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ABST~6,.CT

An analytical method is advanced to predict the strength

of window glass plates subjected to lateral loads. The fail­

ure prediction model relates the strength of glass plates to

fundamental properties of the glass plate surface. The

ure prediction model incorporates all factors which are knov,TI

to significantly affect the strength of glass and all factors

which influence plate behavior. The failure prediction model

is offered as a realistic assessment of glass plate strength

to be used in window glass design.

The failure theory employed in the glass plate failure

prediction model states that glass plates fail as the result

of large local tensile stresses. These large local stresses

are induced by the interaction of surface tensile stresses

with minute stress raising surface flaws. Because the strength

are restrained from lateral displace-

(1) the plate edges

(2) the plate edges

plate, and

(3) the plate edges

of glass is controlled by the stress raising characteristics

of the surface flaws, the strength of glass varies with all

factors which alter these surface flaw characteristics. A

literature search is conducted to identify factors \·lhich lend

significant variability to the strength of glass. An available

analytical representation of these glass strength variations is

incorporated into the failure prediction model.

A geometrically nonlinear plate analysis is employed in

the failure prediction model to calculate the surface tensile

stresses in a rectangular glass plate. Selection of nlate

boundary conditions representative of \olindm·;r glass installa-

tions is based upon comparisons of experimental glass plate

responses with available ~heoretically determined rlate responses.

Based upon these comparisons, it is determined that "the best

idealized boundary conditions to model window glass are:

are free to rotate,

are free to slip in the plane of the

ment"
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A geometrically nonlinear plate analysis which employs these

boundary conditions is advanced to model the response of a

rectangular glass plate subjected to a uniform lateral load.

The failure prediction model relates the strength of

glass plates to fundamental characteristics of the glass plate

surface fla~7s. The probability that a glass plate exposed to

a lateral load will fail is the Dr8bability that a surface flaw

capable of initiating failure is located on the glass plate

surface. ADDroDriate probability theory is reviewed and

adapted to model the occurrence and severity of the surface

flaws and is incorporated in the failure prediction model.

The surface flaw characteristics employed in the failure

prediction model must be estioated from the results of care­

fully controlled glass plate tests to failure. This nrocess

is independently performed for two different sets of glass

plate failure data. The two sets of glass plates tested were

of similar surface condition, but significantly different

geometry. ,...., , - f 1lne strengtn ot one geOQetry 0 gLass plate is

then accurately predicted using the surface flaw character­

istics estimated from the failure data from the other geometry

of glass plate. It is thus shovru that the strength of glass

is related to fundamental properties of the glass plate surface.
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CHAPTER I

INTRODUCTION

There is a need within engineering practice for an

analytical method to predict the probability of failure

of window glass plates subjected to lateral loads. The

failure prediction technique should include provision

for all significant factors which influence glass strength

and all significant factors \vhich influence plate behavior.

The ultimate use of the glass plate failure prediction

model will be to provide a realistic assessment of glass

plate strength to be used in the design of window glass.

Current window glass design information is based upon

empirical representations of glass plate strength. Dis­

cussions in pertinent literature call attention to poten­

tial problems with this approach and emphasize the need

for a rational method to determine the strength of window

glass.

Recent advances in stress analysis techniques have

made it possible to characterize more accurately the dis­

tribution of stresses in thin rectangular glass plates.

Proposed new methods to predict the strength of glass

plates incorporate results of the newly developed stress

analyses. However, these new methods which predict slass

strength continue to rely substantially upon empirical

formulations and simplifying asswnptions.
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The failure prediction model advanced herein consi­

ders both the strength of glass and glass plate behavior.

The strength of glass is related to fundamental proper­

ties of the glass plate surface. Glass plate behavior

is described using a nonlinear plate analysis. Thus,

fundamental relationships between load and stress and

between stress and surface condition are recognized.

Chapter II expands upon the need for a failure pre­

diction model for window glass and sets forth the research

approach. Chapter III contains an evaluation of the glass

plate failure mechanism and provides a basis for incorpor­

ating the significant factors which influence glass

strength into the failure prediction model. A geometri­

cally nonlinear, large deflection plate analysis is pre­

sented in Chapter IV to calculate the stresses in glass

plates subjected to lateral loads. Chapter V contains

the formulation of the glass plate failure orediction

model. Finally, Chapter VI presents a surrnnary of accom­

plishments and provides direction for future research.
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CHAPTER II

THE RESEARCH PROBLEM

The design of window glass to resist lateral loads

consists of two steps:

(1) description of the design lateral load, and

(2) selection of the minimwn glass plate thickness

from window glass design charts.

Uniform lateral loads re~resentative of \~ind loads

are the major type of lateral load considered for window

glass design. Wind load characteristics depend upon

building geometry and the local wind environment. Im­

proved understandings of wind eff'2cts on buildings have

become available as the results of both wind tunnel and

full-scale experiments (Davenport 1976, Peterka and Cer­

mak 1975, Dalgliesh 1979). However, glass plate strength

information for use in window glass design has remained

essentially the same for more tha~ twenty years. Recent

interest has focused on the limitations of the currently

available window glass design information (Saffir 1976,

Ishizaki 1977, Beason and Minor 1978). In addition, re­

cent highly publicized instances of window glass failures

in relatively moderate windstorms have called attention

to potential problems with current window glass design

procedures (Engineering News Record 1974, 1977).

Product recommendations concerning the strength of

window glass have been widely circulated by major United

3



States glass manufacturers (PPG Industries 1975, Libbey­

OHens-Ford Company 1980). These product recommendations

are based upon glass plate strength tests (Orr 1957,

Hershey and Higgins 1973). Because these glass plate

strength characterizations Here available and in apparent

accord, similar window glass design charts were adopted

for use as minimum standards in major building codes

(Uniform Building Code 1973, Standard Building Code 1979,

BOCA Basic Building Code 1975).

Recently, product recommendations presented by one

manufacturer have changed radically (PPG Industries 1979).

This company has advanced ne,;.; glass plate strength infor­

mation based upon stress analysis and glass strength data

(Tsai and Stewart 1976). Publication of this neH infor­

mation has raised serious questions regarding design in­

formation presented in current building codes.

The basis for the glass plate strength information

referenced in major building codes is examined below.

This discussion is followed by a presentation of the re­

search approach used to develop an analytical glass plate

failure prediction model. A window glass design proce­

dure based on the failure prediction model presented

herein will be accomplished in further r~search at Texas

Tech University.

4



A. Review of Current Glass
Desi~n Pr0ceJures,

A review of current glass design information sug-

gests that basic glass plate strength information that is

presented in manufacturers literature (I..ibbev-()T..,rens-Ford

Company 1980) and building codes (Uniform Building Code

1973, Standard Building Code 1979, BOCA Basic Building

Code 1975) in the United States is essentially the same.

Figure 1 presents a typical glass design chart for rec-

tangular glass plates supported continuously on four

sides. This widely circulated design chart presents the

minimum thickness of rectangular annealed glass of a par-

ticular area that is required to resist a given design

lateral load.

Historically, windspeed data used as a basis to

specify wind loads are presented in terms of annual ex-

treme fastest mile windspeeds (Thorn 1954, 1960, 1968).

A fastest mile windspeed is the average velocity of a

one mile shaft of air as it passes a point. Therefore,

a design load associated with a windspeed in excess of

60 mph has a duration of 60 seconds or less. Although

it is not clearly stated by all presenters, durations of

the design loads presented in Figure 1 have become asso-

ciated with durations of the associated fastest mile

windspeeds or about 60 seconds. However, rationale to

associate the design loads presented in Figure 1 with a

60-second or any load duration is not clear. This is a

5
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very significant problem with current glass design methods

because the strength of glass is highly dependent upon

load duration (Ref. Chapter III).

Qualifications associated with the glass design chart

presented in Figure 1 vary with the presenter. The chart

is considered to be applicable for plate aspect ratios

ranging from 1:1 to 1:3 or from 1:1 to 1:5, and for naxi-

mum lateral edge deflections up to 1/175 of the span.

Further, the chart design load is considered to reflect

either a design factor of 2.5 or a probability of a single

plate failure of 8/1000.

Glass plate strength information available in the

open literature which relates directly to window glass

design charts contained in current building codes was

first presented bv- Orr (1957). Orr reported results of

20 static tests to failure of new glass plates. The

glass plates were exposed to increasing uniform lateral

loads until failure. The uniform loads were increased

in increments so that the central lateral deflection of

a particular plate was increased in steps of 0.10 or 0.20

in. Pertinent data were recorded between load increments.

The time required to fail a particular plate ranged from

5 to 25 minutes. The glass plates tested ranged in area

from 47 to 80 sq ft, in thickness from 0.114 to .383 in.,

and in aspect ratio from 1:1 to 1:1.67. The test series

contained, at most, two replications of any unique combi-

nation of area, thickness, aspect ratio, and glass type.
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The following empirical equation was advanced by Orr

(1957) to represent the measured variations of total glass

plate failure load with glass pla=e thickness

p = 7600 (t + t 2 ) (2.1)

where P is the total failure load (lbs) acting on the

glass plate surface, and t is the nominal thickness (in.)

of the glass plate. A more convenient expression is ob­

tained if Equation (2.1) is divided by the area of the

glass plate, yielding

p = [7600 (t + t 2 )J/A (2.2)

where p is the lateral load (psf), and A is the area of

glass plate (sq ft).

The glass design chart presented in Figure 1 can

be reproduced using Orr's (1957) results. To do this, it

is assumed that the failure load for a given glass plate

area is normally distributed with a mean value, p, given

by Equation (2.2) and with a standard deviation calculated

by assuming an appropriate coefficient of variation.

Design loads presented in Figure 1 can then be determined

by calculating the failure load associated with an 8/1000

probability of failure. If a coefficient of variation of

25 percent, as has been suggested by manufacturer's liter­

ature (PPG 1964), is used, the design load corresponding

to an 8/1000 probability of failure is found by dividing



9

the mean failure load by 2.5. Therefore, presenters of

Figure 1 associate the design loads with either an 8/1000

probability of failure or a design factor of 2.5.

More elaborate test programs have since been con­

ducted to determine the failure loads of new window glass

plates subjected to uniform lateral loads (Bowles and

Sugarman 1962, Hershey and Higgins 1973). It is not

strictly proper to compare these different test results

directly because of differences in loading rates and

probable differences in glass plate surface conditions.

Not\vithstanding these differences, comparisons between

mean glass failure loads predicted using Equation (2.2)

and the independently determined glass strength data

suggest that Equation (2.2) is a poor estimator of

the variation of glass strength with variations of glass

plate thickness, area, and aspect ratio. However, glass

plate failure loads predicted with Equation (2.2) appear

to be conservative for strengths of new glass plates from

a design standpoint.

Major questions regarding the validity of current

glass design information have been posed as the result of

the release of the new set of product reco~endations by

PPG Industries (1979). These new product recommendations

are the result of both experimental and analytical research
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(Tsai and Stewart 1976). Information presented suggests

that the strength of glass plates varies significantly

with aspect ratio as well as with area and thickness. In

some instances, the uniform lateral load corresponding to

an 8/1000 probability of failure is less than half of the

corresponding lateral load suggested in Figure 1. How­

ever, these new product recommendations have not, as yet,

replaced the glass design chart presented in Figure 1 in

building codes.

The above observations suggest that current repre­

sentations of glass plate strength used for design purposes

do not reflect, realistically, the strength of glass plates.

Factors such as plate geometry and load duration are not

properly treated in current glass design information. The

major reason for the current situation is that until re­

cently,'major questions have existed regarding the nature

of the stresses induced in a glass plate by a uniform lat­

eral load. It is impossible to rigorously treat the prob­

lem of glass plate failure prediction without a knowledge

of the induced stresses.

Recent studies address the strength of glass plates

(Bro\VTI 1974, Tsai and Stewart 1976, PPG Industries 1979).

Each of these studies recognize, to some extent, the impor­

tance of glass strength variations with factors such as

plate geometry, load duration, and the need for an accur­

ate assessment of the stresses induced in a glass plate by
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lateral loads. However, none of these studies has gained

widespread acceptance by glass designers.

B. Research Approach

A failure prediction model is presented herein to

estimate the strength of window glass plates subjected to

uniform lateral loads. The failure prediction model re­

lates the probability of glass plate failure to fundamen­

tal glass plate surface properties. The glass plate fail­

ure prediction model incorporates: (1) an analytical re­

presentation of the variation of glass strength with dif­

ferent environmental factors (Ref. Chapter III), (2) a

geometrically nonlinear plate analysis (Ref. Chapter IV),

and (3) a statistical representation of the glass plate

surface flaw properties (Ref. Chapter V). The failure

prediction model is formulated so that the surface flaw

properties are dependent only upon the type and treatment

of the glass, and are independent of factors such as

plate aspect ratio, glass plate surface area, and load

duration.

Figure 2 presents major procedural components of the

failure prediction model. Application of the failure

prediction model is demonstrated in Chapter V using a set

of glass plate strength data developed by testing a homo­

geneous sample of glass plates of different aspect ratios

and areas.
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1. Glas s Strength

The most popular glass failure theory suggests that

glass plates subjected to lateral loads fail as the re­

sult of the interaction of minute surface flaws with sur­

face tensile stresses (Griffith 1920). By nature of their

geometry and orientation ';-lith respect to the maximum normal

tensile stress, the surface flaws cause large local stress

concentrations in the glass plate. Failure initiates when

the stress raising characteristic~: of a particular flaw and

the attendant nominal tensile stress combine to cause a

critical local stress in the glass plate. Geometries of

the surface flaws can change to increase or decrease their

stress-raising characteristics as a result of a phenomenon

known as stress corrosion (Brown J.974). Stress corrosion

is facilitated by the chemical action of water on the

glass and by the presence of surface tensile stress. Be­

cause of stress corrosion, the strength of glass is depen­

dent upon the duration of applied loading through a

phenomenon known as static fatiguE~.

2. Plate Stresses

To predict the probability of failure of a glass

plate, an accurate determination of the surface tensile

stresses must be made. An annealed glass plate exposed

to a uniform lateral pressure typically experiences cen­

tral deflections in excess of the plate thickness prior

to failure. Plates experiencing central deflections of



this magnitude sustain significant middle plane strains.

There=ore, a nonlinear plate analysis which accounts for

the actions of the resulting middle plate forces must be

used (Timoshenko 1959).

The surface tensile stresses in a glass plate are

highly dependent upon the nature of the boundary condi­

tions to which the glass plate is exposed. The boundary

of a typically installed glass plate is subjected to

varying degrees of rotational, in-plane and lateral re­

straints. It is the opinion of some glass researchers

that the boundary conditions of typically installed glass

plates approach the idealized situation where the edges

are simply supported and free to slip in-plane (Tsai and

Stewart 1976). Until recent interest in the response of

glass plates, this plate boundary situation has received

little attention since it was first treated by Kaiser

(1936).

The nonlinear plate analysis presented herein employs

the von Karman differential equations (Timoshenko 1959).

Solution of the two nonlinear plate equations is achieved

using an iterative technique coupled with a Galerkin

method. Results of the nonlinear plate solution are com­

pared to other nonlinear plate solutions and to experimen­

tal glass plate test results.

14



3. Statistical Failure
Theory

15

The probability that a glass plate exposed to lateral

load fails is the probability that at least one glass plate

surface f:aw is capable of initiating failure, given the

resulting distribution of surface tensile stresses. Both

the occurrence and severity of the glass plate surface

flaws must be modeled to predict the probability of fail-

ure of a particular glass plate. A statistical material

strength theory introduced by Weibull(1939) is used as a

basis to model the glass plate surface flaw characteris-

tics. The statistical formulation employs two parameters

to model the surface flaw characteristics. Values of the

surface fla~.; parameters must be estimated from data gen-

erated from carefully controlled glass plate tests to

failure.

4. Verification

To demonstrate use of the failure prediction model,

two different geometries of glass plates with similar

surface conditions were tested to failure with time con-

trolled lateral loads. The best surface flaw parameters

to represent the failure strengths of both geometries of

glass plates tested were then determined independently.

Validity of the failure prediction model is demonstrated

by accurately predicting the strength of one glass plate

geometry using the surface flaw parameters determined

from the other geometry.



CHAPTER III

THE STRENGTH OF GL~SS

It is assumed in the development of the failure pre­

diction model presented herein that the strength of glass

plates is controlled by the characteristics of minute sur­

face flaws. The surface flaws give rise to large local

stress concentrations which initiate failure. The funda­

mentals of this failure theory were originally presented

by Griffith (1920). The original Griffith theory along

with interoretations Dresented bv Shand (1965) are reviewed. . -'

in this chapter.

The strength of glass has been observed to vary sig­

nificantly with both environmental exposure and load dura­

tion. Several pertinent experiments found in the litera­

ture are examined to emphasize the reality of these glass

strength variations. Experimental results reviewed indi­

cate that any credible failure prediction model for glass

plates must account for these observed variations of

glass strength.

To incorporate observed glass strength variations into

the failure prediction model, the strength variations are

related to the surface flaw characteristics in a determin­

istic fashion. Development of a stress corrosion theory

advanced by Brown (1974) is presented in this chapter.

The stress corrosion theory explains glass strength vari­

ations with relative humidity, temperature, and load dura-

16



ation. The stress corrosion theory is incorporated into

the failure prediction model presented in Chapter V.

A. The Failure Mechanism

A. A. Griffith (1920) observed that many brittle

materials such as glass fail at stresses much less than

their inherent material strength. To account for this

behavior, Griffith suggested that the failure of brittle

materials is the result of large local stress concentra­

tions induced in the materials by minute flaws.

Griffith (1920) presented an analytical development

for the special case of a flat homogeneous plate of t:ni­

form thickness containing a straight, narrow crack pass­

ing completely through its thickness. The analytical

formulations were restricted to thE~ case where the crack

was oriented perpendicular to the direction of the maxi­

mum principal tensile stress. Validity of this analyti­

cal formulation was demonstrated experimentally by Grif­

fith.

The original Griffith formulations were too re­

strictive to apply directly to the behavior of glass

plates. However, many glass researchers believe that

glass fracture is the result of tensile stresses inter­

acting with minute flaws on the surface of the glass

(Shand 1954, Weyl 1946, Jones 1949, Levengood 1957,

Wiederhorn 1967, Rader 1967, Preston 1942, Stanworth

1950) .

17
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In a series of papers concerning the fracture of

glass, E. B. Shand extended the fundame~tal concepts of

the Griffith theory to develop a more applicable glass

fracture theory (Shand 1954, Shand 1959, Shand 1961, Shand

1965, Shand 1969). Shand considered a straight surface

flaw with a depth of nenetration into the surface of the

glass plate which is small with respect to the thickness

of the glass plate." Figure 3 shows the cross section of

such an idealized surface flaw. The maxim~8 local stress,

am' associated with an idealized surface flaw occurs at

the flaw tip and is given by

1

a = cr K (hi r) '"2m a (3.1)

where a is the maximum principal tensile stress to whicha

the flaw is subjected, K is a stress concentration which

depends upon the flaw geometry, h is the flaw depth, and r

is the effective radius of the flaw tip (Shand 1965).

Shand (1965) reported that the nominal tensile stress

present in a glass specimen at the time of failure can range

from 1000 psi to values in excess of 300,000 psi. He attri­

buted this wide range of variability to different factors

which reduce the strength of glass including the treatment

of the glass, its environmental exposure, the effects of load

duration, and the stress concentration effects of the sur-

face flaws. He further reported that the strength degrada-
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tion due to the stress concentration effects of the flaw

geometry as represented by Equation (3.1) is perhaps fifty

times as important as the strength degradation effects of

all other factors combined.

