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ABSTRACT

An analysis procedure in the frequency domain is developed for
determining the earthquake response of a dam including hydrodynamic
interaction and water compressibility effects. Linear responses of

. idealized, two-dimensional gravity dams and three-dimensional dams,
including arch dams, can be obtained. The dam and fluid domain are
treated as substructures gnd modeled with finite elements. The oniy
geometric restriction is that an infinite fluid domain must maintain
a uniform cross-section beyond some point in the upstream direction.
For such an infinite uniform region, a finite element discretization
within the cfoss—section combined with a continuum representation in
the infinite direction provides for a proper transmission of pressure
waves. The fluid domain model épproximate1y accounts for fluid-
foundation interaction through a damping boundary condition applied
along the reservoir floor and sides. The dam foundation is assumed
rigid.

Hydrodynamic effects are shown to be equivalent to an added
mass and added load in the frequency domain equations of motion of the
dam. When water compressibility is considered, the added mass and
added load vary with.excitation frequency, and factors influencing
the dam response include resonances of the added load and the radia-
tion damping associated with the imaginary component of the added wass.
If fluid-foundation interaction is neglected, this dambfng occurs only
for infinite fluid domains, but occcurs for both infinite and finite

fluid domains if fluid-foundation interaction is included.
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Fluid-foundation interaction also reduces resonances of the added load
which can be very large if the foundation beneath the water is assumed
rigid.

Hydrodynamic effects on the dam response are investigated for
acceleration responses to harmonic ground motions. Complex frequency
‘response funétions for acceleration at the dam crest are presented for
two-dimensional concrete gravity and earth dams and for a three-
dimensional arch dam. Several reservoir shapes are included for the
concrete gravity dams. Water compressibi]ify and fluid-foundation
interaction significantly influence the response of concrete gravity
dams and are even more important for the arch dam. One effect is a
greatly increased importance for the vertical component of ground
motion. Hydrodynamic effects on the responses of earth dams are shown

to be minor.
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1. INTRODUCTION

1.1 Objectives

The impounded water may significantly influence the dynamic
response of dams subjected to earthquake ground motions. Present
“analysis capabilities for dam response considering hydrodynamic inter-
action are limited because portions of the analysis dealing with the
fluid domain are inefficient except for a few, simple geometries. An
objective of this work is the development of an analysis procedure
which can efficiently handle an arbitrary fluid domain geometry,
either finite or‘infinite, and either two or three-dimensional. This
procedure will then be used to further the study of hydrodynamic
effects on the dynamic response of two-dimensional gravity dams and

three-dimensional arch dams.

1.2 Background

The earthquake response of a linearly, elastic dam can be
determfned by standard techniques if the reservoir is empty and the
foundation rigid. The finite element method is well suited for this
problem resulting in discretized equations of motion in which dis-
placements of the dam are the unknowns. Two-dimensional idealizations
are often adequate for concrete and earth gravity dams while arch dams
require three-dimensional analyses. Solutions of the equations of
motion can be attained directly through step-by-step integrations in
the time domain. The modal superposition technique can be used to
advantage by including only a few qf the lower dam modes. Such an

analysis is possible with standard structural, finite element computer



programs. The program ADAP (1) contains features pertinent to arch
dam analysis such as special shell elements and mesh generation
‘capabilities. Alternatively, the frequency domain version of the
equations of motion can be solved and the resulting frequency
responses of the dam converted to the time domain by Fourier trans-
form procedures. The frequency responses generated by thié method
are useful for identifying aspects of structural response behavior.

If water is present in the reservoir, it should be included in
the analysis. This problem is an interactive one; dam motions are
affected by the hydrodynamic pressures, and these pressures are gen-
erated in part by the dam motions. Further, water compressibility
influences thé earthquake response of dams (2,3). Successful analyses
have been performed by the method of substructures in which effects
of the fluid are included in the equation of motion of the dam by
addition of hydrodynamic forces which act on the upstream dam face.
These hydrodynamic terms are computed from solutions to the wave
equation over the f]uid domain substructure subjected to appropriate
boundary conditions.

The substructure method can be implemented in either the time
domain (4,5) or frequency domain (3,6,7). Explicit mathematical
expressions for the hydrodynamic terms can be employed for simple
f}uid domain geometries. For compressible water, such analyses are
most conveniently carried out in the frequency domain, and the result-
ing hydrodynamic terms are frequency dependent. Two-dimensional con-
crete gravity dam-fluid systems have been successfully treated using
an infinite fluid domain of constant depth (7). More recently, the

method has been applied to arch dam-fluid systems where the infinite



reservoir is defined by a cylindrical dam face of constant radius, a
horizontal floor, and vertical, radial banks'enclcsing a central angle
of 90° (3). Both these analyses efficiently use free vibration mode’
shapes of the dam without water as generalized coordinates.

For irregular fluid domain geometries, numerical discretization
techniques are required. Both finite difference {4,5) and finite
element (6) discretization techniques have been used, although finite
elements are better suited to irregu]ar.geometries. For compressible
water and an infinite fluid domain, time domain procedures require
very long meshes so that pressure waves reflecting from the upstream
boundary do not return to the dam during the period of analysis.
"Quiet" boundaries which satisfactorily transmit the pressufe waves
and which can be placed close to the dam do not seem possible in the
time domain. However, a satisfactory discretization technique for
infinite domains has been developed in the frequency domain for cer-
tain prob]emszof solid mechanics involving layered media (8). This
technique is more efficient and also more accurate than those employ-
ing infinite elements (6).

Foundation flexibility is another complicating factor, and
both the dam and fluid interact with the foundation. Inclusion of
foundation flexibility requires specification of free-field ground
motions (those motions at the dam and fluid boundaries if the dam and
fluid were absent) and incorporation of an appropriate mechanism to
radiate energy into the foundation. The most extensive implementation
of these features considers the tgo-dimensiona1 gravity dam with the
infinite fluid domain of constant depth and an elastic half-space

foundation {9). Relatively 1ittle has been reported for three-



dimensicnal arch dam-fluid systems becauyse of the complicated geometry
of the foundations. However, a boundary‘condition has been employed
along the portion of the foundation adjacent to the f]uid which absorbs
a portion of the incident energy associated with a pressure wave strik-
ing this boundary {5). An equivalent form of this boundary condition
has aiso been used to modify hydrodynamic pressures generated by the

vertical component of ground motion (3,7,9,10).

