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ABSTRACT

A methodology for the assessment of the reliability of linear lifelines
subjected to natural hazards was developed and applied to bridge and
underground pipeline examples. Included were the assessments of
probabilities of achieving various levels of functional goals for the
Tifelines and the evaluation of a damage probability matrix. Pairwise
dependency between adjacent sections (or spans) was considered using
binomial and bivariate normal models. For the bridge example, the_
failure of the 1ifeline was supposed to have occurred when a complete
failure mechanism developed. For the pipeline example, the failure was
supposed to have occurred when the abp]ied axial strains, computed
including the effects of vibratory motion and fault displacement,
exceeded the yield strains.. The loadings were considered to be both
probabilistic and deterministic. Reliability analysis was-performed for
horizontal and vertical earthquake motions.
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1, INTRODUCTION

This report presents the results of an investigation, conducted at
Engineering Decision Analysis Company, Inc. (EDAC), on the practical
reliability analysis of linear lifelines under natural hazards, such as
earthquakes. The purpose of this research was to develop and apply a
practical methodology for reliability assessment of linear 1ifelines under
the influence of seismic loads. Linear lifelines include a large category
of lifelines that usually do not have any major branches, such as pipelines
for the supply of o0il, gas and water, transmission lines, highways and
railroads, and bridges, etc.

The major emphasis of the research was on the development and use of
reliable and practical techniques for the assessment of reliabilities of
lifelines. The reliability assessments employed in this investigation
consisted of estimating probabilities of attainment of various levels of
functional goals. The types of lifelines of interest considered in this
investigation included lifelines supported at intervals by piers, such as
bridges, and lifelines supported continuously on a subgrade, such as
underground pipelines.

A salient feature of the research work described in this report was the
consideration of dependency between the properties and the behaviors of
adjacent elements of a lifeline. It is usual in reliability analysis of
lifelines to assume that the properties and loads at different locations of
a lifeline are independent, random variables. This is not true in many
cases, such as in a bridge where the capacities and loads for adjacent
spans are usually statistically correlated, or in an underground pipeline
where the properties of the surrounding soil are correlated from one region
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to the other. This is usually due to the uncertainty in the properties of
structural materials and construction and fabrication procedures for
structures, such as bridges, and the uncertainty in soil properties because
of their non-uniform and non-homogeneous character resulting from their
mode of formation. Furthermore, natural hazards, such as earthquakes,
which are random in nature, produce forces which are also random. The
loads at two points of a lifeline due to earthquake effects are, therefore,
also usually correlated.

Chapter 2 of this report describes the general methodology for reliability
assessment used in this study and its extension using two types of
probabilistic models describing the behavior of dependency between the
properties and loads for adjacent elements of a lifeline. The first model
employs a joint binomial probability distribution for the description of
the correlation in the behaviors of two adjacent elements. The capacities
at critical sections of the lifeline are considered to be normally
distributed and probabilistically uncorrelated, but the behavior of each
critical section itself is considered to be binary and correlated to the
behavior of the adjacent section. The second model employs a bivariate
normal distribution for correlation of capacities and Toads in adjacent
spans. In both cases, a pairwise dependency is assumed.

Two types of examples of lifelines were selected for this study, after a
very careful survey and discussions with numerous engineers in-house, as
well as professional engineers in the industry. The first example
consisted of a three-span concrete bridge. The geometry and properties for
this example were based on an existing ten-span bridge in the City of
Qakland in California. Chapter 3 describes the reliability assessment for
this 1ifeline. The second example consisted of an underground pipeline.
This example was based on the Trans-Alaska pipeline located in a
seismically active area with the possibility of experiencing vibratory
motions resulting from dynamic wave propagation effects, as well as fault
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displacements. The reliability assessment for this example is presented in
Chapter 4. This is followed by Summary, Conclusions, and Recommendations
for Future Studies, presented in Chapter 5.

The study described in this report was conducted for MNational Science

Foundation under NSF Grant No. PFR77-24727, and was carried out under EDAC
Project No. 103-140.
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2. GENERAL METHODOLOGY AND PROBABILISTIC MODELS

INTRODUCTION

The reliability of a lifeline under natural hazards is defined as the
probability of survival of that lifeline under such hazards. The
survival (or success) occurs when there is no failure. The failure is a
general terminology that requires accurate definition for individual
cases. In Chapters 3 and 4, definitions of failures and damage levels
are discussed for the bridge and the underground pipeline examples.
Reliability analysis, as performed in this study, consisted of
decomposing the'overall system into an assemblage of elements which
corresponded realistically to the functional characteristics of the
overall system. Since failure cannot occur in zero length, the basic
analysis methodology consisted of studies of discrete segments of finite
dimensions.

In real lifelines, as mentioned earlier, the properties and loadings
between adjacent elements are usually statistically dependent. For
consideration of complete dependency between all elements, the knowledge
of the joint probability distribution between these elements is required,
leading to the necessity of solution of a very complex problem with no
available easy solution techniques. For this reason, an assumption of
pairwise dependency was considered to be a suitable model for most linear
lifelines, since the knowledge of the coefficient of correlation
described first order conditional reliabilities between elements which
could lead to the calculation of overall reliabilities of the system,

Two types of probabilistic models were employed in this study for
consideration of pairwise dependencies of capacities, loads, or element

2-1
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behaviors, These models consisted of binomial and bivariate normal
distributions, as described below.

BINOMIAL MODEL

A binomial model based on the dependent binary behavior is one of the
simplest models that can be assumed in order to consider the dependency
of adjacent elements of a linear lifeline (Ref. 1). In this model, the
behavior of an element is assumed to be binary, i.e., having the status
of success or failure. Each element with a binary behavior is assumed to
be dependent on the success and failure of its adjacent element according
to the binomial distribution law. The failure of each element or section
would occur, by definition, when the loads at the specified section of
the element would exceed the corresponding capacities at that section.

It must be pointed out that, in using this model, the dependency is
actually assumed between the behaviors of adjacent elements and not the
loads or the capacities. The capacities are assumed to be independent,
normal random variables, while the loads are assumed to be perfectly
correlated normal random variables.

In using this model, the linear 1ifeline is first discretized into N
finite size elements (or critical sections) that are connected in
series. The overall reliability of the lifeline with a pairwise
dependency can then be written as:

R

N
‘1s 2-1

RL = R‘l . RZI] - R312 s R_ili-'[ LY RNIN_‘! =

where
Ri]i-l = Conditional Reliability of element i, given the
survival of element i-1
P (success of i/success of i-1) (2-2)

EDAG



If the behaviors of elements i and i-1 are represented by two binary
random variables Xi and Xi-l’ where

0] =P [failure of 1] ' (2-3)

Fi=P X

1}

R. =P [X

i : 11 =P [success of i] = 1 - Fs

and, if the joint distribution between the random variables Xi and
X;.qp is considered to be binomial, so that

Py x

; .I-.-I = R_i. Ri'} . . (2"4)

Then, one can obtain the conditional reliability Ri 5.1 @S follows:

Let the coefficient of correlation between X. and X;_; be given by

covix,, X, 1]

Ps 2 = .
i,i-1 cx UX (2-5)
i M-l
For binomial distribution PX X
i%i-1
2 = R.F. = R.(1-R;) (2-6)
Uxi i i i
2 R. F. 1 =Ry 1(1-R; 1) (2-7)
T N A A

= E [X].Xi_]] - m'iE[Xi-1] - W1 E[X]-] +omams 4
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where

By definition

Ri,i-] = P[success of i and i-1] = Riii*]-Ri'_T (2-9)
= P[x_i=], Xi‘] = 1] = Px'ix'i_]

But

SRR N

E[X,, X, 11 = p X; X, , = P (2-10)

