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CHAPTER 1
INTRODUCTION

1.1 Statement of the Soil-Structure Interaction Problem

A soil-structure interaction problem arises when one seeks to re-
Tax the rigid groﬁnd assumption in a conventional seismic analysis.
Major effects of the interaction are flexibility arising from soil
compliance and an energy feedback in the form of wave propagation into
the soil during vibrations of the structure under investigation. It
is especially important to consider interaction effects for massive,
stiff, and lightly damped structures. When inelastic deformations of
structure occur, the soil-structure interaction effects are expected to
be of less siﬁnificance.

The objective of this investigation is to develop a method for a
simple extension of the response-spectrum procedures in seismic bui!df
ing analysis to include dynamic soil-structure interaction. This solu-
tion method stems from the so-called impedance approach, which will be
explained later. It is intended to permit the design engineer to in-
clude the interaction effects in the kind of seismic analysis with
which he is familiar.

The problem of accounting for soil-structure interaction was
formulated by Seed, Whitman, and Lysmer (1977)* as follows: Given the

earthquake ground motions that would occur on the surface of the ground

* Names followed by dates of publication in parentheses refer to the
entries in the List of References at end of the text proper.
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if the structure were not present (the so-called control, design, or
free-field motions), find the dynamic response of the structure. The
soil-structure interaction effects, however, should not be confused with
the so-called site effects or the effects of the development of unstable
soil conditions such as soil liquefaction or excessive settlements. The
site effects refer to the fact that the characteristics of the free-
field ground motions depend on the properties of a selected site;
whereas the interaction effects refer to the fact that the dynamic
response of a structure built on that site depends on both the character-
istics of the free-field ground motions and the interrelationship of the
structural characteristics and the properties of the underlying soil
deposits (Veletsos, 1977).

Since the characteristics of the actual free-field motions of the
"next" earthquake are never known in a deterministic sense, implicit
in the problem is, then, a statistical specification of ground motions.
As mentioned, another factor affecting the soil-structure interaction
is the (generally nonlinear) characteristics of the soil in the earth-
quake environment. The determination of these soil properties is not
an easy task. In addition, a sensitivity analysis covering ranges of
soil properties is always necessary for engineering purposes, regardless
of the method of analysis used. Thus, thé soil-structure interaction
problem is a nonlinear problem of a three-dimensional, infinite degree-
of-freedom system subjected to nondeterministic transient disturbances.

It is not surprising that such a complex problem as soil-structure
interaction has been one of the most discussed and controversial problems

in seismic analysis (e.g. Ad Hoc Group, 1979; Hadjian, 1976; Hall and



3

Kissenpfenning, 1976; Whitman, 1975; Hadjian, Luco, and Tsai, 1974).
One reason for this controversy is that even the most refined analyses
possible today fail to provide conclusive solutions. Two simplified
methods of approgch, namely the so-called finite element approach and
the impedance approach, are prominent in the literature. Depending on
the problem at hand both approaches are valuable and necessary. For
instance, no one would expect the impedance approach to give infor-
mation about liquefaction of the soil under a building. However, in
many cases, the simple impedance approach permits a good engineering

approximation of the soil-structure interaction effects.

1.2 Finite Element Approach

As noted by Desai and Abel (1972), the term "finite element method"
was first used by Clough (1960). Among many other applications, finite
elements have been applied to model the soil in a soil-structure inter-
action problem (e.g. Lysmer, 1979; Gomez-Masso, Lysmer, Chen, and Seed,
1979; Lysmer, Udaka, Tsai, and Seed,1975). Usually, a large mass of
the soil near the structure is discretized by two-dimensional pTéin-
strain elements or axisymmetric solid elements. The design motions de-
fined at one point on the ground are first assumed to be identical
over the ground surface and then deconvoluted vertically downward by
the theory of one-dimensional wave propagation in order to generate
corresponding motions at the horizontal base of the soil model which
is assumed to be rigid. Finally, the corresponding base motions are
used as input motions to idealized soil-structure model. The assumption
of one-dimensional wave propagation over a long distance is, of

course, questionable.
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Frequently, the nﬁmber of degrees of freedom for the soil model
far exceeds that for the structure which is the real subject of the in-
vestigation. Thus the overall efficiency of this type of approach may
be very poor (Clough and Penzien, 1975). Indeed, it is very costly,
if not impossible, to carry out a nonlinear time-history analysis, a
statistical analysis considering design motions, or a sensitivity

analysis covering ranges of soil properties,

1.3 Impedance Approach

In the impedance approach, the foundation of the structure is
assumed to be rigid. The rigid foundation has, of course, only a few
degrees of freedom. The supporting soil is regarded as a half space
of a Tinear solid which may be both viscoelastic and nonhomogeneous
(Luco, 1976). Soil impedance functions (force-displacement relation-
ships) for the foundation are found to be frequency dependent. Numerical
values of these functions for a variety of cases have been given in the
literature in recent years (e.g. Veletsos and Wei, 1971; Luco and Westmamn,
1971; Veletsos and Verbic, 1973; Wong, 1975; Luco, 1976; Kausel and
Ushijima, 1979). Approximations taking into account the effects of non-
linearity of soil properties have also been given in the literature
(Veletsos, 1977; ATC-3 Code, 1978; Rosset, Whitmann, and Dobry, 1973).

Since soil compliance contributes no more than six degrees of
freedom to a soil-structure model, a frequency domain analysis can be
used more efficiently than the finite element approach does. The
frequency domain analysis, however, fail to provide physical insight to

the interaction effects, as compared to a time-domain modal analysis
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conventionally used for the case of rigid soil. In computation, the fre-
quency domain ana]ysfs requires solving a set of simultaneous linear
algebraic equation for each selected value of frequency. Also, it is
usually necessary to select an important range of frequency in order to
carry out computations.

Some simple mechanical system with frequency independent properties
have been used to approximate impedance functions over a limited and
important range of frequency (e.g., Newmark and Rosenblueth, 1971;
Richert, Hall, and Woods, 1970; Whitman and Richart, 1967). This type
of approximation will be discussed in more detail in Section 4.4.

Using this approximation, a linear elastic soi]—st}ucture model with

constant parameters can be constructed. An important consequence of

this 1s_that a time domain analysis can be performed. Various time-

domain solution methods suggested in the literature will be reviewed

in Section 1.5. The solution method prdposed here is also a time-do-
main analysis.

Some aspects of the impedance approach should be noted here. Even
if the structure investigated were massless, the foundation of the
structure would not experience a motion identical to the free field
ground motion. In other words, the size and rigidity of the foundation
modifies the high-frequency part of excitations due to actual spatial
variation of the free field ground motion. (Hall, Morgan, and Newmark,

1978). This phenomenon is called "kinematic soil-structure interaction"*

* This name is not an especially fortunate choice. The stiffness of the
foundation is important here. Only for a rigid foundation is the term
"kinematic" especially helpful.
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(Kausel, Whitman, Morray, and Elsabee, 1978), and is distinct from “dynamic
soil-structure interaction" as defined in the previous paragraphs.

Usually, the effects of kinematic soil-structure interaction are
neglected in practice. This is equivalent to saying that the design
ground motion is some sort of average free-field motion in the immediate
vicinity of the foundation site under consideration (wﬁitman, 1975).
Special engineering judgment must be used when dealing with large structure
and with possible ground motions. exhibiting pronounced high-frequency |
excitations, e.g. nuclear reactor containments subjected to close—in.

earthquakes (Newmark, 1976).

1.4 Objective of the Present Study

As mentioned in Sections 1.1 and 1.3, a solution method will be pro-
posed to improve the current time-domain, elastic analysis using the
impedance approach to the problem of dynamic sojl-structure inter-
;ction. The typical way of modeling for this type of analysis is summarized
as follows. The structure investigated may have a general finite element
idealization. The base of the structure is limited to be a mat founda-
tion, which is assumed to be a rigid body resting on soil modeled by
some mechanical system. This mechanical “soil" system may consist of a
spring, a dashpot, and a mass for each possible degree of freedom of the
rigid foundation of the structure (Newmark and Rosenblueth, 1971). Since
soil deformations are not of primary concern, this type of foundation
impedance representation of the half space can be very useful for
practical purposes.

The basic difficulty encountered in analyzing this type of soil-

structure model relates to the fact that the damping is nonclassical due
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to relatively large dashpots in the soil model representing both materia]
damping of soil and geometric damping (energy feedback into the half
space). In other words, the problem is a nonclassical damping problem,*

In the case of classical damping, the response-spectrum approach
has been regarded as the most reasonable and convenient for elastic
aseismic design (Biggs, Hansen, and Holley, 1977). However, it
has been commented that the response-spectrum approach apparently
could not be applied to a (soi]-structure) system with dampiﬁg coupling
(Clough and Penzien, 1975).

Although the nonclassical damping probiem can be solved using the
so-called nonclassical modal analysis (Foss, 1958), the determination
of the nonclassical modes (see Section 2.2.1) of a general, viscously
damped system requires'a great deal of computational effects (Clough
and Mojtahedi, 1976; Clough and Penzien, 1975).

One main aspect of this investigation is toc develop a method for
a simple extension of the response-spectrum procedure in elastic
seismic analysis to include dynamic soil-structure interaction. -
Another phase of the study seeks to develop an effective and efficient
numerical scheme for computing the nonclassical modes of a soil-structure
system.  The nonclassical mode shapes and frequencies are required in
order tb apply nonclassical modal analysis or a response-spectrum analysis

in the case of nonclassical damping.

* This has been termed "the damping coupling problem” in the literature
(e.g. Clough and Penzien, 1975). Since the presence or absence of coupling
depends on the coordinate system used, this could be confusing. What is
meant, of course, is that in the undamped modal coordinates, damping
coupling is present.
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Some attention will be given to alternatives for approximating
frequency variation of foundation impedances by a simple mechanical
model. Further, the possibility of relaxing the assumption of a

rigid mat will be discussed briefly.

1.5 Previous Sotution Methods

The basic theory for solving the problem of nonclassical damping
was first developed by Routh (1905) in his method of multipliers for
initial value problems. A well-known and elegant solution method for
transient problems is associated with the name of Foss (1958). The Foss
method is a nonclassical modal analysis. As shown in Chapter 2, a small
further step combining the Routh method and Gantmacher's transformation
(Gantmacher, 1960) yields a useful form of solution for transient pro-
blems. The probiem, then, becomes a simple extension of the normal mode
method valid for the case of classical damping.

Since it may require a great deal of efforts to compute the non-
classical modes needed in a nonclassical modal analysis, Clough and
Mojtahedi (1976) suggested solving coupled equations of motion formu-

- lated by a use of the Towest classical modes of an undamped soil-structure
system by direct integration over time history. Applying Foss's method

to the problem of dynamic soil-structure interaction, Jennings and Bielak
(1973) defined a kind of modified excitation.

These two methods as well as the nonclassical modal analysis require
a time history. However, there is no real advantages, in general, in
using a time history analysis as compared with a response-spectrum
approach- for multi-degree-of-freedom systems, unless one is faced:witﬁ an

actual deterministic input (Newmark and Hall, 1977).
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Since the response-spectrum method had not been extended to a pro-
blem with damping coupling (or with nonclassical damping), some simpli-
fied analyses neglected coupling terms in the generalized damping
matrix. Rosset, Whitman, and Dobry {1973) used an undamped mode of a
soil-structure system and calculated for it a weighted damping ratio.
Similar analyses have been done by Novak (1974) and Rainer (1975). How-
ever, there is no indication of when soil-structure interaction need not
be taken into account. In order to examine the effects of interaction
or to carry out a sensitivity analysis covering ranges of soil properties,
the solution of a large eigenvalue problem over and over again may bé
required.

Another simplified method uses the shape of the fundamental mode of
a structure on a fixed base and assigns to it an effective modal damp-
" ing and frequency to ref]ect the effects of interaction (Veletsos,
1977; Bielak, 1976; Jennings and Bielak, 1973). The results of this
approach have been adopted in the Tentative Provisions for the Develop-
ment of Seismic Regulations for Buildings prepared by the Applied Technology
Council (ATC-3 Code, 1978). The studies were carried out for the case of a
shear-beam building with a rigid mat. Caution might be needed when apply-

ing this method to other types of buildings and foundations.

1.6 Organization of the Study

In the first portion of Chapter 2, the general theory of a viscously
damped, dynamic system with constant parameters is presented. This
provides the theoretical basis for the solution method of this study.

An initial value problem is solved using Routh's orthogonality relation
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(Routh, 1905) and Gantamacher's transformation (Gantamacher, 1960). The
problem is then generalized to a transient problem. This theory for non-
classical modal analysis turns out to be a logical extension of the classical
modal analysis.

The useful form of solution suggests an extension of the response-
spectrum procedures to the case of nonclassical damping. A description
of possible approximations for this extension is then presented in the
remaining part of Chapter 2.

In Chapter 3, a general numerical scheme is developed for computing
nonclassical modes by an iterative method.

The general numerical scheme is applied specifically to the problem
of dynamic soil-structure interaction in the first portion of Chapter 4.

A method is proposed for an effective and efficient computation of the
nonclassizal modes of a soil-structure system starting from the classical
modes of the structure with its base fixed. _

The remaining part of Chapter 4 shows how the modeling technique
of the soil and a founcation can be further improved. Some attention is
given to alternatives for approximating the frequency variation of the
foundation impedances by a simple mechanical model. Moreover, the
possibility of relaxing the assumption of a rigid mat is discussed bfief]y.