1.3 Scope

An analysis procedure‘is developed for determining the earth-
quake response of a dam, assumed to be linearly elastic, including
interactive and water compressibility effects. The procedure can han-
die the rigid foundation case, but also includes a more general form
of the boundary condition (5) which approximateTy accounts for inter-
action between the fluid and the foundation. The analysis procedure
is a generalization of the substructure approach (3,7) to arbitrary
two and three-dimensional geometries. Finite element techniques are
emplioyed for both the dam and fluid domain substructures. The only
geometric restriction is that an infinite fluid domain must maintain
a uniform cross-section beyond some point in the upstream direction.
For such a fluid domain, an adaptation of a procedure dealing with an
infinite soil layer and the transmissﬁoﬁ of Love waves (8) provides a
satisfactory and efficient solution technique.

Chapters 2 to 5 deal with two-dimensional dam-fiuid systems and
Chapters 6 to 8 with three-dimensional systems. In Chapter 2, the
frequency domain equations of motion of the dam including frequency

dependent hydrodynamic terms are written for two-dimensional gravity



dam-Tluid systems subjected to horizontal and vertical ground motions.
Equations of motion of the fluid domain including appropriate boundary
conditions are also presented, Finite element analysis procedures for
these equations are described in Chapter 3 for finite and infinite
fluid domains. Computaticn of the hydrodynamic terms from the result-
ing pressures along the dam-fluid interface is also discussed. In
Chapters 4 and 5, the effects of presence of water, compressibility

of water, fluid domain shape, fluid-foundation interaction, and
direction of ground motion on the responses of concrete and earth
gravity dams, respectively, are investigated. Frequency response
functions for the dam crest acceleration and the hydrodynamic force

on a rigid dam are presented. Chapters 6 and 7 generalize the analy-
sis procedures of Chapters 2 and 3 to three-dimensional dam-fluid
systems. An analysis of Morrow Point Dam, an arch dam, is presented
in Chapter 8 where effects of presence of water, compressibility of
water, fluid-foundation interaction, and direction of ground motion

are investigated.






2. TWO-DIMENSIONAL ANALYSIS PROCEDURE FOR DAM RESPONSE

2.1 Systems and Ground Motion

Concrete gravity dams are treated as two-dimensional systems in
which the planar vibration of individual monoliths of a dam are con-
sidered (Fig. 2.1a). This simplification appears to be reasonable
because, at large amplitudes of motion, the monoliths tend to vibrate
independently (11). Each monolith is assumed to be in plane stress.
An earth or rockfill dam with a length several times its cross-
sectional dimensions may be idealized to be in plane strain, thus
reducing it to a two-dimensional system (Fig. 2.1b). The plane strain
assumption is also applicable to the water if the valley cross-section
is wide and if the variation in dam motion is small along its Tength.
These two-dimensional idealizations are not capable of considering
cross-stream components of ground motion. Behaviors within the elas-
tic dam and compressible water are assumed Tinear.

The reservoir may extend only a short distance upstream
(Fig. 2.1b) or to a large enough distance so that it can be assumed
infinite for purposes of analysis (Fig. 2.1a), In the latter case, a
convenient assumption is that the reservoir floor is horizontal beyond
some point in the upstream direction.

The base of the dam and reservoir floor in Fig. 2.1 undergo a
prescribed acceleration time history described by the horizontal and
vertical (x and y) components of ground motion. By specifying these
accelerations of the fluid boundaries, the foundation is assumed rigid,
and no interaction can take place between the dam and foundation or

between the fluid and foundation. Inclusion of foundation interaction

Preceding page blank
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(a) CONCRETE DAM, INFINITE FLUID DOMAIN

(b} EARTH DAM, FINITE FLUID DOMAIN

FIG. 2.1 TWO-DIMENSIONAL GRAVITY DAM-FLUID SYSTEMS



effects requires a flexible foundation model and specification of
free-field accelerations along the dam base and reservoir floor
(those accelerations resulting from the earthquake if the dam and
fluid were absent). A procedure for determining the dynamic response
of the dam on a rigid foundation is described in Secs. 2.2 to 2.4.
Some mndifications to this procedure which approximatety account for

interactfon between the fluid and foundation are discussed in Sec. 2.5.

- 2.2 Equations of Motion for Rigid Foundation Case

2.2.1 Dam

Discretized equations of motion for the dam can be constructed
by the finite eiement method. The dam is subdivided into elements
(Fig. 2.2a) connected at nodal points where displacement degrees of
freedom (DOF), the unknowns in the problem, are defined. The equa-
tions corresponding to DOF for nodes above the rigid base can be

expressed as

(=Y

m¥(E) + e ¥(t) +kylt) = - B a(t) - Q(t), 2= xwy

(2.1)

where v(t) = vector of nodal displacements relative to the ground;

m, ¢, and k = symmetric mass, damping and stiffness matrices for the
finite element system; g“ = vector of inertia forces on the dam due

to a unit acceleration of the dam as a rigid body in the & direction;
g(t) = vector of hydrodynamic forces on the dam arising from the
hydrodynamic pressure response of the fluid (with non-zero terms only

for nodes along the dam-fluid interface a-b in Fig. 2.2a); and
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(b} DEFINITION OF €%s),5=s,8’

FIG. 2.2 IDEALIZED DAM-FLUID SYSTEM, DEFINITIONS AND NOTATION
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ag(t) is the component of ground acceleration in the 2 direction.

