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The work reported herein was conducted as a part of a continuing

program of research involving engineered window glass at Texas Tech

University. The program is administered/through the Institute for Disaster

Research in the College of Engineering.

The specific project on the analysis of rectangular glass plates was

directed by Or. C. V. G. Vallabhan. The principal investigator was

Or. Abdul-Hamid J. Al-Tayyib. The project was supported by the National

Science Foundation under Award No. PFR 77-24063, the Institute for Disaster

Research, and the Department of Civil Engineering at Texas Tech University.

This report was adapted for publication by Or. J. E. Minor and W. L. Beason

from Or. Al-Tayyib's dissertation entitled, "Geometrically Nonlinear Analysis

of Rectangular Glass Panels by the Finite Element Method. II This editing was

performed so that terminology used in this publication will be consistent

with other lOR publications in the glass area. Any opinions, findings, and

conclusions or recommendations expressed in this pUblication are those of

the author and editors, and do not necessarily reflect the views of the

National Science Foundation.
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ABSTRACT

The primary objective of this study is to develop a finite element

model for the stress analysis of geometrically nonlinear, simply supported,

uniformly loaded, rectangular plates. Actual framing configurations for

glass plates a110wthec boundary edges to move in the plane of the plate with

little restrain. In such a situation, when the loads become large, membrane

behavior plays a significant role in changing the overall behavior of the

glass plate. In this investigation, the geometric nonlinearity treated is

that associated with large lateral elastic displacements which induce

stretching of the middle surface of the plate. The formulation is not

restricted by the magnitude of the displacements, as is linear plate theory,

provided that engineering strains do not exceed the proportional limit and

structural instability does not occur.

A finite element program which includes a nonlinear thin plate formu­

lation is developed. The formulation uses a rectangular finite element with

displacement fields depicted by shape functions which are products of one­

dimensional Hermitian polynomials of order one. These functions are used to

represent both membrane and bending behaviors. A 48 degree of freedom

element results, with linear and nonlinear stiffness matrices which are

derived from a purely geometric standpoint. Thirty-two of the 48 degrees

of freedom are allowed to represent the membrane behavior of the plate. This

representation of membrane behavior is important in studying stress distri­

butions in glass plates, particularly at the glass plate perimeter. The

system equilibrium equations are then formulated and solved using a

Langrangian type linear incremental approach.
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Example problems, for which pUblished experimental and theoretical

results are available in the literature, are solved to demonstrate the

validity and versatility of the finite element formulation. In these

example problems, theoretical bending and membrane stresses are compared

separately to better assess membrane behavior in plates with large displace­

ments. The glass plate problem with boundary edges that are simply supported

and free to move in the plane of the plate are analyzed and force-displacement

results are compared with independent experimental data. Computer displace­

ments agree well with the experimental data.

Numerical studies conducted on the glass plate problem reveal that con­

vergence differs between bending and membrane stresses, and depends upon the

fineness of the finite element discretization, the location within the plate,

and the relative magnitude of the loading increment.. This observation, in

the author1s opinion, is valuable for anyone involved in analyzing geometri­

cally nonlinear thin plate problems.
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CHAPTER 1

INTRODUCTl ON

1.1 Initiation of the Problem

The Institute for Disaster Research at Texas Tech University, acting

in cooperation with other organized research institutes and researchers in

the glass industry, has called attention to the need for a reevaluation of

the window glass design process. Included as a part of this reevaluation

is a study of the response of window glass to wind loads. Structural

modeling of the response of glass plates subjected to lateral loads repre­

sentative of wind pressures is a principal concern (6)*.

When glass plates are used in windows and exterior walls of modern

high rise buildings, they are often secured in the framing system by neoprene

gaskets as shown in Fig. 1.1 (2). The response of such glass plates when

subjected to moderately high wind loads (which can be assumed for stress

analysis purposes to be uniformly distributed static loads) is such that

large deflections are experienced. The effects of relatively high loads

combined with uncertainties regarding degrees of fixity of the plate edges

on the response of the glass plate present to the designer a unique large

deflection plate problem.

1.2 Definition of the Problem

The glass plate problem investigated in this research can be modeled

structurally as a simply supported rectangular plate** subjected to moderately

*References used in this report are listed alphabetically by author.

**The terms "glass plate" and II plate ll are used interchangeably to refer to
the glass panel problem investigated in this research.
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high lateral uniform static loads that cause large deflections. The edges

of the plate are assumed to be restrained from deflecting out-of-p1ane but

are free to rotate in the lateral direction, while in the transverse direc­

tion, the edges are free to translate. The latter assumption means that the

plate edges do not necessarily remain straight in the transverse direction,

but rather the plate edges are free to deform as shown in Fig. 1.2. The

maximum lateral deflection of the plate is assumed to be small when compared

with the length of the shorter side of the plate. The material of the plate

is assumed to remain elastic during deformation; hence, the structural system

is represented as a geometrically nonlinear plate problem in which the geomet­

rical nonlinearity is characterized as large deflection, small strain.

1.3 Previous and Current Work

The large deflection plate problem assumed to model the glass plate

problem under investigation was first solved in 1936 by V. R. Kaiser (29).

Kaiser determined, theoretically and experimentally, deflections and stresses

in a statically loaded, simply supported plate experiencing large deflections.

He assumed that the edges of the plate are free to move in the plane of the

plate and do not necessarily remain straight as the plate deflects. This

assumption is not consistent with the observed response of glass plate edges

(2) .

Concurrent with theoretical work of Beason (6), who solved the nonlinear

plate equations using a Galerkin approach to determine deflections and

stresses for the glass plate problem, Anians (2) experimentally determined

central and edge displacements of a 96 in. x 48 in. x 0.25 in. aluminum plate

subjected to uniform lateral pressures. Anians, in his experimental work,

evaluated the response of this plate under several different support conditions.
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This work was conducted in the Civil Engineering Laboratories at Texas Tech

University, Lubbock, Texas, under the supervision of the Institute for

Disaster Reserach, also at Texas Tech University.

Research on the glass plate problem is being continued by researchers

at the Institute for Disaster Research to determine experimentally the

distribution of stresses in uniformly loaded rectangular plates which

experience large displacements.

1. 4 Approach

The approach used in this investigation is a finite element method

with a displacement formulation which employs rectangular finite elements.

Displacement fields within the rectangular finite plate element are depicted

by products of one-dimensional Hermitian polynomials of order one. These

functions are used to represent both membrane and bending displacement fields.

The main advantage of the proposed finite element formulation is that it

provides adequate representation of membrane behavior. A linear incremental

approach is used to solve the nonlinear equilibrium equations. A computer

program was developed to accomplish the analysis of specific glass plates

which experience large deflections.

1.5 Objective and Scope of Research

The primary objective of this research is to develop a finite element

model to study theoretically the response of glass plates subjected to

relatively large uniform static loads that cause large deflections. The

scope of this investigation is defined in the following review of the contents

of this report.

In Chapter 2, the nonlinear plate problem is defined with specific

details given to geometric nonlinearity. Assumptions related to linear theory
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of plates are outlined to introduce the concept of nonlinear plate formu­

lation. The nonlinear equilibrium equations are derived in terms of the

displacement components of the plate using an energy approach. Equilibrium

equations thus obtained are converted to the commonly known von Karman

plate equations. Chapter 2 concludes with a brief account of previous

attempts made to solve the nonlinear plate equations.

The first section in Chapter 3 describes the concept of the finite

element method and the second section introduces the rectangular finite

element used to discretize the glass plate. Next, the shape functions

assumed to depict the element displacement fields are defined. This step

is followed by a section in which procedures for deriving the element

linear and nonlinear stiffness matrices are given. Subsequent to the proce­

dure for evaluating the equivalent load vector, a-section describing the

calculation of bending and membrane stresses and their combined effects

closes the chapter.

The solution procedure for solving the system of nonlinear equilibrium

equations is presented in Chapter 4 in an incremental form. Also, the

algorithm of the incremental approach adopted in the proposed finite element

formulation ;s given.

Chapter 5 is divided into three sections. In sections 5.1 and 5.2,

examples of uniformly loaded simply supported plates with different in-plane

boundary conditions are solved and results of displacements and stressed are

compared with theoretical and experimental results. The bending and the

membrane stresses are compared separately so that the membrane behavior in

the glass plate can be better assessed. These results are then discussed

in section 5.3. In this chapter, numerical studies conducted on the glass

plate problem reveal that the convergence of stresses differs between
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bending and membrane stresses, and depends upon the fineness of the finite

element discretization, the location within the plate and the relative

magnitude of the loading increment. This observation, in the author's

opinion, is valuable for anyone involved in analyzing geometrically nonlinear

plate problems.

In Chapter 6, conclusions are offered and recommendations for further

investigation are advanced.



CHAPTER 2

LARGE DEFLECTION THEORY OF THIN PLATES

2.1 Nonlinear Plate Problems

In linear analysis of thin plates by the classical theory,

it is assumed that the middle surface of the plate is free from

deformation. This assumption is valid only if the plate is bent

into a developable surface (63); a developable surface is one

that can be made from a flat sheet without causing any in-plane

strain of the middle surface: i.e., a cone or an open ended cy­

linder. However, application of the classical theory to problems

in which the middle surface of the plate experiences some straining

will still be valid depending upon the kind of restraints imposed at

the edges and the magnitude of maximum lateral displacement of the

plate. For example, if the lateral displacement of a uniformly

loaded clamped plate is small in comparison with its thickness, it
I

is found that the calculated stresses of the middle surface, which

in pl ate theory are call ed the membrane stresses, are sma 11 and of

negligible value when compared with the bending stresses (61). The

membrane stresses are also found to be small in the case of cylindri-

cal bending of uniformly loaded long rectangular plates with edges

that are free to move in the plane of the plate even though maximum

displacements in such plates are of the order of the plate thickness.

However, if the edges of these plates are restrained from moving,

the membrane stresses become significant and, hence, stress distri-

butions obtained by the classical theory will be in error (65).

Therefore, wnen the membrane stresses become large and the deflec-

8



tions are of the order of the plate thickness, the deformation of

the middle surface must then be taken into account when formulating

the governing differential equations of the plate. This brings forth

partial differential equations which are coupled and nonlinear.

Formulation of these plate equations using mechanics of non­

linear continua leads to classifying the nonlinearity involved into

two principal classes, namely (41):

1. Geometric nonlinearity which is ascribed to problems

in which the strain-displacement relations are non-

linear. Geometric nonlinear problems are of two types.

The first type involves problems with large displacements

and large strains. The second type involves also problems

with large displacements but small strains. Plate bending

with large deflections and elastic structural instabilities

are examples of geometric nonlinear problems.

2. Material nonlinearity which is ascribed to problems in

which the stress-strain relations are nonlinear. In such

problems the material constants are updated depending on

the stresses and the strains in the medium and new equi­

librium equations are developed. Plasticity and creep

phenomena are examples of material nonlinearity.

The problem of geometric nonlinearity of glass plate bending with

large displacements and small strains has been investigated in this

research.

Geometric nonlinearity arises because of large lateral displace­

ments that alter the shape of the structure which in turn causes the

9
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applied loads to change their distribution (41). This nonlinearity

can be introduced into the formulation of the system equations either

by inclusion of high powers of the derivatives of the displacements

or their products in the strain-displacement relations or by coordi­

nate transformations in which the coordinates of the system account

for all nonlinear geometric effects (69).

In order to derive the nonlinear thin plate equations, it is

worthwhile to examine the assumptions limiting the linear theory of

thin plates.

2.2 Assumptions of the Linear Theory of Thin Plates

The classical theory of thin plates assumes that (21, 61):

1. The plate is initially flat and free from stresses,

2. Tractions on planes parallel to the middle surface are

small and can be neglected, and strains vary linearly

within the plate thickness,

3. The thickness, t, is much smaller than the typical plate

dimension, a, where a is the shorter side in the case of

a rectangular plate,

4. The maximum deflection of the middle surface of the plate

in the lateral direction is small in comparison with the

thi ckness,

S. The middle surface of the plate is free from deformation

duri ng bendi ng,

6. The slopes of the deflected middle surface are small com­

pared to unity, and



7. The vertical deflection of a point on the middle surface

of the plate is measured on a normal to its initial plane.

These are generally known as Kirchoff's assumptions in plate theory.

If these assumptions are considered, all stress components can be

calculated in terms of the normal deflection of the middle surface

of the plate, w, which is a function of two coordinates in the plane

~f the plate (68).

2.3 Nonlinear Thin Plate Equations

If assumptions 4 and 5 above are violated, the middle surface

of the plate will experience some deformation which must be taken into

consideration when deriving the differential plate equations. The

equations thus obtained are nonlinear and the solution becomes much

more complicated (61). In 1910, Theodore von Karman derived the non-

linear plate equations and suggested that the quadratic terms in Wx
and wy* which are the derivatives of the lateral displacement w, with

respect to the x and y directions, respectively, be retained in the

strain tensor but that other quadratic terms involving higher powers

of the derivatives of the in-plane displacement components u and v be

dropped because they have about the same magnitude as the square of

the-strain components. With this suggestion and in addition to the

assumptions used in the classical theory of thin plates, excluding

assumption 4~ von Karman assumed that (21):

1. The magnitude of the lateral deflection w is of the

same order as the plate thickness, but small when compared

*Subscripts on symbols denote derivatives with respect to that sub­
script unless stated differently.

11,
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with the typical plate dimension a, where a is the shorter

side in the case of a rectangular plate, i.e., Iwl =Q(t)*,

w«a.

2. The in-plane displacement components u and v are small and

hence higher powers of their derivatives and their products

are negligible.

For rectangular plates, the use of a Cartesian coordinate system

is the most convenient (Fig. 2.l). Consider a flat rectangular thin

plate;n a right-handed rectangular Cartesian frame of reference with

the x-y plane coinciding with the middle surface of the plate in its

initial undeformed state, and the z-axis perpendicular to it as shown

in Fig. 2.1. Let the displacement components of an arbitrary point

(x, y, z) be denoted by (u, Y, w) and those of the corresponding

point (x, y, O) of the middle surface be denoted by (u, Y, w).