Some numerical results of sample problems will be shown in Chapter 5.
The sample problems include computations of nonclassical modes for a
simple, idealized system and for two spi]—structure systems with rigid-
mat or spread-footing foundation. In addition, an example is given to
illustrate the computation required in using the extended response-

spectrum procedure,
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In order to show the generality of the modal improvement technique,
an example is given in Appendix A for studying the effects of lateral-
torsional coupling. In Appendix B, a useful improvement of the Holzer
method for an undamped system is presented although the computation of

classical modes is not of primary concern of this study.

1.7 Nomenclature

The symbols used in this study are defined in the text when they

first appear.

For convenient reference, the more important symbols are

summarized here in alphabetical order. Some symbols are assigned more

than one meaning; however, in the context of their use there are no

ambiguities.

A, a constants

a, ldimension]ess frequency parameter, = %JQ

{B} complex eigenvector ’

[cl, [Co] damping matrix, damping matrix for superstructure
CA, Ce so0il dashpots

{F} f(t) applied forces

{h} vector of story altitudes

I mass moment of inertia

Ie virtual mass moment of inertia of soil

J constant, = {1}T [Mo] {h}

[K1, [Ko] stiffness matrix, stiffness matrix of superstructure
Ky Ky soil springs

Ko’ Krs* static impedance, frequency-dependent complex impledance

M, v,

mass matrix, mass matrix of superstructure



MA

me

{P}, {p}, p
p
PSY

{Q}, {q1, q

{R}

R

sD, SY
Sf, Tf
t, T

(U3, {u}

12
virtual mass of soil
total mass of building
{real) constant vectors and constant
constant, = {1}T [Mo] {¢} in Section 4.2 and 4.3
pseudovelocity, = @ - SD
(real) constant vector.and constant
constant, = {3t [MO] {¢} in Section 4.2 and 4.3
residual vector
radius of disk
maximum relative displacement and velocity
base shear and rocking moment
time
total and relative displacement vector
ground acceleration
shear wave velocity
constants, defined in Eqs. (2.26) and (2.28)
displacement and displacement vector
inifia] displacement and velocity vector
integrals, defined by Eqs. (2.26) and (2.28)
damping ratio
variation operator
foundation translation and rocking due to interaction
eigenvalue, = mz
complex eigenvalue, = - BR * iQ /1-82

Poission's ratio

damping ratio of superstructure
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p mass/unit volume

{¢},[ o] (real) modal vector and matrix
{y} complex eigenvector

{$} approximate quantity of {y}
{p} conjugate quantity of {y}

0, w frequency
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CHAPTER 2
THEQRY OF VISCOUS DAMPING
2.1 General

It is well known that an undamped, linear, dynamic system possesses
exactly the same number of normal modes as degrees of freedom. Fach
normal mode has associated with it a natural frequency and a character-
istic shape. When properly released into a state of free vibration, the
system can vibrate in any one of its normal mode. A knowledge of normal
mode shapes and frequencies is basic to an understanding of the dynamic
response of a system under any kind of excitation.

Two major advantages of'the normal mode method result from the
 convenient properties of the normal modes. First, the complicated problem
of a multi-degree-of-freedom system can readily be transformed into a
set of simple problems of single-degree-of-freedom systems using the
orthogonality relationships among mode shapes. 'Second]y, a good approxi-
mation for displacements can often be achieved by including only a few
modes, especially in seismic analysis of buildings.

The phenomenon of resonance is closely related to natural frequencies.
A state of resonance occurs under harmonic excitations when the excitation
frequency coincides with one of the natural frequenices of an undamped,
linear, dynamic system. In actual systems, the presence of damping limits
the amplitudes of system responses at resonance to finite values,

The presence of damping is also very important in determining responses
of a system subjected to transient disturbances. The presentation in the

first portion of this chapter summarizes the general theory of a Tinear,
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dynamic system having viscous damping. The theory provides the solution
method and theoretical basis of the proposed method of this work. Since
the theory is a logical extension of the theory of the normal mode
method, it is useful for one to note how the derived results reduce in
the undamped case to the familiar forms of the normal mode method. The
exact theory of viscous damping is followed by a description of possible
approximations for a use of the response-spectrum approach in seismic

analysis.

2.2 Free Vibration

We shall consider small motions about a stable equilibrium of a
discrete, linear, dynamic system with viscous damping., The equations
of motien for free vibration of an N degree-of-freedom system with

constént parameters can be written in matrix notation as
[MI L%} + [CT (¥} + [K] {x} = {0} ~ (2.1)

where the vectors {%}, {y%}., {x}, and {0} are‘the acceleration, velocity,
displacement, and null vectors; and the N X N matrices [M], [C], and [K]
are the mass, damping, and stiffness matrices. The origin of each
coordinate of displacements is taken to correspoﬁd with the configuration
of equilibrium. The mass and stiffness matrices must be real, symmetric,
and positive-definite by virtue of the physical meaning of kinetic

energy and the stability of the equilibrium. The damping matrix must

alsoc be rea1; symmetric, and postive semi~definite for a viscously

damped system (Lord Ray]eigh, 1894). It degenerates to a null matrix for

an undamped system.



16

2.2.1 HNonclassical Modes

We seek solutions of Eq. (2.1) in the form

{x} = Ae"t (g} | | - (2.2)

where the constants A, p and the constant vector {w} are complex and

time invariant, and the independent variable t is time. A characteristic
vector {y} is called a n0nc1assf;al mode. It is worth noting that the
product of matrices [C] [M]"][K] is symmetric if and only if the non-
classical .modes can be taken as real and identical to the corresponding
normal modes for zero dam#ing (Caughey and 0'Kelly, 1965). In these
cases, both the modes and the damping are termed classical. When this
occurs, the same transformation that diagonalizes the mass and stiffness

matrices also diagonalizes the ddmping matrix.

2.2.2 Roots of Secular Equation

| Substituting Eq. (2.2) into Eq. (2.1) and dividing by Ae”t, we
arrive the following equation which defines the complex eigenproblem

involved,

W2 M1 Lo} + ulC] fo} + [K] (v} = {0} (2.3)

Nontrivial solutions for {w} exist if, and only $f,

det | 1@ [M]+ulC]+ [KI|=0 (2.4)

Now, the secular equation above is an algebraic equation in u of degree 2N

with real coefficients. There must be N pairs of conjugate roots of yu.
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For simplicity, we assume the roots are distinct. If the value of a root u
is substituted into Eq. {2.3), the resulting homegeneous system of linear
equation in N unknowns has a coefficient matrix with rank N-1. There-
fore, an arbitrary nonzero constant can be assigned to the value of one
unknown in the corresponding vector {y}. The values of other unknowns
are then uniquely determined (and can be found by means of Cramer's
rule). In other words, nonclassical modes exist and are not determined
in magnitude. If p and {y} satisfy Eq. (2.3), so do their conjugates
uand {y}. Thus, there also exist N conjugate pairs of nonclassical
modes, ,

Premultiplying Eq. (2.3) by {iUT, the transpoée of the conjugate

vector of {y}, yields

(037 M3 1) 1 ¢ (@Y [C] () w+ (T [K] wh) =0 (2.5)

The first and third coefficients of the above second-degree equation in

p are positive because of the positive-definiteness and symmetry of the
mass and stiffness matrices. This can be easily proved by separating the
real and imaginary parts of conjugate nonclassical modes into two real
vectors. Also, the second coefficient is non-negétive. Thus, roots of

Eq. (2.5) can be written as

p=-gatindl - g (2.6)

where
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iy @' KT {w) ) /2

9 - >0, (2.7)
@Mty
_1 L @ w (2.8)
S A R
and'i2 = 1. The imaginary part of u represents the damped angular fre-

quehcy of oscillation about the equilibrium configuration (see also

£q. (2.2)). If the damping matrix is positive-definite, the negative

real part of u characterizes the decay rate of the oscillations. For
convenience, B and Q will be called modal damping and frequency respectively.
Notice that we did not assume vibration of any sorts. For usual cases,

in which the value of modal damping is smaller than unit, the solution

will represent a vibratory motion.

2.2.3 General Solution

The general solution of Eq. (2.1} is then of the form
{x}= Ar e {v.} | (2.9a)

Differentiating the displacement vector above with respect to time gives

the velocity vector as

N

2
{x}= L A.u

Wt
I B .} (2.10a)
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The 2N complex unknowns in modal amplitudes Ar are determined by the 2N
complex initial values of displacements and velocities.
In usual applications, the initial values are all real. It will
be shown later by Eg. (2.19) or "_Eq. (2.20) that for these cases, there

exist N conjugate pairs of modal amplitudes such that

N L - nt
{x}= ¢ (Ar e {3+ A, e {{)} (2.9)
r=1 ‘
and
"N | nt - _ﬂrt o '
{x} = rzl (Ar W, e {y;} + Ar T {wr}) ) (2-]0)

Now, the 2N real unknowns in modal amplitudes Ar are determined by the

2N real initial values of displacements and velocities.

n

The general solution, Eq. (2.9), can be transformed into the

following form of solution (Gantmacher, 1960) by separating real and
imaginary parts of complex constants and vectors, and by proper arrange-

ments.

N - ot — | ,
Ioe " U (@dsing, /-8 t+ Q) cos o A - & 1)

{x} =
‘ r=1

(2.11)

where {Pr} and {Qr} are real vectors defined by
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) = -2 [{ImA, ) (Refy,}) + (ReA)(Imfy,}) (2.11)

{Q.}

o} = 2{(ReA ) (Ref¥,}) ~ (ImA)(Im{¥,})] (2.13)

r

In Egqs. (2.12) and (2.13) above, the notations "Re" and "Im" are read
"the real part of" and "the imaginary part of". Thus, in a pair of
conjugate nonclassicla modes, there are two real displacement shapes,
{P} and {Q}, "chasing" one another with a 90 degree phase difference.
There exist no stationary nodal boints, in general, as those of a

classical mode.

2.3 Orthogonality

Premultiplying Eq. (2.3) by {WS}T, the transpose of a nonclassical

mode, we get

w2 T M) + v ITICICY ) + (¥ M KTy, = 0 (2.14a)
or, equivalently,

wEro T MIrgy + ugte 3TICIvg} + (v M TIKILw ) = 0 (2.14b)
Since the matrices are symmetric, the difference of Eq. (2.14 a)
and Eq. (2.14b) gives |

(. + w0y, 3 My + e 3TICIY ) = 0, §F w_ # u (2.15)

Similarly, e1imination of the second terms on the left side of Eqg.
(2.14a) and Eq. (2.14b) by proper multipiication and

subtraction gives
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b (0 IMILeGY - Ce 3 TIRIGYG) = 0, 9F u # ug (2.16)

Equations (2.15) and (2.16) are the orthogonality conditions for
nonclassical modes, first obtained by Routh using his method of
multipiiers* (Routh, 1905). These conditions are exactly the same as
those of Foss's method (Foss, 1958). In the undamped case, Eg. (2.15)
and Eq. (2.16) degenerate to the so-called M-Orthogonality and K-

Orthogonality of the normal mode'method.

2.4 Initial-Value and Transient Problems

2.4.1 Initial-Vatlue Prob1ems_

Given prescribed values of initial displacements and initial

velocities at time zero, {x,} and {%}, Eq. (2.9a) and Eq. (2.10a)

reduce to
.. _ &N
{x,} = {X}t=o —;E] Ar{wr} | (2.17)
. and
. . \ZFN
{x} = X}, =fiﬁ A dv.d - (2.18)

By the orthogonality relation Eq. (2.15), it can be shown after

substitutions énd expansions that

* It seems that this contribution of Routh has never been noted in
the literature. '
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upl 3 M0} + 0w, MG E + (o3 [Ch iy ) (2.19)
2u v} NIy, ) + (¥, 1T ICTMY, )

r

Similarly, by the orthogonality relation Eq. (2.16),

TG - 0 TIK G ) (2.20)
u 20e, 3T IMI0Y ) - (e MKty )

AY‘

In the most general cases where {Xo} and {io} contain 2N complex
constants, 2N compiex unknowns of A. in Eq. (2.7) can be found by the use
of either Eq. (2.19) or Eq. (2.20). 1In usual applications of initial
value problems, however, the initial values, {xo} and {io}, are all
real. In these cases, the 2N complex unknown will be in N conjugate
pairs sincé the replacement of u and {¥} in the right side of Eq. (2.19)
or Eq. (2.20) by their conjugates u and {¥} yields ﬁr, the conjugate of
A in the left side of equation.

r

In summary, we have N conjugate pairs of parameters Aps By and

r
{wr} for usual applications of initial value probiems. The general
solution of Eq. (2.1) can then be expressed by Eq. (2.9) as the following
& n t SRR

{x} "L (Aer-{y.} + R e'r (¥ }) | (2.9)
Given 2N real initial values {yxg} and {io}, the 2N real unknowns (N
conjugate pairs) A. can be found by either Eqg. (2.19) or Eq. (2.20)
provided that the complex eigenproblem Eq. (2.3) has been solved in

advance.
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2.4.2 Transient Problems

‘Given applied forces {F}f(t) with real vector {F} independent of time,
the instantaneous momentum input to a dynamic system at time t and

within interval dr is

[M]{s(}t_;T = {F}f(«)dt (2.21)

Determination of the consequent responses due to the particular puIse
{F}f(7)dr is then an initial value problem. The equivalent initial
velocities are determined by the above equation and are real. The
initial displacements are null. By Eq. (2.11) and Eq. (2.19),

resulting displacements due to the particular pulse at time r are

. N =80 (t-1) N
O =Py 1 e rr Sing Y 1-g2(t-1)f (r)dr
tot r=1 0 1'_6 5
r T
N -Brﬂr(t—T) _— . : '
thiad 1 e Cose,/ -5, Z(t-1)f{r)dr (2.22)
='| . —
gzrfl A 2
where
"} = -20/1-8 2 (Ima )(Re {¥,}) + (Rear)(lm{wr}ﬁ , (2.23a)
) = 20/ 18,27 (Rea, ) (Re iy, }) - (Ima)(INi¥,})) (2.23b)
and
W}
o = r (2.23c)

2u (e, )7 Mt} ¢ {wr}T C 1)
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By the linearity of the above equations, transient displacements
of a system initially at rest can be obtained by integrating Eq. (2.22)

over the time history of the applied forces.