EL s given by

E"=[n{m]e @22

where @g = a mass matrix coupling DOF above the base with those along
the base (non-zera for consistent mass matrices only); and where the
ith term of gm equals the length of the component of a unit vector
along & 1in the direction of the ith traﬁs]ationai DOF. The vectors
e* and ey, for ground motions in the x and y directions, con-
tain ones in positions corresponding to x and y translational DOF,
respectively, with zeros elsewhere.

The displacements of the dam, including hydrodynamic effects,

are approximately expressed as a linear combination of the first J

mode shapes of vibration of the dam:
J %
v(t) = Y 6, YI(t) {2.3)
j=] -3 3

where ¢j = undamped mode of natural vibration of the dam without
water, and Y?(t) = generalized displacement in that mode. The mode
shapes ¢j and natural frequencies Wy are computed from the

eigenproblem:

1=
-6
u
e
e N

13
e

(2.4)

The expansion in Eq. 2.3 is complete if J equals the number of DOF

in the dam model above the base. Good accuracy is possible, however,
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for J Tless than the number of DOF.
Applying the transformation Eq. 2.3 to Eq. 2.1 results in a

set of J equations, the jth of which appears as

v V3 £ 2
M. YO(t) + €, YO(E) + K, Y3 = P .
j V500 + 5 () + kg Vi) = P (2.5)

where Mj’ Cj’ Kj and P?(t) = generalized mass, damping, stiffness

and load for the jth mode of vibration, which are expressed as

- . F
ERNRAERS
b7 E e
(2.6)
< .2
K;} w3 Mj

% N S A ) o BT A
P5(t) = - o5 BV a (t) - {451 Q°(¢)

and where gj = critical damping ratio for the jth vibration mode;

¢§ lists the x and y components of the jth mode for all nodes

along the dam-fluid interface; and gf(t) lists the x and y com-
ponents of the hydrodynamic forces {ordered to correspond to ?g) for
the interface nodes. The nodal force vector Qf(t) is the static

equivalent of the hydrodynamic pressures on the upstream face of the

dam. The forces are computed from the pressures by the method of

virtual work.
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2.2.2 - Fluid

The hydrodynamic pressure distribution p(x,y,t) 1in excess of
the hydrostatic pressure, is governed by the two-dimensional wave
equation which is valid for small displacements, irrotational motion,

and negligible viscous effects:

2 2 2
9p,9p.13p (2.7)
ax2 ay2 C2 8t2

where C = velocity of compression waves in water. Along accelerating

fluid boundaries the pressures should satisfy:

Q_E - .w. - ¢
g (s:t) = - g2 (s.t), s =555 (2.8)
where s,s' = coordinates along the dam-fluid interface and reservoir

floor as shown in Fig. 2.2a; w = unit weight of water; g = accelera-
tion of gravity; an(s,t) = normal component of boundary acceleration,
and n denotes the inward normal direction to a boundary. Negiecting

waves at the free surface of the water (y=H),
p{x,H,t) = 0 (2.9)
In addition to the boundary conditions of Egs. 2.8 and 2.9, the pres-

sures should satisfy the radiation condition for fluid domains extend-

ing to infinity in the upstream direction.
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The normal accelerations of the dam-fluid interface and reser-

voir floor, when the excitation is ag(t), are

d .
2,(5.8) = e(s) ag(t) + P o](s) ¥ict) (2.10a)

an(s‘,t] = ez(s') ag(t) (2.10b)

where ez(s), s=s5,5' = a function defined along accelerating bound-
aries which gives the length of the component of a unit vector along
% in the direction of the inward normal n (Fig. 2.2b); and ¢§(s) =
a continuous function representation of the component normal to the
dam-fluid interface of ?§. Within straight portions of a fluid
boundary, Ez(s) ‘does not vary because the direction of n is
unchanged. For the infinite reservoir of Fig; 2.2a, ez(s') “is con-
stant to the right of ¢ because the reservoir floor is horizontal;
it equals zero for x ground motion and one for y ground motion.

In Eq. 2.10 the terms sg(s) ag(t) and eg(s‘) ag(t) repre-
sent accelerations of the fluid boundaries due to an acceleration
ag(t) of the ground with the dam rigid. The second term in Eq. 2.10a
represents accelerations due to motions of the flexible dam relative

to its base.

2.3 Response to Harmonic Ground Motion

The steady state responses to harmonic ground acceleration

ag(t) = e‘wt, £=x,y can be expressed as follows:



??(t) = f ??(m) gt (2.11)
p(x6yst) = Blxoysw) et
Qf(t) = gf(m) eimt

-

where the complex frequency response function for a response quantity,
say r{t), is denoted by r{w). Substituting the appropriate terms
of Eq. 2.11 into Eq. 2.5 results in

(—wz MJ + w CJ + K. ) Y. (m) P?(m), L= X,y (2.12)

where

Pio) =-9] E* - 6127 1 (w) (2.13)

Substituting the above expressions for ag(t), ??(

p(x,y,t) into Egs. 2.7 to 2.10 leads tc the Helmholtz equation:

t), and

25 a2 2
—g+——E+‘*’—p=o (2.14)
ox 27 2

with the boundary condition along the dam-fluid interface and reser-

voir floor,



Woew)=-%a(s,w), s=s5,5 (2.15)
where

J
a,(s.0) = () - wf T alls) Hiw)

J=1
(2.16)
a (s'su) = e*(s")
and the boundary condition at the free surface,
p{xsH,w) = 0 (2.17)

p(X,¥,w) 1is the solution of £q. 2.14 subject to the boundary condi-
tions of Eqs. 2.15 and 2.17 along with the radiation condition if the
fluid domain is infinite.

Because the governing equation as well as boundary conditions

are linear, using superposition p(x,y,w) can be expressed as

J

2
)
J=1

f)(xa.ysw) = 5§(st:w) - W 53()(,)’,03) ??(U}) (2.]8)

where Eﬁ(x,y,m) is the solution of Eq. 2.14 with boundary conditions

Eqs. 2.15 and 2.17 where

an(s) = ez(s), S = 5,5 (2.19)

5j(x,y,w) is the solution of Eq. 2.14 with boundary conditions
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Egqs. 2.15 and 2.17, where

a (s) = ¢§(S) |
(2.20)

The accelerations of Egs. 2.19 and 2.20 are no longer functions of
frequency so the w has been dropped from an(s,w) and an(s',w).

