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ABSTRACT

The potential coupling of translational and rotational motions of

prefabricated panel systems under earthquake ground excitation is studied

for several 12-story-high apartment buildings. Placement of apartments

along the short end of these buildings and limiting the number of apart

ments along the long sides resulted in twelve different floor plans. The

foundation flexibility was captured mathematically through introduction

of a four-story-high "dummy story.1I Resonance and modal analyses were

performed indicating considerable coupling of the longitudinal transla

tional and torsional modal components. Under earthquake conditions both

uncoupled and coupled translational and rotational motions were identified.

The observed behavior was found to depend on both the degree of coupling

of translational and rotational modal components of the buildings at the

fundamental frequencies, as well as on the earthquake frequency response

spectrum. A hypothesis regarding the anticipated behavior under earthquake

excitation was developed and successfully tested against the analytical

predicted structural response.
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1. INTRODUCTION·

1.1 General

Modern mul tistory apartment buildings are often an assembly of pre

fabricated wall and floor elements. Results of several forced and ambient

vibration studies of such buildings indicate that these structures have

quite different dynami c chay'acteri sti cs than earthquake codes woul d tend

to imply [1,2]. Advanced computer techniques permit prediction of the

earthquake response provided that the computer model formulation is accurate.

In that respect, the formulation of the foundation stiffness is particu

larly critical. Experimental results have shown a potentially dangerous

coupling of translational and torsional modes, a phenomenon that could

lead to serious earthquake damages. Hence, the paper focuses on the influ

ence of the floor plan layout on the basic dynamic characteristics of

typical panel-type structures.

Considering the overall floor plan of panel type structures an often

rectangular shape can be noted. Invariably, the apartment layout along

the front and back of a building calls for structural walls and partitions

oriented in the short direction of the building. Furthermore, outside

walls along the length of the building are often non-structural. Longi

tudinal structural walls are typically located along the interior central

corridor and also, as partitions between apartments, at either end of the

building. With such wall layouts, the stiffness in the shorter trans

verse direction, contrary to normal expectations, is commonly found to

be larger than the stiffness in the longitudinal direction. In addition,

longitudinal motion seems to be particularly susceptible to rotational

coupling. Hence, the transverse story deflections at the end of the



building may become a predominant factor under earthquake excitation.

This phenomenon becomes particularly pronounced when the longitudinal

wall layout is non-symmetric with respect to the mass center of the

typical floors.

In order to study the potential coupling of translational and rota

tional response of prefab systems as affected by the overall floor plan

configuration, several floor plans will be considered. The selected

variants will allow an assessment of the effect of the relative transla

tional and torsional stiffnesses on the overall response of these struc

tures under different earthquake ground excitations.

1.2 Acknowledgement

The authors gratefully acknowledge the financial support provided by

the National Science Foundation under Grant PFR-7908257.
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2. DESCRIPTION·OF THE ANALYZED STRUCTURES

Recently two apartment buildings, 12 and 8 stories in height, have

been tested under forced and ambient vibrations [1,2]. The structures

were of the "Forest City Dillon" prefab system. The vertical and hori

zontal load resistance was provided by reinforced concrete shear walls,

oriented in both transverse and longitudinal directions. The wall dimen

sions were constant over the entire height of these buildings. Both

structures were found on piles with lengths varying from 32 to 50 feet.

Incorporating the basic panel elements of the above prefab system,

three structural variants, Al, B1, and Cl, with different floor plans,

were formulated for this study (Fig. 2.1). The Al floor plan is very

similar to the two experimentally tested buildings. Considering the A1

variant and rotating the two extreme apartments, facing south by 90 degrees,

led to a floor plan with three apartments on either end of the building

(variant B1). This arrangement results in an increase in the longitudinal

stiffness and a reduction of the transverse and torsional stiffnesses.

Adding one more unit on either end of the building resulted in variant

Cl. This arrangement effectively increases, in comparison with Bl, both

the torsional and longitudinal stiffness.

In order to further evaluate the effect of the longitudinal stiffness

relative to the transverse and torsional stiffnesses, three more basic

layouts were considered. Two of these variations were developed by

eliminating transverse walls in the central portion of each of the three

basic floor plans Al, B1, and Cl. Elimination of one set of transverse

3
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walls, or effectively removing one bay with two apartments, resulted in

variants A2, B2, and C2 (Fig. 2.2). These structures were no longer

symmetric with respect to the V-axis and thus would effectively exhibit

torsional coupling under both x and y excitation. A further reduction

of the transverse stiffness was introduced by eliminating a second set

of transverse walls. This resulted in variants A3, B3, and C3 (Fig. 2.3).

A further variation in layout, resulting in a reduction of both the

longitudinal and, because of the flange action in perpendicular oriented

walls, the transverse stiffness, was achieved by deleting four walls along

the interior corridor of structures Al, Bl, and Cl. Compared with

structures Al, Bl, and Cl, the resulting torsional stiffness of the

variants, identified as Al-O, Bl-O, Cl-O,and shown in Fig. 2.4, remained

basically unchanged because the deleted walls were positioned closely to

the center of rigidity of the floor layout.

Typically, all structures studied in this investigation were 12 stories.

With heights of 9.67 feet for the first story and 8.67 feet for the other

stories, the overall building height was 105 feet.

