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ABSTRACT

An analytical methed is advanced to predict the strength
of window glass plates subjected to lateral loeds. The Zail-
ure prediction model relates the strength cof glass plates to
fundamental properties of the glass plate surface. The fail-

C
ure prediction model incorporates all factors which are known
to significantly affect the strength of glass and all factors
winich influence plate behavior. The failure prediction model
is offered as a realistic assessment of glass plate strength
to be used in window glass design

The failure theory emploved in the glas
prediction model states that glass plate
of large local tensile stresses. T!

s
nese large local stresses
are induced by the interaction of surface tensile stresses
with minute stress raising surrface flaws. Because
of glass is controlled by the stress raising characteris
of the surface flaws, the strength of glass varies with
factors which alter these surface flaw characteristics. A
literature search is conducted to identifv factors which lend
significant variability to the strength of glass. An available
analytical representation of these glass strength variations is
incorporated into the faillure prediction model.

A geometrically nconlinear plate analvsis is emploved in
the fallure prediction model to calculate the surface tensile
stresses in a rectangular glass plate. Selection of plate
boundary conditions representative of window glass installa-
tions is based upon comparisons of experimental glass plate
responses with available theoretically determined plate responses.
Based upon these comparisons, it is determined that ‘the best
idealized boundary conditions to model window glass are:

(1) the plate edges are free to rotate,

(2) the plate edges avre free to slip in the plane of the

plate, and
(3) the plate edges are restrained from lateral displace-

ment.



A geometrically nonlinear plate aralysis which employs these

boundary conditions is advanced to model the response of a

rectangular glass plate subjected te a uniform lateral load.
The rfallure prediction model relates the strength of

glass plates to fundamental characteristics of the glass plate
surface flaws. The probability that a glass plate exposed to
a lateral load will £a2il is the vprobability that a surface flaw
capable of initiating failure is located on the glass plate
surface. Appropriate probability theory is reviewed and
adapted to model the ocecurrence and severity of urface
flaws and 1s incorporated in the failure prediction model

The surface flaw cha istics emploved in the failure
prediction model must b d from the results of care-
fully controlled g ilure. This process
is independently p rent sets of glass
plate failure data. The two sets of =
of similar surface condition, but signific
geometry. The strength of one geometry of glass plate is
then accurately predicted using the surface £
istics estimated from the failure data from th
of glass plate. It is thus shown that the st

is related to fundamental propercties of the gl
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CHAPTER T
INTRODUCTION

There is a need within engineering practice for an
analytical method to predict the probability of failure
cf window glass plates subjected to lateral loads. The
failure prediction technique should include provision
for all significant factors which influence glass strength
and all significant factors which influence plate behavior.
The ultimate use of the glass plate failure prediction
model will be to provide a realistic assessment of glass
plate strength to be used in the design of window glass.

Current window glass design information is based upon
empirical representations of glass plate strength. Dis-
cussions in pertinent literature call attention to poten-
tial problems with this approach and emphasize the need
for a rational method to determine the strength of window
glass.

Recent advances in stress analysis techniques have
made it possible to characterize more accurately the dis-
tribution of stresses in thin rectangular glass plates.
Proposed new methods to predict the strength of glass
plates incorporate results of the newly developed stress
analyses. However, these new methods which predict glass
strength continue to rely substantially upon empirical

formulations and simplifying assumptions.



The failure prediction model advanced herein consi-
ders both the strength of glass and glass plate behavior.
The strength of glass is related to fundamental proper-
ties of the glass plate surface. Glass plate benavior
is described using a nonlinear plate analysis. Thus,
fundamental relationships between load and stress and
between stress and surface condition are recognized.

Chapter II expands upon the need for a failure pre-
diction model for window glass and sets forth the research
approach. Chapter III contains an evaluation of the glass
plate failure mechanism and provides a basis for incorpor-
ating the significant factors which influence glass
strength into the failure prediction model. A geometri-
cally nonlinear, large deflection plate analysis is pre-
sented in Chapter IV to calculate the stresses in glass
plates subjected to lateral loads. Chapter V contains
the formulation of the glass plate failure prediction
model. Finally, Chapter VI presents a summary of accom-

plishments and provides direction for future research.



CHAPTER 1T

THE RESEARCH PROBLEM

The design of window glass to resist lateral loads
consists of two steps:

(1) description of the design lateral load, and

(2) selection of the minimum glass plate thickness

from window glass design charts,

Uniform lateral loads renresentative of wind loads
are the major type of lateral load considered for window
glass design. Wind load characreristics depend upon
building geometry and the local wind environment. Im-
proved understandings of wind effects on buildings have
become available as the results of both wind tunnel and
full-scale experiments (Davenport 1976, Peterka and Cer-
mak 1975, Dalgliesh 1979). However, glass plate strength
information for use in window glass design has remained
essentially the same for more than twenty years. Recent
interest has focused on the limitations of the currently
available window glass design information (Saffir 1976,
Ishizaki 1977, Beason and Minor 1978). In addition, re-
cent highly publicized instances of window glass failures
in relatively moderate windstorms have called attention
to potential problems with current window glass design

procedures (Engineering News Record 1974, 1977).

Product recommendations concerning the strength of

window glass have been widely circulated by major United

3



States glass manufacturers (PPG Industries 1975, Libbey-
Owens~Ford Company 1980). These product recommendations
are based upon glass plate strength tests (Orr 1957,
Hershey and Higgins 1973). DBecause these glass plate
strength characterizations were available and in apparent
accord, similar window glass design charts were adopted
for use as minimum standards in major building codes
(Uniform Building Code 1973, Standard Building Code 1979,
BOCA Basic Building Code 19753).

Recently, product recommendations presented by one
manufacturer have changed radically (PPG Industries 1979).
This company has advanced new élass plate strength infor-
mation based upon stress analvsis and glass strength data
(Tsai and Stewart 1876). Publication of this new infor-
mation has raised serious questions regarding design in-
formation presented in current building codes.

The basis for the glass plate strength information
referenced in major building ccdes 1s examined below,
This discussion is followed by a presentation of the re-
search approach used to develop an analytical glass plate
failure prediction model. A window glass design proce-
dure based on the failure prediction model presented
herein will be accomplished in further research at Texas

Tech University.



A, Review of Current Glass
Desien Procedures

A review of current glass design information sug-
gests that basic glass plate strength information that is
presented in manufacturers literature (Libbev-Owens-Ford
Company 1980) and building codes (Uniform Building Code
1973, Standard Building Code 1979, BOCA Basic Building
Code 1975) in the United States is essentially the same.
Figure 1 presents a typical glass design chart for rec-
tangular glass plates supported continuously on four
sides. This widely circulated design chart presents the
minimum thickness of rectangular annealed glass of a par-
ticular area that is required to resist a given design
lateral load.

Historically, windspeed data used as a basis to
specify wind loads are presented in terms of annual ex-
treme fastest mile windspeeds (Thom 1954, 1960, 19%68).

A fastest mile windspeed is the average velocity of a
one mile shaft of air as it passes a point, Therefore,
a design load associated with a windspeed in excess of
60 mph has a duration of 60 seconds or less. Although
it is not clearly stated by zall presenters, durations of
the design loads presented in Figure 1 have become asso-
ciated with durations of the associated fastest mile
windspeeds or about 60 seconds. However, rationale to
associate the design loads presented in Figure 1 with a

60-second or any load duration is not clear., This is a



Maximum Glass Area,(ft?)

w
Q

EIGURE 1.

Design Load(psf)

TYPICAL GLASS DESICN CHART
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very significant problem with current glass design methods

Chapter III).
The chart

Fug
Qualifications associated with the glass design chart

because the strength of glass is highly dependent upon

load duration (Re

presented in Figure 1 vary with the presenter,
is considered to be applicable for plate aspect ratios

ranging from 1:1 to 1:3 or from 1:1 to 1:5, and for maxi-

mum lateral edge deflections up to 1/175 of the span.
the chart design load is considered to reflect

Further,
either a design factor of 2.5 or a probability of a single

plate failure of 8/1000.
Glass plate strength information available in the

open literature which relates directly to window glass
The

design charts contained in current building codes was
Orr reported results of

first presented by Orr (1957).
20 static tests to failure of new glass plates.

glass plates were exposed to increasing uniform lateral
The uniform loads were increased

loads until failure.
in increments so that the central lateral deflection of
a particular plate was increased in steps of 0.10 or 0.20

in. Pertinent data were recorded between load increments.

The time required to fail a particular plate ranged from
The glass plates tested ranged in area
.383 in.,

5 to 25 minutes.
in thickness from 0.114 to
The test series

from 47 to 80 sq ft,

and in aspect ratio from 1:1 to 1:1.67.
contained, at most, two replications of any unique combi-
aspect ratio, and glass type.

thickness,

nation of area,



3
The following empirical equation was advanced by Orr
(1957) to represent the measured variations of total glass

plate failure load with glass plate thickness

P = 7600 (t + t2?) (2.1)

where P 1s the total failure load (lbs) acting on the
glass plate surface, and t is the nominal thickness (in.)
of the glass plate, A more convenient expression is ob-
tained if Equation (2.1) 1s divided by the area of the

glass plate, yielding
p = [7600 (t + t2)]/a (2.2)

where » 1s the lateral load (psf), and A is the area of
glass plate (sq ft).

The glass design chart presented in Figure 1 can
be reproduced using Orr's (1957) results. To do this, it
is assumed that the failure load for a given glass plate
area 1s normally distributed with a mean value, p, given
by Equation (2.2) and with a standard deviation calculated
by assuming an appropriate coefficient of variation.
Design loads presented in Figure 1 can then be determined
by calculating the failure load associated with an 8/1C00
probabilicy of failure. 1If a coefficient of variation of
25 percent, as has been suggested by manufacturer's liter-
ature (PPG 1964), is used, the design load corresponding

to an 8/1000 probability of failure is found by dividing



the mean failure load by 2.5. Therefore, presenters of
Figure 1 associlate the design loads with either an §/1000
probability of failure or a design factor of 2.5.

More elaborate test programs have since been con-
ducted to determine the failure loads of new window glass
plates subjected to uniform lateral loads (Bowles and
Sugarman 1962, Hershey and Higgins 1973). It is not
strxictly proper to compare these different test results
directly because of differences in loading rates and
probable differences in glass plate surface conditions.
Notwithstanding these differences, comparisons between
mean glass failure loads predicted using Equation (2.2)
and the independently determined glass strength data
suggest that Equation (2.2) is a poor estimator of
the variation of glass strength with variations of glass
plate thickness, area, and aspect ratic. However, glass
plate failure loads predicted with Equation (2.2) appear
to be conservative for strengths of new glass plates from
a design standpoint.

Major questions regarding the validity of current
glass design information have been posed as the result of
the release of the new set of product recommendations by
PPG Industries (1979). These new product recormendations

are the result of both experimental and analytical research
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(Tsai and Stewart 1976). Information presented suggests
that the strength of glass plates varies significantly
with aspect ratio as well as with area and thickness. In
some instances, the uniform lateral load corresponding to
an 8/1000 probability of failure is less than half of the
corresponding lateral load suggested in Figure 1. How-
ever, these new product recommendations have not, as yet,
replaced the glass design chart presented in Figure 1 in
building codes.

The above observations suggest that current repre-
sentations of glass plate strength used for design purposes
do not reflect, realistically, the strength of glass plates.
Factors such as plate geometry and load duration are not
properly treated in current glass design information. The
major reason for the current situation is that until re-
cently, major questions have existed regarding the nature
of the stresses induced in a glass plate by a uniform lat-
eral load. It is impossible to rigorously treat the prob-
lem of glass plate failure prediction without a knowledge
of the induced stresses.

Recent studies address the strength of glass plates
(Brown 1974, Tsai and Stewart 1976, PPG Industries 1979).
Each of these studies recognize, to some extent, the impor-
tance of glass strength variations with factors such as
plate geometry, load duration, and the need for an accur-

ate assessment of the stresses induced in a glass plate by



11
lateral loads. However, none of these studies has gained

widespread acceptance by glass designers.

B. Research Approach

A failure prediction model is presented herein to
estimate the strength of window glass plates subjected to
uniform lateral lcads. The failure prediction model re-
lates the probability of glass plate failure to fundamen-
tal glass plate surface properties. The glass plate fail-
ure prediction model incorporates: (1) an analytical re-
presentation of the variation of glass strength with dif-
ferent environmental factors (Ref. Chapter III), (2) a
geometrically nonlinear plate analysis (Ref. Chapter 1IV),
and (3) a statistical representation of the glass plate
surface flaw proverties (Ref. Chapter V). The failure
prediction model is formulated so that the surface flaw
properties are dependent only upon the type and treatment
of the glass, and are independent of factors such as
plate aspect ratio, glass plate surface area, and lcad
duration.

Figure 2 presents major procedural components of the
failure predicrion model. Application of the failure
prediction model is demonstrated in Chapter V using a set
of glass plate strength data developed by testing a homo-
geneous sample of glass plates of different aspect ratios

and areas.
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1. Glass Strength

The most popular glass failure theory suggests that
glass plates subjected to lateral lcads fail as the re-
sult of the interacticn of minute surface flaws with sur-
face tensile stresses (Griffith 1920). By nature of their
geometry and orientation with respect to the maximum normal
tensile stress, the surface flaws cause large local stress
concentrations in the glass plate. Failure initiates when
the stress raising characteristics of a particular flaw and
the attendant nominal tensile stress combine to cause a
critical local stress in the glass plate. Geometries of
the surface flaws can change to increase or decrease their
stress-raising characteristics as a result of a phenomenon
known as stress corrosion (Brown 1974)., Stress corrosion
is facilitated by the chemical acticn cf water on the
glass and by the presence of surface tensile stress. 3Be-
cause of stress corrosion, the strength of glass is depen-
dent upon the duration of applied loading through a

I

phenomenon known as static fatigue.

2. Plate Stresses

To predict the probability of failure of a glass
plate, an accurate determination of the surface tensile
stresses must be made. An annealed glass plate exposed
to a uniform lateral pressure typically experiences cen-
tral deflections in excess of the plate thickness prior

to failure. Plates experiencing central deflections of



this magnitude sustain significant middle plane strains.
Therefore, a nonlinear plate analysis which accounts for
the actions of the resulting middle plate forces must be
used (Timoshenko 1859).

The surface tensile stresses in a glass plate are
highly dependent upon the nature of the boundary condi-
tions to which the glass plate is exposed. The boundary
of a typically installed glass plate is subjected to
varying degrees of rotational, in-plane and lateral re-
straints. It is the opinion of some glass researchers
that the boundary conditions of typically installed glass
plates approach the idealized situation where the edges
are simply supported and free to slip in-plane (Tsai and
Stewart 1976). Until recent interest in the response of
glass plates, this plate boundary situation has received
little attention since it was first treated by Kaiser
(1936).

The nonlinear plate analysis presented herein employs
the von Karman differential equations (Timoshenko 1959) .
Solution of the two nonlinear plate equations is achieved
using an iterative technique coupled with a Galerkin
method. Results of the nonlinear plate solution are com-
pared to other nonlinear plate solutions and to experimen-

tal glass plate test results.

14



3.  Statistical Failure 15

Theory

The probability that a glass plate exposed to lateral
load fails is the probability that at least one glass plate
surface flaw is capable of initiating failure, given the
resulting distribution of surface tensile stresses. 3Both
the cccurrence and severity of the glass plate surface
flaws must be modeled to predict the probability of £fail-
ure of a particular glass plate. A statistical material
strength theory introduced by Weibull(l939) is used as a
basis to model the glass plate surface flaw characteris-
tics. The statistical formulation employs two parameters
to model the surface flaw characteristics. Values of the
surface flaw parameters must be estimated from data gen-
erated from carefully controlled glass plate tests to

failure.

4, Verification

To demonstrate use of the failure prediction model,
two different geometries of glass plates with similar
surface conditions were tested to failure with time con-
trolled lateral loads. The best surface flaw parameters
to represent the failure strengths of both geometries of
glass plates tested were then determined independently.
Validity of the failure prediction model is demonstrated
by accurately predicting the strength of one glass plate

geometry using the surface flaw parameters determined

from the other geometry.



CHAPTER III
THE STRENGTH OF GLASS

It is assumed in the development of the failure pre-
diction model presented herein that the strength of glass
plates is controlled by the characteristics of minute sur-
face flaws. The surface flaws give rise tc large local
stress concentrations which initiate failure. The Zunda-
mentals of this failure theory were originally presented
by Griffich (1920). The original Criffith theory azlong
with interpretations presented by Shand (1965) are reviewed
in tnhis chapter.

The strength of glass has been observed to vary sig-
nificantly with both environmental exposure and load dura-
tion, Several pertinent experiments found in the litera-
ture are examined to emphasize the reality of these glass
strength variations. Experimental results reviewed indi-
cate that any credible failure prediction model for glass
plates must account for these observed variations of
glass strength.

To incorporate observed glass strength variations into
the failure prediction model, the strength variations are
related to the surface flaw characteristics in a determin-
istic fashion. Development of a stress corrosion theory
advanced by Brown (1974) is presented in this chapter.

The stress corrosion theory explains glass strength vari-
ations with relative humidity, temperature, and load dura-

16



ation. The stress corrosion theory is incorporated into

the failure prediction model presented in Chapter V.

A The Failure Mechanism

A. A. Griffith (1920) observed that many brittcle
materials such as glass fail at stresses much less than
their inherent material strength. To account for this
behavior, Griffith suggested that the failure of brittle
materials is the result of large lccal stress concentra-
tions induced in the materials by minute flaws.

Griffith (1920) presented an analytical development
for the special case of a flat homogeneous plate of uni-
form thickness containing a straight, narrow crack pass-
ing completely through its thickness. The analytical
formulations were restricted to the case where the crack
was oriented perpendicular to the direction of the maxi-
mum principal tensile stress. Validity of this analyti-
cal formulation was demonstrated experimentally by Grif-
fith,

The original Griffith formulations were too re-
strictive to apply directly to the behavior of glass
plates. However, many glass researchers believe that
glass fracture is the result of tensile stresses inter-
acting with minute flaws on the surface of the glass
(Shand 1954, Weyl 1946, Jones 1949, Levengood 1957,
Wiederhorn 1967, Rader 1967, Preston 1942, Stanworth

1650) .