Using assumptions 5 and 6 introduced in the'previous section, and

considering the geometry of a section of the plate at y = constant,

as shown in Fig. 2.2, and by comparing the section before and after

it is deflected, the displacement component u can be written as

similarly,

-u = -z VI
X

(2. 1)

-v = -z '1-'y (2.2)

By comparing the rectangular parallelogram abcd shown in Fig. 2.3

which is located at a distance z from the middle surface, with its

*O(t) stands for a function of the order of t.



T
t

1.

z y

13

Middle Surface

Figure 2.1 Coordinates of Flat Rectangular Plate and Notations
of Displacement Components
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deformed shape a1b'c'd ' on the deflected plate surface, the shear

strain Yxy can be determined from the angular distortions Uy and Vx
as

16 .

- + vYxy = uy x

Using Eq.(2.1) and Eq.(2.2), Eq.(2.3) can be written as

y = - 2z wxy xy

(2.3)

(2.4)

If a point (x, y, 0) of the middle surface of the plate under­

goes a displacement (u, v, w), then the displacement components of a

corresponding point in the plate can be expressed as

-u = u - z Wx
- (2.5)v = v z wy
-w = w

For any point in the plate, the nonlinear Lagrangian strain ten­

sor, known as the Green's strain tensor (35), is written in terms of

the displacement components in index notation as

(2.6)

where the indices i, j, and k correspond to the standard notation

used in tensor mechanics. The quantities u" u2' and u3 indicate the

displacement components u, ii, and w, respectively, whi1e xl' x2' and

x3 refer to the coordinates x, y, and z, respectively. It can be
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shown that Eq. (2.6) can be reduced to a simpler form, if assumption 2

introduced in section 2.2 and von Karman's assumption are considered.

Assumption 2 implies that szx =Syz =Sz =O. These relations signify

the fact that points on the plate which are initially on a normal to

the middle surface before deformation remain on the normal to the mid-

d1e surface after deformation; this is known as the IIKirchhoff assump-

tion ll in the theory of plates. And von Karman's assumption suggests

discarding all quadratic terms in Eq.(2.6) except w~, w~, and wxwy.

Hence, Eq.(2.6) can be written as

- - + 1 WZ
Sx = Ux 2 x

- - 1 20 (2.7)Sy = v + - wy 2 y

- u + v + w wYxy =
Y x x Y

Using Eq.(2.5), Eq.(2.7) can be expressed in terms of the middle sur-

face strains EX' Sy' and Yxy as

-ex = .- - zw-x xx

- (2.3)Ey = Sy - ZINyy

- 2zwxyYxy = Yxy -

where

1
EX = U + - 'liZ

X 2 x

Sy = v + 1 V'I 2 ( 2.9 )
y 2 y

Yxy = u + v + W IN
Y X X Y



Corresponding to Green's strain tensor, the Kirchhoff's stress

tensor in the Lagrangian description is expressed in index notation

for an isotropic homogeneous material as (21)

18

(2.10)

where

2Gv
A = (l-2v)

and

E
G = 2(l+v)

where A and G are the well-known Lame parameters. The indices i, j,

and k in Eq.(2.10) correspond to the conventional mechanics notation,

and Qij denotes the Kronecker delta. The Young's modulus of elasti­

city and the Poisson's ratio of the material are indicated by E and

v, respectively. Based on the Kirchhoff's assumption of plate theory

the Kirchhoff's stress tensor can be reduced to

- _ E (~ + \) Ey )O'x - r:vz- <:Ox

- E - + v : ) (2. 11 )O'y = 1-v2 (s.y <:Ox

- E -
O'xy = 2( l+v) Yxy

where cr x' cry' and crXy are the stress components at any point in the

plate. Inversion of Eq.(2.11) yields



crxy

- 1 (- - )c; =- cr -vcrx E x y

€ = 1 (0 - v 0 )y E y x

2(1+v)
YXy = E

(2.12)
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Eq.(2.11) expresses a state of plane stress for which the strain

energy density is written as

(2.13)

The strain energy of the entire plate is the volume integral of Eq.

(2.13) which can be written as

or

(f (+t/2

U = J {I Uo dz }dx dy
) -t/2

(2.14)

(2.15)

Substituting Eq.(2.8) into Eq.(2.13) and then substituting the

resulting expression in Eq.(2.15), the strain energy U, when inte-

grated over the thicKness t of the plate, separates into a sum U =

Um + Ub, where Um is the membrane strain energy which is linear in

t, and Ub is the bending strain energy which is cubic in t. If the

material properties E and \) are considered constant, U and Ub canm

be written as



and
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(2.16)

+ W
2 + 2v w w + -21 (1-v) W

X
2
yJ dx dyyy xx yy

(2.17)

The potential energy function of a uniformly distributed load

q (x, y) applied to the plate is defined as

v =- ff w q(x,y) dx dy (2.18)

The total potential energy ~ of the plate is the sum of the

strain energy U and the potential energy function V, that is

(2.19)

Using Eu1er l s equation of the calculus of variations (32), it can be

demonstrated that the differential equations of equilibrium in terms

of the middle surface displacement components (u, v, w) in the x, y,

and z directions are obtained from the total energy expression of Eq.

(2.19) and they are written as

" 1 0 V 2 1-v Q [ 1o [+ • w. l' + v + W 1," = 0- u v v '-2 wx ' - 'II - - - u •~x x y 2 y.' 2 ;y y x x y~
(2.20 )

3 [ ,1 2 \) 2" 1-I) or,v + v u ,. -2 wy + - w J + - - U ,.ay y x 2 x 2 oX ~ y v +W\'IJ=ox x y
(2.21 )



w + 2w + w =S. + 12
xxxx xxyy yyyy 0 tT

r-

{( U + -2
1 w2.) +x X

L
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w +l-v (u + v + w w ) w ]yy y x x y xy

where

The quantity 0 is calied the "flexural r;gidityll of the plate.

(2.22)

Eq.(2.20) through (2.22) are the basic equilibrium equations for

the geometric nonlinear problem in a displacement formulation. Alter­

natively, these equations can be converted to the well-known von Karman

plate equations if the membrane stress resultants defined in plate

theory by the statical relations (21)

=ft

/
2o

x
.

N dzx
-t/2

(+t/2
N - J Oy

dz (2.23)
Y

-t/2

r+ t / 2
N = ! ':Jxy dz,

xy I
I

I
-' -t/2



are expressed in terms of a stress function F(x, y) such that

Using Eqs.(2.9) and (2."), it can be demonstrated that

N = ,·Etz (s + v E: )
X -v x y

(2.24)
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From Eqs.(2.24) and (2.25),we can write

aZF(x,y) = Fxx =~ (E: + V € )ax z -v y x

a2F(x,y) = F = l:~Z (E:x + v Sy)ayz yy

aZF(x,y) F Et= xy = - 2(1+v) ~xyaxay

From Eqs.(2.20), (2.21), (2.22), and (2.25), we get

3N aN
_.2. + --Ei.. = 0
ax ay

(2.25)

(2.26)

(2.27)
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(2.28)

o [w + 2w + w ] = q + N wxx + 2N w + rJ wxxxx xxyy yyyy x xy xy y yy

(2.29)

Substituting Eq.(2.2S) in Eq.(2.29), we get

o [w + 2w + w ] = q + F w - 2F w + F wxxxx xxyy yyyy yy xx xy xy xx yy

(2.30)

A second relation between the functions F(x, y) and w(x, y) can

be obtained by deriving the strain compatibility equation. If Eq. (2.25)

is inverted, it yields

_ 1 (
Fxx)E:x - IT Fyy - v

=-' (F - v Fyy) (2.31 )
E:y Et xx

y =- 2( l+v) Fxy Et xy

Using Eq.(2.9), it can be shown that the compatibility condition

can be obtained as

Substituting Eq.(2.31) in Eq.(2.32), we get

F + 2F ~ F = Et rw 2 - w w 1xxxx xxyy yyyy - xy xx yy~

(2.32)

(2.33 )
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Eq.(2.30) and Eq.(2.33) are the well-known von Karman equations. This

form of the nonlinear plate equations is most known to investigators

dealing with nonlinear plate equations. The von Karman equations are

mixed equations which involve a stress function and a displacement
•

function. Such equations are not treated by the displacement approach

in the finite element method which is used in this report.

For more understanding of the formulation of the nonlinear plate

equations, the interested reader is advi·sed to consult the following

references (21,32, 35, 50, 60,61, 62,63, 64, 65).

2.4 Brief Review of Previous Wor~

on Solution of Nonlinear Plate
Equations

To the best of the writer's knowledge, there is only one original

closed form solution of the von Karman nonlinear thin plate equations.

This solution is attributed to Samuel Levy (33, 34) who repre-

sented the nonlinear differential equations in terms of trigonometric

series and solved for the deflections and the stresses in clamped and

simply supported uniformly loaded rectangular plates. Levy solved two

types of simply supported uniformly loaded rectangular plates: one,

the boundaries of which remained straight and were immovable (he

called that type of boundaries "Edge Displacement = a"), and two,

the boundaries of which are assumed to remain straight and free to

move in the in-plane direction of the plate (he called that type of

boundari es "Edge Compress ion = 0") (33, 34).

Because of the difficulties involved in solving the von Karman

nonlinear thin plate equations, researchers directed their efforts

to the development of alternative approaches to the problem which

are based on either simplified physical theories or approximate
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numerical methods such as the variational methods, the finite differ­

ence method, and the finite element method (60).

Marguerre, K., Bengston, H. W., Timoshenko, 5., Cox, H. L., and

von Karman are some of the early pioneers who formulated approximate

solutions based on simplified physical theories to solve the nonlinear

thin plate equations. According to Timoshenko, numerical results ob­

tained by these approximate methods give satisfactory accuracy for

technical purposes. However, he cautioned that a good understanding

of the hypothesis providing the basis of the method is essential in

the application of these approximate methods (7, 8, 13, 63, 65).

In 1936, Kaiser, R., solved the nonlinear thin plate equations

using finite difference formulations. In his solution, Kaiser as­

sumed that the boundaries of the plate were free to move in the in­

plane direction of the plate and that the edges did not necessarily

remain straight. Kaiser supported his theoretical work with experi­

mental results that he obtained from a 60cm x 60cm x O.3l5cm uniformly

loaded simply supported square plate and showed very good agreement

of his theoretical and experimental works (29). Also, in 1948,

Wang, C. T., used the finite difference method to solve nonlinear

problems of uniformly loaded simply supported rectangular plates with

boundary conditions that approximate plates with riveted edges. Wang

used the successive approximation and the relaxation methods to solve

his finite difference equations. The numerical results Wang obtained

by his formulation do not agree with those obtained by Levy (70, 71).

With the fast and advanced development of computers the finite

element method placed in the hands of researchers an alternative ver-



satile tool for tackling the large deflection plate problem. The

finite element method does not directly de~l with p~rtial differ­

ential equations of equilibrium or compatibility; rather, it con­

verts the problem into one requiring the solution of simultaneous

equations. Advancement of this field in solving the nonlinear

plate equations is briefly outlined in the next chapter.
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CHAPTER 3

THE FINITE ELEMENT METHOD

3. 1 Concept

Very often, the structural engineer is confronted with the prob­

lem of determining stresses and displacements in continuous structural

systems which have complicated configurations and which cannot be

handled by available classical methods of stress analysis. A numeri­

cal discretization technique, so called "finite element method,1I

enabled the structural engineer to tackle such problems using elec­

tronic computers. The concept of this method is simple: if the be­

havior of a subregion or a finite part, which is known as IIfinite

element,1I of the whole structural system can be modeled, then the be­

havior of the entire structural system can be modeled as well. In

this case, the entire structural system is considered to be made-up

of an assemblage of finite elem~nts which are interconnected at

joints called llnodes" or II nodal points. II Based on this concept,

users of the finite element method are able to divide a structure

into several substructures which are made of rather simple geome­

tric shapes such as bars, beams, triangles, rectangles, tetrahedra,

and prisms. These different shape elements or a combination of

them make it possible to model any structure of any arbitrary shape.

Since 1960, the finite element method has gained increasing popu­

larity among structural engineers. This is attr~buted to the fact

that the method handles easily not only problems having complex

geometry and mixed boundary conditions, but also problems having

nonlinear characteristics.

27
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Formulation of the equations of the finite element model is

based upon energy. principles. Either of the two well-known methods

of structural analysis, namely the force or displacement method,

can be used to derive the equations necessary for the finite element

analysis. In finite element applications, the displacement model

has been employed most commonly. This is because a displacement

model can be expressed in various simple forms such as polynomials

and trigonometric functions, whereas such functions in the force

model are relatively difficult to formulate. Also, the displace­

ment model has better computational schemes for most problems in

solid mechanics (19).

The finite element method can be viewed as an extension of

the Ritz method, in which the displacement of a continuum are ap­

proximated by a set of assumed functions. The unknown constants in

these functions are detennined using the well-known minimum poten-

tial energy theorem which states that (17):

llAAlong all displacement configurations that satisfy internal
compatibility and kinematic boundary conditions, those that
also satisfy the equations of equilibrium make the potential
energy a stationary value. If the stationary value is a
minimum, the equilibrium is stable. 1I

While in the classical Ritz method, the assumed displacement func­

tion describes the total displacement field of the entire continuum;

in the finite element, displacement functions are assumed for each

element and the entire displacement field of the continuum is approxi­

mately expressed in terms of their nodal point values. The total po-

tential energy of individual elements has a stationary value when the

whole system is in equilibrium. This condition leads to the minimi-
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zation of the total potential energy function of the whole assemblage

of elements, which in turn yields the necessary equations correspond­

ing to its equilibrium state (17). The resulting set of equations ;s

called the "stiffness matrix" equation.

The basis for the formulation of the stiffness matrix equations

is fully explained in numerous publications by authors such as Argy­

ris (3), Martin (40, 41), Gallagher (22), Zienkiewicz (73)t Cook (17},

Desai (19), and many others. Hence, only the essential features of

the displacement approach of the finite element method pertinent to

the problem under investigation are described in this report.

