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ABSTRACT

The equivalent linearization method is applied to input identifi

cation from known structural response and system parameters, working

in frequency domain. In addition to the commonly used one-model pro

cedure, a two-model input identification procedure is proposed. Numeri

cal examples of structural systems having elements of bilinear force

deformation relations are presented for different cases of stiffness,

input motion and level of nonlinearity. Structural response obtained

from true hysteretic loop analyses are used as the known responses with

the unknown input motions to be identified. These identified motions

are then compared with the real motions to check agreement with their

maximum accelerations, response spectra, Fourier amplitude spectra, and

acceleration time-histories. Comparisons of accelerations and spectra

show differences generally less than 10% and the comparisons of time

histories show surprisingly good agreement even for cases involving

strong nonlinearities having ductility factors in the range 6<V<8.

Shaking table tests of two three-story braced steel frames are

used as examples to check the accuracy of the suggested input identifi

cation procedure. The bracing systems used show strong nonlinearities

due to buckling and material yieldi~g. Comparisons of the identified

and real input motions reveal differences that are in general small

except for the large pulses which produce high levels of nonlinear

displacement.

Sources of error in the analysis are discussed and possible im

provements of the input identification procedure are suggested.
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1. INTRODUCTION

While the analysis of response of a known structure, linear or

nonlinear, subjected to known dynamic excitations, may be referred to

as the normal problem, the reversed procedure determining structural

parameters or excitations from known structural response may be referred

to as the inverse problem.

The inverse problem of determining structural parameters from

given input and responses of the structure is known as structural

identification. Structural identification was originally the applica-

tion of system identification methods used successfully in electronic

engineering field to structural engineering problems. It has been

applied to the deduction, justification and improvement of analytical

modelling of structures in the laboratory and in the field subjected

to a vast variety of dynamical excitations, artificial or natural,

stationary or transient. Many well-written reviews have already been

. [5,7,10,
published for structural dynamical problems ln the last decade

15,18] The fundamental idea of structural identification is to

minimize, in the least squares sense, errors between the observed and

computed structural dynamic responses by selecting the structural

parameter in a systematic manner, i.e. the so-called output error

approach.

The other inverse problem of identifying the input or excitation

to a given structure from given structural responses is relatively

slightly touched so far by Ibanez[ll] on dynamic forces applied to

structures, by Reimer et al[16] on Pacoima dam analysis, by Seed and

Idriss[18] to obtain the bedrock motion in the case of horizontal soil
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layers and by the author[9] in 1978 in the analysis of strong motion

records obtained on an earth dam. The input identification is useful

either in finding the unknown excitation such as in the case of strong

soil-structure interaction where the record obtained at the basement

of a building cannot be considered as input to the building, or in

finding the unknown excitation at bedrock where no records are obtained

during a strong earthquake. The present report deals with this inverse

problem of input identification.

In most earthquake engineering problems, nonlinear behavior of

structures is inevitably induced; this is especially true when soils

are considered as in the case of soil-structure interaction. The

present report will be devoted primarily to nonlinear problems with

linear problems treated as a special case.

Although methods of direct integration in the time domain and

d 1 " [16] h b 'd 1 d . 'd t'f' t'mo a superpos1t1on ave een W1 e y use 1n system 1 en 1 1ca 10n

problems, the method of superposition in the frequency domain will be

used in the present report for ease and simplicity. This method has

been used in the input identification of horizontal layers of soil

[18]
deposits with success but the identified input motions have not

been compared with the real ones. The present paper tries to apply

it to a more general problem including structures and to investigate

the accuracy of identification by comparing the results with known

input motions.
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2. METHOD OF INPUT IDENTIFICATION

For linear cases where the principle of superposition may be

applied, the responses and the input of a structure are related in the

frequency domain by the simple relation

U(iw) H(iw) V(iw) (2.1)

where U and V are complex Fourier spectra of the response u(t) at some

location of the structure and the input motion vet) applied at some

location of the structure, respectively, and H is the transfer func-

tion relating response to input. Here, W is frequency and i = ;:I.

Evaluating terms in Eq. (2.1) by the Fast Fourier Transform (FFT) ,

transient vibration of finite duration Sl is considered to repeat

together with a quiescent period S2 following it as shown in Fig. 2.1.

The quiescent part of the input motion is added to guarantee that the

response u(t) of the structure repeatedly starts from the correct

given initial conditions. Although zero initial conditions u(t=O) =

v(t=O)=O are generally used, other given initial conditions can also

be considered by some specially selected motions within duration 8
2

•

The motions of both response u(t) and input vet) within the duration

u{t)

i"v"."..,.,Y+-I-++_------"'WtJAll.h'-1~----,Ow~,

1*----L---*_~ooI_ .0 _...I..---~~ 52 _I
.. t

FIGURE 2.1 PERIODICITY OF TIME HISTORIES
u(t) and vet)
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O<t<s will be transient as shown in Fig. 2.1; however over the infinite

duration they repeat with period s. This periodic condition could be

thought of as steady state in a general sense.

Since there are only three complex frequency-dependent functions

in Eq. (2.1), it may easily be used to determine anyone of them when

the other two are known. In the normal problem, U(iw) is found given

V(iw) and H(iw), in the structural or system identification problem,

H(iw) is found given U(iw) and V(iw) and in the input identification

problem treated here, V(iw) is found given H(iw)and U(iw); thus,

V(iw) = U(iw)/H(iw) (2.2)

The computational work required to Fourier transform U(t) to

obtain U(iw) and to inverse Fourier transform V(iw) obtained from

Eq.(2.2) would have been prohibitive 30 years ago, but the computa

tional effort today is quite acceptable due to the availability of

digital computers and the FFT algorithm.