17
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In a series of papers concerning the fracture of

glass, E. B. Shand extended the fundamental concepts of
the Griffith theory to develop a more applicable glass
fracture theory (Shand 1954, Shand 1959, Shand 1%61, Shand
1965, Shand 1969). Shand considered a straight surface
flaw with a depth of penetration into the surface of the
glass plate which is'small with respect to the thickness
of the glass plate. Figure 3 shows the cross section of
such an idealized surface flaw. The maximum local stress,
T associated with an idealized surface flaw occurs at

the flaw tip and is given by

o, =, K (/)" (3.1)
where 9, is the maximum principal tensile stress to which
the flaw is subjected, K is a stress concentration which
depends upon the flaw geometry, h is the flaw depth, and r
is the effective radius of the flaw tip (Shand 19265).

Shand (1965) reported that the nominal tensile stress
present in a glass specimen at the time of failure can range
from 1000 psi to walues in excess of 200,000 psi. He attri-
buted this wide range of variability to different factors
which reduce the strength of glass including the treatment
of the glass, its environmental exposure, the effects of load

duration, and the stress concentration effects of the sur-

face flaws. He further reported that the strength degrada-
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tion due to the stress concentration effects of the flaw

geometry as represented by Equation (3.1) is perhaps fifty
times as important as the strength degradation effects of
all other factors combined.

The concept of stress raising flaws causing glass
failure is substantiated by the fact that a glass plate
failure can usually be traced back to a single point of
crigin (Ref. Appendix A). Further, the location of the
failure origination point does not necescarily coincide
with the point of the maximum nominal stress, indicating
that there is a variability associated with the stress
raising potential of different flaws. The one particular
_flaw which initiates glass plate failure is termed the
critical flaw.

Analytical formulations by Griffith (1920) and by
Shand (1965) do not treat the generzl situation where the
flaw is oriented at some angle to the direction of the
maximum principal stress such that the stress concentra-
tion is less than maximum. However, it is clear from an
examination of stress concentration theory that the orien-
tation of a flaw with respect to the orientaticn of the
maximum principal tensile stress must play an important
role in determining whether or not a particular flaw is
capable of initiating failure (Seely and Smith 1952).
Further, it is doubtful if the precise geometry of surface

flaws or glass plates will ever be known. Therefore, it
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s not likely that direct application of Equation (3.1) can

f

be made. The concept of the surface flaw failure mechanism
is useful only in interpreting the behavior orf the glass

plates.

B. Observed Variations
of Glass Strength

The strength of glass varies significantly with envir-
onmental exposure and load duration. Because the strengths
cf most common engineering materials are not nearly as sen-
sitive to normal variations of environment and load dura-
tion as 1s the strength of glass, realization of the depen-
dence of glass strength on so many different factors is
often difficult for an enginecer not familiar with the behav-
ior of glass. For this reason, a detailed examination of
several different experiments reported in the literature is
made in this section. The experimental results are divided
into three groups which show the dependence of glass strength
on the presence of water, temperature, and load duratiocn.

1. Variations of Glass
Strength with Exposure to
Water

The strength of glass is significantly affected by ex-
posure of the glass surface to water, either liquid or vapor.
Results of three independent experiments are examined to

demonstrate the dependence of glass strength on exposure to

water.
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Baker and Preston (1946) tested 7/32 in. diameter

glass rods using a bending load. The rods were baked at
temperatures up to 350°C and then stored in a desiccator
for a period of two weeks prior to testing to assure that
the specimen surfaces were completely dry. Some of the
specimens were soaked in water prior to testing. The load
duration was varied from 0.1 sec. to 100 sec. Relevant
conclusions are:

(L) in a near wvacuum, thoroughly baked glass speci-
men surfaces not exposed to water have an ulti-
mate tensile strength which is independent of
load duration,

(2) glass specimens whose surfaces are simultane-
ously exposed to molisture and tensile &tress
rapidly lose strength, and

(3) glass specimens whose surfaces are exposed
only to moisture may become stronger.

Stockdale, Tooley, and Ying (1951) tested a large
number of freshly drawn, annealed glass rods with diameters
of 0.11 to 0.12 in. The specimens were stored in a desic-
cator aifiter fabrication to assure a thoroughly dry surface.
Some of the specimené were subjected to water treatments
consisting of total immersion in doubly distilled water at
a temperature of 90°C. The duration of the water immersion
treatment ranged from 5 minutes to 24 hours. The specimens
were then tested to failure using uniaxial tension loads.

Major conclusions are:
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(1) glass with thoroughly dry surfaces and which
are not subjected to water treatment experi-
ence no significant strength variations
with storage time,

(Z) untreated glass specimens broken while sub-
merged in water are weaxer than specimens
broken in air, and

(3) extended periods of water treatments prior
to loading tends to increase the strength of

the glass specimens.

Schoening (1960) performed a series of experiments
on laminated glass beams fabricated by gluing microscope
cover slides together. The resu.ting specimens had ap-
proximate dimensions of 38 x 6 x 0.16 mm. The laminated
specimens were stored in a disiccator for two weeks prior
to testing. The specimens were then placed in a test
apparatus and the total system was baked in a vacuum at
350°C for one hour, and allowed to cool to room tempera-
ture. The glass specimens were then exposed to different
relative water vapor pressures for two hours and tested

with a bending load. Relevant conclusions are:

(1) glass specimens exposed to no water vapor

pressure maintain the highest strength,
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(2) the strength of the glass specimens reduces
with increasing relative water vapor pressure
up to a relative water vapor pressure of about
50 percent, and

(3) the ratio of the strength of glass specimens
tested 1in saturated water vapor to the strength

of glass specimens tested in a vacuum 1s about

0.56.

Results of these three projects demonstrate the de-
pendence of glass strength on exposure to water., The
strengths of glass specimens tested in a vacuum are inde-
pendent of load duration. The strengths of glass speci-
mens exposed to water during the course oI the test are
dependent on the load duration and tend to be less than
analagous dry strengths. In addition, exposure of glass
specimens to water pricr to loading can result in a signi-
ficant increase in strength. Based upon these experimen-
tal results, it is clear that the glass failure prediction
mocdel must account for the variation of glass strength
with exposure to water.

2. Variations of Glass
Strength with Temperature
The strength of glass véries significantly with tem-

perature (Vonnegut and Glathart 1946, Jones and Turner 1942,
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Smekal 1936). Comparisons of experimental results presen-

ted by these researchers reveal that the nature of the
variation of glass strength in a range of 73° to 773°K is
vncertain (Stanworth 1950, Shand 1358). However, since
ordinary window glass is not normally subjected to such se-
vere temperature variatiocons, variations of glass strength
are examined in a range of temperatures from 250° to 450°K.
A comparison of available glass strength data in this nar-
rower range of temperatures is made in this section.

Glass strength data are available for specimens of
different geometries, including fibers, bars, strips, and
rods (Vonnegut and Glathart 1946, Jones and Turner 1942,
Smekal 1936, Charles 1958). Because of the differences
in the specimen geometries as well as differences in load
durations and test conditions, the available data cannot
be compared directly. To make a direct comparison of the
various data, the reported failure stresses from each ex-
perirx{ent were normalized by dividing the reported strengths
by their respective strengths at 323°K. These normalized
data are presented in Figure 4.

Based upon data presented in Figure 4, it can be con-
cluded that the strength of glass decreases with increasing
temperature in the temperature range of interest. This
trend was present in each data set examined. The data sug-

gest that glass can experience as much as a 40 percent re-

duction of strength as the temperature increases from 250°
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to 450°K. Therefore, the failure prediction model should

account for the variation of glass strength with tempera-
ture.,

3. Variations of Glass

Strength with Load Duration

The strength of glass exposed to normal amounts of
humidity is highly dependent upon the duration of the
applied loading (Black 1935, Charles 1958, Mould and
Southwick 1959, Shand 1961). This phenomenon is termed
static fatigue by ceramic scientists. Results of three
research projects conducted with glass specimens that
were prepared from actual window glass are reviewed in
this section. In addition, results from experiments em-
ploying specially fabricated specimens are examined to
further emphasize the load duration dependence of glass
strength.

Black (1935) performed a series of tests which
clearly show that the strength of glass is dependent on
load duration, Black tested eighty specimens of new plate
glass beams, 2 x 10 x 7/64 in., exposed to eight different
load durations. The glass beams were simply supported,
and subjected to central loadings. In the first six test
series, the specimens were exposed to linearly increasing
loads which caused failure in a range of times from 7 to
960 seconds. The average maximum tensile stresses occur-

ring in the beams ranged from 10765 psi for an average
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load duration of 7 cseconds to 6494 psi for an average load

duration of 960 seconds. In the last two test series, the
beams were exposed to a constant load inducing a maximum
tensile stress in the beams of either 3080 psi or 4400 psi
and the time to failure of the specimens was measured. 1In
the 4400 psi test series, 9 out of 10 specimens were bro-
ken within 40 hours and 1 remained unbroken after 20 days.
In the 3080 psi test, 1 specimen failed in seven days and
the remaining 9 specimens remainec unbroken at the end of
20 days.

Thompson and Cousins (1949) performed a series of
tests on small glass plates, 14 x 19 in., of two different
nominal thicknesses, 3/32 in. and 1/8 in. These glass
plates were subjected to blast pressures that caused fail-
ure in a few hundredths of a second. The results of these
tests were compared to strengths determined by failing
similar glass plates with linearly increasing loads which
caused failure in about 60 seconds. It was found that the
strength of glass specimens which failed in about 0.01
seconds was about twice that of the specimens that failed
in 60 seconds. Further, it was observed that variations
of load durations in the hundredths of a second range
caused significant variations in the strength of the glass
specimens.

Shand (1961) tested small glass strips, 3/4 x 4-1/2

x 3/32 in. He introduced artificial flaws on the surfaces
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of the specimens with a specially fabricated tool.

These flaws were introduced to reduce the variability of
the failure strengths associated with flaw occurrence and
geometry so that load duration effects could be more easil
measured. Tests were conducted with load durations ranging
from 1 second to about 300 hours. The failure strengths

of glass specimens ranged from about 11000 psi at a load
duration of 1 second to about 6000 psi at a load duration
of 300 hours.

Static fatigue has been observed in other experiments
conducted on specially fabricated glass specimens. Figure
5 presents a summary of the static fatigue results presen-
ted by several different researchers (Minor 1974). 1In
each experiment examined, the strength of glass specimens
exposed to normal amounts of atmospheric humidity decreased
significantly as the load duration increased. Therefore,
the failure prediction model should account for the varia-
tion of glass strength with load duration.

C. Analvytical Expressions of
Glass Scrength Variations

In the previous section it was shown that the strength
of glass varies significantly with exposure to water, tem-
perature, and load duration. 1In the failure prediction
model presented in Chapter V, the strength of glass is re-
lated to the characteristics of the surface flaws. To in-

corporate the appropriate strength variations into the
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failure prediction model, a relationship presented by Brown

(1974) is used to relate strength wvariations te the surface
flaw characteristics. The Brown formulation is an exten-
sion of previous research conducted by Charles (1958) and
Wiederhorn (1967). Development of the Brown formulation

is presented in this section.

The observed variations of glass strength are believed
to be the result of the corrosion of the glass surface flaws
(Charles 1958, Weiderhorn 1967, Brown 1974, Associate Com-
mittee of the National Building Code 1977). Flaw corrosion
occurs as a result of the action of water on the glass sur-
face. Corrosion of a flaw can change its depth, h, and
flaw tip radius, r, as defined in Equation (3.1). 1If a
flaw is exposed to water and tensile stress it is conjec-
tured that the flaw radius, r, decreases and flaw depth,

h, increases resulting in an increase in the stress raising
potential of the flaw. If a flaw is exposed only to water
then the flaw radius increases at a faster rate than the
the flaw depth so that the net effect is a decrease in the
stress raising potential of the flaw. These two flaw cor-
rosion processes are illustrated in Figure 6.

Charles (1958) presented a theoretical develeopment to
model flaw corrosion which takes into account the rate of
flaw corrosion as a function of the applied stress and the
ambient temperature. Charles assumed that the rate of flaw
depth corrosion, VX, is related to the nominal tensile

stress and temperature as follows
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v, = ol exp[~A/ (RT) ] (3.2)

where o 1s the tensile stress to wnich the flaw is exposed,
A and n are constants, R is the universal gas constant, and
T is the absolute temperature. I1f a flaw is subjected to a
constant stress to failure, tﬂen the change of flaw depth,
d, experienced by thé flaw is related to the nominal tensile

stress as follows

d « oo exp[-A/(RT)] ¢ (3.3)

£
where t. is the time to failure. 1If the change of flaw
depth required to initiate failure is assumed to be inde-
pendent of the stress level then the right-hand side of

Equation (3.3) must be constant.

constant = o expl-A/(RT)] te (3.4)

Equation (3.5) can then be used to express the variation

of fazilure stress as a function of load duration and tem-

perature. Charles found experimentally that n is approxi-

mately equal to 16 and that A is appreximately equal to

18.8 Kecal/Mole for window glass, when R is taken to be 1,986

Cal/Mole-°K and the absolute temperature, T, is given in °K.
Other researchers have developed empirical relation-

ships to model the variation of the strength of glass with



load duration (Mould and Southwick 1959, Glathart and 34

reston 1946). The appearance of these empirical repre-
sentations are substantially different than Equation (3.4).
However, all of the available static fatigue relationships
vield essentially the same results.

Wiederhorn (1967), investigating the effects of rela-
tive humidity on crack propagation velocity or flaw corro-
sion, concluded that the velocity of flaw depth corrosion
is linearly related to the ambient relative humidity in a
range of relative humidities from 10-100 percent. There-
fore, Equation (3.4) can be rewricten to include the vari-

ation of glass strength with relative humidity as

constant = RH ¢ exp[-A/(RT)] te (3.5)

where RH is the relative humidity expressed as a decimal
fraction and the other constants are as previously defined.
Recently Brown (1974) reexamined the work of Charles
and others and concluded that a better representation of
available strength data could be obtained if the expres-
sion for the rate of corrosion were modified. The result-
ing expression to model the variation of glass strength

with lcad duration, temperature, and relative humidity is

t
f
constant = J RH[o(t) /T]" exp[-yo/(RT)] dt (3.6)

o
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where t. is the time to failure, 5(t) is the stress at the
e

critical flaw as a function of time. Brown determined that
the constant ¥ is aporoximately equal to 25,0 Kcal/Mole
using the data presented by Charles (1958), while the other
constants maintained their original walues. 1In addition
to more closely representing available strength data, Equa-
tion (3.6) allows a time variant stress to be treated.
Equation (3.6) models the corrosion to failure of a
surface flaw subjected to tensile stress. The constant
value of Equation (3.6) represents a basic measure of the
strength associated with a particular flaw. If the value
of the constant is determined experimentally, the magni-
tude of stress fequired to fail the same flaw at a differ-
ent temperature, relative humidity, and load duraticn can
be calculated. The magnitude of the constant stress, 3, re-
quired to f£ail a particular flaw at a set of reference

conditions 1s given by

o N =

t

£
J RH [o(t)/T]® exp[-yo/(RT)] dt
g (3.7)

Qe
it

. -0
£, RHr exp[-yo/(RTr)] 1r

where the numerator is evaluated for the conditions at the
time of the test and to RHr’ and Tr are the reference load

duration, relative humidity, and temperature,
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The following steps can be used to calculate an equi-
valent constant failure load at reference conditions for a
glass plate tested to failure under controlled conditions:

(L) The failure initiation point on the glass plate
is located using techniques explained in Appen-
dix A.

(2) The variation of stress with time at the fail-
ure initiation point is determined using experi-
mental or theoretical techniques (Ref. Chapter
IV).

(3) The equivalent constant stress at the failure
initiation point is then calculated using Equa-
tion (3.7).

(&) Finally, using an experimental or theoretical
technique the equivalent constant failure
stress is related to the equivalent con-
stant failure load.

Using this procedure the variations of strength due to
humidity, temperature, and load duration can be removed
from a data set. The strength characteristics of the
modified data set are then applicable for the reference

conditions.



CHAPTER IV
NONLINEAR ANALYSIS OF GLASS PLATES

The probability of failure of a glass plate subjected
to a particular loading is dependent upon the glass plate
surface flaw characteristics and the distribution of sur-
face tensile stresses. A complete characterization of the
surface tensile stresses is necessary to rigorously predict
the probability of glass plate failure. An analysis techni-
gue 1s presented in this chapter to model the distribution
of surface tensile stresses acting in a rectangular glass
plate.

Glass plates commonly experience maximum deflections
which are well in excess of their thickness prior to fail-
ure. When the deflections of a plate are of this magni-
tude, a geometrically nonlinear plate analysis must be
used to model the plate response (Timoshenko 195%). When
a plate experiences geometric nonlinearity the boundary
restraints have a particularly significant effect upon
the plate response. Because of the complexities involved
with geometrically nonlinear plate analysis, coupled with
the often unique nature of the boundary conditions asso-
ciated with window glass installations, the problem of
glass plate analysis has not been well addressed.

Plate solutions employing different boundary condi-
tions are reviewed to determine the proper set of ideal-

ized boundary conditions to be used to model glass plates.

37
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Boundary displacements of importance in relation to the

glass plate problem are: lateral edge displacement, edge
rotation, and in-plane edge displacement. These boundary
displacements can be subject to varying degrees of re-
straint depending upon the nature of the window glass in-
stallation. It is shown through comparisons of experimen-
tal and analytical data that the case where the edges of
the plate are simply supported and free to slip in-plane
provides a reasonable approximation to actual window glass
boundarv conditions.

There are a limited number of plate solutions avail-
able which employ the proper boundary conditions. With
the exception of recently reported finite element results
(Moore 1979, Tsai and Stewart 1976), this problem has been
treated only once, by Kaiser (1936). There are insuffi-
cient theoretical results available for use with the failure
prediction model. Therefore, a geometrically nonlinear
plate analysis for use with the failure prediction model
is developed.

The geometrically nonlinear plate analysis presented
in this section is developed using the von Karman nonlinear
plate equations (Levy 1942). The von Karman equations are
expressed in terms of lateral plate deflections and an
Airy stress function. Use of the Airy stress function en-
ables middle plane or membrane forces to be conveniently

treated. Simultaneous solution of the two nonlinear plate
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equations is obtained through use of an iterative techni-

que coupled with a Galerkin method. This method of solu-
tion was chosen because reasonable estimates of plate de-
flections and stresses could be obtained using relativelyv
small amounts of computation time,

Results of the nonlirear plate analysis are compared
to available theoratical results that are presented in the
literature. It is thus shown that results of the non-
linear plate solution are in agreement with available
theoretical results., Further, it is shown that results of
the nonlinear plate analysis agree reasonably well with
available experimental glass plate data.