N ~t -8 (t-T)

{x} =, .} 1 e Sina ¢ 1-g2 (t-t)f(r)de
=1 "o TRy T8 7 a
N rt -8,.2.(t-1) —
+ 9.} ! e COSQY/}"Brz(t'T)f(T)dT (2.24)

, I
1T BT

The solution, Eq. {2.24), is exact for a viscously damped, linear,
dynamic system initially at rest. If the system is not initially at
rest, a suitable solution of an initial value probliem should be added
to Eq. (2.24).

The theory of viscous damping has now been completed as a logical
extension of the theory of the normal mode method. By a different
approach, Foss (1958) derived a solution equivalent to Eq. (2.24).
However, the present form of solution is more convenient in engineering
applications such as a use of the response-spectrum approach discussed
in the next section. For usual cases of small dissipation, one may
also expect the (Euclidean) vector norm of a vector'{pr} is larger than
that of the corresponding vector'{qr}, which vanishes in cases of

¢lassical damping.

2.5 Response-Spectrum Approach

The recorded ground accelerations of past earthquakes or earth-
quake models provide a basis of the rational design of structures to
resist earthquakes. Responses of a viscously damped, linear, dynamic

system to earthquake ground motions can be formulated by the close-
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form expression Eq. (2.24). For elastic aseismic design, however, we
are interested in determination of the maximum* value of certain
responses, rather than detailed description of the response over the
whole time history. For cases of classical damping, the response-
spectrum approach is the most convenient for this purpose. 0Of course,
this approach gives only approximation to the peak response. The
purpose of this section is to show how the response-spectrum appreach
can also be applied to cases of nonclassical damping, without introducing
further approximations than those made in usual cases of classical

damping.

2.5.1 Basic Definitions

In a deformation spectrum, the maximum relative displacement SD
{relative to the ground) is plotted for single-degree-of-freedom system,
as a function qf system frequency @, system damping ratio g, and a

selected time histary of the ground acceleration Ug(t).

sp = "Ry (t) (2.25)

ot -go(t-1)

t) = e Sinay 1-82(t-1) U {1)d 2.26
¥y (t) S ina/1-g2{t-1) Y {x)de (2.26)

Differentiating the above equation with respect to time yields the

relative velocity as the following

* - . - - -
In this section, the word "maximum" is understood as meaning
"maximum among absolute values of the quantity under consideration".



26

yg(t) = -y (t) + /1-p2y (t) (2.27)
in which
rt -ga(t-t) -
yc(t) = -1 e Cosq V1-82(t-1) U_{x)dt (2.28)
o o/ i-g? g

Notice that yc(t) and ys(t) differ Trom one another only by a cosine
or a sine in the integrand. Both of them are essential to the general
solution of transient displacements of a nonclassically damped system,

Eq. (2.24).

Theoretically speaking, the maximum of yc(t) can also be plotted
in the same manner as we have done for the maximum relative displacement
SD. However, such information is not currently available in general.
For immediate uées, we shall seek approximate values via a relation
between the following velocity terms. The maximum relative velocity

SV and the pseudovelocity PSY are defined by

[ 1
] - :
SV = max ! ys(t)_

(2.29)
and

PSV = 9.5D (2.30)

2;5.2 Conventional Approximations

For usual cases of small dissipation in earthquake engineering,
the pseudovelocity PSV is found nearly equal to the maximum relative
valocity SV for systems with moderate or high frequencies (Newmark,

1970), i.e.
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SV o PSY (2.31)

or, equivalently,

i
i

max : -Bayg(t) + @/ 1-g% (t) n SD

|
1

For the maximum of yc(t), this gives possible values ranging approximately

from

1-8.5Dtol+g.SD
/1-32 /1-p2
Thus, implicit in Eg. (2.31) is

max Zyc(t): A SD (2.32)

i i

In fact, Eqé. (2.32)‘and (2.31) are identical in the undamped case.

The approximation Eq. (2.32) is recommended‘for aseismic design purposes,
at least, for the time being. In general, this will not introduce a
significant error except at the relatively low frequencies, say lower
than 1 Hz (Hudson, 1962).

The approximation, Eq. (2.31), has been used in earthquake
engineering for single-degree-of-freedom systems. For multi-degree-
of-freedom system with classical damping, approximations conventionally
used for combining modal maxima td predict a peak response of system
are the absolute-sum method and the SRSS method. In the absolute-
sum method, maximum responses of the classical modes are added up to
yield an upper bound to the solution. The approximation of the peak

response by the square root of the sum of the square (SRSS) of maximum
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responses of the classical modes is commonly used, with special
consideration given to closely spaced modes, which may be arithmetically
aintive (Rosenblueth and Elorduy, 1969; Nuclear Regulatory Commission,

1976).

2.5.3 Modal Maximum

Determination of maximum responses of a pair of nonclassical modes
is not so obvious as that of a classical mode. This can be seen from
the fo]iowing equation representing the transient displacements occurring
at one point and extracted from a pair of nonclassical modes (see Eq.

(2.24)).
x =Py (t) +q .y (t) (2.33)

In the above equation, the » and q are the interested values taken from
two real vector {p} and {q} in Eq. (2.24); and ys(t) and yc(t) are
defined by Eqs. (2.26) and (2.28).

We shall discuss three possible approaches of approximation, for
the prediction of the maximum displacement of the above equation.
For the prediction of maximum values of other response quantities, the
p and g in Eq. {(2.33) shall have other suitable interpretations.

The first approach follows the reasoning of the absolute-sum

method. Adopting the approximation Eq. (2.32), we have

; i
max { x(t) ~SD.(p + q) | (2.34)
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This may give an upper bound to the solution. Although ys(t) and yc(t)
have exactly the same value of frequency, the above equation needs not
be the only choice of approximation. As shown in Eq. (2.27), maxima
of yx(t) and yc(t) do not occur at the same time. When ys(t) reaches

its maximum value SD, yc(t) takes the vailue

which is much less than SD, the value assumed for the maximum of yc(t).
The SRSS rule of approximation provides a less conservative

prediction to the solution. Adopting the approximation Eq. (2.32),

we get

max]x ? SD./p2 + q2 (2.35)

{

However, we cannot assert whether this prediction will be conservative
or not.

A third approach is aimed at giving a close bound to the solution,
for some important special cases. First, we seek a good lower bound of
the solutjon. When ys(t) reaches its stationary values, occuring at
time ty, setting Eq. (2.27) equal to zero yields

Ye(tp) =‘7_f_87ys(t0) | (2.36)

Substituting the above eguation into Eq. (2.33) gives

x(tp) = (p +q E;B )+ vy (tp) (2.37)
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The maximum of x(tD) is, of course, not greater than the maximum of

x(t}. Using Eq. (2.25), we find

>

max {x(t)

ptq B8 ].'SD
/1 -BZ

For an upper bound of the solution, we consider stationary values of
x(t), occurring at time t . Setting the first derivative of x(t),

Eg. (2.33), with respect to time equal to zero yields

0 =p(-galy (t ) +p(a /-8y (t)

+q (-saly (t)) - q (2/1-e%)y(t,)
Ug(ty)
- q m
5152
or, equivalently,
P.__ B8 __+q
2
yolt,) = 1-8 -y () +
P-q. B
2
1-8

(2.38)

(2.39)

(2.40)

if the denominators do not vanish. Substituting the above equation back

into Eq. (2.33) gives

p. -8 _ 4 gq
2

x(t)+ (Prq- _1og )y (t)+
8

s''m
P-q-

/1-52

Uty

2 2
o (1-8 )

(2.47)
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The maximum of the above equation is the exact solution. However, we
can only assert that the maxima of ys(tm) and Ug(tm) are not greater

than SD and the maximum ground acceleration Ug respectively.

max

Nevertheless, we have the following upper bound of the solution.

P 8 +qrq U™
2 2 2
max{x(t){<P+q - Y1-8 o (1-8) -SD .SD (2.42)
’ Pq._B_
N
1-B

in which a proper sign should be taken for the "+" above in order to give

the greater value for the right side of equation. Combining Eq. (2.42)
and Eq. (2.38), we find

B . a q Umax
S U S
2 - .
<[P QO+ gﬁ' V1-3 P P SD-ﬂz(l-gz)
P q ; (2.43)
-9 A
F.j v 1—32

We may now summarize the three approaches discussed above. The

exact expression Eq. (2.43) is.specially useful to usual cases of small

dissipation if

Iﬂ
P

<< (2.44)
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and

<1 (2.45)

The inequality Eq. {2.44) may be expected to hold in the majority of
cases since the parameter g vanishes in cases of classical damping.
Also, from experience in using response-spectrum (Figures 2.1 to
2.5), we do expect a general relation as Eq. {2.45) if the frequency

is higher than, say, 2Hz. For the frequency region between 2 and 8 Hz

in a design spectrum, for example, the left side of Eq. (2.45) may
take a value ranging from 1/3 to 2/3 for a damping ratio ranging from
0.01 to 0.10 (Newmark and Hall, 1977). Either the absolute-sum or

the SRSS methods can be used for any possible values of p and q.
Because the approximation Eq. (2.32) is used for the time being; Egs.
(2.34) and (2.35) should not be applied to systems with relatively low
frequencies. Nevertheless, all the three approaches are applicable to
a wide range of practical design of aseismic structures (such as
nuclear power plants). Some numerical examples will be given in

Section 5.4.

2.5.4. Peak Response

Consideration has been given to the prediction of the maximum
response of a pair of nonclassical modes. One reason of doing this is

that information of maximum values of the function yc(t) is not
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currently available. Also we observed that although the yc(t) and
ys(t) in a pair of nonclassical modes have exactly the same value of
frequency, their maximum values do not occur at the same time for
usual applications of small dissipation. Thus, the absolute-sum
method need not be the only choice of computation, and may be too
conservative.

The remaining problem is how to combine maximum responses of
different pairs of nonclassical modes to predict the peak response of
a nonclassically damped system. It is expected that the same rules of
conventional approximations in combining (classical) modal maxima
(see Section 2.5.2) are also applicable for this purpose. There
appears to be no more objéction to doing this here than for classical
damping. If the frequencies are very different, the maxima may not
occur at the same time, and the SRSS method can be used. If the
frequencies are close or even the same, the maxima may well occur at
the same time. In these cases, either the absolute-sum method or the
extension of the SRSS method given for closely spaced modes (Rosenblueth

and Elorduy, 1969; Nuclear Regulatory Commission, 1976) can be used.
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CHAFTER 3

EIGENVALUE PROBLEMS
3.1 General

Before the theory of viscous damping in Chapter 2 can be applied, it is
first necessary to solve the complex eigenvalue problem defined by Eq. (2.3).
Although methods for the numerical solution for the normal modes of an un-
damped system have been developed extensively in the literature (Wilkison,
1965), the computation of the nonclassical modes of a viscously damped
system has attracted the attention of relatively few research workers
(Foss, 1958; Hurty and Rubinstein, 1967). The purpose of this chapter is
to develop a computational scheme for solving complex efgenva]ue problems.

It will be shown that one conventional method for finding classical modes
can be extended to the nonclassical case.

The method developed is presented in Section 3.3 as a modified
version of the Robinson-Harris method. The origina] method (Robinson and
Harris, 1971), summarized in Section 3.2, improves an approximate classical
mode and frequency extremely effectively by an application of the Newton-
Raphson technique. The approximate method, in the classical case, can
remove some small coupling that is present if the modes are only approximate.
The scheme will be altered to treat nonclassical damping in which coupling

may include damping coupling.

3.2 Robinson-Harris Method

The general eigenvalue problem for an undamped, linear, dynamic system
is in the form of

-2 [M] {¢} + [K] {9} = {0} (3.1)
where the matrices [Mland [K] are the mass and stiffness matrices; the

eigenvalue A is square of a natural frequency w; and the eigenvector {¢}
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is a classical mode.

The method developed by Robinson and Harris (1971) is an application
of the Newton-Raphson technique of improving an eigenvalue A and the
corresponding eigenvector {¢} fromlapproximations of the eigenvalue and
eigenvector, % and fé}. If an approximate eigenvalue and eigenvector are

substituted into Eq. (3.1), we get a residual vector {R} instead of a null

vector. : :

- XM (e} + [KI {9} = (R (3.2)
The object is to remove the residual by changing both {$} and X.

Let

r= X+ 8 | (3.3)
and

{6 = {&) + slo} (3.4)

in which a variation, &f, represents an unknown quantity. By substituting
Eq. (3.3) and Eq. (3.4) into Eq. (3.1) and neglecting second- and higher-
order terms in § quantities, we find the linear system

W - X6 o)+ aAIMIEE) = - (R) (3.5)
where the residual {R} is determined from Eq. (3.2). In Egs. (3.5) above,
the number of unknowns exceeds the number of equations by one, therefore, an
additional equation is generally needed to get a solution. The additional
equation is taken as

T Msted = 0 | (3.6)
This guarantees that the allowable change in the eigenvector is orthogonal
to the approximate eigenvectok with respect to the mass matrix. The side
condition Eq. (3.6) prevents unlimited change in the eigenvector in its

own direction. This would occur in the absence of a side condition such as
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Eq. (3.6) since the eigenvector is not determined in magnitude.

