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FOREWORD

The work reported herein was conducted as a part of a continuing
program of research involving engineered window glass at Texas Tech
University. The program is administered through the Institute for Disaster
Research in the College of Engineering.

The specific project on the analysis of rectangular glass plates was
directed by Dr. C. V. G. Vallabhan. The principal investigator was
Dr. Abdul-Hamid J. Al-Tayyib. The project was supported by the National
Science Foundation under Award No. PFR 77-24063, the Institute for Disaster
Research, and the Department of Civil Engineering at Texas Tech University.
This report was adapted for publication by Dr. J. E. Minor and W. L. Beason
from Dr. Al-Tayyib's dissertation entitled, "Geometrically Nonlinear Analysis
of Rectangular Glass Panels by the Finite Element Method." This editing was
performed so that terminology used in this publication will be consistent
with other IDR publications in the glass area. Any opinions, findings, and
conclusions or recommendations expressed in this publication are those of
the author and editors, and do not necessarily reflect the views of the

National Science Foundation.
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ABSTRACT

The primary objective of this study is to develop a finite element
model for the stress analysis of geometrically nonlinear, simply supported,
uniformly loaded, rectangular plates. Actual framing configurations for
glass plates allow the boundary edges to move in the plane of the plate with
Tittle restrain. In such a situation, when the loads become large, membrane
behavior plays a significant role in changing the overall behavior of the
glass plate. In this investigation, the geometric nonlinearity treated is
that associated with large lateral elastic dispiacements which induce
stretching of the middle surface of the plate. The formulation is not
restricted by the magnitude of the displacements, as is linear plate theory,
provided that engineering strains do not exceed the proportional 1imit and
structural instability does not occur.

A finite element program which includes a nonlinear thin plate formu-
lation is developed. The formulation uses a rectangular finite element with
displacement fields depicted by shape functions which are products of one-
dimensional Hermitian polynomials of order one. These functions are used to
represent both membrane and bending behaviors. A 48 degree of freedom
element results, with }inear and nonlinear stiffness matrices which are
derived from a purely geometric standpoint. Thirty-two of the 48 degrees
of freedom are allowed to represent the membrane behavior of the plate. This
representation of membrane behavior is important in studying stress distri-
butions in glass plates, particularly at the glass plate perimeter. The
system equilibrium equations are then formulated and solved using a

Langrangian type linear incremental approach.
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Example problems, for which published experimental and theoretical
results are available in the literature, are solved to demonstrate the
validity and versatility of the finite element formulation. In these
example problems, theoretical bending and membrane stresses are compared
separately to better assess membrane behavior in plates with large displace-
ments. The glass plate problem with boundary edges that are simply supported
and free to move in the plane of the plate are analyzed and force-displacement
results are compared with independent experimental data. Computer displace~
ments agree well with the experimental data.

Numerical studies conducted on the glass plate problem reveal that con-
vergence differs between bending and membrane stresses, and depends upon the
fineness of the finite element discretization, the location within the plate,
and the relative magnitude of the loading increment.  This observation, in
the author's opinion, is valuable for anyone involved in analyzing geometri-

cally nonlinear thin plate problems.
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CHAPTER 1
INTRODUCTION

1.1 Initiation of the Problem

‘The Institute for Disaster Research at Texas Tech University, acting
in cooperation with other organized research institutes and researchers in
the glass industry, has calied attention to the need for a reevaluation of
the window glass design process. Included as a part of this reevaluation
is a study of the response of window glass to wind loads. Structural
modeling of the response of glass plates subjected to lateral loads repre-
sentative of wind pressures is a principal concern (6)*,

When glass plates are used in windows and exterior walls of modern
high rise budeihgs, they are often secured in the framing system by neoprene
gaskets as shown in Fig. 1.1 (2). The response of suchig1ass plates when
subjected to moderately high wind loads (which can be assumed for stress
analysis purposes to be uniformly distributed static loads) is such that
large deflections are experienced. The effects of relatively high loads
combined with uncertainties regarding degrees of fixity of the plate edges
on the response of the glass plate present to the designer a unique large

deflection plate problem.

1.2 Definition of the Problem

The glass plate problem investigated in this research can be modeled

structurally as a simply supported rectangular plate* subjected to moderately

*References used in this report are listed alphabetically by author.

**The terms "glass plate” and "plate" are used interchangeably to refer to
the glass panel problem investigated in this research.



Window Glass

Window Framing System

Figure 1.1 Section Through a Window Framing System
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high lateral uniform stati¢ loads that cause large deflections. The edges

of the plate are assumed to be restrained from deflecting out-of-plane but
are free to rotate in the lateral direction, while in the transverse direc-
tion, the edges are free to translate. The latter assumption means that the
plate edges do not necessarily remain straight in the transverse direction,
but rather the plate edges are free to deform as shown in Fig. 1.2. The
maximum lateral deflection of the plate is assumed to be small when compared
with the length of the shorter side of the plate. The material of the plate
is assumed to remain elastic during deformation; hence, the structural system
is represented as a geometrically nonlinear plate problem in which the geomet-

rical nonlinearity is characterized as large deflection, small strain.

1.3 Previous and Current Work

The large deflection plate problem assumed to model the glass plate
problem under investigation was first solved in 1936 by V. R. Kaiser (29).
Kajser determined, theoretically and experimentally, deflections and stresses
in a statically loaded, simply supported plate experiencing large deflections.
He assumed that the edges of the plate are free to move in the plane of the
plate and do not necessarily remain straight as the plate deflects. This
assumption is not consistent with the observed response of glass plate edges
(2).

Concurrent with theoretical work of Beason (6), who solved the nonlinear
plate equations using a Galerkin approach to determine deflections and
stresses for the glass plate problem, Anians (2) experimentally determined
central and edge displacements of a 96 in. x 48 in. x 0.25 in. aluminum plate
subjected to uniform Tateral pressures. Anians, in his experimental work,

evaluated the response of this plate under several different support conditions.



7

.:r r--.--“---__.‘-—“"_——.jl

| 1

! |

! ]

i I

\ !

\ !

\ i

\ |

\ I’

! {

1 {

b | [

| L - X

! {

| 1

| |

| 1

!

,’ \

} \
A I ‘ A
L |

L. - - - 1

N ' |

I i

I i

[ - |

—]

Section A=A

Figure 1.2 Schematic Representation of Assumed In-plane Ceforma-
tions Along the Sdges of the Plats



5
This work was conducted in the Civil Engineering Laboratories at Texas Tech
University, Lubbock, Texas, under the supervision of the Institute for
Disaster Reserach, also at Texas Tech University.
Research on the glass plate problem is being continued by researchers
at the Institute for Disaster Research to determine experimentally the
distribution of stresses in uniformly loaded rectangular plates which

experience large displacements.

1.4 Approach

The approach used in this investigation is a finite element method
with a displacement formulation which employs rectangular finite elements.
Displacement fields within the rectangular finite plate element are depicted
by products of one-dimensional Hermitian polynomials of order one. These
functions are used to represent both membrane and hending displacement fields.
The main advantage of the proposed finite element formulation is that it
provides adequate representation of membrane behavior. A Tinear incremental
approach is used to solve the nonlinear equilibrium equations. A computer
program was developed to accomplish the analysis of specific glass plates

which experience large deflections.

1.5 0bjective and Scope of Research

The primary objective of this research is to develop a finite element
medel to study theoretically the response of glass plates subjected to
relatively large uniform static loads that cause jarge deflections. The
scope of this investigation is defined in the following review of the contents
of this report.

In Chapter 2, the nonlinear plate problem is defined with specific

details given to geometric nonlinearity. Assumptions related to linear theory
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of plates are outlined to introduce the concept of nonlinear plate formu-
lation. The nonlinear equilibrium equations are derived in terms of the
displacement components of the plate using an energy approach; Equilibrium
equations thus obtained are converted to the commonly known von Karman
plate equations. Chapter 2 concludes with a brief account of previous
attempts made to solve the nonlinear plate equations.

The first section in Chapter 3 describes the concept of the finite
element method and the second section introduces the rectangular finite
element used to discretize the glass plate. Hext, the shape functions
assumed to depict the element displacement fields are defined. This step
js followed by a section in which procedures for deriving the element
linear and nonlinear stiffness matrices are given. Subsequent to the proce-
dure for evaluating the equivalent load vector, a section describing the
calculation of bending and membrane stresses and their combined effects
closes the chapter.

The solution procedure for solving the system of nonlinear equilibrium
equations is presented in Chapter 4 in an incrementai form. Also, the
algorithm of the incremental approach adopted in the proposed finite element
formulation is given.

Chapter 5 is divided into three sections. In sections 5.1 and 5.2,
examples of uniformly loaded simply supported plates with different in-plane
boundary conditions are solved and results of displacements and stressed are
compared with theoretical and experimental results. The bending and the
membrane stresses are compared separately so that the membrane behavior in
the glass plate can be better assessed. These results are then discussed
in section 5.3. In this chapter, numerical studies conducted on the glass

plate problem reveal that the convergence of stresses differs between
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bending and membrane stresses, and depends upon the fineness of the finite
element discretization, the location within the plate and the relative
magnitude of the loading increment. This observation, in the author's
opinion, is valuable for anyone involved in analyzing geometrically nonlinear
plate problems.

In Chapter 6, conclusions are offered and recommendations for further

investigation are advanced.



CHAPTER 2
LARGE DEFLECTION THEQRY QF THIN PLATES

2.1 Nonlinear Plate Problems

In 1inear analysis of thin plates by the c¢lassical theory,
it is assumed that the middle surface of the plate is free from
deformation. This assumption is valid only if the plate is bent
into a developable surface (63): a developable surface is one
that can be made from a flat sheet without causing any in-plane
strain of the middle surface: 1i.e., a cone or an open ended cy-
linder. However, application of the classical theory to problems
in which the middle surface of the plate experiences some straining
will still be valid depending upon the kind of restraints imposed at
the edges and the magnitude of maximum lateral displacement of the
plate. For example, if the lateral displacement of a uniformiy
Ioadeq clamped plate is small in comparison with its thickness, it
is found that the calculated stresses of the middle surfacs, which
in plate theory are called the membrane stresses, are small and of
negligible value when compared with the bending stresses (61). The
membrane stresses are also found to be small in the case of cylindri-
cal bending of uniformly loaded Tong rectangular plates with adges
that are free to move in the plane of the plate even though maximum
displacements in such plates are of the order of the plate thickness.
However, if the edges of these plates are restrained from moving,
the membrane stresses become significant and, hence, stress distri-
butions obtained by the classical theory will be in error (65).

Theretore, wnen the membrane stressas become large and the deflec-



tions are of the order of the plate thickness, the deformation of
the middle surface must then be taken into account when formulating
the governing differential equations of the plate. This brings forth
partial differential equations which are coupled and nonlinear.

Formulation of these plate equations using mechanics of non-

Tinear continua leads to classifying the nonlinearity involved into
two principal classes, namely (41):

1. Geometri¢ nonlinearity which is ascribed to problems
in which the strain-displacement relations are non-
linear. Geometric nonlinear problems are of two types.
The first type involves problems with large displacements
and large strains. The second type involves also problems
with large displacements but small strains, Plate bending
with large deflections and elastic structural instabilities
are examples of geometric nonlinear problems.

2. Material nonlinearity which is ascribed to problems in
which the stress-strain relations are nonlinear. In such
problems the material constants are updated depending on
the stresses and the strains in the medium and new equi-
1ibrium equations are developed. Plasticity and cree
phenomena are examples of material nonlinearity.

The problem of geometric nonlinearity of glass plate bending with
large displacements and small strains has been investigated in this
research.

Geometric nonlinearity arises because of large laterai displace-

ments that alter the shape of the structure which in turn causes the
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applied loads to change their distribution (41). This nonlinearity
can be introduced into the formulation of the system equations either
by inclusion of high powers of the derivatives of the displacements
or their products in the strain-displacement relaticons or by coordi-
nate transformations in which the coordinates of the system account
for all nonlinear geometric effects (69).

In order to derive the nonlinear thin plate equations, it is
worthwhile to examine the assumptions limiting the linear theory of

thin plates.