Eg(x,y,w), L=x,y is the complex frequency response function
for the hydrodynamic pressure when the excitation is the ground accel-
eration and the dam is rigid. 5j(x,y,w) is the corresponding func-
tion when the excitation is the acceleration of the dam in its jth
vibration mode and there is no motion of the reservoif floor.

An expression similar to Eq. 2.18 can be written for the com-
plex frequency response function for the hydrodynamic forces Qf(w)

on the upstream face of the dam:

- _ J
Qf(w) = Qgg(w)- w2_21
J:

HORHO (2.21)
-J J
where ggg(w) and Qg(w) are the static equivalents of the pressure
functions ﬁi(x,y,@) and 5j(x,y,w), respectively, along the dam-
fluid interface.
Substitution of Eq. 2.21 into Eq. 2.13 results in
2 =_Tﬁ_{f}T -ﬂZ,'_Z = vﬂ, o =
AOREE SR DR LOR ORI Xy

(2.22)
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Equations 2.12 and 2.22 for j = 1,2,...,J can be rearranged and

assembled into matrix form as

]

s(e) YHw) = )y 2= xuy (2.23)

where

]

Sjk(w) —w2 {?g}T g{(w)

_ 2 . _ 2 BT &F,
S‘]J(m) = - Mj + 1w CJ- + Kj w {?J} 9‘](%) (2.24)

Rp oy T o T afR
Li(w) = =97 E' - 19337 3 (w)

S(w) is a symmetric matrix and is the same for £ = x,y components
of ground motion.

Hydrodynamic terms appear on both sides of Eq. 2.23, as added
loads on the right and added masses on the left, the latter also
coupling the modal equations. The added load terms are associated
with hydrodynamic pressures on the dam face due to ground accelera-
tions while the dam is rigid. Added mass terms arise from hydrody-
namic pressures due to motions of the dam relative to its base. The
hydrodynamic terms depend on the excitation frequency, a consequence
of the fluid compressibility. For an incompressible fluid C = o,
and Eq. 2.14 reduces to the Laplace equation; the hydrodynamic terms

become independent of frequency.

2.4 Response to Arbitrary Ground Motions

The complex frequency response functions ??(m), j=1,2,....4

are obtained by solving the set of equations (Eq. 2.23} for a range of
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values of the excitation frequency w. Solutions corresponding to
£ =xandy are ?g(w). and ?g(w), respectively. Responses.to an
arbitrary ground acceleration ag(t) can be obtained from the com-
plex frequency responses by a Fourier synthesis of the responses to

individual harmonic components:

Brey o 1L a8,y aRy y Ldwt )
sk | o) B o™ an ey 229)

where Ag(w) is the Fourier transform of ag(t):

Ag(m) =‘f ag(t) L A (2.26)

and where ty = duration of ground motion. The transforms of
Eqs. 2.25 and 2.26 are performed on discrete functions using the Fast
Fourier Transform (FFT)} algorithm.

The total response Yj(t) to simultaneous horizontal and verti-

cal components of ground motion is
J

- yX Y
Y.(t) = Yj(t) + Yj(t) (2.27)

The nodal displacements y(t) are then obtained using the transforma-

tion of Eq. 2.3. At any instant of time, stresses in each finite
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element can be determined from the nodal displacements by stress-

displacement transformation matrices for the finite elements.

2.5 Modifications to Include Fluid-Foundation Interaction

At the boundary of a fluid and a flexible foundation, the
acceleration boundary condition which states proportionality between
the pressure gradient normal to the boundary and the normal component
of acceleration is still valid. However, these accelerations c¢an not
be specified as in the rigid foundation case because they depend on
the interaction between the fluid and the flexible foundation. The
actual accelerations, then, are composed of a free-field part and a
part caused by the interaction. Furthermore, a pressure wave travel-
ling in the fluid which strikes a flexible but stationary foundation
produces accelerations at the boundary, but by interaction only since
the free-field accelerations are zergp. Such an incident pressure wave
is only partially reflected since a portion refracts into the

foundation.

2.5.1 One-dimensional fluid-foundation system

Consider the one-dimensional probiem of Fig. 2.3 which consists
of adjoining fluid and foundation half-spaces. This problem is one-
dimensional because no variations are present in the x direction.
Harmonically varying pressures in the fluid and displacements in the
foundation are p(y,s) and u(y,w), respectively. The excitation is
provided by an incident displacement wave travelling upward through
the foundation.

Pressures within the fluid obey the one-dimensional version of

Eq. 2.14:
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25 2
Sl 55 =0 (2.28)
dy C '

Taking the fluid-foundation boundary as the y = 0 1line, the accel-
eration boundary condition for the fluid can be written from Eq. 2.15

as

P (5.0) =

P W% 5(04w) (2.29)

w
g

Within the foundation displacements are also governed by the one-

dimensional Helmholtz equation

2

Qo
[~

2
+-“’—§G= 0 (2.30)
C .
Y

™)

dy

where Cr = compression wave velocity in the foundation. The general

solution to Eq. 2.30 is

_ iy iy
u(y,n) = Alw) e " +Blw) e °r (2.31)

where A{w) 1is the unknown amplitude of the reflected displacement
wave and B(w) 1is the specified amplitude of the incident wave. A

free~-field acceleration of ay is obtained if

1
Blw) = - —& (2.32)
(w 2w2 ay
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Such an upward propagating wave has an acceleration amplitude of

ay which doubles to ay upon reflection at a free boundary at

= 0.