Nonlinearity of a problem may be taken into consideration by the

equivalent linearization method. In this case, the nonlinear force

displacement relationship is replaced by single-valued relations

involving

K = K(Y)

l; l; (y)

(2.3)

where y is the strain or deformation of the element of the system and

K and l; are, respectively, the equivalent stiffness and damping ratio

of that element. For many nonlinear vibrational problems, these

equivalent parameters corresponding to a stress-strain loop of strain

amplitude y may be defined as shown in Fig. 2.2.
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I~
2Y

FIGURE 2.2 NONLINEAR STRESS-STRAIN RELATION

K slope of straight line AB =
AC

= -BC

E, 2
ADBE/triangular= - loop area area ABC

'IT

1
(Ymax - Ymin)Y -

2

(2.4)

where points A and B are, respectively, points of maximum and minimum

strain. In the case of single-valued functional relationships given

by Eq. (2.3), the nonlinear properties of the problem may be considered

by a standard iteration procedure which will be explained later.

Two procedures will be considered in this report, namely one-model

and two-model input identification. The one-model procedure is the

standard one that has been used in equivalent linearization in both

normal and inverse problems while the two-model procedure is one sug-

gested by the author in 1978 to be used in normal problems and input

identifications. These two procedures will be discussed in detail in

the following two sections.
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3. ONE-MODEL PROCEDURE

In the one-model procedure of input identification, the whole

process of real structure behavior is simulated by means of a single

equivalent linear model. The entire procedure as represented in Fig.

3.1 can be explained as follows:

(1) Tne input identification starts with some given

structural response u2 (t) and given structural properties,

including t..he equivalent stiffness K(Y) and equivalent

damping ratio ~(y) of each element of the structure.

(2) A standard Fast Fourier Transform (FFT) is applied

to obtain the Fourier spectrum U (iw) of the given response
a

history u (t).
a

(3) With the given structural parameters and the given

response, an estimate of strain level for each element will

give a set of stiffnesses K and damping ratios ~ to start

the iteration. Although the accuracies of the estimates of

K and ~ are not critical. good estimates will give fast

convergence of the iterations. Initial values corresponding

to zero strain are used herein for reasons of simplicity.

(4) The transfer function may then be computed by

solving a set of n simultaneous equations of the type

(_W2 [M] + iW[C] + [K){U } = - [M]{v }
a 0

(3.1)

mass,

where [M], [el = arM] + S[K], and [K] are, respectively, the

damping and stiffness matrices of size nxni {v} = {v }e
iwt

o

Preceding page blank
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STRUCTURAL PARAMETERS

K (y)' t (,)
IN tTIAl VALUES

ASSUMED
K ,

GIVEN RESPONSES

ua (t)

J VOw) :I-------,j-tl v(t> I

IfOw) I

I ,m I

Ilave I

L..-------f REVISED

K t

FIGURE 3.1 ONE-MODEL INPUT IDENTIFICATION PROCEDURE
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and {u} = {u }e
iwt

are respectively input and response vectors.o

The n component vectors {v } and{u } are time-independent.
o 0

Solution of Eq. (3.1) gives the displacement responses

The transfer function of displacement

r } iwt= tu e of the
o

= {v }eiwt •
o

structure subjected to harmonic inputs

responses will, by definition, be as follows

H (iw)
ab u ab/v bo o·

(3.2)

vnlere v ~ is that part of {v } representing the vector of input
Ou 0

at band uoab is that part of {u
o

} representing the displacement

at a due to Y
ob

•

u
Oab

and Y
ob

may

Transfer function H (iw) is complex since both
ab

be complex. It contains both the amplitude and

phase shift of response resulting from the harmonic input, and

it is, of course, a function of the forcing frequency w.

Other transfer functions can easily be found from the solu-

tion {u } for different response quantities such as accelerations
o

or strains. Tne number of transfer functions may be more than

the nuwber of DOF of the system, but only n such functions are

independent. ~vo sets of transfer functions are used here,

namely Ha(iW) for given responses ua(t) and Hr(iW) for element

strains.

(5) The input motion spectrum is calculated from the rela-

tion

where Hab(iw) is the transfer function of response ~(t) to a

unit harmonic input at b.

(6) The Fourier spectrum f(iw) of the element strain history
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y (t) is computed from the relation

r (iw) = IT (iw)V(iw) (3.3)

where Hf(iw) is the transfer function of the element strain yet)

defined in (4) above.

(7) Element strain history yet) is then obtained from

r(iw) by an inverse FFT for each element.

(8) Some average strain y is obtained from yet) byave

first finding the maximum absolute value of y. for the segment
1

of yet) between the i th and (i+l)th zero-crossing as given by

y(f)

(3.4)

FIGURE 3.2 STRAIN AMPLITUDE

and then by averaging the top m values of y. to obtain
1

Yave (3.5)

where LYi is a descending array rearranged from the Yi's obtained

above. Professor Seed and his colleagues use the fixed value

Y = 0.65.ave
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(9) Since the equivalent element parameters K and ~

are single-valued functions of element strain ~, a new set of

K and t; are obtained for each element as

K K(y)
ave

which will then be used to start the next iteration.

(10) Repeat the foregoing steps (3) - (9) until two sets

of consecutive values of y , or K and ~, are considered
ave

sufficiently close. In this report, a maximum difference of

2% is used.

(11) After the completion of iteration, the identified

input history vet) can be obtained from V(iw) by an inverse

FFr and any response of the structural system can then be

obtained therefrom.

Since the problem of equivalent linearization analysis applied

to nonlinear problems is well known, only certain unique features of

the present analysis will be described in the subsequent sections.
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3.1 Cut-Off Frequencies

v(t)

o t-----+---J'-+----+-~.----:l~-___\__..~---- ----:-- t
s

s= N·td

v{t)

FIGURE 3.3 DISCRETIZATION OF PROCESS vet)

In the numerical analysis procedure, we have to deal with a digital

discretization of a continuous function vet) of finite duration s as

shown in Fig. 3.3, where the time step At is very small but finite.