2.2 Assumptions of the Linear Theory of Thin Plates

The classical theory of thin plates assumes that (21, 61):

1. The plate is initially flat and free from stresses,

2. Tractions on planes parallel to the middle surface are
small and can be neglected, and strains vary linearly
within the plate thickness, |

3. The thickness, t, is much smaller than the typical plate
dimension, a, where a is the shorter side in the case of
a rectangular plats,

4. The maximum deflection of the middle surface of the plate
in the lateral direction is small in comparison with the
thickness,

5. The middie surface of the plate is free from deformation
during bending,

6. The slopes of the deflected middle surface are small com-

pared to unity, and
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7. The vertical deflection of a point on the middle surface
of the plate is measured on a normai to its initial plane.
These are generally known as Kirchoff's assumptions in plate theory.
If these assumptions are considered, all stress components can be
calculated in terms of the normal deflection of the middle surface
of the plate, w, wnich is a function of two coordinates in the plane

of the plate (68).

2.3 Nonlinear Thin Plate Equations

[f assumptions 4 and 5 above are violated, the middle surface
of the piate will experience some deformation which must be taken into
consideration when deriving the differential plate equations. The
equations thus obtained are nonlinear and the solution becomes much
more complicated (61). In 1910, Theodore von Karman derived the non-
Tinear plate equations and suggested that the quadratic terms in W
and wy* which are the derivatives of the lateral displacement w, with
respect to the x and y directions, respectively, be ratained in the
strain tensor but that other quadratic terms involving higher powers
of the derivatives of the in-plane displacsment components u and v be
dropped because they have about the same magnitude as the square of
the-strain components. With this suggestion and in addition to the
assumptions used in the classical theory of thin plates, excluding
assumption 4, von Karman assumed that (21):

1. The magnitude of the lateral deflection w is of the

same order as the plate thickness, but small when compared

*Subscripts on symbols denote derivatives with respect to that sub-
script unless statad differently.
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with the typical plate dimension a, where a is the shorter
side in the case of a rectangular plate, i.e., |w! = 0(t)*,
w<<a,

2, The in-plane displacement components u and v are small and
hence higher powers of their derivatives and their products
are negiigible.

For rectanguiar plates, the use of a Cartesian coordinate system
is the most convenient (Fig. 2.1). Consider a flat rectangular thin
plate in a right-handed rectangular Cartesian frame of reference with
the x-y plane ¢oinciding with the middle surface of the plate in its
initial undeformed state, and the z-axis perpendicular to it as shown
in Fig. 2.1. Let the displacement components of an arbitrary point
(x, ¥, z) be denoted by (i, ¥V, W) and those of the corresponding
point (x, y, 0) of the middle surface be denoted by (u, v, w).

Using assumptions 5 and 6 introducesd in the previous section, and
considering the geometry of a section of the plate at y = constant,
as shown in Fig. 2.2, and by comparing the section before and after

it is deflected, the displacement component U can be written as

-

U= =-Zw (2.1)
similarly,

z . , 2.2
zw, (2.2)

<t
¥

By comparing the rectangular parallelogram abcd shown in Fig, 2.3

which is l1ocated at a distance z from the middle surfacs, with its

*Q(t) stands for a function of the grder of t.
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Middle Surface

Figure 2.1 Ceordinates of Flat Rectangular Plate and Netations
of Displacement Components
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Undeformed Section

Figure 2.2 Section of a Plate Before and After Deformation
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deformed shape a'b'c'd' on the deflected plate surface, the shear
strain Yy €3N be determined from the angular distortions Ey and Gx

as
Y. =0, +V (2.3)
Using Eq.{2.71) and Eq.{2.2), Eq.{2.3) can be written as

Yoy = = 22 W (2.4)

84 Y

If a point (x, y, 0) of the middle surface of the plate under-
goes a displacement (u, v, w), then the displacement components of a

corresponding point in the plate can be expressed as

U=u-zw

VaV-2Ww 2.5
, (2.5)

W= w

For any point in the plate, the nonlinear Lagrangian strain ten-
sor, known as the Green's strain tensor (35), is written in terms of

the displacement components in index notation as

{50, a4, 50U 3q, )
SN S s R AP e S (
€: 7% | =—t 3 =) (3= 2.6)
ij. 2 ! axj 3 axi axj |

where the indices i, j, and k correspond to the standard notation
used in tensor mechanies. The quantities GT’ 62, and 53 indicate the
displacement ccmponents 4, v, and w, respectively, while X7s Ko and

X3 refer to the coordinates x, y, and z, respectively. It can be

16 -
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shown that E£g.(2.6) can be reduced to a simpler form, if assumption 2
introduced in section 2.2 and von Karman's assumption are considered.
Assumption 2 implies that € * eyz e, 0. These relations signify
the fact that points on the plate which are initially on a normal to
the middle surface before deformation remain on the normal to the mid-
dle surface after deformation; this is known as the "Kirchhoff assump-
tion" in the theory of plates. And von Karman's assumption suggests
discarding all quadratic terms in Eq.(2.6) except w;, w;, and w_w .

Xy
Hence, Eq.(2.6) can be written as

= -5 o102

Ex Uy * 2 wx

E=V+]—w2 (2.7)
y 'y <27y

Ty = Iy TVF wxw;y

Using £q.(2.5), Eq.(2.7) can be expressed in terms of the middle sur-

f i e , as
ace strains <’ sy and ny

g, T E T DN
s W ‘ 2.3
Y Y Yy ( )
Yo =Y. = 27w
Xy Xy Xy
where
g =u, + LI
X X 2 X
1.2
£ =V + =W 2.9
vy 2y 2.8)
Y = U + +WW



Corresponding to Green's strain tensor, the Kirchhoff's stress
tensor inthe Lagrangian description is expressed in index notation

for an isotropic homogeneous material as (21)

Iy = A€y 51j + 26 €43 (2.10)
where
N 2Gv
-2v
and
6 = ooy
2(1+V)

where A and G are the well-known Lamé'parameters. The indices i, J,
and k in Eq.(2.10) correspond to the conventional mechanics notation,
and Gij denotes the Kronecker delta. The Young's modulus of elasti-
¢ity and the Poisson's ratio of the material are indicated by E and
v, respectively. Based on the Kirchhoff's assumption of plate theory

the Kirchhoff's stress tensor can be reduced to

- _ E - -
% T TRT (5 TV E)
&y =T (e, + v E) (2.11)

- E -
ny 2(7+v ny

where 5x’ Ey, and éxy are the stress components at any point in the

plate. Inversion of £q.(2.11) yields

18



X X y
- 1 ,- -
e, = g-(cy - cx) (2.12)
= . 2(1+) -
Yoy T T Yxy

Eq.(2.11) expresses a state of plane stress for which the strain

energy density is written as

=2 =2
(Ex + ;y

[
o
1]

T

The strain energy of the ent{re plate is the volume integral of Eq.

JJ Ug @V {(2.14)

{2.13) which can be written as

gr

(( (2
Us= }J { UO dz }dx dy (2.15)
iot/2

Substituting £q.{2.8) into Eq.(2.13) and then substituting the
resulting expression in Eq.(2.15), the strain energy U, when inte-
grated over the tnickness t of the plate, separates into a sum U =
Um + Ub’ where Um is the membrane strain energy which is linear in
t, and Ub is the bending strain eneragy which is cubic in t. If the

matarial piroperties £ and v are considered constant, Urn and Ub can

be written as

*E E Y %'(]-v);xy) (2.13).

19
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. __Et 1 2
Um = ‘7_22 Tov ')' J [S; + E; + 2V Ex Sy + 'z (I - v) "YXY"]*'dX d}’ (2.'[5)

and

3

2 2 1. 2
b ™ TATET || DMax * Wy * 20 wow 3 (1) wi T dx dy..
(2.17)

The potential energy function of a uniformiy distributed load

q (x, y) applied to the plate is defined as

V=- w q{x,y) dx dy (2.18)

The total potential energy ¢ of the plate is the sum of the

strain energy U and the potential energy function V, that is

¢ = Um + Ub + v (2.19)

Using Euler's equation of the calculus of variations (32), it can be
demonstrated that the differential equations of equilibrium in terms
of the middle surface dispiacement components (u, v, w) in the x, v,
and z directions are obtained from the total energy expressicn of Cg.

(2.19) and they are written as

3 Loz ey 2y 1v3 - a
3 [ux MR A M ny] "Iy [uy vt wxwy] Q (2.20)
.3_.. [V + v u + lwz + y_wzj + l::’.é..- My +v +ww ] =0 (') 2])
3y T ¥ X 2y 2 7x 2 3x Ty X X"y =



. a.12
Waxxx T 2wxxyy TRy TDTEE {u

L.z 1
v(vy t3 wy)} Wy v

wyy +1-y (uy + v * wxwy) wx_y

where

£t

0= =TT

The quantity D is calied the "flexural rigidity" of the plate.

+ {(v +g@)+w%+

21

(2.22)

Eq.(2.20) through {2.22) are the basic equilibrium equations for

the gecmetric nonlinear problem in a displacement formulation.

Alter-

natively, these equations can be converted to the weli-known von Karman

plate equations if the membrane Stress resultants defined in plate

theory by the statical relations (21)

+t/2

Nx = J 9y dz
-t/2
/2

N o= d

\ J cy z
-t/2
(+t/2

= | -

ny f ny dz

(2.23)



are expressed in terms of a stress function F{x, y} such that

N = 3%F (x,¥)

x 9y
2
N =2 F(x,v)
Y ax
N = 22Fxy)
Xy axay

Using Eqs.(2.9) and (2.11), it can be demonstrated that
N = 7% (Sx +v Ey)

N = T%éz-(ey *ve)

N =N = Et y
Xy ¥X 2(1+V) Xy

From Eqs.(2.24) and (2.25),we can write

2
FRer) . 2 EL (e vve))

XX -V y X
3%F(x,y) . B iy
v Ty T TV E

3F(x,y) _ ¢ . _ _Et

axay ny ST I Tay
From Egs.(2.20), (2.21), (2.22), and (2.25), we get

BNX afl
-—.-i-:\_—a-—i— :O

X 3y

(2.24)

(2.26)

22
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.N_.&{.-l-._lzﬂ
X ay

0 [w + 2

XXXX wxxyy * wyyyy] =a+ N, * N

Substituting £q.(2.25) in £q.{2.29), we get

] [wxxxx * ZWXny * wyyyyj Tar Fyy xx T %

W +
X XX Xy Xy

W -
Ry Xy

23

(2.28)

o
y Myy

(2.29)

Fex Myy
(2.30)

A second relation between the functions F(x, y) and w(x, y) can

be obtained by deriving the strain compatibility eguation. If Eq. (2.25)

is inverted, it yields

= .
*x T Bt (Fyy v Fexd
e =z (F_ -V F )
y Ef ' xx Yy
Y =-MF
Xy £t Xy

(2.31)

Using Eq.(2.9), it can be shown that the compatibiiity conditicn

can be obtained as

2 2 2
3 sx P Yx a‘e

EVRE Lot gy o v

axay

X XY AX w_)’_Y

Substituting E£g.(2.31) in £g.{2.32), we get

£t (w2 - w

F + 2F + F = Bt |w W
XA XX XXYY yyyy Xy XXoyy

(2.32)

——
[3N]
.
(98]
(9%}

——
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£q.(2.30) and Eq.(2.33) are the well-known von Karman equations. This
form of the nonlinear plate equations is most known to investigators
dealing with nonlinear plate equations. The von Karman equations are
mixed equations which involve a stress function and a displacement
function. Such equations are not t;eated by the displacement approach
in the finite element method which is used in this report.

For more understanding of the formulation ¢f the nonlinear plate
equations, the interested reader is advised to consult the following
references (21, 32, 35, 50, 60, 61, 62, 63: 64, 65).

2.4 Brief Review of Previous Work
on Selution of Nonlinear Plate

Equations
To the best of the writer's knowledge, there is only one original

closed form solution of the von Karman nonlinear thin plate equations.
This solution is attributed to Samuel Levy {33, 34) who repre-
sented the noniinear differential equations in terms of trigonometric
series and solved for the deflections and the stresses in c¢lamped and
simply supported uniformly loaded rectanguiar plates. Levy solved two
types of simply supported uniformly loaded rectangular piates: one,
the boundaries of which remained straight and were immovable (he
called that type of boundaries "Edge Displacement = 0"), and two,
the boundaries of which are assumed to remain straight and free to
move in the in-plane direction of the plate (he called that type of
boundaries "tdge Compression = Q") (33, 34).

Because of the difficulties involved in solving the von Karman
nonlinear thin plate equations, researchers directed their etforts
to the development of alternative approaches to the problem which

are based on either simplified physical theories or approximate
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numerical methods such as the variational methods, the finite differ-
ence method, and the finite element method (60).