8



3. MODELING OF THE STRUCTURES

Analytic computer models of the twelve different structures shown

in Figs. 2.1 through 2.4 were developed to determine their dynamic charac

teristics. The models'were formulated using both a rigid and an flexible

base. TABS-77, a general purpose computer program [3J, was used to

calculate frequencies and mode shapes, as well as the linear elastic

time-history response under earthquake ground excitation.

The program considers the floors to act as rigid diaphragms with

zero transverse stiffness. All elements are assembled initially into

planar frames and then transformed, using the rigid-diaphragm assumption,

to three degrees of freedom (2 translational and 1 rotational) at the

center of rigidity of each story level. The assumption of a rigid floor

diaphragm for the subject studies was fully supported by the experimental

results of the forced vibration studies of two Forest Dillon type buildings.

The basic model of each building was formulated as a system of

frames and shear-wall elements interconnected by floor diaphragms which

were rigid in their own plane. All walls were treated as IIwide columns."

This required a reduction of properties (I, A) to the elastic centroid of

each wall. Where a wall is met by a perpendicularly oriented wall, a

portion of the latter wall is assumed acting as a flange and is thus

included in the moment of inertia calculation. For a "half-flange ll

condition, where two panels form a single corner, the effective width is

taken as 1/6 of the.overall building height, or 17.5 feet. In the case

of a "full flange" condition, the effective width is assumed to be 1/3 of

the height, or 35 feet. The above assumption is based on the fact that

9



the walls are effectively interconnected at each floor level. The resulting

dowel action over the height of the building seems to justify the assumed

wall coupling, particularly for relatively small displacement conditions.

A value of 4,000 ksi was used for the modulus of elasticity of the con

crete. The reinforcing steel area was not included in calculating the

moment of inertia of the shear walls; thus, the wall properties were the

same for each of the 12 stories.

Wherever shear walls were positioned in one line, parallel to the

direction of motion, it was assumed that those walls would be coupled by

a portion of the floor slab with a width of 18 times the thickness of

the floor. The effective span of the coupling girders was identical to

the clear distance between the walls. Also, the effective height of the

walls was taken as the clear height between two stories.

The masses, lumped at each story level, were calculated neglecting

non-structural elements with a concrete weight of 0.15 kips/ft3. The

locations of the center of mass and the center of resistance, which is

calculated on the assumption that the wall panels are clamped at both ends,

are shown in Figs. 2.1 through 2.4.

10



4. MODELING OF THE FOUNDATION

During the experimental building tests on the 12-story building,

significant horizontal motion--up to 10% of the top story displacement-

was recorded at the ground floor level. Therefore, it was considered

necessary to develop analytical building models which would properly

reflect the observed flexible base condition.

Combining the forced vibration test measurements of the horizontal

ground displacements with the base overturning rotations, as estimated

from the mode shapes, the following approach was used to model the base

flexibility. The measured floor accelerations times the floor masses

gave the elastic forces for each floor level, from which the base shear

and the overturning moment could be computed. Comparing base shear and

moment with the experimentally determined displacement and rotation at

the ground floor allowed an evaluation of the translational and rotational

stiffness of the foundation for both directions.

The lateral and rotational foundation stiffnesses for the two apart

ment buildings tested are presented in Table 4.1. In order to account

for the foundation flexibility, the TABS program permits the introduction

of a dummy story fixed at the base. The heights of these dummy stories

as based on the different experimental stiffness values for the two test

structures are also shown in Table 4.1. As the results were found to be

rather similar for these structures, a representative height of approxi

mately 32 feet was selected for the 12-story-high buildings under investi

gation, or, 30% of the structural height.

11



TABLE 4.1 ROTATIONAL AND LATERAL FOUNDATION STIFFNESSES

f FORCING Ke x 109 K x 10 7 HEIGHT
BUILDING [CPS] DIRECTION Dummy Story

(k.ft/rad) (k/ft) eft]

12-STORY 2.18 TRANSVERSE 4.54 1. 31 32.3
12-STORY 1. 76 LONG ITUDINAL 3.29 1. 73 23.9
12-STORY 2.09 LONGITUDINAL 5.65 1.18 38.0

8-STORY 3.41 TRANSVERSE 3.70 0.87 35.6
8-STORY 2.68 LONGITUDINAL 1. 78 1. 15 21.6

CURRENT - TRANSVERSE 4.54 1.32 32.2

ANALYSIS - LONGITUDINAL 6.02 1. 75 32.2

12



5. FREQUENCY AND MODE SHAPE ANALYSES

In the first part of the dynamic analysis, frequencies and mode

shapes for the twelve different structures were evaluated considering both

a rigid and flexible foundation. Panel structures are quite rigid, and

their seismic response is basically determined by the fundamental modal

responses. Hence, only three fundamental resonant frequences were consid

ered; namely, fX81' fX82' and fy. Of these three frequencies, two fre

quencies exhibit significant coupling between the translational x-motion

and rotation (e). The frequency at which the torsional effect ;s most

pronounced has been termed the IItorsional frequency.1I

A compilation of the mass and stiffness data for each of the twelve

structures is presented in Table 5.1, where the lateral and rotational

stiffnesses have been calculated for an 8.67-foot-high story on the

assumption that the wall panels are clamped at both ends. The resonant

frequencies for a flexible-base condition are also shown in Table 5.1.

The "torsional frequencies" are specifically identified in this table.