The concept of stress raising flaws causing glass

failure is substantiated by the fact that a glass plate

failure can usually be traced back to a single point of

origin (Ref. Appendix A). Further, the location of the

failure origination point does not necessarily coincide

with the point of the maximum nominal stress, indicating

that there is a variability associated with the stress

raising potential of different flaws. The one particular

flaw which initiates glass plate failure is termed the

critical flaw.

Analytical formulations by Griffith (1920) and by

Shand (1965) do not treat the general situation where the

flaw is oriented at some angle to the direction of the

maximum principal stress such that the stress concentra­

tion is less than maximum. However, it is clear from an

examination of stress concentration theory that the orien­

tation of a flaw with respect to the orientation of the

maximum principal tensile stress must play an important

role in determining whether or not a particular flaw is

capable of initiating failure (Seely and Smith 1952).

Further, it is doubtful if the precise geometry of surface

flaws or glass plates will ever be known. Therefore, it



21
is not likely that direct application of Equation (3.1) can

be made. The concept of the surface flaw failure mechanism

is useful only in interpreting the behavior of the glass

plates.

B. Observed Variations
ot Glass Strength

The strength of glass varies significantly with envir-

onmental exposure and load duration. Because the strengths

of most common engineering materials are not nearly as sen-

sitive to normal variations of environment and load dura-

tion as is the strength of glass, realization of the depen-

dence of glass strength on so many different factors is

often difficult for an engineer not familiar Ivith the behav-

ior of glass. For this reason, a detailed examination of

several different experiments reported in the literature is

made in this section. The experimental results are divided

into three groups which show the dependence of glass strength

on the presence of water, temperature, and load duration.

1. Variations of Glass
Strength with Exposure to
Water

The strength of glass is significantly affected by ex­

posure of the glass surface to water, either liquid or vapor.

Results of three independent experiments are examined to

demonstrate the dependence of glass strength on exposure to

water.
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Baker and Preston (1946) tested 7/32 in. diameter

glass rods using a bending load. 7he rods were baked at

temperatures up to 350°C and then stored in a desiccator

for a period of two weeks prior to testing to assure that

the specimen surfaces were completE~ly dry. Some of the

specimens were soaked in water prior to testing. The load

duration was varied from 0.1 sec. to 100 sec. Relevant

conclusions are:

(1) in a near VaCUUlll, thoroughly baked glass speci­

men surfaces not exposed to water have an ulti­

mate tensile strength which is independent of

load duration,

(2) glass specimens whose surfaces are simultane­

ously exposed to moisture and tensile Stress

rapidly lose strength, and

(3) glass specimens whose surfaces are exposed

only to moisture may become stronger.

Stockdale, Tooley, and Ying (1951) tested a large

number of freshly drawn, annealed glass rods with diameters

of 0.11 to 0.12 in. The specimens were stored in a desic­

cator after fabrication to assure a thoroughly dry surface.

Some of the specimens were subjected to water treatments

consisting of total immersion in doubly distilled ",.;'ater at

a temperature of 90°C. The duration of the water immersion

treatment ranged from 5 minutes to 24 hours. The specimens

were then tested to failure using uniaxial tension loads.

Major conclusions are:
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(1) glass with thoroughly dry surfaces and which

are not subjected to water treatment experi­

ence no significant strength variations

with storage time,

(2) untreated glass specimens broken while sub­

merged in water are weaker than specimens

broken in air, and

(3) extended periods of water treatments prior

to loading tends to increase the strength of

the glass specimens.

Schoening (1960) performed a series of experiments

on laminated glass beams fabricated by gluing microscope

cover slides together. The resu:ting specimens had ap­

proximate dimensions of 38 x 6 x 0.16 rom. The laminated

spe cimens ".;ere stored in a dis icca tor for t-.;..;o -.;.;eeks prior

to testing. The specimens were then placed in a test

apparatus and the total syscem was baked in a vacuum at

350°C for one hour, and allowed to cool to room tempera­

ture. The glass specimens were then exposed to different

relative water vapor pressures for two hours and tested

with a bending load. Relevant conclusions are:

(1) glass specimens exposed to no water vapor

pressure maintain the highest strength,



24

(2) the strength of the glass specimens reduces

with increasing relative water vapor pressure

up to a relative water vapor pressure of about

SO percent, and

(3) the ratio of the strength of glass specimens

tested in saturated water vapor to the strength

of glass specimens tested in a vacuum is about

0.56.

Results of these three projects demonstrate the de-

pendence of glass strength on exposure to water. The

strengths of glass specimens tested in a vacuum are inde-

pendent of load duration. The strengths of glass speci-

mens exposed to water during the course of the test are

dependent on the load duration and tend to be less than

analagous dry strengths. In addition, exposure of glass

specimens to water prior to loading can result in a signi-

ficant increase in strength. Based upon these experimen-

tal results, it is clear thac the glass failure prediction

model must account for the variation of glass strength

with exposure to water.

2. Variations of Glass
Strength with Temperature

The strength of glass varies significantly with tern-

perature (Vonnegut and Glathart 1946, Jones and Turner 1942,
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Smekal 1936). Comparisons of experimental results presen-

ted by these researchers reveal that the nature of the

variation of glass strength in a range of 73° to 773°K is

uncertain (Stamv-orth 1950, Shand 1958). Hor.v-ever, since

ordinary window glass is not normally subjected to such se-

vere temperature variations, variations of glass strength

are examined in a range of temperatures from 250 0 to iI-SOoK.

A comparison of available glass strength data in this nar-

rower range of temperatures is made in this section.

Glass strength data are available for specimens of

different geometries, including fibers, ba~, strips, and

rods (Vonnegut and Glathart 1946, Jones and Turner 1942,

Smekal 1936, Charles 1958). Because of the differences

in the specimen geometries as well as differences in load

durations and test conditions, the available data cannot

be compared directly. To make a direct comparison of the

various data, the reported failure stresses from each ex-

periment were normalized by dividing the reported strengths

by their respective strengths at 323°K. These normalized

data are presented in Figure 4.

Based upon data presented in Figure 4, it can be con­

cluded that the strength of glass decreases with increasing

temperature in the temperature range of interest. This

trend was present in each data set examined. The data sug-

gest that glass can experience as much as a 40 percent re-

duction of strength as the temperature increases from 250 0
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to 450 o K. Therefore, the failure prediction model should

account for the variation of glass strength TN'ith tempera-

ture.

3. Variations of Glass
Strength with Load Duration

The strength of glass exposed to normal amounts of

humidity is highly dependent upon the duration of the

applied loading (Black 1935, Charles 1958, Mould and

Southwick 1959, Shand 1961). This phenomenon is termed

static fatigue by ceramic scientists. Results of three

research projects conducted with glass specimens that

were prepared from actual window glass are reviewed in

this section. In addition, results from experiments em-

ploying specially fabricated specimens are examined to

further emphasize the load duration dependence of glass

strength.

Black (1935) performed a series of tests which

clearly show that the strength of glass is dependent on

load duration. Black tested eighty specimens of new plate

glass beams, 2 x 10 x 7/64 in., exposed to eight different

load durations. The glass beams v;rere simply supported,

and subjected to central loadings. In the first six test

series, the specimens were exposed to linearly increasing

loads which caused failure in a range of times from 7 to

960 seconds. The average maximum tensile stresses occur-

ring in the beams ranged from 10765 psi for an average
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load duration of 7 seconds to 6494 psi for an average load

duration of 960 seconds. In the last two test series, the

beams were exposed to a constant load inducing a maximum

tensile stress in the beams of either 3080 psi or 4400 psi

and the time to failure of the spe.cimens ~tJas measured. In

the 4400 psi test series, 9 out of 10 specimens were bro­

ken within 40 hours and 1 remained unbroken after 20 days.

In the 3080 psi test, 1 specimen failed in seven days and

the remaining 9 specimens remainec unbroken at the end of

20 days.

Thompson and Cousins (1949) Derformed a series of

tests on small glass plates, 14 x 19 in., of two different

nominal thicknesses, 3/32 in. and 1/8 in. These glass

places were subjected to blast pressures that caused fail-

ure in a fe1;v hundredths of a second. The resul ts of these

tests TtJere compared to strengths determined by failing

similar glass plates with linearly increasing loads which

caused failure in about 60 seconds. It was found that the

strength of glass specimens which failed in about 0.01

seconds was about twice that of the specimens that failed

in 60 seconds. Further, it was observed that variations

of load durations in the hundredths of a second range

caused significant variations in the strength of the glass

specimens.

Shand (1961) tested small glass strips, 3/4 x 4-1/2

x 3/32 in. He introduced artificial flaws on the surfaces



of the speci~ens with a soeciallv fabricated tool.
o ,I

These flaws were introduced to reduce the variability of

the failure strengths associated with flaw occurrence and
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geometry so that load duration effects could be more easily

measured. Tests \Vere conducted with load durations ranging

from 1 second to about 300 hours. The failure strengths

of glass specimens ranged from about 11000 psi at a load

duration of 1 second to about 6000 psi at a load duration

of 300 hours.

Static fatigue has been observed in other experiments

conducted on specially fabricated glass specimens. Figure

5 presents a summary of the static fatigue results presen-

ted by several different researchers (Minor 1974). In

each experiment examined, the strength of glass specimens

exposed to normal amounts of atmospheric humidity decreased

significantly as the load duration increased. Therefore,

the failure prediction model should account for the varia-

tion of glass strength with load duration.

C. Analytical Exoressions of
Glas s Str"ength Var'iations

In the previous section it was shown that the strength

of glass varies significantly with exposure to water, tem-

perature, and load duration. In the failure prediction

model presented in Chapter V, the strength of glass is re-

lated to the characteristics of the surface flaws. To in-

corporate the appropriate strength variations into the
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failure prediction model, a relationship presented by Brm,,"TI

(1974) is used to relate strength variations to the surface

flaw characteristics. The Brown fornulation is an exten-

sion of previous research conducted by Charles (1958) and

Wiederhorn (1967). Development of the Browu formulation

is presented in this section.

The observed variations of glass strength are believed

to be the result of the corrosion of the glass surface flaws

(Charles 1958, Weiderhorn 1967, Brown 1974, Associate Com-

mittee of the National Building Code 1977). Flaw corrosion

occurs as a result of the action of water on the glass sur-

face. Corrosion of a flaw can change its depth, h, and

flaw tip radius, r, as defined in Equation (3.1). If a

flaw is exposed to water and te~sile stress it is conjec-

tured that the flaw radius, r, decreases and flaw depth,

h, increases resulting in an increase in the stress raising

potential of the flaw. If a flaw is exposed only to water

then the flaw radius increases at a faster rate than the

the flaw depth so that the net effect is a decrease in the

stress raising potential of the flaw. These two flaw cor-

rosion processes are illustrated in Figure 6.

Charles (1958) presented a theoretical development to

model flaw corrosion which takes into account the rate of

flaw corrosion as a function of the applied stress and the

ambient temperature. Charles assumed that the rate of flaw

depth corrosion, V , is related to the nominal tensilex

stress and temperature as follows
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V ex: on exp [··A/ (RT) ]
x ( 3. 2 )
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where 0 is the tensile stress to which the flaw is exposed,

A and n are constants, R is the universal gas constant, and

T is the absolute temperature. If a flaw is subjected to a

constant stress to failure, then the change of flaw depth,

d, experienced by the flaw is related to the nominal tensile

stress as follows

d ex: on exp[-A/(RT)] t
f

( 3 . 3 )

where t f is the time to failure. If the change of flaw

depth required to initiate failure is assumed to be inde-

pendent of the stress level then the right-hand side of

Equation (3.3) must be constant.

constant = on exp[-A/ (RT)] t f
(3.4)

Equation (3.5) can then be used to express the variation

of failure stress as a function of load duration and tem-

perature. Charles found experimentally that n is approxi­

mately equal to 16 and that A is appr0ximately equal to

18.8 Kcal/Mole for window glass, when R is taken to be 1.986

Cal/Mole-OK and the absolute temperature, T, is given in oK.

Other researchers have developed empirical relation-

ships to model the variation of the strength of glass with
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Preston 1946). The appearance of these empirical repre­

sentations are substantially different than Equation (3.4).

However, all of the available static fatigue relationships

yield essentially the same results.

Wiederhorn (1967), investigating the effects of rela-

tive humidity on crack propagation velocity or flaw corro-

sion, concluded that the velocity of flaw depth corrosion

is linearly related to the ambient relative humidity in a

range of relative humidities from 10-100 percent. There­

fore, Equation (3.4) can be rewritten to include the vari-

ation of glass strength with relative humidity as

constant = RH on exp[-A/ (RT) ] t f
(3.5)

where RH is the relative humidity expressed as a decimal

fraction and the other constants are as previously defined.

Recently Brmffi (1974) reexamined the work of Charles

and others and concluded that a better representation of

available strength data could be obtained if the expres-

sion for the rate of corrosion were modified. The result-

ing expression to model the variation of glass .strength

with load durAtion, temperature, and relative humidity is

constant __ f
tf

RH[o(t)/T]n exp[-Yo/(RT)] dt

o

(3.6)
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where t~ is the time to failure, c(t) is the stress at the...
cri tical flaw as a func tion of timE~. Brow"'11 determined that

the constant Yo is approximately equal to 25.0 Kcal/Mole

using the data presented by Charles (1958), while the other

constants maintained their original values. In addition

to more closely representing available strength data, Equa-

tion (3.6) allows a time variant stress to be treated.

Equation (3.6) models the corrosion to failure of a

surface flaw subjected to tensile stress. The constant

value of Equation (3.6) represents a basic measure of the

strength associated with a particular flaw. If the value

of the constant is determined expe=imentally, the magni-

tude of stress required to fail the same flaw at a differ-

ent temperature, relative humidity, and load duration can

be calculated. The magnitude of the constant stress, cr, re-

quired to fail a particular flaw at a set of reference

conditions is given by

RH [O(t)/TJ
n

exp[-y /(~T)J dt
o

o =
T -n

r

1
n

(3.7)

where the numerator j s evaluated for the conditions at the

time of the test and t , RH , and T are the reference load
r r r

duration, relative humidity, and temperature.



36

The following steps can be used to calculate an equi­

valent constant failure load at reference conditions for a

glass plate tested to failure under controlled conditions:

(1) The failure initiation point on the glass plate

is located using techniques explained in Appen­

dix A.

(2) The variation of stress with time at the fail­

ure initiation point is determined using experi­

mental or theoretical techniques (Ref. Chapter

IV) .

(3) The equivalent constant stress at the failure

initiation point is then calculated using Equa­

tion(3.7).

(4) Finally, using an experimental or theoretical

technique the equivalent constant failure

stress is related to the equivalent con­

stant failure load.

Using this procedure the variations of strength due to

humidity, temperature, and load duration can be removed

from a data set. The strength characteristics of the

modified data set are then applicable for the reference

conditions.



CHAPTER IV

NONLINEAR ANALYSIS OF GLASS PLATES

The probability of failure of a glass plate subjected

to a particular loading is dependent upon the glass plate

surface flaw characteristics and the distribution of sur-

face tensile stresses. A complete characterization of the

surface tensile stresses is necessary to rigorously predict

the probability of glass plate failure. An analysis techni-

que is presented in this chapter to model the distribution

of surface tensile stresses acting in a rectangular glass

plate.

Glass plates commonly experience maximum deflections

which are well in excess of their thickness prior to fail-

ure. l{hen the deflections of a plate are of this magni-

tude, a geometrically nonlinear plate analysis must be

used to model the plate response (Timoshenko 1959). \{hen

a plate experiences geometric nonlinearity the boundary

restraints have a particularly significant effect upon

the plate response. Because of the complexities involved

with geometrically nonlinear plate analysis, coupled with

the often unique nature of the boundary conditions asso­

ciated with window glass installations, the problem of

glass plate analysis has not been well addressed.

Plate solutions employing different boundary condi-

tions are reviewed to determine the proper set of ideal-

ized boundary conditions to be used to model glass plates.
37
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Boundary displacements of importance in relation to the

glass plate problem are: lateral edge displacement, edge

rotation, and in-plane edge displacement. These boundary

displacements can be subject to varying degrees of re­

straint depending upon the nature of the window glass in­

stallation. It is shown through comparisons of experimen­

tal and analytical data that the case where the edges of

the plate are simply supported and free to slip in-plane

provides a reasonable approximation to actual window glass

boundary conditions.

There are a limited number of plate solutions avail­

able which employ the proper boundary conditions. With

the exception of recently reported finite element results

(Moore 1979, Tsai and Stewart 1976), this problem has been

treated only once, by Kaiser (1936). There are insuffi­

cient cheoretical results available for use with the failure

prediction model. Therefore, a geometrically nonlinear

plate analysis for use with the failure prediction model

is developed.

The geometrically nonlinear plate analysis presented

in this section is developed using the von Karman nonlinear

plate equations (Levy 1942). The von Karman equations are

expressed in terms of lateral plate deflections and an

Airy stress function. Use of the Airy stress function en­

ables middle plane or membrane forces to be conveniently

treated. Simultaneous solution of the two nonlinear plate
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equations is obtained through use of an iterative techni-

que coupled with a Galerkin method. This method of solu-

tion was chosen because reasonable estimates of plate de-

flections and stresses could be obtained using relatively

small amounts of computation time.

Results of the nonlinear plate analysis are compared

to available theoretical results that are presented in the

literature. It is thus shown that: results of the non-

linear plate solution are in agreement with available

theoretical results. Further, it is shown that results of

the nonlinear plate analysis agree reasonably well with

available experimental glass plate data.

A. Review of Nonlinear
Plate Solutions

Hhen the maximum lateral deflection of a plate exceeds

half of its thickness it experiences significant stretching

of its middle surface. As a result, membrane forces are

introduced into the plate. Classical linear plate theory

ignores the presence of the membrane forces and therefore

cannot be used to analyze glass plates. A geometrically

nonlinear plate analysis which takes into account the ac-

tion of membrane forces must be used to analyze glass

plates.

The von Karman nonlinear plate equations were devel-

oped to model thin plates experiencing large deflections

(Timoshenko 1959). However, the lateral plate deflections
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should remain small with respect to the rectangular dimen-

sions of the plate or assumptions .employed in development

of the von Karman equations will b.e violated (Szilard

1974). Window glass plates usually fail before their

lateral deflections exceed the limitations of the von Kar-

man equations. The von Karman equations along with other

fundamental plate formulations are reviewed in this sec-

tion.

Most glass installations are designed so that the

lateral deflection of the plate edge is limited and

usually there is little or no rotational restraint at the

plate edge. Therefore, a simply supported edge condition

is assumed to be reasonably typical of window glass plates.

Development of membrane action in a simply supported plate

is highly sensitive to the degree of in-plane edge restraint

provided. Therefore, plate solutions employing different

degrees of idealized in-plane edge restraint are reviewed.

Central deflections determined for simply supported plates

with different degrees of in-plane restraint are compared

to central deflections measured in a well-documented set

of glass plate tests (Bowles and Sugarman 1962). It is

shown that the case of a simply supported plate with edges

free to slip in-plane closely approximates glass plate re-

sponse.
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1. Review of Nonlinear
Plate Equations

The von Karman nonlinear plate equations as presented

by Levy (1942) using rectangular coordinates are

(4.1)

+ a2
F a2

w -2 a2
F 3

2
1;'; )

ox 2 3y 2 oxay ox3y
(4.2)

where w is the lateral plate deflection, F is an Airy stress

function, D is the flexural rigidity of the plate, h is the

plate thickness, P is the lateral load acting on the platez

and E is the modulus of elasticity of the plate. An appro-

priate rectangular coordinate axis is presented in Figure

7. The flexural rigidity, D, of the plate is given by

D = (4.3)

where;..; is the Poisson I s ratio of the plate.