g Mo

A{w) in Eq. 2.31 is evaluated from the condition that the pres-
sure in the fluid at the foundation equals the normal foundation stress

there. Taking compression positive,

Blo.0) = - £, 3 (0,0) (2.33)

where E. = the elastic modulus of the foundation rock given by

W. 2

- L
Er =3 Cr (2.34)
and where W, = unit weight of the rock.  Substitution of
Eqs. 2.31 and 2.32 into Eq. 2.33 and solution for A(w) yields
] i g =
Alw) = 5 ay + wCr W plo,w) (2.35)

2w

And substitution of Egs. 2.31, 2.32 and 2.35 into Eq. 2.29 yields a

new form of the fluid boundary condition:

%5-(o,m) = - g-ay + iwq p{o,w) {2.36)
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where q = ‘t— . Temms on the right side of Eq. 2.36 represent por-
rr

tions of the fluid boundary acceleration due to free-field motions and
interaction, respectively. Since the interactive acceleration is pro-
portional to iw p(o,w), the derivative of the pressure at y = 0
with respect to time, it can be interpreted as a damper and q as a
damping coefficient. For a rigid foundation, g = 0 1in Eq. 2.36,
and ay is an actual, specified acceleration of the fluid boundary.
Equation 2.36 also provides for the proper partial reflections
of a downward travelling pressure wave which strikes the fluid-

foundation boundary. The general solution of Eq. 2.28 is

j %»y - %»y

+ B{w) e (2.37)

p{ysw) = Alw) e

where A(w) 1s the specified amplitude of the hydrodynamic pressure
wave incident to the reservoir floor, and B(w) 1is the amplitude of
the reflected wave. The ratio B{w)/A{w), termed the reflection
coefficient a.s can be found by substituting Eg. 2.37 into the
boundary condition Eq. 2.36 with ay = 0 (zero free-field

accelerations). Thus,

1 . WG
1 -4gC wrcr
% T TFAC T T, e (2.38a)
w
r’r

which is independent of frequency w. Also,

—
1
2

r (2.38b)

o
1"
o=
—t |
-t
=3
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2.5.2 Two-dimensional fluid-foundation systems

Equation 2.36, although strictly applicable to one-dimensional
systems, can be applied as the acceleration boundary condition along
the reservoir floors of Fig. 2.1 to approximately account for fluid-

foundation interaction. Equation 2.36 is generalized to

ar (s1s0) = - T (s') + g B(s" ) (2.39)

which replaces the portion of Eq. 2.15 along the reservoir floor.
Equation 2.15 then is a special case of Eq. 2.39 for q = 0, the
rigid foundation case. an(s') of Eq. 2.39 is the free-field accel-
eration of the reservoir floor. It is zero for computation of the
pressures 6j(x,y,w) as stated by Eq. 2.20 and usually non-zero fdr
computation of the pressures Eg(x,y,w),' L=x,y. In the latter case,
the variation of an(s’) along the floor can approximately be
defined by Eq. 2.19 with the same function eg(s') as used for the
rigid motion.

Equation 2.39 can be interpreted as the result of idealizing
the foundation as shown in Fig. 2.4. Portions of tHe foundation
beneath the fluid are sliced into columns of infinite length and infini-
tesimal width extending in a direction perpendicular to the fluid
boundary. Resulting foundation motions are due entirely to axially
travelling compression waves in the columns, each of which vibrates
independently of its neighbor. Continuity is maintained between nor-
mal displacement and stress across the fluid-foundation boundary. The

properties Er’ Wos and Cr are now those of the columns.
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Consideration of a single column, an incident wave travelling toward
the fluid domain, and the pressure response p(s',w) at the end of

the column leads to Eq. 2.39 by a derivation similar to that of

Eq. 2.36. an(s') is the free field acceleration at the end of the

column.

The foundation model of Fig. 2.4 and the equivalent formulation
Eq. 2.39 are simplifications of real situations, but they do provide
an additional mechanism for energy loss (radiation through the
foundation) which does exist in real problems and which is not
accounted for by a rigid foundation model. The amount of energy loss
depends on the value chosen for the damping coefficient q.

Magnitudes of Cr and W, used in computing q can be taken as
actual values of the foundation rock or adjusted to improve the per-
formance of the sliced column foundation. For example, in Fig. 2.4,
increasing Cr and W above foundation rock values would approxi-
mately cancel the loss in stiffness due to the slicing and the loss in
mass due to the empty spaces between columns. Both adjustments result
in a smaller q and a value of fhe reflection coefficient o, closer
to one. Should a silt layer overlie the foundation rock, a higher
value of q may be appropriate.

As shown in later chapters, a reasonable value of q affects
the f]ujd response only locally in the vicinities of frequencies where
the fluid response is very high. The radiation of energy into the
foundation reduces these high (and unrealistic) responses which occur
for the rigid foundation model. Thus, the approximate flexible founda-

tion model is a significant improvement.
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3. TWO-DIMENSIONAL ANALYSIS OF HYDRODYNAMIC FORCE VECTORS

3.1 Boundary Value Problems and Sclution Technigues

As seen in Chapter 2, hydrodynamic force vectors of Eq. 2.24
are of two types: added load ‘Qgg(w), 2= X,y and added mass §§(w)'
These vectors are obtained from hydrodynamic pressure distributions

along the dam-fluid interface which are found by solving the Helmholtz

equation:
2- 2~ 2
28,2048 520 (3.1)
ax 3y C

subject to the acceleration boundary condition along the dam-fluid

interface

o (s:0) = - T als) (3.22)

and along the reservoir floor

B (st = - La(s) + fuq Bls' o) (3.2b)

the zero pressure condition at the free surface (y=H)
B(Xast) =0 (3.3)

and the radiation condition if the fluid domain extends to infinity in

the upstream direction. In Eq. 3.2b, values of the damping coefficient

Preceding page blank
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q greater than zero.are used to approximately accounf for fluid-
foundation interaction effects; in which case, an(s') is the free-
field acceleration of the reservoir floor. For a rigid foundation,
q=0.