Also shown are the eccentricity distances ex and ey between the center

of mass (C.M.) and the center of rigidity (C.R.). The ey values are a

direct indication of the potential coupling of the longitudinal x-motion

and rotation. The small variations in the natural frequencies of the

twelve structures seem to indicate that the effect of the different lay-

outs is relatively small.

For each structure the three basic frequencies for both a rigid base

condition, disregarding any soil-structure interaction, and a flexible

base condition, are presented in Table 5.2. As expected, the frequencies

13



for the structures with a 32-foot-high dummy story, reflecting the

flexible base, are smaller than the rigid-base values. For each of the

structures the percentage change for the two fundamental X-8 coupled

frequencies and the y-frequency are presented in the same table. In

general, the frequencies for the flexible base condition are from 70% to

80% of those for the rigid base condition.

From these findings one can conclude that the effect of the dummy

story on the frequencies can be captured by introducing the height of the

dummy story as an addition to the total structural height of the building.

Considering that the height of the dummy story is 32 ft., or basically

four stories, the rigid and flexible base conditions represent structures

with 12 and 16 stories, respectively. With experimental results from

full-scale vibration studies carried out on prefabricated panel type build

ings [1,2] indicating a proportionality between height and period, the

fundamental frequencies of a 16-story structure would be only 75% of those

of a 12-story structure with the same floor plan. This is in excellent

agreement with the noted percentages in Table 5.1.

The previously noted X-8 coupling at resonance can be observed most

clearly through normalized floor modes at the 12th floor level. The floor

modes for the 12th floor and the resonant frequencies for both the rigid

and flexible base conditions are presented in Tables 5.3, 5.4, and 5.5

for the x-, torsional-, and y-modes, respectively. Examples of such x

and y-normalized mode shapes are shown in Fig. 5.1 for structures Al and

C2. The results shown reflect the generally observed behavior of the

several structures considered in this study.

Because of the y-axis symmetry of the floor plan in the ABC-l, ABC-3,

andABC-l-D type structures (see Figs. 2.1,2.3,2.4), these structures

14



typically exhibit, as illustrated by structure Al in Fig. 5.1, a pure

translational y-mode. However, for these structures, the other two fre

quencies typically show a significant coupling of the x and torsional

modal components. In this respect, the results shown in Fig. 5.1, as

well as the mode identification noted in Table 5.2, indicate that the base

flexibility may change the torsional contribution in the two X-6 coup'led

modes. In certain instances (Al, Cl, A2. and C2), the flexible base

condition alters the torsional contribution to the extent that the first

fundamental frequency becomes the frequency with a predominant torsional

modal component. In a few instances, such as for variants Cl, C2, and

C3, the foundation flexibility also causes a reversal of the y and one

x-a frequency. ' This behaviOJ~ is i'llustrated by the floor-mode shapes for

structure C2 as shown in Fig. 5.1. This structure also illustrates the

torsional y-coupling effect typical for the ABC-2 structures. This

phenomenon is a direct result of the non-symmetric layout of these struc

tures with respect to both the x and y axes (see Fig. 2.2).

The relative magnitude of the rotation of the x-mode with respect to

the rotation of the torsional mode at the 12th floor was computed for

each building. The resulting percentage values of the relative degree

of rotational coupling (C) for the twelve buildings studied on a flexible

base are presented in Table 5060 The same table also shows the results

for the three buildings ABC-l with an assumed rigid base condition. Th~

percentages for the B-type structures, with consistently lower torsional

stiffness (Table 5.1), are all smaller than 22%, whereas the A- and C-type

variants have all higher values, rangin~from 26% to 82%. These values

15



seem to correlate also with the degree of eccentricity; e.g., the dis

tance between the center of mass and the center of rigidity.

The fundamental uncoupled y frequency and the lower frequency of the

coupled X-8 mode for the different structures with flexible base, thus

reflecting the appropriate foundation-structure interaction, are presented

in Table 5.7. Also shown for comparison are the fundamental translational

frequencies for by the x and y direction of these buildings using the

period T as given by the Uniform Building Code (T = 0.05 h/I1f). The

latter frequencies were calculated using the basic structural building

height of 105 feet as specified by the UBC. Also indicated are the

frequencies for a building with an effective height of 137 feet (structural

height plus height of dummy story). The results show poor agreement

between the analytical and UBC frequencies. In fact, in a total reversal

of the UBC derived fundamental frequencies, the analytical frequencies

are larger for resonance in the y-direction than for resonance in the x

direction.

16
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TABLE 5.1 STRUCTURE PROPERTIES AND RESONANT FREQUENCIES FOR FLEXIBLE BASE CONDITION

E~- Ky XlO7fKe x 10 10 I fX~lM M X 10 3 e e K
X

X 10 7 fxe2 f
VARIANT e x y y

(k-sec 2/ft) (k-ft sec 2) (ft) (ft) ( k/ft) (k/ft) !(k-ftjrad) I (cps) (cps) (cps)
i i .