For accomplishing a finite element displacement analysis, the

following steps must be considered:

1. Discretization of the structure into some convenient geo­

metrical shapes to model t~e overall geometry of an actual

structure.

2. Selection of a displacement field that belongs to a finite

class or space of functions continuous in the domain of

the selected element and satisfies requirements of rigid

body motion, constant strain, and a minimum number of

conditions of displacement continuity along its boundaries.

3. Derivation of the element stiffness matrix which ;s a

function of the geometric and constitutive properties of

the element by relating generalized displacements and

their associated generalized forces.

4. Formation of the global stiffness matrix by assembl ing the in­

dividual element stiffness matrices to a common system of



reference called the global system. The resulting global

matrix equation expresses the equilibrium state of the

entire structure.

5. Solution for nodal displacements after prescribing the

boundary conditions on the structure.

6. Determination of the strains which are related to the

displacements. The stresses are then calculated using

Hooke1s law.

3.2 Rectangular Finite Element·

To represent the complex geometric nonlinear behavior of the

glass plate problem under investigation, it was decided to provide

adequate representation of the membrane behavior of the structure

that is comparable to the bending. This is accomplished by using

displacement shape functions suggested by Bogner, Fox, and Schmit

(9) which are limited to elements with boundaries parallel to an

orthogonal coordinate system. A rectangular plate element due to

SChmit, Bogner, and Fox (56) is used in this work as a discretizing

unit. The action of the four corner nodes of this geometrically

nonlinear bending membrane rectangular plate element is represented

by twe Ive degrees of freedom: four degrees of freedom w, \~Jx' Wy'

and wxy to represent the bending action and eight degrees of freedom

u, ux' uy ' u ,v, v , v , and v to represent the membrane action.xy x y xy
These degrees of freedom will be defined in a later section of this

chapter. Twelve degrees of freedom per node result in a 48 degrees

of freedom rectangular finite element. The geometry, the nodal

30



numbering scheme, and local coordinate system for this element are

shown in Fig. 3.1.

The displacement shape functions assumed to represent the dis-

placement components u, v, and w of the middle surface of the plate

element are formulated using products of one-dimensional Hermitian

polynomials of order one. It is noted by Schmit, Bogner, and Fox

(56) that although the use of these interpolation polynomials to

represent the membrane behavior increases the number of degrees of

freedom, it adequately represents the six-rigid body modes and des-

cribes the membrane stress state more accurately.

3.3 Hermitian Polynomials

AHermitian polynomial of order n is a polynomial of degree

2n+l and can be written as

31

which gives, when x = x.,

and

k =m

k ~ m

for m= 0 to n

or when x = x.
J

(3. 1)



<
(1,1)

,

Figure 3.1 Geometric Shape, Nodal Numbering Scheme. and
Coordinate System of a Flat Rectangular
Finite Element Plate
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By setting n =1 and m=0 and 1, a set of Hermitian polynomials of

order one is obtained. The set is a set of cubics giving shape func­

tions for a line element ij at the ends of which slopes and values

of the function are used as variables. Such a set of polynomials

can be written for the rectangular finite element as

For all x
O<x<a (3.2)

These are known as the "osculatory polynomials" and are plotted in

Fig. 3.2. Similar expressions for the y-direction are obtained by

replacing x by y and a by b.

Using these Hermitian interpolation formulas, the middle surface

displacement components u, Y, and w of a typical discrete element can

be approximated by a sum of their products and undetermined parameters.

For example, the displacement component u, in a rectangular plate e1e-

ment can be expressed as

u(x ,y)
2 2 1(1) (1) (1) (1)

:: i: L: HO' (x)HO' (y)u;. + H" (x)HO' (y)u i' +
;=1 j::1 i 1 J J 1 J x J

'-

(1)( ) (1)/ )Ho ' x H,. \y U ..
1 J yl J

(3.3)

H(l)( )H(l )(\) ]+ '1' x ,. y u ..1 J XY1J
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Figure 3.2 Hermitian Polynomials of Order One
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where the indicies (i, j) refer to a node of the element as shown in

Fig.3.1, and the displacement parameters are defined as
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u· .
lJ

= U displacement at node (i) j)

=

=

(~) at node (i, j)

(~) at node (i, j)3y

(~~~y) at node (i, j)

Expressions for the displacement components v and w can be written in

s1milar form as in Eq.(3.3) in which the displacement parameters for

each component are interpreted as shown above.

The displacement components can be written more conveniently in

matrix form as

{~l = {-:} = [N] {al (3.4)

where {~} is a vector matrix representing the displacement compo­

nents, [N] is a matrix containing the assumed shape functions which

are dependent on the Cartesian coordinates x and y, and {a} is a

vector containing the nodal displacement parameters.

There are certain requirements and limitations imposed on the

assumed shape functions to guarantee a successful finite element

formulation. Basically, a shape function assumed over the region

of an element is supposed to represent the pattern of displacements

in that element. Therefore, a primary consideration in choosing a
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shape function is that the function must maintain some minimum con­

tinuity requirements between adjacent elements as they deform. The

function must also satisfy certain other requirements to minimize the

discretization errors in the analysis. These requirements, outlined

below, are satisfied for both bending and membrane behavior in this

study. The requirements are (16):

1. The functions must include all rigid body displacement states.

That is, they must be independent of the external reference

system so that the solution to a problem will be invariant

with respect to the position of that external reference sys­

tem and hence prevent self-straining of the elements.

2. The functions must include uniform strain states to assure

the convergence of the finite element analysis to the ac­

tual strain field as the element size is reduced.

3. The functions and their normal slopes are uniquely specified

along any element interface by nodal values selected on that

interface. In other words, the displacements and their nor­

mal derivatives on an interface of an element are dependent

only upon the nodal values occurring at the nodes associated

with that interface. This requirement assures compatibility

and continuity of the assumed shape function.

4. The shape functions must be linear functions of the nodal

parameters so that the resulting system equations are a set

of simultaneous, linear algebraic equations in terms of

these parameters (44).



3.4 Nonlinear Element Stiffness Matrix

The strains in terms of the middle surface displacements in­

dicated by Eq.(2.7) and Eq.(2.8) in Chapter 2 can be written more

conveniently as membrane and bending strains in matrix notation as
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(~)ax

(~)ay

(au \ + (~)
{e:} = ayl ax +

a2w- (-)ax2

_ (a2~)

ay

2 a2w
(hay)

(3.5)

o

o

o J

where the first vector on the right side of the equation expresses

the linear membrane and bending strain components and the second

gives the nonlinear membrane strain components. Alternatively. E~.

(3.5) can be written as

{e:} = [[80J + [BLJ] {cd

= [B] {a} (3.6)

where {cd is a vector containing the nodal displacement parameters and
-

[80J. [BLJ. and [BJ are matrices containing the derivatives of the

shape functions. Details of these matrices will be outlined in later



sections of this chapter.

The corresponding "stresses" are in fact the membrane tractions

per unit length in the x and y directions as defined in Eq.(2.23) in

Chapter 2, and the bending and twisting moments per unit length in

the x and y directions as defined in plate theory.

N I
x

Ny

Nxy
{cr } = (3.7) .

M"x

M

J

y

Mxy

Because the membrane strains and stresses are assumed to have

constant variations across the thickness of the plate, the membrane

stresses are obtained from the following expressions

Nm x
Ox = t

Nm -'i.. (3.8)0y = t
Nm = ...&

°xy t

where om and om refer to the membrane stresses in the x and y direc-x y

tion, respectively, O~y indicates the membrane shear stress, and t

is the thickness of the plate.

The bending strains and stresses are assumed to vary linearly

across the thickness of the plate and they can be found anywhere
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along the thickness from the following expressions
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crb 12= f3 Mxzx

crb = 11 M z
Y t3 Y

b 12crxy = tT MXYZ

(3.9)

where cr~ and cr~ are the true bending stresses in the x and y direc­

tions, cr~y is the true bending shear stress, and z is the vertical

distance measured from the middle surface of the plate.

Assuming linear, isotropic, homogeneous material within the

element, the stress-strain relations are expressed as

{cr} = [0*] {e:} (3.10)

where [O*J is a matrix defined in terms of the elastic constants of

the ma teri a1 as

r 1 v 0 0 a a

v 1 0 a 0 0

0 a l-v 0 a 0E -2-
[O*J =- t 3 vt 3 (3.11)l-v2-

0 0 0 12 IT 0

0 a a vt 3 t 3
0IT 12

I

t 3 (1-v)l 0 0 0 a 0 24
j

where E is Young1s modulus of elasticity, v is the Poisson1s ratio,

and t is the thickness of the plate.

Using the virtual displacement principle and Eq.(3.4), a virtual



displacement of a point within an element can be expressed in terms

of the nodal virtual displacement parameters as
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{o7n = [N] {oa.} (3.12)

Consequently, the virtual strain at that point can be written in terms

of the virtual displacement parameters as

{cd = [8] {ca.} (3.13)

The virtual strain energy is equal to the virtual work done by

forces in an element, that is,

(3.14)

where {qz} represents the distributed forces per unit volume acting on

the element.

Substituting Eq.(3.12) and (3.13) in (3.14) and integrating over

the volume of the element, it can be shown that

where

{f}

J
{ [B]T {o}dV = {f}

"

= f [N]T {q } dA
A n

(3.15)

(3.16)

Eq.(3.15) can be rewritten as

{~(a.)} =
( - ~

I [B] I {a} dV - U} = 0
J V

(3.17)
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where {~(a)} is a function of the nodal displacement parameters a.

Taking the appropriate variations of the function {~(a)} in

Eq.(3.l7) with respect to a, we get

r T J - T{o~(a)} = [SJ {ocr} dV + v[oS] {cr} dV
"V

Taking the appropriate variations of Eq.(3.10) yields

{ocr} = [D*J {O€}

Substituting Eq.(3.13) into Eq.(3.19), we get

{ocr} = [O*J [B] {c€}

(3.18)

(3.19)

(3.20)

In Eq.(3.6), [8] = [BOJ + [BlJ, where [Bl ] is a function of the

displacement parameters a, hence by taking the variations of [BJ, we

obtain

[08] = [eEL]

Substituting Eq.(3.20) and (3.21) into Eq.(3. 18), one gets

(3.21)

(3.22)

Expanding the first term in Eq.(3.22) by substituting the value of

[B] given in Eq.(3.6) we get

fVCB]TCO*J[8J dV {cal = [fvCBO]T[O*][BOJ dV +

_ r _ (-

[BOJ1[O*][BL] dV + )1 [BLJ1[O*][BLJ dV + I [8LJ
1
[O*][BOJ

V V )v

(3 ?"\.4..))

dV] {car
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The first term on the right side of Eq.(3.23) is the usual linear

stiffness matrix which can be expressed as

(3.24)

The rest of the terms in Eq.(3.23) signify the effects of large dis­

placements on the stiffness of the structural system. This may be

expressed as

[~J = Jv[BOJT[O*][BLJ dV + fv[BL]T[O*J[BL] dV +

(3.25)

where [KLJ is called the 1I1 arge displacement ll stiffness matrix (73).

In Eq.(3.22), the second term can be written as equal to [kaJtimes

{Oo.}, where [K ] is called the lI;nitial stress ll or the,lIgeometricll
a

stiffness matrix (73) which depends on the stress level in the ele-

ment and which can be shown to be symmetric. That is

(3.26)

Alternatively, Eq.(3.18) is written as

(3.27)

The stiffness matrices [KOJ and [KlJ are calculated by integra­

ting the expressions given by (3.24) and (3.25) over the volume of

the element after the matrices [SOJ and C8L] are evaluated. Evalua-



tion of these matrices is outlined in the following two sections

which are followed by a section outlining the procedures involved

in calculating the stiffness matrix [KcrJ.

For convenience and clarity in evaluating these matrices, let

the following equations previously stated be rewritten in such a

manner that the membrane and the bending quantities are separated

as
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[0]

r 0 J]
~~h

(3.4.1 )

where [NmJ.and [NbJ are matrices containing the shape functions of

membrane and bending, respectively. Similari1y, {am} and {ab} repre­

sent the displacement parameters for membrane and bending, respec-

tively.

Also, Eq.(3.5), can be redefined as

{e:} = {sL} + {sNL}

I r{sm }I{sm}
L NL

= + (3.5.1 )
{sb} {O }

L
Jl

where {s~} and {s~} indicate the linear membrane and bending strain

components, while {E~L} and to} represent the nonlinear strain compo­

nents of membrane and bending, respectively.



The quantities in Eq.(3.5. 1) are expressed in terms of the de-

rivatives of the shape functions as

m
(6m] {am}1{E

L
} [0 ]

0
=

{a
b
}J

(3.5.2)
b [0 ] [B~J{E
L

}

where [B~] and (B~j represent the membrane and the bending quantities

in matrix [80] defined in Eq.(3.6), and
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or

=
{a} [oJ [0 J

(3.5.3)

(3.5.4)

where [8~J represent the induced membrane effects due to large dis­

placements (in this case wand w ) and it contains the derivativesx y

of the shape functions and the slopes Wx and wy '

The corresponding II stresses ll are also divided into membrane

and bending components, thus Eq.(3.7) becomes

(3.7.1)
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The matrix [O*J defined by Eq.(3.11) is written as

[Om]
[0 ]1

[0*] = (3.11.1)

[0] [Ob] .

where

,- 1 v 0

[Om] = E 1 a (3.11.2)1-v2 v

0 0 l-v
2 1

and

v 0

COb] = Et 3
v 0 (3.11.3)12(1-v2. )

a 0 l-v
T

These definitions enable us to proceed with evaluating the

matrices [BOJ, [B l ], and [KcrJ as illustrated in the following sec­

tions.