For computation of ng(m), 2=X,y, the acceleration in Egq. 3.2

is given by (see Eq. 2.19)

an(s) = ez(s), s = 5,5 (3.4)

and the solution to the resulting boundary vatue problem (B.V.P.) is
the hydrodynamic pressure 5§(x,y,w). The force vector ng(m) can
be obtained from the pressures along the dam-fluid interface by the

method of virtual work. For computation of Qg(w) {see Eq. 2.20),

a (s) = ¢.(s) (3.5a)

an(s‘) =0 (3.5b)

for each of the J natural modes of vibration of the dam. Bj(x,y,w)

is the solution to the resulting B.V.P. with corresponding force vector

;(w .

| Vawl)

If the fluid domain extends a short distance upstream (Fig. 3.la),
the above B.V.P.'s are solvable with the finite element method. This
technique which can handle arbitrary, but finite, fluid domain geome-
tries is described in Sec. 3.2. Should the fluid domain extend a great

distance upstream, then an infinite model is more appropriate. The
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simplest such case, shown in Fig. 3.1b, has a vertical dam-fluid inter-
face a-b and horizontal reservoir floor. For this fluid domain,
series solutions to the B.V.P.'s have been reported (7) and are out-
Tined in Appendix E. A combined finite element-continuum solution of
the same problem is presented in Sec. 3.3. Both treatments far the
fiuid domain of Fig. 3.1b require that the acceleration of the reser-
voir floor not vary along the infinite length of the floor. This
requirement is consistent with the zero acceleration condition of

Eq. 3.5b and also, since the floor is straight, with the ¢(s') con-
dition of Eq. 3.4.

Figure 3.7c shows a more realistic fluid domain with geometric
irregularities. If this fluid domain is idealized as shown in Fig. 3.1d
with a finite region a-b-c-d-a of irregular geometry coupled to an
infinite region of constant depth to the right of the vertical Tine
c-d, then the B.V.P.'s can be solved by a method described in Sec. 3.4.
This method utilizes the standard finite element formulation of Sec. 3.2
for the region a—b-é-d-a and the finite element-continuum treatﬁent
of Sec. 3.3 for the infinite region. Accelerations of the horizontal
reservoir floor to the right of ¢ cannotvary along the infinite
length, a requirement consistent with Egqs. 3.4 and 3.5b.

The analysis procedures of Secs. 3.2 to 3.4 are for hydrodynamic
pressures and are written for general accelerations rather than the
specific conditions of Egs. 3.4 and 3.5. These specific conditions are
considered in Sec. 3.5 as is the actual computation of le(w), %= XY

and Q;(w) from the resulting pressures along the dam-fluid interface.
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3.2 Finite Fluid Domains of Irregular Geometry

Solution of the B.V.P. of Sec. 3.1 (Eg. 3.1 subject toc boundary
conditions of Egqs. 3.2 and 3.3) for finite fluid domains of irreqular
geometry (Fig. 3.2a) can he obtained numerically by the finite element
method (12). In this approach, the fluid domain is divided into two-
dimensional finite elements as shown in Fig. 3.2b. The interelement
hydrodynamic pressure is defined in terms of discrete values Ei(m)
at the element nodal points. These nodal pressures are the unknowns in
the B.V.P., one DOF for each node below the fluid free surface {(where
the nodal pressures are zero) assembled into the vector é(m), A
finite element discretization of the B.V.P. of Egs. 3.1 to 3.3 Teads to
the matrix equation (Appendix B.1):

2
{ﬁ +iwg B - QQ‘G] plw) =D (3.6)

2’

@lE

where H, B, and G are symmetric matrices analogous to stiffness,
damping, and mass matrices arising in dynamics of solid continua; and
D = vector of nodal accelerations computed from the normal accelerations
an(s) along the dam-fluid interface a-b and an(é‘) along the
reservoir floor b-c, and thus can have non-zero terms for only nodes
atong a-b-c. The non-zero portion of B is a subhatrix corresponding
to nodes along b-c where the boundary condition of Eq. 3.2b is
applied. Only DOF for nodes below the free surface a-c are included
in Eq. 3.6.

The unknown pressures @(w) can be determined by solving the

set of algebraic equations (Eq. 3.6) simultaneously. For the case
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q =0, p(w) can also be determined using an eigenvector expansion.

The eigenproblem associated with Eq. 3.6 for g =0 is

Hg = yz G ¢ (3.7)

which upon solution yields real valued eigenvalues Yin and eigen-
vectors S The eigenvectors are orthogonal to H and G and are

normalized so that

T -
Em (_5 Em = ] (3.8&)
and they then satisfy
T _ 2
Em Ij Em - Ym (3-8b)

gl

(w) 1is expressed approximately as a linear combination of the

first M eigenvectors:

M
plw) = 21 Ly tnlw) = 7 afw) (3.9)
=

I~

Substituting Eq. 3.9 into Eg. 3.6 with gq

result by ZT, and solving for é(m) using the orthogonality pro-

1

0, premultiplying the

perty of the eigenvectors results in
alw) = 3;— 'zl p (3.10)

- where [ =an MxM diagonal matrix with mth diagonal term

= 2 - W¥/c?. From Egs. 3.9 and 3.10
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Blu) = § 2 2 p (3.11)

Thus p(w) for q =0 can be determined either by salving the alge-
braic equations (Eg. 3.6) simultaneously or directly from Eq. 3.11. For
q > 0 the above eigenvectors do not diagonalize B of Eq. 3.6.

The variation of E(m) with excitation freguency w can be
deduced for q = 0 by examining Eq. 3.11. The ampiitude of the mth
eigenvector is real Vaiued and resonates to infinity at an eigen-
frequency mb

m
real valued function of frequency unbounded at the w;. This response

= Y, with opposite sign on each side. Thus p(w) is a

behavior of a finite fluid domain is characteristic of any undamped
finite solid. For q > 0 the behavior of é(w) is similar to that of
a finite solid with non-proportional damping; i.e., bounded at all fre-
quencies and complex valued for w > 0. The lack of infinite resonances
and the presence of an imaginary component of @(w) are due to the out-
ward radiation of energy through the flexible foundation (foundation

radiation damping).