Marguerre, K., Bengston, H. W., Timoshenko, S., Cox, H. L., and
von Karman are some of the early pioneers who farmulated approximate
solutions based on simplified physical theories to solve the nonlinear
thin plate equations. According to Timoshenko, numerical results ob-
tained by these approximate methods give satisfactory accuracy for
technical purposes. However, he cautioned that a good understanding
of the hypothesis providing the basis of the method is essential in
the application of thesa approximate methods (7, &, 13, 63, 65).

In 1936, Kaiser, R., solved the nonlinear thin plate equations

using finite diffarence formulations. In his solution, Kaiser as-
sumed that the boundaries of the plate were frese to move in the in-
plane direction of the plate and that the edges did not necessarily
remain straight. Kaiser supported his theaoretical work with experi-
mental results that he obtained from a 60cm x 80cm x 0.315cm unifarmly
loaded simply supported square plate and shoWed very good agreement
of his theoretical and experimental works (29). Also, in 1948,
Wang, C. T.,, used the finite difference method to solve nonlinear
problems of uniformiy loaded simply supported rectangular plates with
boundary conditions that approximate plates with rivetsd edges. Wang
used the successive approximation and the relaxation methods to soive
his finite difference equations. The numerical results Wang obtzined
by his formuylation do not agree with those obtained by Levy (70, 71).

With the fast and advanced development of computers the finite

element method placed in the hands of researcners an alternative ver-



~ satile tool for tackling the large deflection plate problem. The
finite element method does not directly deal with partial differ-
ential equations of equilibrium or compatibility; rather, it con-
verts the problem into one requiring the solution of simultanecus
equations. Advancement of this field in solving the nonlinear

plate equations is briefly outlined in the next chapter.
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_ CHAPTER 3
THE FINITE ELEMENT METHOD

3.1 Concept

Veronften, the structural engineer is confronted with the prob-
lem of determining stresses and displacements in continuous structural
systems which have complicated configurations and which cannot be
handled by available classical methods of stress analysis. A numeri-
cal discretization technique, so called "finite element method,"
enabled the'structural engineer to tackle such problems using elec-
tronic computers. The concept of this method is simple: if the be-
havior of a subregion or a finite part, which is known as "finite
element," of the whole structural system can be modeled, then the be-
havior of the entire structural system can be modeisd as well, In
this case, the entire structural systam is considersd to be made-up
of an assemblage of finite elements which are interconnected at
joints called "nodes" or "nodal points." Based on this concent,
users of the finite element method are able to divide a structure
into several substructures which are made of rather simple geome-
tric shapes such as bars, beams, triangles, rectangles, tetrahedra,
and prisms. These different shape elements or a combination of
them make it possible to model any structure of any arbitrary shape.
Since 1960, the finites element method has gained increasing popu-
larity among structural engineers. This is attributed to the fact
that the method handles easily not only problems having complex
geometry and mixed boundary conditions, but alsc problems having

noniinear characheristics.

27
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Formulation of the equations of the finite element model is
based upon energy.principles. Either of the two well-known methods
of structural analysis, namely the force or displacement method,
can be used to derive the equations necessary for the finite element
- analysis. In finite element appiications, the displacement model
has been employed most commonly. This is because a displacement
medel can be expressed in various simple forms such as polynomials
and trigonometric functions, whereas such functions in the force
model are relatively difficult to formulate. Also, the displace-
ment model has better computational schemes for most oroblems in
solid mechanics (19),

The finite element method can be viewed as an extension of
the Ritz method, in which the displacement of a continuum are ap-
proximated by a set of assumed functions. Tﬁe unknown constants in
thesa functions are determined using the well-known minimum poten-
tial energy theorem which states that (17):

"Among all displacement configurations that satisfy internal

compatibility and kinematic boundary conditions, those that

also satisfy the equations of equilibrium make the potential

energy a stationary value. If the stationary value is a

minimum, the equilibrium is stable."

While in the c¢lassical Ritz method, the assumed displacement func-
tion describes the total displacement field of the entire continuum;
in the finite element, displacement functions are assumed for each
element and the entire displacement field of the continuum is approxi-
mately expressed in terms of their nodal point values. The total po-

tential energy of individual elements has a staticnary value wnen the

whole system is in equilibrium. This condition leads to the minimi-
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zation of the total potential energy function of the whole assemblage
of elements, which in turn yields the necessary equations correspond-
ing to its equilibrium state (17). The resulting set of equations is
called the "stiffness matrix" equation.

The basis for the formulation of the stiffness matrix equations
is fully explained in numerous publications by authors such as Argy-
ris (3), Martin (40, 41), Gallagher (22), Zienkiewicz (73}, Cook (17},
Desai (19), and many others. Hence, only the essential features of
the displacement approach of the finite element method pertinent to
the problem under investigation are described in this report.

For accomplishing a finite element displacement analysis, the
following steps must be considered:

1. Discretization of the structure into some convenient geo-
metrical shapes to model the overall geometry of an actual
structure.

2. Setlection of a displacement field that belongs to a finite
class or space of functions continuous in the domain of
the selected element and satisfies regquirements of rigid
body motion, ceonstant strain, and a2 minimum number of
conditions of displacement continuity along its boundaries.

3. Derivation of the element stiffness matrix which is a
function of the geometric and constitutive properties of
the element by relating generalized displacements and
their associated generalized forces.

4. Formation of the global stiffness matrix by assembling the in-

dividual element stiffness matrices to 2 common systam of



reference called the global system. The resulting global
matrix equation expresses the equilibrium state of the
entire structure.

5. Solution for nodal displacements after prescribing the
boundary conditions on the structure.

6. Determination of the strains which are related to the
displacements. The stresses are then calculated using

Hooke's Taw.

3.2 Rectangular finite Element-

To represent the complex geometric nonlinear behavior of the
glass plate problem under investigation, it was decided to provide
adequate representation of the membrane behavior of the structure
that is comparable to the bending. This is accomplished by using
displacement shape functions suggested by Zogner, qu, and Schmit
(9) which are 1imited to elements with boundaries parallel to an
orthogonal coordinate system. A rectangular plate element due to
Schmit, Bogner, and Fox (56) is used in this work as a discretizing
unit. The action of the four corner nodes of this geometrically
nonlinear bending membrane rectangular plate element is represented
by twelve degrees of freedom: four degrees of freedom w, W wy,

and W, to represant the bending action and eight degraes of freedom

Y

. ,
u, ux» Jy, uxy’ v, Vx’ vy, and ny to represent the membrane action.
These degraes of freedom will be defined in a Tater section of this
chapter. Twelve degrees of freedom per node result in a 48 deqrees

of freedom rectanguiar finite element. The geometry, the nodal
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numbering scheme, and local coordinate system for this element are
shown in Fig. 3.1.

The displacement shape functions assumed to represent the dis-
placement components u, v, and w of the middle surface of the plate
element are formulated using products of one-dimensional Hermitian
polynomials of order one. It is noted by Schmit, Bogner, and Fox
(56) that although the use of these interpolation polynomials to
represent the membrane behavior increases the number of degrees of
freedom, it adequately represents the six-rigid body modes and des-

cribes the membrane stress state more accurately.

3.3 Hermitian Polynomials

A Hermitian polynomial of order n is a polynomial of degree

2n+l and can be written as

n
Hos (%) (3.1)
which gives, when x = X
k
9—% =1, K=m form=0ton
dx
and
K
é—% = 0, k #m or when x = X.

dx J



Figure 3.1 Geometric Shape, Nodal Numbering Scheme, and
Coordinate System of a Flat Rectangular
Finite Element Plate
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By setting n =1 and m = 0 and 1, a set of Mermitian poiynomials of
order one is obtained. The set is a set of cubics giving shape func-
tions for a line element ij at the ends of which slopes and values

of the function are used as variables. Such a set of polynomials

can be written for the rectangular finite element as

Hé;)(x) = %1-(2x’ - 3ax® + a*)
il = Lo (axt < 2ax2)
’ For all x : )
J<x<a 3.2
HS})(X) = 13-(x3 - 2ax? + a%x) -
1 3
H%;)(x) = %3-(x3 - ax?)

These are known as the "osculatory polynomials" and are plotted in
Fig. 3.2. Similar expressions for the y-direction are obtained by
replacing x by v and a by b.

Using these Hermitian interpolation formulas, the middle surface

displacement components u, v, and w of a typical discrete slement can

33

be approximated by a sum of their products and undetermined parameters.

For examplie, the displacement component u, in a rectangular plate ele-

ment can be expressed as

2 2
< 1 (1) IS Fmed
u(x,y) ot jil[ Héi)(X)HOj (y)uij H§ (X)HOj (y)uxij .
(3.3)
(1) oanll)y NOrmEmOn
Hgf)(X)HTj (Vhuyqy + Ay (DR T (s



H{x)

1 15& Slope=1
) (x)

Figure 3.2 Hermitian Polynomials of Order One



where the indicies (i, j) refer to a node of the element as shown in

Fig.3.1, and the displacement parameters are defined as

4y g = u displacement at node (i, j)
U .. = (iﬂq at node (i, j)

xij ax ’
U .. = (250 at node (i, j)

AN 3y ’
U . (224} at node (i, i)

xyij X3y > J

Expressions for the displacement components v and w can be written in
similar form as in £q.(3.3) in which the displacement parameters for
each compgnent are interpreted as shown above.

The displacement components can be written more conveniently in

matrix form as

A
= L J - IN] () (3.4)
W

where {4} is a vector matrix reprasenting the displacement compo-
nents, [N] is a matrix containing the assumed shape functions which
are dependent on the Cartesian coordinates x and y, and {al is a
vector containing the nodal displacsment parameters.

There are certain requirements and limitations imposed on the
assumed shape functions to guarantee a succassful finite element
formulation. Rasically, a shape function assumed over the region
of an element is supposad to represent the patiern of displacements

in that element. Therefore, a primary consideration in choosing a
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shape function is that the function must maintain some minimum con-
tinuity requirements between adjacent elements as they deform. The
function must also éatisfy certain other requirements to minimize the
discretization errors in the analysis. ‘These requirements, outlined
below, are satisfied for both bending and membrane behavigr in this
study. The requirements are (16):

1. The functions must include all rigid body displacement states.
That is, they must be independent of the external reference
system so that the solution to a problem will be invariant
with respect to the position of that external reference sys-
tem and hence prevent self-straining of the elements. -

2. The functions must include uniform strain states to assure
the convergence of thelfinite element analysis to the ac-
tual strain field as the element size is reduced.

3. The functions and their normal slopes are uniquely specified
along any element interface by nodal values selected on that
interface. In other words, the displacements and their nor-
mal derivatives aon an interface of an element are dependent
only upon the nodal values occurring at the nodes associated
with that interface. This requirement assures compatibility
and continuity of the assumed shape function.

4. The shape functions must be linear functions of the nodal
parameters so that the resulting system equations are a set
of simultaneous, linear algebraic equations in terms of

these parameters (44),



3.4 Nonlinear Element Stiffness Matrix

The strains in terms of the middle surface displacements in-
dicated by Eq.(2.7) and Eq.(2.8) in Chapter 2 can be written more

conveniently as membrane and bending strains in matrix notation as

( \ ( '
3y 1,9w,\2
(ggﬁ 5(5;)
v 1,0wy2
(’a'}') 7(3'3,')
Ju v Owy ;oW
(72} + (=
o) _ Gy (5% - { (5%) (ry) & (3.5
2
- (%;”zi) 0
- (Ew .
3y
3%w
2 (gggg) 0
L \ J

where the first vector on the right side of the equation expresses
the linear membrane and bending strain components and the second
gives the nonlinear membrane strain components. Alternatively, Eq.

(3.5) can bhe written as

(e}

[CSERCHI RS
(8] (o} (3.6)

where {n} is 3 vector containing the nodal displacement parameters and
[BO], [BL], and [B] are matrices containing the derivatives af the

shape functions. Details of these matrices wiil be outlined in later
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sections of this chapter.

The corresponding "stresées“ are in fact the membrane tractions
per unit length in the x and y directions as defined in £q.{2.23) in
Chapter 2, and the bending and twisting moments per unit Tength in

the x and y directions as defined in plate theory.

M
L XY

Because the membrane strains and stresses are assumed to have
constant variations across the thickness of the plate, the membrane

stresses are obtained from the following expressions

N
= &
X t
N
m
oy = —g‘i (3.8)
N

Xy
where cT and 03 refer toc the membrané stresses in the x and y direc-
tion, respectively, ozy indicates the membrane shear stress, and t
is the thickness of the plate.