Inherent from the nature of this discretization and finite duration,

only components of frequencies within the range f u = 2~t (the Nyquist,

1folding or aliasing frequency) and f n = -- can be found in the Fourier
N 25

transformation V(iw) of vet). Components outside this range will not

appear.

In addition to the limitations introduced from the cut-off fre-

quencies f u and f
t

, it is necessary to introduce, in the present

analysis, further limitations to the cut-off frequencies.

A necessary high cut-off frequency f . is introduced to prevent
ul.



13

undesirable amplification of the high-frequency responses introduced

through inaccuracies of the numerical procedures used. Errors generally

exist in test data due to noise and instrumental limitations and dis-

crepancies certainly exist in numerical analysis between the actual

structural system and its mathematical model used in identification,

especially in equivalent linearization. Although the spectral distri-

bution of these noises or discrepancies in U (iw) is in general not
a

known, it is certain that they are to be amplified in V(iw) by a factor

of I as shown in Eq. (2.2). Since transform function H(iw) is
H (iw)

simply a resonance curve of the structural system, it approaches zero

on the high frequency tail away from the natural frequencies of the

system; thus, the factor l/H (iw) becomes very large. A cut-off fre-

quency f . is therefore required to limit this kind of undesirable
u~

amplification of errors at a sacrifice of losing the information of

frequencies beyond it in the input motion. This cut-off frequency

should be different for different problems, but for all the numerical

cases given in this report, it is taken as f .
u~

simplicity.

130
20.48 = 6.5 Hz for

A low cut-off frequency f~i is introduced for nearly the same

reason, except that the discrepancy between the actual structural

system and its equivalent-linearized model is much more pronounced in

low-frequency components as shown in Fig. 3.4. In general, the strong

nonlinearity in responses u(t) shows itself as a low frequency charac-

ter, since nonlinear displacement generated in the process of nonlinear

response tends to remain there for some time, such as shown by the dotted

line in Fig. 3.4 and appears obviously as permanent displacement on later

part of the vibration. This nonlinear drift shown by the dotted line in



FIGURE 3.4 RESPONSE WITH NONLINEAR DRIFT
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Fig. 3.4 will result in large Fourier amplitudes in the low frequency

range. Two measures are taken to reduce errors due to this nonlinear

drift in the low frequency range, namely a low frequency cut-off and

a shift of base line in the given response u (t). The low cut-off
a

frequency is t~cen as f
Zi

15
-~ 2ci:"48 == 0 9 75 H.z based on experierlce <> The

base line change in given response u (t) representing permanent drift
a

is selected in the foun

u(t) u (t)
a

:.= u (t)
a

t-s
3

- --- us-s P3

where 83<8 is chosen arbitrarily and up is estimated from the given

response curve. This base line change should not include large high

frequency components unless there is definite evidence to justify

doing so.

As a consequence of the necessity of introducing cut-off fre-

quencies f . and f n ., the input motion can only be identified within
Ul x,l

the range between f>?'i and f ui ' which is of course a serious limitation

of the procedure suggested here. However, the effect of frequency cut-

off on the original input history and response spectrum is in general

not very large as shown in the figures given in Appendix Ai however, it

can seriously affect the peak values in some input time histories where

high frequency components are pronounced. For example, the Pacoima

records in Appendix A may have peak values reduced to a half. In this

case, the response spectrum is almost unchanged in the period range

0.2 - 1.2 sec.
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3.2 Averaging Strain or Averaging Stiffness

During earthquake-type strong nonlinear vibrations, the hysteresis

loop diagram of the vibration history may be very complex as shown in

FIGURE 3.5 SIMPLIFICATION OF HYSTERETIC LOOPS

Fig. 3.5(a). The only pattern recognizable in this figure may be its

loops, although they are rather irregular. These irregular loops may

be smoothed at first into those as shown in Fig. 3.5(b), and any loop

c that is not centered at the origin can be shifted to the origin as

indicated by ct. This smoothing process will affect only certain

details of the vibration while the shifting corresponds to ignoring

nonlinear drift from the origin to the center of loop Ci thus, affecting

only the low frequencies in the input motion. The resulting simplifi

cation will then be a series of smooth loops as shown in Fig. 3.5(c).

For elements where these simplified hysteresis loops apply, the equiv

alent stiffness and damping are considered as single-valued functions

of strain amplitude.

During a whole process of vibration, each element will usually

undergo many loops of various strain amplitudes in a random fashion.

Since each loop of different strain amplitude gives a definite pair

of values for equivalent stiffness K and damping ~, there will be
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many different pairs of stiffness and d~~ping at different strain

mnplitudes. However, for the usual one-model equivalent linearization

procedure, only one equivalent linear pair is used for a single elemen"t

in representing overall behavior. This points to the serious problem,

"What equivalent pair should be used?".

First of all, t..J,is equivalent pair of stiffness and damping should

be some kind of average of all actual pairs corresponding to some average

value of strain amplitudes experienced in the process. Prof. Seed[17]

and others suggested using values corresponding to an average strain

amplitude y
ave

Yave C Ymax
(3.6)

where Y is the maximum, absolute value of the strain history yet)
max

2
and the coefficient c is taken as 0.65 or 3 for all input motions and

structures.