The Airy stress functipn, F', is related to the mem-

brane stresses,

ships

(J I

X '
(J I (J I, by the following relation­y' xy
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(4.4)

(4.5)

(4.6)

The bending moments per unit length in the plate are given

by

m = -D (~ + ~
32 1;';)

X 3x 2 3y 2/

-D (3
2

W 3
2

W)m = -+ \1
Y 3y 2 Clx 2

D
(a ;~w \

m = (1-\1) \--)xy axay

(4.7)

(4.8)

(4.9)

where m is the moment per unit length in the x direction,x

m is the moment per unit length in the y direction, and
y

m is the twist per unit length in the x-y plane. The ex­xy

treme fiber bending and shearing stresses acting in the

plate are given by

II 6D (a 2
w a 2W\

Ox = + U--J

h 2 ax 2 ' ay 2/

" 6D (Cl
2
W, Cl

2
W)° = -- -r \1--y h 2 3y 2 dX 2

(4.10)

(4.11)
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(4.12)

The total extreme fiber stresses in the plate are found

by adding the membrane and bending stresses as follows

ox = 0 'x + 0 x " (4.13)

o = Oy' + 0
Y Y " (4.14)

T
xy

= T '+-:
xy xy " (4.15)

In addition to lateral displacements a rectangular

plate can experience in-plane edge displacements depending

upon the plate boundary conditions. The in-plane edge dis-

placements perpendicular to the plate edges in the x and y

directions are given by u and v, respectively. To calculate

an in-plane edge displacement, u, in the x direction at a

point on the edge of the plate, components of in-plane edge

displacements due to both middle plane strain and plate

curvature across the width of the plate must be considered.

The in-plane edge displacement in the x direction at a

given point on the edge of a plate is given as follows

(4.16)
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~vhere a is the plate dimension in the x direction. Likewise,

the in-plane edge displacement in the y direction at a given

point on the edge of the plate is given by

v = (4.17)

where b is the plate dimension in the y direction.

2. Nonlinear Plate Solutions
for Simply Supported Rectangu­
lar Plates

Nonlinear plate solutions with simply supported edges

and different degrees of in-plane edge restraints are re-

viewed in this section. Solutions employing the following

three different types of idealized boundary conditions are

reviewed:

(1) simply supported edges\vhich are restrained

from in-plane displacement,

(2) simply supported edges which are free to slip

in-plane, but constrained to remain straight,

and

(3) simply supported edges which are free to slip

in-plane.

The first and third sets of idealized boundary conditions

offer the most and least in-plane edge restraint, respec­

tively. Therefore, the in-plane restraint of window glass

boundaries should be bet~veen these two extremes.



46
Timoshenko (1959) presented an approximate solution to

Equations (4.1) and (4.2), for the case of a simply suppor-

ted plate with in-plane edge displacement prevented. Timo-

shenko assumed that the bending and membrane actions of

the plate could be decoupled. This was achieved by com-

bining independent solutions for plates experiencing only

membrane action and for plates experiencing only bending.

Development of the Timoshenko approximate solution for a

square plate is outlined below.

The two differential equations representing only mem-

brane action in a plate are found by setting the flexural

rigidity term to zero in Equations (4.1) and (4.2), yielding

a!+F + 2 3 4 F

ax 4 ax 2 ay 2

,,2 ]

;y7 (4.18)

h (a 2
F a2 w + 3

2
F a2w _

3y2 ax 2 3x 2 3y2

,,2<:;, ~2W \2 _0_.1.__~ __ ! = _p
"ox"oy " " / Z:;xoy

(4.19)

Simultaneous solution of Equations (4.18) and (4.19) re-

sults in the following expression for the central deflec-

tion, wo ' of a square membrane with a Poisson's ratio or

0.25 and with sides of length 2a

= 0.802 a Y ~~: (4.20)

where qrn is the uniform load to which the membrane is ex­

posed.



The well-known differential equation for plate

bending is found by setting the Airy stress function to

zero in Equation (4.2) yielding

47

(4.21)

Solution of Equation (4.21) results in the following ex-

pression for the central deflection, wo ' of a square plate

with sides of length 2a and with a Poisson's ratio of 0.25

= 0.730 (4.22)

where qb is the uniform load to which the plate is sub­

jected.

Equations (4.20) and (4.22) can be rewritten as

w 3Eh
0

qm =
0.516a 4

w Eh 3
= 0

qb
0.730a 4

(4.23)

Using the principle of superposition the total load, q,

required to induce a maximum central deflection of w in
o

a plate capable of both membrane and bending action is

approximated as



q =
i,v Eh 3

o

O.730a 4

w 3Eh+ _0 _

O.5l6a 4
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(4.25)

Equation (4.25) is an approximate load deflection relation-

ship for the case of a simply supported square plate with

in-plane movement of the edges prevented.

Levy (1942) presented two exact solutions for simply

supported rectangular plates exposed to uniform lateral

loads. In the first solution, in-plane edge displacements

were prevented by applying an appropriate in-plane force

normal to the plate boundary. These boundary conditions

are equivalent to those assumed by Timoshenko (1959) in

the previously discussed approximate solution.

In the second Levy (1942) solution, the in-plane

force normal to the plate boundary was set to zero allow-

ing some in-plane displacement of the plate edges. However,

the edges of the plate in the second solution were con-

strained to remain straight. In-plane edge displacements

of a rectangular plate subject to the second set of con-

straints are shown in Figure 8. This pattern of in-plane

edge displacements can occur only if the plate edges are

rigidly stiffened (Timoshenko 1959). The first set of

Levy boundary conditions represents the most rigid condi­

tion for a simply supported plate while the second set of

Levy boundary conditions represents a less rigid situation.

To achieve a situation where the edges of the plate

are totally free to slip in-plane, the in-plane forces both
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normal and tangent to the plate boundary must be zero.

Kaiser (1936) presented a finite difference solution to

the von Karman equations for this situation. Kaiser as-

surned that both the normal and shear membrane stresses

along the plate boundary were zero assuring that no in-

plane boundary reactions could be transmitted to the

plate. In this situation in-plane edge displacements

along the plate boundary are not constant as they were

in the second Levy solution (Kaiser 1936, Timoshenko

1959, Moore 1979). In-plane deflections along a plate

edge vary from a minimum at the plate corners to a maxi-

mum at the midpoint between two plate corners as sho~vn

in Figure 8. This combination of boundary conditions

represents the most flexible condition for a simply sup-

ported plate.

3. Comparison of Nonlinear
Plate Solutions to Actual
Glass Plate Behavior

Comparisons of calculated and actual glass plate

lateral deflection data are made in this section. These

comparisons are made so that the best set of idealized

boundary conditions to model glass plates can be selec-

ted. A particularly well-documented set of glass plate

data presented by Bowles and Sugarman (1962) is used to

represent the behavior of glass plates.

Bowles and Sugarman (1962) presented the following

empirical relationship between load and central deflec-

tion for square glass plates

50
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(4.26)

where P is the uniform load, Z is the length of a side, 5

is the central plate deflection, h is the plate thickness,

and E is the modulus of elasticity of the plate. Equation

(4.26) is of the same form as the approximate relationship,

Equation (4.25), presented by Timoshenko (1959). The first

term on the right side of Equation (4.26) represents the

bending action of a plate and follows directly from Equa­

tion (4.25). The second term on the right side of Eaua­

tion (4.26) represents the membrane action of the plate.

The constant associated with the second term was selected

so that Equation (4.26) would closly represent the mea­

sured results of several hundred glass plate tests.

Figure 9 presents a comparison of the theoretical load­

deflection curves for simply supported plates \vith varying

degrees of in-plane restraint with the empirical load­

deflection relationship presented by Bowles and Sugarman

(1962). It is clear from an examination of Figure 9 that

the degree of in-plane restraint provided at the boundary

of a simply supported plate has a highly significant ef­

fect upon the plate rigidity. Comparison of the load­

deflection curves presented in Figure 9 show that the

Kaiser (1936) load deflection curve is very similar to

the Bowles and Sugarman empirical load-deflection curve.

Further, experimental measurements presented by Anians
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(1979) sho~ that actual in-plane displacement of the edges

of a glass plate are similar to those predicted by the

Kaiser (1936) solution (Ref. Fig. 8). These facts combine

to suggest that a glass plate is best modeled by assuming

that the plate edges are simply supported and free to slip

in-plane.

B. Development of Nonlinear
Plate Solution

Results of nonlinear plate solutions which employed

the boundary conditions selected to model glass plates were

reviewed (Kaiser 1936, Tsai and Stewart 1976, Moore 1979,

AI-Tayyib 1980). However, insufficient theoretical results

areavailable for use with the failure prediction model.

Therefore, a nonlinear plate analysis is developed.

Nonlinear plate solutions can be developed using sev-

eral available methods (Szilard 1974). The finite element

method is currently one of the most popular analysis tech-

niques. The finite element method relies heavily on matrix

manipulation and is usually formulated in general terms so

that a variety of different problems can be solved. How­

ever, solutions of geometrically nonlinear problems using

matrix formulations characteristically require large

amounts of computation time. An alternative solution tech-

nique presented by Szilard was chosen for use in the non-

linear plate solution. The Szilard solution technique

employs an iterative procedure to achieve a simultaneous
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solution to the von Karman nonlinear plate equations. The

nonlinear plate analysis thus developed requires signifi-

cantly less computation time than a finite element analy-

sis.

Formulation of the nonlinear plate solution is pre-

sented in this section. In addition, calculated stresses

and deflections obtained from ~he nonlinear plate solution

are compared to independent theoretical results to estab-

lish validity of the solution.

1. Formulation of Non­
linear Plate Solution

Equations (4.1) and (4.2) are the governing differen­

tial equations for thin plates experiencing large lateral

deflections. The nonlinear plate solution presented herein

employs an iterative technique whereby Equations (4.1) and

(4.2) are solved by alternately assuming the lateral deflec-

tion to be constant in Equation (4.1) and the membrane

stress function to be constant in Equation (4.2). Individ-

ual solutions of the two nonlinear plate equations are ac-

complished using a Galerkin method and numerical integra-

tion. This solution technique is outlined by Szilard

(1974).

Application of the Galerkin method to Equations (4.1)

and (4.2) results in the following equations (Szilard 1974)
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aXdY
d 2w- )

ox3y
dxdy -- 0

(4.28)

Infinite series are employed to represent the lateral plate

deflection, w, the ~embrane stress function, F, and the

lateral loading, Pz ' Selections of the infinite series to

represent the lateral deflections and the membrane stress

function are made such that all the boundary conditions

are satisfied. Consistent with the conclusion of section

IV.A, the following three boundary conditions are assumed

in the nonlinear plate solution:

(1) the lateral deflections of the plate along the

boundary are zero,

(2) the bending moments normal to the plate edge

are zero, and

(3) the in-plane plate reactions at the boundary

are zero.

The first two boundary conditions presented above can

be stated as
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w = 0 m = 0 for x = 0 and x = ax

w = 0 m = 0 for y = 0 and y = b (4.29)y

Taking the coordinate axes as shown in Figure 7, the above

boundary conditions are satisfied if the following expres-

sian for lateral deflection is used

w(x,Y)

K L
= L: 2: w Sin miTX Sin £2.Z

m= 1 , 3 . .. n=1 , 3 . .. QIl a b (4.30)

where w is a coefficient chosen to satisfy the nonlinearmn

plate equations, a is the plate dimension in the x direc-

tion, and b is the plate dimension in the y direction, K

and L are the maximum indices for the lateral deflection

coefficients.

For the plate boundary to have zero in-plane reactions

the boundary of the plate must be free of both normal and

shear membrane stresses or

,
0 0 for 0 ando-x = l' x~...'" = X = X = a

"'

= 0 T = 0 for y = 0 and y = b (4.31)0- xy
Y

These boundary conditions are satisfied if the membrane

stress function is represented by

F(x,y) =
I

m=2,4

J
L:

n=2,4 (
m"'x' I n

1
?\F i-cos _"_). (l-cos II)

... rnn a \
(4.32)
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where F is a coefficient chosen to satisfy the nonlinearmn

plate equations and I and J are the maximum indices for the

membrane stress function coefficients. The functions in the

expansion of Equation (4.32) are not orthogonal; hence, care

must be taken to include all cross product terms in formu-

lation of the solution that would otherwise vanish.

The following expression is used to represent the uni-

form lateral load

p (x,v) =z .;

K
L:

m=1,3

L
l:

n=1,3
~6? m~x ncv
-~-- Sin ,. Sin ~
rr~mn a b (4.33)

where P is the magnitude of the uniform lateral load.

To formulate the nonlinear plate solution, the expres-

sions for the lateral deflections, the lateral loads, and

the membrane stress function must be substituted into Equa-

tion (4.27) and (4.28). This substitution results in two

sets of nonlinear simultaneous equations both in terms of

unknown lateral deflection coefficients, , 'w .. s, ana un-
~J

known membrane stress function coefficients, F .. 's. Me­
~J

chanics of this substitution are presented in Appendix B.

The number of simultaneous equations generated from Equa-

tions (4.27) or (4.28) is the same as the number of series

terws used in the lateral deflection expression or

the membrane stress function expression, respectively.

For simplicity, an equal number of series terms were

used for each equation.
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Szilard (1974) presented the following iterative pro-

cedure to estimate the unkno\VTI coefficients:

(1) A set of lateral deflection coefficients are

assumed.

(2) Using the assumed lateral deflection coeffi-

cients a corresponding set of membrane stress

function coefficients are determined using the

nonlinear equations generated from expression

(~.28).

(3) Using the set of membrane stress function co-

efficients calculated in step (2), a new

set of lateral deflection coefficients are

determined using the nonlinear equations gen-

erated from expression (4.27).

(4) Steps (2) and (3) are repeated until satisfac-

tory convergence is achieved.

Convergence of the coefficients using this method can be

slow or impossible depending upon the quality of the ini-

tial assumptions and upon the degree of nonlinearity ex-

perienced by the plate.

To improve convergence of the iteration described

above, an unde~relaxation of the lateral deflection co-

efficients was incorporated into the Szilard iteration

scheme. In addition, checks were installed in the itera-

tion procedure to detect divergence of the lateral deflec-

tion coefficients. If divergence is detected the origi­

nal lateral deflection coefficients are suitably modified



and the iteration is reinitiated. A logic flowchart for

the iteration procedure thus developed is presented in

Figure 10. This modified iteration procedure converges

much quicker than the iteration procedure outlined by

Szilard (1974).

A computer program was developed to perform the non-

linear plate analysis as described in this section. The

program is written in the standard k~SI Fortran computer

language. Input to the computer program consists of the

number of expansion terms to be employed in the various

expressions, the elastic material properties, the plate

geometry, the magnitude of the uniform lateral load, the

convergence criteria, the number of numerical integration

divisions, and the initial values of the lateral deflec-

tion coefficients. A copy of the computer program along

with input/output instructions is provided in Appendix C.

2. Validity of Nonlinear
Plate Solution

Results of four different nonlinear plate analyses
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which employed the proper boundary conditions were reviewed

in the course of this research (Kaiser 1936, Tsai and Ste-

wart 1976, Moore 1979, Al-Tayyib 1980). Results presented

by these researchers include both stresses and lateral de-

flections. Each of these analyses including the one pre-

sented herein are based upon numerical techniques and are
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subject to varying amounts of error depending upon the

solution technique. Comparisons of central stresses and

central deflections generated in :he independent stress

analyses reviewed reveals a reasonably good agreement

(Moore 1979, AI-Tayyib 1980). Results presented by

Kaiser (1936) were chosen to compare to results of the

nonlinear analyses presented herein because Kaiser pre­

sented individual variations of bending and membrane

stresses at the center of the plate instead of the vari­

ation of the combined stresses. The Kaiser (1936) results

\Vere presented for a square plate with a Poisson's ratio

of 0.303.

Results for comparison to thl:: Kaiser (1936) results

were generated with the nonlinear plate analysis using

four series terms to represent the lateral loading,

the lateral deflection, and the ml::mbrane stress function.

The numerical integrations \Vere pt::rformed with the plate

divided into 64 discrete zones. The convergence criteria

for the lateral displacement coefficients was taken to be

0.01 in. More stringent criteria may be required to ade­

quately represent the variations of stresses and deflec­

tions at different points on the plate or for different

plate problems. It is strongly recommended that conver­

gence studies be conducted for each type of problem consi­

dered. Reasonably good compariso~s with central plate data

presented by Kaiser are achieved with the above criteria.
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Figure 11 presents the variations of central deflec-

tion with load as calculated by Kaiser (1936) using finite

difference techniques and as calculated using the nonlinear

plate analysis presented herein. It can be seen that the

comparison is good. Good comparisons of lateral deflection

results are to be expected because the displacement variable

appears directly in the differential equations.

Figure 12 presents the variation of central stress

with load as presented by Kaiser (1936) and as calculated

using the nonlinear plate solution. Four load-stress cur­

ves are presented: the extreme fiber bending stress, the

membrane stress, the total extreme: fiber stress on

the concave surface of the plate, and the stress present

on the convex surface of the platE!. The center of a sym­

metrically loaded square plate experiences no shear stres­

ses, so that the stresses presented in Figure 12 are inde­

pendent of orientation. Comparisons of the load-stress

curves are good, but not as good as the central deflection

comparisons. This is because stress is related through

second order derivatives to the lateral displacement and

membrane stress functions. Therefore, it is to be expected

that calculated stresses should be less accurate than cal­

culated deflections. This is true for both the Kaiser

solution and the nonlinear plate solution presented herein.

Based upon favorable comparisons of calculated stres­

ses and deflections with those presented by Kaiser (1936)
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it is concluded that the nonlinear plate analysis models

the case of a simply supported reccangular plate with no

in-plane restraint at the boundary. If the program is

used to calculate stresses for other plate problems,

care should be taken to be sure that enough expansion

terms and integration divisions arl: taken to adequately

model the situation in question.

C. Comparison of Results
or Nonlinear Plate Solution
to Glass Test Results

In the previous section a nonlinear plate analysis

was presented to model the response of a simply supported

plate with in-plane movement of the edges allowed. In

this section comparisons are made between computed stres-

ses and deflections and those measured experimentally on

glass plates of different aspect ratios. Several re-

searchers have reported experimental results for glass

plates mounted in different laboratory test rigs (Orr 1957,

Bowles and Sugarman 1962, Ishizaki 1972, Pershey and Higgins

1973, Tsai and Stewart 1976). The edges of glass plates

mounted in each of the different test rigs were supported

on all sides with neoprene bearing surfaces supported by

relatively rigid frames. With such a support system the

glass plate edges experienced limited lateral displace­

ments and relatively small amounts of rotational restraints.

These support conditions were chosen by the various re-

searchers to represent, in a practical sense, actual window

installations.
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found in the literature were prese':lted by Orr (1957).

The significance of the tests performed by Orr with

respect to current glass strength charts is discussed

in Chapter II. Orr tested twenty large glass plates to

destruction with thicknesses ranging from 0.114 to 0.383

in., with areas ranging from 47 to 80 sq ft and with as­

pect ratios ranging from 1:1 to 1:1.67. Pertinent re-

sults presented by Orr consist of load deflection curves

for the different glass plates tested.