3.3 Infinite Fluid Domain of Constant Depth

3.3.1 Boundary value problems

The B.V.P. of Egs. 3.1 to 3.3 is solved below for the fluid
domain of Fig. 3.3 with an acceleration ax(y) of the vertical dam-
fluid interface a-b and for an acceleration ay(x) = a§ unvarying
along the horizontal reservoir floor. Solutions are carried out sep-

arately for these two acceleration conditions which are shown in

Figs. 3.3a and ¢. Continuum solutions are presented in Appendix E.
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The governing Eq. 3.1 with the boundary conditions

gg~(0,y,w) = - g- X(y) (3.12a)
gg—(x,ﬂ,m) = jwg p(x,0,w) ' (3.12b)
p(x;Hsw) = 0 (3.12¢)

defines the first B.V.P. .[Equation 3.1 with the boundary conditions

P (0,y,w) = 0 (3.13a)

%’7 (x,0,0) = - !g’— + Twg B(x.0,0) (3.13b)

E(Xsst) =0 : (3.]3C)

defines the second B.V.P.

3.3.2 First B.V.P.

The simple geometry of the infinite fluid domain of constant

depth permits a separation of variables in Eq. 3.1:
POGYw) = Py (xsw) B (y.0) (3.14)

where p_(x,w) must satisfy
X
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-d—-z— - K px =0 | (3.]5&)
x°

and 5y(y,w) must satisfy

d%5 |
—L +2% B, =0 (3.15b)
dy y

where k 1s a separation constant; and

R AN (3.16)
c

Boundary conditions include Eq. 3.12a and the separated conditions

dp |
Y = iua b
m (0,w) = iwg py(O,w) (3.17a)

By(H,w) =0 (3.17b)

The one-dimensional Eq. 3.15b with boundary conditions of Eq.
3.17 defines an eigenvalue probiem. A finite element discretization of
the eigenproblem using a one-dimensional mesh (Fig. 3.3d) leads to the

matrix equation:

[gi + ug gi] v=22gy (3.18)
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whose derivation follows from that in Appendix B.2, and where the
matrices ﬁi, §£ and gé are symmetric. The non-zero portion of @i
is one diagonal term corresponding to the node at b. Only DOF for
nodes below the zerc pressure node at a are included in Eq. 3.18.

The eigenvalues Xn and eigenvectors U determfned from
Eq. 3.18 are complex valued and dependent on the excitation frequency

w unless q = 0s; 1in which case, they are real valued and frequency

independent. The Y, are orthogonal and are normalized so that
T GL -
Yo &y, =1 (3.19a)

and they then satisfy
TVL A, . ( 2
¥ [gL + iwg QL] U = Ap (3.19b)

The separated function for the y coordinate, By(y,m) from £q. 3.15b,

is expressed in discrete form as

@y(w) =¥, ﬁn(w), n=1,2,... (3.20)
Discretization in the x direction is inappropriate because the

fluid domain extends to infinity in'that direction. Therefore, con-

tinuum solutions to Eq. 3.15a are employed. The « 1in Eq. 3.16 can

take on only the values given by
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c = Jxrz‘ - Wyl = wo+ v (3.21)

n

Since the infinite fluid domain is excited at x = 0, ﬁx(x,ﬁ) must

decay with increasing . x or travel from x =0 to x =e. Thus, it

is of the form

- = K x '
px(x,m) =e ", n=1,2,... (3.22)

where the root with both Uy and v, positive is taken in computing

Ky from Eq. 3.21. Including the first N terms in éy and ﬁx

Teads to an approximate expression for p{x,w):

=K X

o " A(w) = ¥ e(x) nlo) (3.23)

nes122

é(X,UJ) =
n

where e(x) = an NxN diagonal matrix with nth diagonal term

—KpX

=g - If q=0, then A s real; and k, is real or imaginary

n
depending on whether w 1is less than or greater than AnC;‘ i.e.,

n’ or Kn = 'I\)n.

The above formulation can be interpreted as a discretization of

Kp = W
the fluid domain into layers of infinite length (Fig. 3.3b) separated
by nodal lines. The ith term of the vector p(x,w} in Eq. 3.23
represents the variation of pressure with x along the 1ith nodal
line. The ﬁn(w) are determined to satisfy the discrete form of the

boundary condition Eq. 3.12a {Appendix C.1):
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GL

> ol

(0,0) = - 19* * (3.24)

where g‘ is the same matrix as in Eq. 3.18; and px = a vector of
nodal accelerations corresponding to the acceleration ax(y) of the
dam-fluid interface.

Substituting Eq. 3.23 into Eq. 3.24 results in

6 v K pw) = % 0¥ (3.25)

1=t

W
g

where K =an NxN diagonal matrix with nth diagonal term = g

e
Premultiplication of Eq. 3.25 by fT and solution for n(w) using the

orthogonality property of the eigenvectors lteads to

n(w) = 5K ¥ D (3.26)
Substitution of Eq. 3.26 back into Eq. 3.23 results in
Blxw) = %y elx) €1y 0¥ (3.27)

At x =0, Eq. 3.27 reduces to

ém@)=%g: y' D (3.28)
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For q =0, A and y are real valued. Then from Eq. 3.27,

the amplitude of Yy decays exponentially with increasing x at

=HpX . . . -Tvx
e (when w~<knC) or is a nondecaying harmonic e

3

A
n

(when
w:»AnC). At an eigenfrequency = A,Cs K, = 0 and the amplitude

of U is infinite. The part of the amplitude that approacheé infin-
ity is real below mﬁ and imaginary above. Thus, @(x,w) is real for
w < mf, complex for w > mé, and unbounded at fregquencies mﬁ. The
harmonic, nondecaying distribution with x in the amplitude of an
eigenvector wn for w > mﬁ represents a radiation of energy in the

infinite, upstream direction of the fluid domain. This fluid radiation

damping is non-zero for w > wf and is responsible for the imaginary
component of E(x,m). It does not, however, prevent the infinite
resonances at frequencies wﬁ above wf because of the orthogonality
of the eigenvéctors; j.e., a resonating eigenvector Yy is orthogonal
to the fluid radiation damping which is associated with the lower

. £ . ) . r
eigenvectors. The _ approximate the eigenfrequencies w, =

n
(2n-1)7nC/2H" for the continuum fluid domain (Appendix E). For gq > O,
the complex eigenvector ?n has an x distribution of e-“nX e—1vnx,
an exponentially decaying harmonic. Thus, all energy is eventually
radiated by the foundation. Since this foundation radiation damping

occurs for all frequencies greater than zero, p{x,w) is bounded at

all frequencies and complex valued for w > 0.