The bending strains and stresses are assumed to vary lineariy

across the thickness cof the plate and they can be found anywhere

(3.7) .
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along the thickness from the following expressions

b

-—
~o

o, = Mz

> . 12

oy - Myz (3.9)
b . 12

where c: and 03 are the true bending stresses in the x and y direc-
tions, o:y is the true bending shear siress, and z is the vertical
distance measured from the middle surface of the plate.

Assuming linear, isotropic, homogeneous material within the

element, the stress-strain relations are expressed as
{o} = [D*] (e} (3.10)

where [D*] is a matrix defined in terms of the elastic constants of

the material as

r~ -
1 v 0 Q 0 Q
") 1 0 Q 0 4]
. 0 0 J-'Z-‘i I \
ED*] = 1-\)2 O 0 O -—t3 223 0 (3.]]/
123 123
vt t
0 0 0 13 " 3(O )
2 (1=-v
0 0 0 O 0 _24-— J

-

where £ is Young's modulus of elasticity, v is the Poisson's ratio,
and t is the thickness of the plate.

Using the virtual displacement principie and £q9.(3.4), a virtual
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displacement of a point within an element can be expressed in terms

of the nodal virtual displacement parameters as
{84} = [N] {6a} (3.12)

Consequently, the virtual strain at that point can be written in terms

of the virtual displacement parameters as
{5e} = [B] (5w} (3.13)

The virtual strain energy is equal to the virtual work done by

forces in an element, that is,

Iv{ae}T (o}aV = (80} a3 (3.14)

where {qz} represents the distributed forces per unit volume acting oan
the element.
Substituting £q.(3.12) and (3.13) in {3.14) and integrating over

the volume of the element, it can be shown that

{ (817 {o}aV = {f} (3.15)
y _
where
= [ T ot ea (3.16)
Ia n

Ea.(3.15) can be rewritten as

—
Q
s
Q.
-
[}
-
e
1]
(@]
(99 ]
e
~4
g

[ -
(8(a)} = | [8
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where {¢{a)}} is a function of the nodal displacement parameters a.
Taking the apprepriate variations of the function {&(a)} in

£9.(3.17) with respect to o, we get

. T
(s0(a)} = [V(a] (60} dV + [vcaa1 (o} v (3.18)

Taking the appropriate variations of Eq.(3.10) yields

{86} = [D*] {8e} (3.19)
Substituting £q.(3.13) into Eq.(3.19), we get

{eo} = [0*] [8] {8} (3.20)

In Eq.{3.6), [B] = [8,] + [B,1, where [8 ] is a function of the
displacement parameters o, hence by taking the variations of [B], we

obtain
[68] = (58, ] (3.21)

Substituting Eq.(3.20) and {3.21) into Eq.(3.18), cne gets

(50(c)} = f 1T 0% 03] av (6a} + J 58,17 o} v (3.22)
v ¥

Expanding the first term in Eq.(3.22) by substituting the value of

(8] given in Eq.(3.6) we get

GITToNET o e = [ ] (aTonegd @
Iy y C

.

(8,1 (0*108, T v +

!
i
i
JV

. B -
I ro brms hi ,( 5* T dyl {8t
jVLuLj [0*](8 ] av + JVEBL] [0*1{g,] d/]\daf
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The first term on the right side of £g.(3.23) is the usual Tinear

stiffness matrix which can be expressed as

kgl = | [sp1TCovteg] o (3.24)

The rest of the terms in EQ.(3.23) signify the effects of large dis-
placements on the stiffness of the structural system. This may be

expressed as

(1 = fV[sOJT[o*][BL] o+ IV[BL]T[D*][BL] &+
' (3.25)
f [ 1Tt010e ] e

where [KL] is called the "large displacement" stiffness matrix (73).
In Eq.(3.22), the second term can be written as egqual ta [kg]times

{6a}, where [Kc] is called the "initial stress” or the:"geometric"

stiffness matrix (73) which depends on the stress level in the ele-

ment and which can be shown to be symmetric., That is

j [6BL]T£0} av = [k J{sa} (3.26)
v

Alternatively, £q.(3.18) is written as

o)t = [l + TG1 = [x,1] e (3.27)

-+

The stiffness matrices {KO] and [KL] are calculated by integra-
ting the axpressions given by (3.24) and (3.25) over the volume of

the element aftar the matricas [BO} and [BL] are evaluated. £valua-



tion ¢f these matrices is outlined in the following two sections
which are followed by a section cutlining the proceduras involved
in calculating the stiffness matrix [ch. _

For convenienca and clarity in evaluating these matrices, let
the following equations previcusly stated be rewritten in such a
manner that the membrane and the bending quantities are separated
as

N N1 o1l ™
{u} = (3.4.1)

[0l ™) {ab}J

where [Nm].and [Nb] are matrices containing the éhape functions of
membrane and bending, respectively. Similarily, {a™} and {ab} repre-
sent the displacement parameters for membrane and bending, respec-
tively.

Also, Eq.(3.5), can be redefined as

{e} = {EL} + {ENL}
CY
e™ {e" }
L NL
= 9 R L (3.5.1)
(03 10}
- L

where {ST} and {EE} indicata the linear membrane and bending strain
components, while {eﬂL} and {0} represent the nonlinear strain compo-

nents of membrane and bending, respectively.
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The gquantities in Eq.(3.5.1) are expressed in terms of the de-

rivatives of the shape functions as

-

m P
(e} (871 [o] {a"‘}]

o (3.5.2)
€ (0] [Bg% {ab}[

where [Bg] and [Bg] represent the membrane and the bending quantities

in matrix [Bo] defined in £q.(3.6), and

Ry 01 (8 ‘({am}l

= (3.5.3)
{0} 01 [01] ™

or
Chy o= 8] e (3.5.4)

where [Bf} represent the induced membrane effects due to large dis-
placements {(in this case W and wy) and it contains the derivatives
of the shape functions and the slopes v and wy.

The corresponding "stresses" are also divided into membrane

and bending components, thus £q.(3.7) becomes
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The matrix [D*] defined by Eq.{3.11) is written as

0" [o]
{0*] = (3.11.1)
01 0%
where
] v 77
" = = |v 1 0 (3.11.2)
T=v
Lo o =
and
ﬁ? v 0
3
[0°] = ey v 1O (3.11.3)
T-v
_O 2 —2—--

These definitions enable us to proceed with evaluating the
matrices [80], [BL], and [KG] as illustrated in the following sec-

tions.

3.4-A Evaluation of [BO]
[f the ncdal numbering scheme for the flat rectangular bending
membrane alement shown in Fig, 3.1 is followed, the displacsment

component u(x, y) given by Eq.{(3.3) can be written as
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u(xy) = [H‘1’<x)H(‘)(y), RO Gt gy, i oMy,

01 01 11 o 01 11

R oar( (), H(‘)<x> Dy, kM M),
11 11 02 11 Q2

HM oMy, o ’( W (), ki (M,
M 12 11 12 Q2 02

R Gon My, 1 oM gy, 1M oy,
12 02 02 12 12 12

13 oriT ), 1 coril ), Hip condl (),

(T (n )
iy (x)” (W)al gy Ugqps Upqye Ugoqys Ypp,

Uxr2® HYy127 Yxyr2e Y22, Yxz2e Yy220 Yxy22e Yo1°

}

“x21, Yy21,Y%ky2: (3.28)

Similar expressions can be written for the displacement components
v and w. This makes it possible to write the linear strain compc-
nents in terms of the derivatives of the shape functions and the

nodal displacsment parameters as
{sL} = [BOJ {a} (3.29)

where [Bo] is a [6 x 48] matrix which has the general partitioned form

----------------------

oooooooooooooooooooooooooooooooooooo

ooooooooooooooo

Forms of the matrix [80] avaluated for the computer program are

shown in Appendix A.



3.4-8 Evaluation of [B

From £gs.{3.5) and (3.5.4), we can write

v

the right side of Eq.(3.31) can be conveniently written as

1, 3w\
750
1,5W. )2
73y
(& (3
t }
where
and

O

( W |

X

. ’12 [c]{o}
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(3.31)

(3.32)

(3.33)

(3.34)



The quantity {9} is defined by expressing the slapes W, and W, in

terms of the derivatives of the shape functions as
b,
{6} = [G] {a"} (3.35)
or
(50} = [&] (&™) (3.36)

where [G] is a [2 x 16] matrix which is a pure function of the element
coordinatas.

From Egs.(3.31) and (3.32), we can write
legy} = 7 [C]00} (3.37)

Taking the variations on both sides of Eq.(3.37)

(sl 3 = %-[sc]{e} + %-[c]{ae} (3.38)
But, it can be shown that
[ac]{e} = [C]{se} (3.39)

Because of a spacial property~ of the matrices [C] and {8} using Eqgs.

(3.36) and (3.39), Eq.(3.38) can be written as

(8¢} } = [CI(s0} = [c106]ee’t = (807 fsa} (3.40)
where

[8°] = [c106] (3.41)

*See Ref. (73) page 510 for the special property of the matrices
[C] and <0F.
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Egs.(3.8) or (3.5.3) imply that

(o] [clfe]
B ]
L o] (o]

(3.42)

where [BL] is a [6 x 48] matrix which is a function of the deriva-
tives of the shape functions and the slopes W and wy. Forms of the

[BL] matrix as evaluated for the computer programare shown in Appen-

dix A.

3.4-C "Initial Stress" Stiffness Matrix [Kc]
The "initial stress".stiffness matrix is defined by Eg,{3.26)

and rewrittan here for convenience as

- T
[K 160 = t [A[asLJ (o} dA (3.43)

where A is the area of the e]emgnt and dA indicates integration over
that area.

Using Eq.(3.7.1) and taking the variations on both sides of Eg,
(3.42), Egq.{3.43) becomes

K 1téa) = ¢ J' [l [T (s™| aa
A

(617 tscl” ol

fo] + [ol]
- ia 1637 rsc1 o™ + 0]

dA (3.44)



From £9.(3.7) and Eq.(3.7.1), we can write

WM o= IN | (3.45)

Again, using the special property of the matrices [C] and {6},

we can write

{ b
N
X p—
T, m T Nx ny
[sC] {c"} = [8C] ‘Ny . = {¢a}
. Ny N J
)
N, ny] X
= [G]{ 3"} (3.46)
N N
Xy Y J

substituting £q.(3.46) into £g9.{3.44), we get

0] [0l

[KG] = (3.47)
b
01 Ik

vhere

[Kbl ( . {Nx ny'
3 = f } Gl ; [G] da (3.48)
| Ty
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Adding the linear stiffness matrix [KD], the "displacement” stiff-
ness matrix [KL], and the "initial stress” stiffness matrix [KG], the

total element stiffness matrix is obtained as
= 1
K1 = [kl + DK T+ [K,] (3.49)

where [KT] is the total or “tangential® stiffness matrix. Expressions

for portions of the matrices [KD], [KL}, and [KG], as calculated in

the computer program, are shown in Appendices B, C, and D, respectively.
It should be noted that the approach used to derive the stiffness

matrices just shown is attributed to Zienkiewicz (73).

3.5 Eguivalent Load Vectors

The concept used in determining the load vector for a structural
system subjected to some loading is that the total work done by the
equivalent loads must be equal to the work done by the actual Toads.
In the computer program prepared for this investigation, membrane lcad
vectors qm for concentrated nodal loads, distributed edge shear lcads,
and uniformiy distributed in-plane lcadings on each of the four sdges
of the element ars formulated. Similar expressions are aiso formu-
lated for the bending load vectors due to concentrated nodal loads,
distributed edge moments, distributed edge shears, and uniformly dis-
tributed lateral locads.

As an illustration, the calculation of the bending load vector
9y due to a uniformly distributed Tateral load g will be demonstrated
here, A displacement, say w in this case, may be expressed in terms
of products of one~dimensional Hermitian interpolation polynomials

as
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wix.y) =% I [ ) oS3 owg g + WD oS
—] ‘l J

+ B G0RED w5+ 1D (x )H§j)<y)wxyij} (3.50)

For a rectangular flat plate element with dimensions a and b -
along the x and y axes, respectively, the components of the bend}ng

load vector are calculated from
b (a
vV = -J f q w(x,y) dx dy (3.51)
g ‘0

For example, the component of the bending load vector corresponding

to the nodal parameter wx]1 at node {1,1) is obtained as

b ra
] i D) 57
(ay) 11 %) H01 (¥) q dx dy (3.52)
"1 00 .
Substituting the expressions for H§{)(x)l*and Hé})(y) and carrying

out the indicated integration, we obtain

. ga’b
(ay )y, 57 (3.53)
x11
A1l components of the membrane and the bending load vectors are
obtained in exactly the same manner {9). Table 3.1 shows the bending
load vector components for a rectangular element due to a uniformly

distributad lateral Tload.