A Review of Nonlinear
Pilate Solutions

When the maximum lateral deflection of a plate exceeds
half of its thickness it experiences significant stretching
of its middle surface. As a result, membrane forces are
introduced intc the plate. Classical linear plate theory
ignores the presence of the membrane forces and therefore
cannot be used to analyze glass plates. A geometrically
nonlinear plate analysis which takes into account the ac-
tion of membrane forces must be used to analyze glass
plates.

The von Karman nonlinear plate equations were devel-
oped to model thin plates experiencing large deflections

(Timoshenko 1959). However, the lateral plate deflections
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should remain small with respect to the rectangular dimen-

sions of the plate or assumptions employed in development
of the von Karman equations will be violated (Szilard
1974) . Window glass plates usually fail before their
lateral deflections exceed the limitations of the von Kar-
man equations. The von Karman equations along with other
fundamental plate formulations are reviewed in this sec-
tion.

Most glass installations are designed so that the
lateral deflection of the plate edge is limited and
usually there is little or no rotational restraint at the
plate edge. Therefore, a simply supported edge condition
is assumed to be reasonably tvpical of window glass plates.
Development of membrane action in a simply supported plate
is highly sensitive to the degree of in-plane edge restraint
provided. Therefore, plate solutions employing different
degrees of idealized in-plane edge restraint are reviewed.
Central deflections determined for simply supported plates
with different degrees of in-plane restraint are compared
' to central deflections measured in a well-documented set
of glass plate tests (Bowles and Sugarman 1962). It is
shown that the case of a simply supported plate with edges
free to slip in-plane closely approximates glass plate re-

sponse.
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1. Review of Nonlinear
Plate Equations
The von Karman nonlinear plate equations as presented

by Levy (1942) using rectangular coordinates are

N ol 4 2, 2 a2 2
5 f +2_3 F & 3'F _ 5 (8 W ), 3°w 3 WW (4.1)

3x Ix*oy? 5y I3RSy

8x” 3x*5y? 3y* 3v2 5x?
L 3°F 821:1 o 3°F 3w ) (4.2)
5x? a3yl 3%3y 5X3y

where w 1s the lateral plate deflection, F is an Airv stress
funccion, D is the flexural rigidity of the plate, h is the
plate thickness, P, is the lateral load acting on the plate
and E is the modulus of elasticity of the plate. An appro-
priate rectangular coordinate axis is presented in Figure

7. The flexural rigidicy, D, of the plate is given by

3
D= —EB° (4.3)

12 (1-u?)

where ¢ 1s the Poisson's ratio of the plate.

The Airy stress function, F, is related to the mem-

brane stresses, oX', g ', ny" by the following relation-

ships
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1 2
g = 2E (4.4)
: 3°F
o] = (4.5)
y BXZ
' 3 2F
Ty = = = (4.6)
: IX3Y

The bending moments per unit length in the plate are given

oy
2 2
n o= =D (3 Wy 3 w) 4.7
% 3x*® 3y*/
2 2
m = -D (8 W oy y d w) (4.8)
Y 3y*? ax?
/3% \
m, =D (l-p){—] (4.9
Xy Kaxay/

where m is the moment per unit length in the x direction,
m_ is the moment per unit length in the y direction, and
mXy is the twist per unit length in the x-y plane. The ex-
treme fiber bending and shearing stresses acting in the

plate are given by

3] 2 2,..\
9. - .8 (8 Yo+ ua Ly (4.10)
- h? \3x? 3y 2/
. 2 2
U _6D (B W UB W (4.11)
y h? ayz Y32
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The total extreme fiber stresses in the plate are found

by adding the membrane and bending stresses as follows

o, =9, + = (4.13)
g = "+ g 4.14

y 7y y (4.14)
T%y = Txy - Txy (4.15)

In addition to lateral displacements a rectangular
plate can experience in-plane edge displacements depending
upon the plate beundary conditions. The in-plane edge dis-
placements perpendicular tc the plate edges in the x and y
directions are given by u and v, respectively. To calculate
an in-plane edge displacement, u, in the x direction at a
point on the edge of the plate, components of in-plane edge
displacements due to both middle plane strain and plate
curvature across the width of the plate must be considered.
The in-plane edge displacement in the x directicn at a

given point on the edge of a plate is given as follows




where a is the plate dimension
the in-plane edge displacement

point on the edge of the plate

b
_ ‘( 1 /3%F
V—- EK "'Ll
. ax?
where b is the plate dimension
2. Nonlinear Plate Solutions

for Simply Supported Rectangu-
lar Plates

Nonlinear plate solutions
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in the x direction. Likewise,
in the y direction at a given
is given by

in the y direction.

with simply supported edges

and different degrees of in-plane edge restraints are re-

viewed in this section.

Sclutions employing the following

three different types of idealized boundary conditions are

are restrained

are free to slip

remain straight,

reviewed:
(1) simply supported edges which
from in-plane displacement,
(2) simply supported edges which
in-plane, but constrained to
and
(3) simply supported edges which

in-plane.

are free to slip

The first and third sets of idealized boundary conditions

offer the most and least in-plane edge restraint, respec-

tively.

Therefore, the in-plane restraint of window glass

boundaries should be between these two extremes.
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Timoshenko (1959) presented an approximate solution to
Equations (4.1) and (4.2), for the case of a simplv suppor-
ted plate with in-plane edge displacement prevented. Timo-
shenko assumed that the bending and membrane actions of
the plate could be decoupled. This was achieved by com-
bining independent solutions for plates experiencing only
membrane action and for plates experiencing only bendins.
Development of the Timoshenko approximate solution for a
square plate is outlined below.

The two differential equations representing only mem-
brane action in a plate are found by setting the flexural
rigidity term to zero in Equations (4.1) and (4.2), vielding

[ ~ L 4
3 F L 93 F - s F
ooy

3% 5xay? 3y "

+
3y? ax?  9x* 3yl 3%3y 3x3y

5°F 3%w 3°F 3°%w 3 F 3
h -2

Simultaneous solution of Equations (4.18) and (4.19) re-

sults in the following expression for the central deflec-
tion, W, of a square membrane with a Poisson's ratio of

0.25 and with sides of length 2a

3/ a_a

_ ‘m
W, = 0.802 a T (4.20)

where 4 is the uniform load to which the membrane is ex-

posed.
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The well-known differential equation for plate
bending is found by setting the Airy stress function to

zero in Equation (4.2) yielding

4 A 4 -~ L
D (3 Wl M 408 W) =P, (4.21)
ax” 3x%5y? 3y

Solution of Equation (4.21) results in the following ex-
pression for the central deflection, W, of a square plate

with sides of length 2a and with a Poisson's ratio of 0.25
W, = 0.730 —— (4.22)
where qy is the uniform load to which the plate is sub-

jected,

Equations (4.20) and (4,22) can be rewritten as

wO3Eh
Q= 2 (4.23)
0.516a"
wOE‘n3
qy = —m (4,24)
> 5.730a"

Using the principle of superposition the total load, gq,
required to induce a maximum central deflection of Wy in
a plate capable of both membrane and bending action is

approximated as
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q = =2 + 2 (4.25)
0.730a* 0.516a"

Equation (4.25) is an approximate load deflection relation-
ship for the case of a simply supported square plate with
in-plane movement of the edges prevented.

Levy (1942) presented two exact solutions for simply
supported rectangular plates exposed to uniform lateral
loads. In the first sclution, in-plane edge displacements
were prevented by applying an appropriate in-plane force
normal to the plate boundary. These boundary conditicns
are equivalent to those assumed by Timoshenko (1959) in
the previously discussed approximate solution.

In the second Levy (1942) solution, the in-plane
force normal to the plate boundary was set to zero allow-
ing some in-plane displacement of the plate edges., However,
the edges of the plate in the second solution were con-
strained to remain straight. In-plane edge displacements
of a rectangular plate subject to the second set of con-
straints are shown in Figure 8. This pattern of in-plane
edge displacements can occur only if the plate edges are
rigidly stiffened (Timoshenko 1959). The first set of
Levy boundary conditions represents the most rigid condi-
tion for a simply supported plate while the second set of
Levy boundary conditions represents a less rigid situation.

To achieve a situation where the edges of the plate

are totally free to slip in-plane, the in-plane forces both
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normal and tangent to the plate boundary must be zero.
Kaiser (1936) presented a finite difference solution to
the von Karman equations for this situation. Kaiser as-
sumed that both the normal and shear membrane stresses
along the plate boundary were zero assuring that no in-
plane boundary reactions could be transmitted to the
plate. 1In this situaﬁion in-plane edge displacements
along the plate boundary are not constant as they were
in the second Levy solution (Kaiser 1936, Timoshenko
1959, Moore 1979). 1In-plane deflections along a plate
edge vary from a minimum at the plate corners to a maxi-
mum at the midpoint between two plate corners as shown
in Figure 8. This combination of boundary conditions
represents the most flexible condition for a simply sup-
ported plate.
3. Compariscn of Nonlinear
Plate Solutions to Actual
Glass Plate Behavior

Comparisons of calculated and actual glass plate
lateral deflection data are made in this section. These
comparisons are made so that the best set of idealized
boundary conditions to model glass plates can be selec-
ted. A particularly well-documented set of glass plate
data presented by Bowles and Sugarman (1962) is used to
represent the behavior of glass plates.

Bowles and Sugarman (1962) presented the following
empirical relationship between load and central deflec-

tion for square glass plates
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> (4.26)

:)"1 >
oy Fe]

)= 1.37 ( )+ 0.17 (

where P is the uniform load, 1 is the length of a side, ¢

ol

e |
16E

is the central plate deflection, h is the plate thickness,
and E is the modulus of elasticity of the plate. EIquation
(4.26) is of the same form as the approximate relationship,
Equation (4.25), presented by Timoshenko (1959). The first
term on the right side of Equation (4.26) represents the
bending action of a plate and follows directly from Equa-
tion (4.25). The second term on the right side of Equa-
tion (&4.26) represents the membrane action of the plare.
The constant associated with the second term was selected
so that Equation (4.26) would closly represent the mea-
sured results of several hundred glass plate tests.

Figure 9 presents a comparison of the theoretical load-
deflection curves for simply supported plates with varying
degrees of in-plane restraint with the empirical load-
deflection relationship presented by Bowles and Sugarman
(1962). It is clear from an examination of Figure 9 that
the degree of in-plane restraint provided at the boundary
of a2 simply supported plate has a highly significant ef-
fect upon the plate rigidity. Comparison of the load-
deflection curves presented in Figure 9 show that the
Kaiser (1936) load deflection curve is very similar to
the Bowles and Sugarman empirical load-deflection curve.

Further, experimental measurements presented by Anians
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(1979) show that actual in-plane displacement of the edges

of a glass plate are similar to those predicted by the
Kaiser (1936) solution (Ref. Fig. 8). These facts combine
to suggest that a glass plate is best modeled by assuming
that the plate edges are simply supported and free to slip
in-plane.

B. Development of Nonlinear
Plate Solution

Results of nonlinear plate solutions which employed
the boundary conditions selected to model glass plates were
reviewed (RKaiser 1936, Tsai and Stewart 1976, Moore 1979,
Al-Tayyib 1980). However, insufficient theoretical results
areavailable for use with the failure prediction model.
Therefore, a nonlinear piate analysis is developed.

Nonlinear plate solutions can be developed using sev-
eral available methods (Szilard 1974). The finite element
method is currently one of the most popular analysis tech-
niques. The finite element method relies heavily on matrix
manipulation and is usually formulated in general terms so
that a variety of different problems can be solved. How-
ever, solutions of geometrically nonlinear problems using
matrix formulations characteristically require large
amounts of computation time. An alternative solution tech-
nique presented by Szilard was chosen for use in the non-
linear plate solution. The Szilard solution technique

employs an iterative procedure to achieve a simultaneous
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solution to the von Karmen nonlinear plate equations. The

nonlinear plate analysis thus developed requires signifi-
cantly less computation time than a finite element analy-
sis.

Formulation of the nonlinear plate solution is pre-
sented in this section. In addition, calculated stresses
and deflections obtained from the nonlinear plate solution
are compared to independent theoretical results to estab-
lish wvalidity of the solution.

1. Formulation of Non-
linear Plate Solution

Equations (4.1) and (4.2) are the governing differen-
tial equations for thin plates experiencing large lateral
deflections. The nonlinear plate solution presented herein
employs an iterative technique whereby Equations (4.1) and
(4.2) are solved by alternately assuming the lateral deflec-
tion to be constant in Equation (4.1) and the membrane
stress function to be constant in Equation (4.2). Individ-
ual solutions of the two nonlinear plate equations are ac-
complished using a Galerkin method and numerical integra-
tion. This solution technique is outlined by Szilard
(1974) . |

Application of the Galerkin method to Equations (4.1)

and (4.2) results in the following equations (Szilard 1974)
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infinite series are employed to represent the lateral plat
deflection, w, the membrane stress function, F, and the
lateral loading, P Selections of the infinite series to
represent the lateral deflections and the membrane stress
function are made such that all the Dboundary conditions
are satisfied. Consistent with the conclusion of section
IV.A, the following three boundary conditions are assumed
in the nonlinear plate solution:
(L) the lateral deflections of the plate along the
boundary are zero,
(2) the bending moments normal to the plate edge
are zero, and
(3) the in-plane plate reacrions at the boundary
are zero.
The first two boundary conditions presented above can

be stated as

55
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w =20 m =0 for x 0 and x

il
aV]
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w =20 m_= 0 for vy 0 and vy = b (4.29)

Taking the coordinate axes as shown in Figure 7, the above
boundary conditions are satisfied if the following expres-

sion for lateral deflection is used

. mnX . nTv
w__ Sin —= Sin —<

1,3... "mn (4.30)

where Won is a coefficient chosen to satisfy the nconlinear
plate equations, a is the plate dimension in the x direc-
tion, and b is the plate dimension in the y direction, K
and L are the maximum indices for the lateral deflection
coefficients.

For the plate boundary to have zero in-plane reactions

the poundary of the plate must be free of both normal and

shear membrane stresses or

0 and %
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These boundary conditions are satisfied if the membrane

stress function is represented by

1
Fy) = =24 o

[ o I

mrx /[ ary )
24 ... an(l‘COS =) (1-cos 254
(4.32)
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where an is a coefficient chosen to satisfy the nonlinear

plate equations and I and J are the maximum indices for the
membrane stress function coefficients. The functions in the
expansion of Equation (4.32) are not orthogonal; hence, care
must be taken to include all cross product terms in formu-
lation of the solution that would otherwise vanish.

The following expression is used to represent the uni-

form lateral load

K
PZ<X,Y) = m=1,3

1

nTv

Sin —B“ (4.33)

[ I

where P is the magnitude of the uniform lateral load.

To formulate the nonlinear plate solution, the expres-
sions for the lateral deflectioms, the lateral loads, and
the membrane stress function must be substituted into Equa-
tion (4.27) and (4.28). This substitution results in two

sets of nonlinear simultaneous equations both in terms of

unknown lateral deflection coefficients, w..'s, and un-

1]
known membrane stress function ceocefficients, Fij's. Me -
chanics of this substitution are presented in Appendix B,
The number of simultaneous equations generated from Equa-
tions (4:27) or (4.28) is the same as the number of series
terms used in the lateral deflection expression or
the membrane stress function expression, respectively.

For simplicity, an equal number of series terms were

used for each equation.



58
Szilard (1974) presented the following iterative pro-

cedure to estimate the unknown ccefficients:

(1) A set of lateral deflecrtion coefficients are
assumed.

(2) Using the assumed lateral deflection coeffi-
cients a corresponding set of membrane stress
function ccefficients are determined using the
nonlinear equations generated from expression
(4,28).

(3) Using the set of membrane stress function co-
efficients calculated in step (2), a new
set of lateral deflection coefficients are
determined using the nonlinear equations gen-
erated from expression (4.27).

(&) Steps (2) and (3) are repeated until satisfac-
tory convergence is achieved.

Convergence of the coefficients using this methed can be
slow or impossible depending upon the quality c¢f the ini-
tial assumptions and upon the degree of nonlinearity ex-
perienced by the plate.

To improve convergence of the iteration described
above, an under-relaxation of the lateral deflection co-
efficients was incorporated into the Szilard iteration
scheme., In addition, checks were installed in the itera-
tion procedure to detect divergence of the lateral deflec-
tion coefficients. If divergence i1s detected the origi-

nal lateral deflection coefficients are suitably modified
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and the iteration is reinitiated. & logic flowchart for

the iteration procedure thus developed is presented in
Figure 10. This modified iteration procedure converges
much quicker than the iteration procedure outlined by
Szilard (1974).

A computer program was developed to perform the non-
linear plate analysis as described in this section. The
program is written in the standard ANSI Fortran computer
language, Input to the computer program consists of the
number of expansion terms to be employed in the wvarious
expressions, the elastic material properties, the plate
geometry, the magnitude of the uniform lateral load, the
convergence criteria, the number of numerical integration
divisions, and the initial values c¢f the lateral deflec-
tion coefficients. A copy of the computer program along

with input/output instructions is provided in Appendix C.

2. Validity of Nonlinear
Plate Solution

Results of four different nonlinear plate analyses
which employed the proper boundary conditions were reviewed
in the course of this research (Kaiser 1936, Tsai and Ste-
wart 1976, Moore 1979, Al-Tayyib 1980). Results presented
by these researchers include both stresses and lateral de-
flections. Each of these analyses including the one pre-

sented herein are based upon numerical techniques and are
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subject teo varying amounts of error depending upon the

solution technique. Comparisons of central stresses and
central deflections generated in the independent stress
analyses reviewed reveals a reasonably good agreement
(Moore 1979, Al-Tayyib 1980). Results presented by
Kaiser (1936) were chosen to compare to results of the
nonlinear analyses presented herein because Kaiser pre-
sented individual variations of bending and membrane
stresses at the center of the plate instead of the vari-
atien of the combined stresses. The Kaiser (1936) results
were presented for a square plate with a Poisson's ratio
of 0.303.

Results for comparison to the Kaiser (1936) results
were generated with the nonlinear plate analysis using
four series terms to represent the lateral loading,
the lateral deflection, and the membrane stress function.
The numerical integrations were performed with the plate
divided into 64 discrete zones. The convergence criteria
for the lateral displacement coefficients was taken to be
0.01 in. More stringent criteria may be required to ade-
guately represent the variations of stresses and deflec-
tions at different points on the plate or for different
plate problems. It is strongly recommended that conver-
gence studies be conducted for each type of problem consi-
dered. Reasonably good comparisons with central plate data

presented by Kaiser are achieved with the above criteria.
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Figure 11 presents the variations of central deflec-

tion with load as calculated by Kaiser (1936) using finite
difference techniques and as calculated using the nonlinear
plate analysis presented herein. It can be seen that the
comparison is good. Good comparisons of lateral deflection
results are to be expected because the displacement variable
appears directly in the differential equations.