B = Gt BES R R XX
i-1

Therefore

SRRELELRINE )
Inserting (2-6), (2-7) and (2-8) into (2-11)

Ri,i-] = E[Xi,xi_]] = COV [Xigxi_]] + mim.i_]

: (2-12)
COV [X;,X; 1] + Ry-Ry_g |

il
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Inserting (2-5) into (2-12)

R

. = p.os : .
511 7 "1,1-1 VR(1-Ry) Ry g (1-R;_4) + Ry-Rs (2-13)
Inserting (2-9) into (2-13), and solving for Ri|i-1’ we obtain
R - Ri,i-1 = R. +0p V/ﬁi(]-Ri)Ri-](]-Ri-7) (2-14)
ili-1 Ri-1 i i,1-1 R{_] _

The conditional reliability Ri %_1 is calculated for all the elements
and then the overall reliability of the linear lifeline is obtained
from (2-1). The marginal reliability R; is calculated from the
distribution of load Li and capacity Ci at the critical section (or
element) i: '

ool
]

P [success of section il

R =P [Li

<Ci] =1-P [Li >C1] =1 - P [failure of section i]
Marginal Reliability for Different Conditions of Loads and Capacities
1. If Li and Ci are independent normal random variablies with means
2 2

rnﬂ. and Me s and variances cg‘ and T s then Ri can be obtained as
i i i i
follows:
Let,
R I
1 \/ 0‘2 + 02
23 Cj
Then, (2-15)
Z.
B} ] ' 1.2
Ry = PlLy <C;l=Flz=2Z,]= = exp [~ 5 2°] dz
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The value of R, is equivalent to the shaded area shown in Fig. 2-la.

The values of F[z s;Zi] are obtained from standard normal density
tables.

2. If Li is a normal random variable and Ci is deterministic, then
Ri is obtained from:

Let,
m .-C.
7, = 211 (2-16)
1 Oy &
R
Then,
Ry = P[L; < Cy] = Flz < Z,] (2-17)

3. If Li is deterministic and Ci is a normal random variable, then

Ri is calculated from:

Let,

L. - my.
i~ Mgy (2-18)

~
fl
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Then,
R'i_ = P[Li < C'i] = Flz > Z‘i] : | (2-19)

4, If Li and Li-l are probabilistic and perfectly correlated, then
they can be discretized into M deterministic values with weighting
factors equal to the probability levels at those values. For
example, load L; can be discretized into M levels, Lij (j=1 to M)
(Fig. 2-2) with probability values Pj. Each Lij can be treated
as a deterministic load similar to 3 above.

L.. - mc-
7., = 1 (2-20)
ij )
C.
i
Rij = P[success 1|load j] (2-21)
Ry = g RisP3 (2-22)

The condition of perfect correlation is consistent with many practical
Tinear lifeline examples and the advantage of this condition is that this
assumption simplifies the calculation of reliability when the capacities,
as well as the loadings, are correlated. This procedure is used
throughout this study whenever probabilistic loadings are encountered.

BIVARIATE NORMAL MODEL

In this model, the assumption of dependency is considered between
capacities of adjacent sections. The loads are assumed to be either
deterministic or probabilistic with normal distribution, similar to the
previous case. The capacities are assumed to be normal random variables,
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with a joint bivariate normal distribution between a pair of adjacent
capacities.

The failure occurs, as before, when the load at a critical section or
element exceeds the capacity. The success or failure of a section is.
therefore dependent on the behavior of its adjacent section, i.e.,

Rijig = PLL; £ Cylbyq = C;q] (2-23)
If the capacities Ci and Ci-l are random variables, jointly dependent

with a bivariate normal distribution, the joint probability distribution
between C; and C._; would be

o
1
Po sy (Cus Cions Ps o 1) = exp{-—»—————-———————
i,i-1 2710 i1 74,4 V/""‘“g“‘“’ 2
2r o595 V1 = 05,40 2(1-07,3-1)
C,-m:\2 C,-my) (C;_;-m,
[( i 1)"2p ( i ‘I) ( j=1 1-1) + (2-24)
% 1,1-1 %1%
2
(i - "‘i-l\]}
\ i/
where p. . ; = Coefficient of Correlation between C, and C, _,
m

j>Mj_7 = Means of C. anq Ciq

°§’°§-1 = Variances of Ci and Ci-l

The marginal distributions for Ci and Ci-l are also normal, as shown
below:
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Deterministic Loads and Probabilistic Capacities
If the loads Li and Li-l are deterministic and the capacities Ci

2-9

(2-25)

(2-26)

and Ci-l are jointly dependent through a bivariate normal distribution

Pi 510 then the conditional reliability Rili-l is derived from
. Ry PIL <G 0Ly 2 Gy
ili-1 7 R4 PlLi.1 < Ci-1]

where

PLL; <€ O by 2Gi4] = f aC;

L,

o0
fpi,i-] (€45C4 1> py,407) 9

Lig

(2-27)

(2-28)

-0 L}—T
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Then, the total reliability is obtained from

RL = R]’RZI]-ooRili_-l.’.RNlN--I

N
=Ry ARy (2-30)

The values of integrals in equation (2-29) are obtained from standard
normal density tables., The values of integrals in equation (2-28) are
obtained as follows:

L{h,k,p) = fdx fdy-P(x,y,p) (2-31)
h k

where

P(x,y,p) = Bivariate normal density between random variables
x and y with zero means and unit standard deviations

L(h,k,?) can be expanded as follows (Ref. 2}:

0 if hk>D or hk =0 and h + k=20

1

L{h,k,p) = L{(h,0,a) + L{h,o0,b) - { :
¥ Qtherwise (2-32)

(ph-k)(sgn h) _ (ok-h){(sgn k) (2-33)

b
v h?-2phk+k? v h2-2phk+k?2

a =
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sgn h 1if h>0 (2-34)

-1 if h < 0O

o

The probabitity values in equation (2-28) are calculated by a transforma-
tion

P[L. < C. NL. . <C ]=LL"'mi Ll
i 504 Thir 250 o7 ' o5

i-1
’ pi,i-]) (2“35)

The values of L(h,0,a) are obtained from bivariate normal graphs given
in Appendix B.

The other useful relationships used in this study are

h k
L("h,‘ksp) = fdx fdy'P(X,y,p) (2_35)
L(h,k,p) = L(k,h,0) (2-37)
L(-h,0,0) = 1/2 - L(h,0, -p) (2-38)

Probabilistic Loads and Probabilistic Capacities

If the loads l..i and L]._1 are probabilistic, for most practical

purposes they can be assumed to be perfectly correlated. This means that
if the loads Li and L]..1 are perfectly correlated, they can be
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discretized into M load values Lij’ each with a weighting factor equal

to the probability Pj of the load at that level. Then the total
reliability can be obtained similar to (2-22)

M N
AR AR (2-39)

P [success i and success i-1{load j]
P [success i-1|%toad j] (2-40)

Ril-"] sj
Ry i-1]3

Ri-1)3
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Probability Density

(a) Probabilistic Load L; and Capacity C;

Probability Density

{

(c) Deterministic Lf and Probabilistic Ci

FIGURE 2-1 DEFINITION QF RELIABILITY AT CROSS-SECTION i
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Lij L,EM L.
Load at Section i

FIGURE 2-2 DISCRETIZATION OF PROBABILISTIC LOADING
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3. RELIABILITY ANALYSIS OF A BRIDGE

INTRODUCTION

This chapter describes the reliability analysis of a three-span,
reinforced concrete bridge. The methodology presented in Chapter 2 was
applied to this bridge example, using both the binomial and the bivariate
normal models. The original structure is an existing ten-span,
reinforced concrete bridge, located in the City of Qakland in

California. For simplicity, only three central spans of the bridge were
used for the reliability assessment. The extension of the methodology to
ten spans should be obvious.