With all components necessary for computing the large deflectiaon

*The prime on H§¥)(X) indicates derivatives.



Table 3.1 Equivalent Loads of Uniformly Distributed
Lateral Load for a Rectangular Plate Element
Node Displacement Uniform Lateral
Parameter Load g
L2 Qab/4
W qab/24
(],1) Xl] -
nyY gab”®/24
2.2 4
wxyH Qa“b /144
4
WTZ 1ab/4
W ga’b/24
-qab®/24
wyTZ qa _
¥xy12 -qa’b?/144
w22 nab/4
2
(252, - 2
wy22 qab“/24
szl 4
Wyy22 qate/i4d
Way qab/4
-qain/2
} wa? qa“b/24
(2,1 2
wyZX gab®/24
-qa’h%/144
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probiem available, the solution of the assembly of all the elements
is -accomplished in the usual manner as if the stiffness of each ele-
ment were simply the sum of [Koj, [KL], [Koj stiffness matrices.
Thus the solution of the nonlinear problem becomes a sequence of
solutions of Tinear problems in which calculated displacements and
stresses are added to the previous values to give an up-to-date
account of the geometric state of the structure as the applied load
is increased. An outline of the solution technique used in this

work is presented in the next chapter.

3.6 Combined Bending and Membrane Stresses

The stresses at the middie and outer planes of a plate element
due to the applied external loads are the ones of interest in this
investigation. Figure 3.3 shows that in the x-direction a bending
stress attains ts extreme levels at the outer surfaces of the ele-
ment and it is zero at the middle surface, while the membrane stress
is uniform throughout the plate thickness. If this is assumed to
hold true for all stress components, the bending and membrane stresses
can be superimposed to obtain the total stresses acting on the
olate,

For each of the four nodes of the rectangular element the mem-
Drane and the bendfng "stresses” are obtained from the stress-strain
relations indicated by Eq.{3.10) which may be written in matrix form

as



85

/////’ y
/7 f:::::;f::::::::L::j
} s/
’ = ///,
V4 P ’4
s/ 7 ‘s
///, “""‘y, ’
Z = - - -4 X
=
Middle Surface
- - — - = =
N
cb + cm = ot
X X X
Bending Stress + Membrane Stress = Total Stress

Figure 3.3 Combined Bending and Membrane Stresses
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mo.m m , ,
where s;, Ey’ and < denote the membrane strain components while

Xy
sb, ab, and ab indicate the bending components, all of which can be

X° Yy Xy
calculated from £q.(3.8).
The true membrane and bending stresses can then be calculated
using £q9.(3.8) and (3.9). The combined stress components due to
membrane and bending action are obtained at the extreme surfaces of

the plate by simply adding the respective components as

< bw

= + .

I, 9y {GXJ
m= . b'l 2 =
ol = g + {07 3.55)
Y y oy ( f

o MmE. by

Xy cxy tcxy

The stress components Ty Gy’ and ny calculated at e=ach of the
four nodes of the rectangular element are then used to calculate the
principal stresses at the nlate surfaces. The orincipal sirsss eaua-

Tions being the standard ones for two-dimensional stress will not be

snown nhere.



These stresses are averaged at nodes that are common to more
than one element. This averaging tends to reduce the error inher-
ent in the displacement approach in which equiiibrium condition of
the forces is not completely satisfied.

3.7 A Brief Review of the Develop-

ment of the Finite Liement Method
in Nonlinear Problems

In 1960, Turner, Dill, Martin, and Melosh (68) introduced the
finite element methed to geometrically nonlinear problems in a paper
in which they analyzad the effects of initial in-plane stress on the
stiffness of stringers (i.e., beam-columns with zero bending stiff-
ness) and of plane stress-triangle elements. The approach was to
develop the initial stiffness matrices for use in the in¢remental
force-displacement relation. Gallagher, et al. (22), substituted
a complete cubic function into the strain energy expression to de-
rive the stiffness matrices. Martin (39) reviewed several papers
on the derivation of nonlinear stiffness matrices and concluded

that the same functions need not be usad to represent both linear
and nonlinear effects. Xapur and Hartz (30) derived "“stability-
coefficient” matrices for nine independent states of in-plane
stress which represented an extension beyond previous derivations
that were based on only three stress states. Clough énd Felippa
(16) made comparison studies of several finite element formula-
tions in plata buckling in which both consistent and inconsistent
approaches were used and found that the inconsistent approach gave
good results. Murray and Wilson (48) used constant stiffness ma-

trices and acccunted for all geometric nonlinearities by coordinats
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rotations. They noted that their approach was equivalent to using
the Kirchhoff's assumptions for each individual element, rather than
the nonlinear von Karman theory. Mallett and Marcal (36) presented

a unifying basis for formulating the large deflection problems. They
derived the total strain energy as a function of nodal displacements,
using functions and including strain energy terms which previously
had been neglected. Stricklin, et al. (53) applied the matrix dis-
placement method in which they empioyed linear and nonlinear equili-
brium equations by separating the linear and nonlinear portions of
the strain energy and then applying the nonlinear terms as additional
generalized forces,

Recent papers on finite element methods in noniinear plate
analysis have focused on the method of solution. Kawi and Yoshi-
mura (31) gave an iterative procedure for solving large deflection
plate problems. Their approach was similar to the unbalanced-forcs
iteration, but their formulation included all stiffness terms.
Schmit, Bogner, and Fox (56) used a direct minimization technique
for solving Targe deflection problems of plates and cylindrical
shells. To compute strain energy, rectangular ccoefficient matrices
were summed with Tinear and quadratic displacement vectors. Hais-
ler and Stricklin (23) developed and evaluated several solution
procedures for geometrically nonlinear precbiems and concluded that
the selection of solution procedure depencs highly on the degree
of nonlinearity the oroblem possesses,

The interes%tad reader is advised to consult the following

referencas for more understanding of the various finite element
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formulations of geometrically nonlinear problems (1, 3, 7, 11, 14,

17, 40, 42, 43, 44, 45, 46, 81, and 62).

At this point, it should be noted that the present finite ele-
ment formulation is not the only attempt to solve the geometrically
nonlinear rectangular glass plate problem. Tsai and Stewart (67)
used a finite element program developed by Melliere (43) to study
the stress distributions in glass plates. Moore (46) used the
ARGUS nonlinear finite element structural analysis program to
analyze rectangular glass solar panels subjected to uniform normal
pressure loads. The formulation of both above mentioned computer
programs include only constant strains to represent the membrane
behavior of the plate whereas, the present finite element program
includes not only constant strains but also linear strains to
represent the membrane behavior of the plate. ‘Representation of
the membrane behavior as such is important in bettar assessing the
overall stress distribution within the glass plate, particularly

at the perimeters of the plate.



CHAPTER 4
SOLUTION QF THE NOWLINEAR SYSTEM EQUATIONS

4,1 Inc¢remental Approach

The method of solution of the nonlinear system equations adopted
in this investigation falls under what Haisler (23) classified as
"Class-I incremental methods without equilibrium checks." The con-
cept of this method is to assume a Tinear response of the structure
at each loading increment wheh the total load is applied in a se-
quence of sufficiently small increments. These incremental quanti-
ties are added to corresponding displacements, strains and stresses
to give an up-to-date account of the geometry of the plate. These
~up-dated quantities are then used in a following loading increment
to compute the stiffness matrices which include the nonlinear ef-
fects of the deformed geometry of the plate. The process is repeated
by applying subsequent increments of the load until the fotal foad is
applied. The resulting éffact is to solve a seguence of linear prob-
lems in which the stiffness matrices are recalculated based on the
prevailing geometry of the structure prigr to esach loading increment.
The nrocedure of the method can be mathematically written as

.3+ A (1], fash, = (4.1)
L-o- Sliel T "

-

- . , . . L PTNL
where [KOJ is the linear part of the stiffness matrix and (K ~(a)]
is the noniinear part. The nonlinear part of the stiffness matrix is

a2 function of o, the displacement components recresenting the ceformed

geometry of the structurs srior fto applying the icading increment,
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and {aa} is the increment of displacements resulting from applying

the ith loading increment {Ad}. After applying the ith loading in-

crement the total displacements are obtained by
- 1. -
@), = .3 lear, (4.2)

Incremental solution procedures for geometrically nonlinear
probiems are presented in the literature in several different forms.
Incorporation of a particular form of an incremental procedure in the
formulation of a geometrically nonlinear problem depends on several
factors such as the degree of accuracy desired, the degree of non-
Tinearity in the probliem, the complexity of the problem formulation,
the availability of computer dollars, etc. Haisler (23) and Strick-
1in, Haisler, and von Rieseman (58, 59) have made intensive studies
of several solution procedures for geometrically noniinear problems

and the interestad reader is referred to their work.

4.2 Algorithm of the Incremental Aoproach

To solve the geometric nonlinear problem under investigation
using the proposad finite element formulaticn, the following algor-
ithm is used for the incremental approach.

During the ith step, an incremental load vector faq}i is applied
to the assembled elements of the plate fo yield an incremental dis-
placement vector {Aa}i. For each elament of the structure at the
end of the ith step:

1. Determine current deformed geometry of the element by

adaing the resuiting incremental displacement vector to

the total displacement vectcr



laby = {ak, ; + {20}, (4.3)

Calculate corresponding strain components by formulating
the [B] matrix which is a function of the derivatives of
the shape functions and only L and wy of the displace-

ment vector {a}i
{e}f = [Bji{a}i (4.4)

Calculate corresponding stress components using the re-

lation
{o}; = [0*]{el, (4.5)
Calculate [KO] and [KL] using
(k] + %3 = | (B1TC0%0E] av (4.5)
v
Calcutate [KS] using
.
N
X XY \(a] qv (1.7)

NN
Xy Y

M

b [ T
K°7 = G
[ c] Jv[ ] {

Repeat algorithm 1 through 5 for all elements and assemble
the global stiffness matrix for the entira structure.

Apply the next loading increment {&q}1+1 to the assembled
structure and calculate {&a},;+I by solving the simultaneous

equations of equilibrium.
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(K1, (ady = (agly,, (¢.8)

8. Repeat algorithm 1 through_7 until the entire load is ap-
plied.
The incremental approach outlined above is schematfcal1y outlined

in Fig. 4.1.



— 29}, {29}, =

i-1 i i+l

Figure 4.1 Incremental Approach
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CHAPTER 5
NUMERICAL EXAMPLES

Four examples of simply supported uniformly loaded large de-
flection rectanguiar thin plates are analyzed in this chapter to
demonstrate the validity and versatility of the finite element fgrm-
ulation presented in tnis fnvestigation. Results are then compared
with theoretical solutions and experimental data available in the
literature. Although the program formulation is capable of analy-
zing various types of boundary conditions such as clamped or free
edges, and different combirations of loading such as concantrated
and uniformly distributad-static Toads, only problems pertinent
to this investigation are presented here.

In the example problems treated, results of two classes of
simply supported rectangular thin nlates with uniform static loads
are snown. These results show the difference which is mainly due
to the prescribed boundary conditions in the plane of the plate.
This difference is described in more detail in appropriate sections
of this chapter. The uniform static loads are repiaced by equiva-
lent concenptratad loads at the nodes as described in Chapter 3.
Uniform and non-uniform discretization schemes of the plate struc-
ture are employed in this dissertation to assess the etfects of the
boundary conditions.

Jue to limitad research funds and the lengthy CPU time consumed
by each run of tna computer precaram, the <iscretization of one quarter

e

af the plate is Timited to a grid size of 1€ elaments. Also, the
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number of loading increments is limited to 100 when the grid size-

of one gquarter of the plate is 9 elements.