I
--

~ 11. 70*Al 55.44 135.56 1 0. 4.73 0.55 0.67 1.26 2.01 2.07
I

Bl 57.00 153,10 I~. -1.30 0.67 0.58 0.95 ".60* 2.13 2.01

Cl 64.54 182.07 " u. -2.84 0.75 0.64 1. 39 1.83* 2.09 2.03

A2 46.94 89.55 0.43 6.69 0.44 0.58 0.80 1.64* 2.03 2.14
I

B2
I

48.49 102.07 0.85 -1.71 0.56 0.49 0.65 I 1.60* 2.15 2.05

C2 56.03 126.80 0.80 -3.56 0.65 0.54 1.00 1,76* 2.18 2.05

A3 38.39 55.54 O. 7.50 0.34 0.48 ; 0.4-7 1.50 2.10* 2.18

B3 I 39.98 64.29 O. -2.29 0.45 0.39 0,43 1.66* 2.22 2.01

C3 47.52 85.43 O. ~2. 39 0.54 0.45 0.81 1.77 2.27* 2.11

Al-D 51.96 127.05 O. 8.44 0,34 0,67 r-l ·. 25 1.41 1.91 * 2.68

Bl-0 53.52 143,74 O. -1,70 0.45 0,58 0,95 I 1.51 * 1.89 1.92

C1-D 61.06 172.25 O. -5.72 0.54 0.64 1. 38 1 1. 62 2.03* 1.97

* = "torsional frequency" - maximum torsional contribution



TABLE 5.2 FOUNDATION EFFECT

VARIANT BASE CONDITION fl(CPS) f2(CPS) f3(CPS)

Al RIGID 2.23 2.57* 2.90y
FLEXIBLE 1.70* 2.01 2.07y

(0.76) (0.78) (0.71)
Bl RIGID 2.17* 2.74 2.78y

FLEXIBLE 1.60* 2.01y 2.13
(0.74) (0.72) (0.78)

Cl RIGID 2.53 2.86* 3.17y
FLEXIBLE 1.83* 2.03y 2.09

(0.72) (0.64) (0.73)

A2 RIGID 2.04 2.52* 2.85y
FLEXIBLE 1.64* 2.03 2.14y

(0.80) (0.80) (0.75)
B2 RIGID 2.07* 2.66y 2.72

FLEXIBLE 1.60* 2.05y 2.15
(0.77) (0.77) (0.79)

C2 RIGID 2.37 2.78* 3.07y
FLEXIBLE 1.76* 2.05y 2.18

, (0.74) (0.68) (0.78)

A3 RIGID 11 .79 2.49* 2.76y
FLEXIBLE

I 1.50 2.10* 2.18)I (0.84) (0.84) (0.79
B3 RIGID 12.06* 2.45y 2.75

I 1.66* 2.01y 2.22FLEXIBLE ,
I (0.81) (0.82) (0.81)I

C3 RIGID 2.27 2.87* 2.88y
FLEXIBLE 1.77 2.11y 2.27*

1 (0.78) (0.73) (0.79)I

Al-D RIGID 1.67 2.42* 2.68y
FLEXIBLE 1.41 1.91 * 2.03y

(0.84) (0.79) (0.76)
Bl-D RIGID 1.92* 2.35 2.45y

FLEXIBLE 1.51* 1.89 2.45y
(0.79) (0.80) (0.78)

Cl-D RIGID 2.11 2.64* 2.79y

FLEXIBLE 1.62 1.97y 2.03*
(0.77) (0.75) (0.73)

y = translational frequency fy * = "torsional frequency" f e
( ) = number between parentheses denotes %change
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TABLE 5.3 RESONANT FREQUENCIES (fx) AND
FLOOR MODES FOR THE X-MODE

FREQUENCY FLOOR MODES FOR THE 12th STORY
VARIANT BASE CONDITION (CPS) x-DIRECTION y-DIRECTION TORSION_..~

Al RIGID 2.23 1.000 O. -0.0118
FLEXIBLE 2.01 1.000 O. 0.0111,

Bl RIGID 2.74 1.000 O. I -0.0045
FLEXIBLE 2.01 1.000 o. -0.0040

Cl RIGID 2.53 1.000 O. 0.0114
FLEXIBLE 2.09 1.000 o. -0.0122

A2 RIGID 2.04 1.000 0.002 -0.0142
FLEXIBLE 2.03 1.000 -0.012 0.0196

B2 RIGID 2.72 1.000 -0.241 -0.0070
FLEXIBLE 2.15 1.000 -0.150 -0.0069

C2 RIGID 2.37 1.000 -0.170 0.0188
FLEXIBLE 2.18 1.000 -0.875 -0.0225

A3 RIGID 1. 79 1.000 o. -0.0172
FLEXIBLE 1.50 1.000 o. -0.0220

B3 RIGID 2.75 1.000 o. -0.0108
FLEXIBLE 2.22 1.000 o. -0.0117

C3 RIGID 2.27 1.000 o. 0.0199
FLEXIBLE 1.77 1.000 o. 0.0209

Al-D RIGID 1.67 1.000 o. -0.0060
FLEXIBLE 1.41 1.000 o. -0.0099

.Bl-D RIGID 2.35 1.000 o. -0.0080
FLEXIBLE 1.89 1.000 o. -0.0080

Cl-D RIGID 2.11 1.000 o. 0.0101
FLEXIBLE 1.62 1.000 O. 0.0133
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TABLE 5.4 RESONANT FREQUENCIES (f*) AND
FLOOR MODES FOR THE TORSIONAL MODE