The resulting set of simultaneous linear algebraic equation formed

from Eqs. (3.5) and Eq. (3.6) can be written in partitioned form as

- - o~
Ik - X - [l B s fed }'{-R};
Pt s IR M (3.7)

;';_-{&;}T[M] 0 _f {\5}\_ Lo ;

The set of simultaneous linear algebraic equation may be solved by Gaussian
elimination, or by any other suitable technique, to yield correction quan-
tities &{¢} and SA. A better approximation of the eigenvalue and eigen-
vector can be obtained by adding the corrections to the corresponding values
of originally approximated quantities, Eq. (3.3) and Eq. (3.4). The whole
process may be repeated (with the new quantities on the left side of Egq.
(3.3) and Eq. (3.4) as the new approximations). The residual vector will be
reduced and‘the procedure is terminated when the residual vector is within
a prescribed allowable tolerance.

It has been proved formally {(Robinson and Harris, 1971) that the con-
vergence of the eigenvalue and eigenvector is more rapid than a second
order process. The generality of the method is illustrated by many sample

problems in the original paper cited above.

3.3 Complex Eigenvalue Problems

We shall proceed to develop a modified version of the Robinson-Harris
méthod for a linear, dynamic system with viscous damping. The complex
eigenvalue problem under consideration is defined by Eq. (2.3).

w2 ] {9} + ulel {y) + k] (v} = {0} (2.3)
in which the eigenvector {y} is a nonclassical mode, and the eigenvalue

u determines the corresponding modal damping 8 and frequency Q.
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s ; 2
u=-pR + in Yl - (2.6)
It is obvious that Eq. (2.3) would reduce to Eq. (3.1) if the damping
matrix [c] were null.
If an approximate eigenvalue ﬁ and approximate eigenvector {$} are

substituted into Eq; (2.3) above, we have

Yo + ¥ 1@ + Ik = R (3.8)

Again, the objective is to remove the residual vector {R} in the above

equation by changing both ¥} and X

Let

wo= Ut gu (3.9)
and

= @+ 5w - (3.10)

in which a variation, &f, represents an unknown correction quantity.
After expanding Eq. (2.3) above by Eqg. (3.9) and (3.10), and then

neglecting second-and higher-order terms in § quantities, we have

(W2[M] + Nlcl + [KI)Ys vy + &u(20IMI (8} + [c] @) = - (3.11)

the residual {R} is being found from Eq. (3.8). In Egs. (3.11) above,
the number of unknowns exceeds the number of equations by one, therefore,

an additional equation is generally needed to get a solution.



38

We now seek a side condition to prevent unlimited drift of the
eigenvector, which is not determined in magnitude. By the orthogonality
relation Eq. (2.15), one expression, Eq. (2.19), for solving the

initial value problems is found as

A=) M ot + o1 IM G} + w3 [l fo) (2.19)
20w} M) {3 + (v} [c] )

By substituting{?}and Y {¥1 for initial values in the above equation and

setting the modal amplitude A equal to unity, we have

20w} M v} + W) fel vl = (w + M)l M @)+ @ el @ (3.12)

This is equivalent to saying that §{¥} has no component parallel to
“{r}. After expanding the above equation by Egs. {(3.9) and (3.10) and

then neglecting second-and higher-order terms in & quantities, we find

u M + W el sty + (@ TIMI @3 )su = 0 (3.13)

The combination of Eqs. (3.11) and Egs. (3.13) results in a set
of simultaneous linear algebraic equation, which may be expressed in

partitioned form as

- | }f Yoo
[ g oo !
o+ Ylel + 1K 2+ el {%i s J-{R}_

-7 (3.14)

: I
E¥mIy + e @ Tm @

! : ;
I _i ".,"' ; ' X
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An alternative form of Eq. (3.14) above is

»
e

| ! !
W2[M] o+ Ml + IKD M)+ Ll @y @+ sy = O
_________ S S .~ (3.15)
@ el &Y, @b su o
| |
where
' 0 fb T o, LT A,
a = 2u ¥} [M] Y+ ) (el (@) : (3.16)

An approximate eigenvalue i and approximate eigenvector ¥} can be
improved effectively by iterative solution of Egs. (3114) (or Egs.
(3.15)).

For most practical applications involving small dissipation, the
first approximations of nonclassical modes of a damped system can, of
course, be taken as classical modes {¢} of the corresponding undamped

system, and the first approximations of the eigenvalue t as

¥ o= (3.17)

where o represents the corresponding natural frequency. A sample
example presented in Section 5.2 shows that one itefation of the
proposed method gives a satisfactory solution for design purposes,
while & prbcedure of successive iterations converges rapidly to the
exact so]utibn sought.

For rare cases of large dissipation, it may be necessary to imagine
the system formed by successiQeTy increasing damping and iterate only

for fairly small changes of damping. In all cases, the method developed
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for computing nonclassical modes can be regarded as an extension of

usual solution methods of classical modes.



Iy
CHAPTER 4

DYNAMIC SOIL-STRUCTURE INTERACTION

4.1 General

Before treating the problem of dynamic soil-structure interaction,
we shall review briefly thelpreparatory work done in the previous
chapters. As mentioned in Chapter 1, for all but very large structures,
a simple and realistic way to model soil compliance in seismic building
analysis is.to assume the foundation of a building to be a rigid body
resting on soil modeled by some mechanical system. This mechanical
system may consist of a spring, a dashpot, and a mass for each possible
degree of freedom of the rigid foundation of a structure (Newmark and
Rosenblueth, 1971)}. Once a linear model of the soil-structure system is
set up in this manner for elastic design purposes, the solution methods
using the response-spectrum approach (or the nonclassical-modal analysis)
presented in Chapter 2 are applicable. As a prerequisite for applying
these solution methods, information on nonclassical modes can be computed
effectively by the use of the numerical technique developed in Chapter 3.

The main purpose of this chapter is to show how this genera1‘numerica1
scheme can be applied specifically to the dynamic soil-structure interaction
problem. In Section 4.2, the general form of the governing equations of
motion for the probiem is given. In Section 4.3, the proposed method takes
advantage of the specific form of the equations to incorporate the Ritz
method into general numerical scheme of the modified Robinson-Harris
method. Nonclassical modes of a soil-structure system can then be computed
effectively by using information obtained from the ordinary calculations

of classical modes of the corresponding structure with a fixed base.
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Another purpose of this chapter is to show how the modeling technique
of the soil and foundation can be improved somewhat. Alternative approxi-
mations of soil impedance for a rigid foundation are discussed briefly in
Section 4.4. The possibility of relaxing the assumption of a rigid

foundation is discussed in Section 4.5.

4.2 Equations of Motion

We shall set up the governing equations of motion for a linear
soil-structure system with the s0i1 modeled by @ mass-spring-dashpot
system for each possible degree of freedom of the rigid foundation of
the structure. For reasons of simplicity only, we 1imit ourselves to the
two-dimensional problem of a shear-beam building with its mat foundation
resting on the soil. Each discrete point of the structural model has
only one horizontal degree of freedom, except for one extra rocking
degree of freedom at the rigid foundation {Fig. 4.1). The free-field
ground motion is assumed in the horizontal direction. The reasoning used
here in deriving the proposed method applies, howéver, to a three
dimensional problem of a general structure with a rigid foundation resting
on soil modeled by simple mechanical devices as described above.

It is well known that if the soil were rigid, the equations of
motion of a damped, linear, dynamic structure subjected to earthquake

ground excitations couid be written in a general form as
M Ju r + [C Jtur + [K Tu} = (0} (4.1)

In the above equation, the n x n matrices LMO], [CO], and [Ko] are the
mass, damping, and stiffness matrices of a structure with its base fixed.

The total displacement vector {u,} differs from the relative displacement
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vector {u} by a vector describing rigid-body displacements of the

structure caused by the ground displacement ug(t), i.e.
{ud = ug{]} + {u} . : (4.2)

in‘which'{T} is a column vecfor of ones for the shear-beam building
problem.

Sincg the soil is compliant, the rigid foundation may experience
both a rigid body translation A(t) and a rigid body rotation 8(t) relative
to the free-field ground translational motion. Consequently, the whole
structure may undergo corresponding rigid body motions. Thus, a more

general form of the above equation is (see Fig. 4.1)
{ugd = ug {1} + a{13 + o{h} + {u} (4.3)

in whfch {h} ié a vector consisting of the heights of the discrete points
of the structure above the foundation-soil interface. Because the newly
introduced rigid-body displacements of the structure do not cause any
structural deformation, the equations of motfon of the structure remain
in the same form as Eq. (4.1). Substituting Eq. (4.3) into Eq. (4.1)

yields

[Mo]{u} + [Mo]{l}A + [Mo]{h}e + [Co]{u} + [Ko]{u} = -ug[Mo]{l}

(4.4)
These rigid body motions do, however, introduce two extra unknowns

A(t) and o(t). Therefore, two additional equations of motions are needed
to obtain a solution.

The equations of motion of the rigid foundation provide the two
additional equatidns needed. Setting the sum of horizontal forces equal

to zero yields
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T as e - -
{1} [MO]{ut} + mf(ug +A) + Sf =0 (4.5)

Where m is the mass of the rigid foundation. The quantity Sf(t) is the
total base shear exerted on the rigid foundation by the supporting soil.
Similarly, from the overturning moments at the interface, (with no vertical

motion of the foundation)

b+ T.=0 (4.6)

. T .
{h} [Mo]{ut} + If £

In the above equation, I_. is the.sum of the mass moments of inertia of

f
each story-mass about a rotational axis at its own level and Tf(t) is

the total rocking moment resisted by the soil. The determination of
numerical values of soil impedance functions, which relate the Sf and Tf
to the unknowns A and 8, have been the subject of many studies in recent
years (see Section 1.3 ).

If the soil is modeled by a spring, dashpot, and mass for each degree-

of-freedom of the rigid foundation, Sf and Tf may be approximated by

. - ~ ¢l
Tié I 1? § C, iéj K LGJ

] - L [N -4

ey

where the elements of the coefficient matrices are real constants given
in the literature (e.g., Newmark and Rosenblueth, 1971). Here m, and
Ie are often termed the “virtual mass" and the "“virtual mass moment of
inertia" of the soil. Alternative approximations of the Sf and Tf are
discussed briefly in Section 4.5. Substitution of Egs. {4.7) and (4.3)
intc both Eq. (4.5) and Eq. (4.6) yields

T an an »a ° ) _ _ . .
{1} [Ho]{u} + (mt+mA)A +J0+ CA v Ka g (4.8)
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and
T - - . _ .-
thy MM Juy + da + (I, + T Je +CB+ Ko = -Jug (4.9)
in which
m, = {]}T[M 11} +m | (4.10)
t o} f? .
. |
I, = {hy [M Ith} + 1., | , (4.11)
and
3= 3’ Jny | (8.12)

The physical meaning of m, It’ and J are the total mass of the structure,
the total mass moment of inertia for the structure{undergoing rigid-body
rocking motion, and the corfesponding first moment of mass. Note that
the virtual mass and virtual mass moment of inertia do not appear in‘the
right ‘sides of Egs. (4.8) and (4.9).

The combination of Egs. (4.4), (4.8), and (4.9) results in a set of

simul taneous equations of motion, which may be expressed in matrix form as

[MItx} + [C1Gx) + [K1{x} = - iig{F} o (a3)
where
[Mo]' [Mo]{l} [Mo]{h} d]
1= | a3’ ] |mom, | 9 : (4.14)
M| 9 (1,
el 7
[cl = C, , (4.15)
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(K]
[K] = K, , (4.16)
KB
3
(x} = '{iﬁi} , (4.17)
L9
and
‘v 103
{F} :{ ._____.___m (4-18)
I
U3

Note that the original n x n matricesr[MQ], [CQJ, and [Ko] of the super-
structure are bordered by two ro@é and two columns to form a new (n+2) .
x (n+2) matrices [M], [C], and [K] of the soil-structure system. Also,
the relative displacement {u} is bordered below by two entries to form
{x}. This is a typical pattern of the resu]ting set of governing

equations of motion, Eq. (4.13), of a soil-structure system.

4.3 Proposed Method

In a state of free vibration, the set of governing equations of

motion of Eq. (4.13) for a soil-structure system reduces to
[MIx} + [CI{x} + [K]{x} = {0} (4.19)

This is in the same form as equation (2.1). The corresponding complex

eigenproblem js then in the same form as the general equation (2.3), i.e.

uZ[M]{w} + €I} + [KI{y} = {0} (4.20)
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The eigenvector {¢} represents a nonclassical mode shape: The eigenvalue
u gives both the frequency o and the damping ratio 8 of the nonclassical
mode, i.e.,

u o= -t in /T:? (4.21)
The complex eigenproblem can, of course, be solved by direct use of the

modified Robinson-Harris method developed in Section 3.3, i.e.