Bowles and Sugarman (1962) presented a very extensive

set of experimental results concerning tests to failure

of 41 in. x 41 in. glass plates. The square glass plates

ranged in thickness from 0.122 in. to 0.373 in. and were

exposed to monotonically increasing uniform pressures re­

sulting in failure in around 30 seconds. Complete load­

deflection records were kept for each plate tested. Based

upon an approximate analysis presented by Timoshenko (1959),

Bowles and Sugarman developed Equa.tion (4.26) which relates

the central deflection of a square plate to the applied

uniform lateral load. In addition, Bowles and Sugarman

presented central plate stresses determined through use

of strain gages for both the concave and convex surfaces

of the different glass plates.

Ishizaki (1972) extended the work of Bowles and Sugar­

man (1962) to develop an empirical load-deflection rela-
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tionship for rectangular glass plates. The empirical equa-

tion developed by Ishizaki is

3

E. = _A (~) +
E C1 3 a

), 3--_.
C3 (1-·]J2)

(~) (4.34)

where p is the uniform lateral load, E is the modulus of

elasticity, A is the ratio of the plate thickness to the

length of the shorter side of the plate, a is half the

length of the shorter side, ]J is the Poisson's ratio of

the glass plate, and C and C are constants which depend
1 3

upon the plate aspect ratio. ValuE~s of the constants C
1

and C suggested by Ishizaki (1972) for rectangular glass
3

plates of different aspect ratios are presented in Figure

13. These values were determined based on results of

tests conducted on large glass plates ranging in thickness

from 4 to 5 nml, ranging in aspect ratio from 1:1 to 1:2.5,

and ranging in area from 1 m2 to 4 m2
.

Hershey and' Higgins (1973) devE~loped a statistical

model to estimate the probability of breakage of glass

plates exposed to sonic boom overpressures. In the final

report submitted to the Federal Aviation Administration,

data obtained from the Libbey-Owens-Ford Company was pre-

sented to quantify glass strength. In this glass test

series 2513 large glass plates werE~ tested to failure in

119 different sizes. The mean bursting pressure and as­

sociated central deflection for each of the 119 test series

were presented.
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Tsai and Stewart (1976) presented analytical and ex-

perimental deflection and stress results for large glass

plates. Experimental results were presented for glass

plates with aspect ratios of 1:1, 1:2, and 1:4. Stresses

reported by Tsai and Stewart were measured with bonded

resistance strain gages on the convex plate surface.

Analytical results to compare with the theoretical

glass plate data were computed wi.th the nonlinear plate

analysis assuming that the modulu.s of elasticity for

glass is 10.0 x 10 6 psi and the Poisson's ratio for glass

is 0.210. Four series terms w'ere emp loyed for the

membrane stress function, the lateral deflection function,

and the lateral loading function. A total of 64 nlli~eri-

cal integration increments were used. Convergence of the

solution was considered to be adequate when each of the

lateral deflection coefficients changed less than 0.01 in.

in an iterative cycle.

Figures 14-17 present comparison of the variations

of central deflections with load from the different ex-

perimental sources with computed theoretical results fnr

plate aspect ratios ranging from 1:1 to 1:1.67. The em-

pirical load deflection equations are presented as con-

tinuous curves while direct observations are presented

as discrete points. The experimental load-deflection

results taken from the literature appear to compare rea-

sonab1y well with results calculated using the nonlinear

plate analysis.
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Figures 18-20 present comparisons of the variation of

the maximum principal central tensile stresses with load

for the convex plate surface with analogous calculated

values for glass plates of different aspect ratios. The

experimental stress data presented were all determined

using bonded resistance strain gages. The calculated and

measured data compare very well.

Based upon comparisons of both stress and deflection

data taken during full-scale glass plate tests with com-

puted data, it is concluded that the nonlinear plate

analysis presented herein adequately represents the re-

sponse of a large rectangular glass plate supported on

four sides. Experimental and theoreti~l stresses agree

exceptionally well. This is particularly pleasing since

the failure prediction model presented in the next chapter

incorporates the calculated stresses.



40

..
en
~ 30
'--(fJ

75

c
'-­c::
Q)

U

c
c::
o.-en
c::
Q)

E
"'C
c::
o
Z

20

10

100 200
I

300
I

400

Nondimensional Load,

Aspect Ratio 1:\

o Bowles and Sugarman 1962

I Tsai and Stewart 1976
_. _. -. Nonlinear Plate Solution

FIGURE 18. COMPARISONS OF ACTUAL AND CALCULATED
GLASS PLATE CENTRAL STRESSES; ASPECT
RATIO = 1:1



40 ......-
.c N

0 ,/

c .s::::. /
b w 0 ./

.. /'
VI 0/VI 30
Q)

/~-(/) 0/
c /~-c: 20

0./
Q)

u
/c

c: /0.-
VI 10 /c:
Q)

E /"'C
c:
0
Z

I I
100 200 300 400

Nondimensional Load, Pa 2 b2

E h4

Aspect Ratio I: 2

o Tsai and Stewart 1976
_._. _. Nonlinear Plate Solution

FIGURE 19. COMPARISONS OF ACTUAL AND CALCULATED
GLASS PLATE CENT?..AI.. ST~ESSES: ASPECT
RATIO = 1:2

76



40

o...
- 20c
Q)

(.)

o
c
o.-
tJ) 10c
Q)

E
"0
C
o
Z

/
/

/
/

/
/

/
.0

/
/'0

!
/0

.f
/

77

Nondimensional Load,

100 200 400

Aspect Ratio 1:4

o Tsai and Stewart 1976

---- --Nonlinear Plate Solution

FIGURE 20. COHPARISONS OF ACTUAL AND CALCULATED
GLo\SS PL:\TE CENTRAL STRESSES: ASPECT
RATIO = 1:4



CHAPTER V

GLASS PLATE FAILURE PREDICTION HODEL

A failure prediction model for window glass is pre-

sented in this chapter. The failure prediction model

relates the probability of failure of a glass plate under

lateral load to the characteristics of glass plate surface

flaws. The failure prediction model considers variations

of glass strength with load dura.tion, relative humidity,

and temperature. The failure prediction model also re-

cognizes the complex nature of the stresses developed in

thin rectangular"plates subjected to lateral loads. Vari­

ations of glass strength with different factors are ad­

dressed in Chapter III. An appropriate plate analysis

is presented in Chapter IV. Remaining elements of the

failure prediction model are discussed in this chapter.

A statistical theory advanced by Weibull(1939) is

incorporated in the failure prediction model. Weibull

presented a complete statistical theory for the strength

of materials, such as glass, which exhibit failure char­

acteristics that are difficult to explain using a failure

theory which is based upon stress or strain at a point.

The Weibulltheory is reviewed in detail, and is adapted

to model the strength of glass plates.

The surface flaw characteristics of glass plates

utilized in the failure predicti.on model are fundamental,

strength-related properties of glass plates. Two

78
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parameters are used to model the surface flaw character-

istics. Numerical values of the surface flaw parameters

cannot be measured directly, but have to be estimated from

the results of carefully controlled experiments. Method-

ology to estimate the numerical values of the two surface

flaw parameters is presented.

To demonstrate use of the failure prediction model,

values of the surface flaw parameters are independently

estimated for two different geometries of glass plates.

The two plate geometries were of the same thickness and

surface condition, but were of significantly different

aspect ratio and surface area. To demonstrate the

validity of the failure prediction model, it is then

shown that the strength of one geometry of glass plate

can be predicted using the surface flaw parameters esti-

mated from strength data generated from the other geome-

try of glass plate, and vice versa. This exercise demon-

strates that the calculated surface flaw parameters are

independent of glass plate geometry and plate response.

A. Formulation of the
Glass Plate Failure
Prediction Model

.
A model which predicts the strength of glass plates

cannot be based on a maximum stress-oriented failure

theory because glass plate failure rarely initiates at

the point of maximum stress. Rather, glass plate failure

initiates at a point where flaw severity and surface



tensile stress combine to cause a critical local stress ~gn­

centration on the plate surface. Because of the inherent

variability associated \-lith the surface flaw characteris­

tics, the strength of glass must be treated in a statis­

tical sense.

The probability that a glass plate fails as the re­

sult of a particular loading is the probability that

there is at least one surface flaw capable of initiating

failure, given the distribution of surface tensile

stresses, the duration of loading, the temperature, and

the relative humidity. The failure prediction model ad­

vanced in this section can be used to evaluate this proba­

bility. The failure prediction ::nodel employs the Brmvn

(1974) stress corrosion theory (presented in Chapter III)

to account for strength variations with load duration and

ambient conditions, the nonlinear plate analysis (pre­

sented in Chapter IV) to determine the plate surface ten­

sile stresses, and a statistical theory advanced by Weibull

(1939) (discussed below) to model the characteristics of

the surface flaws.

1. Equivalent Stresses

It was shown in Chapter III that the strength of

glass varies significantly \-lith load duration, tempera­

ture, and humidity. To account for these strength varia­

tions, actual stresses occurring in a glass plate are

converted to equivalent stresses (denoted by a) at
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reference conditions using Equation (3.7). In this manner

variations of glass strength are treated prior to the sta-

tis tical analysis. Selection of the reference conditions

is arbitrary.

2. Statistical Theory

If similar glass plates are exposed to linearly in­

creasing lateral loads to failure, there will be a sig-

nificant variation in loads at which failure occurs. A

typical coefficient of variation for failure loads is

about 22 percent (PPG 1979). A representative cumulative

probability function for such a test is show~ in Figure

21. According to \~eibull (1939), the cumulative proba-

bility of failure function, Pf , can be represented as

Pf = 1 - exp[-B] (5.1)

where B is a risk function which relates the probability

of failure to the stresses present in the glass plate,

which are in turn a function of the lateral load on the

plate. An appropriate risk function must be selected

based upon the failure characteristics of glass plates.

Because the strength of glass plates is controlled

by the distribution of flaws across the surface of the

glass, the probability of failure of a glass plate logi-

cally should increase with the amount of surface area

exposed to tensile stress. Further, it is clear that

probability of glass plate failure should increase with
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the magnitudes of the induced tensile stresses. For th~3

special case of a uniformly stressed (the same state of

biaxial stress across the plate surface) glass plate sur-

face with equal equivalent principal stresses, the fol-

lowing risk function suggested by Weibull(1939) is used

B = k (0 )m A
max 0

(5.2)

where m and k are the two surface flaw parameters for the

reference conditions, Ao is the total surface area of the

glass plate exposed to the uniform tensile stress, and

0max is the magnitude of the ~aximum ~quivalent £rincipal

tensile (MEPT) stress. As either the magnitude of the

MEPT stress increases or the area of the plate increases,

the risk function given in Equation (5.2) increases, re-

sulting in an increase in the failure probability predicted

with Equation (5.1).

The risk of failure experienced by a glass plate is

related to the magnitude of the equivalent tensile stresses

which act normal to the axes of the surface flaws. When a

glass plate is exposed to a uniform state of biaxial stress

with equal equivalent principal stresses, a flaw of any

orientation produces the same risk of failure. This is

true because the equivalent tensile stress which acts nor-

mal to the axis of a flaw is the same for any flaw orien-

tation. If the state of stress is such that the maximum
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and minimum equivalent principal stresses are not equal,

the equivalent stress which acts normal to the axis of

a flaw varies with flaw orientation. Hence, the risk

function must take flaw orientation into account. The

equivalent stress, °8 , which acts on a plane rotated an

angle 8 from the plane of MEPT stress is given by the

following biaxial stress transformation equation (Seely

and Smith 1952)

(5.3)

where ° and 0. are the maximum and minimum equiva-max m1.n

lent principal stresses. To incorporate the variation

of normal s tres s ';vi th flaw orientation, Heibull (1939)

suggested a m~dified risk function similar to

B = ~ k'IT • (5.4)

where the upper limit on the integration, a, is ~/2 if both

equivalent principal stresses are tensile stresses. If

the minimum equivalent principal stress is compressive,

a is calculated as follows

(5.5)

Calculation of a using Equation (5.5) prevents compressive
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equivalent stresses from influencing the risk function.

\ihen the maximum and minimum equivalent principal stres-

ses are equal, Equation (5.4) reduces to Equation (5.2).

Equation (5.4) can be rewritten as follows

r r. a

~ J' 2Iii (cose+n
L 0

(5.6)

where n is the ratio of the mini.mum to maximum equivalent

principal stress. Equation (5.6) can then be rewritten as

B = k A ( ~. )mo c cmax (5.7)

where c is a correction factor for the biaxial state of

stress given by

(5.8)

The value of c is 1.0 for the case of equal equivalent

principal stresses, and it decreases as n decreases.

Values of the correction factor, c, for values of n

ranging from 1.0 to -1.0, are presented in Table I for

values of the surface flaw parameter, m, ranging from 4

to 7. These values for m are in the appropriate range
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TABLE 1.

BIAXIAL STRESS CORRECTION FACTOR, c

Ratio of Values of Biaxial Stress
Minimum to Correction Factor, c

Maxirnt.ml for Different Values of
Equivalent the Surface Flaw
Principal Pararreter ,m
Stress, n rn=4 rn=5 rn=6 rn=7

1.00 1.00 1 1.00 1.00 1.00

0.80 0.91 0.01 0.91 0.92

0.60 0.84 0.85 0.86 0.86

0.40 0.78 0.80 0.82 0.83

0.20 0.75 0.78 0.80 0.81

0.00 0.72 0.76 0.78 0.80

-0.20 0.71 0:74 0.77 0.79

-0.40 0.69 0.73 0.76 0.78

-0.60 0.68 0.72 0.75 0.77

-0.80 0.67 . 0.71 0.74 0.77

-1. 00 0.66 0.70 0.73 0.76

IValues of the biaxial stress correction factor, c,
calculated using Equation (5.8).



to model glass plate strength data presented later in

this chapter.

For the case of a rectangular plate subjected to a

lateral load, the magnitudes of the equivalent princi-

pal stresses and their relationships to each other vary

across the surface of the plate. Therefore, both the

magnitude of the MEPT stress and the value of the cor-

rection factor vary with location on the plate surface.

To account for these variations, Equation (5.7) is re-

written for the general case as

87

[
c(X'Y) 0 (x,y)lm dydx

max I
I

...i

(5.9)

where c(x,y) and e (x,y) are values of the correction
. max

factor and the MEPT stress as a function of location on

the plate, and a and b are the rectangular dimensions

of the plate.

3. Numerical Integra­
tion of Risk Function

Evaluation of the generalized risk functions (Equa­

tion 5.9) for a particular plate problem can be cumber-

some. To simplify evaluation of the generalized risk

function, a numerical integration procedure is intro-

duced. Equation (5.9) is rewritten as
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(5.10)

where a(x,y) is the maximum corrected ~quivalent ~rinci­

pal ~ensile (MCEPT) stress given by

o(x,y) = c(x,y) c(x,y) (5.11)

Equation (5.10) can be expressed as follows with plate

surface area a as the variable

(5.12)

where 8(a) is the threshold HCEPT stress to which the

plate surface area, a, i3 exposed, and A is the totalo

plate surface area exposed to tensile stress.

Numerical integration of Equation (5.12) is accom-

plished using the following expression

n
B = k (5000)m 2: A. (a./5000)m

. 1 ~ ~
~=

(5.13)

where a. are the midpoints of a set of n nonoverlapping,
~

exhaustive MCEPT stress intervals ranging from zero to

the maximum value of MCEPT stress. A. is the amount of
~

plate surface area exposed to MCEPT stresses in the range

of the i th MCEPT stress interval. These areas are deter-



mined using the nonlinear plate analysis presented in 89

Chapter IV. Evaluation of Equation (5.13) is accom-

pUshed in an equivalent area table: (Ref. Table II).

The constant 5000 is included in Equation (5.13) to keep

the magnitudes of the entries in the equivalent area

table manageable.

The first column of the equivalent area table defines

the NCEPT stress intervals. Column two of the table con-

tains the midpoints of the MCEPT stress intervals, a..
~

The amount of plate area A. eXDosed to MCEPT stresses in
~ .

the i th interval is presented in the third column. The

fourth column contains values of the interval equivalent

area, Ai' given by the following expression

(5.14)

The total equivalent area, S , of a plate for a given m
m

parameter is found by summing the entries in the equiva-

lent area column as follows

n
L

i=l
A.
~

(5.15)

The value of the generalized risk function is then found

as follows

B = k (SOOO)m S
m (5.16)
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TABLE II.

EXA1"rPLE EQUIVALENT AREA TABLE

Midpoints of Plate Surface Equivalent Plate
NCEPT I NCEPT Areas Exposed Surface Areas Exceed
Stress Stress to Interval to Interval tICEPT

Intervals Intervals, a. NCEPT Stresses, A. Stresses, A.
1. l l

(psi) (psi) (in) Z (in) 2

- 500 m
0-1000 500 Al Al = Al (5000)

- 1500 m
1000-2000 1500 Az A:. = Az(SOOO)

A. 3

2500 m
2000-JCOO 2500 A3 = A3 (5000)

-8max .A
n

n
A = L: A.

o . 1 ll=

.... m
- anA = A (~)n n )vuv

n ­
Sm = L: A.

. 1 ll=

~~aximum Qorrected ~quivalent ~rincipal !ensile, .NCEPT, Stress.
8m is a NCEPT stress which is larger than any NCEPT stressax . .
occurring in the plate.



Substitution of Equation (5.16) into Equation (5.1) re-

sults in the following expression for the cumulative

probability of glass plate failure.

91

= 1 - exp[-k 500a
m

S ]m

4. Summary of Failure
Prediction Model

(5,17)

The procedure to calculate the probability of failure

of a window glass plate subjected to a lateral loading is

as follows:

(1) the variation of surface stresses across the

plate is determined, using the nonlinear plate

analysis presented in Chapter IV,

(2) the actual surface stresses are converted to

MEPT stresses given the load duration, the

relative humidity, and the temperature using

Equation (3.7),

(3) the MEPT stresses are then converted to MCEPT

stresses using the correction factor given in

Equation (5.8),

(4) an equivalent area.table is then constructed

and the value of the total equivalent plate

area, Sm' is calculated, and

(5) finally, the probability of glass plate failure

is evaluated using Equation (5.17).
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The failure prediction model thus formulated allows the

probability of failure of glass plates exposed to lateral

loads to be predicted as a function of the surface fla,;v

parameters (m,k).

B. Determination of the
Glass Plate Surface Flaw
Parameters

The glass plate surface flaw parameters (m,k) required

in the failure prediction model are functions of the type

of glass and the glass plate surface condition. Values for

the surface flaw parameters cannot be measured directly.

Rather, values for the surface fla.w parameters must be es-

timated using data from glass plate failure tests.

The steps involved in estimating the surface fla,;v

parameters using a set of glass plate strength data

are:

(1) the glass plate failure load data are converted

to equivalent failure load data at reference

conditions using methodology explained in Chap-

ter III along with the nonlinear plate analysis

presented in Chapter IV,

(2) the mean and standard deviation of the equiva­

lent failure load data are calculated and the

data are grouped into frequency intervals,

(3) the variation of the MCEPT stresses across the

plate are determined for the equivalent failure
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loads corresponding to the equivalent failure

load intervals defined in Step (2) and the total

equivalent plate areas, S , are calculated form

a range of values of the surface flaw para-

mete~, m, and

(4) the best set of the surface flaw parameters

to represent the equivalent failure load data

is selected.