This coefficient c or the relation of Y with respect to the
ave

actual strain amplitudes is supposed to reflect the transient nature

of vibration. As shown in Fig. 3.6, Y
I

(t) shows a rather stationary

Y(t)

YMAX

FIGURE 3.6

, ..
f \

I \, \, ,
I \,

STATIONARITY OF AMPLITUDE OF VIBRATION

t
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or steady-state vibration where the strain amplitudes of all loops are

about equal, y should be near or equal to y and C~l; but Y2(t)ave max

shows a nonstationary or transient vibration where strain amplitudes

of all loops are quite different and the maximum amplitude appears only

once. In this case, y should be much smaller than y • It is for
ave max

this reason that Eq. (3.5) is suggested in defining y rather than
ave

Eq. (3.6). If m in Eq. (3.5) is kept constant, coefficient c will

equal I for Yl (t) and a much smaller value for y
2

(t). After some

numerical trials, a numerical value of 10 for m has been fOllild most

suitable in the one-model procedure. The corresponding values for

coefficient c in Eq. (3.6) for the numerical examples used here are

given in Table 5.2. They range from 0.55 to 0.86 for m=lO and from

0.23 to 0.46 for m=60.
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4. TWO-MODEL IDENTIFICATION

Although the one model identification procedure mentioned above

works for many cases, it fails sometimes for high levels of nonlinearity

as represented by ductility factors in the range 6-8. Figure 4.1 shows

such a case for ST4 (See Tables 5.1 and 5.2). Curves in (a) are the

Fourier amplitude spectra of responses at the top of a three~'story frame

subjected to the El Centro input for ductility factors W =1.8 and 8,6,

respectively, while those in (b) are the original input and the inputs

identified from the responses, with the abscissa given by a frequency

t · 1 rob K f h f . 2'IT . thseguen la nill er 0 t e requency expresslon w = K E; Wl S::::

20.48 sec. At K :::: 68 which corresponds to the linear fundamental

period T
1

0,30 sec, there is a very prominent peak in the Fourier

amplitude spectrum for 11 :::: L 8 but only a much smaller peak for II :::: 8.6.

In Fig. 4.1(b), it can be seen that the identified input spectrum for

11 :::: 1.8 is very close to the real one in the whole range of K :::: 10 to

140 (corresponding to 2.0 to 0.16 sec) and the corresponding equivalent

linear fundamental period Ti is 0.32 sec. This close match of spectra

suggests a close match of time histories. But on the other hand, the

identified input spectrum for 11 :::: 8.6 is rather different from the real

one in the following manner, higher in both lower (K<15) and higher

(K > 90) frequency regions and also near the linear fundamental frequency.

The identifications were made by using one-model procedure as out-

lined above with m :::: 10. Different values of m will give different

equivalent linear structures with different identified input spectra,

but with no better results. A smaller value of m will give a more

flexible equivalent structure with its fundamental period Ti >0.45 sec,
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and the amplitudes for T > 0.45 sec or K < 46 will be smaller than those

for II = 8.6 in Fig. 4.Ub). However, the amplitudes for T < 0.45 or

K> 46 will be greater which means consistently greater discrepancies

near Tl and within high frequency portion. A greater value of m will

reduce the discrepancies near T
l

and within the high frequency portion,

but it will increase the discrepancies in -the low frequency portion.

These discrepancies are believed to come from the over-simplification

of using one linear system as the equivalent of tile actual non-linear

structure. A two-model identification proced~rre is therefore intro-

duced here to reduce the discrepancy.

The sketch in Fig. 4.2 shows the procedure of the two-model input

identification suggested. It starts the same as the one-model procedure

from given structural para~eters K(Y) and ~(Y) for each element and

some given structural response u (t); however, two equivalent lineari
a

zation models are worked out separately for m = ml and m = m2 resulting

in two identified input Fourier spectra VI (iW) and V
2

(iW), respectively.

In this report, rn
l

= 10 and m
2

= 60 are used temporarily. The second

step is to combine these two models into one V(iw) by adopting the low

frequency part NL - NH from VI (iw) of the m
l

model and the high frequency

part NM - NH f:i:"om V2 (iw) of the m
2

model, where NL, NM and NH are respec

tively sequential numbers K of the low cut-off, some medium, and the

high cut-off frequencies as in frequency expression f = 2TIk/S where S

is duration of vibration. In the present report, NL, NH and NH are

temporarily taken as 15, 35, and 130, respectively, for S = 20.48 sec.

The final step is then to have the identified input history vet) by an

inverse FFT from the combined V(iw).

The idea of the two-model identification is to use one flexible
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FIGURE 4.2 TWO-MODEL INPUT IDENTIFICATION PROCEDURE
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equivalent model structure to identify the low-frequency portion of the

input and another stiffer equivalent model structure to identify the

high-frequency portion of the input. This idea is founded on the

following two considerations.

Firstly, judging from Fig. 4.1 and many others, as explained at the

beginning of this section, there is a consistent and strong general

trend in the structural responses that the higher the level of nonlin

earity, the larger the amplitudes of the lower frequency components,

and the smaller the amplitudes of the higher-frequency components but

always with some peaks near the linear fundamental frequency although

much smaller in the amplitudes. This phenomenon seems to suggest that

there is a qualitative connection between low-frequency vibration and

non-linear deformation in structures of softening nonlinearity.

Secondly, as shown in Fig. 3.5, a larger strain amplitude in the

free vibration does showasmaller equivalent stiffness of the structure

and hence a lower frequency of vibration. Although vibrations due to

strong earthquake motions are in general not free vibrations, but

vibrations of the forced transient type, we may interpret them from

the point of view of equivalent linear systems, i.e. the equivalent

structural stiffness will have a strong influence on the transient

vibration. Strong motion observation data reveal that the vibration

of structures under even minor nonlinear deformations show response

time histories containing longer predominant periods.

Based on these two considerations, it is believed that there is

at least a general effect of the nonlinear deformation to shift the

vibration to lower frequencies, although equivalent linearization is

only a rough overall approximation of the complex structural vibrations
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during strong earthquakes. The two-model identification idea suggested

here is a first step improvement over the one-model identification by

taking into consideration this relation between nonlinearity and

frequency content of vibrations.
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5. NUMERICAL EXAMPLES

Some numerical examples and experimental data are presented here

to show how the proposed input identification procedure works.