&[MJ + u[C] + [K] | 20[C1693 +[KIGH}| Ctwde stw)] (0P .22
Naait ; 7 = : y={— >(4.
lf?“[”1{¢}+[C]{w})T ] (v} M1y} LTIy

where
o= 2uteY IMIGe) + (p3 [CTeed +093 [C1ew) (4.23)

Initial approximations of eigenvalue and eigenvector, ; and {@}, will
be improved effectively after solving Eq. (4.22). The 1hproved efgenvalue
; +6u and eigenvector {$} + 8{¥} can be used as the initial approxima-
tions for the next iteration. A procedure of successive iterations
converges rapidly to the exact solution. To begin the process,.the
initial approximations can be taken from a classical mode (either of a
soil-structure system or of the structure with a fixed base).*

We shall develop an atternative procedure specifically for the
dynamic soil-structure interaction problem. The motivation for doing
this is that for the present problem, the general procedure requires

solving a set of simultaneous linear algebraic equation of order n+3,

_ .
in fact, the procedure can be applied to general problems of a linear
dynamic system with viscous damping. In other words, it is not Timited

to the dynamic soil-structure interaction problem.
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~Ea. (4.22). There are n degrees of freedom assumed for the superstructure,

and two at the rigid foundation. Also, one side condition is, in general,
needed in the solution. It is sometimes necessary to take a large n in
order to model a structure accurately. In such cases it is useful to
develop a more economical computational scheme. The (n+3} x (n+3)
combined matrix in the left side of Eq. (4.22) will be transformed into a
bordered matrix by a transformation of coordinates as shown in the
following paragraphs.
The complex eigenproblem Eq. (4.20) is characterized by the matricesr

[M], [C], and [K]. These matrices are defined specifically by Egs. (4.14),
(4.15), and (4.16) for the dynamic soil-structure interaction problem,
where it is seen that the n x n matrices [Mo], [CO], and [K0] of the
supérstructure are submatrices in the upper left corners. We recall how
the submatrices can be transformed into diagonal matrices. In engineer-
ing practice, the matrices {Mo] and [Ko} are first set up. For the
undamped system, n classical modes exist. Each classical mode has
associated with it a natural frequency w and a characteristic shape {¢}.
Let the n x n matrix [¢] consist of n columns of the n classical mode
shapes. By definition,

(1M J[e] = [my ] |  (4.28)
and

T 2
[e1'[K 1[s] = [ muyp ] (4.25)

in which the generalized masses m, are defined by

PN |
m. = {63 M1 {¢.} (4.26)
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The determination of the damping matrix [CO] is not as obvious as for the
mass and stiffness matrices, [Mo] and [KO]. In practice in earthquake
engineering, the damping of the superstructure is usually assumed to be
classical, and defined implicitly by n prescribed values of modal damping

ratio 5r such that
[01'c, 1] =L 25,0, ] (4.27)

We may now proceed to modify the complex eigenproblem Eq. (4.20)
by a transformation of coordinates. Let the complex vector {B} be defined
by
[¢] |
{y} = 1 B} (4.28)

The vector {B} exists since the combined matrix in the above equation

is not singular. Premultiplying Eq. (4.20) by

Lyl

and using Eqs. (4.14), (4.15), (4.16}, (4.24), (4.25), and (4.27),

we find
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LIMIEY + [C13y + K1) = (0} (4.29)
in which
#m p N
1 1 %
mp Py )
m P q
[M] = n n n (4.30)
PI P2 Pn mt+rnA J
R J It+IeJ :
l"_ -
28wy m
ey
] 2w m ‘
[cj = nnn (4.31)
CA
- Ce "t ’
h_m 2 _
1“1,
Mows
mn“’ﬁ
[K] = (4.32)
KA
K R
L. e pu——
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=
i}

3 IM ] (1} (4.33)

and

£0
)

= 15,3 I Tk} » (4.3)

The resulting complex eigenproblem Eq. (4.30) is now characterized by
the (n+2) x (n+2) matrices [M] , [C] , and [K] defined by Eqs. (4.30),
(4.31), and (4.32). The eigenvalue u is, of course, unchanged by the
transformation of coordinates.

Application of the modified Robinson-Harris method to the transformed

eigenproblem Eq. (4.29) then yields

b
f
L

"

|

S -
| %o im1 + Nrei + Ik 12N ) + e1dy (& + 518) _Jo
L(ztlr¢1{§}+ [C]{%})T{ 18Y7 [M14R} e |

| @

where

2,(B) [M]{B} + {8} [CIB} (4.36)

o

For the dynamfc soil-structure interaction problem, Eq. (4.35) and
(4.28)are proposed to replace Eq. {4.22) for computing nonclassical
modes if tﬁe nunber n is Iargé. By Eqs. (4.30), (4.31), and
(4.32),
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W2IM] + ule] + [K] =

~2 ~2 -
n.[ H P-[ : U q]
- .2
"2 u2p2 ‘ u 92
(4.37)
-2 -2
i ‘ H pn wa,
- . ~2 ~2 -2
UZQj Wy | -ee | W u-d U (It+Ie)+“Ce+Ke
- N 2
where n, = mi(“ 2B wgtowg ).

Thus, the newly-formed (n+3) x (n+3) matrix on the right side of Eq. (4.35)
is a bordered matrix, which contains non-zero off-diagonal terms only in
the Tast three rows and columns. The set of simultaneous equations of

Eq. (4.35) can be solved effectively after a procedure of condensation. If
none of the first n diagonal terms in Eq. (4.36) is zero, the problem of
solving Eq. {4.35) can be reduced to solving a set of simultaneous linear
algebraic equation of order 3, instead of order n+3. However, if one of
the diagonal terms is zero, it is necessary to solve a set of simultaneous
equation of order 4. This occurs when the approximate eigenvalue is

initially taken as

- L2 .
w=mEw, t e ]'Er . r=1,2,...,0 (4.38)
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In all cases, the computational effort in solving simultaneous equations is
reduced significantly. Some aspects of using the proposed method will be
discussed in the next paragraph.

Let us express the eigenvector {B} more explicitly by

_ T
{B} = {b1 b2 . e . bn bA be} (4.39)
The equatfon (4.28) can then be rewritten as
n {¢,.} {0} - {0}
b= (& {453 b {1} b, {0} (4.40)
r=1 0 0 1

Modal values corresponding to one classical mode ($ay the rth)of the
superstructure can be taken as the initial approximation for Eq. (4.35).
The ;'can be taken from Eq. (4.38), and the {é} from a vector having zero
entries except for a unity at the rth term of vector (see Eqs. (4.39) and
(4.40)). By using Eq. (4.35), n out of a total of n+2 (pairs of)
nonclassical modes can be obtained. Because the socil is compliant and not
rigid, each computed frequency will be smaller than the corresponding one
approximated initially. The two (pairs of nonclassical) modes omitted

are those of the highest frequencies (Bisplinghoff, Ashley, and Halfman,
1965). This is not a real disadvantage of the proposed method, for in
earthquake engineering applications, the lower modes are usually of more
interest. By thelRitz method,” some of the b (for large r) in Eqs. (4.39)
and (4.35) can be dropped as an approximation. However, an accurate
approximation of the rth nonclassical mode may require information on as
many as 2r (2r < n) classical modes of the superstructure. This is the
result of experience in applying subspace iteration (Bathe and Wilson, 1976),

which is also an application of the Ritz coordinate-reduction.
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In summary, the proposed method provides a fast numerical scheme for

solving the equation (4.22). This is made possible by taking advantage

of the specific pattern of the governing equations of motion for the
dynamic soil-structure interaction problem. After a procedure of trans-
formation of coordinates, two major schemes of coordinate-reduction can be
used. One of these is a procedure of condensation. The other is an
approximation by imposing suitable constraints, i.e. the Ritz coordinate-
reduction. Approximations of both eigenvalue and eigenvector will then be
improved after solving a set of oﬁ]y 4 (or 3) simultaneous equations. The
improvement is exfreme?y effective because the modified Robinson-Harris
method is a variant of the Newton-Raphson technique. Numerical examples

will be given in Chapter 5.

4.4 Frequency Dependence of Impedance

The determination of the soil impedance for a rigid foundation has
been the subject of many studies in recent years (see Section 1.3). The
soil impedance functions are found to be frequency dependent. The frequency
dependence of impedance introduces some difficulties in a time-domain
analysis. The purpose of this section is to discuss

1. The general form of the impedance functions,

2. Problems occurring in a time-domain analysis,

3. Cause of the frequency dependence, and

4. Some possible approximation for a time-domain analysis.

Consider the case of steady-state vibrations of a rigid massless
foundation rigidly attached to the supportiqg sgil, which is modeled as a
linear semi-infinite solid. The rigid foundation has six degrees of

freedom in a three-dimensional problem. Under a sinuscidal load, a
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steady-state displacement of the foundation will also be a sinusoidal
function of time. These two quantities, the ioad and displacement, have
the same frequency @. Also, there will be a phase difference, in general.
If only two degrees of freedom of the foundation are considered for reasons

of simplicity, we have the following general expression

(4.41)

where fr and dr are real quantities of amplitudes of forces and displace-
ments. The coefficient matrix above must be symmetric due to the dyﬁamic
reciprocal theorem (Love, 1927). Elements of the coefficient matrix depend,
in general, on the selécted value of thg frequency. The elements are

complex numbers since there are phase differences. Let

*

Krs = Krs + i Crs T, r,s = 1,2 | (4.42)

where Krs and Crs are real numbers. Equation (4.41) can now be expanded

as
0 \; :  d {d -
? ]\ iat _ K-” 'K'Iz J ]\ it " CTI C];‘ : 1 int.
L 21. L 2) _ _1 L 2}

(4.43)

If elements of the coefficfent matrices above are frequency indpendent,

the expression can be generalized to
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\ ‘ 2 (o))
(fﬂt)g G | Kol ST0) I P [d}(t)}

f,(t)
¥

. i (4.44)
i 21 Kzz' ‘_Ldz(t)f Co1 | Cp Ldz(t)

/
This would be very convenient for a time-domain analysis.

Difficulties arise, however, in a time-domain analysis due to the
frequency dependence of the stiffness and damping matrices of Eq. (4.44).
The problem encountered in a direct-integration analysis is that system
parameters representing the soil are functions of the time history of
rasponse of the rigid foundation. In a nonclassical-modal analysis,
nonclassical modes can still be determined by the iterative use of Eg.
(4.22) or {4.35), even though the impedance functions are freguency
dependent. However, the modes computed are really nonclassical modes of
different dynamic systems with constant parameters. It is impoftant to note
that the orthogonality relations among these modes, Eqs. (2.15) and (2.76),
are not applicab1e. Consequently, neither the solution method developed in
Chapter 2 nor the Foss method (Foss, 1958) can be app]ied to a system with
~ frequency-dependent parameters. The recommendation of the Foss method in a
recent ASCE state-of-the-art report on soil-structure interaction (Ad Hoc
Group, 1979) should, therefore, be used cautiously.

The difficulty encountered above does not necessarily mean that an
engineering solution cannot be obtained by a time-domain analysis with some
suitable approximations. The problem of frequency dependence of impedance
functions arises whenever a dynamic system of many {or infinitely many)
degrees of freedom is idealized by a model with fewer degrees of freedom.
In other words, it is a common problem in dynawmic substructure analysis.

For example, the dynamic impedance of a real column with distributed mass
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depends on its own dynamic responses, and thus on the frequency content of

the dynamic load. MNevertheless, frequency-independent column models have
been constructed successfully in earthquake engineering by the so-called
Tumped-mass method. For the problem of estimating soil impedance for a
rigid foundation,_we shall discuss briefly what approximations may be made
in order to obtain a frequency-independent model for engineering purposes.

In aseismic design of buildings, the lower modes are often of most
interest. The range of lower frequencies is then of greatest importance.
Thus, one way of approximation is to take the coefficient matrices of
Eq. {4.44) from those of Eq. (4.43) evaluated at one selected frequency.
The frequency is usually taken as the fundamental frequency of a soil-
structure system with the soil modeled in this mannér. This can be most
easily achieved by the iterative use of the proposed method with the
5011 impedance functions updated by the computed frequency. Numerical
examples are shown in Chapter 5. For some special cases, the selected
frequency may also be taken as that of aﬁother mode of a soil-structure
system with constant parameters,

For a foundation with no embedment, off-diagonal terms of the
coefficient matrices of Eq. (4.43) are found to be negligible (Veletsos
and Wei, 1971). Another way of approximation has been to introduce an
extra parameter that permits a better adjustment of impedance over a
Timited range of frequencies (Newmark and Rosenblueth, 1971). This has
been shown in Eq. (4.8) by userof a virtual mass and a virtual mass moment
of inertia. This is equivalent to allow a parabolic variation of soil

stiffness with frequency, since

* 2 .
K= (K, - 'm,) + iaC, (4.45)
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A virtual mass can also be added to approximate off-diagonal terms of
the coefficient matrices if appropriate.

The technique of introducing a virtual mass can be extended by
including some extra mechanical components in a soil model. A good
approximation, for example, has been achieved for the case of a rigid
massless disk "welded" to the soil modeled by an elastic half space
(Veletsos and Verbic, 1973; Meek and Veletsos, 1973). The approximation
is summarized below. Let the diagonal terms of the coefficent matrix of

Eq. (4.41) be expressed by

*

K™ = K (k + ia C) (4.46)
where

K0 = static impedance evaluated at zero frequency

ksC = dimensionless real parameters representing frequency

variations of impedance
a, = dimensionless frequency parameter
- %& (4.47)
S ,
R = radius of disk
VS = shear-wave velocity of the elastic half space.