1. Glass Strength Data

Two different geometries of glass plates with similar

surface conditions were tested to failure under time con-

trolled conditions. The glass plates were 7/32 in. thick

sheet glass that were removed froD1 the 20-year-old Great

Plains Life Building (GPL) in Lubbock, Texas during its

renovation in 1975. Twenty rectangular glass plates 28.5 x

60.5 in., and 20 square glass plates 28.5 x 28.5 in., were

tested to failure. Half of the glass plates were tested

with their exterior surfaces in tension and half of the

glass plates were tested with their interior surfaces in

tension. The glass plates were mounted in an aluminum

glazing system and exposed to monotonically increasing

uniform lateral loads chosen to cause failure in about 60

seconds or less. Failure data collected included a com-

plete load-deflection-time record, the location of each

fracture initiation point, and photographs of the glass



plate f~acture pattern. The raw data along with a des- 94

cription of the test apparatus is presented in Appendix D.

2. Equivalent St~ength

Conversion

The GPL failure load data, organized by glass plate

geometry, were converted to equivalent failure load data

using Equation (3.7) and the methodology presented in Chap-

ter III. A 60-second duration constant reference load was

chosen for the equivalent failure load conversion because

of its relationship to current design information (Ref.

Chapter II). The temperature and relative humidity were as-

sumed to remain constant for the equivalent failu~e load

conversions so that Equation (3.8) reduces to the following

(5.18)

where a
60

is the equivalent 60 second duration failure

stress at the failure initiation point. Mechanics of

calculating the equivalent failure load are presented in

an example calculation below.

Figure 22(a) presents the variation of uniform lat-

eral load with time to failure for a square GPL glass plate.

The maximum load at failure was 217 psf after 49.5 sec of

loading. Using the load-time variation, the location of

the fracture origin point, and the nonlinear plate analy-

sis, the variation of stress at the fracture origin

point \.;as found to be as shown in Figure 22 (b) . The
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maximum principal tensile stress varied from 0 to 5417

psi. Using the stress-time relationship presented in

Figure 22(b) and Equation (5.18), the MEPT stress at the

fracture origin point was calculated to be 4564 psi.

Figure 22(c) presents the variation of maximum principal

tensile stress at the fracture origin point with load

as determined with the nonlinear plate analysis. Using

this load-stress relationship, the equivalent 60-second

constant failure load was found to be 174 psf as indica-

ted in Figure 22(c). A similar equivalent failure load

conversion was made for each GPL glass plate tested.

These equivalent failure load data are presented in

Table III.

3. Equivalent Strength
Statistics

Using the equivalent failure load data presented in

Table III, the means and standard deviations were calcu-

lated to be 79 and 19 psf for the rectangular GPL glass

plates and 168 and 37 psf for the square GPL glass plates.

Tables IV and V present frequency groupings for the GPL

equivalent failure load data. Included in these tables

are interval frequencies, relative interval frequencies,

and relative cumulative frequencies. Corresponding histo-

grams for the equivalent failure loads for both the square

and rectangular GPL glass plates are presented in Figure

23.
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TABLE III.

EQUIVALENT FAILURE LOADS FOR
GPL GLASS PLATES

Equivalent Failure Loads for Equivalent Failure Loads for
Rectangular GPL Glass Sauare GPL Glass

Plates 1 Plates

(psf) (psf)

62 168

76 189

53 132

92 174

105 197

120 173

62 177

88 268

72 153

82 148

50 112

84 138

59 157

86 196
75 156

95 219

76 112

76 157

62 202

104 132

- 79.0 - 168.0x = x =

s = 18.4 s = 37.5

Equivalent failure loads calculated using Equation (5.18)
assuming a 60-second duration constant load.



TABLE IV.

GROUPED FREQUENCY TABLE FOR
SQUARE GPL GLASS PLATE EQUIVALENT FAILURE LOADS

Equivalent Relative Relative
Failure wad Interval Interval Cunulative

Interval Frequency, f. Frequency, Pi Interval
(psf) 1. Frequency, P i

100-130 2 0.10 0.10

93

130-160

160-190

190-220

220-250

250-280

8

5

4

o

1

20

0.40

0.25

0.20

0.00

0.05

1.00

0.50

0.75

0.95

0.95

1.00



TABLE V.

GROUPED FREQUENCY TABLE FOR
RECTfu~G1~AR GPL GLASS PLATE EQUIVALE~T FAILUP~ LOADS

99

Equivalent
Failure Load

Interval
Cps£)

45-60

60-75

75-90

90-105

105-120

Interval
Frequencv, £.

• 1.

3

5

7

3

2

20

Relative
Interval

Frequency, p.
1.

0.15

0.25

0.35

0.15

0.10

1.00

Relative
Cumulative
Interval

Frequency, Pi

0.15

0.40

0.75

0.90

1.00
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4. Total Equivalent
Plate Areas

Figures 24 and 25 present the variations of the ~PT

stresses across a quarter of a square and rectangular GPL

glass plate for their respective mean equivalent failure

loads. Figures 26 and 27 present the variations of the

MCEPT stresses for the GPL glass plates that were calcu-

lated assuming an m surface fla\v parameter of 6. Tables

VI and VII present the corresponding equivalent area

tables for both situations. The total equivalent areas,

S~, thus calculated for the square and rectangular GPL
o

glass plates are 62.8 and 102.8 in z ., respectively.

Similar calculations were performed for both geome-

tries of GPL glass plates assuming integer values of the

m surface flaw parameter ranging from 4 to 7 and for

each load interval defined in the equivalent failure load

frequency tables (Tables IV and V). The resulting total

equivalent areas are presented in Tables VIII and IX.

5. Determination of the
Best k Surface Flaw Para­
meter

The cumulative probability of failure function given

by Equation (5.17) is an exponential cumulative probabil­

ity function of the following form

Pf = 1 - exp[-ax] (5.19)
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TABLE VI.

TOTAL EQUIVALENT AREA TABLE
FOR SQUARE GPL GLASS PLATES

MCEPT
Stress

Intervals 1

(psi)

Midpoints of
MCEPT A

Stress Interval, o.
1.

(psi)

Plate Surface
Areas Exposed

to Interval MCEPT
Stresses, A.

1.
(in) 2

Equivalent Plate
Surface .~eas Exposed

to Interval McEPT
Stresses, A.

1.
(in) 2

0-500 250 16.3

500-1000 750 32.5

1000-1500 1250 65.0 0.02

1500-2000 1750 48,7 0.09

2000-2500 2250 130.0 1.08

2500-3000 2750 141+.9 5.39

3000-3500 3250 73.1 5.51

3500-4000 3750 121.8 21.68

4000-4500 4250 130.0 49.03
--

A = 812.3 in 2 S6 = 82.80 in 2
0

1 Calculated for an equivalent failure load of 168 psf
assuming an m surface flaw parameter of 6.
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TABLE VII.

TOTAL EQUIVALENT AREA TABLE
FOR RECrANGUL-\R GPL GLASS PL;\TES

HCEPT
Stress

Intervals l

(psi)

Midpoints of
MCEPT

'"Stress Interval, (}.
l

(psi)

PlatE: Surface
Areas Exposed

to Interval MCEPT
Stresses, A.

l

(in) 2

Equivalent Plate
Surface Areas Exposed

to Interval UCEPT
Stresses, A.

~

(in) 2

0-500 250 69.0

500-1000 750 69.0

1000-1500 1250 224.2 .05

1500-2000 1750 327.6 .60

2000-2500 2250 275.9 2.29

2500-3000 2750 206.9 5.73

3000-3500 3250 206.9 15.60

3500-4000 3750 258.6 46.03

4000-4500 4250 86.2 32.51

A = 1724.3 in 2 8 6 = 102.81 in 2

0

1 Calculated for an equivalent failure load of 79 psf
assuming a surface flaw parameter of 6.
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TABLE VIII.

TOTAL EQUIVALENT AREAS, Sm' FOR
SQUARE GPL GLASS PLATES

Equivalent Calculated Total Equivalent Areas, S
Failure (i!1 2 )

m

Load
(psf) m1 =4 m=5 m=6 m=7

40 1.0 0.2 0.1

70 8.7 3.5 1.4 0.6

100 24.1 12.6 6.4 3.4

130 62.0 40.2 26.4 17.7

160 116.2 91.. 7 70.6 55.2

190 203.5 17L,.2 151. 9 134.4

220 325.5 308.3 296.5 290.)

250 472.8 SOLf.l 531. 2 570.0

280 648.2 753.2 875.6 1005.9

310 876.6 1045.4 1310.9 1644.9

340 1156.6 1480.5 1900.6 2528.2

370 1438.7 1999.7 2886.0 3984.7

lAssurned value of m surface flaw parameter.



TABLE IX.

TOTAL EQUIVALENT Am~AS, Sm' FOR
RECTANGULAR GPL GLASS PLATES

109

Equivalent Calculated Total Equivalent Areas, S
Failure m

(in)2Load

(psf) m1=4 m=5 m=6 m=7

15 0.4 0.1

30 5.6 2.1 0.7 0.2

45 22.7 10.3 5.6 3.3

60 70.4 43.7 27.2 17.0

75 155.7 106.5 78.1 57.4

90 273.5 221. 3 187.9 180.0

105 443.0 422.0 420.2 419.1

120 659.8 720.9 763.6 879.6

135 792.5 1118.3 1324.8 1625.7

150 1374.8 1680.6 2132.2 2806.6

165 1754.3 2392.4 3266.8 4449.7

180 2277.5 3080.5 4559.6 6897.5

lAssumed value of m surface flaw parameter.
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where a is a distribution parameter and x is the variate.

The value of the o. parameter is given by the following

equation

a = Iii (5.20)

--
where x is the mean value of the x variate (Pfeiffer and

Schum 1973).

In Equation (5.17), the total equivalent area, S ,
m

is the variate. Therefore, applying Equation (5.20),

the best k surface flaw parameter to represent a given

failure strength distribution for a particular m surface

flaw parameter is calculated as follows

m .-
k = 1/(5000 S )

m
(5.21)

where 5 is the mean total equivalent area which is calcu­
m

lated using the total equivalent area data presented in

Tables VIII and IX along with the equivalent failure load

frequency data presented in Tables IV and V. Calculation

of the mean total equivalent area is performed in a mean

total equivalent area table.

The first column of a mean total equivalent area table

presents equivalent failure load intervals as defined in

Tables IV and V. The second column contains corresponding

total equivalent area intervals. The third column presents

the frequency, f i , of glass plate failure in each equiva-



lent failure load interval. The fourth column of the 111

table contains the interval midpoint total equivalent

areas, Smi' The values of the interval midpoint total

equivalent areas are found by averaging the total equiva-

lent areas for the boundaries of each equivalent failure

load interval. The values presented in the fifth column

are calculated by multiplying the interval frequencies,

f., by the interval midpoint total equivalent areas, S "
l ml

The mean total equivalent area for a given value of the

m surface flaw parameter is then found by dividing the

summation of column 5 by the summation of column 3.

Tabular calculations of the mean total equivalent

areas for both geometries of the GPL equivalent failure

load data for an m surface fla~-l parameter of 6 are pre-

sented in Tables X and XI. The resulting mean total

equivalent areas are 128.9 in 2
. and 167.0 in 2

. for the

square and rectangular GPL glass plates, respectively.

Using Equation (5.21), the best corresponding values of
_25

the k surface flaw parameter are 4.97 x 10 and 3.83 x

10-
25

for the square and rectangular GPL glass plates,

respectively. Similar calculations were performed for

both geometries of the GPL glass plates for each assumed

value of the m surface parameter. Tables XII and XIII

present values of the k surface flaw parameter thus cal-

culated, along with pertinent theoretical equivalent fail-

ure load statistics.



TABLE X.

MEAN TOTAL EQUIVALEHT AREA TABLE
FOR SQUARE GPL GLASS PLATES

112

Equivalent Corresponding NidpoLTl.ts of Total LTl.terval
Failure Load Total Equivalent Equi"valent Frequency
Interval 1 Area Interval Area Interval, S, . -F c:

°l f. "'i"b i
l

(psf) (in2
) (in2

)

100-130 6.4- 26.4 16.ll- 2 32.8

130-160 26.4- 70.6 48.5 8 388.0

160-190 70.6-151. 9 111.3 5 556.5

190-220 151.9-296.5 224.2 4 896.8

220-250 296.5-531. 2 413.9 0 0

250-280 531. 2-875.6 703. L~ 1 703.4

20 2577 .50

2577. SO
86 = 20 = 128.9 in2

lMean total equivalent area calculated assuming an m sur­
face flaw parameter of 6.



TABLE XI.

MEM~ TOTAL EQUIVALEN: AREA TABLE
FOR RECTANGULAR GPL GLASS PLATES

113

Equivalent Corresponding l'fJ.dpoints of Total Interval
Failure Load Total Equivala~t Equivalent Frequency
Interval 1 Area Interval Area Interval, S6i f. f,S 6 •

~ ~ ~

(ps£) (jn2) (jn2)

45- 60 5.6- 27.2 16.,4- 3 49.2

60- 75 27.2- 78.1 52.6 5 263.0

75- 90 78.1-187.9 133.0 7 931.0

90-105 187.9-420.2 304.1 3 912.3

105-120 420.2-763.6 591. 9 2 1183.8

20 3339.3

3339.3
86 = 20 = 167.0 in 2

IHean total equivalent area calculated assuming that the m
surface flaw parameter is 6.



TABLE XII.

COMPARISON OF CALCULATED AND THEORETICAL
SQUARE GPL GLASS PLATE FAILURE LOAD STATISTICS

Coefficient l of
Mean oe Standard fuviation 1 Variation of

Asst.lIl"ed Calculated Theoretical of Theoretical TI1eoretical
m Surface k Surface Equivalent Equivalent Equivalent

Flaw PararTCter Flaw ParClIreter Failure wad Data Failure Load Data Failure I~ad Data

(psf) (psi) --.iI?ercent)

4 9. 94xlO-18 158.8 55.5 35.0

5 2. 25xlO-21 163.3 47 .L~ 29.0

6 4. 97xlO-25 167.8 L~l. 7 2LL 9

7 1.06xlO-28 , " (\ '), 0 ')') (\
J.../J....7 JI • U £...L..v

lMean, standard deviation, and coefficient of variation of actual square GPL
data are 168.0 psf, 37.5 psf, and 22.3 percent, respectively.

I-'
~....
+:--



TABLE XIII.

COMPARISON OF CALCULATED AND THEORETICAL
RECTANGULAR GPL GLASS PLATE FAILURE LOAD STATISTICS

Coefficient I of
Mean ofl Standard ~viationl Variation of

Asst.JIred Calculated l11eoretical of Theoretical 'll1eoretical
m Surface k Surface Equivalent Equivalent Equivalent

Flaw Parau"V3ter Flaw PararI"V3ter Failure Load Data Failure Load Data Failure Load Data

-- (psf) __-.iEsf) (percent)

4 7.30xlO-18 76.2 25.4 33.3

5 1. 72xlO-21 78.3 21.6 27.6

6 3. 83xlO-25 80.3 19.6 23.7

7 7. 89xlO-29
82.1+ 17.0 20.6

IMean, standard deviation, and coefficient of variation of actual rectangular
CPL data are 79.0 psf, 18.4 psf, and 23.3 percent, respectively.

t-'
t-'
lJl



6. Selection of the Best
Surface Flaw Parameters

116

The best sets of surface fla~.; parameters to model the

equivalent failure load distributions for both geometries

of GPL glass plates were independently selected from the

surface flaw parameter sets presented in Tables XII and

XIII. Selections of the best sets of surface parameters

were based upon comparisons of the theoretical means,

standard deviations, relative density functions, and co-

efficients of variations with corresponding statistics of

the actual equivalent failure data and manufacturer's data.

Comparisons of actual and theoretical data show that

sets of surface flaw parameters with m equal to 6 gives

the best representations of the rrean of the square GPL

equivalent failure load data (Ref. Table XII). Similar

comparisons for the rectangular GPL data show that the

sets of surface flaw parameters with rn equal to 5 or 6

seem to estimate the mean of the rectangular GPL equiva-

lent failure load data equally well (Ref. Table XII).

Comparisons of actual and theoretical standard deviations

of the equivalent failure load distribution suggest that

the surface flaw parameters with m equal to 7 and 6 are

the best choices to model the square and rectangular GPL

equivalent failure load data, respectively. Comparisons

of actual and theoretical relative cumulative equivalent

failure load frequencies suggest that the sets of surface

flaw parameters with m equal to 6 provide the best



representations for the GPL failure strength data 117

(Ref. Figures 28 and 29). Finally, manufacturer's litera-

ture published concerning glass similar to the GPL glass

suggests that the coefficients of variations of glass

plate failure load suggests that the coefficients of vari-

ations of glass plate failure load data should be 25 per-

cent (PPG Industries 1964). The sets of surface flaw

parameters \yith m equal to 6 giVE: coefficients of varia-

tions closest to 25 percent.

Based upon the above comparisons, preferred surface

flaw parameters chosen to represe.nt the square GPL equi-

valent failure load data are m equal to 6 and k equal to

4.97 X 10-
25

The preferred surface flaw parameters to

represent the rectangular 6PL equivalent failure load
_? 5

data are equal to 6 and k equal to 3.83 x 10 -. Sta-

tis tical tests are presented in Appendix E to demonstrate

that the statistics of theoretical equivalent failure load

distributions determined using the preferred surface flmy

parameters are not significantly different to the actual

distributions.

According to the probability theory employed in devel­

opment of the failure prediction model the preferred GPL

surface flaw parameters should be the same. This is ex-

pected because both geometries of GPL glass had similar

surface conditions. The preferred sets of GPL surface

flaty parameters compare reasonably well,but there are
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distinct differences. It is shm,m in the next section 120

that the differences in the two different sets of GPL sur-

face flaw parameters are not statistically significant.

C. Validity of the
Failure Prediction Model

The failure prediction model presented herein relates

the strength of rectangular glass plates under lateral load

to fundamental properties of the glass plate surface flaws.

Variations of glass strength ~-lith load duration, tempera-

ture, and relative humidity are accounted for using a

stress corrosion theory advanced by Bro~m (1974). Varia-

tions of glass plate strength due to plate behavior are

accounted for using a statistical treatment of the surface

flaw characteristics in conjunction ~..,ith the nonlinear

plate analysis presented in Chap:er IV. Brown presented

sufficient evidence to demonstra~e the validity of the

stress corrosion theory for glass. Validity of the non-

linear plate analysis was discussed in Chapter IV. Va­

lidity of the failure prediction model is, therefore,

dependent upon demonstration that the strength of glass

can be related to two surface flaw parameters ~-lhich are

independent of plate behavior.

1. Differences in GPL Plates

The glass plate surface flaw parameters (rn,k) were

independently determined for two different geometries of

GPL glass plates of similar surface conditions in the
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previous section. The GPL rectangular glass plates had

a surface area of about 12 sq ft with an aspect ratio of

1:2.12. The GPL square glass plates had a surface area

of about 6 sq ft. These differences in plate geometry

produced significant differences in the stress fields

induced in the plates.

The rectangular GPL plate response was dominated by

bending action. The high tensile stress regions in the

rectangular GPL plates were located in central plate

areas as shown in Figure 24. In addition, the areas

of high tensile stresses were characterized by a situa­

tion where the maximum equivalent principal stresses

were significantly larger than the corresponding minimum

equivalent principal stresses. This is substantiated by

examination of the rectangular GPL fracture patterns (Ref.

Appendix A) and by observing the changes in magnitudes of

the maximum principal stresses when converted from MEPT

to MCEPT stresses (Ref. Figures 24 and 25) .