Figure 12 presents the variation of central stress
with load as presented by Kaiser (1936) and as calculated
using the nonlinear plate solution. Four load-stress cur-
ves are presented: the extreme fiber bending stress, the
membrane stress, the total extreme fiber stress on
the concave surface of the plate, and the stress present
on the convex surface of the plate. The center of a sym-
metrically loaded square plate experiences no shear stres-
ses, so that the stresses presented in Figure 12 are inde-
pendent of orientation. Comparisons of the load-stress
curves are good, but not as good as the central deflection
comparisons. This is because stress is related through
second order derivatives to the lateral displacement and
membrane stress functions. Therefore, it is to be expected
that calculated stresses should be less accurate than cal-
culated deflections. This is true for both the Kaiser
solution and the nonlinear plate solution presented herein.

Based upon favorable comparisons of calculated stres-

ses and deflections with those presented by Kaiser (1936)
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it is concluded that the nonlinear plate analysis models

the case of a simply supported recrtangular plate with no
in-plane restraint at the boundary. If the program is
used to calculate stresses for other plate problems,
care should be taken to be sure that enough expansion
terms and integration divisions are taken to adequately
medel the situation in question.

C. Comparison of Results

of Nonlinear Plate oolution
to Glass Test Results

In the previous section a nonlinear plate analysis
was presented to model the response cf a simply supported
plate with in-plane movement of the edges allowed. 1In
this section comparisons are méde between computed stres-
ses and deflections and those measured experimentally on
glass plates of different aspect ratios. Several re-
searchers have reported experimental results for glass
plates mounted in differenc laboratory test rigs (Orr 1957,
Bowles and Sugarman 1962, Ishizaki 1972, Hershev andHiggins
1973, Tsai and Stewart 1976). The edges of glass plates
mounted in each of the different test rigs were supported
on all sides with neoprene bearing surfaces supported by
relatively rigid frames. With such a support system the’
glass plate edges experienced limited lateral displace-
ments and relatively small amounts of rotational restraints.
These support conditions were chosen by the various re-
searchers to represent, in a practical sense, actual window

installations.
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found in the literature were presented by Orr (1957).
The significance of the tests performed by Orr with
respect to current glass strength charts is discussed
in Chapter II. Orr tested twenty large glass plates to
destruction with thicknesses ranging from 0.114 to 0.383
in., with areas ranging from 47 to 80 sq ft and with as-
pect ratios ranging from 1:1 to 1:1.67. Pertinent re-
sults presented by Orr consist of load deflection curves
for the different glass plates tested.

Bowles and Sugarman (1962) presented a very extensive
set of experimental results concerning tests to failure
of 41 in. x 41 in. glass plates. The square glass plates
ranged in thickness from 0.122 in. to 0.373 in. and were
exposed to monotonically increasing uniform pressures re-
sulting in failure in around 30 seconds. Complete load-
deflection records were kept for each plate tested. Based
upon an approximate analysis presented by Timoshenko (1959),
Bowles and Sugarman developed Equation (4.26) which relates
the central deflection of a square plate to the applied
uniform lateral load. 1In addition, Bowles and Sugarman
presented central plate stresses determined through use
of strain gages for both the concave and convex surfaces
of the different glass plates.

Ishizaki (1972) extended the work of Bowles and Sugar-

man (1962) to develop an empirical load-deflection rela-
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tionship for rectangular glass plates. The empirical equa-

tion developed by Ishizaki is

B-2(5) ¢ c3<1i:2> () R

where p is the uniform lateral load, E is the modulus of
elasticity, A 1is the ratio of the plate thickness to the
length of the shorter side of the plate, a is half the
length of the shorter side, u is the Poisson's ratio of
the glass plate, and C1 and C3 are constants which depend
upon the plate aspect ratio. Values of the constants C1
and C3 suggested by Ishizaki (1972) for rectangular glass
plates of different aspeét ratios are presented in Figure
13. These values were determined based on results of
tests conducted on large glass plates ranging in thickness
from 4 to 5 mwm, ranging in aspect ratio from 1:1 to 1:2.5,
and ranging in area from 1 m? to 4 m’.

Hershey and Higgins (1973) developed a statistical
model to estimate the probability of breakage of glass
plates exposed to sonic boom overpressures. In the final
report submitted to the Federal Aviation Administration,
data obtained from the Libbey-Owens-Ford Company was pre-
sented to quantify glass strength. In this glass test
series 2513 large glass plates were tested to failure in
119 different sizes. The mean bursting pressure and as-
sociated central deflection for each of the 119 test series

were presented.
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Tsal and Stewart (1976) presented analytical and ex-
perimental deflection and stress results for large glass
plates. Experimental results were presented for glass
plates with aspect ratios of 1:1, 1:2, and l:4. Stresses
reported by Tsai and Stewart were measured with bonded
resistance strain gages on the convex plate surface.

Analytical results to compare with the theoretical
glass plate data were computed with the nonlinear plate
analysis assuming that the modulus of elasticity for
glass is 10.0 x 10° psi and the Poisson's ratio for glass
is 0.210, Four series terms were employed for the
membrane stress function, the lateral deflection function,
and the lateral loading function. A total of 64 numeri-
cal integration increments were used. Convergence of the
solution was considered to be adequate when each of the
lateral deflection coefficients changed less than 0.01 in.
in an iterative cycle.

Figures 14-17 present comparison of the variations
of central deflecticns with load from the different ex-
perimental sources with computed theoretical results for
plate aspect ratios ranging from 1:1 to 1:1.67. The em-
pirical load deflection equations are presented as con-
tinuous curves while direct observations are presented
as discrete points. The eﬁperimental load-deflection
results taken from the literature appear to compare rea-
sonably well with results calculated using the nonlinear

plate analysis.
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74
Figures 18-20 present comparisons of the variation of

the maximum principal central tensile stresses with load
for the convex plate surface with analogous calculated
values for glass plates of different aspect ratios. The
experimental stress data presented were all determined
using bended resistance strain gages. The calculated and
measured data compare very well.

Based upon comparisons of borh stress and deflection
data taken during full-scale glass plate tests with com-
puted data, it is concluded that the nonlinear plate
analysis presented herein adequately represents the re-
sponse of a large rectangular glass plate supported on
four sides. Experimental and theoretical stresses agree
exceptionally well. This is particularly pleasing since
the failure prediction model presented in the next chapter

incorporates the calculated stresses.
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CHAPTER V

GLASS PLATE FAILURE PREDICTION MODEL

A failure prediction model for window glass is pre-
sented in this chapter. The failure prediction model
relates the probability of failure of a glass plate under
lateral load to the characteristics of glass plate surface
flaws. The failure prediction model considers variations
of glass strength with load duration, relative humidityv,
and temperature. The failure prediction model also re-
cognizes the complex nature of the stresses developed in
thin rectangular plates subjected to lateral loads. Vari-
ations of glass strength with different factors are ad-
dressed in Chapter III. An appropriate plate analysis
is presented in Chapter IV. Remaining elements of the
failure prediction model are discussed in this chapter.

A statistical theory advanced by Weibull(1939) is
incorporated in the failure prediction model. Weibull
presented a complete statistical theory for the strength
of materials, such as glass, which exhibit failure char-
acteristics that are difficult to explain using a failure
theory which is based upon stress or strain at a point.
The Weibull theory is reviewed in detail, and is adapted
to model the strength of glass plates.

The surface flaw characteristics of glass plates
utilized in the failure prediction model are fundamental,

strength-related properties of glass plates. Two
78



parameters are used to model the surface flaw characterZ
istics. Numerical values of the surface flaw parameters
cannot be measured directly, but have to be estimated from
the results of carefully controlled experiments. Method-
ology to estimate the numerical values of the two surface
flaw parameters is presented.

To demonstrate use of the failure prediction model,
values of the surface flaw parameters are independently
estimated for two different geometries of glass plates.
The two plate geometries were of the same thickness and
surface condition, but were of significantly different
aspect ratio and surface area. To demonstrate the
validity of the failure prediction model, it is then
shown that the strength of one geometry of glass plate
can be predicted using the surface flaw parameters esti-
mated from strength data generated from the other geome-
try of glass plate, and vice versa. This exercise demon-
strates that the calculated surface flaw parameters are
independent of glass plate geometry and plate response.
A Formulation of the

Glass Plate Failure
Prediction Model

A model which predicts the strength of glass plates
cannot be based on a maximum stress-oriented failure
theory because glass plate failure rarely initiates at
the point of maximum stress. Rather, glass plate failure

initiates at a point where flaw severity and surface



tensile stress combine to cause a critical local stress ggn-
centration on the plate surface. Because of the inherent
variability associated with the surface flaw characteris-
tics, the strength of glass must be treated in a statis-
tical sense.

The probability that a glass plate fails as the re-
sult of a particular loading is the probability that
there is at least one surface flaw capable of initiating
failure, given the distribution of surface tensile
stresses, the duration of loading, the temperature, and
the relative humidity. The failure prediction model ad-
vanced in this section can be used to evaluate this proba-
bility. The failure prediction model employs the Brown
(1974) stress corrosion theory (presented in Chapter III)
to account for strength variations with load duration and
ambient conditions, the nonlinear plate analysis (pre-
sented in Chapter IV) to determine the plate surface ten-
sile stresses, and a statistical theory advanced by Weibull
(1939) (discussed below) to model the characteristics of

the surface flaws.

1. Equivalent Stresses

It was shown in Chapter III that the strength of
glass varies significantly with load duration, tempera-
ture, and humidity. To account for these strength varia-
tions, actual stresses occurring in a glass plate are

converted to equivalent stresses (denoted by 3) at
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reference conditions using Equation (3.7). 1In this manner

variations of glass strength are treated prior to the sta-
tistical analysis. Selection of the reference conditions

is arbitrary.

2. Statistical Theory

If similar glass plates are exposed to linearly in-
creasing lateral loads to failure, there will be a sig-
nificant variation in loads at which failure occurs. A
typical coefficient of variation for failure loads is
about 22 percent (PPC 1979). A representative cumulative
probability function for such a test is shown in Figure
21. According to Weibull (1939), the cumulative proba-

bility of failure function, Pf, can be represented as

Pf = 1 - exp[-B] (5.1

where B is a risk function which relates the probability
of failure to the stresses present in the glass plate,
which are in turn a function of the lateral load on the
plate. An appropriate risk function must be selected
based upon the failure characteristics of glass plates.
Because the strength of glass plates is controlled
by the distribution of flaws across the surface of the
glass, the probabilicy of failure of a glass plate logi-
cally should increase with the amount of surface area
exposed to tensile stress. Further, it is clear that

probability of glass plate failure should increase with
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the magnitudes ¢f the induced tensile stresses. For thg3
special case of a uniformly stressed (the same state of
biaxial stress across the plate surface) glass plate sur-
face with equal equivalent principal stresses, the fol-

lowing risk function suggested by Weibull(1939) is used
B =% (c__ YY"y (5.2)

where m and k are the two surface flaw parameters for the
reference conditions, AO is the total surface area of the
glass plate exposed to the uniform tensile stress, and

8 qax +8 the magnitude of the maximum equivalent principal
tensile (MEPT) stress. As either the magnitude of the

MEPT stress increases or the area of the plate increases,
the risk function given in Equation (5.2) increases, re-
sulting in an increase in the failure probability predicted
with Equation (5.1).

The risk of failure experienced by a glass plate is
related to the magnitude of the equivalent tensile stresses
which act normal to the axes of the surface flaws. When a
glass plate is exposed to a uniform state of biaxial stress
with equal equivalent principal stresses, a flaw of any
orientation produces the same risk of failure. This is
true because the equivalent tensile stress which acts nor-

mal to the axis of a flaw is the same for any flaw orien-

tation. If the state of stress is such that the maximum
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and minimum equivalent principal stresses are not equal,
the equivalent stress which acts normal to the axis of
a flaw varies with flaw orientation. Hence, the risk
function must take flaw orientation into account. The
equivalent stress, 56’ which acts on a plane rotated an
angle ¢ from the plane of MEPT stress is given by the
following biaxial stress transformation equation (Seely

and Smith 1952)
Ee = g cos?3 + 5 . sin?s (5.3)

where and §_. are the maximum and minimum equiva-
max min

lent principal stresses. To incorporate the variation

of normal stress with flaw orientation, Weibull (1939)

suggested a modified risk function similar to

2243 . sin®| ds (5.4)

where the upper limit on the integration, o, is =/2 if both
equivalent principal stresses are tensile stresses. If
the minimum equivalent principal stress is compressive,

a is calculated as follows

1

[ o 7] (5.5)

o c
max/

¢ = tan

Calculation of o using Equation (5.5) prevents compressive
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equivalent stresses from influencing the risk function.

When the maximum and minimum eguivalent principal stres-
ses are equal, Equation (5.4) reduces to Equation (5.2).

Equation (5.4) can be rewritten as follows

(o '|l]'m
B=%kaA {5 (% | o, ™
o "max |7 (cos?s + n sin?8) "ds (5.6)
L O P J

where n is the ratio of the minimum to maximum equivalent

principal stress. Equation (5.6) can then be rewritten as

B=LkaA (cc__ Hm (5.7)

where ¢ 1s a correction factor for the biaxial state of

stress given by

- . _ 1

Aro

_ (cos?2 + n sin?8)Mds ® (5.8)
L 4
The value of ¢ is 1.0 for the case of equal equivalent
principal stresses, and it decreases as n decreases.
Values of the correction facteor, ¢, for wvalues of n
ranging from 1.0 to -1.0, are presented in Table I for

values of the surface flaw parameter, m, ranging from &

to 7. These values for m are in the appropriate range



Ratio of
Minimm to

Maxdmam
Equivalent
Principal
Stress, n

1.

o O O O O

-1.

c0

.80
.60
.40
.20
.00
.20
.40
.60
.80

00

BIAXTAL STRESS CORRECTION FACTOR,

=4

o O O O O o o O o o -

.00!
.91
.84
.78
.75
72
71
.69
.63
.67
.66

TABLE I.

Values of Biaxial Stress
Correction Factor, ¢
for Different Values of

the Surface Flaw

Parameter,m

_TED =6
1.00 1.00
0.0L 0.91
0.85 0.86
0.80 0.82
0.78 0.80
0.76 0.78
0.74 0.77
0.73 0.76
0.72 0.75
0.71 0.74
0.70 0.73

c

=/

1.

00

0.92

o o O o o O O O O

.86
.83
.81
.80
.79
.78
77
77
.76

'Values of the biaxial stress correction factor, c,

calculated using Equation (5.8).
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to model glass plate strength data presented later in 87
this chapter.

For the case of a rectangular plate subjected to a
lateral lcad, the magnitudes of the equivalent princi-
pal stresses and their relationships to each other vary
across the surface of the plate. Therefore, both the
magnitude of the MEPT stress and the value of the cor-
rection factor vary with location on the plate surface.
To account for these variations, Equation (5.7) 1is re-

written for the general case as
i c(x,y) omax(x,y)% dydx (5.9)

where c(x,y) and o x(x,y) are values of the correction

a
factor and the MEPT stress as a function of location on
the plate, and a and b are the rectangular dimensiocns
of the plate.
3. Numerical Integra-
tion of Risk Function

Evaluation of the generalized risk functions (Equa-
tion 5.9) for a particular plate problem can be cumber-
some. To simplify evaluation of the generalized risk

function, a numerical integraticn procedure is intro-

duced. Eguation (5.9) is rewritten as
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{a b

R m
[G(x,y)] dydx (5.10)
5 _

where 5(x,y) is the maximum corrected equivalent princi-

pal tensile (MCEPT) stress given by

S(x,y) = c(x,y) &(x,y) (5.11)

Equation (5.10) can be expressed as follows with plate

surface area a as the wvariable

Ao

B =% [a(aj]m da (5.12)
Q

where &(a) is the threshold MCEPT stress to which the
plate surface area, a, 13 exposed, and Ao is the total
plate surface area exposed to tensile stress.

Numerical integration of Equation (5.12) is accom-

plished using the following expressiocn

B =k (5000)™ T A (Si/SOOO)m (5.13)

1

[ S
'—_l

where 81 are the midpoints of a set of n nonoverlapping,
exhaustive MCEPT stress intervals ranging from zero to
the maximum value of MCEPT stress. A is the amount of
plate surface area exposed to MCEPT stresses in the range

th

of the i MCEPT stress interval. These areas are deter-



mined using the nonlinear plate analysis presented in 89
Chapter IV. Evaluation of Equation (5.13) is accom-
plished in an equivalent area table (Ref. Table II).

The constant 5000 is included in Equation (5.13) to keep
the magnitudes of the entries in the equivalent area

table manageable.

The first column of the equivalent area table defines
the MCEPT stress intervals. Column two of the table con-
tains the midpoints of the MCEPT stress interwvals, Si.
The amount of plate area A exposed to MCEPT stresses in

th

the 1 interval is presented in the third column. The

fourth column contains wvalues of the interval equivalent

~

area, A;, given by the following expression

rO : m (5.14)
Ay = Ay (Si/5000)

The total equivalent area, S of a plate for a given m
parameter is found by summing the entries in the equiva-

lent area columm as £follows

A (5.15)

s =
1 &

m

(N

i
The value of the generalized risk function is then Ifound

as follows

B =k (5000)™ s (5.16)



TABLE IT.

EXAMPLE EQUIVALENT AREA TABLE

Midpoints of

Plate Surface

Equivalent Plate

MCEPT! MCEPT Areas Exposed Surface Areas Exceed
Stress Stress to Interval to Interval MCEPT
Intervals Intervals, G, MCEPT Stresses, Ai Stresses, Ai
(psi) (psi) (in)? (in)?
- m
0-1000 500 A; Ay = Ay (5388)
- m
1000-2000 1500 A A, = Az(%%%%ﬁ
- m
2000-2C00 2500 As Ay = Ay (%g—%)
3 = ~ on M
max “n A % = A G
n n -~
A = L A S_. = I A4
° i=1 T

;bjaximum Corrected Equivalent Principal Tensile, MCEPT, Stress.
g is a MCEPT stress which is larger than any MCEPT stress

max

occurring in the plate.



Substitution of Equation (5.186) into Equation (5.1) re- 91

sults in the following expressicn for the cumulative

probability of glass plate failure.