In all the numerical examples, a three degree-of-freedom (3 OaF)

structure as shown in Fig. 5.1 is used to approximate, but not to

simulate a 3~story frame tested on the shaking table at the Earthquake

Engineering Research Center of the University of California at Berkeley

[6, 12, 13]
This structure is subjected to horizontal ground motion

at node 4, and all elements have deformation only in shear. Structural

properties of the elements of the mathematic model in Fig. 5.1 and the

corresponding ones of the test frame are given in Table 5.1.

3 M

4

M

M2
64/1

64 11

80"

FIGURE 5.1 MATHEMATIC MODEL USED IN NUMERICAL EXAMPLES

The stiffness values given in Table 5.1 correspond to very small

4 . 2/,strains. Masses lumped at all nodes are M= 0.0102 k1.ps-sec In. The

linear natural frequencies are 2.8, 8.4 and 17.8 Hz for the test frame,

and 3.45, 10.59 and 18.0 Hz for the corresponding numerical examples

for the· case of K
23

= 31.7.
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STRUCTURAL PARAMETERS OF MATHEMATIC MODELS

Stiffness (kips/in. )
Linear

Structure Fundamental p a S

Element 1-2 2-3 3-4
Period (Sec)

Test Frame 57.7 57.7 29.6 .4 .234 .0003
Calculated

Test Frame* 24.33 58.16
19.18

Identified -37.40 -59.01 .4 .308 .00015

Mathematic
Model 31. 7 31. 7 18.1 .30 .3 l.0 .0002

STI

ST2 7.66 12.0 4.38 .59 .1 1.0 .0002

ST3 2.19 3.44 1.25 1.14 .1 l.0 .0002

ST4 31. 7 31. 7 18.1 .30 .1 .3 .0002

ST5 31. 7 31. 7 18.1 .30 .1 1.0 .0002

ST6 31. 7 31. 7 18.1 .30 .25 1.0 .0002

* Full stiffness matrix is identified



TABLE 5.2 CASES OF NUMERICAL EXAMPLES IDENTIFIED

Linear
GY (kips/in. 2 )

Example ].112 ].123 ].134 Id. T1 RK
34 ~34

reI (sec) G
Y12

Input m c
Gy23 G

y34
(sec)

STl .30 270 47 55
El 10 .76 .36 .61 .18

Centro -- 7.1 3.5
60 .36 .30 1.00 a

ST2 .59 55 40 20 " -- 7.8
10 .68 1.02 .33 .33--
60 .34 .73 .59 .24

ST3 1.14 55 50 10 " 7.2
10 .61-.81 1.46 .53 .27-- --
60 .46 1.20 .79 .13-

ST4 .30 90 90 120 " -- 1.8
10 .86 .32 .87 .08--
60 .43 .30 1.00 a

ST4 .30 55 55 55 " -- 4.5
10 .67 .39 .51 .28--
60 .30 .30 1.00 0

ST4 .30 60 60 45 II -- 8.6
10 .55 .45 .39 .32--
60 .23 .32 .93 .05

ST4 .30 90 90 120
2X El 10 .70 .38 .57 .25-- -- 3.5

Centro
60 .36 .30 l.00 a

.~-

ST5 .30 40 40 25 Taft -- 8.0
10 .63 .46 .38 .32--
60 .31 .33 .83 .10

I ST5 .30 150 150 no Pacoima
10 .72 .42 .46 .30

l -- -- 6.3
1 60 .39 .32 .88 .08

ST6 .30 30 30 40 Taft 7.1 6.4 3.3
10 .72 .35 .65 .18-
60 .32 .30 1.00 0

N
-J
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The nonlinearity of elements of the mathematical models is taken

as bilinear, with the slope of the second straight portion equal to

p-times that of the first portion and with symmetry assumed about the

two directions of deformation.

Table 5.2 summarizes all of the cases studied for the 3 DOF system.

The procedure used for the numerical examples of input identifica-

tion is as follows:

(1) Compute the relative displacement u(t) of the top mass

of the given structure due to a given input time-history using

program DRAIN-2D with a time step DT = 0.02 sec. For some examples,

DT =0.005 sec has also been used to check the accuracy of the

results using DT =0.02 sec. Figure 5. 2 shows a comparison for ST4

with 1.1 = 8.6 which gives the largest difference among the cases

compared. This difference is not large; therefore a time step

DT = 0.02 sec is used for all examples.

Some important parameters of the four input motions used here

are listed in Table 5.3.

TABLE 5.3 PARAMETERS OF INPUT MOTIONS

Duration (sec) Predominate
Earthquake

Sl S Amax/g Period (sec)

El Centro 6.0 20.48 .34 .25, .45 - .6

2X El Centro 6.0 20.48 .69 .25, .45 - .6

Taft 12.6 20.48 .18 .45

Pacoima 13.0 20.48 l.15 .2, .4
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Relations for the equivalent stiffness K and
eqv

damping ratio ~ as functions of element strain y have been
eqv

reduced from the bilinear stress-strain curve to give

c = K IK = P + (l-p)Xeqv

---

2
';eqv = 'IT

f

(l-p) X (l-X)

(l-p)X + P

~K
i

y

FIGURE 5.3 EQUIVALENT STIFFNESS FOR BILINEAR NONLINEARITY

where X = Y I is the ratio of strain at the elastic limit to that
y y

at maximum and where p is the ratio of slopes of the 2nd to 1st

straight lines of the bilinear property of the material, as shown

in Fig. 5.3.