5.1 Simply Supported Rectangular
Plates: tdge Lisplacement = U

Levy (34) called the boundary conditions of this class of prob-

lems "Edge Displacement = 0," while Timoshenko (65) named them "im-
movable" edges., In this class of problems, the boundary esdges of
the plate are assumed to be laterally supported and free to rotate
along the edges in the lateral direction. In the transverse direc-
tion, they remain completely restrained from having any displacement
along these edges in the piane of the plate. These boundary condi-
tions were mathematically formulated and shown in Chapter 2. Two
examples of this class of problems are shown in the following sec-
tions. The first exampia problem exhibits results of a simply sup-
ported square thin plate with a uniform static lcad and the second
i1lustrates results of a simply supportad rectangular plate with

=

an aspect ratio of 1.6 and a uniform static load.
5.1-A Example I. Simply Supported Uniformly Loaded Square
Plate: Edge Displacement =
In this exampie, a 10-inch simply supported square plate which
has a constant thickness of (.04 inch is subjected to a monotoni-
cally increasing static lateral load of 1.837 psi. The elastic
constants of the matarial of the plate are assumed to te 27.6 x

10% psi for the Young's modulus of elasticity and Q.316* for the

*The value of 0.316 is usad to agree with that in Levy's (34) solution.



Poisson's ratio. Because of the double symmetry, the problem is
modeled by discretizing only cne quarter of the plate. In this
example, a grid size of 2 x 2 elements of equal arsas is used.
The total load is applied in 40 equal increments and the resuits
agree reasonably well with Levy's solution (34).

Fig. 5.1 shows a non-dimensional plet* af the deflection of
the center of the plate vs. the applied load. A maximum deflection
of nearly twice the thickness of the plate is attained as shown in
the curve of Fig, 5,1. The curve clearly indicatas the nonlinear
load-displacement relationship involved in this problem, where the
displacement does not increase proportionally as the iocad is in-
creased. This effect is due to the increased stiffness of the
plate whicn in fturn is a result of the membrane effect induced by
large lateral displacsments.

Membrane and bending stresses are alsc plotlad against the
load and are shown separately., Stresses at different points on
the plate are drawn s¢ that direct comparison with Levy's solution

is possible. In Fig. 5.2, Curve A shows the bending stresses cg Gr

03 of the extreme fibers at the center 27 the plate while Curve 8
indicates the shearing stress due to bending cgy of the extreme
fibers of the upper right corner of the plata. It should be notad

that the difference in the two solutions as revealed in Curve 8§,

is believed to be due in part to the coarse discretization since

*niass otherwise 3tated, non-dimensional plots are usad throughout
tnis investigation so that arbitrary dimensions of sguare and rec-
tanguiar plates with arbitrary material constants may de used for
comparison.
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only 4 elements are usad to model the nroblem. It should also be

noted that the boundary condition of the bending mement being equal to
zerp at the edges of the plate is not completely satisfied by this fi-
nite element formulation. Non-dimensicral membrane stresses vs. non-
demensional applied loads are shown in Fig. 5.3 for different points
on the plate. Curves A and C in Fig. 5.3 iilustrate the variation

of the membrane stresses oz and cg, respectively, at the center edge
of the right side of the plate. Curves B refer to either of the

variations of the membrane stresses UT or g at the center of the

¥
plate, and Curves D raveal either of the variations of the membrane
stresses 32 or 03 at the corner of the plate. It should be noted
that despite the coarseness of the discretization used to model this
plate problem, good agreement with Levy's results for displacements
and bending and membrane siresses are achieved as exhibited in Fig.
5.1 through Fig. £.3. This is attributed to the fact that the as-
sumed shape functions used in this investigationdo, in fact, depict
the displacement fields of this plate structure extremely well.

Since the differencs between the present finita slement solution
and Levy's solution is small as shown by the curves in Figc. 5.7 through
5.3, it seemed unnecessary to carry out the analysis any further by
refining the grid size aor increasing the number of loading increments
to obtain results that would match Levy's solution point-by-noint,

The size of the lcading increment and the fineness of the discretiza-
tion, no doubt,have major effacts on the accuracy of the results ob-
tained by the finite element formulation. In the second class of prob-
Tems treated in this investigation, these two factors become more imoor-

rant in acnieving gocd accuracy as is demonstrated in a latar problem.
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5.1-B Example II. Simply Supported Uniformly Loaded Rectangular
Plate: Edge Displacement = Q
A 96.0-inch long, 60.0-inch wide and 0.25-inch thick aluminum
plate subjected to static lateral uniform load of 0.70 psi is used in
this example. The Yoﬁng's modulus of elasticity and Poisson’s ratio

for aluminum are 10.6 X 106

psi and 0.33, respectively. One quarter of
the plate is discretized into nine rectangular elements of different
areas. The elements with smaller areas are placed along the edges of
the plate as shown in Fig. 5.4. The total load is appiied in 50 equal
increments in order to obtain the load-deflection relationship exhibited
by the dashed curve in Fig. 5.4. The solid 1ine shown in the figure
represents an approximate solution attributed to Timoshenko (65); catcu-
lations for this curve are reported by Anians (2).

As was demonstrated in the example of the previous section, bending

and membrane stresses are plotted separately for different points on the

plate. Variations in bending stresses are shown in Fig. 5.5 at the

b
y are

center and at the corner of the plate. Bending stresses og and o
indicated by Curve B and Curve C, respectively. As expected, the bending
stress parallel to the shorter side of the plate, in this case 03, is
larger than the bending stress parallel to the other side. However, the
géneral behavior of the center bending stresses, particularly parallel to
the shorter side of the plate, is similar to that of a square plate. It
can be noted by examining Fig. 5.5 that c: varies almost linearly after
the load (g/E) (b/t)* reaches a magnitude of about 48.0. The shear stress
due to bending Ggy at the corner of the plate is indicated by Curve A. It

should be noted that this shear stress has a comparable or Targer magnitude

than the center stress in this plate. The opposite was the case for the
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corresponding stresses in the square plate (see Fig. 5.2). In Fig. 5.6,
membrane stress variations in the x and y directions are shown for the
center, the center of the short edge, and the corner of the plate, and
are indicated by Curves A, B, C, D, and E. It should be noted that the
magnitudes of 02 and o

Y
the difference is so small that it cannot be shown in the figure.

at the corner of the plate differ slightly but

5.2 Simply Supported Rectangular Plates: Edge Displacement # 0

In this class of problems, the boundaries are also assumed to be
laterally supported and free to rotate in the lateral direction. But, it
is also assumed that the plate edges can move in the plane of the plate.
Levy (34) presented a plate solution of this type in which he assumed that
the plate edges could move in-plane, but were constrained to remain straight.
Levy termed this set of boundary conditions "Edge Compression = 0." These
boundary conditions assumed by Levy do not define the actual edge conditions
of the thin glass plates under investigation. The edges of typically
installed glass plates can translate in the plane of the plate, and do not
necessarily remain straight. This fact was confirmed experimentally by
Anians (2) who measured the in-plane edge displacements of a laterally
Joaded window glass plate instalied in an actual framing system. Kaiser (29)
presented a solution for a uniformly loaded, simply supported square plate
with edges that are both free to move and distort in-plane. He used a
finite difference formulation to solve the nanlinear plate equations and
compared his results with data obtained from an experiment which he conducted
on a square plate. Results obtained from the present finite element
formulation are compared with Kaiser's soluticn.

Differences in the in-plane boundary conditions of simply supported

plates, as defined by Levy and Kaiser, result in a substantial difference
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in the center deflection results obtained in each case as shown in Fig. 5.7,
For example, when Levy (34) compared his results for "Edge Compression = 0"
with Kaiser's solution he found that a load of (g/E){a/t)* = 118.8, the
center deflection obtained by his method was aboutl25 percent lower than
the center deflection obtained by Kaiser.

Two examples in this class of simply supported rectangular plate problems
are demonstrated using the same plate dimensions used in Example I and
Example II in Section 5.2. In the first ekamp]e, center deflections and
bending and membrane stresses are plotted against applied loads. Effects of
the size of the loading increment and the fineness of the discretization on
the stresses are illustrated. Center deflections of a rectangular plate
calculated 'in the second example are compared with experimental results
obtained by Anijans (2). Finally, membrane and bending stresses at the center

of the plate are plotted against the applied loads.

5.2-A Example I. Simply Supported Uniformly Loaded Square Plate:
Edge Displacement # 0

The square plate problem analyzed in Example I of Section 5.1-A is
analyzed again in this section. 1In this analysis, it is assumed that the
edges of the plate are free to move in the plane of the plate and do not
necessarily remain straight. In order to compare results with Kaiser's
solution (29), the lateral load is changed to 0.83 psi and is applied to
the plate structure in 100 equal increments. Also, one quarter of the
plate is idealized by nine rectangular elements of different dimensions.
This scheme is adopted for this problem so that discretization errors at
the edges of the plate are minimized.

The center deflection obtained by the finite element solution is

compared with Kaiser's solution in Fig. 5.8. A center deflection larger
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than twice the thickness of the plate was attained. Obviously, this is well\
within the nonlinear range. The stiffening of the plate with increasing
deflection is again indicated by the decreasing slope of the curve., It
should be noticed that the center deflections obtained by the finite element
method are slightly lower than those obtained by Kaiser, but uniformly so
throughout the application of the load. This difference is partially attri-
buted to the coarse finite element discretization, particularly at the
center of the plate (see diagram in Fig. 5.8).

Membrane, bending, and total stresses are plotted against the load in
Fig. 5.9. Agreement of bending stresses with Kaiser's solution is not as
good as the agreement between membrane stresses. However, both the finite
element solution and Kaiser's solution are subject to numerical errors.
Differences are also apparent in comparisons of total stresses which are
simply the sum of the bending and membrane stresses. It should be noted
that, for clarity, results of only every 10th loading increment are indicated
on the curves of Fig. 5.8 and Fig. 5.9.

The effects of the size of the leoading increment on the accuracy of the
center deflection, bending, and membrane stresses are studied in this example.
The above plate problem is solved using the same dimensions, elastic constants,
and discretization scheme with the loading applied in 20, 50, and 100 equal
increments. The effect of the size of the loading increment con the center
deflection is revealed in Fig. 5.10. The convergence of the deflection
improves as the number of loading increments is increased. The center
‘deflections obtained when applying the load in 20, 50 and 100 increments are
slightly Tower than those obtained by Kaiser's solution, but uniformly so

throughout the load. These comparisons indicate that the deflections of
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the plate are well represented by the finite element formulation when 100
Toad increments are used.

Parallel to the comparison of results made in Section 5.1-A, the
bending stresses at the center and the corner of the plate are shown in
Fig. 5.11. Central stresses are also compared with those obtained by
Kaiser (29). 1In Fig. 5;1], it is indicated that as the number of loading
increments is increased, the magnitude of the bending stress at the center
of the plate decreases while the corner shear stress increases.

Figure 5.12 illustrates effects of the number of loading increments
on the membrane stresses at the center and the corner of the plate. The
stresses at both locations appear to converge as the number of loading
increments increases. Confidence is further increased by the reasonably
good agreement of the center membrane stress with that obtained from Kaiser's
solution. It should also be noted that the stress at the edge center of
the plate is a compressive stress, indicating distortion of the edges of
the plate.

When studying the effect of discretization on the accuracy of the
finite element plate model one quarter of the sguare plate used above is
idealized with 1, 4 and 9 elements and the load is applied in 50 equal
increments. (Fifty increments are used to solve the problem; once for
one element discretization and again for four element discretization.
Results of displacements and stresses are already available for the 9
element discretization.)

The effect of the discretization on the bending stresses at the
center and the corner of the plate is shown in Fig. 5.13. These
stresses converge as the discretization is refined. Convergence also
occurs for membrane stresses at the center and the edge center of the

plate, as indicated in Fig. 5.14,
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Effects of the number of loading increments and the discretization on
the accuracy of the finite element solution are discussed later in more

detail.

5.2-B Example II. Simply Supported Uniformly Loaded Rectangular
Plate: Edge Displacement # 0

The aluminum rectangu1ar'p1ate problem analyzed in Example II of
Section 5.1-B is solved in this example assuming simply supported edges
that are free to move in the plane of the plate and are not constrained to
remain straight. The load is applied in 100 equal increments to obtain
the variation of the center deflection of the plate shown in Fig. 5.15.

It should be observed that the axes of the load-deflection curve are
expressed in terms of loads and deflections expressed in units of psi and
in., respectively. The curve is plotted in this manner in order that a
point-by-point comparison of the finite element solution can be made with
experimental data presented by Anians (2),

Anians (2) studied the center displacements of an aluminum plate
mounted in an actual window glass framing system similar to that presented
in Fig. 1.1. To assure that the aluminum plate was free to slip in-plane,
the interface between the aluminum plate and the neoprene gaskets was
lubricated prior to testing. To further assure that the plate edges were
free to slip in-plane, the outer neoprene gaskets were installed only near
the plate corners to resist Tocalized corner uplift, Center deflection
results measured by Anians are compared to theoretical results generated
with the finite element analysis in Fig. 5.15.