The square GPL plate response was characterized by

a significant amount of membrane action. Unlike the rec­

tangular plates, the region of high stress on the square

glass plates extended from the center of the plate toward

the corners of the plate (Ref. Fig. 26). Further, differ­

ences between the maximum and minimum equivalent principal

stresses in the high stress regions were less pronounced

than with the case of the rectangular plates. This is
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substantiated by examination of the square GPL fracture

patterns (Ref. Appendix A) and by comparing the MEPT and

MCEPT stress fields for the square GPL plates presented

in Figures 26 and 27.

Differences in the GPL plate geometries coupled with

resulting differences in the attendant MEPT stress fields

combine to suggest that the two geometries of GPL glass

are significantly different from the standpoint of the

failure prediction model.

2. Independence of the
Glass Plate Surface Flaws

To demonstrate that the surface flaw parameters (m,k)

are independent of plate response, a theoretical equivalent

failure load distribution for the square GPL glass plates

was calculated using the preferred GPL rectangular glass

plate surface flaw parameters. Likewise, a theoretical

equivalent failure load distribution for GPL rectangular

glass plates was calculated using the preferred GPL square

glass plate surface flaw parameters. Comparisons are then

made between these theoretical and the actual equivalent

failure load distributions.

Table XIV presents the theoretical and actual equiva-

lent failure load distributions for GPL square glass plates.

The mean and standard deviations of the theoretical equi-

valent failure load distribution for the square GPL glass

plates ~vere calculated to be 177.5 and 44.3 psf, respec-
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TABLE XIV.

COMPARISON OF ACTUAL .~~D

CALCULATED SQUARE GPL THEORETICAL
EQUIVALENT FAILURE LOAD DATA

2.92 2

3.97 8

5.05 5

4.67 4

2.56 0

.83 1

20.00 20

Equivalent Corresponding
Failure Load Equivalent Area

Interval Interval

(psf) (in2
)

-130 - 26.4

130-160 21.4- 70.6

160-190 70.6-151.9

190-220 151. 9-296.5

220-250 296.5-531. 2

250- 531. 2-

Theoretical
Interval
Frequency 1

Actual
Interval
Frequency

lTheoretical interval frequencies calculated using the 2S

rectangular GPL surface flaw parameters (m=6, k=3.83xlO ).
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tively (Ref. Appendix E). Table XV presents the theoreti-

cal and actual equivalent failure load distributions for

the GPL rectangular glass plates. The mean and standard

deviation of the theoretical equivalent failure load dis-

tribution for the GPL rectangular glass plates were calcu-

lated to be 76.2 and 18.2 psf, respectively (Ref. Appendix E).

The error involved in estimating the mean equivalent

failure load for the GPL square glass plates using the

preferred GPL rectangular glass plate surface flaw para-

meters is 6 percent. The error involved in estimating

the mean equivalent failure load for the GPL rectangular

glass plates using the preferred GPL square glass plate

surface flaw parameters is 4 percent. Using a t test,

the differences in the actual and theoretical means are

not statistically significant. Further, no statistically

significant differences between theoretical and actual

variances (standard deviation squared) of the equivalent

failure load distributions are detected using F tests.

Finally, Chi-squared tests are used to show that there

are no statistically significant differences between the

actual and theoretical equivalent failure load distribu-

tions. These statistical comparisons are presented in

Appendix E.

Based upon the statistical tests outlined above, it

is concluded that the square GPL glass plate strength can

be reasonably represented using the preferred rectangular



TABLE XV.

COMPARISON OF ACTUAL fu~D CALCULATED
RECTANGuLAR GPL THEORETICAL
EQUIVALENT FAILURE LOAD DATA
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Equivalent Corresponding
Failure Load Equivalent Area

Interval Interval

--U?sf) (in2
)

- 60 - 27.2

60- 75 27.2- 78.1

75- 90 78.1-187.9

90-105 187.9-420.2

105- 420.2-

Theoretical
Interval
Frequency 1

3.80

5.28

6.26

3.89

.77

20.00

Actual
Interval
Frequency

3

5

7

3

2

20

lTheoretical interval frequencies calculated using the
square GPL surface flaw parameters (m=6, k=4.97xlO- 25

).
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GPL glass plate surface parameters and vice versa. This

demonstrates that the surface fIcH" parameters are indeed

independent of glass plate area and plate response. It

is thus show"'11 that glass plate strength can be related

to fundamental properties of the glass plate surface.



CHAPTER VI

CONCLUSION

A. Summary of
Accomplishm~nts

The strength of glass plates varies significantly

with plate geometry, load duration, relative humidity,

127

and temperature. As a result of the complexities atten-

dant to defining glass strength, current window glass

design procedures rely on empirical representations of

glass plate strength. The empirically derived glass

strength charts and tables in use today have served well

for more than twenty years. During this time, window

glass has evolved into a major structural component of

the building envelope. Therefore, there is need for a

new method to predict the strength of window glass for

design purposes. An analytically derived failure pre-

diction model for window glass is offered to answer

this need.

Major tasks accomplished in development of the fail-

ure prediction model include:

(1) a literature search was conducted to establish

a plausible gJass plate failure mechanism and

to document variations of glass strength with

load duration, relative humidity, and tempera-

ture,



(2) a unique nonlinear plate solution was devel- 128

oped to model the response of thin rectangu-

lar glass plates subjected to uniform lateyal

loads, and

(3) an available statistical theory of material

strength was adapted to model the failure

strength of glass plates.

The principal contribution of this research is the suc­

cessful integration of the above tasks into a tractable

process for predicting the strength of glass plates.

The failure prediction model relates the strength

of glass plates to fundamental properties of glass plate

surface flaws. The failure prediction model employs a

stress corrosion theory advanced by Brown (1974) to re­

present the variation of glass strength with load dura­

tion, relative humidity, and temperature. In addition,

the failure prediction model incorporates a geometri­

cally nonlinear plate analysis and a statistical theory

of material strength presented by Weibull (1939). All

factors kno~vn to cause variability of glass plate strength

are accounted for in the failure prediction model.

Brown (1974) presented sufficient evidence to verify

the stress corrosion theory used in the failure predic­

tion model. Validity of the nonlinear plate analysis

was demonstrated by comparison of actual and theoretically

derived glass plate stresses and deflections. Finally,
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it was shown using glass plate failure data that the sur-

face flaw parameters employed in the failure prediction

model are independent of plate response. Therefore, a

failure prediction model which relates the failure

strength of glass to fundamental properties of the glass

plate surface was presented and verified.

B. Directions of
Future Research

The research reported herein is a segment of a much

more extensive research project whose purpose it is to

develop and present a new rational window glass design

method (Minor and Beason 1976). The failure prediction

model is a tool that is to be used to develop new window

glass design relationships. To achieve this goal, two

additional topics must be addressed:

(1) research must be conducted to define the sur-

face flaw characteristics of window glass found

in practice, and

(2) an investigation must be conducted to determine

the degree to which deviations of actual window

glass boundary conditions from the assumed set

of idealized boundary conditions affect predic-

ted glass strength results.

Once these additional areas have been addressed, a new

window glass design procedure can be advanced.
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APPENDIX A

fu~ALYSIS OF GLASS PLATE F~~CTURE PATTEfu~S

Much can be learned regarding the nature of the

loading and the stress distribution present in a glass

plate at the time of failure by examining the glass

plate fracture pattern. Information that can be taken

from a glass plate fracture pattern analysis depends

upon the extent to which the fracture pattern can be re-

constructed without introducing secondary fractures

which obscure the nature of the original fracture pat-

tern. In most instances of window glass failure in

buildings exposed to wind loadings, it is not possible

to reconstruct the total glass plate fracture pattern

because of the catastrophic nature of the failure. In

glass testing reported herein, a tape grid was applied

to the compression surface of each glass plate prior to

testing and the applied pressure was vented immediately

after the plate failed so that the fracture pattern was

preserved. The following discussion presents the funda-

mental concepts involved in a thorough analysis of a

glass plate fracture pattern.

When a glass plate fails as the result of an applied

p~essure, the fracture usually originates at a single

point on the glass plate surface. An estimate of the

magnitude of the maximum nominal tensile stress present

in the glass plate at the instant of fracture initiation
140



can be made by examining tie characteristics of the

fracture surface at the fracture origination point.

The orientation of the initial crack direction at the

point of fracture origination tends to be normal to

the direction of the maximum principal tensile stress,

particularly if the maximwn principal stress is much

larger than the minimum principal stress. All other

cracks in t:he glass plate emanate from this original

crack.
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If the fracture initiation point is located away

from the plate edge the initial crack will proceed in

opposi te directions al"ay from the critical flaH. Then,

depending upon the magnitude and state of stress present

in the glass plate, the initial cracks may branch. These

newly formed branch cracks will propagate and may sub­

divide in a similar manner until a free edge is encountered

or the energy involved in crack propagation is dissipated.

The fracture origination point can be located by tracing

the branching cracks back to their common source as showTI

in Figure A. 1.

Examination of the newly formed crack surface reveals

the presence of markings ,,,hich have been termed "rib-marks"

and "hackle-marks" by Preston (1926). Typical rib-marks

which might appear on the fracture surface of the glass

plate which was failed with a uniform lateral pressure

are shown in Figure A.2. Cracks propagate through rib­

marks from the concave side. The direction of crack pro-
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pagation is indicated for the fracture surface sho\~ in

Figure A.2. The rib-marks will tend to be tangent to the

surface of the glass plate which was in compression and

the rib-marks will tend to intersect the tension surface

of the glass plate as shm-m in Figure A.2 (Preston 1926,

Oughton 1945, Orr 1972). Confirmation of crack pro-

pagation directions lends credence to the preliminary

location of the fracture origination point made by exam-

ining the overall fracture pattern.

The precise location of the fracture initiation

point can be identified by location of the fracture mirror

on the fracture surface (Preston 1926, Oughton 1945, Shand

1959, Orr 1972, Johnson and Holloway 1966, Kerper and Scu-

deri 1964). The fracture mirror appears on the fracture

surface as a highly polished, semicircular shaped area.

The fracture mirror is centered about the fracture indu-

cing flaw and is bounded by regions of frost as shown in

Figure A.3. The fracture mirror radius is defined as half

of the distance between the initiation of the frost zones

on either side of the critical flaw as indicated in Figure

A.3. The magnitude of the maximt~ nominal principal ten-

sile stress present at the critical flaw prior to failure

is inversely proportional to the fracture mirror radius

(Shand 1961). Orr (1972) suggested the following empiri-

cal relationship between the maximum nominal tensile

stress,

glass

cr , and the fracture mirror radius, r, for windowp
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(A.l)

where the fracture mirror radius is given in in. and the

stress is given in psi.

The mechanism which produces the fracture mirror is

extremely complex. The crack propagates away from the

critical flaw with an initial velocity which is propor-

tional to the magnitude of the maximum nominal principal

tensile stress. The initial crack propagation velocitv

is low \vith respect to the limiting crack velocity. The

rate of crack propagation increases until a condition of

instability is reached at which point the crack propaga-

tion velocity jumps rapidly to its limiting value of

1500 mls (Shand 1961). The highly polished portion of

the fracture mirror forms during the early stages of

crack propagation when the crack velocity is low. The

frost region forms when the crack propagation velocity

enters the unstable region (Shand 1959). The higher the

nominal tensile stress is at the onset of fracture, the

higher the initial crack propagation velocity and the

smaller the distance required to reach the unstable re-

gime; hence, the smaller the fracture mirror radius.

Conversely, the lower the nominal tensile stress pre-

sent at the fracture initiations the larger the fracture

mirror radius.
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Many generalizations can be made regarding the

appearance of the total fracture pattern. If the state

of biaxial stress in the plate at the point of fracture

origination is such that the maximum principal stress is

much larger than the minimum principal stress, the cracks

will tend to propagate so that at each point they will

tend to be normal to the direction of the maximum princi­

pal stress in a well-defined pattern. This situation

occurred in the rectangular plates tested/as show~ in

Figure A.4. If the state of biaxial stress is such that

the maximum and minimum principal stresses are very

nearly the same at the point of fracture initiation,

then the primary crack direction will still tend to be

normal to the maximUJ.ll principal stresses. Hm.;ever, in

this later situation there 1,.;ill be a large number of

secondary cracks at other orientations. This situation

occurred in square plates tested as shmm in Figure A.S.

For a given glass plate geometry and loading situa­

tion the number of crack.s and the size of the resulting

pieces of glass are related to the magnitude of strain

energy stored in the annealed glass specimens or the

relative load intensity at failure. The more individual

pieces that are generated when a plate fractures, the

higher the stress levels that were in the plate (Gilvary

1961). Therefore, the more cracks that are produced in

a specimen, the higher the stress levels that were in

the plate.
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FIGURE A.4 TYPICAL RECTANGULAR GPL GLASS PLATE
FRACTURE PATTERN: d »0.max m~n

FIGURE A.5 TYPICAL SQUARE GPL GLASS PLATE
FRACTURE PATTERN: d ~dm·max J.m
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~Jith the information presented in this appendix it

is possible to examine a failed glass plate and determine

the fracture origination point and estimate the maximum

nominal stress present at the fracture origin. It is

also possible to make generalizations regarding the bi­

axial state of stress present in the plate at the time of

failure. Finally, for similar glass plates, it is possible

to rank the failed plates according to the relative load

intensities present at failure.
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APPENDIX B

ALGEBRAIC }~NIPULATIONS OF
NONLINL\R PLATE EQUATIONS

The fundamental differential eauations emnloved in the.. . ./

nonlinear plate solution are presented in Chapter IV. In

addition, selections of infinite series to represent the

variables in the nonlinear equations are presented. The

series expansions are chosen to represent i8portant plate

boundary conditions. Details of the algebraic substitu-

tions of the series exnansions into the nonlinear nlate.. .
equations are presented in this appendix. Information p~e-

sented should aid in interpreting the comnuter program pre-

sented in Appendix C.

Equation (4.27) is written for a rectangular plate

as fa 110T,.]s

(arb
~ L.o (" "3~ +2

" "oX

+ o4 W
)

" "oy
or,.; dydx =

(3.1)

f:f: (" 2:
d 2W o2F Co 2W ,,2 F C2 W P z \ s dVGX, 2_c _ +, h )~W

oy~ ox 2 ox 2 ay2 oxoy oX oy

There will be one independent equation generated from

Equation (B.l) for each expansion function used to repre­

sent the lateral deflections. The general form of the

equation for the ~~th series expansion term is
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(B.2)

where AI, B1, and C1 are notations used in the computer

program (Ref. Appendix C). The values of AI, Bl, and Cl

are

(B.3)

31 =

L
L

1.=1,3·· .
-~ .ak2sina, x sins.v).

K.... K ;,.-.

(

I
. L

i=2 4···,

(
K

+ z
k=l 3·.·,

J
z

j=2, 4· ..

L

1.=1,3· ..

-F .. S.2(-cos3.Y : COSa.X coss.V»)+
J..J J J J.. J';

(~ ~ -F .. a. 2 (-coSCl.X
i=2,4 ... j=2,4... J..J J.. J..

+ COSCl.X COSS.V») -
J.. J'

- 2
L

1,=1,3 ...

J
. ( ~

i=2,4··· j=2,4'"

sinCl x sinS Y
ill n

F .. Cl.g.sina.x SinSJ'Y)~
J..J J.. J J.. ) I

(B.4)



where

Cl =
16P

o

a = ffi-;r/a
m

Q, = nli/b
"n

(B.5)

(B. 6)

(B.7)
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All of the other terms are defined in Chapter IV.

Equation (B.2) is used to generate simultaneous

equations in terms of the lateral deflection coefficients

A Gauss-Seidel iterative technique (Ketter and Prawel 1969)

is then used to estimate the lateral deflection coefficients.

Equation (4.27) is written for a rectangular plate as

fol101.';s

1
(arb

I .. 4 6 :j4 rt 4 )

Joj, (_d_' +2 +
~ 6

E -"---;: of c1ydx =

\3x 4 oX 2 3y 2 3y

+ dydx (B.8)

One independent equation will be generated from Equation

(B.8) for each series expansion term used to represent the

membrane stress function. The general form of the equa­

tion for the rnn th series expansion term is

= jrar
b

-(El + Fl) dYdx/raj[b D1 dydx

0,0 100

(B.9)



where Dl, El, and Fl are notations used in the computer

prograo (Ref. Appendix C). Values of D1, £1, and F1 are

as follows
r
11D1 = ,- (a. 4 + 221. 2 6 2 : 2n•. 4) COS a. x cos.3 y
iE m m n - m n
L..
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1 (a. 4COSo. x +
E m m

;, 4COSS y) ln n_
(l-cosc( x) (1-cos3 v)m n-

(B.10)

~( ~El = L.

k=l, 3· ..

(
K

- L:
k=l 3···,

L
I akSicosckX cOS3ty

=1,3" .
2~.)1

..J

(1 - COSa x) (l - cosB y)
ill n (B.11)

i=2,4 ... j=2,4 ...

iiill jin

fl =
I J

. (COSo..x cosS.v) - (:.cosa.x + B. 4COSB'y)J~
1. J"' 1. 1. J J

(1 - coSo x)(l - cosB v)m nol (B.12)



154
where all of the terms are defined in Chapter IV.

Equation (B.9) is used to generate simultaneous equa­

tions in terms of the membrane stress function coefficients.

The lateral deflection coefficients are assumed to be con­

stant. Simultaneous solution of the set of eauations is

then achieved using Gauss-Seidel iteration.
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APPENDIX C

CONFUTER PROGRA.N TO PERFORl'f
NONLINEAR PLATE ANALYSIS

A listing of the computer program used to perforn the

geometrically nonlinear plate analysis described in Chapte~

IV is presented in Figu~e C. 1. This computer program ,;vas

\~~itten using ANSI FORT~~N. A sample computer output is

presented in Figure C.2.

Pertinent plate theory is discussed in Chapter IV and

specific equations relating to the program logic are pre­

sented in Appendix B. Validity of the computer program is

demonstrated in Chapter IV by comparing results generated

by the analysis with independent analytical results.

Input/output instructions for the computer program are

presented in comment statements in the computer listing.

In addition to input which describes the plate geometry,

loading, and output characteristics, the user m~st input

parameters which are unique to this method of solution.

These solution parameters include the n~~ber of series

expansion terms used to represent the different func­

tions , the number of integration divisions, the iteration

tolerances, and assumed values of lateral deflection

coefficients. It was determined by the ~rriter that a

reasonably accurate and economical solution is obtained

for most problems using four series expansion terms

(Nill1=3), 36 integration divisions across the total plate
156



Pages 157-166 have been removed.

Due to legibility problems, the following Figures have been omitted:

Fig. C.1 Computer Program for Nonlinear Plate Analysis

Fig. C.2 Sample Output from Nonlinear Plate Analysis Computer Program*

*For further information regarding these figures, please contact:

Dr. William L. Beason
Institute for Disaster Research
Texas Tech University
Lubbock, TX 79409
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(I~T=3), and an iteration tolerance on the lateral deflec-

tion coefficients of 0.01 in. If the n~~ber of series ex-

pansion ter~s is increased, the quality of the ass~med

lateral deflection coefficients must be increased, the num-

ber of integration divisions must be increased, and the

iteration tolerance should be decreased. Even with these

changes, the solution tends to be unstable. Therefore, it

is not recommended to use more than four series terms.
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APPENDIX D

GLASS PLATE TESTS

A homogeneous sample of 7/32 in. sheet glass was

taken from the Great Plains Life (GPL) building located

in Lubbock, Texas during renovation in 1975. The GPL

glass was exposed to approximately 20 years of weather­

ing as well as the peripheral effects of one tornado

(Mehta et al. 1971). Rectangular GPL glass plates were

tested in their original dimensions, 28.5 x 60.5 in.,

and square GPL glass plates, 28.5 x 28.5 in., were pre­

pared and tested. These specimens were tested to failure

\vith controlled uniform lateral loads. A description of

the test facility and test procedures along with the raw

glass strength data are presented in this section.