3.4-A Evaluation of [BOJ

If the nodal numbering scheme for the fiat rectangular bending

membrane element shown in Fig. 3.1 is followed. the displacement

component u(x, y) given by Eq.(3.3) can be written as



u(x,y ) = [H (1)(x) H(1)(y), H(1)(x) H(1)(y), H(1)(x) H(1)(y) ,
01 01 11 01 01 11

H(l ) (x) H(1) (y), H(1) (x) H(1) (y), H(1)(x) H(1) (y ) ,
11 11 01 02 11 02

H(l)(X)H(l)(y), H(l)(X)H(l)(y), H(l)(X)H(l)(y),
01 12 11 12 02 02

H(l) (X)H(l) (y), H(') (x)H(l) (y), H(l) (x)H(1) (y),
12 02 02 12 12 12

Ha~)(X)Ha~)(y), Hi~)(X)Hai)(y), H~~)(X)H{i)(y),
(1) (1) 1 .

H12 (x)H11 (y)'J { u11 ' ux11 ' uy11 ' uxy11 ' u12 ,

ux12 ' uy12 ' uxy12 ' u22 , ux22 ' uy22 ' uxy22 ' u21 '

ux21 , Uy21,Uxy21 } (3.28)
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Similar expressions can be written for the displacement components

v and w. This makes it possible to write the linear strain compo­

nents in terms of the derivatives of the shape functions and the

nodal displacement parameters as

(3.29)

where [BOJ is a [6 x 48] matrix which has the general partitioned form

............................ 41 ••••••••
[BOJ =

[B~ ( 3x32)] [0]
1

(3.30)

L

[0 ]
. .
: [B~ ( 3x16) J:
, J

Forms of the matrix [SOJ evaluated for the computer program are

shown in Appendix A.



3.4-B Evaluation of [Bl ]

From Eqs.(3.5) and (3.5.4), we can write
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{ch .1
l

.L 3w) 2

2'3x

1 dW 2

'2(3Y)

(OW) (aw, i
a~ ayl !

)

(3.31 )

the right side of Eq.(3.31) can be conveniently written as

1(aw)' I (~) 0'2 ax ax

r(;~)1
¥dW)2 =1 ( ~;) =t [C]{8}a

l(~)1
(3.32). ay 2

I
,aw)( aw, i (ow) (aw)
\ax a'll 1 3y 'ax

l Y J

where

(aw) a 1'ax

[e] = 0 (ow) (3.33)ay

l(~;) (aw)
ax

and

((aW l1
{8} =

ax f
(3.34)

I (ow \ I
"yll

\ 0 i, )



The quantity {e} is defined by expressing the slopes wand w inx y

terms of the derivatives of the shape functions as
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(3.35)

or

(3.36)

where [G] is a[2 x 16] matrix which is a pure function of the element

coordinates.

From Eqs.(3.31) and (3.32), we can write

(3.37)

Taking the variations on both sides of Eq.(3.37)

But, it can be shown that

[acHe} = [c]{oe}

(3.38)

(3.39)

Because of a special property* of the matrices [C] and {e} using Eqs.

(3.36) and (3.39), Eq.(3.38) can be written as

where

[8~J :: [C][G]

(3.40)

(3.41 )

*See Ref. (73) page 510 for the special property of the matrices
[C] and {G}.
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Eqs.{3.6) or (3.5.3) imply that

[
[OJ [CJ(GJ]

[6] =
L [0] [OJ

(3.42)

where [BL] is a [6 x 48] matrix which is a function of the deriva­

tives of the shape functions and the slopes wand w. Forms of thex y

[6l ] matrix as evaluated for the computer program are shown in Appen-

dix A.

3.4-C "Initial Stress" Stiffness Matrix [K Jcr
The "initial stress"·stiffness matrix is defined by Eq.(3.26)

and rewritten here for convenience as

(3.43)

where A is the area of the element and dA indicates integration over

that area.

Using Eq.(3.7.l) and taking the variations on both sides of Eq.

(3.42), Eq.(3.43) becomes

(3.44)



From Eq.(3.7) and Eq.(3.7. 1), we can write

Nx

{om} = Ny

Nxy

(3.45)
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Again, using the special property of the matrices [C] and {0},

we can write

Nx 1
N II l[oC]T{crm} [0 C]T

:yI= x xy {c0}=
Nxy Ny J

xy
\.

fN NXY]
= l~X [GJ{ oab} (3.46)

Ny j
I xy

substituting Eq.(3.46) into Eq.(3.44), we get

where

[K Jo =
[

rOI
.. ..l

[OJ

[ 0 1]
[K~J

(3.47)

[K
b1 rNx ~l

rG1 T xy
= .. [GJ dA (3.48);; I.. I

L. oJ

IN ~I

A "I xy y
1..
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Adding the linear stiffness matrix [KO]' the "displacement" stiff­

ness matrix [KL], and the lIinitial stress" stiffness matrix [Ka], the

total element stiffness matrix is obtained as

(3.49)

where [Kr] is the total or IItangential ll stiffness matrix. Expressions

for portions of the matrices [KO]' (KLJ, and, [Ka] , as calculated ;n

the computer program, are shown in Appendices B, C, and D, respectively.

It should be noted that the approach used to derive the stiffness

matrices just shown is attributed to Zienkiewicz (73).

3.5 Equivalent Load Vectors

The concept used in determining the load vector for a structural

system subjected to some loading is that the total work done by the

equivalent loads must be equal to the work done by the actual loads.

In the computer program prepared for this investigation, membrane load

vectors qm for concentrated nodal loads, distributed edge shear loads,

and uniformly distributed in-plane loadings on each of the four edges

of the element are formulated. Similar expressions are also formu-

lated for the bending load vectors due to concentrated nodal loads,

distributed edge moments, distributed edge shears, and uniformly dis­

tributed lateral loads.

As an illustration, the calculation of the bending load vector

qb due to a uniformly distributed lateral load q will be demonstrated

here. A displacement, say w in this case, may be expressed in terms

of products of one-dimensional Hermitian interpolation polynomials

as



_ 4 2 [(1) (1) (1) (1)
w(x,y) -; ; HOi (x)HOJ' (y)w;i + H'i (X)HOJ· (y)w ..,=1 J=l ~ X1J

(1) (l) (1) (1) J+ HOi (X)H,j (y)Wyij + H'i (X)H,j (y)WXyij (3.50)
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For a rectangular flat plate element with dimensions a and b
.

along the x and y axes, respectively, the components of the bending

load vector are calculated from

V : of: f: q w(x,y) dx dy (3.51 )

For example, the component of the bending load vector corresponding

to the nodal parameter wx1l at node (1,1) is obtained as '

(3.52)

Substituting the expressions for H~~)(x)l*and Ha~)(y) and carrying

out the indicated integration, we obtain

= ga 2
b

24 (3.53)

All components of the membrane and the bending load vectors are

obtained in exactly the same manner (9). Table 3.1 shows the bending

load vector components for a rectangular element due to a uniformly

distributed lateral load.

With all components necessary for computing the large deflection

*The prime on H~~)(X) indicates derivatives.



Table 3.1 Equivalent Loads of Uniformly Distributed
Lateral Load for a Rectangular Plate Element

Node Displacement Uniform Lateral
Parameter Load q

wll qab/4

wxll qa 2 b/24
(1,1)

wyn qab2 /24

wxy11 qa 2 b2 /144

wi2 1ab/4

'Nx12 qa 2 b/24
(1 ,2)

wy12 -qab2 /24

wxy12 -qa 2 b2 /144

w22
"lab/4

wx22 -qa 2 b/24

(2,2) wy22 -qab 2/24

Wxy22
qa 2. b2 /144

wZ1
qab/4

wx21
-qa2. b/ 24

(2,1)
w "'1 qab 2 /24y,-

Wxy21
\

-qa 2 b2./1 44
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problem available, the solution of the assembly of all the elements

is accomplished in the usual manner as if the stiffness of each ele­

ment were simply the sum of [KO] , [KLJ, [K
cr

] stiffness matrices.

Thus the solution of the nonlinear problem becomes a sequence of

solutions of linear problems in which calculated displacements and

stresses are added to the previous values to give an up-to-date

account of the geometric state of the structure as the applied load

is increased. An outline of the solution technique used in this

work is presented in the next chapter.

3.6 Combined Bending and Membrane Stresses

The stresses at the middle and outer planes of a plate element

due to the applied external loads are the ones of interest in this

investigation. Figure 3.3 shows that in the x-direction a bending

stress attains its extreme levels at the outer surfaces of the ele-

ment and it is zero at the middle surface, while the membrane stress

is uniform throughout the plate thickness. If this is assumed to

hold true for all stress components, the bending and membrane stresses

can be superimposed to obtain the total stresses acting on the

plate.

For each of the four nodes of the rectangular element the mem­

brane and the bending "stresses ll are obtained from the stress-strain

relations indicated by Eq.(3. 10) which may be written in matrix form

as

54
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z

----------

Middle Surface

=
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b
ax + = =x

Bending Stress + Membrane Stress = Total Stress

Figure 3.3 Combined Sending and Membrane Stresses
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56

0 a 0 0 r€~ 1
0 0 a a I:m

~x

l-v a 0 0 m
-2- Exy

0 t 3 vt 3 0 bE
i2 12 x

0 vt 3 t 3 0 b
12 i2

Ey

a 0 0 t 3 (l-v) bExy24

h m m d m .were € , E ,an ~ denotex y xy
b b db. d' t thEX' 2y ' an Sxy 1n lea e e

calculated from Eq.(3.6).

(3.54)

the membrane strain components while

bending components, all of which can be

The true membrane and bending stresses can then be calculated

using Eq.(3.8) and (3.9). The combined stress components due to

membrane and bending action are obtained at the extreme surfaces of

the plate by simply adding the respective components as

°xy

( - 5""\j. ':I I

The stress components ox' 0y' and crxy calculated at each of the

four nodes of the rectangular element are then used to calculate the

principal stresses at the olate surfaces. The princioal stress equa-

tions being the standard ones for two-dimensional stress will not be

shown here.



These stresses are averaged at nodes that are common to more

than one element. This averaging tends to reduce the error inher-

ent in the displacement approach in which equilibrium condition of

the forces is not completely satisfied.

3.7 A Brief Review of the Develop­
ment of the Finite Element Method
in Nonlinear Problems

In 1960, Turner, Dill, Martin, and Melosh (68) introduced the
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finite element method to geometrically nonlinear problems in a paper

in which they analyzed the effects of initial in-plane stress on the

stiffness of stringers (i.e., beam-columns with zero bending stiff­

ness) and of plane stress triangle elements. The approach was to

develop the initial stiffness matrices for use in the in~remental

force-displacement relation. Gallagher, et al. (22), substituted

a complete cubic function into the strain energy expression to de­

rive the stiffness matrices. Martin (39) reviewed several papers

on the derivation of nonlinear stiffness matrices and concluded

that the same functions need not be used to represent both linear

and nonlinear effects. Kapur and Hartz (30) derived ~stability-

coefficient" matrices for nine independent states of in-plane

stress which represented an extension beyond previous derivations

that were based on only three stress states. Clough and Fe1ippa

(16) made comparison studies of several finite element formula-

tions in plate buckling in which both consistent and inconsistent

approaches were used and found that the inconsistent approach gave

good results. Murray and Wilson (43) used constant stiffness ma-

trices and accounted for all geometric nonlinearities by coordinate



rotations. They noted that their approach was equivalent to using

the Kirchhoff's assumptions for each individual element, rather than

the nonlinear von Karman theory. Mallett and Marcal (36) presented

a unifying basis for formulating the large deflection problems. They

derived the total strain energy as a function of nodal displacements,

using functions and including strain energy terms which previously

had been neglected. Stricklin, et al. (59) applied the matrix dis­

placement method in which they employed linear and nonlinear equili­

brium equations by separating the linear and nonlinear portions of

the strain energy and then applying the nonlinear terms as additional

generalized forces.

Recent papers on finite element methods in nonlinear plate

analysis have focused on the method of solution. Kawi and Yoshi­

mura (31) gave an iterative procedure for solving large deflection

plate problems. Their approach was similar to the unbalanced-force

iteration, but their formulation included all stiffness terms.

Schmit, Bogner, and Fox (56) used a direct minimization technique

for solving large deflection problems of plates and cylindrical

shells. To compute strain energy, rectangular coefficient matrices

were summed with linear and quadratic displacement vectors. Hais­

ler and Stricklin (23) developed and evaluated several solution

procedures for geometrically nonlinear problems and concluded that

the selection of solution procedure depends highly on the degree

of nonlinearity the oroblem possesses.

The interested reader is advised to consult the following

references for more understanding of the various finite eiement
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fonnulations of geometrically nonlinear problems (1, -3, i, 11 ,14,

17, 40, 42, 43, 44, 45, 49, 51, and 62).

At this point, it should be noted that the present finite ele­

ment formulation is not the only attempt to solve the geometrically

nonlinear rectangular glass plate problem. Tsai and Stewart (67)

used a finite element program developed by Melliere (43) to study

the stress distributions in glass plates. Moore (46) used the

ARGUS nonlinear finite element structural analysis program to

analyze rectangular glass solar panels subjected to uniform normal

pressure loads. The formulation of both above mentioned computer

programs include only constant strains to represent the membrane

behavior of the plate whereas, the present finite element program

includes not only constant strains but also linear strains to

represent the membrane behavior of the plate. Representation of

the membrane behavior as such is important in better assessing the

overall stress distribution within the glass plate, particularly

at the perimeters of the plate.
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CHAPTER 4

SOLUTION OF THE NONLINEAR SYSTEr1 EQUATIONS

4. 1 Incrementa 1 Approach

The method of solution of the nonlinear system equations adopted

in this investigation falls under what Haisler (23) classified as

"Class-I incremental methods without equilibrium checks. 11 The con-

cept of this method is to assume a linear response of the structure

at each loading increment when the total load is applied in a se-

quence of sufficiently small increments. These incremental quanti-

ties are added to corresponding displacements, strains and stresses

to give an up-to-date account of the geometry of the plate. These

up-dated quantities are then used in a following loading increment

to compute the stiffness matrices which include the nonlinear ef-

fects of the deformed geometry of the plate. The process is repeated

by applying subsequent increments of the load until the total load is

applied. The resulting effect is to solve a sequence of linear prob-

lems in which the stiffness matrices are recalculated based on the

prevailing geometry of the structure prior to each loading increment.