The reliability assessment was performed for both horizontal and vertical
components of earthquakeQ The failure at a critical section of the
bridge was assumed to occur when the applied moment exceeded the ultimate
moment capacity computed using the recommendations of the ACI Code

(Ref. 3). The reliability assessments were performed considering the
applied moment loads to be both deterministic and probabilistic. In
addition, the statistical dependency between the behaviors of adjacent
elements was modeled using a binomial model, as well as a joint bivariate
normal model. The influence of the correlation between the capacities of
adjacent elements was thus also investigated.

Finally, a damage probability matrix was also developed for the case of
the bridge subjected to vertical ground motion. The resulting damage
matrix was then used in a decision analysis example to demaonstrate the
application of methodology developed in this study to a more general
seismic risk problem.
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DESCRIPTION OF THE BRIDGE EXAMPLE

A three-span box girder bridge example was selected for the reliability
analysis described in this chapter. The dimensions of the bridge are
shown in Fig. 3-1. The bridge consists of two 85 ft end spans and one
108 ft central span. The reinforcement details for the columns of the
bridge are shown in Fig. 3-2. The cross-sections assumed for the
reliability analysis in this study are shown in Fig. 3-3.

The material and section capacities of the girders, also taken from the
original design, were as follows:

fé = compressive strength of concrete = 4 ksi
fy = yield strength of steel = 60 ksi
W o= weight per unit length of spans AB and CD = 21 k/ft
W, = weight per unit length of span BC = 22.6 k/ft
Cl+ = positive moment capacity of spans AB and CD = 10261 k-ft
C2+ = positive moment capacity of span BC = 23089 k-ft
Cl" = 02° = negative moment capacity of spans AB, BC and CD
= 29,296 k-ft
Ca’ Cb’ CC, Cd = Random moment capacities of colums a, b, ¢, and d

RELIABILITY ANALYSIS - HORIZONTAL GROUND MOTION

For horizontal ground motion, the reinforced concrete bridge considered
in this example would primarily act as a rigid girder supported on
flexible columns, since girders were much stiffer than columns. This
means that failure would occur mainly at the top and bottom of the
columns. For this example, the failure was assumed to occur when plastic
hinges formed at critical cross-sections, i.e., when the applied moments
exceeded the ultimate moment capacities at the critical cross-sections,
thus forming a mechanism. The failure mechanism for the bridge is shown

3-2
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in Fig. 3-4. The resulting forces and moments due to dead and earthquake
loads at the ends of each column are shown in Figs. 3-5 and 3-6.

To account for the randomness of the material properties of the columns,
a normal distribution was assumed for the reinforcement ratio, r, for each

column, with mean r equal to the design reinforcement ratio ro = -035.
Two types of distributions were used, a narrow band distribution with
standard deviation, O, = 0.005, and a wide band distribution with a
standard deviation, or] = 0.015.' Since the ultimate moment

capacities of the colu&ns were linearly dependent on the reinforce-
ment ratio, they would also have normal distributions. The capacities

were calculated using column interaction diagrams shown in Fig. 3-7.

The applied loads (moments and axial loads) were calculated at the two
ends of the columns for various levels of earthquake accelerations, ug
varying from 0 to 2.0g. (The influence of axial Toads was found to be
insignificant for this bridge example.) The applied loads were
considered to be deterministic in this example, while the capacities were
assumed to be probabilistic, as mentioned earlier.

The reliability was then calculated as follows:

For each value of Ug, one can write the probability of failure at A (or
plastic hinge forming at A), as follows:

Py (iig) =P [Ca < S1l°u'g:' (3-1)
N S, (ug) - Ea
Therefore, PA(ug) = —— (3-2)
C
a

wherefa and o, are mean and standard deviations of C,. Similar
expressions werd used for other columns.
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The loads for different columns were considered to be perfectly
correlated. However, the column behaviors were considered to be
independent, since there was no indication that their capacities were
statistically correlated. For this reason, the probability of total
failure for the bridge was computed as follows:

PL(iig) = Plliy) Pgliig) Pe(iig) Pplug) (3-3)

and the total reliability of the bridge, for a ground acceleration ug,
was therefore given by:

R (lig) = 1 = P (iig) (3-4)

The values of the reliabilities for horizontal earthquake for the two
types of normal distributions (narrow and wide) are presented in
Table 3-1. The corresponding curves are shown in Figure 3-8.

'RELIABILITY ANALYSIS - VERTICAL GROUND MOTION

Since the axial stiffness of the columns was very high, for vertical exci-
tation the colums would behave almost as rigid bodies in the vertical
direction. The bridge structure was therefore modeled as a continuous
girder shown in Figure 3-9b. Since the flexural stiffness of columns was
much smaller than that of girders, the end supports were assumed to be
simple hinges. The loads on the three girders due to earthquake
excitation were obtained by using equivalent static loads applied at the
center of each span (Fig. 3-9c). The resulting moments from the dead and
earthquake loads are shown in Figures 3-10a and b. In Figure 3-10c, the
total moments due to dead and earthquake loads and the capacities at
critical sections of the girders are illustrated. Due to symmetry, only
C;, CI and C; were required in the analysis. The capacities were assumed
to be probabilistic. A normal distribution was used to represent them,
with their mean values equal to the design values. Two types of normal
distributions were used, namely, narrow band and wide band. The
parameters for these distributions are given in Table 3-2.
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The failure was assumed to'occur when a mechanism was formed. Since the
behavior of the third span was exactly similar to the first span because
of the symmetry, the analysis was reduced to computing the reliability of
two spans, AB and BC only. The reliability of the bridge was then
considered to be the probability of survival of all three spans.

Two types of models were studied to represent the statistical dependency
of adjacent spans: a binomial model and a bivariate normal model. In
the binomial model, the dependency was assumed between the behaviors (or
mechanisms) of adjacent spans, whereas in the bivariate normal model, the
dependency was assumed between the capacities of the girders. The
reliability analyses were performed for deterministic as well as
probabilistic loads.

Use of Binomial Model for Statistical Dependence of Adjacent Span
For this model, it was assumed that the success or failure of any span
would be dependent on the success or failure of its adjacent spans. For

example, it was assumed that the mechanism 2 (for span 2) was dependent
on mechanism 1 (for span 1) (see Figure 3-9d). (Mechanisms 3 and 1 are
the same.) The total reliability, RL’ of the bridge can therefore be
considered to be equal to the probability of success of all spans.

L= R = Bk (3-5)
where the Marginal Reliability for Span 1, Rl’ is given by
R1 = P(success of span AB against mechanism AEB)
= 1-P[plastic hinges at E and B] (3-6)
= 1-P[plastic hinge at E]. P[plastic hinge at B]
= 1-P1P
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and

R2 1= Conditional reliability of span 2,
given the survival of span 1

The assumption has been made that the formations of plastic hinges at
E and B were independent.

The Marginal Reliability for span BC was given by:

P
]

1-P[plastic hinge at B]. P[plastic hinge at F]
1-pypy (3-7)

/
The values of P1s Py and Py were obtained from the standard normal
density tables, using the following expressions:

p, = P[S] >C]] = P[plastic hinge at E] (3-8)
p, = P[S] >C7] = Plplastic hinge at B8] | (3-9)
py = PS, > C; 1= Plplastic hinge at F] (3-10)

According to equation (2-14), the conditional reliability of'span BC can
then be written as

R, (T-R,)R. (1-R
o, Y2 TRIRTTR))

Rop1 = Ry R

(3-11)

where R1 and R2 are marginal reliabilities of spans AB and BC,
respectively

and p = coefficient of correlation between behaviors
of spans AB and BC
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Deterministic Loading v

-A procedure similar to that employed for horizontal earthquake motion was
used for the evaluation of reliability of the system for vertical
earthquake motion. The reliability values corresponding to different
levels of vertical earthquake motion, Vg, are presented in Tables 3-3 and
3-4 for the two types of normal distributions for the capacities of the
girders. The corresponding reliability curves are shown in Figure 3-11.