D.l Glass Test Facility

A facility was designed to test the GPL glass plates

with a controlled uniform lateral load. The test facility

consists of three major components: a glass plate test

chamber, a loading system, and a data acquisition system.

The glass test facility was constructed and located in

the Civil Engineering Testing Laboratory located on the

campus of Texas Tech University. A schematic of the plate

test facility is presented in Figure D.l.

The glass plate test chamber consists of a steel re­

inforced pl~Nood panel with a 1/8 in. steel plate laminated
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to the front side. This plywood/steel panel served as

the backside of an airtight test chamber. An evacuation

manifold was mounted to the backside of the plywood/steel

panel. Four sections of aluminum window framing were

mounted to the front side of the pl~vood/steel panel such

that the pieces of the aluminum windo~v framing served

as the sides of the glass plate test chamber. All of the

joints and seams in the glass plate test chamber ~vere

sealed with silicon sealant. \{hen a glass plate is glazed

into the aluminum glazing system using neoprene gaskets,

it becomes the final side of the glass plate test chamber.

Figure D.2 presents a view of the test chamber used for

square glass plates.

A uniform lateral load is induced on a glass plate

by reducing the internal pressure of the glass plate

test chamber. The loading apparatus consists of a vacuum

acclliuulation tank, a delivery manifold and appropriate

hoses and valving. Once a test is begun the pressure re­

duction inside the vacuum test chamber is continuously

monitored and appropriate corrections in the evacuation

rate are performed manually to achieve the desired loading

rate.

The instrumentation system consists of linear poten­

tiometric pressure and displacement transducers. The

pressure transducer is used to monitor the pressure

differential between the inside of the glass plate test



FIGURE D.2 SQUARE GPL GLASS
PLATE TEST CHAMBER
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chamber and the atmospheric pressure. The displacement
173

transducer is attached to the center of the glass plate.

Outputs froD the pressure and displacement transducers

are monitored using a Mark IV Brush Recorder and a

Hewlett Packard x-y plotter.

Do 2 Glass Test Results

The strength of glass is a function of the glass

plate surface condition. When glass plates are manufac-

tured, there are significant differences in the strength

characteristics of the two different sides due to the

manufacturing exposure. Further, it was anticipated that

the condition of the glass surfaces exposed to the inter-

nal building environment might be different than the con-

dition of the glass surfaces exposed to the external

building environment. There are a total of four different

test conditions: two different glass plate surfaces and

t~~'o different glass plate geometries. It was shOwLl by

Minor (1974) that a " ~
m~n~mum 0-,- ten replications of a

particular combination of test conditions should be per-

formed to estimate the mean glass plate strength with

acceptable confidence. Four different test conditions

with ten replications each yields a total of 40 glass

plate tests that were performed using the GPL glass~

The glass plates were exposed to monotonically

increasing uniform lateral loads selected to cause fai1-

ure in about 60 seconds or less. An attempt was made to



induce a linearly increasing
. ~unlrorm load. Varia~ions
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of the loading rate posed no problem because the Bro\vu

(1974) stress corrosion theory allows load duration cor-

rections to be made to the resulting data.

The raw glass strength data are presented in Tables

D.I, Doll, D.III, and D.IV. Data presented in these

tables are the time to failure, the coordinates of the

fracture origination point, and the fracture mirror radius.



TABLE D.1

FAILURE DATA FOR SQUARE GPL
GLASS-EXTERIOR SURFACE IN TENSION
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Rectangular Fracture
Failure Time to Coordinates Mirror

Load Failure of Failure! Radius
x y

(csf) (sec) (in. ) (i;:l.) (in. )

2?~ 64 8.5 14.1 .06-)

217 50 9.8 18.8 .10

216 40 8.8 10.3 .15

330 62 17.4 18.0 .07

189 37 12.1 15.6 .18

170 35 17.1 16.8 .14

233 50 17.1 23.3 .18

269 60 13.0 23.4 .09

200 27 12.6 17.8 .19

167 22 5.0 16.3 1. 32 2

lReferenced to plate corner
2Poor1y defined fracture mirror



TABLE D. II

FAILURE DATA FOR SQUARE GPL
GLASS-INTERIOR SURFACE IN TENSION
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Rectangular
Coordinates Fracture

Failure Time to of Failure Nirror
Pressure Failure Initiationl Radius

x v
(psf) (sec) (in. ) (i;. ) (in. )

202 40 11. 6 21. 8 .33 2

161 34 16.4 9.6 .22

233 47 4.0 11. 0 3~2. )

207 42 15.8 9.3 .14

189 38 16.0 7.5 .17

138 27 7.5 11. 8 .86

196 38 12.0 17.0 .15

187 35 24.9 13.5 .72

144 26 13.3 14.5 .52

238 44 22.8 11. 0 ,35 2

lReferenced to plate corner
2Poor1y defined- fracture mirror



TABLE D.III

FAILURE DATA FOR PECTk~GL~AR GPL
GLASS-EXTERIOR SURFACE IN TENSION

177

Rectangular
Coordinates Fracture

Failure Time to of Failure Hirror
Pressure Failure Initiation 1 Radius

x y
(psf) (sec) (in. ) (in. ) (in. )

95 34 33.0 12.5 .11

111 42 13.5 11. 5 .19

144 57 44.5 13.5 .08

197 42 25.5 9.0 1/,. ...,.

96 50 24.0 11. 0 .11

107 31 28.5 15.5 .11

105 43 38.5 8.S .13

109 49 50.8 8.3 .20

95 30 35.3 22.5 .22

128 23 26.0 12.5 .06

lReferenced to plate corner



TABLE D. IV

FAILURE DATA FOR RECTk~GLLAR GPL
GLASS-INTERIOR SURFACE IN TENSION
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Rectangular
Coordinates Fracture

Failure Time to of Failure Mirror
Pressure Failure Initiation l Radius

(psf) (sec) (in. ) (in. ) (in. )

78 28 31. 0 22.0 .49

66 25 39.5 11. S .35 2

130 51 44.5 13.5 .09

76 36 32.5 8.0 .28

81 43 39.5 20.0 .28 2

65 '/1 38.0 12.5 .45_.J.

76 18 19.5 15.0 .25

88 45 30.0 9.5 .17

96 29 32.0 12.8 .12

75 35 28.5 12.0 .22

lReferenced to plate corner
2Poor1v defined fracture mirror

,/
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APPENDIX E

STATISTICAL CALCULATIONS

This appendix contains statistical calculations which

support conclusions and data presented in Chapter V. Cal­

culations presented can be divided into three categories:

(1) calculation of surface flaw parameters,

(2) calculation of theoretical equivalent failure

load statistics given a set of surface flmv

parameters, and

(3) comparisons of actual and theoretical equivalent

failure load statistics.

Methodology for selection of glass plate surface flaw

parameters to represent glass plate failure load data

is presented in Chapter V. Calculation of theoretical

equivalent load statistics is accomplished in tabular

form using standard statistical techniques. Comparisons

of actual and theoretical equivalent failure load statis­

tics are accomplished using the t test to compare means,

the F test to compare variances) and the Chi-squared test

to compare frequency distributions. Fundamentals of the

statistical methods employed to accomplish these tasks

are reviewed as presented by Kennedy and Neville (1976)

and specific calculations referenced in Chapter V are

presented in this Appendix.
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E.l Fundamentals of
Statistical Mechods

Calculations of the mean and standard deviations for

the theoretical equivalent failure load distributions are

accomplished in tabular form using standard statistical

methods. The first column in a statistical calculation

table (Ref. Table IX) defines a set of n non-overlapping,

exhaustive, equivalent failure load intervals, The mini-

mum equivalent failure load presented in the table is

chosen so that its probability of occurrence is effec-

tively zero. The maxim~~ equivalent failure load presented

in the table is chosen so that its probability of occur-

rence is effectively one. The second column contains the

median values, x., of each equivalent failure load inter­
l

val. Column three contains the theoretical probability of

interval occurrence, Pi' These probabilities are cal­

culated using Equation (5.17) and the total equivalent

area data presented in Tables VIII and IX. The summation

of column three should be effectively equal to one. Col~?~

four contains values obtained by multiplying the median

intervals, x., by the corresponding interval probabilities,
l

p.. The mean, u, theoretical equivalent failure load is
l

then calculated as follows

w=
n
~ x.p.

. 1 l ll=
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Column five of the table contains a value calculated bv

multiplying the interval probability, Pi' by the s~uare

of the difference of median interval value and the mean

equivalent failure load, (X._~)2. The theoretical stan­
l

dard deviation, ~, of the equivalent failure load distri-

bution is then calculated as follows

a ~~
i=l

(£.2)

The t test is used to compare actual and theoretical

mean eauivalent failure loads. It is assumed that there

is no significant difference between the actual and theore-

tical mean equivalent failure loads. Then the probability

of the difference between the actual and theoretical mean

equivalent failure loads being as large as observed is

calculated. If this probability is sufficiently small,

it is concluded that the actual and theoretical means

are significantly different. To evaluate this probability,

the t statistic is calculated as follows:

! u-x!
t =

s//fl
(E,3)

where ~ is the theoretical mean equivalent failure load, x
is the actual mean equivalent failure load, s is the actual
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standard deviation of tr.e equivalent failure load data, and

n is the number of glass plates tested. Values of the t

statistic associated with different levels of significance

are commonly available in tabular form given the nUwber of

degrees of freedom associated with the t statistic. The

number of degrees of freedom associated ,vith the t statis-

tic is the sample size minus one.

An F test is used to compare actual and theoretical

variances (standard deviations squared). It is ass~aed

that the difference between the actual and theoretical

variances is not significant. Then the probability of

the differences of the variances being as large as obser-

ved is calculated. If this probability is small, it is

concluded that the variances are significantly different.

To evaluate this probability, the F statistic is calcu-

lated as follows

F =
8 2

1
5 2

2
(E.4)

where 5 1
2 is the largest variance and 8 2

2 is the smallest

variance. Values of the F statistic associated with dif-

ferent levels of significance are available as a function

of the number of degrees of freedom associated with the

actual equivalent failure load distribution (n-I) and the

number of degrees of freedom associated with the theoreti-

cal variance (00).
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A Chi-squared test is used to compare actual and

calculated frequency distributions. Again, it is assumed

that the actual and theoretical frequency distributions

are not significantly different and the probability of

the differences being as large as observed is evaluated,

If that probability is small, it is concluded that the

frequency distributions are significantly different.

To evaluate this probability, the theoretical and actual

equivalent failure load frequency distributions are

divided into k classes with cowmon boundaries. The Chi-
~

squared statistic, X-, is then calculated as follows

2
X

k (E.-O.)2
~ l l
~

i=l E.
l

(E.5)

where O. is the observed frequency of the i th class and
l

E. is the theoretical frequency of the i th class. Proba­
l

bilities of occurrence of different values of X2 statis-

tis tic are available in tables as a function of the number

of degrees of freedom (d.o.f.) associated with the test.

The d.o.f. associated with the Chi-squared statistic is

found as follows

d.o.f. = k - 1 - m (E.6)

where m is the number of independent distribution para-

meters used to calculate the theoretical frequencies, if

these are determined using the observed statistics.
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Finally, due to assumptions involved in the Chi··squared

tests, each theoretical class must have a frequency of

at least five.

£.2 Calculations

Tables E.I - E.VIII present mean total equivalent

area tables for both geometries of GPL glass plates as-

sU:.!1ing integer values of the m surface fla,:.;> Darameter

~ana1..·na f~om ~ to 7.... b i 0 _ .... I. • In addition, calculation of the

best k surface flaw for each situation using Equation

(5.21) is presented at the bottom of each table.

Calculations of the means and standard deviations

of the theoretical equivalent failure load dist~ibutions

defined by the different sets of surface flaw paramecers

are presented in Tables E.IX - E.XIII. Selections of

the preferred sets of surface flaw parameters to repre-

sent both geometries of GPL glass are made in ChaDter V

bas ed upon comparisons of the theoretical equiv,~lent

failure load statistics with the actual equivalent failure

load statistics.

Statistical tests are conducted to compare the actual

GPL equivalent failure load statistics to the correspon-

ding theoretical equivalent failure load statistics using

the preferred sets of surface flaw parameters. These

tests are conducted for both geometries of GPL glass.

Table E. XIX presents results for the t tests, Table E.XX



TABLE E.I

MEAN TOTAL EQUIVALENT AREA TABLE
FOR SQUAIU': CPL CLASS PLATES: m=L~

Equivalent
Failure Load

Interval

(psf)

Corresponding
Total Equivalent

Area Interval

(in. ;»

Midpoint of
Total Equivalent

Area Interval, S4­
1.

(in. 2 )

Internal
Frequency

f.
1.

f. S".
1. 1.

( 5000) " 160 . 9

100-130

130-160

160-190

190-220

220-250

250-280

2L~. 1- 62.0

62.0-116.2

116.2-203.5

203.5-325.5

325.5-472.8

L~ 72. 8-6L~8. 2

SIt

k

3217.0

20

1

43.1

89.1

159.9

26Lt. 5

399.2

560.5

160.9 in. 2

9 . 9 L1 X 10- I fl

2 86.2

8 712.8

5 799.5

L~ 1058.0

0 0

1 560.5
-
20 3217.0

t-'
())

ffi



TABLE E.II

MEAN TOTAL EQUIVALENT AREA TABLE
FOR SQUARE CPL GLASS PLATES: m=5

Equivalent
Failure Load

Interval

(psf)

Corresponding
Total Equivalent

Area Interval

(in. 2 )

Hidpoint of
Total Equivalent

Area Interval, S5­
1

(
• 2 '1.n _ )

Interval
Frequency

f.
1

f. S 5 _
1 1

(5000) 5 1L~2 . 0

100-130

130-160

160-190

190-220

220-250

250-280

12. 6- L~O. 2

40.2- 91. 7

9 1 . 7- 1 7 L~ • 2

1 7LI • 2 - 308 . 3

308.3-50L~.1

SOlj.1-753.2

8 5

k

2839.7

20

1

26 . L~

66.0

133.0

2L~1.3

406.2

628.7

lL~2.0 in. 2

_ 2 1

2.25 x 10

2 52.8

8 528.0

5 665.0

L~ 965.2

0 0

1 623.7
-
')(\ 2839.7L\.J

t-'
co
'-J



TABLE E.III

BEAN TOTAL EQUIVALENT AREA TABLE
FOR SQUARE GPL GLASS PLATES: m=6

Equivalent
Failure Load

Interval

(psf)

Corresponding
Total Equivalent

Area Interval

(in. 2)

Midpoint of
Total Equivalent

Area Interval, SG'
l

(in. ?)

Interval
Frequency

f.
l

f.S b •
l J.

(5000)b128.9

100-130

130-160

160-190

190-220

220-250

250-280

6.4- 26.Lf

26.4- 70.6

70.6-151.9

151. 9-296.5

296.5-531. 2

531. 2-875.6

51>

k

2577.5

20

16 . L~

Lf 8.5

111.3

22 /1 .2

I} 13.9

703. /•

128.9 in.?

- 2 5
Lf .97 x 10

2 32.8

8 388.0

5 556.5

I~ 896.8

0 0

1 703. /f

-
20 2577.5

f-'
Cf)

Cf)



TABLE E.IV

HEAl'! TOTAL EQUIVAJ.l3NT AREA TABLE
FOR SQUARE GPL GLASS PLATES: m=7

Equivalent
Failure Load

Interval

(psf)

Corresponding
Total Equivalent:

Area Interval

(in. 2
)

Midpoint of
Total Equivalent

Area Interval, S7.
~

(in. ;> )

Interval
Frequency

f.
~

f. S.,.
~L

100-130

130-160

160-190

190-220

220-250

250-280

3. L1_ 17 . 7

17.7- 55.2

55.2- 13/1. Lt

131+ . L~ - 290. 7

290.7- 570.0

570.0-1005.9

8,/

k

2L~25. 6

20

1

10.6

36.5

9L~. 3

212.6

LdO. LI

788.0

121. 3 in .. 2

- 2 8
1.06 x 10

2 21.2

8 292.0

5 /,7 11 .0

/~ 850.4

0 0

1 788.0
-
20 2t~25. 6

......
co
,0

(5000) 7121. 3



TABLE E.V

MEAN TOTAL EQUIVALENT AREA TABLE
FOR RECTANGULAR CPL GLASS PLATES: m=L~

Equivalent
Failure Load

Interval

(ps f)

Corresponding
Total Equivalent

Area Interval

(in. 2
)

Midpoint of
Total Equivalent

Area Interval, S4­
~

Interval
Frequency

f.
~

f _S,,_
~ ~

/+385.2
20

(5000)"219.3

1

45-60

60-75

75-90

90-105

105-120

22.7- 70. L~

70 .L~ -15 5. 7

155.7-273.5

273 . 5 - /~Ld . 0

443.0-659.8

S4

k

46.6 3 139.8

113.1 5 565.5

2l!+.6 7 1502.2

358"3 3 107L~.9

551.4 2 1102.8
- -
20 /+385.2

219.3 in. 2

7.30 X 10- 18
t-'
~

o



TABLE E.VI

MEAN TOTAL EQUIVALENT AREA TABLE
FOR RECTANGULAR GPL GLASS PLATES: m=5

Equivalent
Failure Load

Interval

(ps f)

Corresponding
Total Equivalent

Area Interval

(in. 2)

Midpoint of
Total Equivalent

Area Interval, S5­
l

Interval
Frequency

f.
l

f. S 5.
l l

(5000)5185.6

45-60

60-75

75-90

90-105

105-120

10.3- L.3. 7

43.7-106.5

106.5-221.3

221.3-/+22.0

422.0-720.9

S5

k

3711. 9

20

1

27.0 3 81. 0

75.1 5 375.5

163.9 7 111.7.3

32L 7 3 965.1

571. 5 2 1143.0
-
20 3711. 9

185.6 in. 2

_ 2 1

= L 72 x 10 f--'
~

f--'



TABLE E.VII

MEAH TOTAL EQUIVALENT AREA TABLE
FOR RECTANGULAR CPL GLASS PLATES: m=6

Equivalent
Failure Load

Interval

(psf)

Corresponding
Total r;:quivalent

Area Interval

(in. 2
)

Midpoint of
Total Equivalent

Area Interval, S6.
~

Interval
Frequency

f.
l

f.S 6 .
L L

3339.8

20

45-60

60-75

75-90

90-105

105-120

5.6- 27.2

27.2- 78.1

78.1-187.9

187.9-420.2

420.2-763.6

S6

16. It 1 lf9.2

52.7 5 263.5

133.0 7 931. 0

30l~. 1 3 912.3

591. 9 2 1183.8
-
20 3339.8

167.0 in. 2

Ie = 1__

(5000)6167.0 -"' 53.83 x 10

I-'
\.D
~v



'fABLE E. VIII

MEAN TOTAL EQUIVALENT AREA TABLE
FOR RECTANGULAR GPL GLASS PLATES: m=7

Equivalent
Failure Load

Interval

(psf)

Corresponding
Total Equivalent

Area Interval

(in. 2)

Midpoint of
Total Equivalent

Area Interval, S7.
1.