P. =1 - exp[-k 50007 S_] (5.17)

4, Summary of Failure
Prediction Model

The procedure to calculate the probability of failure
of a window glass plate subjected to a lateral loading is
as follows:

(1) the wvariation of surface stresses across the

plate is determined, using the nonlinear plate
analysis presented in Chapter IV,

(2) the actual surface stresses are converted to
MEPT stresses given the load duration, the
relative humidity, and the temperature using
Equation (3.7),

(3) the MEPT stresses are then converted to MCEPT
stresses using the correction factor given in
Equation (5.8),

(4) an equivalent area.table is then constructed
and the value of the total equivalent plate
area, Sm’ is calculated, and

(5) finally, the probability of glass plate failure

is evaluated using Equation (5.17),
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The failure prediction model thus formulated allows the

probability of failure of glass plates exposed to lateral
loads to be predicted as a function cof the surface flaw

parameters (m,k).

B. Determination of the
Glass Plate Surface Flaw
Parameters

The glass plate surface flaw parameters (m,k) required
in the failure prediction model are functions of the type
of glass and the glass plate surfzce condition. Values for
the surface flaw parameters cannot be measured directly.
Rather, wvalues for the surface flsw parameters must be es-
timated using data from glass plate failure tests.

The steps involved in estimating the surface flaw
parameters using a set of glass plate strength data
are:

(1) the glass plate failure load data are converted
to equivalent failure lcad data at reference
conditions using methodclogy explained in Chap-
ter IITI along with the nonlinear plate analysis
presented in Chapter IV,

(2) the mean and standard deviation of the equiva-
lent failure load data are calculated and the
data are grouped into frequency intervals,

{(3) the wvariation of the MCEPT stresses across the

plate are determined for the equivalent failure
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loads corresponding to the equivalent failure

load intervals defined in Step (2) and the total
equivalent plate areas, Sm’ are calculated for
a range of values of the surface flaw para-
meter, m, and

(4) the best set of the surface flaw parameters
to represent the equivalent failure load data

is selected.

1. Glass Strength Data

Two different geometries of glass plates with similar
surface conditions were tested to failure under time con-
trolled conditions. The glass plates were 7/32 in. thick
sheet glass that were removed from the 20-year-old Great
Plains Life Building (GPL) in Lubbock, Texas during its
renovation in 1975, Twenty rectangular glass plates 28.5x
60.5 in., and 20 square glass plates 28.5 x 28.5 in., were
tested to failure. Half of the glass plates were tested
with their exterior surfaces in tension and half of the
glass plates were tested with their interior surfaces in
tension. The glass plates were mounted in an aluminum
glazing system and exposed to monotonically increasing
uniform lateral loads chosen to cause failure in about 60
seconds or less. Failure data collected included a com-
plete load-deflection-time record, the location of each

fracture initiation point, and photographs of the glass



plate fracture pattern, The raw data along with a des- 74

cription of the test apparatus is presented in Appendix D.
2. Eaquivalent Strength
Conversion

The GPL failure load data, organized by glass plate
geometry, were converted to equivalent failure load date
using Equation (3.7) and the methodology presented in Chap-
ter ITI., A 60-seccond duration constant reférence load weas
chosen for the equivalent failure load conversion because

. I

of its rélationship to current design information (Ref.

Chapter I1), The temperature and relative humidity were as-
sumed to remain constant for the equivalent failure load

conversions so that Equation (3.8) reduces to the following

1

dt)/éO L (5.18)

5., = (jtf TON
O

o
(=1

where &, ~1s the equivalent 60 second duration failure
stress at the failure initiation point. Mechanics of
calculating the equivalent failure load are presented in
an example calculation below,

Figure 22(a) presents the variation of uniform lat-
eral load with time to failure for a square GPL glass plate,
The maximum load at failure was 217 psf after 49.5 sec of
loading. Using the load-time variation, the location of
the fracture origin point, and the nonlinear plate analy-
sis, the variation of stress at the fracture origin

point was found to be as shown in Figure 22(b). The
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maximum principal tensile stress varied from 0 to 5417
psi. Using the stress-time relationship presented in
Figure 22(b) and Equation (5.18), the MEPT stress at the
fracture crigin point was calculated to be 4564 psi.
Figure 22(c) presents the variation of maximum principal
tensile stress at the fracture origin point with load
as determined with the nonlinear plate analysis. Using
this load-stress relationship, the equivalent 60-second
constant failure load was found to be 174 psf as indica-
ted in Figure 22(c). A similar equivalent failure load
conversion was made for each GPL glass plate tested.
These equivalent failure load data are presented in
Table III.
3. Equivalent Strength
Statistics

Using the equivalent failure load data presented in
Table III, the means and standard deviations were calcu-
lated to be 79 and 19 psf for the rectangular GPL glass
plates and 168 and 37 psf for the square GPL glass plates.
Tables IV and V present frequency groupings for the GPL
equivalent failure load data. Included in these tables
are interval frequencies, relative interval frequencies,
and relative cumulative frequencies. Corresponding histo-
grams for the equivalent failure loads for both the square
and rectangular GPL glass plates are presented in Figure

23.
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TABLE ITI.

EQUIVALENT FAILURE LOADS FOR
GPL GLASS PLATES

Equivalent Failure Loads for Equivalent Failure Loads for
Rectangular GPL Glass Square GPL Glass

Plates' Plates
(psf) (psf)
62 168

76 189

53 132

92 174

105 197
120 173

62 177

88 268

72 153

82 148

50 112

84 138

59 157

86 196

75 156

95 , 219

76 112

76 157

62 202

104 132

x = 79.0 X = 168.0
s = 18.4 s = 37.5

-

*Equivalent failure loads calculated using Equation (5.18)
assuming a 60-second duration constant load.



TABLE 1IV.

GROUPED FREQUENCY TABLE FOR
SQUARE GPL GLASS PLATE EQUIVALENT FAILURE LOADS

Equivalent Relative Relative
Failure load Interval Interval Cumulative
Interval Frequency, £. Frequency, p, Intexval
(psi) . * Frequency, P,
100-130 2 0.10 0.10
130-160 8 0.40 0.50
160-190 5 0.25 0.75
190-220 4 0.20 0.95
220-250 0 0.00 0.95
250-280 1 0.05 1.00

20 1.00
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TABLE V.

GROUPED FREQUENCY TABLE FOR
RECTANGULAR GPL GLASS PLATE EQUIVALENT FAILURE LOADS

Relative
Equivalent Interval Relative Cumlative
Failure Load Frequency, £. Interval Interval
Interval Frequency, P; Frequency, Pi
(pst)
45-60 3 0.15 0.15
60-75 5 0.25 0.40
75-90 7 0.35 0.75
50-105 3 0.15 0.90
105-120 2 0.10 1.00

20 1.00
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4. Total Equivalent
Plate Areas

Figures 24 and 25 present the variations of the MEPT
stresses across a quarter of a square and rectangular GPL
glass plate for their respective mean equivalent failure
loads. Figures 26 and 27 present the variations of the
MCEPT stresses for the GPL glass plates that were calcu-
lated assuming an m surface flaw parameter of 6. Tables
VI and VII present the corresponding equivalent area
tables for both situations. The total equivalent areas,
S., thus calculated for the square and rectangular GPL
glass plates are 62.8 and 102.8 in®., respectively.

Similar calculations were performed for both geome-
tries of GPL glass plaées assuming integer values cf the
m surface flaw parameter ranging from 4 to 7 and for
each load interval defined in the equivalent failure load

frequency tables (Tables IV and V). The resulting total

equivalent areas are presented in Tables VIII and IX.

5. Determination of the
Best k Surface Flaw Para-
meter

The cumulative probability of failure function given
by Equation (5.17) is an exponential cumulative probabil-

ity function of the following form

i}

Pf 1 - exp[-ax] (5.19)
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TABLE VI.

TOTAL EQUIVALENT ARTA TABLE
FOR SQUARE GPL GLASS PLATES

Plate Surface Equivalent Plate
MCEPT Midpoints eof Areas Exposed Surface Areas Exposed
Stress MCEPT n to Interval MCEPT to Interval MCEPT
Intervals' Stress Interval, o, Stresses, A; Stresses, A;
(psi) (psi) (in)? (in)*
0-500 250 16.3 -
500-100C 750 32.5 -
1000-1500 1250 65.0 6.02
1500-2000 1750 48.7 0.09
2000-2500 2250 130.0 1.08
2500-3000 2750 144.9 5.39
3000-3500 3250 73.1 5.51
3500-4000 3750 121.8 21.68
4000-4500 4250 130.0 49.03
A, = 812.3 in? Se¢ = 82.80 in?

‘Calculated for an equivalent failure load of 168 psf
assuming an m surface flaw parameter of 6,
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TABLE VII.

TOTAL EQUIVALENT AREA TABLE
FOR RECTANGULAR GPL GLASS PLATES

Plate Suxface Equivalent Plate
MCEPT Midpoints of Areas Exposed Surface Areas Exposed
Stress MCEPT . to Interval MCEPT to Interval MCEPT
Tntervals® Stress Interval, o, Stresses, A, Stresses, A,
(psi) (psi) (in)? (im)*
0-500 250 69.0 -
500-1000 750 69.0 -
1000-1500 1250 224 .2 .05
1500-2000 1750 327.6 .60
2000-2500 2250 275.9 2.29
2506-3000 2750 206.9 5.73
3000-3500 3250 206.9 15.60
3500-4000 3750 258.6 46.03
4000-4500 4250 86.2 32.51

A = 1724.3 1% S = 102.81 in?

*Calculated for an equivalent failure load of 79 psf
assuming a surface flaw parameter of 6.
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TABLE VIIT.

TOTAL EQUIVALENT AREAS, S, FOR
SQUARE GPL GLASS PLATES

Equivalent Calculated Total Equivalent Areas, S
Failure (in®) m
Load
(psf) m =4 m=5 m=6 m=7

40 1.0 c.2 0.1 -

70 .7 3.5 1.4 0.6
100 241 12.6 6.4 3.4
130 62.0 40.2 26.4 17.7
160 116.2 91.7 70.8 55.2
190 203.5 174.2 151.9 134.4
220 325.5 308.3 296.5 290.7
250 472.8 504.1 531.2 570.0C
280 648.2 753.2 875.6 1005.9
310 876.6 1045 .4 1310.9 1644.9
340 1156.6 1480.5 1900.6 2528.2
370 1438.7 1999.7 2886.0 3984.7

'assumed value of m surface flaw parameter.
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TABLE IX.

TOTAL EQUIVALENT AREAS, S5, FOR
RECTANGULAR GPL GLASS PLATES

Equivalent Calculated Total Equivalent Areas, S
Faiturs (i) :
(pst) mi=4 m=5 m=6 m=7

15 0.4 0.1 - -
30 5.6 2.1 0.7 0.2
45 22.7 10.3 5.6 3.3
60 70.4 43.7 27.2 17.0
75 155.7 106.5 78.1 57.4
90 273.5 221.3 187.9 180.0
105 443.0 422.0 420.2 419.1
120 659.8 720.9 763.56 879.6
135 792.5 1118.3 1324.8 1625.7
150 1374.8 1680.6 2132.2 2806.6
165 1754.3 2392.4 3266.8 4449 .7
180 2277.5 3080.5 4559.6 £897.5

'Assumed value of m surface flaw parameter.
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where o i1s a distribution parameter and x is the wvariate.

The value of the o parameter is given by the follcowing

equation

o = 1/x (5.20)

where X is the mean value 0f the x variate (Pfeiffer and
Schum 1973).

In Equation (5.17), the total equivalent area, Sm’
is the variate. Therefore, applying Equation (5.20),
the best k surface flaw parameter to represent a given
failure strength distribution for a particular m surface

flaw parameter is calculated as follows

k = 1/<sooom§m) (5.21)

where §m is the mean total equivalent area which is calcu-
lated using the total equivalent area data presented in
Tables VIII and IX along with the equivalent failure load
frequency data presented in Tables IV and V. Calculation
of the mean total equivalent area is performed in a mean
total equivalent area table.

The first column of a mean total equivalent area table
presents equivalent failure lcad intervals as defined in
Tables IV and V. The second column contains corresponding
total equivalent area intervals. The third column presents

the frequency, fi’ of glass plate failure in each equiva-



lent failure load interval. The fourth column of the 111

table contains the interval midpoint total equivalent
areas, S5_.. The values of the interval midpoint total
equivalent areas are found by averaging the total equiva-
lent areas for the boundaries of each equivalent failure
load interwval. The values presented in the fifth column
are calculated by multiplying the interval frequencies,

fi’ by the interval midpoint total equivalent areas, S i
Lild

The mean total equivalent area for a given value of the
m surface flaw parameter is then found by dividing the
summation of column 5 by the summation of column 3.
Tabular calculations of the mean total equivalent
areas for both geometries of the GPL equivalent failure
load data for an m surface flaw parameter of € are pre-
sented in Tables X and XI. The resulting mean total
equivalent areas are 128.9 in®?, and 167.0 in®?. for the
square and rectangular GPL glass plates, respectively.
Using Equation (5.21), the best corresponding values of
the k surface flaw parameter are 4.97 x 10”7 "and 3.83 x
107" for the square and rectangular GPL glass plates,
respectively., Similar calculations were performed for
both geometries of the GPL glass plates for each assumed
value of the m surface parameter. Tables XTI and XIII
present values of the k surface flaw parameter thus cal-
culated, along with pertinent theoretical equivalent fail-

ure load statistics.
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TABLE X. 112

MEAN TOTAL EQUIVALENT AREA TABLE
FOR SQUARE GPL GLASS PLATES

Equivalent Corresponding Midpeints of Total  Interval
Failure Load Total Equivalent Equivalent Frequency
Intervall Area Interval Area Interval, S, £ £8;
(psf) (in®) (in®) "
100-130 6.4- 26.4 16.4 2 32.8
130-160 26.4- 70.6 48.5 8 388.0
160-190 70.6-151.9 111.3 5 556.5
190-220 151.9-296.5 224.2 4 896.8
220-250 296.5-531.2 413.9 0 0
250-280 531.2-875.6 703.4 1 703.4
20 2577.50
Se = 2720 <189 5w

'Mean total equivalent area calculated assuming an m sur-
face flaw parameter of 6.
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MEAN TOTAL EQUIVALENT AREA TABLE
FOR RECTANGULAR GPL GLASS PLATES

Equivalent Corresponding Midpoints of Total Interval
Failure Load Total Equivalent Equivalent Frequency
Interval’ Area Interval Area Interval, S;,
i fi f.Sgi
(psf) (in®) (in%)
45- 60 5.6- 27.2 16.4 3 £9.2
60~ 75 27.2- 78.1 52.6 5 263.0
75- 90 78.1-187.9 133.0 7 931.0
50-105 187.9-420.2 304.1 3 912.3
105-120 420.2-763.6 591.9 2 1183.8
20 3339.3
5, =223 -167.0 1n?

'Mean total equivalent area calculated assuming that the m
surface flaw parameter is 6.



TABLE XIT.

COMPARISON OF CALCULATED AND THEORETICAL
SQUARE GPL GILLASS PLATE FAILURE LOAD STATISTICS

Coefficieﬁt1 of

Mean of! Standard Deviation' Variation of
Assumed Calculated Theoretical of Theoretical Theoretical
m Surface k Surface Equivalent Equivalent Equivalent
Flaw Parancter Flaw Parameter Failure lnad Data Failure load Data Failure Toad Data
(psi) (psf) (percent)
4 9.94x10” 18 158.8 55.5 35.0
5 2.25x107 2t 163.3 47 .4 29.0
6 4.97x10~% 167.8 41.7 249
7 1.06x10728 171.9 7.8 22 0

'Mean, standard deviation, and coefficient of variation of actual square GPL
data are 168.0 psf, 37.5 psf, and 22.3 percent, respectively.

[
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TABLE XTIII.

COMPARISON OF CALCULATED AND THEORETLCAL
RECTANGULAR CPI. GLASS PLATE FAILURE LOAD STATISTICS

Coefficient' of

Mean of! Standard Deviation'® Variation of
Assumed Calculated Theoretical of Theoretical Theoretical
m Surface k Surface Fquivalent Equivalent Equivalent
Flaw Parameter Flaw Parameter TFailure load Data Tailure load Data  Failure load Data
(psf) (psf) (perecent)
~-18
4 7.30x10 76.2 25.4 33.3
5 1.72x10°4 78.3 21.6 276
6 3.83x10” % 80.3 19.6 23.7
7 7.89x107%7 82 .4 17.0 20.6

'Mean, standard deviation, and coefficient of variation of actual rectangular
GPI. data are 79.0 psf, 18.4 psf, and 23.3 percent, respectively.

¢It



6. Selection of the Best 116
Surface Flaw Parameters

The best sets of surface flaw parameters to model the
equivalent failure load distributions for both geometries
of GPL glass plates were independently selected from the
surface flaw parameter sets presented in Tables XII and
XITI. Selections of the best sets of surface parameters
were based upon comparisons of the theoretical means,
standard deviations, relative density functions, and co-
efficients of variations with corresponding statistics of
the actual equivalent failure data and manufacturer's data.

Comparisons of actual and theoretical data show that
sets of surface flaw parameters with m equal to 6 gives
the best representations of the mean of the square GPL
equivalent failure load data (Ref. Table XII). Similar
comparisons for the rectangular GPL data show that the
sets of surface flaw parameters with m equal to 5 or 6
seem to estimate the mean of the rectangular CGPL equiva-
lent failure load data equally well (Ref. Table XII).
Comparisons of actual and theoretical standard deviations
of the equivalent failure load distribution suggest that
the surface flaw parameters with m equal to 7 and 6 are
the best choices to model the square and rectangular GPL
equivalent failure lcad data, respectively. Comparisons
of actual and theoretical relative cumulative equivalent
failure load frequencies suggest that the sets of surface

flaw parameters with m equal to 6 provide the best



representations for the GPL failure strength data 117
(Ref. Figures 28 and 29). Finally, manufacturer's litera-
ture published concerning glass similar to the GPL glass
suggests that the coefficients of variations of glass
plate failure load suggests that the coefficients of vari-
ations of glass plate failure load data should be 25 per-
cent (PPG Industries 1964). The sets of surface flaw
parameters with m equal to 6 give coefficients of wvaria-
tions closest to 25 percent.

Based upon the above comparisons, preferred surface
flaw parameters chosen to represent the square GPL equi-
valent failure load data are m equal to & and k equal to
4.97 x 10°°°. The preferred surface flaw parameters to
represent the rectangular GPL equivalent failure load

data are equal to 6 and k equal to 3.83 x 10~ Sta-
tistical tests are presented in Appendix E to demonstrate
that the statistics of theoretical equivalent failure load
distributions determined using the preferred surface flaw
parameters are not significantly different to the actual
distributions.