As is the case in all deflection curves presented preyiously in this
investigation, the deflection curve obtained by the present finite element
formulation reveals the stiffening of the plate with increasing deflection,

This effect is indicated by the decreasing slope of the curve. It should
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be noticed that there is an ekcellent‘agreement between the displacement
results obtained by Anians and theoretical results up to a central deflec-
tion of three times the plate thickness as illustrated in Fig. 5.15. At
that point, the theortical deflections tend to be less than the measured
deflections. This condition is attributed to the fact that the lateral
displacement along the perimeter of the plate is assumed to be zero in
the present finite element formulation, while in Anian's experimental work
the neoprene gaskets along the plate perimeter allowed the edges to move a
small amount in the lateral direction,

In Fig. 5.16, bending and membrane stresses at the center of the

plate are shown. The effect of the boundary edge conditions is clearly
avident if the value of the membrane stress in the y-direction is compared

with that presented previously in Fig. 5.6.

5.3 General Remarks and Discussion of Results

The preceding sections of this chapter included example problems
involving large displacement-small strain, simply supported, uniformly
loaded, sguare and rectangular plates with two different in-plane boundary
conditions: Edge Displacement = O (Examples I and II in Sections 5.1-A
and 5.1-B), and Edge Displacement # 0 , where the edges do not necessarily
remain straight as the plate is deflected (Examples I and II in Sections
5.2-A and 5.2-B, respectively). The validity of the proposed finite ele-
ment formulation has been demonstrated for specific large displacement
square and rectangular plate problems by comparison with closed form solu-
tions. The finite element technique also can be applied to plates of
rectangular shape with boundary edge conditions for which no cliosed-form

solution exists.
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t was noted from the numerical studies conducted cn the prob-
lem in Example I of section 5.2-A that the convergence cf stresses
to exact values differs between bending and membrane stresses, and
depends on the fineness of the finite element discretization, the
location within the plate, and the relative magnitude of the load-
ing increment. This difference can be outlined as follows:

1. As tnhe number of loading increments is increased the con-
vergence of the bending
a) Stress at the center of the plate approaches
the exact value Trom én upper bound,
b) Stress at the corner of the piate apprbaches
the exact value from a Tower bound,
and the convergence of the membrane
a) Stress at the center of the piate approaches
the exact value from a lower bound,
b) Strass at the center adge of the Dlate approaches
the exact solution from a lower bound.
2. As the size of the discretized element is reduced the con-
vergence of the bending
a) Stress at the center of the plate approacnes
the exact sclution from an upper bound,
b) Stress at the corner of the plate approaches
the exact value from an upper bound,
and the cgnvergenca 07 the membrane
a) Stress at the centesr oT the plate approaches

the exact value from an upper bound,
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b) Stress at the center adge of the plate approaches

the exact value from an upper bound.
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CHAPTER 6
CONCLUSIONS AND RECOMMENCATIONS

In this investigation, a finite element displacement approach
formulation has been presented for obtaining numerical solutions to
geametrically nenlinear large displacement-small strain problems of
rectangular thin elastic plates. It has been demonstrated that the
method is capable of solving rectangular plate problems in which
membrane and bending behaviors are coupled and that displacements
and stresses, particularly membrane stresses, are sufficiently ac-
curate for engineering purposes.

[t should be noted that in most finite element research dealing
with geometrically nonlinear plate problems, the membrane behavior
of the plate is represented by simple shape functions which include
only constant strains. [n this research, the membrare behavior is
modeled by products of one-dimensional Hermitian polyncmials of crder
one. Thus, the resuliting shape functions are polynomials capable of
representing not only constant strains but also strains which vary
linearly within the element. Representation of the membrane be-
havior as such is important in studying the stress distributions in
the 3lass plate, particularly at the perimeters of that plate. This
approach furnished results that are in very good agreement with avail-
able theoretical and experimental data. Based on the results obtained

from this resesarch, the tfollowing conclusions have been wmade.



The proposed finite element formulation fulfills the ob-
jective of the investigation.

The glaés plate which has edges that are free to move in-
plane experiences larger central stresses and displacement
than plates with “immovable" edges.

Appreciable compressive membrane stresses which have
maximum values at the center edges develop along the peri-
meters of the plate.

Convergence of stresses differs between bending and
membrane stresses and depends upon the fineness of

the finite element discretization, the location within

the plate, and the relative magnitude of the Toading incre-

ment.

The present research has given 2 means by which the stress dis-

tribution in rectangular plates can be studied. However, as with any

research, this investigation must be continued. Therefore, it is

recommended that certain improvements be made on the computational

scheme of the proposad approach and that cartzin topics be pursuad

Improve the computational scheme by checking the equili-
brium at each loading increment and using a gegmetric
prograssion type incremental approach.

Conduct more studies of edge stressas cof the glass plate
probiem by using a finer mesh size along the boundaries and
plotting separataly the variaticns of bending and membrane

stresses at critical points in the piate.
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Compare stresses at critical points of the plate that
develop when the edges are free tc move in the plane of
the plate with those developed when the edges are re-
strained.

Conduct corner stress studies when the corners of the
glass plate are aliowed to 1ift.

Model the perimeters of the glass plate as plates on
elastic foundations and impose rotational elastic
springs along those perimeters to include the effects
of the partial restraint placed by the window framing
system on the plate.

Compare total stresses with available experimental data

on glass.
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APPENDIX A
THE (85, [6], {8 ], AND {a} MATRICES

A.1 Hermitian Polynomials and Their Derijvatives

The expressions used to construct the matrices [By], [G], and [BL]
and consequently the stiffness matrices [Ky], [K ], and [K] are the
one-dimensional Hermitian polynomials of order one and their derivatives.
A set of Hermitian polynomials is defined in Chapter 3 by Egq. (3-2) and

is rewritten here for convenience as

Hé%)(x) = —§§{2x3 - 3ax2 + a3) )
1 -
Héz)(x) = -§3(2x3 - 3ax2) for all x where
(1) 1,3 2 o [ Dsx<a
H11 (x) = '—;g(x - 2ax + a“x)
(1) 1 (A-1)
le (X) = —a_z(XB - axz) J

The first derivatives of these Hermitian polynomials with respect %o

the x-coordinate are written as

Héi)(x)' = -:-%(x - a) \E

Hég)(x)‘ = 'S§(X - a) for all x where
i - e - e dd) Pexes
Hié)(x)‘ = *§§(3x - 2a) | (A-2)

and the second derivatives with respect te the x-coordinats are

sxprassad as
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(1) YYo= é—(ZX - a) \
H01 (x) a3
Hé;)(x)" = - a)
(1) la ? for all x where
Hll x)" = ;?‘6x - 4) 0gxga
(B, . _ 1
le (x)" = ;g{ﬁx - 2a) ] (A-3)

A.2 Formulation of the [By], [G], [B ] and {a} Matrices for the Computer
S Program .

To formulate the stiffness matrices of the flat rectangular bend-
ing membrane plate element shown in Fig. 3.1 for coding in the computer
program, the nodal displacements at each node oFf the element are arranged
in the sequence u, Uys uy, Uyyr Vs Vyo vy, ny’ Ws Wy wy, and wxy' This
leads to rearranging the elements of the [85], [G], [8,], and {a} matrices
such that the membrane and bending components are separated at each
node. Thus those matrices are written in a partitioned form for each

alement as follows:

Eq. {3-29) is written in a partitioned form as

V)
;(.{f‘.l.l.‘“.
LT X T 1ot —H{“lz} "
e b= | Boyyd Bogal - Boga!l | Bopy ';""}'L (A=4)
{&122
r{321}
where (8. .7, 8. .1, [8...], and (81 are [6x12] submatrices express-
where [8g,.0s 8., [3022J and [B,,) are [§x12] submatrices express

ing the derivatives of the shape funciions assaciated with ncdes (1,1),

r

(1,2}, (2,2), and (2,1) respectively. HNaturaliy, zcl,}, {eanls {uzz},
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and {a21} are the vector matrices expressing the corresponding displace-
ment parameters. Forms of these matrices are shown in Tables A.l
through A.4.

Similarly, the [ G ] and [ B matrices are partitioned as

L

(6] [ LTS N ) B 9% I % J (8-5)

and

]

(8, ] [ LRTY ; [BL12] E (8, 2, 5 (8 5, } (A-6)

‘ . : 1 1, 6] (G, ]
respectively. Forms of the matrices [GllJ’ [Glzl’ ;GZZJ’ and LG21J are
shown in Tables A.5 through A.8 while forms of the matrices [BLll],
1, , ' -3 through A.12.
[BLIZ‘ [BLZZJ and [BLZIJ are shown in Tables A.3 through A.12






Pages 108-111 have been removed.

Due to Tegibility problems, the following has been omifted:

o Table A.1 - Portion of the (6x48) Matrix (B,) Represented by the
(6x12) Matrix (Bgpp) and Associated Modal Displacement Parameters
(p. 108)

0 Table A.2 - Portion of the (6x48) Matrix (Bg) Represented by the
(6x12) Matrix (Bg12) and Associated Modal Displacement Parameters
(p. 109)

o Table A.3 - Portion of the (6x48) Matrix (By) Represented by the
(6x12) ?atrix (Bgop) and Associated Modal Displacement Parameters
(p. 110

6 Table A.4 ~ Portion of the (6x48) Matrix (Bg) Represented by the

(6x12) ?atrix (Bg21) and Associated Modal Displacement Parameters
(p. L11)=*

*For further information regarding these tables, you may contact:

Institute for Disaster Research
Texas Tech University
Lubbock, TX 793409



Table A.5  Portion of the [2x48] Matrix [G] Represented by the {2x12] Matrix [Bn]
ojlojojojojol]ojo ll(l)(x) ll(')(y) u“)(x) ”(‘)(y) l“")(x) il“)(y) l(“(x) Il(”(y)
O 1o [0fO}10101010 ll(”{x)ll“)(y) li“)(x)u(”(v) u“)(x)u“)(y) n(“(x)u“)(y)

Table A.6 Portion of the [2x48] Matrix [G] Represented by the [2x12] Matrix [612]

o oo olofo]efo ugt’ e ugy it e gy ey g eom R oo e eo i )
O 1010 J0]J01010 ll(l)(x)u(l)(y) ][(1)( )”(l)(y) l(])(x)li(l)(y) 1(1)()()“(1)(‘/)

il



Table A.7

Portion of the [2x48] Matrix [G] Represented by the [2x12] Matrix [6,,]

ajJolo]jo o]0 0O

0

02

H(l)(x).néé)(y)

H{;)(x)'ﬂé;)(y)

i o)

H{é)(x).ﬂié)(y)

0O]lo]l0]10}0Q10}0

2

ué;)(x)né;)(yl:Iuié)(x)ug1)(y):

féé)(X)"gé)‘y).

Hié)(x)ﬂgé)(y).