Interval
Frequency

f.
1.

f. S 7.
1. .1

45-60

60-75

75-90

90-105

105-120

3.3- 17.0

17.0- 57. /f

57.4-180.0

180.0-419.1

419.1-879.6

10.2 3 30.6

37.2 5 186.0

118.7 7 830.9

299.6 3 898.8

6/19. Lf 2 1298.8
----

20 32. Lf5.1

(5000)7162.3

S7

k

32Lf5.1

20

1

162.3in. 2

-29
7.89 x 10 t-'

1..0
W



TABLE E.IX

CALCULATION OF THEORETICAL SQUARE GPL GLASS -18

PLATE EQUIVALENT FAILURE LOAD STATISTICS: m=!t, 1<==9.9 1, x 10

Theoretical
Equivalent Midpoint of Interval

Failure Load Equivalent Failure Probability
Interval Load Interval, x. p. x.p. (X.-p)2 n .

~ 1- ~ ~ ~ . ~

(psf) (psf)
10- 40 25 0.006 0.15 107.33
40- 70 55 0.047 2.59 505.91
70-100 85 0.086 7.31 1~67 . 76

100-130 115 0.181 20.82 3/,6. /,5

130-160 145 0.195 28.28 36.87
160-190 175 0.203 35.53 53.60
190-220 205 0.150 30.75 320.86
220-250 235 0.079 18.57 It 59.31
250-280 265 0.035 9.28 395.12
280-310 295 O. 0 lL~ 11 .13 259.90
310- 3L~0 325 0.003 .98 82.92
3L~0-370 355 0.001 .36 38.51

158.75 307 /1" 5 II

~

II == 158.75 psf
1.0
-P'

o = 1307 II" 5 II == 55. 115 Psf



TABLE E.X

CALCULATION OF THEORETICAL SQUARE CPL GLASS .
PLATE EQUIVALENT FAILURE LOAD STATISTICS: m=5, k=2.25 x 10-

21

Theoretical
Equivalent Midpoint of Interval

Failure Load Equivalent Failure Probability
Interval Load Interval, x. p. x.p. (X._p)2 p .

1. J. 1. 1. 1. 1.

(ps£) (psf)

10- 1,0 25 .002 0.05 38. 2L~

I~O- 70 55 .022 1. 21 257.89

70-100 85 .061 5.19 373.70

100-130 115 .162 18.63 377. !~6

130-160 1L,5 .229 33.21 76 . 4!~

160-190 175 .231 1,0. Ld 31. 78

190-220 205 .179 36.70 311.71

220-250 235 .085 19.98 L,37 . 3L~

250-280 265 .02 /j 6.36 2/j 8.38

280-310 295 . 00/~ 1.18 69. 1+1

310- 3L~0 325 .001 0.33 26.16
--

163.27 22/+8.51

\l = 163.27 psf f-l
'-0

() = n2L~EC51 = L~ 7. /12 psf VI



TABLE E.XI

CALCULATION OF THEORETICAL SQUARE GPL GLASS _25

PLATE EQUIVALENT FAILURE LOAD STATISTICS: m=6, k=!~. 97 x 10

Equivalent
Failure Load

Interval

(psf)

Midpoint of
Equivalent Failure
Load Interval, x.

~

(psf)

Theoretical
Interval

Probability
p.
~

x.p.
~ ~

(x .-1J? I) .
~ ~

L,O- 70

70-100

100-130

130-160

160-190

190-220

220-250

250-280

280-310

55

85

115

lLI 5

175

205

235

265

295

0.011 0.61 139.86

0.038 3.23 260.27

0.136 15 . 6L~ 378.57

0.237 3L~. 37 122.77

Ou270 L17.25 Jl~. 15

0.208 L~2. 6Lt 288.L~6

().08L~ 19. 7L~ 379.74

0.015 3.98 JJd.83

0.001 0.30 16.19

167.76 l7!~1.8!~

Jl = 167.76 psf

o = ri7!~1.8!~ = L~l. 74 psf 1-'
'-0
0\



TABLE E.XII

CALCULATION OF THEORETICAL SQUARE CPL CLASS _2U

PLATE EQUIVALENT FAILURE LOAD STATISTICS: m=7, k=1.06 x 10

]I = 171.87 psf

o = 1142 7 • 37 = 37• 78 p s f

Equivalent
Failure Load

Interval

(psf)

L~O- 70

70-100

100-130

130-160

160-190

190-220

220-250

250-280

Midpoint of
Equivalent Failure
Load Interval, x.

~

(psf)

55

85

115

l!~5

175

205

235

265

Theoretical
Interval

Probability
p.
~

0.005

0.023

0.108

0.230

O. 30L~

0.239

0.082

0.009

x.p. (X._]l)2 p .
~ ~ J_ ~

-

0.28 68.29

1. 96 173.57

12. L,2 3L~9 . 28

33.35 166.06

53.20 2.98

/19.00 262.33

19.27 32.6.80

2.39 78.06
--

171.87 lL~27.37

I--'
\D
---.J



TABLE E.XIII

CALCULATION OF THEORETICAL RECTANGULAR GPL GLASS _18

PLATE EQUIVALENT FAILURE LOAD STATISTICS: m=L~, k=7. 30 x 10

Theoretical
Equivalent Midpoint of Interval

Failure Load Equivalent Failure Probability
Interval Load Interval, x. Pi x.p. (X.-~J)2p.

1- 1- 1- 1- 1-

(psf) (psf) --

0- 15 7.5 0.002 0.02 9. LI 3

15- 30 22.5 0.023 0.52 66.20

30- L~5 37.5 0.073 2.74 109.05

L15- 60 52.5 0.177 Q.29 99.00

60- 75 67.5 0.233 15.73 17 . Lf3

75- 90 82.5 0.205 16.91 8.27

90-105 97.5 o.15LI 15.02 70.20

105-120 112.5 O.08 L, 9. lIS 110.99

120-135 127.5 0.037 11 .72 97.56

135-150 1/12.5 0.010 1. /i3 LI LI .02

150-165 157.5 0.002 .32 13.2 /1

---
76.15 6L15.39

1I = 76.15

() = /6 /15.39 = 25.110 ........
\D
ex>



TABLE E.XIV

CALCULATION OF THEORETICAL RECTANGULAR GPL CLASS -21

PLATE EQUIVALENT FAILURE LOAD STATISTICS: m=5, k= 1.72 x 10

Theorc~ t iea 1
Equivalent Midpoint of Interval

Failure Load Equivalent Failure Probability
Interval Load Interval, x. p. x.p. (X.-1I)2 p .

l 1_ l l l l

(psf) Cpsf) --

15- 30 22.5 0.011 0.25 3/+.20

30- 1,5 37.5 0.0!~3 1.61 71./~!1

45- 60 52.5 0.156 8.19 103.52

60- 75 67.5 0.227 15.32 26.28

75- 90 82.5 0"260 21. L~5 11 .67

90-105 97.5 0.200 19.50 7/, . O/~

105-120 112.5 0.082 9.23 96.13

120-135 127.5 0.019 2. /12 /16.07

135-150 ]/,2" 5 0,002 0"29 8.25
-

78"26 !16/~. 60
.-.

]I = 78.26 psf
\.0
\.0

o = v'467~~60 = 21. 55 psf



TABLE E.XV

CALCULATION 01;' THEORETICAL RECTANGULAR GPL GLASS
- 2 ')

PLATE EQUIVALENT FAILURE LOAD STATISTICS: m=6, k= 3.83 x 10 .

Theoretical
Equivalent Midpoint of Interval

Failure Load Equivalent Failure Probability
Interval Load Interval, x. P. X.p. (X.-11)2 p .

1- ':L :L- :L l l

(~) (ps[)

15- 30 22.5 O.OOLf 0.09 13.38

30- 45 37.5 0.029 1. 09 53.20

45- 60 52.5 0.117 6. ILl 90.62

60- 75 67.5 Ou 22 3 15.05 36.71

75- 90 82.5 0.303 25.00 1,/f3

90-105 97.5 0.2/f3 23.69 71. 6Lf

105-120 112.5 0.071 7.99 73. Lf 8

120-135 127.5 O.rHO 1. 28 22.25
-

80.33 362.71

Jl = 80.33 psf
N
0

0= .r362-:-7T= 19.04 psf 0



TABLE E.XVI

CALCULATION OF THEORETICAL RECTANGULAR CPL GLASS _27

PLATE EQUIVALENT FAILURE LOAD STATISTICS: m=7, k=7.89 x 10

Theoretical
Equivalent Midpoint of Interval

Failure Load Equivalent Failure Probability
Interval Load Interval, x. p. x.p. (X._p)2 p .

~ 1. ~ ~ ~ ~

(psf) i.ps f)

15- 30 22.5 0.001 0.02 3.58

30- L~5 37.5 0.019 0.71 38.25

L+5 - 60 52.5 0.080 L~. 20 71. 38

60- 75 67.5 0.198 13.37 43.78

75- 90 82.5 0.372 30.69 0.01

90-105 97.5 O.25L1 2L~. 77 58. ILl

105-120 112.5 0 0 072 8.10 65.36

120-135 127.5 0.004 0.51 8.15
-

82.37 288.65

p = 82.37psf
N
0

(J = ~F288:"6-5 = 16.99 ps f f-'



TABLE E.XVII

COMPARISONS OF ACTUAL AND THEORETICAL MEAN
EQUIVALENT FAILURE LOADS-PREFERRED SURFACE FLAH PARAMETERS

CPL Surface Flaw 'theoretical Actual Ca.lculated t Critical t
Glass ParanlCters t-1ecU1 }lean Statistic l Statistic2 Conclusion
Plate

Geometr:y__ m k (psf) ~sf)-
_ 25

Square 6 4. 97xlO 167.8 lo8.0 0.02 2.093 No significant
difference in
actual and theo-
retical IT}C[lns

3. 83xlO
-25

80.3 0.32Rectangular 6 79.0 2.093 No sii:'pificant
eli fference in
actual 3fld theo-
retical means

lCalculated using Equation (E.3).
2Found in t table assuming a 5 percent level of significance and 19 d.o.f.

N
o
N



TABLE E.XVIII

COMPARISONS OF VARIANCES OF ACTUAL AND THEORETICAL
EQUIVALENT FAILURE LOADS-PREFERRED SURFACE FLAH PARAMETERS

GPL Surface Flaw Theoretical Actual
Glass Pararneters Variance VarLmce
Plate

GeoIll2try TIl k (psf) 2 _~psf) 2
-

-25
11106Square 6 LI .97xlO 1739

Calculated F
Statistic l

1.2LI

Critical F
Statistic2 Conclusion

1.88 No sif--'flificant dif­
ference in acttml
and theoretical
variances

Rectcmgu1ar 6
-25

. 3.83xlO 363 339 1.07 1.88 No significant dif­
ference in actu.c'll
and theoretical
variances

I Calculated using Equation (£.4).
"Found in F table assuming a 5 percent level of significance infinite d.n.f. for

the theoretical variances and 19 d.o.f. for the actual variances.

~0

o
w



TABLE E,XIX

CONPARISONS OF ACTUAL MW T~iEORETICAL SQUAF..E
GPL GLASS PLATE EQUIVALENT FAILUPE LOADS

Equivalent Corresponding Actual Theoretical
Failure Load Total Eauivalent Literval Interval (0 _r.' ) 2

Interval Area Interval Frequency Frequency • L.,
l l

(nsf) (in. 2)
O. E. E.

l l l

.137.5 38 j, 5 0.20...,.

137.5-166 38- 90 6 5 0.20

167.5-211 90-185 6 5 0.20

211- 185- 4 5 0.20

20 20 0.80

l critical

Therefore it is concluded that the difference
in the actual and theoretical distributions is not
sign i f i can t ,

lCalculated assuming m=6 and k=3.83 x 10- 25

2Found in X2 table assuming a 5 percent lev~l of
significance and 1 d.o.f.



TABLE E.XX

COMPARISONS OF ACTUAL A~D THEORETICAL RECTANGULAR
GPL GLAS S PLATE EOUIVALE~1T FAILURE LoAIS

DISTRIBUTIONS - PREFERRED SURFACE FLA';v PAR...i2~ETERS

Equivalent Correspond.iJ.ig Actual L'1eoretical
Failure Load Total Equivalent Interval Interval (O.-E.)2Interval Area Interval Frequency Freqc.ency l l

(in. 2) O. E. R
(psf) ....l l l

-67.5 - 48.0 6 5 0.20

67.5-81.5 48.0-120.0 5 5 0.00

81.5-95.5 120.0-250.0 6 5 0.20

95.5- 250.0- 3 5 0.80

20 20 1. 20

x2 critical = 3.841=

Therefore it is concluded that the difference
in the actual and theoretical distributions is not

• • -+= • +-slgnl.l..lCanL.

lCalculated assuming that m=6 and k=4.97 x 10-
25

•

2Found in X2 table assuming a 5 percent level of
. .+:. d 1 d ,..

slgnl~lcance an .o.r,

205



206
presents results of the F tests, and Tables E,XXI and

E.;~~II present results or the Chi-squared tests.

To demonstrate that the surface flaw parameters are

independent of plate response, the preferred rectangular

GPL surface flaw parameters are used to calculate a theore-

tical equivalent failure load distribution for the sauare

GPL glass plates and vice versa. These calculations are

presented in Tables E.XXIII and E.XXIV. Finally, statis-

tical tests are presented to compare these theoretical

equivalent failure load statistics to the corresponding

actual statistics. Table E.XXV presents results

tests, Table E.~(VI presents results of F tests, and

Tables E.:C\VII and E.~~VIII present results of Chi-

squared tests.



TABLEE.XXI

CALCULATION OF THEORETICAL SQUARE CPL GLASS _25

PLATE EQUIVALENT FAILURE LOAD STATISTICS: m=6, k=.3.83 x 10

Theoretical
Equivalent Midpoint of Interval

Failure Load Equivalent Failure Probability
Interval Load Interval, x. p. x.p. (X_p)2 p .

~ ~ ~ 1- ~

(ps£) (ps£)

L~O- 70 55 0.008 o. L~L~ 120.01
70-100 85 0.0.30 2.55 256.58

100-1.30 115 0.108 12. L+2 !~21.61

130-160 145 0.199 28.86 209. 9!~

160-190 175 0.252 L~!I. 10 1. 55
190-220 205 o.2 3!~ t 17. 97 177.22
220-250 235 0.127 29.85 420.19
250-280 265 0.0.37 9.81 28.3 . !~ 1
280-310 275 0.005 1. /18 69.05

---
177.1+8 1959.56

11 = 177 .L~8 psf
o = l-r95-§~-5-6- + Ill. 7 /1 ps f

N
o
---J



TABLE E.XXII

CALCULATION OF THEORETICAL RECTANGULAR CPL _ 2 5

GLASS PLATE EQUIVALENT FAILURE LOAD STATISTICS; m=6, k-4.97 x 10

Equivalent
Failure Load

Interval

(psf)

Midpoint of
Equivalent Failure
Load Interval, x.

~

(psf)

Theoretical
Interval

Probability
p.
~

X.p.
~ 1.

?
(x-]1) Pi

15- 30

30- 45

L~5 - 60

60- 75

75- 90

90-105

105-120

120-135

22.5

37.5

52.5

67.5

82.5

97.5

112.5

127.5

0.006 O. lL~ 17.32

0.036 1. 35 53.97

0.11+8 7.77 83.27

0.265 17.89 20.15

0.312 25. 7L~ 12.30

0.195 19.0] 88.30

0.035 3.9!f Lf 6.07

0.003 0.'38 7.89
----
76.22 329.27

JI = 76.22 psf

o = n29:~F7- =: 18. IS psf

N
o
CD



TABLE EoXXIII

COMPARISONS OF ACTUAL AND THEORETICAL MEAN EqUIVALENT
FAILURE LOADS-ALTERNATE SURFACE FLAVl PARA1,1ETERS

CPL Surface Flaw Theoretical Actual Cctlculatetl t Critical t
Glass Param:~ters t-1ean Hean Statistic l Statistic2 Conclusion
Plate

Geon-etry m k (psf) (psf)
----- -_._-

_25
Square 6 3. 83xlO 177 .5 168.0 1.13 2.093 No significant

difference in
actual and theo-
retical means

_25

Rectangular 6 4. 97xlO 76.2 79.0 0.68 2.093 No significLlf1t
difference in
actual and Lllco-
retical means

I Calculated using Equation (E.3).
2 Found in t table assuming a 5 percent level of significance and 19 d.o.f.

r,.)

o
\D



TABLE E.XXIV

COMPARISONS OF VARIANCES OF ACTUAL AND TIIEOH.ETICAL
EQUIVALENT FAILURE LOADS-ALTERNATE SURFACE FLAhT PAHAMETERS

GPL Surface Flaw 111eoret Lcal Actual
Glass Parnmetcrs Variance Variance
Plate

Geometry Tn k (psf) 2 ~sf)2
-

_25
SqU'Jre 6 3. 83xlO 1960 1/106

l. 592 '
Rectanhrular 6 4.97xlO- J

329 339

Calculated 1"
Statistic l

1. 39

l.03

Critical F
Statistic2 C,onclusion

1. 88 No sir'Jlificant dif­
ference in actual
and theoretical
variances

No significant dif­
ference in (lccual
and theoretici1l
variance~o

lCalculated using Equation (E.4).
2Found in F table assuming a 5 percent level of significance, infinite d.o.f. for
the theoretical variances and 19 d.o.f. for the actual variances.

N
1--'
o



TABLE E.XXV

COHPARIsm:s OF ACTUAL A:'TD THEORETICAL SQUARE
GPL GLASS PLATE EQUIVALENT

FAILURE LOAD DISTRIBUTION - ALTERJ.\TATE SURFACE FLA1;.J
PAP\....'u"fE TE RS

Equivalent Corresponding Actual Tneoretical (0.-E.)2
Failure Load Total Equivalent Interval Interval l l

L'1terval Area Inter.,ral Frecuencv Frequency 1:'
'-'

(psf) (in. 2) O. E.
l l

-143.5 - 48.0 5 5 0,00

143 . .5-176 48.0-118.0 S 5 1. 80

176-209 118.0-245.0 5 5 0.00

209- 245.0- 2 5 1.80

20 20 3.60

2 _ 7.8l5~
X cri tical

Therefore it is concluded that the difference in
the actual and theo~etical distributions is not sig­
nificant.

lCa1culated assuming that m=6 and k=3.83 x 10-
25

2Found in XL table assuming a 5 percent level of
significance and 3 d.o.f.

211



TABLE E,XXVI

CONPARISONS OF ACTUAL A;JD THEORETICAL
RECTANGL'LAR GPL GLASS PLATE EQUIVALENT

FAILURE LOAD DISTIUBUTIONS - ALTERJ."JATE SURFACE
FLNN PARANETERS

Equivale.1t Corresponding Actual Theoretical (0.-E.)2
Failure wad Total Equivalent: Interval Interval l l

Interval Area Interval Frequency Frequency E

(psf) (1-11. 2) O. E.
l l

-6705 - 38.0 6 5 0.20

67.5-77.0 3800- 95.0 5 5 0,00

77 00-9000 95.0-182.0 4 5 0.20

90.0- 182.0- 5 5 0.00

20 20 0.40

212

1

X critical
2

= 7.815

Therefore it is concluded that the differen~e in
the actual and theoretical distributions are not sig­
nificant>

_ 2 5

lCalculated assuming that m=6 and k=4.97xlO .
2Found in X2 table assuming a 5 percent level of
significance and 3 d.o,f,