According to the probability theory employed in devel-
opment of the failure prediction model the preferred GPL
surface flaw parameters should be the same. This is ex-
pected because both geometries of GPL glass had similar

surface conditions. The preferred sets of GPL surface

flaw parameters compare reasonably well,but there are
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distinct differences. It 1s shown in the next section

that the differences in the two different sets of GPL sur-
face flaw parameters are not statistically significant.

C. Validity of the
Failure Predicrion Model

The failure prediction model presented herein relates
the strength of rectangular glass plates under lateral load
to fundamental properties of the glass plate surface flaws.
Variations of glass strength with load duration, tempera-
ture, and relative humidity are accounted for using a
stress corrosion theory advanced by Brown (1974). Varia-
tions of glass plate strength due to plate behavior are
accounted for using a statistical treatment of the surface
flaw characteristics in conjunction with the nonlinear
plate analysis presented in Chapter LIV. DBrown presented
sufficient evidence to demonstrate the validity of the
stress corrosion theoryv for glass. Validity of the non-
linear plate analysis was discussed in Chapter IV. Va-
lidity of the failure prediction model is, therefore,
dependent upon demonstration that the strength of glass
can be related to two surface flaw parameters which are

independent of plate behavior.

1. Differences in GPL Plates
The glass plate surface flaw parameters (m,k) were
independently determined for two different geometries of

GPL glass plates of similar surface conditions in the
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previous section. The CGPL rectangular glass plates had

a surface area of about 12 sg ft with an aspect ratio of
1:2.12. The GPL square glass plates had a surface area
of about 6 sq fr. These differences in plate geometry
produced significant differences in the stress fields
induced in the plates.

The rectangular CPL plate response was dominated by
bending action. The high tensile stress regions in the
rectangular GPL plates were located in central plate
areas as shown in Figure 24. 1In addition, the areas
of high tensile stresses were characterized by a situa-
tion where the maximum equivalent principal stresses
were significantly larger than the corresponding minimum
equivalent principal stresses. This is substantiated by
examination of the rectangular GFL fracture patterns (Ref.
Appendix A) and by observing the changes in magnitudes of
the maximum principal stresses when converted from MEPT
to MCEPT stresses (Ref. Figures 24 and 25).

The square GPL plate response was characterized by
a significant amount of membrane action. Unlike the rec-
tangular plates, the region of high stress on the square
glass plates extended from the center of the plate toward
the corners of the plate (Ref. Fig. 26). Further, differ-
ences between the maximum and minimum equivalent principal
stresses in the high stress regions were less pronounced

than with the case of the rectangular plates. This is
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substantiated by examination of the square CGPL fracture

patterns (Ref. Appendix A) and by comparing the MEPT and
MCEPT stress fields for the square GPL plates presented
in Figures 26 and 27.

Differences in the GPL plate geometries coupled with
resulting differences in the attendant MEPT stress fields
combine to suggest that the two geometries of GPL glass
are significantly different from the standpoint of the
failure prediction model.

2. Independence of the
Glass Plate Surface Flaws

To demonstrate that the surface flaw parameters (m,k)
are independent of plate response, a theoretical equivalent
failure load distribution for the square GPL glass plates
was calculated using the preferred GPL rectangular glass
plate surface flaw parameters. Likewise, a theoretical
equivalent failure load distribution for GPL rectangular
glass plates was calculated using the preferred GPL square
glass plate surface flaw parameters. Comparisons are then
made between these theoretical and the actual equivalent
failure load distributions.

Table XIV presents the theoretical and actual equiva-
lent failure load distributions for GPL square glass plates.
The mean and standard deviations of the theoretical equi-
valent failure load distribution for the square GPL glass

plates were calculated to be 177.5 and 44.3 psf, respec-
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TABLE XIV.

COMPARISON OF ACTUAL AND
CALCULATED SQUARE CPL THEORETICAL
EQUIVALENT FAILURE LOAD DATA

Equivalent Corresponding Theoretical Actual
Failure Load Equivalent Area Interval Interval
Interval Interval Frequency' Frequency
(psf) (in®)

-130 - 26.4 2.92 2
130-160 21.4- 70.6 3.97 8
160-190 70.6-151.9 5.05 5
190-220 151.9-296.5 4.67 4
220-250 296.5-531.2 2.56 0
250~ 531.2- .83 1

20.00 20

‘Theoretical interval frequencies calculated using the _:;
rectangular GPL surface flaw parameters (m=6, k=3.83x10 ).
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tively (Ref. Appendix E). Table XV presents the theoretri-

cal and actual equivalent failure load distributions for
the GPL rectangular glass plates. The mean and standard
deviation of the theoretical equivalent failure load dis-
tribution for the GPL rectangular glass plates were calcu-
lated to be 76.2 and 18.2 psf, respectively (Ref, Appendix E).

The error involved in estimating the mean equivalent
failure load for the GPL square glass plates using the
preferred GPL rectangular glass plate surface flaw para-
meters is 6 percent. The error involved in estimating
the mean equivalent failure load for the GPL rectangular
glass plates using the preferred GPL square glass plate
surface flaw parameters is 4 percent. Using a t test,
the differences in the actual and theoretical means are
not statistically significant. Further, no statistically
significant differences between theoretical and actual
variances (standard deviation squared) of the equivalent
failure load distributions are detected using F tests.
Finally, Chi-squared tests are used to show that there
are no statistically significant differences between the
actual and theoretical equivalent failure load distribu-
tions. These statistical comparisons are presented in
Appendix E.

Based upon the statistical tests outlined above, it
is concluded that the square GPL glass plate strength can

be reasonably represented using the preferred rectangular
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TABLE XV.

COMPARISON OF ACTUAL AND CALCULATED
RECTANGULAR GPL THEORETICAL
EQUIVALENT FAILURE LOAD DATA

Equivalent Corresponding Theoretical Actual
Failwre load Equivalent Area Interval Interval
Interval Interval Frequency* Frequency
(psf) (in®)
- 60 - 27.2 3.80 3
60- 75 27.2- 78.1 5.28 5
75= 90 78.1-187.9 6.26 7
90-105 187.9-420.2 3.89 3
105- 420.2- 77 2
20.00 20

'Theoretical interval frequencies calculated using the
square GPL surface flaw parameters (m=6, k=4.97x10-°°).
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GPL glass plate surface parameters and vice versa. This

demonstrates that the surface flaw parameters are indeed
independent of glass plate area and plate response. It
is thus shown that glass plate strength can be related

to fundamental properties of the glass plate surface.



CHAPTER VI 127
CONCLUSION

A. Summarv of
Accomplishments

The strength of glass plates varies significantly
with plate geometry, load duration, relative humidityv,
and temperature. As a result of the complexities atten-
dant to defining glass strength, current window glass
design procedures rely on empirical representations of
glass plate strength. The empirically derived glass
strength charts and tables in use today have served well
for more than twenty years. During this time, window
glass has evolved into a major structural component of
the building envelope. Therefore, there is need for a
new method to predict the strength of window glass for
design purposes. An analytically derived failure pre-
diction model for window glass is offered to answer
this need.

Major tasks accomplished in development of the fail-
ure prediction model include:

(1) a literature search was conducted to establish

a plausible glass plate failure mechanism and
to document variations of glass strength with
load duration, relative humidity, and tempera-

ture,



(2) a unique nonlinear plate solution was devel- 128
oped to model the response of thin rectangu-
lar glass plates subjected to uniform lateral
loads, and

(3) an available statisticel theory of material
strength was adapted tc model the failure
strength of glass plates.

The principal contribution of chis research is the suc-
cessful integration of the above tasks into a tractable
process for predicting the strength of glass plates.

The failure prediction model relates the strength
of glass plates to fundamental properties of glass plate
surface flaws. The failure prediction model employs a
stress corrosion theory advanced by Brown (1974) to re-
present the variation of glass strength with load dura-
tion, relative humidity, and temperature. In addition,
the failure prediction model incorporates a geometri-
cally nenlinear plate analysis and a statistical theory
of material strength presented by Weibull (1939). All
factors known to cause variability of glass plate strength
are accounted for in the failure prediction model.

.Brown (1974) presented sufficient evidence to verify
the stress corrosion theory used in the failure predic-
tion model. Validity of the nonlinear plate analysis
was demonstrated by comparison of actual and theoretically

derived glass plate stresses and deflections. Finally,
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it was shown using glass plate failure data that the sur-
face flaw parameters emploved in the failure prediction
model are independent of plate response. Therefore, a
failure prediction model which relates the failure
strength of glass to fundamental properties of the glass
plate surface was presented and verified.

B. Directions cof
Future Resesarch

The research reported herein is a segment of a much
more extensive research project whose purpose it is to
develop and present a new rational window glass design
method (Minor and Beason 1976). The failure prediction
model is a tool that is to be used to develop new window
glass design relationships. To achieve this goal, two
additional topics must be addressed:

(1) research must be conducted to define the sur-
face flaw characteristics of window glass found
in practice, and

(2) an investigation must be conducted to determine
the degree to which deviations of actual window
glass boundary conditicons from the assumed set
of idealized boundary conditions affect predic-
ted glass strength results.

Once these additional areas have been addressed, a new

window glass design procedure can be advanced.
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APPENDIX A

ANALYSIS OF GLASS PLATE FRACTURE PATTERNS

Much can be learned regarding the nature of the
loading and the stress distribution present in a glass
plate at the time of failure by examining the glass
plate fracture pattern. Information that can be taken
from a glass plate fracture pattern analysis depends
upon the extent to which the fracture pattern can be re-
constructed without introducing secondary fractures
which obscure the nature of the original fracture pat-
tern. In most instances of window glass failure in
buildings exposed to wind loadings, it is not possible
to reconstruct the total glass plate fracture pattern
because of the catastrophic nature of the failure. 1In
glass testing reported herein, a tape grid was applied
to the compression surface of each glass plate prior to
testing and the applied pressure was vented immediately
after the plate failed so that the fracture pattern was
preserved., The following discussion presents the funda-
mental concepts involved in a thorough analvsis of a
glass plate fracture pattern.

When a glass plate fails as the result of an applied
pressure, the fracture usually originates at a single
point on the glass plate surface. An estimate of the
magnitude of the maximum nominal tensile stress present

in the glass plate at the instant of fracture initiation
140
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can be made by examining the characteristics of the
fracture surface at the fracture origination point,
The orientation c¢f the initial crack direction at the
point of fracture origination tends to be normal to
the direction of the maximum principal tensile stress,
particularly if the maximum principal stress is much
larger than the minimum principal stress. All other
cracks 1n the glass plate emanate from this original
crack,

If the fracture initiation point is located away
from the plate edge the initial crack will proceed in
opposite directions away from the critical flaw. Then,
depending upon the magnitude and state of stress present
in the glass plate, the initial cracks may branch, These
newly formed branch cracks will propagate and may sub-
divide in a similar manner until a free edge 1s encountered
or the energy involved in crack propagation is dissipated,.
The fracture origination point can be located by tracing
the branching cracks back to their common source as shown
in Figure A.1l.

Examination of the newly formed crack surface reveals
the presence of markings which have been termed "rib-marks"
and '"hackle-marks" by Preston (1926). Typical rib-marks
which might appear on the fracture surface of the glass
plate which was failed with a uniform lateral pressure
are shown in Figure A.2, Cracks propagate through rib-

marks from the concave side. The direction of crack pro-
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pagation 1is indicated for the fracture surface shown in

Figure A.2. The rib-marks will tend to be tangent to the
surface of the glass plate which was in compression and
the rib-marks will tend to intersect the tension surface
of the glass plate as shown in Figure A.2 (Preston 1926,
Oughton 1945, Orr 1972). Confirmation of crack pro-
pagation directions lends credence to the preliminary
location of the fracture origination point made by exam-
ining the overall fracture pattern.

The precise location of the fracture initiation
point can be identified by location of the fracture mirror
on the fracture surface (Preston 1926, Oughton 1945, Shand
1959, Orr 1972, Jonnson and Holloway 1966, Kerper and Scu-
deri 1964). The fracture mirror appears on the fracture
surface as a highly polished, semicircular shaped areza.
The fracture mirror is centered about the fracture indu-
cing flaw and is bounded by regions of frost as shown in
Figure A.3. The fracture mirror radius is defined as half
of the distance between the initiation of the frost zones
on either side of the critical flaw as indicated in Figure
A.3. The magnitude of the maximum nominal principal ten-
sile stress presént at the critical flaw prior to failure
is inversely proportional to the fracture mirror radius
(Shand 1961). Orr (1972) suggested the following empiri-
cal relationship between the maximum nominal tensile
stress, Gp’ and the fracture mirror radius, r, for window

glass
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where the fracture mirror radius is given in in. and the
stress 1s given in psi.

The mechanism which produces the fracture mirror is
extremely complex. The crack propagates away from the
critical flaw with an initial velocity which is propor-
tional to the magnitude ¢f the maximum nominal principal
tensile stress. The initial crack propagation velocity
is low with respect to the limiting crack velocity. The
rate of crack propagation increases until a condition of
instability is reached at which point the crack propaga-
tion velocity jumps rapidly to its limiting value of
1500 m/s (Shand 1961). The highly polished portion of
the fracture mirror forms during the early stages of
crack propagation when the crack velocity is low. The
frost region forms when the crack propagation velocity
enters the unstable region (Shand 1959). The nigher the
nominal tensile stress 1is at the onset of fracture, the
higher the initial crack propagation velocity and the
smaller the distance required to reach the unstable re-
gime; hence, the smaller the fracture mirror radius.
Conversely, the lower the nominal tensile stress pre-
sent at the fracture initiations the larger the fracture

mirror radius.



146

Many generalizations can be made regarding the
appearance of the total fracture pattern. If the state
of biaxial stress in the plate at the peint of fracture
origination is such that the maximum principal stress is
much larger than the minimum principal stress, the cracks
will tend to propagate so that at each point they will
tend to be normal to the direction of the maximum princi-
pal stress in a well-defined pattern. This situation
occurred in the rectangular plates tested,as shown in
Figure A.4. If the state of biaxial stress is such that
the maximum and minimum principal stresses are very
nearly the same at the point of fracture initiation,
then the primary crack direction will still tend to be
normal to the maximum principal stresses. However, in
this later situation there will be a large number of
secondary cracks at other orientations. This situation
occurred in square plates tested as shown in Figure A.5.

For a given glass plate geometry and loading situa-
tion the number of cracks and the size of the resulting
pleces of glass are related to the magnitude of strain
energy stored in the annealed glass specimens or the
relatrive load intensity at failure. The more individual
pieces that are generated when a plate fractures, the
higher the stress levels that were in the plate (Gilvary
1961). Therefore, the more cracks that are produced in
a specimen, the higher the stress levels that were in

the plate.
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With the information presented in this appendix it

4

ble to examine a failed glass plate and determine

[

is poss

"

the fracture origination point and estimate the maximum
nominal stress present at the fracture origin, It is

also possible to make generalizations regarding the bi-
axial state of stress present in the plate at the time of
failure, Finally, for similar glass plates, it is possible

to rank the failed plates according to the relative load

intensities present at failure.
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APPENDIX B
ALGEBRAIC MANIPULATIONS CF
NONLINEAR PLATE EQUATIONS
The fundamental differential equations employed in the

nonlinear plate solution are presented in Chapter IV, In
addition, selections of infinite series to represent the
variables in the nonlinear equations are presented. The
series expansions are chosen to represent important plate
boundary conditions. Details of the algebraic substitu-
tions of the series expansions into the nonlinear plate
equations are presented in this appendix. Information pre-
sented should aid in interpreting the computer program pre-
sented in Appendix C.

Equation (4.27) is written for a rectangular plate

as follows

ra b . .
~ B - ~ -
0 (9W+2 Gl +“w)o‘wdtr’cx=
N y
B olole \ax® ox‘ay 5y
(2.1)
arb P
- 2 .2 ~2 "
(c2F '\ZW L 2 F o W _2C F C"w_f, Z\5w dvax
.2 oa 2 . “y A / i
olo \ay? ax? x? a3y 3X3Y X5y h

There will be one independent equation generated from
Equation (B.1) for each expansion function used to repre-
sent the lateral deflections. The general form of the

th

equation for the mn~" series expansion term is

150
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(a b
W = | I (B1L + CL) dde/J [ Al dydx (B.2)
’ Q

wnere Al, Bl, and Cl are notations used in the computer

program (Ref., Appendix C). The values of Al, Bl, and Cl
are
Al = D (a_% + 20_%5 2 + £ ?) sin®a_x sin?s_y (B.3)
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Cl = —2  (sin®a % sin?3 - ®.5
o (sin % sin Bn]) (B.3)
where
¢ = mr/a (B.6)
8 = nw/b (B.7)

All of the other terms are defined in Chapter IV.

Equaticn (B.Z) is used to generate simultaneous
equations in terms of the lateral deflection coefficients
A Gauss-Seidel iterative technique (Ketter and Prawel 1969)
is then used to estimate the lateral deflection coefficients.

Equation (4.27) is written for a rectangular plate as

follows
(afb
b ol o
‘t‘J .t 2. 2 b o] ayex
O e, gX oX" ey oy
fab 2
I 3%w 3w 3%w | .
+ | ( >~ 5 F dvdx (B.8)
-~ ~ 2 a) 2
| c:{sy X oy
OJOL_ -

One independent eguation will be generated from Equation
(B.8) for each series expansion term used to represent the
membrane stress function. The general form of the equa-

. th . . .
tion for the mn series expansion term is

afb alb
F = -(E1 + Fl) dvdx
!

Jojo joJo

D1 dydx (B.9)
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where D1, El, and Fl are notations used in the computer

program (Ref. Appendix C). Values oZIDl, E1, and Fl are
as follows
r
|1 “ . 9. 2p 2 4 b A
Dl = i = (a + 2a_“8 2_") cosa_x cos? -
LL m m n i 0 n-

1 4 4
- = {x x + 2 “"cosg v l-cosa ®){(l-cogd v
= (wm cosa z Bn,) ( st ) ( 0s n_)

(B.10)
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where all of the terms are defined in Chapter IV.

Eguation (B.9) is used to generate simultaneous equa-
tions in terms of the membrane stress function ccefficients,
The lateral deflection ccefficients are assumed to be con-
stant. Simultaneous sclution of the set of equations is

then achieved using Gauss-Seidel iteratiom.
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APPENDIX C
COMPUTER PROGRAM TO PERFORIM
NONLINEAR PLATE ANALYSIS

A listing of the computer program used to perform the
geometrically nonlinear plate analysis described in Chapter
IV is presented in Figure C.1l. This computer program was
written using ANSI FORTRAN. A sample computer output is
presented in Figure C.2.