FREQUENCY FLOOR MODES FOR THE 12th STORY
VARIANT BASE CONDITION (CPS) x-DIRECTION y-DIRECTION TORSION

Al RIGID 2.57 1.000 O. 0.0347
FLEXIBLE 1. 70 1.000 O. -0.0354

Bl RIGID 2.17 1.000 O. 0.0809
FLEXIBLE 1.60 1.000 O. 0.0910

Cl RIGID 2.86 1.000 O. -0.0299
FLEXIBLE 1.83 1.000 O. 0.0280

A2 RIGID 2.52 1.000 -0.010 0.0366
FLEXIBLE 1.64 1.000 0.003 -0.0256

B2 RIGID 2.07 1.000 -0.332 0.0719
FLEXIBLE 1.60 1.000 -0.477 0.0727

C2 RIGID 2.78 1.000 0.455 -0.0213
FLEXIBLE 1.76 1.000 -0.479 0.0275

A3 RIGID 2.49 1.000 O. 0.0397
FLEXIBLE 2.10 1.000 O. 0.0301

B3 RIGID 2.06 1.000 O. 0.0561
FLEXIBLE 1.66 1.000 O. 0.0524

C3 RIGID 2.87 1.000 O. -0.0275
FLEXIBLE 2.27 1.000 O. -0.0262

Al-D RIGID 2.42 1.000 O. 0.0675
FLEXIBLE 1.91 1.000 O. 0.0384

Bl-D RIGID 1.92 1.000 O. 0.0462
FLEXIBLE 1.51 1.000 O. 0.0461

Cl-D RIGID 2.64 1.000 O. -0.0346
FLEXIBLE 2.03 1.000 O. -0.0258
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TABLE 5.5 RESONANT FREQUENCIES (fy) AND
FLOOR MODES FOR THE Y-MODE

FREQUENCY FLOOR MODES FOR THE 12th STORY
VARIANT BASE CONDITION (CPS) x-DIRECTION y-DIRECTION TORSION

--
Al RIGID 2.90 O. 1.000 O.

FLEXIBLE 2.07 O. 1.000 O.
B1 RIGID 2.78 O. 1.000 O.

FLEXIBLE. 2.01 O. 1.000 O.
Cl RIGID 3.17 O. 1.000 O.

FLEXIBLE 2.03 O. 1.000 O.

A2 RIGID 2.85 0.002 1.000 0.0001
FLEXIBLE 2.14 0.005 1.000 0.0002

B2 RIGID 2.66 0.252 1.000 0.0005
FLEXIBLE 2.05 0.183 1.000 0.0021

C2 RIGID 3.07 -0 .128 1.000 0.0068
FLEXIBLE 2.05 0.742 1.000 -0.0037

A3 RIGID 2.76 O. 1.000 O.
FLEXIBLE 2.18 O. 1.000 O.

B3 RIGID 2.45 O. 1.000 O.
FLEXIBLE 2. 01 O. 1.000 O.

C3 RIGID 2.88 O. 1.000 O.
FLEXIBLE 2.11 O. 1.000 O.

Al-D RIGID 2.68 O. 1.000 O.
FLEXIBLE 2.03 O. 1.000 O.

Bl-D RIGID 2.45 O. 1.000 O.
FLEXIBLE 1.92 O. 1.000 O.

Cl-D RIGID 2.79 O. 1.000 O.
FLEXIBLE 1.97 O. 1.000 O.
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TABLE 5.6 DEGREE OF TORSIONAL COUPLING

VARIANT BASE CONDITION PERCENTAGE
RATIO C*

Al RIGID 34.0%
FLEXIBLE 31.4%

Bl RIGID 5.6%
FLEXIBLE 4.4%

Cl RIGID 38.1%
FLEXIBLE 43.6%

A2 FLEXIBLE 76.6%
B2 FLEXIBLE 9.5%
C2 FLEXIBLE 81.8%

A3 FLEXIBLE 73.1%
B3 FLEXIBLE 22.3%
C3 FLEXIBLE 79.8%

Al-D FLEXIBLE 25.8%
Bl-D FLEXIBLE 17.4%
Cl-D FLEXIBLE 51.6%

* C = ROTATIONAL COMPONENT OF THE X-MODE 100
ROTATIONAL COMPONENT OF THE a-MODE x
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TABLE 5.7 ANALYTICAL AND UBC FREQUENCIES

f (CPS) fy(CPS)
VARIANT x

ANAL. UBC-105 1 UBC-137 1 ANAL. UBC-105 1 U8C-137 1

A1 1. 70 2.07 1. 70 1.30
81 1.60 2.44 1.87 2.01
C1 1.83 2.03 1.89 1.44

A2 1.64 2.14 1. 70 1.30
82 1.60 2.26 1. 73 2.05
C2 1.76 2.05 1.89 1.44

A3 1.50 2.18 1. 70 1.30
83 1.66 2.08 1.59 2.01

C3 1.77 2.11 1.89 1.44

A1-D 1.41 2.03 1. 70 1.30
B1-0 1.89 2.44 1.87 1. 92

C1-0 1.62 1.97 1.89 1.44
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6. EARTHQUAKE TIME-HISTORY ANALYSIS

In order to gain information about the effect of longitudinal and

torsional coupling of panel-type structures during seismic excitation,

linear-elastic time-history analyses of the twelve structural variants

were performed by submitting the buildings to longitudinal (E-W) directed

ground excitation. In the first instance all structures were subjected

to the N-S component of the 1940 El Centro earthquake with a maximum

acceleration of 0.35 g. Subsequently, in order to study the effect of

different ground excitations on the building response, structures ABC-l,

with both flexible and rigid base conditions, were subjected to two

additional earthquake ground-motion records; namely, the S69E component

of the 1952 Kern County (Taft) earthquake with a peak acceleration of

0.18 g, and Pacoima Dam S14W record of the 1971 San Fernando earthquake

with a scaled down peak acceleration of 0.35 g.