Probabilistic Loading

The real earthquake loading is probabilistic in nature. For example, for
each level of earthquake ground acceleration, Vg, a probability level
P(Vg) can be assigned which can be determined from seismic risk studies
or statistical analyses of past earthquake history. In addition, the
Toadings at two points of a lifeline might be statistically correlated.

The earthquake loading, in general, can be assumed to be perfectly
correlated from one point of a T1ifeline to the other. A probabilistic
loading with a distribution P(Vg) can thus be discretized into
deterministic load levels Vgi with weighting factors equal to

P(V@i) = P.. The overall reliability can be obtained using equation

3
(2-22), as follows:

RL =z Ripi (3-12)

£
e
m
3
(o]
P
H

reliability of the bridge for the load levei '\/'g_i
P(survival of the bridgeIVgi)

For this case study, the probability distribution of vertical ground
acceleration Vg was assumed to be normal, as shown in Figure 3-12. The
overall reljability of the 3-span bridge was thus obtained from Tables
3-3 and 3-4, using equation (3-12). These values are shown in Table 3-5
for narrow-band and wide-band distributions on capacities, and for
different values of coefficient of correlation p.
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Use of Bivariate Normal Model for Statistical Dependence of Adjacent Spans
For this case study, the statistical dependency criteria for adjacent
spans was assumed to be a joint bivariate normal distribution between the

capacities Cl+, Cl' and CZ+ at critical cross-sections of the bridge. The

earthquake loading was considered to be both deterministic and probabilis-
tic as discussed earlier for the binomial case. The failure was also
supposed to occur in a manner similar to the binomial case, namely when a
mechanism was formed.

In the binomial model, it was assumed that the behavior of the two spans
AB and BC, and therefore the mechanisms 1 and 2, were dependent on each
other by a coefficient of correlation Pio- In Appendix A, the value of
P12 is calculated and compared with a threshold value Py By showing
that Pip < P,s ONE Can reasonably assume that the mechanisms 1 and 2,

as well as all the mechanisms, are uncorrelated by virtue of symmetry.
This approach has been used by other authors for the study of the

reliability of structural frames (Ref. 4).
The total reliability of the bridge was therefore computed as follows

R = 1-P[Z{0 or 22<0] = T-P[Z]<O]-P[22<0]
+ P[Z0]. P[Zz<0] (3-13)

P(mechanism AEB in span AB)
P(plastic hinges formed at E and B)

P11 (3-14)

where P(Zl<: 0)

The formation of plastic hinges at points £ and B would be dependent in
contrast to the binomial case, since the capacities at E and B were
assumed to be jointly distributed through a bivariate normal probability
density function.
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Similarly
P[z§<o] = P(mechanism BFC in span BC)
= P(plastic hinges formed at B and F) (3-15)
= P12

The value of p11 was obtained from

+ . -
X s
- + ] . + - .- (3 ]6)
Py f dac’ f Peyq (C1» €5 0) dC; -

where p(C1 , Cl ,| p) is the joint probability density function between
the capacities C1 and C1 . The d1str1but1on is b1var1ate normal with a
coefficient of correlation p between Cl and C1 S1 and S1 are the
load levels at the critical sections E and B.

Similarly, for span BC:

s S5 ~
- + +o
- -0

with a joint bivariate normal dens1ty function p.  between capacities
“12
C1 and C2 at the sections B and F. The load levels are S1 and 52

these sections.

The total reliability, RL’ was computed from (3-13), using bivariate
normal curves. The resulting reliability values for different values of
Vg are summarized in Table 3-6, and the reliability curve RL(Vg) is
shown in Figure 3-13 for the narrow-band normal distribution.
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DAMAGE ANALYSIS

A damage analysis was performed for the three-span bridge example for
vertical ground motion., A damage probability matrix was also developed
for different damage levels of the bridge. The resulting damage matrix
was then used in a decision analysis example. The following scenario was
used in the damage analysis.

Before any plastic hinge is developed in the girders, the bridge would
undergo elastic deformations. Under this condition, the resulting
deformations are quite small, so that almost no damage occurs to the
bridge.

However, as soon as a plastic hinge is formed, the change of slopes could
cause some damage to the bridge. The differential rotation AeB~is
shown in Fig. 3-1l4a where

aag = |8y] + |8, | (3-18)

For the earthquake loadings Pl and P2, the rotations 61 and 85,
after the formation of plastic hinges can be estimated from standard
slope defiection equations.

It was found that, for the vertical ground acceleration Vg of approxi-
mately 7 ft/secz, the value of 40 was equal to 0.5°. This value

was considered to be small and was expected to cause no damage.
In the above calculations, it was assumed that a plastic hinge would form

when the probability of occurrence of a plastic hinge is greater than a
threshold probability level Po equal to 0.10.
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Using the above criterion, for a higher acceleration level of Vg =
9 ft/secz, it was found that

Py = P(failure at F) = .125 >p/
p, = P(failure at B) = .37 > P,
Py = P(failure at E) = .004 <p,

The hinges would therefore develop at F and B and the mechanism BFC would
form (Figure 3-14b).

Similarly, as the acceleration levels were increased, it was found that,
at Vg = 22 ft/secz, the second collapse mechanism wou1d occur,
resulting in possible collapse.

Three distinct damage states were assumed for the bridge under vertical
ground motion, namely, minor, moderate and major damage, as shown in
Figures 3-14a, b and ¢c. These damage levels are defined below:

Minor Damage:
Formation of plastic hinges at the supports where negative
moments occur, resulting in possible minor cracks in sidewalks
and pavement of the bridge.

Moderate Damage:
Formation of first mechanism (in the middle span). This could
involve major cracks in the sidewalks and pavement of the bridge
and could cause disruption of traffic.

Major Damage:
Formation of second mechanism - collapse in all the three spans.

- EDAG
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Using the above approach, a damage probability matrix was developed, and
is shown in Table 3-7.

Decision Analysis

The damage probability matrix calculated in the previous section was
actually the conditional probability P(damagelVg) of each damage level
for a given ground acceleration. These values can be used directly in
decision analysis when a decision has to be made between different
alternatives of an action.

As an example, suppose the example bridge was already subjected to an
earthquake that caused minor damage. If it was to be investigated whether
one should repair the bridge for full serviceability or tolerate the
probable economic losses due to future earthquakes, a damage probability
matrix could be developed, given, that the bridge has already suffered
minor damage, as shown in Table 3-8.