Pertinent plate theory is discussed in Chapter IV and
specific equations relating te the program logic are pre-
sented in Appendix B. Validity cf the computer program is
demonstrated in Chapter IV by comparing results generated
by the analysis with independent analytical results.

Input/output instructions for the computer program are
presented in comment statements in the computer listing.
In addition to input which describes the plate geometry,
loading, and output characteristics, the user must input
parameters which are unique to this method of soluticn.
These solution parameters include the number of series
expansion terms used to represent the different func-
tions , the number of integration divisions, the iteration
tolerances, and assumed values of lateral deflection
coefficients. It was determined by the writer that a
reasonably accurate and economical solution is obtained
for most problems using four series expansion terms

(NtM=3), 36 integration divisions across the total plate
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Pages 157-166 have been removed.

Due to legibility problems, the following Figures have been omitted:
Fig. C.1 Computer Program for Nonlinear Plate Analysis

Fig. C.2 Sample Output from Nonlinear Plate Analysis Computer Program*

*For further information regarding these figures, please contact:

Dr. William L. Beason

Institute for Disaster Research
Texas Tech University

Lubbock, TX 79409
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INT=3), and an iteration tolerance on the laterzl deflec-

tion coefficients of 0.0l in. If the number of series ex-
pansion terms is increased, the quality of the assumed
lateral deflection coefficients must be increased, the num-
ber 0f integration divisions must be increased, and the
iteration tolerance should be decreased. Even with these
changes, the solution tends to be unstable. Therefore, it

is not recormmended to use more than four series terms.
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APPENDIX D

GLASS PLATE TESTS

A homogeneous sampie of 7/32 in. sheet glass was
taken from the Great Plains Life (GPL) building located
in Lubbock, Texas during renovation in 1975. The GPL
glass was exposed t¢ approximately 20 vears of weather-
ing as well as the peripheral effects of one tornado
(Mehta et al. 1971). Rectangular GPL glass plates were
tested in their original dimensions, 28.5 x 60.5 in.,
and square GPL glass plates, 28.5 x 28.5 in., were pre-
pared and tested. These specimens were tested to failure
with controlled uniform lateral loads. A description of

the test facility and test procedures along with the raw

glass strength data are presented in this section.

D.1 Glass Test Facilitv

A facility was designed to test the GPL glass plates
with a controlled uniform lateral load. The test facility
consists of three major components: a glass plate test
chamber, a loading system, and a data acquisition system.
The glass test facility was constructed and located in
the Civil Engineering Testing Laboratory located'on the

campus of

Texas Tech University. A schematic of the plate
test facility is presented in Figure D.1.
The glass plate test chamber consists of a steel re-

inforced plywood panel with a 1/8 in. steel plate laminated
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tc the front side, This plywood/steel panel served as
the backside c¢f an airtight test chamber, An evacuation
manifold was mounted to the backside of the plywood/steel
panel, Four sections of aluminum window framing were
mounted to the front side of the plywood/steel panel such
that the pieces of the aluminum window framing served
as the sides of the glass plate test chamber, All of the
joints and seams in the glass plate test chamber were
sealed with silicon sealant., When a glass plate is glazed
into the aluminum glazing system using neoprene gaskets,
it becomes the final side of the glass plate test chamber,
Figure D,2 presents a view of the test chamber used for
square glass plates,

A uniform lateral load is induced on a glass plate
by reducing the internal pressure of the glass plate
test chamber, The loading apparatus consists of a vacuum
accumulation tank, a delivery manifold and appropriate
hoses and valving., Once a test is begun the pressure re-
duction inside the wvacuum test chamber is continuously
monitored and appropriate corrections in the evacuation
rate are performed manually to achieve the desired loading
rate.

The instrumentaticn system consists of linear poten-
tiometric pressure and displacement transducers. The
pressure transducer i1s used to monitor the pressure

differential between the inside of the glass plate test
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FIGURE D.2 SQUARE GPL GLASS
PLATE TEST CHAMBER
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chamber and the atmospheric pressure, The displacement
transducer 1s attached to the center of the glass plate.
OQutputs from the pressure and displacemen: transducers
are monitored using a Mark IV Brush Recorder and a

Hewlett Packard x-vy plotter.

D.2 Glass Test Results

The strength of glass is a function of the glass
plate surface condition., When glass plates are manufac-
tured, there are significant differences in the strength
characteristics of the two different sides due to the
manufacturing exposure. Further, it was anticipated that
the condition of the glass surfaces exposed to the inter-
nal building environment might be different than the con-
dition of the glass surfaces exposed to the external
building environment. There are a total of four different
test conditions: two different glass plate surfaces and
twe different glass plate geometries., It was shown by
Minor (1974) that a minimum of ten replications of a
particular combination of test conditicns should be per-
formed to estimate the mean glass plate strengch witch
acceptable confidence, Four different test conditions
with ten replications each vields a total of 40 glass
plate tests that were performed using the GPL glass,

The glass plates were exposed to monctonically
increasing uniform lateral loads selected to cause fail-

ure in about 50 seconds or less, An attempt was made to



induce a linearly increasing uniform load. Variations
of rthe loading rate posed nc problem because the Brown
(1974) stress corrosion theorvy allows load duration cor-
rections to be made to the resulting data.

The raw glass strength data are presented in Tables
D.I, D.II, D.III, and D.IV. Data presented in these

tables are the time to failure, the coordinates of the

174

fracture origination point, and the fracture mirror radius.



TABLE D.1

FATILURE DATA FOR SQUARE GPL
GLASS-EXTERIOR SURFACE IN TENSION

Rectangular Fracture

Failure Time to Coordinates Mirror
Load Failure of Failure' Radius
(psf) (sec) (ii.) (iz.) (in.)
225 64 8.5 14.1 .06
217 50 9.3 18.8 .10
216 40 8.8 10.3 .15
330 62 17.4 18.0 .07
189 37 12,1 15.6 .18
170 35 17.1 16.8 .14
233 50 17.1 23.3 .18
269 60 13.0 23.4 .09
200 27 12.6 17.8 .19
167 22 5.0 16.3 1.32°

'Referenced to plate corner
’Poorly defined fracture mirror



TABLE D.II

FATLURE DATA FOR SQUARE GPL
GLASS-INTERIOR SURFACE IN TENSION

Rectangular
Coordinates Fracture
Failure Time to of Failure Mirror
Pressure Failure Initiation® Radius
(psf) (sec) ii;;l &ig;l (in.)
202 40 11.6 21.8 .33%
161 34 16.4 9.6 .22
233 47 4.0 11.0 .35°
207 42 15.8 9.3 14
189 38 16.0 7.5 .17
138 27 7.5 11.8 .86
196 38 12.0 17.0 .15
187 35 24.9 13.5 .72
144 26 13.3 14.5 .52
238 44 22,8 11.0 . 357

'Referenced to plate corner
“Poorly defined fracture mirror
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TABLE D.III

FAILURE DATA FOR RECTANGULAR CGPL
GLASS-EXTERICR SURFACE IN TENSION

Rectangular
Coordinates Fracture
Failure Time to of Failure Mirror
Pressure Failure Initiation’ Radius
(psf) (sec) (ii.) ﬁié;l (in.)
95 34 33.0 12.5 L11
111 42 13.5 11.5 .19
144 57 44,5 13.5 .08
197 42 25.5 9.0 L 14
96 50 24.0 11.0 11
107 31 28.5 15.5 11
105 43 38.5 3.5 .13
109 49 50.8 8.3 .20
95 30 35.3 22.5 .22
128 23 26.0 12,5 .06

'Referenced to plate corner
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TABLE D.IV

FAILURE DATA FOR RECTANGULAR GPL
GLASS-INTERIOR SURFACE IN TENSION

Rectangular
Coordinates Fracture
Failure Time to of Failure Mirror
Pressure Failure Initiation’ Radius
(psf) (sec) (in.) (in.) (in.)
78 28 31.0 22.0 .49
66 25 39.5 11.8 . 357
130 51 44.5 13.5 .09
76 36 32.5 8.0 .28
31 43 39.5 20.0 .28°¢
65 21 38.0 12.5 A5
76 18 19.5 15.0 .25
88 45 30.0 9.5 .17
96 29 32.0 12.8 J12
75 35 28.5 12.0 .22

‘Referenced to plate corner
“‘Poorly defined fracture mirror
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APPENDIX E

STATISTICAL CALCULATIONS

This appendix contains statistical calculations which
support conclusions and data presented in Chapter V. Cal-
culations presented can be divided into three categories:

(1) calculation of surface flaw parzmeters,

(2) calculation of theoretical equivalent failure
load statistics given a set of surface flaw
parameters, and

(3) comparisons of actual and theoretical equivalent
failure load statistics.

Methodology for selecrion of glass plate surface flaw
parameters to represent glass plate failure load data

is presented in Chapter V., Calculation of theoretical
equivalent load statistics is accomplished in tabular
form using standard statistical techniques. Comparisons
of actual and theoretical equivalent failure load statis-
tics are accomplished using the t test to compare means,
the F test to compare variances, and the Chi-squared test
to compare frequency distributions. Fundamentals of the
statistical methods employed to accomplish these tasks
are reviewed as presented by Kennedy and Neville (1976)
and specific calculations referenced in Chapter V are

presented in this Appendix.
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E.1 Fundamentals of

Statistical Merhoas

Calculations of the mean and standard deviations for
the theoretical equivalent failure load distributions are
accomplished in tabular form using standard statistical
metheds. The first column iIn a statistical calculation
table (Ref. Table IX) defines a set of n non-overlapping,
exhaustive, equivalent failure load intervals, The mini-
mum equivalent failure load presented in the table is
chosen so that its probabilityv of occurrence is effec-
tively zero. The maximum equivalent failure load presented
in the table is checsen sc that its probability of occur-
rence is effectively one, The second column contains the
median values, X, of each equivalent failure load inter-
val, Column three contains the theoretical probability of
interval occurrence, P These probabilities are cal-
culated using Equation (5.17) and the total equivalent
area data presented in Tables VIII and IX., The summation
of column three should be effectively equal to one., Column
four contains values obtained by multiplying the median
intervals, X5, by the corresponding interval probabilities,
Dy The mean, u, theoretical equivalent failure load is

then calculated as follows



Columm five of the table ccntains a value calculated b
multiplying the interval probability, Py bv the sqguare
of the difference of median interval value and the mean
equivalent failure load, (xi—u)z. The thesoretical stan-
dard deviation, ¢, of the equivalent failure load distri-

bution is then calculated as follows

The t test is used to compare actual and thecretical
mean equivalent failure loads., It is assumed that there
is no significant difference between the actual and theore-
tical mean equivalent failure loads, Then the probability
of the difference between the actual and theoretical mean
equivalent failure loads being as large as observed 1is
calculated. TIf this probability is sufficiently small,
it is concluded that the actual and theoretical means

re significantly different. To evaluate this probability,

the t statistic is calculated as follows:
[ n sl
v o= B2EL (E.3)
s/ /B

where p is the theoretical mean equivalent failure load, X

is the actual mean equivalent failure load, s is the actual



standard deviation of the equiwvalenr failure locad data, an
n is the number of glass plates tested. Values of the t
statistic associated with different levels of significance
are commonly available in tabular form given the number of
degrees of freedom associated with the t statistic. The
number of degrees of freedom associated with the ¢ staris-
tic is the sample size minus one.

An F test is used to compare actual and theoretical
variances (standard deviations squared). It is assumed
that the difference between the actual and theoretical
variances is not significant. Then the probability of
the differences of rhe variances being as large as obser-
ved is calculated, If this probabilitv is small, it is
concluded that the variances are significantly different.
To evaluate this probability, the F statistic 1s calcu-

lated as follows

F o= 12 (E.4)
Sy

where Sl2 is the largest wvariance and 822 is the smallest
variance, Values of the F statistic associated with dif-
ferent levels of significance are available as a function
0f the number of degrees of freedom associated with the

actual equivalent failure load distribution (n-1) and the

number of degrees of freedom associated with the theoreti-

cal variance (=),
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A Chi-squared test is used to compare actual and
calculated frequency distributions., Again, it is assumed
that the actual and theoretical frequency distributions
are not significantly different and the probability of
the differences being as large as observed 1s evaluated,
If that probability is small, it is concluded that the
frequency distributions are significantly different,

To evaluare this probability, the theoretical and actual
equivalent failure load frequency distributions are
divided into k classes with common boundaries. The Chi-

N 2, -
squared statistic, X7, 1s then calculated as follows

th

where Oi is the observed frequency of the i class and

th class. Proba-

E; is the theoretical frequency of the 1
bilities of occurrence of different values of x?* statis-
tistic are available in tables as a function of the number
of degrees of freedom (d.o.f.) associated with the test,

The d.o.£f, asscciated with the Chi-squared statistic is

found as follows

d.o.f. =k -1 -m (E.6)

where m is the number of independent distribution para-

meters used to calculate the theoretical frequencies, 1if

these are determined using the observed statistics,
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Finally, due to assumptions inveolved in the Chi-squared
tests, each theoretical class must have a frecuency of

at least five.

£.2 Calculations

Tables E.I - E.VIII present mean total equivalent
area tables for both geometries of GPL glass plates as-
suming integer values of the m surface flaw parameter

ranging from & to 7. In addition, calculation of the

g
best k surface flaw for each situation using Equation
(5,21) is presented at the bottom of each table,
Calculations of the means and standard deviations
of the theoretical equivalent failure load distrzibutions
defined by the different sets of surface flaw parameters
are presented in Tables E.IX - E.XIII. Selections of
the preferred sets of surface Iflaw parameters to repre-
sent both geometries of CPL glass are made in Chaptexr V
based upon comparisons of the theoretical equivalent
failure load statistics with the actual equivalent failure
load statistics.
Statistical tests are conducted to compare the actual
GPL equivalent £failure load statistics to che correspon-
ding theoretical equivalent failure load statistiecs using
the preferred sets of surface flaw parameters, These

tests are conducted for both geometries of GPL glass.

Table E. XIX presents results for the t tests, Table E.XX



LEquivalent
Failure Load
Interval

(psf)

100-130
130-160
160-190
190-220
220-250
250-280

MEAN TOTAL LEQUIVALENT AREA TABLE
FFOR SQUARE GPL GLASS PLATES:

Corresponding
Total Equivalent

TABLE . T

Midpoint of
Total Equivalent
Area Interval,

Area Interval

(in.*) (in.?)
24.1- 62,0 43,1
62.0-116.,2 89.1
116.2-203.5 159.9
203.5-325.5 2645
325.5-472.8 3692
472 .8-648.2 560.5
5, = 3217:0 160 9 in.?
20
Ik = 1 = 9.94 x 107

(5000)"160.9

1

3}

Internal
Frequency

i

f.S,.
1 1

86.
712.
799,

1058,

561,

3217.

981



Equivalent
Failure Load
Interval

(psf)

100-130
130-160
160-190
190-220
220-250

250-280

TABLE E.LL

MEAN TOTAL EQUIVALENT AREA TARLE

FOR SQUARE CGPI. GLASS PLATES:

Midpoint of
Total Equivalent
Area Interval, Sbi

Corresponding
Total Equivalent
Area Interval

{(in.*) (in.”)
12,6- 40.2 26 .4
40.2- 91.7 66.0
91.7-174.2 133.0
174.2-308.3 241.3
308.3-504. 1 4062
504.1-753.2 628.7
5, = 28397 = 1420 in.?
20
k = L ~ 2.25 x 107

(5000) °142.0

Interval
Frequency

£.s,

o O

665,
965.2

628.7

2839.7

L8T



Equivalent
Failure Load
Interval

(psf)

100-130
130-160
160-190
190-220
220-250

250-280

TABLE E.IIT

MEAN TOTAL LEQULVALENT AREA TABLE
FOR SQUARE GPPL GLASS PLATES: m=6

Corresponding
Total Equivalent
Area Interval

Midpoint of
Total Equivalent
Area Interval, S(,i

(in.?) (in.?%)
6.4~ 26.4 16 .4
26.4- 70.6 48.5
70.6-151.9 111.3
151.9-296.5 2242
296.5-531.2 413.9
531.2-875.6 703 .4
5, = 22779 _ 178 9 in.*
20
o= 3 - 4.97 x 10777
(5000)©128.9

Interval
Frequency

1

f.Sgi

32.
388.
556.

896 .

103,

2577.

4

881



Equivalent
Failure Load
Interval

(pst)

100-130
130-160
160-190
190-220
220-250
250-289

TABLE .1V

MEAN TOTAL EOULVALENT AREA TABLE
FOR SQUARE GPL GLASS PLATES: m=7/

Midpoint of
Total Equivalent
Area Interval, S7i

Corresponding
Total Equivalent
Arca Interval

(in.?) (in. %)
. 4= 17.7 10.6
17.7- 55.2 365
55.0- 1344 948
134.4- 290.7 212.6
290.7- 570.0 430. 4
570 .0-1005.9 788.0
5, = 2423.6 _ 19y 3442
20
K = 1 - 1.06 x 10°°°

(5000)7121.3

Interval
Frequency

1

fisyi

21.:

292.
474,

850.

788,

2425 .

681



TABLE E.V

MEAN TOTAL EQUIVALENT AREA TABLL
FFOR RECTANGULAR CPL. GLASS PLATES: m=4

Midpoint of Interval
Equivalent Corresponding Total Equivalent Frequency
Failure Load Total Equivalent Area Interval, S,.. . fiS"'
Interval Area Interval . * *
(psf) (in. %)
45-60 22.7- 70.4 46 .6 3 139,
60-75 70.4-155.7 113.1 5 365.
75-990 155.7-273.5 214.6 7 1502.
90-105 273.5-443.0 358.3 3 1074,
105-120 443.,0-659.8 551.4 2 1102,
20 4385,2
= 4385.2

Sh = ——-—2-'0*‘*" = 219_3 in.2

k= L - 7.30 x 10°

(5000)"219.3

18

g6l



Equivalent
Failure TLoad
Interval

(psf)

45-60
60-75
75-90
90-105
105-120

TABLE E.VIL

MEAN TOTAL LEQUIVALENT ARLA TABLE
FOR RECTANGULAR GPL GLASS PLATES: m=5

Midpoint of

Corresponding Total Equivalent
Total Equivalent Area Tnterval, S,
Area Interval t
(in.%)
10.3- 43.7 27.0
43,7-106.5 75.1
106,5-221.3 163.9
221.3-422.,0 321.7
422.0-720.9 571.5
—S"S — 371]..9 — 185.6 in_2
20
1 -21
k = =1.72x 10

(5000)°185.6

Interval
Frequency

i

81,
375.
1147,
965.
1143,

L

3711.