The procedure of the method can be mathematically written as

( d. 1)

h [K- ~. h l' fl.' ~f . and L" -KNL(('.J ) ]w ere oj 1S t e 1near part a tile stlT ness matr1x -

is the nonlinear part. The nonlinear part of the stiffness matrix is

a function of a, the displacement components representing the deformed

geometry of the structure prior to applying the loading ~ncrement,
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and {~&} is the increment of displacements resulting from applying

the ith loading increment {~q}. After applying the ith loading in­

crement the total displacements are obtained by

61

(4.2)

Incremental solution procedures for geometrically nonlinear

problems are presented in the literature in several different forms.

Incorporation of a particular form of an incremental procedure in the

formulation of a geometrically nonlinear problem depends on several

factors such as the degree of accuracy desired, the degree of non-

linearity in the problem, the complexity of the probla~ formulation,

the availability of computer dollars, etc. Haisler (23) and Strick­

lin, Haisler, and von Rieseman (58, 59) have made intensive studies

of several solution procedures for geometrically nonlinear problems

and the interested reader is referred to their work.

4.2 Algorithm of the Incremental Apcroach

To solve the geometric nonlinear problem under investigation

using the proposed finite element formulation, the following algor-

ithm is used for the incremental approach.

During the ith step, an incremental load vector {6q}i is applied

to the assembled elements of the plate to yield an incremental dis-

placement vector {~a}i' For each element of the structure at the

end of the ith step:

l. Determine current deformed geometry of the element by

adding the resulting incremental displacement vector to

the total displacement vector



{a}. = {a}. , + {6a}.
1 , - I 1

(4.3)
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2. Calculate corresponding strain components by formulating

the [8J matrix which is a function of the derivatives of

the shape functions and only Wx and wy of the displace­

ment vector {a}i

{S}. = [S]. {a} .
1 1 1

(4.4)

3. Calculate corresponding stress components using the re­

lation

to}. = [O*]{s}.
1 1

4. Ca 1culate [KO] and [KLJ using

[KO] + [KLJ =J [B]T[O*][B] dV
\'I

5. Calculate [KbJ usingcr

r N
1

fv[GJ
T ~l 1

[KbJ = lNx
I xy I[G] dVcr
Ny jxy

(4.5)

(4.6)

(4.7)

6. Repeat algorithm 1 through 5 for all elements and assemble

the global stiffness matrix for the e~tire structure.

7. Apply the next loading increment {6q}i+l to the assembled

structure and calculate {6a}i+l by solving the simultaneous

equations of equilibrium.



(4.8)

&3

8. Repeat algorithm 1 through 7 until the entire load is ap­

pl i ed.

The incremental approach outlined above is schematically outlined

in Fig. 4.1.
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CHAPTER 5

NUMERICAL EXAMPLES

Four examples of simply supported unifvrmly loaded large de­

flection rectangular thin plates are analyzed in this chapter to

demonstrate the validity and versatility of the finite element form­

ulation presented in this t.nvestigation. Results are then compared

with theoretical solutions and experimental data available in the

literature. Although the program formulation is capable of analy­

zing various types of boundary conditions such as clamped or free

edges, and different combinations of loading such as concentrated

and uniformly distributed' static loads, only problems pertinent

to this investigation are presented here.

In the example problems treated, results of two classes of

simply supported rectangular thin plates with uniform static loads

are shown. These results show the difference which is mainly due

to the prescribed boundary conditions in the plane of the plate.

This difference is described in more detail in appropriate sections

of this chapter. The uniform static loads are replaced by equiva­

lent concentrated loads at the nodes as described in Chapter 3.

Uniform and non-uniform discretization schemes of the plate struc­

ture are employed in this dissertation to assess the effects of the

boundary conditions.

Due to limited research funds and the lengthy CPU time consumed

by each run of tne computer program, the discretization of one quarter

of the plate is iimited to a grid size of 16 elements. AlSO, the
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number of loading increments is limited to 100 when the grid size

of one quarter of the plate is 9 elements.

5.1 Simply SupDorted Rectangular
Plates: Edge Displacement =0

Levy (34) called the boundary conditions of this class of prob­

lems flEdge Displacement = 0,11 while Timoshenko (65) named them lIim_

movable ll edges. In this class of problems, the boundary edges of

the plate are assumed to be laterally supported and free to rotate

along the edges in the lateral direction. In the transverse direc-

tion, they remain completely restrained from having any displacement

along these edges in the plane of the plate. These boundary condi­

tions were mathematically formulated and shown in Chapter 2. Two

examples of this class of problems are shown in the following sec­

tions. The first example problem exhibits results of a simply sup-

ported square thin plate with a uniform static lead and the second

illustrates results of a simply supported rectangular olate with

an aspect ratio of 1.6 and a uniform static load.

5.l-A Example I. Simply Supported Uniformly Loaded Square
Plate: Edge Displacement = 0

In this example, a 10-inch simply supported square plate which

has a constant thickness of 0.04 inch is subjected to a monotoni-

cally increasing static lateral load of 1.837 psi. The elastic

constants of the material of the plate are assumed to be 27.6 x

106 psi for the Young's modulus of elasticity and 0.316* for the

~The value of 0.316 is used to agree with that in Levyls (34) solution.

66



Poisson's ratio. Because of the double symmetry, the problem is

modeled by discretizing only one quarter of the plate. In this

example, a grid size of 2 x 2 elements of equal areas ~s used.

The total load is applied in 40 equal increments and the results

agree reasonably well with Levy's solution (34).

Fig. 5.1 shows a non-dimensional plct* of the deflection of

the center of the plate vs. the applied load. A maximum deflection

of nearly twice the thickness of the plate is attained dS shown in

the curve of Fig. 5.1. The curve clearly indicates the nonlinear

load-displacement relationship involved in this problem, where the

displacement does not increase proportionally as the ioad is in-

creased. This effect is due to the increased stiffness of the

plate whicn in turn is a result of the membrane effect induced by

large lateral displacements.

Membrane and bending stresses are also plotted against the

load and are shown separately. Stresses at different points on

the plate are drawn so that direct comparison with Levy's sOlution

is possible. In Fig. 5.2, Curve A shows the bending stresses v~ or

cr~ of the extreme fibers at the center of the plate while Curve 8

ind~cates the shearing stress due to bending cr~y of the extreme

fibers of the upper right corner of the p1ate. It should be noted

that the difference in the two solutions as revealed in Curve 8,

is believed to be due in part to the coarse discretization since

"'t.;l"less otherwise stated, non-dimensional plots a"'e used throughout
tnis investigation so ':hat arbitrary dimensions of square and rec­
tangular plates with arbitrary material constants may be used for
comparison.
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only 4 elements are used to model the problem. It should a~so be

noted that the boundary condition of the bending moment being equal to

zero at the edges of the plate is not completely satisfied by this fi-

nite element formulation. Non-dimensional membrane stresses vs. non-

demensional applied loads are shown in Fig. 5.3 for different points

on the plate. Curves A and C in Fig. 5.3 illustrate the variation

of the membrane stresses a~ and a~, respectively, at the center edge

of the right side of the plate. Curves B refer to either of the

variations of the membrane stresses am or am at the center of thex y

p1 ate, and Curves 0 reveal ei ther of the vari ati ons of the membrane

stresses am or om at the corner of the plate. It should be notedx y

that despite the coarseness of the discretization used to model this

plate problem, good agreement with Levy·s results for displacements

and bending and membrane stresses are achieved as exhibited in Fig.

5.1 through Fig. 5.3. This is attributed to the fact that the as-

sumed shape functions used in this investigation do, in fact, depict

the displacement fields of this plate structure extremely well.

Since the difference between the present finite element solution

and Levy's solution is small as shown by the curves in Fig. 5.1 through

5.3, it seemed unnecessary to carry out the analysis any further by

refining the grid size or increasing the number of loading increments

to obtain results that would match Levy1s solution point-by-point.

The size of the loading increment and the fineness of the discretiza-

tion, no doubt,have major effects on the accuracy of tne results ob-

tained by the finite element formulation. In the second class of prob-

lems treated in t,r,is investigation, these t'I'JC factors bec:)I'Tie ~ore impor-

tant in achieving good accuracy as is demonstrated in a later problem.
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5.1-8 Example II. Simply Supported Uniformly Loaded Rectangular
Plate: Edge Displacement =0

A 96.0-inch long, 60.0-inch wide and 0.25-inch thick aluminum

plate subjected to static lateral uniform load of 0.70 psi is used in

this example. The Young's modulus of elasticity and Poisson's ratio

for aluminum are 10.6 x 106 psi and 0.33, respectively. One quarter of

the plate is discretized into nine rectangular elements of different

areas. The elements with smaller areas are placed along the edges of

the plate as shown in Fig. 5.4. The total load is applied in 50 equal

increments in order to obtain the load-deflection relationship exhibited

by the dashed curve in Fig. 5.4. The sol id 1ine shown in the figure

represents an approximate solution attributed to Timoshenko (65); calcu­

lations for this curve are reported by Anians (2).

As was demonstrated in the example of the previous section, bending

and membrane stresses are plotted separately for different points on the

plate. Variations in bending stresses are shown in Fig. 5.5 at the
b bcenter and at the corner of the plate. Bending stresses ax and cry are

indicated by Curve B and Curve C, respectively. As expected, the bending

stress parallel to the shorter side of the plate, in this case a~, is

larger than the bending stress parallel to the other side. However, the

general behavior of the center bending stresses, particularly parallel to

the shorter side of the plate, is similar to that of a square plate. It

can be noted by examining Fig. 5.5 that cr~ varies almost linearly after

the load (q/E) (b/t)4 reaches a magnitude of about 48.0. The shear stress

due to bending a~y at the corner of the plate is indicated by Curve A. It

should be noted that this shear stress has a comparable or larger magnitude

than the center stress in this plate. The opposite was the case for the



73

______ Timcshenko's ~pproxi~ate Solu~ion

0---0 ?inita Element

250 . .:200.0

?:an

l50.C

!
I

~_._~:__....... ~...' _ :t

I

IE

100.0

9 Elements
50 !nC:'9ments

;0.0

"'"Linear
'~eory

2.0

.....
t.5~

... I
" I
;: I

I-- il.°r
I

0.; ~
i
I
i

0
Q

Figure 5.4 Load-Deflection of Simply Supported
Rectangular Plate~ Edge Displace­
ment = 0'



74

?bite necent

9 Elements
50 !nerements

I

i
I
I
I

6.0 l­
t
i

I
i
i

:., 0 ~

01:-' -....~---:'_!L-..--........J'-----l------J
o 50.0 ~oo,c ~5C.: 2CC.C 250,0

Figure 5.5 Bending Stresses at Center and Corner
of Simply Supported Rectangular Plate:

Edge Displacement = 0



75

corresponding stresses in the square plate (see Fig. 5.2). In Fig. 5.6,

membrane stress variations in the x and y directions are shown for the

center, the center of the short edge, and the corner of the plate, and

are indicated by Curves A, B, C, D, and E. It should be noted that the

magnitudes of o~ and o~ at the corner of the plate differ slightly but

the difference is so small that it cannot be shown in the figure.

5.2 Simply Supported Rectangular Plates: Edge Displacement 1 0

In this class of problems, the boundaries are also assumed to be

laterally supported and free to rotate in the lateral direction. But, it

is also assumed that the plate edges can move in the plane of the plate.

Levy (34) presented a plate solution of this type in which he assumed that

the plate edges could move in-plane, but were constrained to remain straight.

Levy termed this set of boundary conditions "Edge Compression = 0." These

boundary conditions assumed by Levy do not define the actual edge conditions

of the thin glass plates under investigation. The edges of typically

installed glass plates can translate in the plane of the plate, and do not

necessarily remain straight. This fact was confirmed experimentally by

Anians (2) who measured the in-plane edge displacements of a laterally

loaded window glass plate installed in an actual framing system. Kaiser (29)

presented a solution for a uniformly loaded, simply supported square plate

with edges that are both free to move and distort in-plane. He used a

finite difference formulation to solve the nonlinear plate equations and

compared his results with data obtained from an experiment which he conducted

on a square plate. Results obtained from the present finite element

formulation are compared with Kaiser's solution.

Differences in the in-plane boundary condi~ions of simply supported

plates, as defined by Levy and Kaiser, result in a substantial difference



76

F:'nite ::lement

9 ::laments
50 !nc=-emen'ts

4.0

a.CL

lZ.J[ I I

£ I I1,0.0 :-' ...... _
U ~ X

( q,/! ) (0/ :: ) i.;.

Figure 5.6 Membrane Stresses at Center, Center
Edge, and Corner of Simply Supported
Rectangular Plate; Edge Displace­
ment = 0



77

in the center deflection results obtained in each case as shown in Fig. 5.7.

For example, when Levy (34) compared his results for IIEdge Compression = 0"

with Kaiser1s sOlution he found that a load of (q/E)(a/t)4 = 118.8, the

center deflection obtained by his method was about 25 percent lower than

the center deflection obtained by Kaiser.

Two examples in this class of simply supported rectangular plate problems

are demonstrated using the same plate dimensions used in Example I and

Example II in Section 5.2. In the first example, center deflections and

bending and membrane stresses are plotted against applied loads. Effects of

the size of the loading increment and the fineness of the discretization on

the stresses are illustrated. Center deflections of a rectangular plate

calculated 'in the second example are compared with experimental results

obtained by Anians (2). Finally, membrane and bending stresses at the center

of the plate are plotted against the applied loads.

5.2-A Example I. Simply Supported Uniformly Loaded Square Plate:
Edge Displacement ~ 0

The square plate problem analyzed in Example I of Section 5.l-A is

analyzed again in this section. In this analysis, it is assumed that the

edges of the plate are free to move in the plane of the plate and do not

necessarily remain straight. In order to compare results with Kaiser1s

solution (29), the lateral load is changed to 0.83 psi and is applied to

the plate structure in 100 equal increments. Also, one quarter of the

plate is idealized by nine rectangular elements of different dimensions.

This scheme is adopted for this problem so that discretization errors at

the edges of the plate are minimized.