Selecting a linear-elastic time-history was considered to be justified

as it will capture the important initial phase of the structural response.

Another justification for the selected procedure was the notion that the

principally localized nature of structural damages, short of collaose,

will not alter the general building behavior from the analytically

predicted response, particularly for the selected ground-motions. Admit

tedly, the non-linear soil-foundation characteristics can alter drastically

the overall dynamic behavior.

The response of the structures for the first eight seconds of seismic

excitation of the El Centro earthquake and for the first 12 seconds of

the Taft and Pacoima Dam records resulting from an E-W excitation at the
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dummy story base level, was evaluated. The ground motion was assumed to

be constant over the length of the buildings, and no torsional earthquake

components were considered. Under those conditions, a structure with

coincident center of mass and center of resistance would not experience

any torsional motion during such ground-motion. However, because of uncer

tainties in both the calculation of the mass and stiffness centers and

the load distribution, as well as a result of structural imperfections,

non-linear behavior, and other factors, it would be unreasonable to

assume that torsional motion under earthquake excitation could be prevented.

Although the response to the three fundamental modes is predominant,

. the contribution of the first fifteen modes was included in the analysis.

The damping ratios for the three fundamental modes were based on the

results of actual tests of a l2-story building; namely, 2% for the first

mode and 1.4% for the second and third modes. The damping ratios for

all other modes were taken at 2%.

The results of the time-history response studies under £1 Centro

earthquake ground motion are presented in Figs. 6.1 through 6.4. These

figures show for each of the variants the x and y displacements of the

center of resistance at the 12th-floor level and the associated floor

rotations versus time. Also indicated in these figures are the two

basically coupled resonance frequencies and the frequencies of the trans

lational and torsional response during the earthquake. These response

frequencies were found by averaging the frequencies calculated from each

half-cycle of structural response over the entire time-history.

Of the two coupled structural resonance frequencies, the torsional

frequency fa is defined as the translational resonance frequency with the

highest degree of rotational coupling. Although also coupled, the other
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frequency is labeled as the translational frequency fx. Fundamental and

response frequencies for the structures with a flexible base subjected to

the E1 Centro ground-motion are compared in Table 6.1. Under the x-directed

excitation, the structures always responded in an x-motion with a frequency

close to the fundamental x-mode frequency. This was true even for

structures where the difference between the rotational contributions in

the x- and e-mode was quite small (A2, C2, A3, and C3). However, the

torsional response of the structures to seismic excitation occurred at

a frequency close to either the fundamental torsional or the fundamental

translational (fx) frequency. In the first instance, the translational

and rotational motions would, in fact, be uncoupled. However, in case

the torsional motions occur at the fundamental translational frequency

of the structure, the translational and torsional motions of the building

are, in fact, coupled.

Reviewing the time-history results for the structures on flexible

base subjected to the El Centro ground-motion, it can be observed that

each building during the first few seconds of the earthquake responds in

an uncoupled manner; i.e., the translational and torsional motions are

90 0 out of phase. For buildings Al, Cl, A2, and C2, this uncoupled

response continues for most of the earthquake; only for a few cycles did

a temporary in-phase response develop. Contrary to this favorable behavior,

the initially uncoupled motion does not prevail for buildings Bl and B2.

In those two cases, a virtually total in-phase response develops after

a few seconds. However, fortunately the effect of the torsional response

for these two structures is small in comparison to the translational

response. This combined in-phase behavior is also supported by the two

response frequencies fx and f e of both buildings, as noted in the same
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figures. It is obvious that the tuning of both response frequencies with

the resonance frequency fx causes this coupled effect. In fact, the

uncoupled response frequencies for buildings Al, C1, A2, and C2, as noted

also in Table 6.1, seem to support the previously noted out-of-phase

response of the torsional and translational components of motion.

The above noted differences in response appear to be directly

related to the degree of torsional coupling associated with the transla

tional resonance frequency fx' as compared with the maximum torsional

coupling associated with the so-called rotational resonance frequency fe.

For instance, for buildings AI, Cl, A2, and C2, which exhibit an out-of

phase response, the torsional coupling (C) for the f frequencies amountedx
to, respectively, 31,43,77, and 82% of the torsional components of the

f e frequency (see Table 6.1). However, for buildings Bl and 82 these

percentages were only 4 and 9%, respectively. Hence, it seems that

significant torsional coupling at the translational resonance frequency

results in an uncoupled response under earthquake excitation. On the

other hand, a small degree of torsional coupling at resonance results in

a combined in-phase translational and rotational response under earthquake

conditions.

The above hypothesis is clearly supported by the in-phase response

of buildings B3 and Bl-O for which the previously noted rotational

coupling percentages were only 22 and 17 percent, respectively. Also,

for buildings A3, C3, Al-O, and Cl-O, with rotational coupling percentages

of 73, 80, 26, and 52 percent, respectively, the hypothesis seems to hold,

as the response shows· a predominantly out-of-phase behavior.