The decision would then have to be made between the expected costs
associated with no repair and the expected cost associated with
performing repair (Fig. 3-15). The decision criteria are therefore
reduced to costs and monetary gains and Tosses here. A detailed decision
analysis could therefore be performed readily if utilities and the actual
costs were provided using a decision tree similar to the one shown in .
Fig. 3-15.
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TABLE 3-1

Reliability of the Three-Span Bridge Under Horizontal Ground

Acceleration ug for Two Types of Normal Distributions
for Column Reinforcement Ratjo, r

Ground Narrow-Band Distribution of r Wide-Band Distribution of r
Acceleration gy = .005 ory = 015
g(ft/sec?) | Py PR PC Pp RL | PA P P Pp R
16 .045 0 .08 045 1.0 .28 .087 .319 .284 .998
20 .35 0 .36 .36 1.0 448 .156 .452 .452 .986
24 .83 .02 .18 .83 .997 | .63 .255 .382 .63 .96l
32 1.0 .603  .997 1.0 40 .89 54 .82 .89 .65
40 1.0 992 1.0 1.0 .008 ;.98 .79 .95 .98 .28
48 1.0 1.0 1.0 1.0 0 .999 .937 .990 .999 .07
Notes: (1) r = Reinforcement ratio for the Columns
(2) oy = Standard deviation. of r
(3) Pas Pg, Pc, and Pp = Probabilities of formation of
plastic hinges in Columns a, b, ¢, and d,

respectively

(4) RL = Reliability of the bridge
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TABLE 3-2

- 3-14

Parameters for Distributions of Capacities

of Girder Cross-Sections of the Bridge

(Vertical Ground Motion Example)

Narrow-Band Wide-Band
Moment Distribution Distribution
Capacity of Capacities of Capacities
Standard Coeff. of Standard Coeff. of
Mean Deviation Variation | Mean Deviation Variation
m Gc Uc/m m O'C Q'C/m
(k-ft) (k-ft) (k-ft) (k-ft)
Cl+ 14547 1250 .09 14547 3750 .27
Cl’ 29296 1250 .04 29296 3750 .12
°2+ 23089 1250 .05 23089 3750 .15
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TABLE 3-5
Reliability of the Bridge Under Probabilistic Vertical Ground
Acceleration with the Distribution of Fig. 3-12
Binomial Model

Coefficient Reliability of Bridge

of
Correlation RL = ? RiPi
Narrow-Band Wide-Band
p Distribution Distribution

of Capacities | of Capacities

0 .862 J77
2 .863 .796
4 .863 .815
.6 .867 .831
.8 .870 .847
1.0 .870 .870
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TABLE 3-6

Reliability Calculations for the Bridge Under Vertical

Ground Motions, Vg - Bivariate Normal Model

[}

(2) P11
(3) p12
(4) R

Coeff.

& [ig =6 fr/sec? | Vg = 8.56 ft/sec? |Vg = 10.34 ft/sec?|Vg = 12 Fi/sec’

p Pip P12 RU | Pur Pz Ry P11 P2 R | Pu P2 R

0 .00l .0l .99 | .001 .03 .97 | .006 .46 .54 o1 .92 .08

.2 l.o1 .01 .99 | 001 .04 .96 .006 .47 .53 | .01 .92 .08

.4 |.000 .01 .99 | .001 .05 .95| .006 .48 .52 | .01 .92 .08

6 .00 .01 .99 | .00l .055 .945| .006 .49 .51 | .0l .93 .07

.8 |.000 .01 .99 | .001 .067 .93 | .006 .50 .50 01 .93 .07

1.0 |.001 .01 .99 | .001 .067 .093| .006 .50 .50 | .01 .94 .06
Notes: (1) o= Correlation coefficient between capacities of adjacent girders

Probability of formation of plastic hinges at E and B

Probability of formation of plastic hinges at B and F

‘Reliability of the bridge
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TABLE 3-7

Damage Probability Matrix for Vertical Ground Motions, Vg

Ground ‘

Acc. Probability of Damage

Vg No Damage Minor Moderate | Major

<.229 1.0

.229 .89 .11

.25¢ .66 .33 .01

. 289 .58 .37 .05

.31g .66 .33 .01

.68g .86 .14
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TABLE 3-8

Damage Probability Matrix for

Vertical Ground Motions, Vg, Given Minor Damage

Ground
Acc. Probability of Damage
Vg No Damage Minor Moderate Major
<.22g 1.0
.22g .998 .002
.25g .96 .03 .01
.28¢ .875 .125
.31g .48 .50 .02
.68g .86 .14
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(b) Typical Cross-Section
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FIGURE 3-1

Dimensions and Typical Cross-Section of the Three-Span Bridge
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QG of Roadway
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" {a) Assumed girder cross-section
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(b) Assumed column cross-section

FIGURE 3-3 ASSUMED DIMENSIONS FOR THE RELIABILITY ANALYSIS
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FIGURE 3-6 SUMMARY OF EARTHQUAKE LOADS AND RESULTING FORCES IN THE COLUMNS
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A B C 5]
777 zz7
a7 777
VQ Vg VQ VQ

{a) The vertical ground motion on the 3-span bridge

wo = 22 K/ft

wy = 21 K/ft wq =21 K/ft
(T
P A B c Y
Vg -V Vg Ve

(b) Continuous beam model for the bridge

F, =m1Vg F2=mZVg F3=m3§-/g‘
A B l C l D
{c) Equivalent static model
A B c D
E £ G

(z) (22) (Z3=24)

{d) Failure mechanisms

FIGURE 3-9 -MODEL, FAILURE MECHANISMS, AND FORCES FOR VERTICAL GROUND MOTION
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{a) Minor damage

P1 P2 P1
A l B 1 c
E G

{¢) Major damage

FIGURE 3-14 DAMAGE CONDITIONS -
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Cost

Vg<.229
Vg = 22q
: V_ = .25g $
Co = E[C4] 2
P[Vg = ,25q]
Vg = .28g
3
Vg = 3lg
s $
g V, = 68g
o 9
g
)
<
V, > .68
~— ‘Y - — -~ -
Seismic risk — prob. of occurrence damage prob. matrix after
minor damage. Table 3-8
p’ [damagelvg, minor]
given
minor damage
decision joint
©
- \ ..
?6 Vg <.22g
4 \%,
Vg = .25¢g
P[V, = .25g]
E(C,] $
Vg > .68y
Table 3-7 — damage prob. matrix P [damagelvg]

Seismic Risk — prob. of occurrence
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4. RELIABILITY ANALYSIS OF A BURIED PIPELINE

INTRODUCTION

In this chapter, a description is presented of a study of the reliability
of a long, buried pipeline, similar to the Trans-Alaska pipeline,
subjected to seismic loadings. The general methodology used for the
determination of the reliability of the pipeline was similar to that used
in the previous chapter for the determination of the reliability of a
bridge, especially in~regard to the dependence between adjacent spans.

Past studies (Ref. 5, 6, 7, 8) have shown that the following conditions
are usually true for buried pipelines:

A majority of the steel and concrete pipelines are flexible with
respect to the surrounding soil so that the pipeline follows the
soil motions. This suggests that the seismic interaction
effects between the pipeline and the surrounding soil may
usually be considered to be negligible.

Major failures in buried pipelines have been observed to be
caused by axial deformations rather than flexural, shear, and
torsional deformations.

Larger axial strains are usually found to be developed in
continuous pipelines than in segmented pipelines.

Section properties of the pipelines, except at bends, tees, and
knees, etc. do not have significant effect on the developed
strains. This is due to the fact that the pipelines are very
flexible and conform to the displacements of the surrounding
soil.
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The reliability analyses described in this chapter were based on the
above considerations. In addition, the following assumptions were also
made:

e The seismically induced stresses in buried pipelines are caused
by either landslides or soil failures, large disp]acements due to
fault crossings, or transient stresses due to ground shakings.
(In this study, the effects of Tandslides and soil failures were
not considered.)

o The pipeline essentially follows the displacements of the
surrounding soil. There are no relative displacements between
the soil and the pipeline, so that the axial strains induced in
the pipeline are equal to the axial strains induced in the soil,
due to seismic loads.

FAILURE CRITERIA

Two types of seismically induced strains were studied in this report:
axial strains due to compressional wave vibrations and axial strains due
to fault displacements, as discussed below:

(1) Axial Strains Due to Compressional Wave Vibrations Only
The axial strain, cp, in the pipeline resulting from a compressional
wave can be written as follows (Ref. 5):

¢ =im (a-1)

where V= maximum ground velocity
compressional wave velocity

-
o
"
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It can be assumed in the use of the above equation that the compressional
wave velocity, Vp, is a normal random variable with‘parameters depending
on the soil property. The probability distribution of cp can then be
~derived from equation (4-1), using the assumption that Vm is determinis-
tic. This can be justified by the fact that the uncertainty in @ is
mainly caused by the randomness in the soil properties, rather than Vm.

