W. Axley and V.V. Bertero - 1979
- UCB/EERC-79/29 "3D Truss Bar Element (Type 1) for the ANSR-II Program," by D.P. Mondkar and G.H. Powell - 1979
- UCB/EERC-79/30 "2D Beam-Column Element (Type 5 Parallel Element Theory) for the ANSR-II Program," by D.G. Row, G.H. Powell and D.P. Mondkar
- UCB/EERC-79/31 "3D Beam-Column Element (Type 2 Parallel Element Theory) for the ANSR-II Program," by A. Riahi, G.H. Powell and D.P. Mondkar - 1979
- UCB/EERC-79/32 "On Response of Structures to Stationary Excitation," by A. Der Kiureghian - 1979
- UCB/EERC-79/33 "Undisturbed Sampling and Cyclic Load Testing of Sands," by S. Singh, H.B. Seed and C.K. Chan - 1979
- UCB/EERC-79/34 "Interaction Effects of Simultaneous Torsional and Compressional Cyclic Loading of Sand," by P.M. Griffin and W.N. Houston ~ 1979
- UCB/EERC-80/01 "Earthquake Response of Concrete Gravity Dams Including Hydrodynamic and Foundation Interaction Effects," by A.K. Chopra, P. Chakrabarti and S. Gupta - 1980
- UCB/EERC-80/02 "Rocking Response of Rigid Blocks to Earthquakes," by C.S. Yim, A.K. Chopra and J. Penzien - 1980
- UCB/EERC-80/03 "Optimum Inelastic Design of Seismic-Resistant Reinforced Concrete Frame Structures," by S.W. Zagajeski and V.V. Bertero - 1980
- UCB/EERC-80/04 "Effects of Amount and Arrangement of Wall-Panel Reinforcement on Hysteretic Behavior of Reinforced Concrete Walls," by R. Iliya and V.V. Bertero - 1980
- UCB/EERC-80/05 "Shaking Table Research on Concrete Dam Models," by R.W. Clough and A. Niwa - 1980
- UCB/EERC-80/06 "Piping With Energy Absorbing Restrainers: Parameter Study on Small Systems," by G.H. Powell, C. Oughourlian and J. Simons - 1980

UCB/EERC-80/07	"Inelastic Torsional Response of Structures Subjected to Earthquake Ground Motions," by Y. Yamazaki - 1980
UCB/EERC-80/08	"Study of X-Braced Steel Frame Structures Under Earthquake Simulation," by Y. Ghanaat - 1980
UCB/EERC-80/09	"Hybrid Modelling of Soil-Structure Interaction," by S. Gupta, T.W. Lin, J. Penzien and C.S. Yeh - 1980
UCB/EERC-80/10	"General Applicability of a Nonlinear Model of a One Story Steel Frame," by B.I. Sveinsson and H. McNiven - 1980
UCB/EERC-80/11	"A Green-Function Method for Wave Interaction with a Submerged Body," by W. Kioka - 1980
UCB/EERC-80/12	"Hydrodynamic Pressure and Added Mass for Axisymmetric Bodies," by F. Nilrat - 1980
UCB/EERC-80/13	"Treatment of Non-Linear Drag Forces Acting on Offshore Platforms," by B.V. Dao and J. Penzien - 1980
UCB/EERC-80/14	"2D Plane/Axisymmetric Solid Element (Type 3 - Elastic or Elastic-Perfectly Plastic) for the ANSR-II Program," by D.P. Mondkar and G.H. Powell - 1980
UCB/EERC-80/15	"A Response Spectrum Method for Random Vibrations," by A. Der Kiureghian - 1980
UCB/EERC-80/16	"Cyclic Inelastic Buckling of Tubular Steel Braces," by V.A. Zayas, E.P. Popov and S.A. Mahin - June 1980
UCB/EERC-80/17	"Dynamic Response of Simple Arch Dams Including Hydrodynamic Interaction," by C.S. Porter and A.K. Chopra - July 1980