(3) Input identification is then performed from the computed

responses u(t) at the top mass and the given structural properties

as outlined in Fig. 4.2 by the two-model procedure, with some cases

also by the one-model procedure. The one-model identification works



TABLE 5.4 PARAMETERS OF TEST EXAMPLES

M RK ~eqv
Test Bracings amax/gkips-sec2/in. m c Ident. T

l
Element Element

1-2 2-3 3-4 1-2 2-3 3-4

10 .56 .41 .69 .62 .66 .10 .08 .13
P400 Pipe .024 .48

60 .19 .37 .92 .84 .78 .25 .08 .14

10 .55 .60 l.00 .81 .22 .10 .10 .17
P800 Angle .024 1. 31

60 .19 .36 1.00 .84 .81 .10 .10 .10

W
I-'
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;; - 51 X a' x a"
CONCRETE BLOCKS

TESTED FRAME (AFTER Y. GHANAAT)
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only for certain cases while the two-model identification works

for all cases; therefore, the two-model procedure is recommended.

(4) Comparison of the identified input to the real input

is made for three quantities, namely acceleration time history

a (t), absolute acceleration response spectrum SA{T) for damping
g

ratio 0.05, and Fourier amplitude spectrum FAG(W). Results

are given in Figs. AI-All at the end of this report. Discussions

and conclusions from these results will be given in the next

section.

Several steel frames, with and without bracings, were tested on

the shaking table at the Earthquake Engineering Research Center of the

[2,3 6]
University of California, Berkeley, in the last few years '. A

series of early tests[3] was carried out to rather small nonlinear

levels. For these tests, a linear model with equivalent damping can

be used as a good mathematical model to predict the responses. A series

of recent tests[2,6] of frames (Fig. 5.4) with various types of bracings,

however, produced rather strong nonlinear deformation due to the alter-

nating buckling and yielding of the bracings. Two of them with strong

nonlinear deformations (Figs. 5.5 and 5.6) are chosen here to test the

input identification procedure suggested, with related parameters given

in Table 5.4 and Figs. 5.4-5.6. All data presented here have been

obtained from Mr. Y. Ghanaat. For further details, the reader is

f d t h ' " 1 [6]re erre 0 1S or1g1na report •

The identification procedure used is the same as before except

for the reductions of the functional relations of equivalent stiffness

and damping ratios. These reductions were carried out as follows:

The functional relations of equivalent stiffness K and dampingeqv
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ratio ~ are reduced from the given test results of time historieseqv

of story shear V(t) and story relative displacement d(t) for each

story of each test structure. Shown in Fig. 5.7 is one complete loop

of the V-d diagram plotted from V(t) and d(t) provided by Mr. Y. Ghanaat.

v

A

---------- CB

d

FIGURE 5.7 DEFINITION OF EQUIVALENT PARAMETERS FROM TEST DATA

With points A and B representing, respectively, points of maximum and

minimum story displacement of that loop, the equivalent stiffness K
eqv

is taken as the slope of straight line AB, the equivalent damping ratio

~ as the ratio of loop area ADBEF/(~2 x triangular area ABC), and theeqv

strain amplitude d as (d - d . )/2. For each loop of the main por-max m1.n

tion of the test data, a set of K (d) and ~ (d) may be obtained and
eqv eqv

plotted, with one of them shown in Fig. 5.8. It is obvious from this

plot, and from other similar plots, that the functional relations of

K and ~ to d are very complicated. First of all, they are not
eqv eqv

single-valued functions which is a result of the strong nonlinear

behavior of the bracings produced by the complex combinations of yielding,



50
z-
........
(f)
a..

f--p
~ 0.4

40

>
i
~ VJ 0.3
(J) 30

0
(f)
W • • ~Z

~ •
I.L • a:::

0.2L!.
w

I.L --.J

I- 20 • ~• Z
(f) • a..
l- •• • ~•• •:z .0 «
w 0 O. I
...J 10 I ....
~

.... e.

•::::>
c

0'
w I I I I I 0

0.4 0.8 1.2 1.6 2.0
0.4 0.8 1.2 1.6 2.0

DISPLACEMENT (IN) DISPLACEMENT (IN)

FIGURE 5.8 EQUIVALENT PARAMETERS FROM TEST DATA



38

buckling and pinching. The present equivalent linear representation

cannot adequately simulate this complicated case. A rough approxima

tion can be obtained, however, by using averaged single-valued func

tional relations as shown in Fig. 5.8. Results obtained this way are

listed in Table 5.5. A discussion of the results will be given in the

next section.



TABLE 5.5 RATIOS OF STIFFNESS RK = Ka/K
O

AND DAMPING ~ FOR TEST EXAMPLES

Story Displacement d (in.)
Test Story K *

0 a .02 .1 .2 .3 .4 .6 .8 1.0 1.4 2.0

RK 1.0 1.0 .78 .634 .537 .463 .354 .305 .268 .268
3 60

t; .32 .32 .13 .09 .09 .10 .12 .135 .17 .17

RK 1.0 1.0 .867 .800 .689 .633 .567 .522 .467 .467
P400 2 45

t; .35 .35 .09 .06 .06 .07 .10 .13 .17 .17

RK 1.0 1.0 .850 .800 .750 .717 .658 .617 .550 .550
1 41

~ .30 .30 .22 .16 .12 .12 .13 .14 .17 .17

RK 1.0 1.0 .857 .732 .643 .482 .357 .250 .214 .214
3 60

F; .1 .1 .1 .1 .1 .12 .15 .16 .17 ,17

RK 1.0 1.0 .820 .803 .656 .475 .361 .246 .197 ,,197
P800 2 45

F; .1 .1 .1 .1 .1 .12 .15 .16 .17 .17

RK 1.0 1.0 .820 .803 .656 .475 .361 .246 .197 .197
1 41

F; .1 .1 .1 .1 .1 .12 .15 .16 .17 ,,17

* kips/in.