The center deflection obtained by the finite element solution is

compared with Kaiser's solution in Fig. 5.8. A center deflection larger
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than twice the thickness of the plate was attained. Obviously, this is well

within the nonlinear range. The stiffening of the plate with increasing

deflection is again indicated by the decreasing slope of the curve. It

should be noticed that the center deflections obtained by the finite element

method are slightly lower than those obtained by Kaiser, but uniformly so

throughout the application of the load. This difference is partially attri­

buted to the coarse finite element discretization, particularly at the

center of the plate (see diagram in Fig. 5.8).

Membrane, bending, and total stresses are plotted against the load in

Fig. 5.9. Agreement of bending stresses with Kaiser's solution ]s not as

good as the agreement between membrane stresses. However, both the finite

element solution and Kaiser's solution are subject to numerical errors.

Differences are also apparent in comparisons of total stresses which are

simply the sum of the bending and membrane stresses. It should be noted

that, for clarity, results of only every 10th loading increment are indicated

on the curves of Fig. 5.8 and Fig. 5.9.

The effects of the size of the loading increment on the accuracy of the

center deflection, bending, and membrane stresses are studied in this example.

The above plate problem is solved using the same dimensions, elastic constants,

and discretization scheme with the loading applied in 20, 50, and 100 equal

increments. The effect of the size of the loading increment on the center

deflection is revealed in Fig. 5.10. The convergence of the deflection

improves as the number of loading increments is increased. The center

deflections obtained when applying the load in 20, 50 and 100 increments are

slightly lower than those obtained by Kaiser1s solution, but uniformly so

throughout the load. These comparisons indicate that the deflections of
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the plate are well represented by the finite element formulation when 100

load increments are used.

Parallel to the comparison of results made in Section S.l-A, the

bending stresses at the center and the corner of the plate are shown in

Fig. 5.11. Central stresses are a1 so compared with those obtained by

Kaiser (29). In Fig. 5.11, it is indicated that as the number of loading

increments is increased, the magnitude of the bending stress at the center

of the plate decreases while the corner shear stress increases.

Figure 5.12 illustrates effects of the number of loading increments

on the membrane stresses at the center and the corner of the plate. The

stresses at both locations appear to converge as the number of loading

increments increases. Confidence is further increased by the reasonably

good agreement of the center membrane stress with that obtained from Kaiser's

solution. It should also be noted that the stress at the edge center of

the plate is a compressive stress, indicating distortion of the edges of

the plate.

When studying the effect of discretization on the accuracy of the

finite element plate model one quarter of the square plate used above is

idealized with 1, ~ and 9 elements and the load is applied in 50 equal

increments. (Fifty increments are used to solve the problem; once for

one element discretization and again for four element discretization.

Results of displacements and stresses are already available for the 9

element discretization.)

The effect of the discretization on the bending stresses at the

center and the corner of the plate is shown in Fig. 5.13. These

stresses converge as the discretization is refined. Convergence also

occurs for membrane stresses at the center and the edge center of the

plate, as indicated in Fig. 5.14.
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Effects of the number of loading increments and the discretization on

the accuracy of the finite element solution are discussed later in more

detail.

5.2-B Example II. Simply Supported Uniformly Loaded Rectangular
Plate: Edge Displacement; a

The aluminum rectangular plate problem analyzed in Example II of

Section 5.l-B is solved in this example assuming simply supported edges

that are free to move in the plane of the plate and are not constrained to

remain straight. The load is applied in 100 equal increments to obtain

the variation of the center deflection of the plate shown in Fig. 5.15.

It should be observed that the axes of the load-deflection curve are

expressed in terms of loads and deflections expressed in units of psi and

in. t respectively. The curve is plotted in this manner in order that a

point-by-point comparison of the finite element solution can be made with

experimental data presented by Anians (2).

Anians (2) studied the center displacements of an aluminum plate

mounted in an actual window glass framing system similar to that presented

in Fig. 1.1. To assure that the aluminum plate was free to slip in-plane,

the interface between the aluminum plate and the neoprene gaskets was

lubricated prior to testing. To further assure that the plate edges were

free to slip in-planet the outer neoprene gaskets were installed only near

the plate corners to resist localized corner uplift. Center deflection

results measured by Anians are compared to theoretical results generated

with the finite element analysis in Fig. 5.15.

As is the case in all deflection curves presented preyious1y in this

investigation. the deflection curve obtained by the present finite element

formulation reveals the stiffening of the plate with increasing deflection.

This effect is indicated by the decreasing slope of the curve. It should
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be noticed that there is an excellent agreement between the displacement

results obtained by Anians and theoretical results up to a central deflec­

tion of three times the plate thickness as illustrated in Fig. 5.15; At

that point, the theortical deflections tend to be less than the measured

deflections. This condition is attributed to the fact that the lateral

displacement along the perimeter of the plate is assumed to be zero in

the present finite element formulation, while in Anian's experimental work

the neoprene gaskets along the plate perimeter allowed the edges to move a

small amount in the lateral direction.

In Fig. 5.16, bending and membrane stresses at the center of the

plate are shown. The effect of the boundary edge conditions is clearly

evident if the value of the membrane stress in the y-direction is compared

with that presented previously in Fig. 5.6.

5.3 General Remarks and Discussion of Results

The preceding sections of this chapter included example problems

involving large displacement-small strain, simply supported, uniformly

loaded, square and rectangular plates with two different in-plane boundary

conditions: Edge Displacement = 0 (Examples I and II in Sections 5.1-A

and 5.1-B), and Edge Displacement r 0 , where the edges do not necessarily

remain straight as the plate is deflected (Examples I and II in Sections

5.2-A and 5.2-8, respectively). The validity of the proposed finite ele­

ment formulation has been demonstrated for specific large displacement

square ann rectangular plate problems by comparison with closed form solu­

tions. The finite element technique also can be applied to plates of

rectangular shape with boundary edge conditions for which no closed-form

solution exists.
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It was noted from the numerical studies conducted on the prob­

lem in Example I of section 5.2-A that the convergence of stresses

to exact values differs between bending and membrane stresses, and

depends on the fineness of the finite element discretization, the

location within the plate, and the relative magnitude of the load­

ing increment. This difference can be outlined as follows:

1. As the number of loading increments is increased the con­

vergence of the bending

a) Stress at the center of the plate approaches

the exact value from an upper bound,

b) Stress at the corner of the plate approaches

the exact value from a lower bound,

and the convergence of the membrane

a) Stress at the center of the plate approaches

the exact value from a lower bound,

b) Stress at the center edge of the olate approaches

the exact solution from a lower bound.

2. As the size of the discretized ele~ent is reduced the con­

vergence of the bending

a) Stress at the center of the plate approaches

the exact solution from an upper bound,

b) Stress at the corner of the plate approaches

the exact value from an upper bound,

and the convergence of the membrane

a) Stress at the center of the plate approaches

the exact value from an upper bound,
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b) Stress at the center edge of the plate approaches

the exact value from an upper bound.
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CHAPTER 6

CONCLUSIONS AND RECOMMENDATIONS

In this investigation, a finite element displacement approach

formulation has been presented for obtaining numerical solutions to

geometrically nonlinear large displacement-small strain problems of

rectangular thin elastic plates. It has been demonstrated that the

method is capable of solving rectangular plate problems in which

membrane and bending behaviors are coupled and that displacements

and stresses, particularly membrane stresses, are sufficiently ac­

curate for engineering purposes.

It should be noted that in most finite element research dealing

with geometrically nonlinear plate problems, the membrane behavior

of the plate is represented by simple shape functions which include

only constant strains. In this research, the membrane behavior is

modeled by products of one-dimensional Hermitian polynomials of order

one. Thus, the resulting shape functions are polynomials capable of

representing not only constant strains but also strains which vary

linearly within the element. Representation of the membrane be­

hdvior as such is important in studying the stress distributions in

the glass plate, particularly at the perimeters of that plate. This

approach furnished results that are in very good agreement with avail­

able ~heoretical and experimental data. Based on the resul~s obtained

from this research, the following ~onclusions have been made.
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1. The proposed finite element formulation fulfills the ob­

jective of the investigation.

2. The glass plate which has edges that are free to move in­

plane experiences larger central stresses and displacement

than plates with lIilTl1'lovable ll edges.

3. Appreciable compressive membrane stresses which have

maximum values at the center edges develop along the peri­

meters of the plate.

4. Convergence of stresses differs between bendinq and

membraDe stresses and deoends upon the fineness of

the finite element discretization, the location within

the plate, and the relative magnitude of the loading incre­

ment.

The present research has given a means by which the stress dis­

tribution in rectangular plates can be studied. However, as with any

research, this investigation must be continued. Therefore, it is

recommended that certain improvements be made on the computational

scheme of the proposed approach and that certain topics be pursued

1. Improve the computational scheme by checking the equili­

brium at each loading increment and using a geometric

progression type incremental approach.

2. Conduct more studies of edge stresses of the glass plate

problem by using a finer mesh size along the boundaries and

plotting separately the variations of bending and membrane

stresses at critical points in the plate.



3. Compare stresses at critical points of the plate that

develop when the edges are free to move in the plane of

the plate with those developed when the edges are re­

strained.

4. Conduct corner stress studies when the corners of the

glass plate are allowed to lift.

S. Model the perimeters of the glass plate as plates on

elastic foundations and impose rotational elastic

springs along those perimeters to include the effects

of the partial res~raint placed by the window framing

system on the plate.

6. Compare total stresses with available experimental data

on glass.
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APPENDIX ,A.

THE [So], [G], [BLJ, AND {a} MATRICES

A.I Hermitian Polynomials and Their Derivatives

The expressions used to construct the matrices [80J, [G], and [BLJ

and consequently the stiffness matrices [KO] , [KLJ, and [KcrJ are the

one-dimensional Hermitian polynomials of order one and their derivatives.

A set of Hermitian polynomials is defined in Chapter 3 by Eq. (3-2) and

is rewritten here for convenience as

1 3 2 2
-=z<x - 2ax + a x)

a
132

Z(x - ax )
a

(1)
HOI (x) =

H~~)(X) =

H(l)(x) =
11

Hg)(X) =

1 3-(2x -
a3

-1 3-(2x -
a3

3.X: + .3) 1
3ax ) i for all x where

o ~ x ~ a

(A-I)

The first de~ivatives of these Hermitian polynomials with respect to

the x-coordinate are written as

Hg) (x) I = ~(x - a)
,

a3 i
I

(1) !
-6x(x - a) IH

02
(x) I = Ia3 I

~

Hii)(x)'
1 2 a2)

I
I

= ~(3x - 4ax + I
a- I

H(l)( )1 = ~(3x - 2a) I12 x a )

for all x where

o ~ x ~ a

(A-2)

and the second derivatives with respect to the x-coordinate are

expressed as

105



106

H(l) ( )" = L(2x - a)
01 x a3

H(l)(x)" = -L(2x - a)
02 a3

H~~)(X)II
for all x where

1 4a)= :-r(6x -
a o ~ x ~ a

Hg) (x) II
1= -=z<6x - 2a) (A-3)a

A.2 Formulation of the [Bo]~[G]__, [BL] and {a} Matrices for the Computer
Program

To formulate the stiffness matrices of the flat rectangular bend­

ing membrane plate element shown in Fig. 3.1 for coding in the computer

program, the nodal displacements at each node of the element are arranged

in the sequence u, ux' uy ' uxY ' v, vx' vy ' vxy ' w, wx' wy ' and wxy ' This

1eads to rearrangi ng the elements of the [BoJ, [GJ, [BLJ, and {cd matri ces

such that the membrane and bending components are separated at each

node. Thus those matrices are written in a partitioned form for each

element as follows:

Eq. (3-29) is written in a partitioned form as

(A-4)

where rB 1 IS 1 rS l and is 1 are r,6x121 submatri ces eXDress-
L OllJ' - 012 j

' - 022~' L 021 j
- - .

ing the derivatives of the shape functions associated with nodes (1,1),

(1,2), (2,2), and (2,1) respectively. ~atural iy,
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and {~21} are the vector matrices expressing the corresponding displace­

ment parameters. Forms of these matrices are shown in Tables A.I

through A.4.

Simi larly, the [ G ] and [ SL ] matrices are partitioned as

[ G ] = [ [GU ] [G
1Z

] [GZZJ [G
21

] ] (A-S)

and

[B ] = [ [B
LlI

] [B~12J [BL22] [B L21J 1 (A-6)
L ..

respectively. Forms of the matrices [Gll] , [G1ZJ, [G
22

J, and [G 21J are

shown in Tables A.S through A.8 while forms of the matrices [Slll]'

[B
L12

] , [BL22], and [B
L21

J are shown in Tables A.9 through A.12.





Pages 108-111 have been removed.