In order to investigate the general validity of the above hypothesis,

as it may be affected by the ground~rnotion input, buildings ABC-l on flexible
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base were also subjected to the first 12 seconds of the Taft and Pacoima

Dam ground motion records. The resulting x displacements and rotations

at the center of the resistance at the 12th floor level are presented in

Figs. 6.5 and 6.6. The associated structural and response frequencies

are presented in Table 6.2. The uncoupled or coupled manner of response,

as determined by the comparison of the fundamental frequencies of the

structure with the response frequencies, as shown in this table, correlates

favorably to the observed response as shown in Figs. 6.5 to 6.6.

The results indicate that for both the El Centro and Taft ground-mo

tions, the buildings Al and Cl respond in an uncouoled fashion, while

building Bl behaves in a coupled manner. However, in the case of the

Pacoima Dam ground excitation, the three structures under study showed a

coupled response, seemingly contradicting the above hypothesis. The reason

for this different behavior, which reflects, in effect, a lack of excita

tion at the torsional resonance frequency, seems to be related to the

energy of the earthquake record at this particular frequency.

The response spectra for the El Centro, Taft, and Pacoima Dam records

are shown in Figs. 6.7 through 6.9, respectively. The fundamental x and

8 frequencies of the ABC-l structures are rather similar, averaging

2.1 cps for the translational and 1.70 cps for the torsional modes

(Table 6.2). Considering the curves for 2% critical damping in each of

the spectra for the corresponding averaged ~odal periods of 0.48 and 0.60

seconds, respectively, the soectral accelerations for these two modes

are found to be approximately the same for the El Centro and Taft earth

quakes. However, considering the Pacoima Dam spectrum, there is a distinct

difference between the acceleration levels at these two fundamental

periods. In fact, the spectral acceleration at about 0.48 sees, reflect-
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ing the x resonance period, is quite large. On the other hand, the accel

eration level at about 0.6 sees. or the fundamental torsional period is

a distinct minimum. Hence, it seems reasonable to expect that this earth

quake would fail to cause significant rotations in these structures.

However, instead, a predominantly translational, x-resonance, response

will result. As noted earlier, in such instances a building would respond

in a coupled fashion, with the maximum fotation occurring at the instant

of maximum translation. This behavior under the Pacoima dam record is

clearly illustrated in Fig. 6.6.

Finally, Tables 6.3 and 6.4 summarize the maximum displacements and

rotations at the roof level for the 18 different combinations of structures

and earthquake records that were used in this analysis. Comparing the

maximum rotations for the A and C structures with those for the B variants

shows that the rotations developed in the B-type structures are generally

lower.

30



TABLE 6.1 STRUCTURAL AND RESPONSE
FREQUENCIES FOR EL CENTRO RECORD

FREQUENCY (CPS)
VARIANT C [%] MODE MODE OF RESPONSE

FUNDM'1ENTAL RESPONSE

Al 31 X 2.01 2.04 UNCOUPLED
e 1. 70 1. 73

Bl 4 X 2.13 2.14 HIGHLY COUPLED
e 1.60 1.94

Cl 43 X 2.09 2.08 UNCOUPLED
e 1.83 1.88

A2 77 X 2.03 2.06 UNCOUPLED
e 1.64 1. 79
Y 2.14 --

B2 9 X 2.15 2.16 COUPLED
e 1.60 2.01
Y 2.05 2.10

C2 82 X 2.18 2.17 UNCOUPLED
e 1. 76 1.85
Y 2.05 2.09

A3 73 X 1.45 1.56 UNCOUPLED
e 2.10 1. 64

B3 22 X 2.22 2.20 COUPLED
e 1.66 2.04

C3 80 X 1.77 1. 78 UNCOUPLED
e 2.27 1.92

Al-D 26 X 1. 41 1.48 PREDOMINANTLY
e 1. 91 1.67 UNCOUPLED

Bl-D 17 X 1.89 1.87 PREDOMINANTLY
e 1. 51 1. 73 COUPLED

Cl-D 52 X 1.62 1.80 PREDOM INANTLY
e 2.03 1.85 UNCOUPLED ,

C = Torsional coupling percentage of fx versus f r
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TABLE 6.2 STRUCTURAL AND RESPONSE FREQUENCIES
(FLEXIBLE BASE)

FREQUENCY (CPS)
VARIANT C [%] MODE MODE OF RESPONSE EXCITATION

STRUCTURE RESPONSE

A1 31 X 2.01 2.04 UNCOUPLED
e 1. 70 1. 73

31 4 X 2.13 2.14 HIGHLY COUPLED EL CENTROe 1.60 1.94
C1 43 X 2.09 2.08 UNCOUPLED

e 1.83 1.88

A1 31 X 2.01 2.03 PREDOMINANTLY
e 1. 70 1.83 UNCOUPLED

B1 4 X 2.13 2.17 COUPLED TAFTe 1.60 1.88
C1 43 X 2.09 2.06 UNCOUPLED

e 1.83 1.97

A1 31 X 2.01 2.08 COUPLED
e 1. 70 1.94

B1 4 X 2.13 2.20 COUPLED PACOIMA
e 1.60 2.02 DAM

C1 43 X 2.09 2.10 COUPLED
e 1.83 2.03 ,
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TABLE 6.3 MAXIMUM DISPLACEMENTS AND ROTATIONS AT
THE CENTER OF STIFFNESS OF THE ROOF