LV
\0
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6. DISCUSSION

6.1 Coverage of Numerical Examples

Preceding page blank

Numerical examples given in Table 5.2 are selected to have an

adequate coverage of practical conditions in type of input ground

motion, parameters of structure, level of nonlinearity, and distribu-

tion of nonlinear deformation.

As for type of input ground motion, the El Centro record of the

NS component of May 18, 1940, is chosen for its popularity in response

analysis, the Pacoima record of the S16E component of February 9, 1971,

for its high peak acceleration and as a representative of the single-

predominant pulse type of ground motion, and the Taft record of the

S69E component of July 21, 1952, as a representative of the more random

type of ground motion. Only the strong phase of motion is used.

As for parameters of the structure, the variation of stiffness

of whole structure is allowed by changing the stiffness matrix in pro-

portion in models ST1, ST2 and ST3 to give fundamental linear periods

0.30, 0.59 and 1.14 sec, respectively. The mass-proportional damping

a varies in model ST4 and ST5 and the damping ratios in STl, ST2 and

ST3 also change due to change of natural frequencies. The corresponding

damping ratios for the fundamental mode are given in Table 6.1.

TABLE 6.1 DAMPING RATIO ~ OF FUNDAMENTAL MODE
OF STRUCTURES IN NUMERICAL EXAMPLES

Structure STl, ST5, ST6 ST2 ST3 ST4

~ .02 .05 .09 .01
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Level of nonlinearity expressed by element ductility factor ~ and

distribution of nonlinear deformation are controlled and designed to

vary by adjusting the elastic limit 0y of each element. As shown in

Table 5.2, the ductility factor ~ varies over a wide range from 1.8 to

8.6. In general, nonlinear deformation occurs at the bottom story as

indicated by ~34>1.O in Table 5.2; however, in two cases nonlinear

deformations also occur at other stories. In model ST6, nonlinear

deformations occur almost simultaneously at all three stories as in

the case of balanced design. In model STI, nonlinear deformations

occur at the bottom two stories representing a special case.

The slope of the second straight line of the bilinear force

deformation .relation (Fig. 5.3) is also allowed to vary from p=O.1

to p=O.3 causing a strong effect on the nonlinear levels of responses.

6.2 Sources of Error

For linear behavior of structures, the errors in the input identi

fication procedure come only from the following sources. One source

is the frequency cut-off which is a necessary step in the discrete

analysis of a finite length of data. This error can be reduced by

increasing the data samples and decreasing the time interval between

samples. Another source is noise which inevitably is introduced into

the data when estimating structural parameters and when modelling the

structure. This is common to all identification problems.

For nonlinear behavior of structures, other errors may be intro

duced by the equivalent linearization method in the frequency domain.

The most serious error is from the differences in mechanism of the

nonlinear deformation represented by the equivalent linear structural

model and the real nonlinear structure shown in Fig. 3.4. If a transfer
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function may be defined for the nonlinear behavior of the structure

from the Fourier spectra of its nonlinear response u(t) and the input

vet) as given by,

H(iw) = U(iw)!V(iw) (6.1)

this relation may give quite different values of transfer functions

at those frequencies far from the main peaks. Figure 6.1 provides a

comparison for case STI where the transfer functions H(iW) of the

equivalent linear structures are obtained from ml =10 and m2 = 60 for

the two-model identification and from the ratioU(iW)!V(iw) obtained

directly from the Fourier spectra of the nonlinear response u(t) and

input v(t). The high fluctuations present in the ratio U(iul)!V(iw)

seem to show the invalidity of processing nonlinear responses in the

frequency domain. It is realized that nonlinear behavior cannot be

viewed in frequency domain since the law of superposition is no longer

validi therefore, this comparison is used only to show that, at both

ends of the spectrum, the equivalent linear models consistently give

too small a value for the transfer function.

Because there is a significant discrepancy between the actual

nonlinear behavior and that of the equivalent linearized structure due

to the inability of the equivalent linearized structure to show perma

nent deformation, as explained in Sec. 3.1, the actual response will

be different in the time history u(t) or in its Fourier spectrum,

mainly at both ends of the frequency range where the spectrum has

small ordinates. The differences at both ends of the frequency range

will be very much amplified after dividing by the transfer function

H(iw) of the equivalent structure which has small ordinates, as shown

in Fig. 4.1 or Fig. 6.1. A further frequency cut-off at both ends is
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needed to reduce this error.

6.3 Fitness of the Identified Input

Since there are frequency cut-offs necessary in the input identi

fication procedure, the identified input can never equal the original

input, but it can approach the original input filtered between the cut

off frequencies. The effect of this filtering process for all cases

investigated is, in general, not large on both the time history and the

reponse spectrum in the medium frequency range, as may be seen from the

figures in Appendix Ai however, it may be considerable for those cases

where high frequency components are important for defining peak values

in the time history, and such as in the Pacoima motion shown in Fig. A.B.

The fitness of the results is tested in three comparisons of time

history, Fourier spectrum, and response spectrum.

As may be seen from a comparison of all numerical examples, the

response spectra (damping ratio 0.05) of the identified inputs are

quite close to the original in the range of periods T = 0.02 - 1. 4 sec.

For longer periods, the identified response spectra are considerably

in error due primarily to the frequency cut-off used in the analysis.

For spectra in the high frequency portion, mismatch shows two

errors, one from the high frequency cut-off and another from the

fluctuation of the spectrum ordinate. Since smoothing is usually used

in obtaining a "standard" response spectrum, the averages of the high

frequency portion from rr :s.0. 5 sec will be used for comparison in

Table 6.2. The identified response spectra are quite close to the

filtered ones and differ from the original ones by errors within 10%

for almost all numerical examples.