Due to legibility problems, the following has been omitted:

o Table A.I - Portion of the (6x48) Matrix (Bo) Represented by the
(6x12) Matrix (BOll) and Associated Modal Displacement Parameters
(p. 108)

o Table A.2 - Portion of the (6x48) Matrix (Bo) Represented by the
(6x12) Matrix (8012) and Associated Modal Displacement Parameters
(p. 109)

o Table A.3 - Portion of the (6x48) Matrix (Bo) Represented by the
(6x12) Matrix (B022) and Associated Modal Displacement Parameters
(p. 110)

o Table A.4 - Portion of the (6x48) Matrix (Bo) Represented by the
(6x12) Matrix (B021) and Associated Modal Displacement Parameters
(p. 111)*

*For further information regarding these tables, you may contact:

Institute for Disaster Research
Texas Tech University
LUbbock, TX 79409



Table A.5 Portion of the (2x48J Matrix [G] Represented by the (2x12] Matrix [G
11

]._.--._-_..._._~- ..--~ --.-1------- - -.-
o JO 10 10 10 0 0 0 1I(1)(x)'J1(l)(y) lI(l)(x)'II(1)(y) u(l)(x)'H(t)(y)

01 01 11· 01 01 11-- ._---.~ _ .. __._- '----- -~ ----_. -.- --- -_._-------- ------------
(1) (1) '(1) (1) , (1). (1) . '

010 I () 10 10 0 0 0 Jl Ol (x)1I 01 (y) 11
11

(x)H
Ol

(y) HOI (x)lI
i1

(y)
____.• .. -'__..L---...I • • •

(1) '(1)
11 11 (x) JIll (y)

II ( 1 ) ( x )11 ( 1 ) (y ) ,
11. 1.1'

Table A.6 Portion of the [2x48J Matrix (G] Represented by the [2x12] Matrix [GI2]

-_.__._-..------.-" . ..---

() 10 10 10 10 10 10 10
--·--····-1--+--1--

010 10 10 10 10 10 10

11(1 )(x) 'JIU ley) II ~ ~ ) ( x ) 'II~~ ) ( .Y ) 11(1 lex) 'H(l ley) u(I)(x) '11(1 ley)
01 02 01 12 11 12

- -
J1(l)(x)II(t)(y) , J1(l)(x)II(1.)(y)' II (1 ) (x)1I ( 1 ) (y) • (1) (l) ,

01 02 11 02 01 12 11 11 (x)1l
12

(y)
-- --------- -_._._--_.. --

........
N



Table A.7 Portion of the [2x48] Matrix [G] Represented by the [2x12] Matrix [G22]

o 10 I (

010

0 0 0 0 0 1I(1)(x) '1I(l)(y) 1l(1)(x) \,(1)(y) JI( 1 )(x) 'II( 1 )(y) H(1 )(x) 'JI(1 )(y)
02 02 12 02 02 12 12 12

- - - - -- --------- ----------- -- --
0 0 0 0 0 JI{t )(x)JI{t )(y)' Il}~) (x )1I~~) (y) , JI(1 )(x)lI(l )(y)' u(1)(x)Il(1)(y)'

02 02 02 12 12 12·
- --- -- --_. ------------------_._- - -

Table A.B Portion of the [2x4B] Matrix [G] Represented by the [2x12] Matrix (G21 ]

010101010101010

010101010101010

. _._...._-------------_. _.---------_._------ ----
(1) '(1» lI(l)(x)'H(l)(y) 1l(1 )(x) 'H(1)(y) H(1 )(x) '11(1 )(y)" 02 (x) H01 (y 12 01 02 11 12 11

------------_.. --------- -----
II ( 1 ) (x )11 ( 1 ) (y) , II (t ) (x )11 (t ) ( y ) , 1I(l )(x)lI(l )(y)' u(1)(x)JI(1)(y)'

02 01 12 01 02 11 12 11
---

--'
--'
w



Table A.9 Portion of the [6x48] Matrix [Bl ] Represented by the [6x1,2]
Matrix (Blli ] and Associated Nodal Displacement Parameters

._-_._----------._--------- ~

(l>W/Z>X) (ow/z,x)

JI(t)(x)'u(1)(y) u(l)(x)'u(l )(y)
01· 11 11 11

. --------------
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0101010101010

0101010101010
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------_.-----_._--_. -----
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Table A.lO Portion _of the [6x48] Matrix [Bd Represented by the [6x12]
Matrix [BL12 ) and Associated Nodal Displacement Parameters

----"- ---------'----.------------- ----_._._-.--- ----
(~w/zl)d (bW/3X) «()w/ox) (ow/ax)
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Table A.ll Portion of the [6x48] Matrix [Btl Repr~sented by the [6x12]
Matrix [BL22] and Associated Noaal Displacement Parameters
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Table A.12 Portion of the [6x48] Matrix [all Represented by the [6xI2]
Matrix [Bl21 ] and Associated Noijal Displacement Parameters

010101010101010

010101010101010

010101010101010

010101010101010

--0-1 () ril- ro' ror-o-rofo
010101010101010

- ••••_____ 0 ___ • _ ~_., .•_., _________'.__• ___• .._---,--.._-,---"-_..-._ ..,.- ..-.---
(ZJw/c>x) (-cW/ZlX)

11(1 )(x) '}(l )(y) Jj(l)(x)'}(l)(y)
02 01' 12 01

..._---_. --_.__._-----_._--_.-.. ---.- .._--- ..". --'-'---'--.'-- .',.

(ow/?JY) (~W/3'y )

II ( ~ ) ( x )11 ( 1 ) (y ) , 1I(1)(x)Jl(t)(y)'
Ot:. 01 12 01

. '-- .. _.. " . ----_._.__ ._-_.__...
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(8-1)

APPENDIX B

iHE [KO] AND [KLJ SiIFFNESS MATRICES

8_.1 Formul ati on of the l[KOL...=...JKLJJ Sti ffness Matri ces for the Computer
Program

The first term on the right side of Eq. (3-22) in Chapter 3 defines

the sum of the matrices [KO] and [KL] as

r
[KO] + [K

L
] = I [8] T[0*] [8 ] dV

Jv

Following the nodal numbering scheme atlopted in Appendix A, Eq. (B-1)

can be written as

= J
V

(B-2)

The right side of Eq. (B-2) yields a [48x48] matrix which is partitioned

into 16 r12x121 submatrices; for example, the first submatrix is
~ ..

r [811JT[O*J [811J dV
J

V

(B-3)

'.vhere [BllJ is a [6x12] matrix \vhich is the sum of [8011J and [BUll'
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For clarity, separate expressions for the elements of portions of

the stiffness matrices [Ko] and [~J as defined by Eq. (8-3) are shown

in sections 8.2 and B.3, respectively.

8.2 Expressions for the Elements of Portion of the Stiffness Matrix [KO]

The following are expressions for the elements of portion of the

stiffness matrix [Ka]. It should be noted that the numbers in parenthesis

indicate the position of that element in the stiffness matrix; for

example, KO(Ol,Ol) is the first stiffness element in the first row and

first column of the stiffness matrix [KoJ.

I-v (1) (1) I

--2-- HOI (x)HOI (Y)



Et J' (1) I (1) (1) (1) I

1-\12 lv HOI (x) HOI (Y)H
n

(X)HOI (y) +

A H(l)( )'H(l)( )' H(l)( )] dA
01 Y 11 x 01 \Y

Et ( (1) I (1) (1) (1) I

1-\12 J
A

[v HOI (x) HOI (Y)H ll (x)Hll (y) +

H(1 ) ( ) I H(1 ) ( ) I H(I) ( )1 dA
01 Y 11 x 11 Y j

I-v (1)
T HOI (x)

I-v (1) I

-2- HOI (x-}

I-v (1)
-2- HOI (x)

121

Et' f' (1) I (1) 2 1-\) (1) (1) 1 2.
I-v2 A[(H ll (x) HOI (y)) + -2-(H ll (x)HOI (y) ) J dA

Et r r (1) I (1) (1) I (1) I-v (1)
1-\12 LH 11 (x) HOI (y)HOl (x) Hl1 (y) + --2-- H1l (x)

JA

I (1) I (1) (1) '1
HOI (y) HOI (x)H 11 (y) J dA

Et r (1) I 2 (1) (1) . l-\)(H(1)( ))2
H

(I)(,)1
KO(02,04) = 1-v2 J [(H~l (x) ) HOI (y)Hll (y) 1" 2 11 x 01 Y

A (1) I

H
l1

(y) ] dA
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K
O

(02,OS) =
Et r I (1) I (1) (1) (1) I I-v H(1) ( )

1-v2 J [v Hn (x) HOI (y)HOl (X)HOI (y) + 2 11 x

'A (1) I (1) 1(1)
Hal (y) HOI (x) Hal (y)J dA

KO(02,06) = Et J (1) '(1) (1) (1) "
dA2(l+v) A[H U (x) HOI (y)H n (X)H01 (y) J

K
O

(02,07) = ..ll... J [v H(1) (x) ,H(1) ( )H(1) (x1H(1) (y)' • I-v H(l) (x)
I-v2 11 01 Y 01 11 2 11

A
(1) I (1) I (1) 1

HOI (Y) Hal (x) HI1 (Y)J dA

K
O

(02,08) = ..ll,. J [v H(l)(X)'H(1)(')H(1)(X)H(1l( )' • I-v H(l) ( )
I-v~ 11 01 Y 11 11 Y 2 11 x

A
(1) I (1) J (1) ,

Hal (Y) H11 (x) HU (Y)J dA

C't f r ( 1) I (l) 2 I-v (l) ( 1) I 2
KO(03,03) = 1:,)2 ~ L(H01 (x) H

ll
(y)) + -2-(H

01
(x)H

ll
(y) ) ] dA

r\

KO(03,04) = 1~~2 f [Hb~)(X)'Hi~l(X)'(Hi~l(y))2. 1;" Hbil(X)H;i)(x)

A (1) I 2,
(HU (y) ) J dA

I-v H(l)( )'
2 01 x



I-v (1)
2"" HOI (x)
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K (04,05) =a

K (03 07) Et J [H(l)( )'H(l)( )H(l)( )H(l)( )'1 dA
a ' = 2(I+v) 01 x 11 y 01 x 11 Y J

A

K (03 08) -It.. Jr [v H(l)(X)'H(l)( )H(l)(X)H(l)( )' + I-v H(l)(x)
a • = I-\)2 01 11 Y 11 11 Y 2 01

A H(l)()'H(l)( )'H(l)( )J dA
11 Y 11 x 11 Y

K
O

(04,01) = K
O

(OI,04), K
O

(04,02) = K
O

(02,04), K
O

(04,03) = K
O

(03,04)

Et~ J [(H(l) (x) 'H O) ( ))2 + I-V(H(l) (x\H(l) (\ \ I )2J dA
l-v 4 11 11 Y 2 11 IllY/

A

~ r 1- H(l)( )'H(l)( )H(1)( )H(I)( )' + I-v H(l)( )
I-v2 LV 11 x 11 Y 01 x 01 Y 2 11 x

'A (1) I (1) 1(1)
H11 (y) HOI (x) HOI (y)] dA

I-v (1)()-H x
2 11

',K
O

(04,07) = Et, r r H(l)(x)IH(l)(Y)H(l)( )H(l)(y)' + 1-') H(l)(X)'
l-\)L , LV 11 11 01 x 11 2 11

'A
( I' I (1) I (11

H ) f y ' H (x' ~ \ -/ (y. )' dA
1 1 , \ ) 1 01 ) "li ~
-~ _.



K
O

(05,04) = K
O

(04,05)

KO(OS,OS) = -S.L J -L(H(1)(X)H(1)(y) 1)2 + 1-v(H(l)(x) ' H(l)(y))21 dA
I-v 2 01 01 2 01 01 J

A

(05 06) ...lL r rH ( I) ( )H( I) ( ) (H (1) (1 ) I ) 2... 1·\) H(1) ( ) I (l) I ) I

KO ' = l-v 2 L 01 x 11 x I 01 Y '"2 01 x Hll \x·
)A

(H (l ) (y) )21dA
01
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.-S.L J [(H (l ) ( )) 2H( 1) ( ) I H(1) ( ) I +
1-~2 11 X 01 Y 11 Y

A
H(1) (y )H( 1) (y )J dA

01 11

Et r (1) (1) I 2 I-v (1) I (1) 2.,
KO(O? ,07) = 1-\12 [(HOI (x)Hll (y) ) + -2-(H01 (x) H

ll
(y)) J cA

I'A

K
O

(0?,08) = Et I .'H(l) ( )H(l)( )(H(l)(, )1)2 + l-'J H(l)( )' H(l)( )'
1-\12 L 01 x '11 x 11 y 2 '01 x 11 x

A
( 1) 2.

(H ll (y)) j dA

K~(08,04) = K
O

(04,08), K (08,05) = Kn (05,08), KO(08,06) = K
O

(06,08),u 0 u



KO(08,07) = K
O

(07,08)

K (08,08) = ..lL Jr [(H(l)(X)H(l)(y) 1)2 + l-\)(H(l)( ) ,H(l)( ))2, dAa 1-\)2 11 11 2 11 x 11 Y J
A

126

r ( 1) 11 2, (1) \ (1) j 1) II, (l ) \
i (H

O
• (x) ) HO•

1
(y;H-11 (y) + ') i1

01
(x) H (y i

• 1 'J... 01
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(l ) (l) II (1 ) (l) II (l) II

HOI (X)H
ll

(y) + v HOI (X)H
OI

(y) HOI (x)

(1) (1) 2 (1) II (1) "
Hll (y) + (HOI (x)) HOI (y) Hll (y) + 2(1-v)

H;~)(X)IH~~)(X)I(H~~)(y))2] dA

K
O

(09,12) = Et
4 J [H(l)(X)I H(l)(Y)H(1)(x)" H(l)(y) + \J H(l)(X)lI

12(I-v2 ) 01 01 11 11 01
A

H~~)(Y)H~~)(X)H~~)(y)1I + V H~~)(X)H~~)(Y)"

H(I)(x)"H(I)(y) + H(I)(X)H(l)(y)" H(l)(X)H(l)(y)"
11 11 01 01 11 11

(1) I (1) 1 (1) I (1) I

+ 2(1- \J ) HOI (x ) HOI (y) H11 (x) H11 (y) J dA
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(1) II (1) (1) (1) II (1) (1) II

HOI (x) HI1 (y) + H11 (x)HOl (y) HOI (x)H11 (y)

+ 2(1- )H(l)( )'H(1)( )'H(l)( )'H(1)( )', dA
v 11 x 01 Y 01 Y 11 Y J

,

)
1 [ (H(1) ( )" H( 1) (\ ) )2 + 2 H(l ) ( ) I' H(1) (1 )H(1) ( )

01 x 11 Y J v 01 x 01 YJ 1 01 x
A

(1) II + (1) (1) 1 II 2.. _ (1)/ I

H
U

(y) (HOI (x)H
U

(y)) ,2(1 ,J)(H
01

\x)

Hi~) (y) I ) 2] dA

( (I) "(I'" () 2 (1) 11(1)I [Hal (x) H
1
/ (x) (H 1i (y)) .. 'J HO~ (x) H~i (y)

JA
( 1 ) ( i ) 'I ( i ) ( • \ II ('1' II

H - ()H - (\1' "-, H'" ()H 1)( ) H'·)()
'11 x 11 jJ J 01 x"n \Y '11 x
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Hg)(Y) + Hg)(X)Hg)(X)(Hg)(y)")2 + 2(l-v)

H(l) (x) I H(l) (x) I (H (l ) (y) I )
2] dA

01 11 11

B.3 Expressions for the Elements of Portion of the Stiffness Matrix rK 1
.. L"

The following are expressions for the elements of portion of the

stiffness matrix [KL].