Table A.8 Portion of the [2x48] Matrix [G] Represented by the [2x12] Matrix [621]
ofofo 0o g‘-lg;><x)'ug}><y) D 6o D y) ugi’(x)igii’(y) TERICINOIRNES
ofofo o|ofo Héé)(x)ﬂé{)(y)' uié)(x)ug})(y)' Hé%)(x)ﬂii)(y). nié)(x)uii)(y)'

el



Table A.9  Portion of the [6x48] Matrix [B, ] Represented by the [6x12]
Matrix [B,q,] and Associated Noda1 Displacement Parameters

| W T - (DW/b)( ) (DW/B}" ) (DW/DX ) (aw72;x )

olololololololo ﬂl)(x) “é})(Y) H(l)(x) ”(1)(y) H(l)(x) H(i)(y) “(1)(x) "(l)(y)
11 (ow/oy) (ow/2y) (ow/ay) (aw/>y)

o fofofolofolofo ng:)( )H(l)(y) u(‘)(x)u(l)(y) n{ D ol ()" D cond Py )

I O (2w/0y) (2w/2y) (2w/2y) | (ow/2y)

{0 u“)(y) D 6wl o Il 6o 'l o fulh o aD )

(aw/ax) (bw/ax) (aw/ax) (aw/éx)
H(I)(x)H(l)(y) H(l)(x)u(l)(v) n(l)(x)u(l)(y) "(1)(X)H(1)(y)
oo fofolo]otloo]| 0 0 o 0
O30 10 o 1010 40 j0 0 0 0
016 10 JO 0 |O 0 0 0O 0
- ‘ i -l - :;"
i 3: Q EEIER e H b ey

il



Table A.10 Portion of the [6x48] Matrix [Bb] Represented by the [6x12]

Matrix [B 1,] and Associated No

al Displacement Parameters

(aw/2x) (aw/ax)m“ (aw/2x) (ow/ax)
olojolololololo Hg{)(X)'Hgé)(y) H%})(x)'uéé)(y) Hg})(x).Hgé)(y) Hii)(x)'ﬂgé)(y)
111111 VT (2w/ay) (aw/zy) (aw/ay) (aw/ay)
ojojolofofolo]o Hé})(X)Héé)(y)' Hi}’(x)ﬂé;)(y)' Hé})(x)ui;)(y). Hi})(x)ﬂgé)(y)'

- o (aw/2y) (2w/2y) | (ow/2y) (aw/>y) o
Hgi)(x)'né;)(y) nf})(x)'ugé)(y) Héi)(x).ngé)(y) ui})(x)'ni;)(y)
ojojfojfolololo}]o + + t t
(aw/>x) (aw/2x) (ow/ax) (ow/>x)
n{ comd i) D conlD )" P con D Il con{) ()
olofolofojolo]oel o | o 0 0
ojojojolroejororo 0 0 0 0
olojolologo}o jl 0 0 0 0
(4N A f\: [§Y] N 5.\: (4N ] [4Y ] f‘\:
(&] < x4 Vi b | -l %) (&Y in ] ~ %)
w1 Moo= bl ] =2 i H R ]
8] SN B BN - B e £ x kS =

GL!L
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0
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W

0
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0

0

0

0

0

0

0

0

Table A.11 Portion of the [6x48] Matrix [Bh] Represented by the [6x12]

Matrix [B ,,] and Associated Nodal Displacement Parameters
] N  (ow/ox) {aw/ox%) o (aw/ax) (ow/ox)
olo]o]ofnlco n{ el co e fult oo ndL o [l o n D y)
N (2w/2y) (ow/2y) (ow/2y) | (ow/ay)
ofofo]ouécoule) [ Gonian " nlh cond o ) con! Dy’
(ow/2y) (aw/2y) B (ow/2y) (ow/2y)
6ol a2 6o e |l 60w i ao i )
olofo]o o + + +
(aw/ax) (aw/ax) (aw/ax) (ow/ox )
n{ Cond " [t Gonl o0 [ cont Do el Gon{l) ()
ofoloof o | o 0 0
olololo 0 0 0 0
ofofolol 0 0 0 o -
T S
N N O P 3 2 S =

g1t



Table A.12 Portion of the [6x48] Matrix [B ] Represented by the [6x12]
Matrix [B ] and Associated Nofa1 Displacement Parameters

""""" T ] Gwex)y ] (ew/ex) (ow/5% ) (aw/ax)
oo forefo oy’ gy oy oo g oo fngy oo i oy o0 i )
| (aw/2y) (ow/2y) (aw/>y) (aW/a.y )
ofotofo]oeultconlt (L coulon [l condP () il Gon{yy

N 1 _"_\(bw/ ay) (ow/ a;) ) (aw/ay) (bw/a-f)_

) o P o) i 6o B oo D 6o (o [ul oo il Py

ololololo ) 1 ' + + +
(aw/ox) (aw/ox) (ow/>x) (ow/>x)

n{E con{ o Id D eonfB o " [nE con{B o il Goulb ()
oflolololo] 0 0 0 0
ofojojojol 0o 0 f 0 0
olofololo]l o ~ o 0 0
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Appendix B, The [KO] and [KL] Stiffness Matrices



APPENDIX B
THE [Ko] AND [K ] STIFFNESS MATRICES

8.1 Formulation of the L[Koj_i_[KL]j Stiffness Matrices for the Computer
Program o

The first term on the right side of Eq. (3-22) in Chapter 3 defines

the sum of the matrices [Ky] and [K ] as

3

[B1 D8] av (B-1)

Following the nodal numbering scheme adopted in Appendix A, £q. (B-1)

¢an be written as

LByl § Byl § Gyl § Byl 1 ¥

The right side of £q. (B-2) yields a [48x48] matrix which is partitioned

into 16 [12x12] submatrices; for example, the first submatrix is
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For clarity, separata expressions for the elements of portions of
the stiffness matrices {K,] and [KL} as defined by Eq. (B-3) are shown

in sections B.2 and B.3, respectively.

B.2 Expressions for the Elements of Portion of the Stiffness Matrix (K]

The fallowing are expressions for the elements of portion of the
stiffness matrix [KO]. It should be noted that the numbers in parenthesis
indicate the position of that element in the stiffness matrix; for
example, KO(OI,OI) is the first stiffness element in the first row and

first column of the stiffness matrix [Ky].

¢

1 ' -y, (1) (1 V2
¢,(01,01) = —l%zj e o0 w P+ L comg (97 aa
A
(
1 ] l - .
401,02 = %TJ 1P 00 D 00 g 02+ Bl H eonl Do
A
(1), 442
(Hy, () )] cA
s | ) o
¢,(01,03) = 5 J (Ve VDol « Bl ot o)
A
Hgi)(y) ] A
((0n.0) = 75 [ w0 w0 Wy« D on Ve’
A
1 L '
Hgl)(x)Hil)( ) ] dA

1]

KO(Ol,OS)
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. ' (1 1 : .~ (1)
loL,08) = £ J o0 s wn Voot B2 i
A
! 1 !
w0 ) e
' (1) ! lav 1 !
(01,07 = = j o H 0 WY om0 s 2 !
A
A Mg gy ()] e
o, ), () () (1)
Et 1 /
K,(01,08) = Y:;,-_-J [v Hgy (%) By "OH TOOH )+ S5 Hy ()
1 ' '
iy ) 1V 00 WP 0]
KO(OI,OQ) = KO(DI,IO) = KO(Ol,ll) = KO(UI,IZ) =0
KO(OZ,OI) = KO(OI,OZ)

((02,02) = T J ey G B T 3 o Vi) e
A

- PR R O S N S O LN ¢ 6 oy (1)
KO(02,03) = 1.3 J LHll (x) HOl (y)HOI (x) Hll (y) + 5 H11 (x)
A
LAy,
1 () gy (x0Hyy () ] en
v 2 1 1 -\ 2 { '
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KL(IZ,Ol) = KL(01,12), KL(IZ,OZ) = KL(OZ,IZ), K1(12,03) = KL(OS,IZ),
K (12,04) = X (04,12), K (12,05) = K (05,12), ,06) = K (06,12),
L( ) L( ) L( ) L( ) KL(IZ 06) KL(o 12)
KL(12,07) = KL(07,12), KL(12,08) = KL(OB,IZ), KL(12,09) = KL(09,12),

KL(IZ,IO) = KL(10,12), KL(12,11) = KL(11,12)

- ( - " ! 2 3 "
¢ (12,12) = 25 | L2 00 o0 e on® e v Bt oo

(1), (1), 0 sw (1), (1), (1),
VIR OOH ) e S CORL ) Ry (x)
(1 aw, (1), 02 (1), \n (1), . W
"y (y) + gyiHll (x)) iy (¥) H11 (y) = (1-v)( 3y
(1), .21, ' (1) aw (1), (1)
(Hll (x} ) Hll (¥) Hiy )+ 5 Hll (x) Hll (x)
%) e

11
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APPENDIX C
THE [K_] STIFFNESS MATRIX

C.1 Formulation of the [K ] Stiffness Matrix for the Comouter Program

Following the nodail numbering scheme adopted in Appendicss A and 8B,

Eq. (3-43) of Chapter 3 can be writtan as

{cll}
T T T Ty 112
K i{sar = t 58 1 : s 1 [3B cs8 1] dA
K, | {5a} [ [s TR B L2 3 LZZJ 138 54 ﬁ{q 1(
JA .b22.|
i S
21
4
(c-1)

where {cll}, {012}, {522}, and £521} are vector matrices expressing the
membrane stress resultants as defined by Eq. (3-45). The subscripts on
these vectors refer to the respective nodal numbers. When the matrix
manipulation in the right side of Eq. (C-1) is carried out according to
the mathematical principal illustrated in section 3-4.C, it can be shown
that £€q. (C-1) yields the stiffness matrix due to initial stresses and

that the "initial stress" stiffness matrix of a finite =2lement has the

form

(@]
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where

(C-3)

C.2 Expressions for the Elements of Portion of the Stiffness Matrix [K ]

-

"initial stress" stiffness matrix [K_].

Kg(Ol,Ol)
K,(01,07)
K,(02,01)
K_{02,07)
KJ(O3,01)
K,(03,07)
K?(O4,0l)

K:(G4,07}

i

1]

il

k_(01,02]
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k,(02,02)
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K3(01,03)
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K, (01,10)

k,(02,04)
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[]

Kc<03’05)

K, (03,12)

e
&0\04,05)

i

]

1}

The following are expressions for the elements of portion of the

K_(01.06)

K, (01,12)

K.(02,06)

KJ(OZ,lZ)

k_{03,06)

K,(03,12)

KG(O4,06)

<_(04.12)

1
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]
()
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O
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O
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i
O
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'KG(OS,Ol) = KJ(OS,OZ) = K‘3(05,03) = KG(05,O4) = KU(OS,OS) = Kg(05,05) =
(,(05,07) = K,(05,08) = €_(05,09) = K (05,10) = €_(05,11) = K (05,12) = 0
KG(O6,OI) = KG(OG,OZ) = KG(05,03) = KO,(OG,CM-) = KU(OG,OS) = KU(OG,OG) = ()
K,(06,07) = K (06,08) = K (06,09) = K_(06,10) = K_(06,11) = K_(06,12) = 0
K,(07,01) = k,(07,02) = K (07,03) = K_(07,04) = K_(07,05) = K_(07,06) = 0
x {07,07) = K_(07,08) = K_(07,09) = K_(07,10) = K_(07,11) = £_(07,12) = 0
KG(OS,OI) = KJ(O8,02) = KU(08’03) = KG(08,04) = KG(OS,OS) = KG(GS,OG) = g
KG(OB,OU = KJ(OB,OS) = KC(08,09) = KJ(OB,IO) = KJ(DB,II) = KO_(OS,IZ) =
«,{09,01) = _(09,02) = K_(09,03) = K_(09,04) = K_(09,05) = K_(09,06) = 0
k_{09,07) = «_(09,08) = 0
(,(09,00) = ¢ { D00 W 00 an w0 s Ve

A

i o e oV )]

< (09,10) = * g ; waéi>(x)'q§i)<A>'(ué§>(y>>2 . nxyqéi>(‘)l,éi)(y>

‘A
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J ol a2 (L), ()
Kg(lo,lz) = % JiA[ NX(H11 (x) ) o (y)H11 (¥) nyHll (x) Hoy {¥)
(L (D0 o w8yl (), (1)
o (X)Hll {y} + Noy11 (X)HO1 (y) g ) H11 (¥)
(1), 0,280, o (L), !
+ Ny(H11 (x)) Hoy (y) H11 (y) ] dA
K;(11,01) = K_(11,02) = K (11,03) = K_(11,04) = K_(11,05) = K_(11,06) = 0
K,;(11,07) = K_(11,08} = 0
K,(11,09) = K_(09,11), K (11,10) = K_(10,11)
f (1 . )
((11,11) = ¢ J (oo i g2 - oy () A e (x)
4
(1), o (1), (1), 2
H () Ny(H01 () ) ) ] dA
SO A (1), (1) (1) 2 A1), (1)
K,{11,12) = ¢ )AL N, o1 () Hy ) (H D) NXyHOI (x) 1y (¥)
(1, 0, (1), (0, ., o AD
H (X)H11 (i + N1 (x)Hll (y) H,7(0) o (y)
ey (1) (1), 1.2 -
" N Hyy (x)Hll (x)(Hll (y)) 1 <A
K.{12,01) = K_(12,02) = K (12,03) = K {12,04) = K_(12,05) = ¥_(12,06) = 0
K, (12,07} = «,(12,08) = 0
K_(12,0%) = £_(09,12), _{12,10) = x_(10,12), k(12,11 = K_(11,12)
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