Semi-empirical approximations of impedance are as follows, for the

horizontally excited disk:

k=1 (4.48)
C = a3 | (4.49)

for the disk in rocking motion,

2 - 832, (4.50)
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C = B4R (6260)2
1P2 — (4.51)
T+(s,a,)

and for the vertically excited disk,

K=1-v, 0p85)" _ Y3a02 (4.52)
2 .
1+(¥2 a)
. (Yzao)z
c = -Y + Y Y, T (4.53)
4 172 2
]+(Y230) ‘

where a1 Bs and y, are numerical coefficients depend on Poisson's

ratio vas shown in Table 4.1. Under harmonic excitation, the vertical
impedance can be reproduced by using a combination of some simple mechanical
components, as shown by Fig. 4.2. The values of Cys Mys My, and Cy in the

figure are to be taken as

_ R
_ R\2 ’

Ko ey (4.55)
- R\2

L (V;) , | (4.56)

and
¢ = Ky, (R) (4.57)
4 To'4 W - - ' |

An approximation for the rocking impedance can also be obtained after
replacing v, in Eqs. (4.54) to (4.57) by 8- By this type of approxima-
tions, an engineer can adjuét soil impedance functions over an important

range of frequency, and yet use modal analyses for a frequency-independent

model of a soil-structure system.
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4.5 Flexibility of the Foundation

In the impedance approach to a dynamic‘soi]-structure interaction
problem, the conventional assumption of rigid soil is relaxed. However,
the foundation of the structure is usually assumed to be rigid. By the
assumption of a rigid foundation, interaction between the soil and
foundation is limited to a few degrees of freedom. This may be sufficient
for usual applications in aseismic design of multi-story buildings or
nuclear power plants. For the case of a wide structure with a thin mat
or spread footings, a more refined analysis considering flexibility of the
foundation may be needed.” In this section, we shall examine the possi-
bility of introducing foundation flexibility. The discussion will be
restricted to an undamped structure. With this restriction, we separate
the problem from that of defining the damping matrix for a superstructure-
foundation system.

-Conéider the case of a general two-dimensional structure with
spread footings. Each footing has a rotational, horizontally translational,
and vertically translational displacement relative to the free-field ground
translational motions. The interaction displacements of all footings are
expressed by the s x T vector {A} (where s is three times of the number
of footings). Let fhe n x 1 vector {nr} represent the displacements of
the superstructure caused by imposing a unit displacement of the Ar type.

The equations of motion of the superstructure in free vibration are
M ] tud + [K T {u} = {0} (4.58)

where

{u} = {u} + [U] {a} (4.59)
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The n x s matrix [n] consists of s columns of {np}- If the soil were
rigid, the vector {A} would be a null vector. In general, there are s
extra unknowns of A in the equations of motion above.

Application of the principle of virtual work provides the other
equations of motion needed. Let the virtual displacements be taken as a
unity value of Ar and the' corresponding vector {”r}' Then, we have s

equations of motion in free vibration as

T +3 . _ _
{”r} [Mo]{ut} + 1 mfrAr + 1 Sr =0, r=1,2,...,s (4.60)
where the quantities me are'masses and mass moments of inertia of the
r
footings, and Sk(t) are reactions of the soil exerted on the footings.

Combining Egs. (4.58) and (4.60) in matrix form yields

M3 | ] (al
T T N (T
B | 017D, J0n] ETRATS
[K,] [tup) .
{—%=0 (4.61)
‘ 5,81 | (1)

The reactions of the soil Sr at one footing can be related to the unknowns
A, at that footing by the same approximation as used for a rigid mat in
the last section. Note that the matrices [Mo] and [KO] for the super-
structure are now bordered by s rows and s columns to form the new (n+s)

x {n+s) matrices in Eq. (4.61) for the soil-structure system. Thus, the
proposed method can be applied for computing nonclassical modes if

frequency-independent models of the soil are used.
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If the number s is large, we may also want to apply the Ritz method
to reduce the number of degrees of freedom at the footings. One of the
genera]ize& coordinates can be selected by taking the displacements of
the footings from those of a rigid-body displacement shape of the whole
structure. Numerical examples of this method will be given in Section 5.6.
For a more refined analysis, other generalized coordinates can also be
chosen.

For a mat foundation, there are an infinite number of degrees of
freedom, in general. The Ritz method must be applied somehow in order
to carry out numerical computations. In the impedance approach, the
displacement of the mat can be approximated by suitably selected generalized
coordinates. The first few generalized coordinates are, of course, to be
taken from shapes of rigid-body displacements of the mat. This is
precisely what we have doné previously by assuming a rigid mat. Fror a
flexible mat, other curvilinear shapes can also be included. We shall not
dwell further on this because soil impedance functions for these cases are
not currently available in the Titerature. These jmpedance functions,
however, can be calculated by the same numerical techniques as those

proposed for the case of a rigid mat (e.g. Wong and Luco, 1976).
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CHAPTER 5
NUMERICAL RESULTS

5.1 Objectives and Scope

In this chapter, the results of solving some sample problems are
presented. These pfob]ems are solved using the technique introduced in
Chapters 2, 3, and 4. The main objective of this chapter is to demon-
strate the capability of the technique. However, some conclusions on
the effects of dynamic soi]-structure‘interaction can be drawn.

In Section 5.2, the complex eigenproblem of a simple mechanical
system with nonclassical damping is solved using the general numerical
scheme of Eq. (3.15}. | _ |

In Section 5.3, the proposed method, Eq. (4.35) is applied to solve
the complex eigenproblem .of a sample soil-structure model. The assumption
of a rigid?mat foundation is used. The convergence of the solution is
examined. 1In Section 5.4, the {absolute) maximum of a repsonse within a
conjugate pair of nonclassical modes is predicted using the methods developed
in Section 2.5.3 for earthquake engineering applications. This computation
is essenfia] to the response-spectrum approach for a dynamic system with
nonclassical damping.

In Section 5.5, some of the effects of dynamic soil-structure inter-
action are.discussed. In Section 5.6, a comparison of the effects of a

spread-footing foundation to those of a rigid-mat foundation is made.

5.2 Nonclassical Damping

Figure 5.1 shows a simple mechanical model with many degrees of
freedom (say n). This model will also be used later on for the undamped

superstructure of a uniform shear-beam buiiding. A1} the springs in the
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model have the same spring constant k. The mass lumped at the free end
of the model is one half of the typical mass, m, Tumped at the other
peints. The exact solution of the n classical modes of the model is
readily available (von Kérman and Biot, 1936) as shown below. A

natural frequency (say rth) and the associated mode shape are

W, = v2-2 cos o, vk/m (5.1)
It
and
{¢r} = {sin jur} , j=1,2,...5n (5.2)
where
_2r-1
Otr - 2n T ) (5.3)

Consider the case of a four degree-of-freedom model, i.e. n=4. The
values of m and k are taken as unity and ten. The four classical modes
of the undamped system can easily be obtianed from Eqs. (5.1) to (5.3).
If a dashpot of unit value is added in parallel to the spring attached
to the fixed end of the model, the systém becomes nonclassically damped.
The nonclassical modes of the damped system are computed iteratively
using the modified Robinson-Harris method, Eq. (3.15). To begin the process
of computing a nonclassical mode, a single classical mode of the original
undamped system is taken as the jnitial approximation. The convergence of
the frequencies and damping ratios of the four (pairs of) nonclassical modes

is shown in Table 5.1.
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The calculated modal damping ratios range from 0.5 to 6 percent of
critical. Thus, this is an example of small dissipation,

As can be seen from the table, one iteration of the numerical scheme
gives a very good approximation to the exact solution of a modal damping
ratioc and frequency; Although the results are not shown here, the same is
true for the associated mode shape. '

The data in Table 5.1 also show that a procedure of successive
iterations converges rapidly to the exact solution sought. This is
expected because Eq. (3.15) is a modification of the Newton-Raphson
technique. The procedure turns out to be more rapid than a second order
process. This rate of convergénce is consistent with that of the Robinson-
Harris method, which has been proved formally to be of order 2.41 (Robinson
and Harris, 1971}.

Lastly, one point of academic interest is that the frequencies of the
first two modes are 1ncréased due to the introduction of the nonclassical
damping. The phenomenon has been explained analytically (Caughey and OfKeT]y,
1961).

5.3 Rigid-Mat Foundation

Figure 5.2 shows the sample soil-structure modei investigatéd in‘this_
work for the problem of dynamic soil-structure 1nteraction. A four- and
a fifteen-story uniform shear-beam building are examined, representing
relatively Tow- and high-rise buildings. Each story has only one horizon-_/
tal degree of ffeedom. The rigid foundation of a structure has two degrees
of freedom, one horizontal tréns1ation and one rocking rotation.

In this section, a rigid-mat foundation is used. The superstructure

is assumed to be undamped. The energy dissipates in the forms of both
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material damping of the soil and radiational wave propagation into the

half space of the scil. The soil is soft, having a shear-wave velocity

of 500 feet per second. Detailed descriptions of the numerical data used
for the structure and soil impedance functions for the rigid foundation

| are given in the next two paragraphs. The effects of both varying degrees

of soil compliance and different sources of energy dissipation will be

discussed later on in Section 5.5.

The size and the average mass density of the superstructure are shown
in Fig. 5.3. The mass Tumped at either the roof or the base is one half
of the typical story-mass. The classical modes of the superstructure with
a fixed base are calculated using Eqs. (5.1) to (5.3). In the computation,
the stiffness of a story is defined implicitly by prescribing a value for
the fundamental period as shwon in the figure. In rocking motion of the
foundation, the quantity I. in Eq. {4.6), the sume of the mass moments
of inertia of each story-mass about a rotational axis at its own level, is
assumed to be zero.

The static impedance of an elastic half space for a rigid disk is
shown in Table 5.2. For the noncircular mat, an equivalent radius is taken
such that the equivalent disk has the same area as the rigid mat. The
mass density and Poisson's ratio of the elastic half space are shown in
Fig. 5.2. The half-space impedance functions for the rigid mat are assumed
to be constant, and are evaluated from Eqs. (4.46) to (4.51) at one
selected frequency. This frequency is the fundamental frequency of a soil-
structure system. It is obtained by the iterative use of the proposed
method, Eq. (4.35). To include the material damping of the soil, Eq. (4.46)

is multiplied by a complex constant 1+i(2x0.05) to simulate a hysteretic
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damping of 0.05 (Kausel, Whitman, Morray, and Elsabee, 1978).

The results of the application of the proposed method to the soil-
structure model with the four-story building are presented below. The
convergence of the modal frequency and damping ratio of the fundamental
mode is shown in Table 5.3, while that of the second mode is shown in
Table 5.4. As can be seen, for either mode, one or two iterations of
Eq. (4.35) give a very good approximation to the exact solution even for
the present case of a soft soil. The convergence of the second mode is
more rapid than that of the fundamental mode. One reason for this is that
the values of so0il “spfings and dashpots” are updated during each iteration
of the computation for the fundamental mode, while they are known constants
throughout the computation for the second mode.

The results for the case of the fifteen-story building are shown in
Table 5.5 and 5.6. For this relatively high builidng, the rate of con-
vergence of the solution is about the same as that of the previoﬁs cases.
One thing new in the present case is that only some of the classical modes
of the superstructure are used. In other words, the Ritz method has been
applied. Using only 3 out of a total of 15 classical modes of the super-
structure, the converged results are not much different from those of the
exact solution shown also in the tables. This is true even for the second

mode of the soil-structure system.

5.4 Modal Maximum

As shown by Eq. (2.24), transient dispiacements of a conjugate pair

of nonclassical modes of a dynamic system initially at rest are

{x} = {p} ys(t) + {q} y (t) (5.4)
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As defined by Eqs. (2.26) and (2.28), ys(t) and yc(t) are functions of a
modal frequency, a modal damping, and a time history of earthquake accelera-
tions ag(t). The vectors {p} and {q} are dimensionless and real. The
vector {q} vanishes in the case of classical damping.

For the present problem of dynamic soil-structure interaction, {p} and

{g} are expanded as:

NS m ’{h};; ]
{p} = (r‘i—:1 Vi lg }\.) +'VA.'[;(]]; + vei. ? 1 H (5.5)
and
n (Lo ‘{1}( {h}} ]
{q} = (ril W < g ) +wb";] €yl ? ;' i (5.6)

where v's and w's are real values shown in Tables 5.3 to 5.6; H is the
height of a structure. The unit value of a v or w represents the contribu-
tion of a unit horizontal displacement at the roof of the structure due to
the corresponding type of displacement (see Eq. (5.2)).

We shall take an example of computing the (absolute) maximum of some
quantity related to the structural deformation. The quantitiesv

and Mb are neglected since they represent rigid-body motions of the structure.

A* g Wa

In Tables 5.3, V; and h} are all small except Y and w which are 1.0314

and 0.15545. Thus, a typical case of computing structural deformation is

x = 1.0314 ys(t) + (0.15545 yc(t) (5.7)

Three possible methods have been presented in Section 2.5 for predicting
the (absolute) maximum of the above equation. This computation of a peak
response of a conjugate pair of nonclassical modes is essential to the

response~spectrum approach for the case of nonclassical damping.
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By the absolute-sum method, Eq. (2.34) gives

max [x}[/SD = 1.1869 (5.8)
t

where SD is the (absolute) maximum of ys(t), the corresponding spectral

displacement. By the SRSS method, £q. (2.35) gives

max |x[/SD = 1.0430 (5.9)
Assume
.
Zmaxz = 1 | (5.10)
SD a°(1-8°) ' ]

for the present case of a frequency of 3.5 Hz and a damping ratic of

14.5 percent of critical. Equation {2.43) then gives

1.0543 i%aﬂimom (5.11)

If the mean value, 1.0785, of the extremes in the above equation is
taken, 1ts error must be less than 2.3 percent. In this case, fhe SRSS
method gives an error ranging from 1.0 to 5.7 percent on the unsafe side.
The error of the absolute-sum method ranges from 7.6 to 12.6 percent on the
safe side. The conventional approach assuming a rigid soil gives the
quantity v a value of 1.2568 (see Table 5.3 for the initial approximation).
The error then ranges from 14.0 to 19.2 percent on the safe side if the

effects of the modal damping ratio and frequency are neglected.
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5.5 Some Interaction Effects

In addition to the soft soil described above with a shear-wave velocity
of 500 feet per second, a firm soil (2000 ft/sec) and an intermediate
soil (1000 ft /sec) are used in this section in order to study the effects
of various degrees of soil compliance. Alse, three different models for
energy dissipation are considered. First, only radiational damping of
an elastic half space is considered. The second type of damping is the
same as that assumed in Section 5.3 including both material and radiational
damping of the soil. In the third case, the superstructure damping is
also included. The damping of the superstructure is assumed to be clas-
sical and is taken as 2 percent of critical for each classical modes of the
superstructure. The results of the fundamental mode of a soil-structure
model are shown in Tablie 5.7 for the four-story building (see Section 5.3),
and in Table 5.8 for the fifteen-story building.