(01 09) ..n.. ( [ aW1H(1)( )' H(1)( ))2 + (h) oW H(l)( )H(1) (_I )'
Kl ' = I-v2 ) ~ 01 x 01 y 2 3y 01 x 01 y

'A
H(l) ( ) I H(l) ( ) + (h) ali~ (H(l) ( )H(1)( ) I )2] dA

01 x 01 y 2 ax 01 x 01 y

K (01,10) = .J..L If [~H(l)( )'H(l)( )'(H(l)( ))2 + aw H(l)( )1
L I-v2 ax 01 x 11 x 01 y v 3y 01 x

'A
H(1)(Y)H(1)(X)H(1)(y)' + (l-v)(~ H(I)(X)H(I)(y) 1

01 11 01 2 ay 01 01

H(l) (x) I H(l) (y) + aw H(l) (x) H(l) (x)( H(l) (y) I )
2) ] dA

11 01 ax 01 11 01
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K
L

(02,10) = ...!.L f [~H(l)(X)'H(l)( ))2 + (l+'J) ~ H(l)(X)'H(l)(..)
I-v2 ax' 11 01 Y 2 ay 11 01 Y

A H(1) ( )H(l) ( ) I + (1- v) (H ( 1) ( )H(1) ( ) I ) 2 3w 1 dA
11 x 01 y 2 11 x 01 Y ax J

KL(03,01) = KL(03,02) = K
L

(03,03) = K
L

(03,04) = 0

KL(03,05) = K
L

(03,06) = K
L

(03,07) = K
L

(03,08) =°

'K (n3 09) - Et
I L 'oJ, - 1-\)2

.~ oW , (l) I 2 (1) (l) , 3W"( 1) f ,,(l )
L :-(H (x)) HI' (y)H01 (Y) .,.. 'J "\ H01 \x) H'1 (y).x 01 .'J. ....l.

A (1) (1' I (1) (1' (')
H ( \H .. ) (\ .;., (1- \)) (,w ... r,), ) (, ' " :.. ( \ I
I X;I 'I), ~ "HOI ,,< H.

1
,y) H \x)

01 01 oJ '::::;1 1- 01
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K
L

(04,01) = K
L

(04,02) = KL(04,03) = K
L

(04,04) = 0

\ (04,09) = ~ r r oW (l) ( ) I (l) (\) (1) ( ) I I (l) ( ) + oW I (l) ( ) I

2 , l - H X H Y H X H Y v -~ H
1I

X
I-v ax 11 11 01 01 ~y

JA
H(l)( )H(l)(X)H(l)(I)' + (l-v\( jW H(l)(X)H(l)(I)'

1, y 01 i"'l Y '? 1 '1· 11 Y~ u _?y 1 __

( '\ I (.) '(" (I' I 11\
1 J () 1 I) ~W ... ) ( )' J ( ) U\ 1 { \

HOI x HOI ,Y ... - H1 X H Y "J1 \Xl·,x _1 11 ; -



K
L

(04, 10) =

K (04,11) =
L

K (04,12) =
L

133

H6~) (y) I) ] -dA

..lL f [~H(l) (x) I )2H(l) ( )H(l) (, ) + v oW H(l) (x) I H(l) ( )
1-v2. J ax 11 11 Y 01 Y ay 11 11 Y

A
H(l) (X)H(l) (y) I + (1-v)( aw H(l) (X)H(l) (y) I H(l) (x) I

11 01 2 ay 11 11 11

H(l)(y) + ~(H(1)(x))2H(1)( ) 'H(l)( ) I)] dA
01 ax 11 11 Y 01 Y

K
1

(05,01) = K (05,02) = K
L

(05,03) = K (05,04) = a
- L L

K
L

(05,05) = K
L

(05,06) = K
L

(05,07) = K
L

(05,08) = 0

K (05,09) =
L

:< (05,10) =
L

Et-,.,
1-')"'"

'W (1) (1\ I (1) I (1) '(11 ?
~ 'J ~ H ( x) H\ ) (y) H - (x) H • (y) -:- ~w (H / (y. \ \ -

;x 01 \ 01 11 01 ~y\ 01 \ IJ
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KL(06,01) = K
L

(06,02) = K
L

(06,03) = K
L

(06,04) = a

K (06,05) = K (06,06) = K (06,07) = K
L

(06,08) = a
L L L

Et I ,-3 W( 1+') ) (l ) ( \ (l). ) I (1 ) ( ) I (l) (\ :; WI (l) (K, (86,10) = -1-, i -, - H x)HUH x H
O

y) + -,\ H x
L _\)L i ~ -:ox 2 11 01 11 1 dy 11

j A
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I

) )J dA

K (07,01) : K (07,02) : K (07,03) = K (07,04) = 0
L L L L

KL(07,05) = K
L

(07,06) : KL(07,07) = KL(07,08) : °

(07 09) Et I( [" oW H(l) ( )H(l) (. ) I H(l) ( ) I H(l) ( ) + 3W(H(l) ( ))2
KL ' : I-v2 l v ax 01 x 11 Y 01 x '01 Y 3y 01 x

JA
H(l)(Y)'H(l)(y)' + (1-\))( aW(H(I)(x)')2H(l)(y\

11 01 2 3Y 01 11 I

H(l ) ( ) + oW H( 1) (x) I H(l) (y) H(l ) (x) H( 1) (y) I )' dA
01 y ax 01 11 01 01 J
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I

y) )J dA

KL(08,01) = K
L

(08,02) = K
L

(08,03) = K
L

(08,04) = 0

K
L

(08,05) = KL(08,06) = KL(08,07) = K
L

(08,08) =°

\ (08,09) =
Et r ~ oW (1) (1) I (1) 1(1) dW (1)

1-\J2 I L v oX H11 (x)H ll (y) HOI (x) HOI (y) +;y Hll (x)
J

A H(1) ( ) I H(l ) (x) H(l ) ( ) I + ( l-'J ) ( ;W H( 1) ( I I H( 1) ( )
I 11 Y 01 01 Y 2,Y 11 x I 11 \y

(1) I (1\ 3w (1) I (1) (1) (1) I

H (x) H • J (y) + - H (x) H (y) H (x) H - (y \
01 \ 01 ax 11 11 01 01 I

)] dA

K (08,10) =
L

Et
1-\)2



H(1) ( ) + aw H(1) ( ) I H(l ) ( )H(1) ( )H(1) ( ) I ) 1 dA
01 y ax 11 x 11 y 11 x. 01 Y j
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K (09,01) = K (01,09), K (09,02) =K (02,09), K
L

(09,03) =K
L

(03,09),
L L L L

K
L

(09,04) = K
L

(04,09), K
L

(09,05) = K
L

(05,09), K
L

(09,06) = K
L

(06,09),

K (09,07) = K (07,09), K (09,08) = K
L

(08,09)
l L L

\ (09,09) =



KL(09,lO) =

K (09,11) =
L
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K (10,01) = K (01,10), K (10,02) = K
L

(02,10), :< (10,03) = K, (03,10),
L l l L L



K (10,10) =
L

139 .

K
L
(10,07) = KL(07,10), KL(10,08) = K

L
(08,10), K

L
(10,09) = K

L
(09,10)

:ILJ [~w H(1)(X)II H(l)(X)I(H(l)( ))2 + \) dW H(l)(X)"H(l\
1-v2 a* 11 11 01 Y ay 11 01

A
)H(1) (x) H(l ) ( ) I + V aw H(l) (x) H(l) (\ )II H(l) (x) I

Y 11 01 y ax 11 01 y 11

H(l)( ) + ~H(I)(x))2H(l)( )II H(l)( )' _ 'l-v)( aw
01 y ay 11 01 y 01 y \ ay

(H(l)( )')2H(1)( )' H(l)( ) + aw H(I)( )' H(I)( )
11 x 01 Y 01 y 3X '11 x 11 x

(H~ ~) (y) I )

2
) j dA

\ (10,12) = -Et r r aw H(l) ( )"H(l) ( )H(l) ( ) I ,J1) ( ) jW H( 1) ( )"- I ' - I X Y X i1 Y + \) - X
1-\)2 I L ax 11 01 11 11 ay 11

JA
H( 1) ( )H(l) (x) H(l) (\ ) I + \) 3w H( 1) (x) H( 1) (y) "

01 y 11 11 y ax 11 01

H( 1) ( ) I H(l ) (.) , jW (u (l ) ( \) 2H( 1) ( )"., (l ) ( ) I

I X I y'" -," XI Y H Y -
11 11 Jy 11 01· 11 \

, ( 1 ) I 2 (, \ I (1) 'W,' i ) I
('_,)f JW'H .. ( ) \ H\.l.) (, \ H - (\ \ + .::.- H\- fv\
\J.) \ ;y"ll ,X) '01 )/ '11 YJ 3y 11 ,Ai



K (11,01) = KL(Ol,ll), K (11,02) = K (02,11), K (11,03) = K (03,11),
L L L L L

KL(11,04) =K (04,11), K (11,05) =K
L

(05,11), K (11,06) = K (06,11),
L L L L
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K (11,12) =
L
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K (12,01) = K (01,12), K (12,02) = K
L

(02,12), K (12,03) = K (03,12),
L L L L L

K (12,04) = K
L

(04,12), K (12,05) = K (05,12), K (12,06) = K (06,12),
L L L L L

KL{12,10) = K
L

(10,12), ~(12,11) = K
L

(11,12)

K (12 12) -Et j( r ~w H(1){x)Il H(1)(x)' (H{l){ ))2 + \) oW H(1)(x,"H(I)(
I L ' = I-\)2 I. oX 11 11 11 y ?Jy 11 I. 11

A
)H(1) (x) H(1) (' ) I + 'J :w H(l) (x) H(l) ( ) 11 H(1) (x) I

Y 11 11 y oX 11 11 Y 11

(l) 3w (1) 2 (1) 11 (1)' 3w
H

11
(y) + ~Hl1 (x)) H

ll
(y) H

11
(y) - (1-\1)( ay

(H(l)(X)')2H(l)( )'H(l)( ) + aw H(I)(X)'H{l)(x)
11 11 y 11 Y ax 11 11

(H~~)(y)')2)J dA
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APPENDIX C

THE [K~J STIFFNESS MATRIX
~

e.l Formulation of the [K
cr

] Stiffness Matrix for the Comouter Program

Following the nodal numbering scheme adopted in Appendices A and B,

Eq. (3-43) of Chapter 3 can be written as

I K I {' 1 = r [ r·B 1T. Ll'"o' BL12'J T'. [.8 ] T. 1'". B ~ T1I' (11 OCLr t LO LlIJ . 0 LZ2 : LO L21J J

JA

(C-1)

where {all}' {alZ}' {cr
22

}, and {a
2l

} are vector matrices expressing the

membrane stress resultants as defined by Eq. (3-45). ihe subscripts on

these vectors refer to the respective nodal numbers. When the matrix

manipulation in the right side of Eq. (C-1) is carried out according to

the mathematical principal illustrated in section 3-4.C, it can be shown

that Eq. (C-1) yields the stiffness matrix due to initial stresses and

that the Ilinitial stress" stiffness matrix of a finite element has the

form

K "1 :::

.. ''1''

i 0 J

,i _

o'- '- ~
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where

r N N
.,
I

~ Kb ,
(

r G ' T
I x xy

I= t i [G ~ dAL cr j

JA
L 11J

I U J

N N
L

xy y I
.J

(C-3)

C.2 Expressions for the Elements of Portion of the Stiffness Matrix [KcrJ

The following are expressions for the elements of portion of the

"initial stress ll stiffness matrix [KcrJ.

K (01,01) = K (01,02) = K (01,03) = K,..,(01,04) = K (01,05) = K (01.06) = 0
~ ~ ~ ~ ~ ~

K (02,07) = K (02,08) = K (02,09) = K (02,10) = K (02,11) = K (02,12) = 0
cr J a ~ cr v

K (03,01) = K (03,02) = K (03,03) = K (03,04) = K (03,05) = K (03,06) = 0
cr cr cr cr cr cr

= K ! ('14 10')-:;'-..1 ,. = 0
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K (05,01) = K (05,02) = K (05,03) = K (05,04) = K (05,05) = K (05,06) = 0
cr cr cr cr cr cr

K (07,07) = K (07,08) = K (07,09) = K~(07,10) = K~(07,11) = K (07,12) =0
cr cr cr v U cr

K (08,01) = K (08,02) = K (08,03) = K~(08,04) = K~(08,05) = K (08,06) =°cr cr cr v U cr

K
J

( 09 ,09) =

K (09,10) = .f.
J

A
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K (10,01) = K (10,02) = K (10,03) = K (10,04) = K (10,05) = K (10,06) = 0cr cr cr v v cr

1/ '10 10') ="J \ - ,-

Kj 10,11) =
:..J

( 1) (,\ 1/,\ '1\ I
w - I 'H'-J( , ,,\1'( ,,,I I, \ ' ',~+ N n \ X) , \y):'i " X)H \.Y , ' Of.,

Y 11 01 01 11 -



K (10,12) = • r [N fH(l)(X)')2H(1)( )H(l)( ) + N H(l)(X)'HO(ll)(Y)
J l.. I x\ 11 01 Y 11 Y xy 11

JA
H( 1) (x \H( 1) (y) I + N H( 1) (x) H( 1) (y) I H( 1) (x) I H( 1) (y)

11 J 11 xy 11 01 11 11

+ N (H(l) Ix) )2H(l) (y)' H(l) (y)' ] dA
y 11 \ 01 11
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K (11,11) =
(J

K (11,12) =
J

" (120 0 ) - < (1'"'1912) K f,? 10) :< ("0 '2\l"~ \_ ,.., -'.,. u, " ~ \ .1._ , .. = . .,. J. ,.1. ),
.... ~ ~ -'

K ( '2 11\ K roo 12)
I .,. .I. , ..... ) = ;':J \ ll, ..
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