I MAXIMUM DISPLACEMENT I
MAXIMUM

VARIANT X-DIRECTION V-DIRECTION ROTATION EXCITATION
(ft. ) t( sec) (ft. ) t(sec) (rad) t(sec)

A1 0.286 (2.40) O. 0.0044 (3.10)
B1 0.353 (5.10) O. 0.0023 (2.55) EL CENTRO
C1 0.340 (5.15) O. 0.0040 (6.05)

A2 0.279 (2.20) 0.090 (2.90) 0.0063 (2.85)
B2 0.353 (5.10) 0.045 (6.90) 0.0034 (2.55) EL CENTRO

C2 0.252 (2.15) 0.159 (6.40) 0.0040 (3.30)

A3 0.314 (6.30) O. 0.0085 (5.60)

B3 0.283 (5.05) O. 0.0053 (2.55) EL CENTRO
C3 0.387 (3.60) O. 0.0070 (5.25)

I

A1-D 0.341 (6.10) 10. 0.0054 (2.65)

B1-D 0.400 (5.15) 10. 0.0045 (5.65) EL CENTRO

C1-D 0.324 (2.20) 10. 0.0050 (2.85)
- !
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TABLE 6.4 MAXIMUM DISPLACEMENTS AND ROTATIONS AT
CENTER OF STIFFNESS OF THE ROOF

MAXIMUM DISPLACEMENT
MAXIMU~1

VARIANT X-DIRECTION Y-DIRECTI ON ROTATION EXCITATION
(ft. ) t(sec) (ft. ) t(sec) (rad) t(sec)

Al 0.286 ( 2.40) O. 0.0044 (3.10)
Bl 0.353 ( 5.10) o. 0.0023 (2.55) EL CENTRO
Cl 0.340 ( 5.15) o. 0.0040 (6.05)

Al 0.116 (11.10) o. 0.0016 (9.60)
Bl 0.166 ( 8.10) o. 0.0009 (6.25) TAFT
Cl 0.125 ( 6.75) o. 0.0016 {7. 65}

Al 0.165 ( 8.60) o. 0.0018 (9.60)
Bl 0.153 ( 8.80) o. 0.0010 (9.30) PACOIMA

DAM
C1 0.142 ( 8.60) o. 0.0024 (9.30)
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7. CONCLUSIONS

Results of full-scale vibration studies of prefabricated panel-type

buildings indicated a considerable translational and rotational coupling

at resonance. Soil-pile-structure interaction effects were found to

contribute significantly to the overall building response. This

phenomenon required the introduction of a so-called IIdummy storyll in the

computer model formulation of the structure.

In order to achieve an appropriate correlation between experimental

and analytical results, a dummy story height of 30% of the overall

structure height was required. To assess the general dynamic character

istics of panel type buildings, a total of twelve l2-story-high structures

with different floor plans were studied in an analytical investigation.

The dummy story height for all buildings was selected as 30% of the overall

building height. The results of resonance frequency and modal analyses

indicated considerable translational and rotational coupling at resonance.

Despite markedly different floor plans, the three fundamental resonance

frequencies were rather closely spaced. In general, the effect of the

foundation flexibility needs to be considered, as it affects not only the

resonance frequencies but also the extent of the modal coupling. Analytical

results for both a rigid and flexible foundation constitution indicated

that the fundamental periods were directly proportional to the overall

structural height, including the dummy story. UBC derived periods were

found to be grossly different from computer analyzed values. This discrep

ancy is a direct result of the code's inability to account for the actual

wall layout and associated lateral stiffness of panel buildings.

44



Depending on the symmetry of the floor plan, rotational coupling

was observed at two or possibly three fundamental resonant frequencies.

Two of these frequencies were invariably associated with x-normalized

modes. The resonance frequency exhibiting the most pronounced rotational,

or torsional, coupling was termed the "torsional" frequency. The'other

frequency, although exhibiting a smaller degree of rotational coupling,

was termed the "translational" frequency. For the twelve structures studied,

the degree of torsional coupling at resonance was found to have a direct

bearing on the building response to earthquake excitation.

In case the torsional coupling at the translational resonance

frequency was at least 25% of the torsional component at torsional reson

ance, the translational and rotational motions of the building under

earthquake excitation were found to be uncoupled, or 90° out of phase.

In the case of a smaller rotational coupling percentage at resonance, the

translational and rotational components of motion of the building under

earthquake excitation showed an in-phase response. Fortunately, the

basically limited torsional contribution at resonance, as reflected by a

low rotational percentage value, will also limit the rotational excursions

of the building under ground excitations.

The above observation seems to hold, in general, orovided that the

earthquake acceleration at the fundamental structural periods is sufficient

to excite the different structural modes. This energy dependent behavior

was illustrated by the response of the buildings investigated under a

Pacoima Dam excitation. In that case, both the translational and rotational

motions occurred at the fundamental structural fx-frequency, or in a

coupled manner. The reason for this behavior was found in the frequency

related energy of the Pacoima Dam earthquake, which lacks significant
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acceleration pulses at a period close to the fundamental torsional period.

Hence, excitation in an uncoupled fashion was not possible.

The latter observation is particularly important as it may reflect

the dependence of earthquake induced excitation on the energy level of

the earthquake at specific fundamental periods, be it either torsional

or translational. Initial studies under rigid base conditions, even for

the El Centro and Taft earthquakes, seem to support their potential

behavior for at least low coupled systems.
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