If the probability distribution of Vp is denoted by p(Vp), then the
probability distribution of Y p(cp) can be obtained from:

d .
plep) = p(vp)g‘ég (4-2)

dVp  Vp?
Vp is assumed as a normal random variable with parameters #p and ab.
Therefore,
ul
V_-u
P(V) =1 exp -1/2( P p) (4-3)
P 0‘p \/_ZTT 0'p

Making appropriate substitutions, we obtain

2 2

J -
ple)) = —L— P exp | -172 (M) (4-4)

0y VI Vi °p

EDRG



4-4

In general, the random variable, € is not normally distributed
according to equation (4-4); however, for a wide range of typical values
of V., Ho and %y the probability density, p(gp), can be closely
approximated by a normal distribution.

Equation (4-1) can be approximated to be linear around the mean Hps SO
that

eplVp) = elup) + e (up)(Vp-u) (4-5)
where,
v
e (u ) ="
‘P p us
Ny ) = M
ap(up) 5
p
Therefore,
Vo _Vm
= - Vo= u)
ep(Vp) up uz ( p Up (4-6)
p

(2) Axial Strains Due to Fault Displacement Only

The axial strain, €es induced in the pipeline resulting from
displacements at an intersecting fault, can be written as follows
(Ref. 4}).

_ D
€ = 30 COS ¢ (4-7)
where ¢ = angle of the fault with respect to the pipeline
D = fault displacement
L = anchored length of the pipeline (length between two

anchored points)



(3) Combined Axial Strains
If both the above types of axial strains exist, the total axial strain in
the pipeline is given by:

"t %" (4-8)
(4) Failure Criteria

The axial failure is considered to occur when the total axial strain,

€ in the pipeline exceeds the yield strain, eyp. In addition,

various levels of failure can be defined in terms of levels of damage.

For example, the total strain may exceed strains ¢, or ¢

yl .YZ’
which define two levels of damage, as follows:

minor damage: when € - ¢
t ¥,

moderate damage: when & > cyz

RELIABILITY ANALYSIS

Reliability analyses of pipelines subjected to seismic loads were
demonstrated for two examples. In the first example, the pipeline was
assumed to pass through four types of soft soils with different
properties. The failure was considered to occur when the seismically
induced strains exceeded the yield strain of the pipeline in each soil
region (Fig. 4-3a). In the second example, the same pipeline was assumed
to pass through regions of the soil ranging from soft to very hard (rock)
(Fig. 4-3b).

The material properties used for the pipelines corresponded to the X-65

grade steel used for Trans-Alaska pipeline. The axial stress-strain
relationship for this material is shown in Figure 4-1.
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The reljability analyses were performed for axial strains due to
vibratory compressibnal waves, as well as those due to fault
displacements, as described below.

(1) Reliability Analysis Based on Axial Strains Due to Vibratory
Compressional Waves
The reliability analysis of a straight pipeline, shown in Fig. 4-3a,
was first performed based on axial strains induced in the pipeline
due to vibratory compressional waves. The axial strain in the pipe
was obtained from equation (4-1).

Four kinds of soft soils were considered in this example. The
parameters of the compressional wave velocity and the corresponding
parameters of axial strains in all the four types of soils are given
in Table 4-1.

(a) Binomial Model
As discussed earlier, for each value of the maximum ground
velocity, Vm’ probability distributions can be readily obtained
for the corresponding induced strains for different soil condi-
tions. Levels of failure were defined in these reliability
analyses for a continuous pipeline corresponding to the induced
axial strains which just exceeded the strains €y and
€y, 2 corresponding to minor and moderate damage %eve]s,
re%pective?y. In the reliability analysis, using the binomial
model described here, the success or failure of a segment of the
pipeline in a soil region was assumed to be dependent on the
success or failure of its adjacent segment in the adjacent soil
region. The dependency factor was determined by a coefficient of
correlation p between the two segments. p was assumed to be the
same for all the pairs of adjacent segments throughout the
pipeline.
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The marginal reliability of a region i was computed as shown below
R, = P[cpi < eyl(or cyz)] = 1-.P [fpi > eyl(or cyz)] =‘l-p]. (4-9)

The conditional reliablity Ri‘i-l of segment i based on the
success of segment i-1 was obtained from equation (2-14) on the
"basis of pairwise dependency. The total reliability of the
buried pipeline, shown in Fig. 4-3a, under the effect of
compressional seismic wave, was therefore expressed by:

R=R1'R « R « R

2|1 3j2 743 (4-10)
The results of the reliability analyses described above are
presented in Table 4-2 and are plotted in Fig. 4-4. The
reliability values are shown for different levels of earthquake
motions, expressed in terms of ground velocities, vm,
(b) Bivariate Normal Model

In the re1iabi1ify analysis using the bivariate normal model,

the compressional wave velocities V Vp . Vp

and Vp in the four soil regions wer% assamed %o be random

var1ab4es that were pairwise-dependent through a joint bivari-

ate normal density function expressed by equation (2-24).

The parameters used for these random variables were similar to
those used for the binomial model. The coefficient of corre-
lation, », was defined for compressional wave velocities for a
pair of adjacent spans, and it was assumed to be equal for all
the pairs.

Using a linear relationship between ep and Vp, a bivariate
normal distribution between rp's of adjacent segments was ob-
tained from a bivariate normal distribution between Vp's of
adjacent spans.
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Therefore, the joint reliability of two adjacent segments i and i-1 was.
expressed as follows:

N o5
Ry i-10Vp) = de Jr P (b5 e, 5 ¢ » V) de 4-11
it i£ SR I TS R B by Pyt M ey (41D
where
P = joint probability between ¢, and ¢
i,i-1 Pi Pi-1

The total reliability of the pipeline was therefore expressed as shown

below:
Loy Yol = Ry By Rz Ry 0-12)
- but
Reysq (o, V) = 1160, ) |
ifi-1 Y% 'm Ri_1(p, Vm) (4-13)

Inserting (4-13) into (4-12), the following expression was obtained:

Roy + Raz - Ra3
R

RL(p, Vm) = (4-14)

2 * R3

The above expression was used to compute reliability values corresponding
to different values of pand V . The results are plotted in Fig. 4-5.
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(2) Reliability Analysis Based on Axial Strains Due to Combined Effects
of Vibratory Compressional Waves and Fault Displacements

This section describes the reliability analysis for combined effects of
vibratory compressional waves and fault displacement for the pipeline
example shown in Fig. 4-2b.

Four kinds of soils, from soft to very stiff, were considered. The
pipeline was assumed to be anchored at the very stiff soils. The total

anchored length L (length between anchors) was equal to

L=ty +L, (4-15)

where Ll and L2 were the lengths to the right and left of the point
of intersection of the pipeline and the fault line.

The total axial strains, €4s induced in the pipeline on the right and
left of the fault were a direct summation of the axial strains due to

compressional wave and’the fault displacement effects as shown in
equation (4-8), and were expressed as follows:

€, = gp + e (4-16)

The axial strains due to fault displacements were computed for the two
spans L1 and L2 as follows:

D D D
€ [ COS ¢ ~ — oy = L - (4-}7)
f] L] [“L] uf] ( 1 uLI)] cos ¢
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=D D D
€, = cos o =~ | 2 . Y (L,- )] ¢
£ 5 U cos 4-18
2 L2 [uLz uLg 2 LZ ( )

where “L and “L were the mean values of random variables
L1 and Lé, as digcussed below.