TABLE 6.2 COMPARISON OF RESPONSE SPECTRA IN T ~ 0.5 SEC and a
max

r
AVERAGE ORDINATE amax/g

Case 1134

Original Filtered Identified Original Filtered Identified

STI 3.5 287 271 286 0.34 0.35 0.37

ST2 7.8 287 271 263 0.34 0.35 0.40

ST3 7.2 287
I

271 242 0.34 0.35 0.26

ST4 1.8 287 271 254 0.34 0.35 0.32

4.5 287 271 317 0.34 0.35 0.37

8.6 287 271 300 0.34 0.35 0.34

3.5 574 542 567 0.69 0.68 0.80

ST5 8.0 146 142 147 0.18 0.16 0.24

6.3 725 669 627 1.15 0.66 0.60

ST6 3.3 146 142 154 0.18 0.16 0.20

P400 594 404 416 0.48 0.43 0.64

P800 791 761 659 1.31 0.86 0.62

ol::>
(J1
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If individual ordinates of the response spectra are compared,

although errors may be as high as 50% at some small portion for indi

vidual cases and in the short and long period ends for many cases

due to small ordinates, the fitness of the spectrum is in general

within errors less than 20% for most numerical examples.

Comparison of the time-histories and Fourier amplitude spectra

can only be made by a general overall visual view since both of them

are highly oscillating in nature. For nonlinearities in the range

11';' 6-8, the results of input identification using the equivalent

linearized model may be considered good for all numerical examples.

The identified input time-histories always follow the corresponding

original ones for the important wave pulses such as those near t = 2.1,

4.5 and 4.8 sec of the El Centro record; t = 3.7, 6.6, 7.7 sec of the

Taft record. For the Pacoima record, the amplitudes of filtered

acceleration time-history are much smaller than those of the original

because of the high frequency components in the original record

and Fig. AS shows that the identified input time-history follows

the filtered one for the important wave pulses such as those near

t = 3.3, 6.2, 7.3, 7.5, 7.6 and 8.2 sec.' Table 6.2 gives a compari

son of the maximum accelerations, showing the errors to be in general

about 10%.

Rather similar comments may be made for the identifications using

test results with strong nonlinearities, except the following should

be mentioned. Firstly, two large consecutive cycles of vibration

appeared in the identified time history from t=9.2 to 10.4 Sec with

a period about T = 0.6 sec (apparently due to a similar wave train in

the input motion) for the case P400 which makes the identified response
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spectrum near that period much higher than the original. Secondly,

the input motion for case P800 contains so many high frequency compo

nents that the amplitudes of the identified motion are consistently

lower than the original, although wave pulses are generally close and

the ordinates in high frequency range of the response spectrum are

consistently too low. Thirdly, the greater differences of the identi

fied input motions are believed to corne from the large scattering and

multiple-valued nature of stiffness as a function of deformation ampli

tude as shown in Fig. 5.5.
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7. SUMMARY AND POSSIBLE IMPROVEMENTS

A series of structures with bilinear element stiffnesses subjected

to several earthquake excitations were used as a means to test the

feasibility of the input identification procedure presented. The signi

ficant findings of the investigation were the following:

Ca) It is possible to identify input peak acceleration

values, response spectra and time-history from structural

responses by the equivalent linearization procedure with

acceptable results.

(b) There are two sources, of error in the proposed pro

cedure for input identification. One is inherent in discrete

analysis of finite data in the form of frequency cut-off

which makes the components of motion identifiable only within

certain frequency limits. For linear or weak-nonlinear cases,

this error can be reduced to negligible magnitude by increasing

the duration of analysis and by decreasing the time steps of

sampling. The second error, which becomes apparent with highly

nonlinear cases, is caused by nonlinear drift or by the differ

ence in responses calculated from the true nonlinear model and

the equivalent linear model. This error is more pronounced for

the low-frequency components. This suggests using a cut-off

preventing the drift associated with permanent deformations.

(c) For linear or weak-nonlinear cases, one-model identi

fication procedure gives good results; however, for strong non

linear cases, a two-model identification procedure is required

to yield good results.
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Further improvements of the identification procedure are believed

possible by taking the following steps:

(a) As shown in Fig. 4.2, the combination of two models

obtained by taking the lower-frequency components (frequencies

~fNM) from one model and the higher-frequency components (fre

quencies >fNM) from another. The shift from one model to another

is suddenly taken at some arbitrarily chosen frequ~ncy f NM i there

fore, a suitable gradual shift should give better results.

Although several values of f
NM

as well as m
l

and ffi
2

have been

tried, it is not claimed here that they are the best.

(b) Accepting the belief that a better two-model identi

fication procedure can be developed, it is reasonable to

believe also that even better results might be obtained with

higher order models with each model being responsible pri

marily for a specified frequency band of limited width.

(c) Although the strain-averaging method used herein

in the equivalent linearization procedure is believed better

than using some predetermined fraction of the maximum strain,

it could possibly be improved by recognizing the influence

of other factors, such as the variation of intensity of

vibration with time.

(d) In many practical cases, there are several responses

known at the same time. Undoubtedly, the input identification

procedure could be improved by developing effective means of

using the additional response data available. One approach

which appears promising would be to weight the inputs identi

fied from individual responses in a manner which would minimize



51

in a least squares sense the differences between the given and

computed responses from identified input.
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APPENDIX A: COLLECTION OF IDENTIFIED INPUTS

This appendix contains a set of figures which show comparisons

in time-history, response spectrum and Fourier spectrum of the identi

fied and the real input. The identified inputs are those obtained

from two-model identification procedure. Results of all numerical

cases in Table 5. 2 are included except one for ST4, El Centro, J1 =1. 8

which shows very good coincidence between the identified and the real

input, but is not included because it is almost a linear case.
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