161



TABLE E.VII

MEAN TOTAL EQUILVALENT AREA TARLE
FOR RECTANCULAR GPL GLASS PLATES: m=6

Midpoint of Interval
Equivalent Corresponding Total Equivalent Frequency
Failure Load Total Equivalent Area Interval, Sy, £, £.56.
Interval Area Interval L t t
N {psf) (in.?) _
45-60 5.6- 27.2 16.4 3 49, %
60-75 27.2- 78.1 52.7 5 263,
75-90 78.1-187.9 133.0 7 931.
90-105 187.9-420.2 304.1 3 912,
105-120 420.2-763.6 591.9 2 1183.
20 3339.
Se = 3339.8 167.0 in.*
20
k = 1

25

(5000)°167.0 = 3.83 x 10~



Equivalent
Failure Load
Interval

(pst)

45-60
60-75
75-90
90-105
105-120

TABLE E.VITIL

MEAN TOTAL. EQUIVALENT AREA TABLE

FFOR RECTANGULAR CPL GLASS PLATES:

Corresponding
Total Equivalent

Midpoint of
Total Equivalent
Area Interval, Syi

Area Interval

m=7

Interval
Frequency

i

(in.?)
3.3- 17.0 10.2
17.0- 57.4 37.2
57.4-180.0 118.7
180.0-419.1 299.6
419.1-879.6 649.4
5, = 3281 _ 162 34q,2
20
k = L = 7.89 x 10~

(5000)7162.3

2

9

(9]

o

]

fiS7i

30.6
186.0
830.9

898.8
1298.8

32451

£61



TABLE E.IX

CALCULATION OF THEORETICAL SQUARE GPL. GLASS B
PLATE EQUIVALENT FAILURE LOAD STATISTICS: m=4, k=9.94 x 10

16

Theoretical

Equivalent Midpoint of Interval
Failure Load Equivalent Failure Probability
Interval Load Interval, X, Ps X.Ps (Xi““)zpi
(pst) (psf)
10- 40 25 0.006 0.15 107.33
40- 70 55 0.047 2.59 505.91
70-100 85 0.086 7.31 467.76
100-130 115 0.181 20.82 346,45
130-160 145 0.195 28.28 36.87
160-190 175 0.203 35.53 53. 60
190-220 205 0.150 30.75 320.86
220-250 235 0.079 18.57 459 .31
250-280 265 0.035 9.28 395,172
280-310 295 0.014 4,13 259.90
310-340 325 0.003 .98 82.902
340-370 355 0.001 .36 38.51
158,75 3074,.54
no= 158.75 psf

o = 3074.,54 = 55,45 psf

761



TABLE I.X

CALLCULATION OF THEORETICAL SQUARE GPL GLASS o
PLATE EQUIVALENT FATLURE TLOAD STATISTICS: w=5, k=2.25 x 10

Theoretical

Equivalent Midpoint of Interval
Failure Load Equivalent Failure Probability
Interval Load Interval, x, Py X.Py (Xi_“)zpi
(psf) (psf)
10~ 40 25 .002 0.05 38.24
40- 70 55 022 1.21 257.89
70-100 85 .061 5.19 373.70
100-130 115 162 18.63 377.46
130-160 145 .229 33.21 76.44
160-190 175 .231 40.43 31.78
190-220 205 .179 36.70 311.71
220-250 235 .085 19.98 437 .34
250-280 265 .024 6.36 248,38
280-310 295 004 1.18 69.41
310-340 325 001 0.33 26.16
163,27 2248.51
po= 163.27 pst

o = /224851 = 47 .42 psf

C6T



TABLE E,XT

CALCULATION OF THEORETICAL SQUARL GPL GLASS

PLATE EQUIVALENT FATLURE LOAD STATISTICS: m=6, k=4.97 x 107
Theoretical
Equivalent Midpoint of Interval

Failure Load Equivalent Failure Probability

Interval Load Interval, X, 1 X.p. (xiqﬂzpi
(psf) (psf) I
40- 70 55 0.011 0.61 139.86
70-100 85 0.038 3.23 260.27
100-130 115 0,136 15.64 378.57
130-160 145 0,237 34,37 122,77
160-190 175 0.270 47,25 14.15
190-220 205 0.208 42 .64 288.46
220-250 2135 N,084 19.74 379.74
250-280 265 0.015 3.98 141.83
280-310 295 0,001 0.30 16.19
L67.76 1741.84
po= 167.76 psf

o = fTT!IT.SI; = 41,74 psf



TABLE L.XIT

CALCULATION OF THEORETICAT. SQUARE GPL GLASS 2w
PLATE EQUIVALENT FAILURE LOAD STATISTICS: m=7, k=1.06 x 10

Theoretical

Equivalentc Midpoint of Interval
Failure lLoad FEquivalent T'ailure Probability
Interval Load Interval, x, Py X, Py (xi—n)2pi
(psf) (psf)
40- 70 55 0.005 0.28 68.29
70-100 85 0,023 1.96 173.57
100-130 115 06.108 12,42 349,728
130-1690 145 0.230 33.35 166.06
160-190 175 0.304 53.20 2.98
190-220 205 0.239 49.00 262.33
220-250 235 0.082 19.27 326.80
250-280 265 0.009 2.39 78.06

171.87 1427.37

LET



TABLE I2,XTIT

CALCULATION OF THEORETICAI RECTANGULAR CPL CLASS

PLATE LEQUIVALENT FAILURE LOAD STATISTICS: m=4, k=7.30 x 10'—18
Theoretical
Equivalent Midpoint of Interval
Failure Load Equivalent Failure Probability
Intexval Load Interval, X Py Py (xi—u)Qpi
(ps£) (psE) o
0- 15 7.5 0.002 0.02 9.43
15- 30 22.5 0,023 0.52 66,20
30~ 45 37.5 0,073 2.74 109.05
45- 60 52.5 0.177 G9.29 99.00
60- 75 67.5 0.233 15.73 17.43
75- 90 82.5 0.205 16,91 8.27
90-105 97.5 0.154 15,02 70.20
105-120 112.5 0.084 9.45 110,99
120-135 127.5 0.037 4,72 97.56
135-150 1425 0.010 1.43 44,02
150-165 157.5 0.002 .32 13,24
76.15 645.39
n= 76,15

0o =V 645,39 = 25,40

g6l



TABLE E.XIV

CALCULATION OF THEORETICAL RECTANGULAR GPL CLASS -2
PLATE EQUIVALENT FAILURE LOAD STATISTICS: w=5, k= 1.72 x 10

Theoretical

Equivalent Midpoint of Interval
Failure Load Fquivalent Failure Probability '
Interval Load Interval, x. P. X.D. (x.-1)7’p.
i i ivi i i
(psf) (psf)
15- 30 22.5 0.011 0.25 34.20
30- 45 37.5 0.043 1.61 71.44
45- 60 52.5 0.156 8.19 103.52
60- 75 67.5 0.227 15,32 26.28
75- 90 82.5 0.260 21.45 h.67
90-105 97.5 0.200 19.50 74,04
105-120 112.5 0.082 9.23 96.13
120-135 127.5 0,019 2,42 46 .07
135-150 142.5 0,002 0.29 8.25
78.26 064, 60

H

78.26 pst
o = /464,60 = 21,55 psf

661



TABLE E XV

CALCULATION OF THEORETICAIL RECTANCULAR GPL GLASS _
PLATE EQUIVALENT FAILURE LOAD STATISTICS: m=6, k= 3,83 x 10

2n

Theoretical

Equivalent Midpoint of Interval
Failure Load Equivalent Failure Probability
Interval Load Interval, x. D. X.P. (x.-n)*p.
i i 71 i i
(psf) (psf)
15- 30 22.5 0.004 0.09 13.38
30~ 45 37.5 0.029 1.09 53.20
45- 60 52.5 0.117 6.14 90.62
60~ 75 67.5 0.223 15.05 36.71
75- 90 82.5 0.303 25.00 1.43
90-105 97.5 0.243 23.69 71.64
105~120 112.5 0.071 7.99 73.48
120-135 127.5 0.010 1.28 22.25
80.33 362.71
uw = 80.33 psf

o =V 362,71 = 19.04 psf

00¢



TABLE I, XVI

CALCULATION OF THEORETICAL RECTANCULAR CPL GLASS

PLATE EQUTVALENT FAILURE LOAD STATTSTICS: m=7, k=7.8% x 107
Theoretical
Equivalent Midpoint of Interval
Failure Load Equivalent Failure Probability .
Interval Load Interval, x; Py X Py (Xi~U) Py
(psf) (psf)
15- 30 22.5 0.001 0.02 3.58
30- 45 37.5 0.019 0.71 38.25
45- 60 52.5 0.080 4,20 71.38
60- 75 67.5 .198 13.37 43.78
75- 90 872.5 0.372 30.69 0.01
90-105 97.5 0.254 24,77 58.14
105-120 112.5 0.072 8.10 65,36
120-135 127.5 0.004 0.51 8.15
82.137 288.65
po= 82.37 pst

o = v 288,65 = 16.99 psf

t0¢



TABLE E.XVIL

COMPARISONS OF ACTUAL AND THEORETLCAL MEAN
EQUIVALENT FAILURE LOADS-PREFERRED SURFACE FLAW PARAMETERS

GPL Surface Flaw ‘Theoretical  Actual Calculated ¢ Critical t

Glass Parameters Mean Mean Staristic! Sratristic® Conclusion
Plate
Geometry ~ m k (pst) (psf)

Square 6  4.97x10° 167.8 168.0 0.02 2,093 No significemt
di.fference in
actual and theo-
retical means

Rectangular 6 3.83x10° 80.3 79.0 0.32 2.093 No significant

ditference in
actual and theo-
retical means

}Caleulated using Equation (E.3).
“Found in t table assuming a 5 percent level of significance and 19 d.o.f.

¢0¢



GPL
Glass
Plate

Geometrz_

Square

Rectangular

TABLE E, XVILT

COMPARISONS OI" VARTANCES OF ACTUAT, AND THEORETICAL
EQUIVALENT FAILURE LOADS-PREFERRED SURFACE FLAW PARAMETERS

Surface Flaw  Theoretical Actual Calculated ¥ Critical T
Parameters Variance Variance Statistic! Statistic® Conclusion
m e (psf)*? (psf)?
o o-25 ]

6  4.97x10 1739 1406 1.24 1.88 No significant dif-
ference in actual
and theorctical
variances

6 -3.83107 " 363 339 1.07 1.88  No significant dif-

ference in actual
and theoretical
variances

'Calculated using Equation (E.4).

2 TFound in

F table assuming a 5 percent level of significance infinite d.o.f. for

the theoretical variances and 19 d.o.f. For the actual variances,

€0c



TABLE E,XIX

COMPARISONS OF ACTUAL AND THEORETICAL SQUARE
GPL GLASS PLATE EQUIVALENT FAILURE LOADS

Equivalent Corresponding Actual  Theorerical

Failure Load Total Equivalent  Interval Interval (0.-L.)2

Interval Area Tnterval Frequency  Frequency i 7

{psi) (in.?) Oi Ei Ei

.137.5 - 38 4 5 0.20

137.5-166 38- 90 6 5 0.20

167.5-211 90-185 6 5 .20

211- 185- 4 5 0.20

20 20 0.80

")

 critical = 3,841°

Therefore it is concluded that the difference
in the actual and theoretical disrributions 1s not
significant,

‘Calculated assuming m=6 and k=3.83 x 107°".

2 : .
Found in x % table assuming a 5 percent level of
significance and 1 d.o.f,
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TABLE E.X

S

-

COMPARISONS OF ACTUAL AND THECRETICAL RECTANGULAR
GPL GLASS PLATE EQUIVALENT FAILURE LOAD
DISTRIBUTIONS - PREFERRED SURFACF FLAW PARAMETERS

Equivalent Corresponding Actual Theoretical
Failure load Total Equivalent  Interval Interval (0.-E.)"
Interval Area Interval Frequency  Frequency 1 7i
(2sE) (in.?) % = 5
-67.5 - 48.0 6 5 0.20
67.5-81.5 456.0-120.0 3 5 0.00
81.5-95.5 120.0-250.0 6 5 0.20
95.5- 250.0~- 3 5 0,80
20 20 1.20

¥* critical = 3.841°

Therefore it is concluded that the difference
in the actual and theoretical distributions is not
significant,

'Calculated assuming that m=6 and k=4.97 x 10_25

*Found in ¥* table assuming a 5 percent level of
significance and 1 d.o.%,
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o

resents results of the [ tests, and Tables E.XXI and

i

E.XXII present results of the Chi-squared tests,

To demonstrate that the surface flaw paramerers are
independent of plate response, the preferred rectangular
GPL surface flaw parameters are used to calculate a theore-
tical equivalent failure load distribution for the saquare

-
|

GPL gl tes and vice versa. These calculations are

n

ass pl
presented iIn Tables E,XXIII and E,XXIV, inally, statis-

tical tests are presented to compare these theocoretical

10

equivalent fzilure load statistics to the correspondin

\

actual statistics. Table E.XXV presents results of ¢
tests, Table E.XH¥VI presents results of F tests, and
Tables E.XXVII and E,XXVIII present results of Chi-

squared tests.



TABLLL E.XXI

CALCULATION OF THEORETICAL SQUARE GPL CLASS s
PLATE EQUIVALENT FAILURE LOAD STATISTICS: m=6, k=3.83 x 10

Theorctical

Equivalent Midpoint of Interval

Failure Load Equivalent Failure Probability
Interval Load Interval, X D X, P (x—n)?pi

(psf) (psi)

40- 70 55 0.008 0.44 120.01
70-100 85 0.030 2.55 256.58
100-130 115 0.108 12,42 421.61
130-160 145 0.199 28.86 209.94
160-190 175 0.252 44 10 L.55
190-220 205 0.234 47.97 177.22
220-250 235 0.127 29 .85 420.19
250-280 265 0.037 9.81 283.41
280-310 275 0.005 L.48 69.05

177.48 1959.56

177.48 psf
/1959.56 + 41,74 psf

it

8]
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Equivalent
Failure Load
Interval
(psf)
15- 30
30- 45
45- 60
60- 75
75- 90
90-105
105-120
120-135

TABLE L, XXII

CALCULATION OI' THEORETICAL
GLASS PLATE EQUIVALENT FFAILURE LOAD STATISTICS:

RECTANGULAR GPL

Theoretical

Midpoint of Interval
Equivalent Failure Probability
Load Interval, X5 Ps

(psf)
22.5 0.006
37.5 0.036
52.5 0.148
67.5 0.265
82.5 0.312
97.5 0.195
112.5 0.035
127.5 0.003
o= 76.22 psf
o =/329.27 = 18.15 psf

m=6, k-4.97 x 107"

XDy (x=1) "p.
0.14 17.32
1.35 53.97
7.77 83.27

17.89 20.15

25.74 12.30

19.01 88.30
3.94 46 .07
0.38 7.89

76.22 329.27

g80¢



TABLE F.XXIII

COMPARTSONS OF ACTUAL AND THEORETICATL MIEEAN EOUIVALENT
FATLURE LOADS-ALTERNATE SURTACE TLAW PARAMETERS

GPL Surface Tlaw Theoretical Actual Calculated t  Critical t
Glass Parameters Mean Mean Statistic! Statistic? Conclusion
Plate
Geometry m ok (psf) (psf)
_2
Square 6 3.83x10 177.5 168.0 1.13 2.093 No sipnificant
difference in
actual and theo-
retical means
25
Rectangular 6 4,.97x10 76.2 79.0 0.68 2.093 No significant

difference in
actual and Lheo-
retical means

!Calculated using Equation (E.3).
> Found in t table assuming a 5 percent level of significance and 19 d.o.f.
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TABLLE L, XXIV

COMPARISONS OF VARIANCES OF ACTUAL AND THEORETICAL
EQUIVALENT FAILURE LOADS-ALTERNATE SURFACE FLAW PARAMETERS

GPL, Surface Flaw  Theoretical Actual Calculated I* Critical T
Class Parameters Variance Variance Statistic! Statistic? Conclusion
Plate ,
Geometry m k {(psH)? (psf)?
25
Square 6 3.83x10 1960 1406 1.39 1.88 No sipnificant dif-

ference in actual
and theoretical
variances

b 329 339 1.03 1.59 No sippificant dif-
ference in actual
and theoretical
variances

Rectanpular 6 4.97%10™

"Calculated using Equation (k.,4),
“Found in F table assuming a 5 percent level of significance, infinite d.o.f. for
the theoretical variances and 19 d.o.f. for the actual variances.
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TABLE E, XXV

COMPARISONS OF ACTUAL AND THEORETICAL SQUARE
GPL GLASS PLATE EQUIVALENT
FATLURE LOAD DISTRIBUTION - ALTERNATE SURFACE FLAW

PARAMETERS
Equivalent Corresoonding Actual  Theoretical (Oi—Ei)2
Failure Load Total Eouivalent  Interval Interval
Interval Area Interval Frequency  Frequency E
(psE) (in.?) % &
-143.5 - 48,0 5 5 0.00
143,5-176 48.0-118.0 8 S 1.80
176-209 118.0-245.0 5 3 0.00
209~ 245.0- 2 5 1.80
20 20 3.60

X‘cricical 7.815

Therefore it is concluded that the difference in
the actual and theoretical distributions is not sig-
nificant.

; ) . _25
‘Calculated assuming that m=6 and k=3,83 x 10

*Found in x® table assuming a 5 percent level of
significance and 3 d,o0.f,
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TABLE E,XXVI

COMPARISONS OF ACTUAL AND THEORETICAL
RECTANGULAR GPL GLASS PLATE EQUIVALENT
FATLURE LOAD DISTRIBUTIONS - ALTERNATE SURFACE

FLAW PARAMETERS

Equivalent  Corresponding Actual Theoretical (0,-E.)°
Failure Load Tetal Equivalent  Interval Tnterval ———-——
Interval Area Interval Frequency  Frequency E
(psE) (in.?) % 5

-67.5 - 38.0 6 5 0.20
67.5-77.0 38,0- 95.0 5 5 0.00
77.0-90.0 95.0-182.0 L 5 0.20
90.0- 182.0- 5 5 0.00
20 20 0.40

4

2 2
¥ critical = 7.815

Therefore it is concluded that the difference in
the actual and theoretical distributions are not sig-
nificant,

~23
!Calculated assuming that m=6 and k=4,97x10
Found in vy *° table assuming a 5 percent level of
significance and 3 d.o.£.