The reliability analysis was performed using the following assumptions:

(a) The location of the point of intersection of the pipeline and the

(b)

(c)

fault line was assumed to be random; the spans Ll and L2 were
therefore random variables.: A normal distribution was assumed
for the spans L1 and L2’ while L = (Ll + LZ) was assumed

to be constant. Assuming normal distributions for L1 and Lz,
and using linear relationships, the distributions of tf and
€f2 were computed to be normally distributed. 1

The compressional wave velocity, Vp, was considered to be a
normal, random variable, similar to the previous section.
Similar]y, the axial strain, cp, induced in the pipeline due to
vibratory compressional wave was considered to be normally
distributed, assuming a linear relationship between % and Vp.

The maximum ground velocity, Vm, and the fault displacement, D,
were assumed to be deterministic. The value of Vm was
conservatively chosen to be equal to 1 ft/sec. The

effect of the variation in D was then examined on the reliability
of the pipeline for the combined loading.

The angle between the pipeline and the fault line was assumed to
be zero to be conservative.
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(e) The following values were assumed for various parameters.

L =Ly +Lp= 1200 ft
KL, = 330 ft
6L1 = 90 ft
KL, = 870 ft
o =90 ft
L,

The parameters for the axial strains for the segments of pipeline on
either side of the fault were computed as shown in equations (4-17) and
(4-18). ' ’

For failure criteria, levels of damage corresponding to minor and
moderate damages were defined by yield strains of Sﬁ = 0.0024 and
eyz = 0.04, respectively.

~Using these parameters, the above assumptions and the procedures described
previously, a reliability analysis was performed for the example pipeline.
The results are shown in Table 4-4 and Figure 4-6 for different values of
the fault displacement, D. As the results indicate, the dependency
criteria, i.e., the coefficient of correlation between the compressional
wave velocities in adjacent soil regions, did not have significant effect
on the overall reliability. This was mainly due to the fact that the
relative effect of the fault displacement on the system reliability was
much more significant than that of the vibratory compressional wave. The
variation in the properties of soil for various regioné, therefore, did
not have any significant effect on the reliability of the system. It was
also found that, although minor damage ({y = 0.0024) occurred at low
values of fault displacements (<1.0 ft), %oderate damage ((y =

0.04) occurred at significantly high values of fault disp]ace%ents
(approximately 10.0 ft). As a general conclusion, it was also found,
similar to the bridge example, that the correlation coefficient, p, did
not have any significant effect on the overall system reliability.
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TABLE 4-1

4-12

Normalized Axial Strains for Vibratory Compressional Wave

for Various Soil Types

Compressional Wave Normalized Axial
Soil Type Velocity (Vp) Strain (sp/Vm)
Standard Standard
Mean Deviation Mean Deviation
(ft/sec) | (ft/sec) (ft™1) (ft~1)
51 1300 . 200 7.69 x 10-4 | 1,18 x 10-4
So 1200 200 8.33 x 104 | 1.39 x 10-4
S3 1100 200 9.04 x 10-4 | 1.65 x 10-4
Sq 1000 200 10.00 x 10-4 | 2.00 x 10-4

EDAG



4-13

TABLE 4-2
Reliability of the Pipeline Based on Axial Strains
Due to Vibratory Compressional Wave - Binomial Model

Probabilities 1
Ground , of Total Reliability of Pipeline
Velocity Failure
Vin RL

(ft/sec)| p; P p3 pPa| °=0 .2 .4 .6 .8 1.0

1 0 0 0 0 10 1.0 1.0 1.0 1.0 1.0
1.8 0 o - .003 .02 .997 .979 .980 .982 .983 .985
2 0 .004 .03 .16 .81 .8 .83 .85 .86 .88

2.5 .057 .181 .353. .60 .20 .26 .32 .40 .48 .57

3 40 .59 .74 .93 |0 .02 .04 .07 .12 .19

Notes: (1) P to Py = Probabilities of axial failure of the
pipeline in the soil regions S1 to 54, respectively.

(2) ¢ = Coefficient of correlation between behaviors of pipeline
segments in adjacent soil regions.
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TABLE 4-3
- Reliability of the Pipeline Based on Axial Strains
Due to Vibratory Compressional Wave - Bivariate Normal Model

Correlation
Ground Velocity | Coefficient ) Reliabilities
1.0 0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1
0.2 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1
0.4 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1
0.6 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.
0.8 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1
- 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.
2.0 0 1.0 0.96 0.97 0.8 1.0 0.99 0.93 ©
0.2 1.0 0.96 0.97 0.8 1.0 0.99 0.94 0O
0.4 1.0 0.96 0.97 0.8 1.0 0.99 0.95 O
0.6 1.0 0.96 0.97 0.8 1.0 0.99 0.95 O
0.8 1.0 0.96 0.97 0.8 1.0 0.99 0.96 0
1.0 1.0 0.96 0.97 0.8 1.0 0.99 0.96 O
2.5 0 0.94 0.8 0.65 0.40 0.93 0.65 0.23 0,261
0.2 0.94 0.82 0.65 0.40 0.94 0.69 0.29 0.35
0.4 0.94 0.82 0.65 0.40 0.95 0.73 0.30 0.39
0.6 0.94 0.82 0.65 0.40 0.96 0.76 0.33 0.45
0.8 0.94 0.8 0.65 0.40 0.97 0.78 0.36 0.51
1.0 0.94 0.82 0.65 0.40 0.98 0.79 0.40 0.58
3.0 0 0.60 0.41 0.26 0.07 0.12 0.20 0.13 0.02
0.2 0.60 0.41 0.26 0.07 0.13 0.22 0.13 '0.03
0.4 0.60 0.41 0.26 0.07 0.14 0.24 0.14 0.04
0.6 0.60 0.41 0.26 0.07 0.15 0.26 0.14 0.05
0.8 0.60 /0.41 0.26 0.07 0.17 0.27 0.15 0.06
1.0 0.60 0.41 0.26 0.07 0.19 0.28 0.16 0.08

Notes: (1) Ry Reliability of the pipeline in the soil region Sj

(2) Rjj = Probability of survival of the pipeline in the soil regions
Si and Sj
(3) R = Overall reliability of the pipeline
(4) p = Coefficient of correlation between compressional wave velocities

of adjacent soil regions.
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FIGURE 4-4 RELIABILITY OF PIPELINE BASED ON AXIAL STRAINS DUE TO VIBRATORY
COMPRESSION WAVE - BINOMIAL MODEL

EDREG



4-20

RL
1.0
75
Coefficient of Correlation
5
.25 p—
0 | l | Vm
0 1.0 2.0 3.0 40 [ft/sec]
maximum ground velocity

FIGURE 4-5 RELIABILITY OF PIPELINE BASED ON AXIAL STRAINS DUE TO VIBRATORY
COMPRESSION WAVE - BIVARIATE JOINT NORMAL DISTRIBUTION
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5. SUMMARY, CONCLUSIONS, AND RECOMMENDATIONS
FOR FUTURE STUDIES

SUMMARY

The main objective of this investigation was to develop and apply to
practical problems, a methodology for the assessment of the reliability
(defined as the probability of survival) of linear lifelines subjected to
natural hazards, such as earthquakes. The methodology was applied to two
sample problems, namely, a three-span bridge and an underground pipeline.

The emphasis of the investigation was on the development of practical and
reliable techniques for the assessment of reliabilities of lifelines.
This included assessment of probabilities of achieving various levels of
functional goals for the lifelines and the evaluation of a damage
probability matrix leading to a decision analysis.

One of the important features of the investigation was the consideration
of dependency between adjacent sections (or spans) of a lifeline. The
usual practice in the reliability analysis of Tifelines is to assume that
the loads, the behaviors, and the capacities of adjacent sections of a
lifeline are statistically independent. This assumption is not true in
most cases. Two types of probabilistic models were used in this
investigation, namely, binomial and bivariate normal models.