The data show that for an undamped low-rise building, the modal damping
is primarily due to radiational damping of the half space. This contribution
of damping ranges from less than 1 percent of c¢ritical for a firm soil site
to more than 12 percent of critical for a soft soil site. For an undamped
high-rise building, however, the modal damping is primarily due to material
damping of the soil. This contribution of damping is usually less than a
few percent of critical. The damping ratio of the superstructure is not
directly additive in order to compute the system damping ratio. However,

a good approximation can be obtained if the superstructure damping ratio
is first multiplied by a reduction factor. This reduction factor varies
with cube of the ratio of decrease in frequency {Veletsos, 1977). The
above general trend of the system damping is consistent with the parameter

study of Veletsos cited, which has-been adopted to the tentative provisions
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of the ATC-3 code (1978).

In addition to a system damping, the ratio of decrease in vy sheds
1ight on the interaction effect to structural deformation. As has been
predicted (Veletsos, 1977) for shear-beam buildings, this ratio can be
approximated for most cases by the square of the ratio of decrease in
frequency. However, the error may reach 11 percent on the unsafe side for
the case of a four-story building founded on a soft soil. Furthermore,
the contribution of structural deformation due to the w1-type motion is
not negligible in this case (see Section 5.4). Lastly, it is obvious that
the system frequency decreases as the shear-wave velocity of the soil

decreases.

5.6 Spread-Footing Foundation

In this section, the rigid-mat foundation used in the previous section
is replaced by a foundation consisting of isolated spread footings (see
Fig. 5.4). 1In a two-dimensional problem, each footing may have three
degrees of freedom, i.e. two translations and one rocking rotation. Thus,
the number of degrees of freedom for a spread-footing foundation is. three
times the number of footings. Nevertheless, the Ritz method can be applied,
in order to reduce the degrees of freedom, by assuming some suitable dis-
placement shapes for the foundation. In the rocking motion of the structure,
for example, the whole foundation may take a shape as shown by Fig. 5.5A,
which is different from Fig. 5.5B, a possible shape for the case of a
flexible-mat foundation.

Each instantaneous displacement shape of a spread-footing foundation
is, of course, affected by the stiffness of the superstructure above. For

a8 shear-beam building, in which girders are quite stiff, it is common to
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assume each story has oniy one horizontal degree of freedom in a two-
dimensional problem with no vertical ground motions. In this special case,
it may be acceptable to assume the displacements of the footings are in
the shape which would exist if the footings were connected by a rigid mat.
In other words, it may be acceptable to assume that the foundation has only
two degrees of freedom, one horizontal translation and one rocking rota-
tion. For reasons of simpticity, this assumption will be used here in
order to compare the effects of a spread-footing foundation and a rigid-
mat foundation for shear-beam buildings.

The horizontal impedance function for the foundation is the sume of
those for the spread footings. The rocking impedance function for the
foundation, however, is primarily due to the vertical impedance functions
for the footings, instead of the rocking ones. One reason for this is
that the static impedance for a rigid di.k in rocking is a function of
the cubic of the radius of the disk (see Table 5.2}. The vertical impedance
function is evaluated from Eqs. (4.52) and (4.53). The results of the
fundamental mode of a soil-structure system are shown in Table 5.9 for the
four-story building (see Section 5.3}, and in Table 5.8 for the'fifteen—
story building.

Compared to a rigid-mat construction, a footing foundation has rela-
tively flexible soil "springs" and thus gives a lower system frequency.
Consequently, the quantity vy is also smaller, which is related to the
square of the ratio of decrease in frequency due to interaction. Also,
the effectiveness of the apparent damping of a superstructure is reduced

since it is related to the cube of the ratic of decrease in frequency.
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For both Tow-= and high-vrise buildings with a footing foundation,
material damping of the soil contributes more to a system damping than radia-
tjonal damping of the half space does. As shown in Table 5.9 and 5.10 for

various cases, the calculated system damping ratios are all less than a

few percent of critical.
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CHAPTER 6

CONCLUSIONS AND-RECOMMENDATIONS FOR FURTHER STUDY
6.1 Conclusions

Three general conclusions can be drawn from the results of Chapters
2, 3, 4, and 5. The first conclusion is related to the application of
~the response-spectrum method to a soil-structure system. The second
deals with the computation of the nonclassical modes of sojl-structure
system. The last one concerns the generality of sbme of the solution methods
presented.

It has been generally thought that the response-spectrum approach was
not applicable to a soil-structure system with its nonclassical damping.
.However, as explained in Chapter 2, such computations can be carried out.
The key to this application of the response-spectrum approach is the pre-
diction of a maximum response corresponding to a conjugate pair of non-
classical modes. This turns out to be quite possible (see Section 2.5).
The numerical results in Section 5.4 show that the error involved is less
than 2.3 percent even when the effects of interaction are large. Since
this key problem can be solved accurately and simply, there seems to be no
more objection to applying the response-spectrum approach to a soil-
structure system with nonclassical damping than a system with classical
damping that is imagined to be on a rigid base.

No matter whether the damping is classical or nonclassical, knowledge
of the modes is needed in order to apply a response-spectrum procedure
{or a modal analysis). For a large system, it is the computation of modes
that dominates the computational effort required. An effective and efficient
numerical scheme has been proposed in Section 4.3 for the specific form of

system arising in a study of dynamic soil-structure interaction using the
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impedance approach. In order to compute a nonclassical mode of a soil-
- structure system, a classical mode of the structure with its base fixed
is used as the initial approximation. The differences between the initial
and improved modes give direct measures of the significance of interaction
effects. |

As indicated by the numerical results in Chapter 5, only one or two
iterations in the computation are needed to give a very good approximation
to a nonclassical mode even if the effects of interaction are large. In
addition, the convergence is more rapid than a second order process. This
rapid rate of convergence is also to be expected from a theoretical point
of view (see Chapter 3). It is concluded that the range of applicability
and the degree of accuracy of the proposed method are more than satisfactory
for solving the problem of dynamic soil-structure interaction. Moreover,
a sensitivity analysis covering ranges of soil properties (and foundation
impedances) can be carried out very conveniently by the method proposed
in Section 4.3.

Although this work is aimed at soiving the problem of dynamic soi]-
structure interaction, the theory of viscous damping in Chapter.z and the
numerical scheme in Section 3.3 are applicable to a general, viscously
damped system with constant parameters. In other words, their applications

are not limited to the problem of dynamic soil-structure interaction.

6.2 Recommendations for Further Study

When using the impedance approach to study the effects of dynamic
soil-structure interaction, a superstructure may have a great number of
degrees of freedom and even can be described by a general finite element

idealization. However, the foundation of the structure is usually Timited
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to be a rigid mat, that is, a subsystem with very few degrees of freedom.
As explained in Section 4.5, th{s limitation can be removed. The applica-
tion of the principle of virtual work and the Ritz method gives the governing
equations of motion for a soil-structure system with aimost any type of
foundation. The examples in Chapter 5 show only the most simplified cases
in which a foundation has two degrees 6f freedom. It would be very desirable
to study the effects of the flexibility of the foundation by including more
degrees of freedom for the foundation. The significance of the effect of
these added degrees of freedom will depend on the size and rigidity of the
structure investigated. For a spread-footing foundation, the displace-
ments may be very different from the shapes assumed in Section 5.6. For
a flexible-mat foundation, soil impedance functions for a curvilinear-
shape foundation remain to be calculated.

The general form of impedance functions of a linear solid (or system)
is discussed-in Section 4.4. These impedance functions are, in general,
frequency dependent. The problem of using some simple system to approximate
the impedance functions over some range of frequency deserves further study.
This is an important subject because the frequency dependence of an impedance

is a common probliem in Tinear, dynamic, substructure analysis.
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TABLE 4.1 VALUES OF aqs Br, AND Yr'IN EQUATIONS (4.50) - (4.53)
(after Veletsos and Verbic, 1973)

Quantity v=_0 v = 1/3 v =0.45 v = 0.5

o 0.775 0.65 10.60 \ 0.60
B, 0.8 0.8 0.8 0.8
By 0.525 0.5 '0.45 0.4
85 0. 0. 0.023 0.027
e . 0.25 0.35 -- 0.
Y, 1.0 0.8 - 0.
Y3 0. 0. -, 0.17

0.85

o

.75 : -- 0.85
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TABLE 5.1 INCREMENTS OF FREQUENCIES AND DAMPING RATIOS
Iterations

0 7 2 3 4
B] .0 .295971 E-0] .68725 E-05 .11624 E-12
Q] .12339 E 01 .25051 E-Q2 - .91376 E£E-05 37659 E-12
82 0 .60667 E-01 .78418 E-03 .12657 E-06 -.44409 E-15
92 .35137 E 01 .17988 E-01 .40832 E-03 .17846 £-06 .14211 E-13
_83 .0 .39768 E-01 .11096 E-Q2 .37472 E-06 .17319 E-13
93 .52587 E 01 ~.26098 E-~01 -.23697 E-02 .44972 E-05 .28422 E-13
84 .0 .52227 E-02 -.31041 E-93. .78295 E-09 .27756 E-16
Q .62030 E 01 -.11572 E-01 .35276 E-04 .20400 E-08 .0
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TABLE 5.2 STATIC STIFFNESS FOR
A RIGID DISK

Horizontal 82‘5'5
Rocking 38 (ﬁi
Vertical 4—]—(—5-%
where G = p V§
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TABLE 5.3. CONVERGENCE OF FUNDAMENTAL MODE
(4-STORY BUILDING)
Iterations
0 1 2 3 4 5

Q 26180 E 02 22650 E 02 .22064 E 02 .22072 E 02 .22072 E 02  ,22072 E 02
R .0 .14305 £ 00 .14870 £ 00 .14570 E 00 14570 E 00 © .14570 E 00
V]* .12568 E 01 .94357 E 00 .10340 E 01 .10314 £ 01 .10314 E 01 .10314 E 01
v2 .0 .12972 E-02 23713 E-92 ,23553 E-D2 .23553 E-02 .23553 E-02
v3 .0 15236 E-02 .18251 E-02  ,17972 E-02 .17975 E-02 .17975 E-02
V4 .0 . 14058 E-03 .11541 E-03 -,11207 E-03 11213 E-03 -.11213 E-03
v A .0 .90601 E-01 .11860 E 00 .11835 E 00 .11836 E 00 .11836 £ 00
ve .0 .24371 E 00 .33263 E 00 .33165 E.OO .33167 E 00 .33167 E 00
w]* 0 .13976 E 00 .15896 E 00 .15543 E Q0 .15545 E 00 .155045E 00
w2 .0 .40822 E-02 .38300 E-0Q2? .38516 E-02 .38509 E-Q2 .38509 E-02
Wy .0 .17680 E-02 .10186 E-02 .10069 E-02 .10070 E-02 .10070 E-Q2
Wy .0 .81272 E-05 11256 E-03 -.711554 E-03 .11547 E-03 .11547 E-03
W, .0 .12962 £ 00 17272 E 00 .17180 E 00 17182 E 00 17182 E 00
we .0 .19232 E 00 .19068 £ 00 .18078 £ Q0 .18093 £ 00 .18093 £ 00

* The quantities

v's and w's are

defined in Egs. (5.5) and (5.6).
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TABLE 5.4. CONVERGENCE OF SECOND MODE
(4-STORY BUILDING)
Iterations
0 1 2 3

Q .74554 E 02 .74029 E 02 .74107 E 02 .74107 E 02
8 0 .36207 E-01 .37141 £-11 .37141 E-01
vyt .0 .10165 E-01 . 13192 E-01 .13191 E-01
v, .37415 E 00 .38015 E 00 .38818 E 00 .38815 E 00
vy .0 .92063 E-04 .29619 E-03 .29683 E-03
Vg .0 .34742 E-03 .44995 E-03 .44999 E-03
v, .0 .38479 E-02 . .21689 E-03 .21756 E-03
A .0 .16744 E-01 -.13371 E-01 -.13369 E-01
Wyt .0 .31315 E-01 .32238 E-01 .32233 E-01
Wy .0 17273 E-01 -.31132 E-01 -.31133 E-01
Wy .0 .59144 E-02 -.60322 E-02 -.60311 E-02
Wy .0 .22824 E-02 -.23148 E-02 -.23145 E-02
Wy .0 .59492 £-01 -.62273 E-01 -.62265 E-01
Wy .0 .57630 E-01 .60798 E-01 .60791 E-01

* The quantities v's and w's are defined in Eqs. (5.5) and (5.6).
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TABLE 5.5 CONVERGENCE OF FUNDAMENTAL MODE
(15-STORY BUILDING)
Iterations Exact
Solution
0 1 2 3 4