For the binomial model, it was assumed that the success or failure of an
element of a lifeline was a discrete random variable jointly dependent on
the behavior of its adjacent elements. A coefficient of correlation was
used for dependency between the binary random variables representing the
behavior of adjacent elements. For the bivariate normal model, the loads
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and capacities for adjacent spans of the lifeline were assumed to be
continuous random variables that were jointly dependent from one section
to the other, with a bivariate normal distribution, leading to indirect
dependency between the behaviors of adjacent sections (or spans). A
pairwise dependency was considered between adjacent elements for both
mode1s.

For the bridge examﬁﬁe, the failure of the lifeline was considered to
have occurred when a compléte failure mechanism developed. 'A plastic
hinge was supposed to have occurred in a spéh of the bridge when the
applied moment at that section exceeded the moment capacity. The effect
of axial load on the moment capacity was also considered, The reliability
analysis was performed for horizontal and vertical earthquakes. Equiva-
lent static analyses were used to compute the applied loads. The loading
" was considered to be both deterministic and probabilistic. A damage
analysis leading to decision analysis was also performed.

For the pipeline example, it was assumed that the pipeline followed the
motions of the surrounding soil and there was no soil-pipeline inter-
action. The failure of the pipeline was considered to have occurred when
the applied axial strains exceeded the yield strains. The applied axial
strains were computed, including the effects of compressional vibratory
motion and displacements due to an intersecting fault. The dependency
between adjacent soil regions through which the pipeline passed were
considered in a manner similar to the bridge example. The deterministic
as well as probabilistic loadings were considered. Reliability analysis
for earthquake loadings was then performed.

CONCLUSTONS

The following conclusions were reached on the basis of the work performed
in this investigation. These conclusions are based on only two examples
used in this investigation and should not be generalized for all types of
lifelines.
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e It was demonstrated that the methodology for the assessment of
reliability of lifelines developed in this investigation can be
successfully applied to a variety of lifelines.

e It was demonstrated that the methodology can be easily used for
performing damage analysis, and can therefore be used for
prediction of damage to lifelines for different levels of
earthquake motions.

e It was also demonstrated that the methodology can be readily
extended to performing decision analysis, and can therefore be
used as a tool for making major decisions in regard to alter-
natives between making major repairs or replacing a Tifeline
damaged by an earthquake. The methodology can therefore also be
used for earthquake insurance purposes.

® [t was shown that the lifeline reliabilities were not sensitive
to the use of different probabilistic models (viz., binomial
versus bivariate normal). For practical reliability analysis, it
could therefore be sufficient to use simpler probabilistic models
which are representative of the physical situations.

e It was shown that variations in the coefficient of correlation
for dependency between adjacent spans did not have any signifi-
cant effect on the reliability of the lifelines considered in
this study. The effect of dependency was found to be less
pronounced for the reliability of the bridge example than for the
pipeline example.

RECOMMENDATIONS FOR FUTURE STUDIES

The following are the recommendations for future studies based on the
results of this investigation:
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For linear lifelines, similar to those studied in this
investigation, the spatial variation of earthquake motions should
be considered.

For linear lifelines, similar to those studied in this
investigation, the applied earthquake forces in the lifelines
should be computed using more sophisticated dynamic analysis
procedures, including material and geometric nonlinearities, and
soil-structure interaction effects, etc.

The reliability methodology developed and demonstrated in this
study for linear lifelines should be used in close conjunction
with the available seismic risk methodologies.

The reliability methodology developed for linear 1ifelines in
this study should be extended to networks and other lifelines of
more complex configuration.

The treatment of dependency for adjacent sections (spans) in the
methodology used in this study (based on pairwise dependency)
should be extended to take into consideration the dependency of
all sections (spans) of lifelines.

The reliability methodology developed in this study should be
applied to other practical lifelines to ensure that it is appli-
cable to all types of Tifelines, and the conclusions reached in
this study can be generalized.

The reliability methodology developed and applied to earthquake

hazards in this study should be tested for other hazards, such as
tornadoes, floods, explosions, etc.

EDRG



5-5

A study should be performed to survey and collect available data
on the failures of lifelines subjected to earthquake motions for
comparison against the results of this study.

A study should be performed to collect data on testing and
failure of concrete, soil, and other materials and structural
elements and systems for the development of better probabilistic
models to represent the behavior of lifelines and the dependency
of sections (spans) of lifelines.

A study should be performed to develop detailed damage and
decision analysis methodologies based on the reliability
methodology of this study using actual cost data and realistic
utility functions.

A computer program should be developed to automate the reliability

analysis methodology developed in this study for everyday use of
this methodology in the industry.
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EVALUATION OF DEPENDENCY OF MECHANISMS
FOR THE BRIDGE EXAMPLE '
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APPENDIX A

EVALUATION OF DEPENDENCY OF MECHANISMS
FOR_THE BRIDGE EXAMPLE

In this Appendix, a coefficient of correlation, P12s is calculated

between the mechanisms 1 and 2 of spans AB and BC for the bridge example

of Chapter 3 for bivariate normal model. It is further assumed th
two mechanisms are independent whenever P12 is smaller than or equ
a threshold value, Poe This approach is taken by several authors,
as Ang (Ref. 4) for the study of the reliability of structural fra
According to this approach

Zi = performance function of mechanism i
Z. =3 a,.C..+ ;
LU F I MR PR

moment capacity at the plastic hinge j which

where Cij
participates in mechanism i

W
1

ik load k that js active in producing mechanism 1i.

aij and bik are capacity and load coefficients, respectively.

By definition, a mechanism i occurs when Zi‘< 0. The coefficient
correlation pij between mechanisms i and j is obtained from

at the

al to
such

mes.

(A-1)

of
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z(aiajcg + bfbjcg)
Pz = (A-Z)
1J o, ¢
21- Zj

where ccz, GSZ variances of those C and S that are common to Zi and Zj
ozz, ozz = variances of random variables Z. and Z.
i 5 ! J

resistance coefficients of moment capacities

J common to Zj and Zj
bys bj = load coefficients of loads common to Zj and Zj

According to this approach, if the value of pij is smaller than a threshold
value Pys then the two mechanisms Zi and Zj can be assumed_to be
independent. At the present time, the value of ° is subjective, and it is
largely determined by engineering judgments. The value of Po is chosen
equal to 0.6 in Ref. 4.

For the 3-span bridge example:

- + =
Z, =837 G +ay Oy + 0y Fy

- +
Zy = 355 0 ¥ 353 Gy + by Fp (A-4)
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where F] and F2 are the Toads in spans AB and BC

b, =

5 load coefficient common to Z] and 22 =0

For the narrow type normal distribution of capacities, we have

+

aC]

= oC] = oC} = 1,250 k-ft

if all the random variables C3, €7, Cj, Fy and F, are normally
distributed, Z] and 22 are also normally distributed with variances
equal to

2 . 2 2 2 2 (A-5)
0.2 = 4o+ + 160%+ + (108/2)% o2 (A-6)
L 9 C, Fa

For deterministic loading

o] = 0 =O
i F
Then
o, =0, = 5,590 k-ft
1 L
and
912 = 0,10

For this low value of Pips it can be fairly assumed that mechanisms
1 and 2 are independent.
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APPENDIX B

GRAPHICAL AIDS FOR CALCULATION
OF BIVARIATE NORMAL DISTRIBUTIONS
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where sgn A=1 if 42>0 and sgn A=—1 if k0.
Values for h<0 can be obtained using L(h,0,-p)=}-L{-h,0,P)

FIGURE B-1 L(h, 0, p) for 0<hS1 and -1<e<0  [EDAEG
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Values for h<0 can be obtained using L(h,0,-p)=%-L(-h,0,p).

FIGURE B-2 L(h, 0, p) for 0S<h<! and 0<p<?
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Values for h<0 can be obtained using L(h,0,-p) =%s-1.{-h,0,p).
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FIGURE B-3 L(h, 0, p) for h>1 and -1<P 1