Q 69813 E 01 .51506 E 01 .51370 E 01 51373 E 01 51373 E 01 .61373 E 01
B8 .0 .33767 E-01 .31700 E-0N .31750 E-01 .31749 E-01 .31749 E-01
v]* 12721 E 01 64133 E 00 .69036 E 00 .69037 E 00 69037 E 00  .69037 E 00
V2 .0 -.48674 E-02 -.24334 E-02 -.24349 E-02 .24349 E-02 .24349 E-02
V3 .0 .13162 E-02 76727 E-03 76731 E-03 76731 E-03 .76731 E-03
vA 41641 E-01 .48960 E-01 .48946 E-01 .48946 E-0Q1 .48946 E-01
VB .61828 E 00 64657 E 00 64645 E 00  .64645 E 00  .64645 E 00
w]* .0 .29839 E-01 .40186 E-01 .40278 EQO] LA0277 E-01 .40274 E-01
W, .0 -.48359 E-03 -.42231 E-03 -.42428 E-03 -.42428 E-03 -.42428 E-03
Wy .0 .26539 E-03 -.67052 E-04 -.67137 E-04 67137 E-04 -.67142 E-04
w, 0 «~.18945 E-01 ~.16455 E-01 -,16455 E-0]1 . 16455 E-01 .16455 E-01
we .0 -.45556 E-01 ~-.32026 E-01 ~.32084 E-01 .32082 E-01 .32085 E-01

* The quantities v's and w's are

defined in Eqs. (5.5) and (5.6).
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CONVERGENCE OF SECOND MODE

TABLE 5.6
(15-STORY BUILDING)
Iterations Exact
Solution
0 1 2 3

Q .20868 E @2 .20105 £ 02 .20086 E 02 .20086 E.OZ .20087 E (2
8 .0 .33305 E-01 .34556 E-01 .34558 E-Q1 .34697 E-01
Vl* 0 .16282 E Q0 17122 E 00 17123 E 00 17189 E 00
v2 .42091 £ 00 .44656 E Q0 L46473 E Q00 .46475 £ 00 AA6600 E QO
v3 .0 .14385 £-04 .69413 E-G3 .69323 E-03 67572 E-03
vA N .29923 E-01 .31790 E-01 .31790 E-01 .31665 E-01
ve .0 22515 € 00  -.23552 £ 00  -.23553 E 00  -.23605 E 00
w]* 0 .56023 £-02 ~.599571 E-02 -.60037 £-02 -.63598 E-Q?
w2 0 .57339 E-02 -.11878 E-0] -.11899 E—O? -,12869 E-01
Wy 0 .63023 E-02 -.61494 E-Q2 '.61487 E-02 © -.61930 E-02
Wy 0 .56674 £-01 -.62357 E-01 -.62365 E-01 —.62847 E-01
Wy 0 .94993 E-01 .10252 E 00 .10253 E Q0 .10366 E 00
* The quantities y's and w's are defined in Egs, (5.5) and (5.6).
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TABLE 5.7 DATA FOR THE FUNDAMENTAL MODE

( 4 -STORY BUILDING WITH RIGID MAT)

SOIL TYPE
FIRM INTERMEDIATE SOFT
I* .35678 E-02  .22403 E-01 .12418 E 00
»B II* .51453 E-02  ,27977 E-O1 . 14575 £ 00
IIT* .24266 E-01  .45184 E-01 15713 £ 00
I .98377 .94366 .83319
H II .98426 .94603 .84309
111 98392 ,94450 83801
I 97462 .91900 78315
Y1 II 97677 .92775 82066
1.2568
I1I .97581 .92409 .80753
. | .
I = Radiational Damping Only
II = Radiational + Soil Material Damping
IIT = Radiational + Soil Material + Structure

Apparent Damping



93

TABLE 5.8 DATA FOR THE FUNDAMENTAL MODE

(15-STORY BUILDING WITH RIGID MAT)

SOIL TYPE
FIRM INTERMEDIATE SOFT
I* .27743 E-03 .18693 E-02 .86019 E-Q2
B8 IT* .27213 E-02  .10475 E-01 .31749 E-01
III> .21278 E-01 .25567 E-01 .39718 E-01
T 97502 .90940 .73488
;i I ,97528 .91016 73587
I11 .97512 90967 | .73522
v I .95063 .82690 .53991
-]
T.2721 I1 .95158 , 82973 .54270
111 .95103 . .82832 .54163
* I = Radiational Damping Only
I1 = Radiational + Soil Material Damping
IIT = Radiational + Soil Material + Structure

Apparent Damping
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TABLE 5.9  DATA FOR THE FUNDAMENTAL MODE
(4-STORY BUILDING WITH SPREAD FOOTINGS )

SOIL TYPE
FIRM INTERMEDIATE SOFT

I* .44128 E-03  .24016 E-02 .70809 E-02
I1I* .55059 E-02 . 18281 E-01 .40243 E-01
I11* .22557 E-01  .29607 E-01 44224 E-01
I .94786 . 82804 .58976
11 .94832 .82903 .59030
ITI .94805 .82845 .58995
I .90985 . 70951 .36726
II .91160 .71278 . 36802
ITI .91065 J127 .36784
* I = Radiational Daming Only

II = Radiational + Soil Material Dampirng

II1 = Radiational + Soil Material + Structure Apparent

Damping
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TABLE 5.10 DATA FOR THE FUNDAMENTAL MODE
(15-STORY BUILDING WITH SPREAD FOOTINGS)

SOIL TYPE
FIRM INTERMEDIATE SOFT
I* .20466 E-03  .87490 E-03 19142 E-02
I1* .88351 E-02  .23731 E-0] .40564 E-01
TII* .23896 E-01 .31742 E-01 .42731 E-O1
I .90910 .73675 .47785
Q II ' .90975 .73767 .47822
w
III .90937 .73718 47806
I .82431 .53859 .22497
II .82666 .54078 .22500
111 .82548 .53993 .22511
* 1 = Radiational Damping Only
I = Radiational + Soil Material Damping
IIT = Radiational + Soil Material + Structure Apparent

Damping
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SPECTRUM AMPLIFICATION FACTORS FOR HORIZONTAL ELASTIC RESPONSE

Damping, One Sigma (84.1%) Median (50%)
% Critical
A Vv D A v D

0.5 5.10 3.84 3.04 3.68 2.59 2.01
1 4.38 3.38 2.73 3.21 2.31 1.82
2 3.66 2,92 2.42 2.74 2.03 1.63
3 3.24 2.64 2.24 2.46 1.86 1.52
5 2.71 2.30 2.01 2.12 1.65 1.39
7 2.36 2.08 1.85 1.89 1.51 1.29
10 1.99 1.84 1.69 1.64 1.37 1.20
20 1.26 1.37 1.38 1.17 1.08 1.01

I

N
4

v
AN

Velocity, cm./sec.

Frequency, hertz

FIG. 2.3 ELASTIC DESIGN SPECTRUM (0.5g MAX. ACCEL., 5% DAMPING,
84.1% CUMULATIVE PROPABILITY)
{after Newmark and Hall, 1977)
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FIG. 4.1  DISPLACEMENTS OF A SHEAR-BEAM BUILDING WITH A
RIGID-MAT FOUNDATION
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FIG. 5.2  SOIL-STRUCTURE INTERACTION MODEL FOR A SHEAR-BEAM
BUILDING WITH A RIGID-MAT FOUNDATION
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(A) Spread-Footing Foundation

(B) Flexible-Mat Foundation

FIG. 5.5  DISPLACEMENT SHAPES OF SPREAD-FOOTING AND
FLEXIBLE-MAT FOUNDATIONS
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APPENDIX A

LATERAL-TORSIONAL MODAL COUPLING

A computational scheme is presented in the section for finding the
coupled Tateral-torsional modes of a shear-beam building using modes
obtained from the usual, uncoupled lateral and torsional analysis. The
difference between an uncoupled mode and improved mode will give direct
measures of the effects of lateral-torsional modal coupling. This modal
improvement is very useful in earthquake engineering for assessing the
effects of lateral-torsional coupling. Since the basic idea of this
approach has been discussed in Section 4.3, we shall not detail this
presentation here. Attention will be given to introducing the general
form of the eigenvalue problem involved.

We shall examine the case of an undamped, multi-story, shear-beam
building with its base fixed. Each floor of the building is assumed to
have only three degrees of freedom, one torsional rotation and two
horizontal translations in perpendicular directions (see Fig. A. 1). For
a building with n stories, the building system has a total of 3n degrees
of freedom. |

Consider first the special case of a two-story building (n=2). The
equations of motion for this six degrees of freedom system in free

vibration can be written in matrix notation as

( - . _ e .e *‘
! 1 M M8y 2 { U2 |
| My - m,e ' i {
% 1 17x1 oyl
i | sym. 12 : Ug o
. P4
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In the above equation, the displacements, the u's, and
quantities, the e's and e¢'s, are defined in Fig. A.1.
eccentricities, Egs. (A.1.) reduce to the three usual,

equations of motion.

sets of equation is self-explanatory.

Ko ke “kyoty2 Ky2y2 g
Kyotky kaEyZ -(kx2£y2+kxl€y1) Y
ko ka1 Kyetxe Ky2tx2 Uy2 (A1)
kyatkyg '%y23x2 (ky28x2+ky1€x] qyll
Sym- ko2 kg2 Yp2
| kgz*ko1 Ugy ;

the eccentricity
In the case of zero
uncoupled sets of

The notation for the m's and k's in these three

For a general n-story building, the eigenvalue problem is expressed

in matrix notation as

_m'

[M]X [0} [M]xe
IMly[M]ye
sym. [M]e

¢ b
é{U}X

-f{u} |

B —

e
Ef“ Y.

y K

K,

sym.

(0] [K]X;] [l
[K], K] g | {u}y}
[K]G \1u}eJ

The diagonal n x n sub-matrices above do not involve the eccentricities

e's and ='s.

If the conventional assumption of zero eccentricities is used,

the off-diagonal n x n Sub-matrices are null. And the 3n uncoupled

lateral and torsional modes can be computed by the Holzer table (or

some other suitable method), so that
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M) [o] [we 1 = [K] [e] o
o} oL ~ e oL ol *

I
»
&
-
D

Ty 25 vees M (A.3)

where an nxn matric [¢] consists of n columns of the uncoupled Tateral
or torsional modes. . When the eccentricities are nonzero, lateral-torsional
couplings occur among these uncoupled modes.

The ejgenvalue problem Eqs. {A.2) can be modified by a transformation

of coordinates. Let

e ‘ e {/ \‘
Ay }rfﬂx BN
(uty oM A.4
g{u}y{- = [el, 5{“}3, | (A.4)

After transforming the coordinates of Egs. (A.2) to those of the type, we

have
— ] [0] M) iy T o1 ] [oor)
[M]X[OJ [M]xe_é vh, x xg v,
e 1 1 . _ L 1 )
w [M] [M]ye {v}y + [K]V[K]Ye {v}y {0}(A.5)
1
;sym [M]e | \{\)}8 L”sym. [Ke]I_ &{\)}BJ

The diagonal nxn sub-matrices above are now diagonal matrices since

;
[M]_oc = [‘”u [M]a (1, (A.6)
KD = D1 KL [, a=x,y,6 (A.7)

Thus, the two 3n x 3n matrices in Egqs. (A.5) are bordered matrices.
Each one contains a 2n x 2n diagonal matrix bordered by n columns and n rows.

Although the order of the simultaneous equation for using the Robinson-
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Harris method is 3n + 1, it can be reduced to n+1 after a procedure of conden-
sation. Furthermore, if the Ritz method is applied by using only s
uncoupled torsional modes {s < n), it is then reduced to s+i1. These

procedures increase @fficiency further in the effective numerical scheme used.
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APPENDIX B

RAYLEIGH-HOLZER METHOD

The Holzer's table (Holzer, 1921) has been used extensively for com-
puting the natural modes of a multi-story shear-beam building {say n-story)
with its base fixed (Newmark and Rosenblueth, 19?1; Clough and Penzien, 1975).
The'building is assumed to have only one degree of freedom at each floor.

The mddes may be usual, uncoupled lateral or torsional modes. For an assumed
fréquency w, this method gives an approximate mode shape {¢}.

As noted by Crandall and Strang (1957), Lord Rayleigh (1894) suggested
that the Rayleigh quotient obtained from a calculated shpae of the Holzer's

table* be used for next trial in the jteration, i.e.

2 {0} IKD {0}
(63T IM] (6}

(B.1)

! is the frequency suggested for next trial; the matrices [M] and [K]

where w
are mass and stiffness matrices. With the interpretation of energy, this

formula in Newmark and Rosenblueth's notation becomes
n

2 rET Qr Azr )
Wt = mz. . (B.2}
Y F.Z
pgp PP
where Fr = inertia force,
Qr = story forces,
Zr = story displacements, and

AZr= relative story displacements.

:*Ray]eigh's suggestion preceded the Holzer method by more than 27 years.
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These two equations are often used in hand calculations. It would be
beneficial if these equations could be simplified computationally.
Since w and {¢} are only approximate, in general, there are residual

forces {R} in the following expression

- w® [M] {$} + [K] {¢} = {R} (B.3)
In this case of a shear-beam building, {R} has only one nonzero term Rn’ the
residual force (usually) at the top of building. A consequence of Eq. {B.3}
is

(037 IK] {6} = w? {637 M1 £0} + {0} {R} (B.4)

Substituting Eq. (B.4) into Eq. {B.1) yields

SRS (Y () (8.5)
{937 IN] {9}

With the interpretation of energy, this equation can be written as

1 z Rn Zn
W Tw {1 - —;r—-**#—} {B.6)
!Fe Z,

r=1