3.3.3 Second B.V.P.

The B.V.P. of Eq. 3.1 with the boundary conditions of Eq. 3.13
contains no variation in the x direction, and is thus one-dimensional

in the y coordinate. Omitting the x variations from these equations
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results in the one-dimensional Helmholtz equation for p(y,w)

dz_ w2 -
Sh+5 5 -0 (3.29)
dy C
and the boundary conditions
%3 (0,w) = - g’§§+ iwg p{0,w) (3.30a)
p(Hyw) = 0 (3.30b)

Solution of Egq. 3.29 subject to the boundary conditions of
Eq. 3.30 can be obtained‘by the finite element method using a one-
dimensional mesh {Fig. 3.3d). The finite element discretization of the

one-dimensional B.V.P. is the matrix equation {Appendix B.2):

, . 2 . ,
l-l-_rc' + iwg g’(- - 9..2_ gL] E(m) = % g(' (3.31)

where ﬂi, @L and gi are the same symmetric matrices as in Eq. 3.18;
é(m) = vector of unknown nodal pressures; and gé = vector of nodal
accelerations (a zero vector except the term corresponding to the node
at b, whose value is a§ ). Only DOF for nodes below the zero pres-
sure node at a are included in Eq. 3.31.

The pressures é(w) can be obtained by solving the algebraic
equations (Eq. 3.31) simultaneously. Alternatively, p(w) can be

determined using an eigenvector expansion, employing the complex valued
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and frequency dependent eigenvalues An and eigenvectors gn result-
ing from the associated eigenproblem, Eq. 3.18. Except for q=0
when both Ay and ¥, are real valued and frequéncy ihdependeht, the
eigencoordinate so]utioﬁ of Eq. 3.31 is inefficient compared to solv-
ing the equations simultaneouslty. However, if the first B.V.P. is
being solved concurrently, then the frequency dependent Ah and ¥y
are available. Following Egs. 3.9 to 3.11, E(m) is apbroximate]y
expressed in terms of the first N eigenvectors as
1., T AL

Plw) =gya ¥ D

(3.32)

where Y = {g],yz,...,@N]‘ and A =an NxN diagonal matrix with nth
diagonal term = Aﬁ - wZ/CZ. Thus, @(w) can be determined either by
solving the set of equations 3.31 simultaneously or from Eq. 3.32.

Note that A is related to K from Eq. 3.27 by

1=
il
-~

(3.33)

The frequency variation of p{w) 1is similar to that of the
finite fluid domain of Sec. 3.2. For q =0, p{w) is a real valued
functionvof frequency with infinite resonances at the eigenfrequencies
mﬁ = AnC (same as the first B.V.P.). For q >0, p(w) is'bounded
at all frequencies and complex valued for w > 0, which are conse-

quences of foundation radiation damping.
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3.4 Infinite F1uid'Domains'of’IrregularfGeometnx

A solution scheme for the B.V.P. of Eqs. 3.1 to 3.3 is pre-
sented below for the fluid domain of Fig. 3.4a where a finite region
a-b-c-d-a of irregular shape is connected to an infinite region of
constant depth to the right of the vertical line c-d. Normal accel-
erations of the dam-fluid interface a-b and reservoir floor are

AL
.

, . . 0 o
an(s) and an(s ), respectively. To the right of <, an(s ) v

unvarying along the infinite length of the horizontal floor. The
fluid domain is discretized as shown in Fig. 3.4b. The finite region
a-b-c-d-a is divided into two-dimensional finite elements as dis-
cussed in Sec. 3.2. Within the infinite region, the layer discretiza-
tion of Sec. 3.3 is employed, matching the adjacent two-dimensional
mesh along c-d.

Figures 3.4c and d show the discretized fluid domain separated
at c-d. The separated fluid domains, analogous to free bodies of
solid continua, require that the normal accelerations along the line
of separation be preserved. The finite element matrix equation 3.6 is
written for the region a-b-c-d-a 1including only DOF for nodes below

the free surface and is partitioned as follows:

[ﬂn H‘z]an ['in 512]_&[911|912] Bl | | B
Hoy | 1 Bo11B22]  ¢® |81 | %22l |Bp(w)| 9 [p,- Dh(w)

=k

=21 =22

(3.34)

where nodes along c-d are identified by subscript 2 and remaining

nodes by subscript 1. In Eq. 3.34 D, and D, are acceleration

1 2
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vectors of group 1 and group 2 nodés computed from an(s), Ss=5,s"
along a-b-¢; and Qg(@) = acceleration vector of group 2 nodes asso-
ciated with the unknown x-direction acceleration of the line c¢-d.
Equation 3.34 without Q;(w) is just a partitioned form of Eq. 3.6
written for a zero acceleration condition normal to c-d. However, as
part of the infinite fluid domain of Fig. 3.4a, c-d is an interface
between two subregions and undergoes, as yet, unknown accelerations
which contribute the vector Q;(w) in Eq. 3.34.

Consideration of the infinite region of Fig. 3.4d leads to an
expression'for Q;(w). The vector Ez(w) of nodal pressures along
c-d‘ arises from two sources: the unknown acceleration Qé(w) and
the vertical acceleration a§ of the floor of the infinite section.

Pressures at c¢-d due to D;(w) and a; are given by Egs. 3.28 and

3.32, respectively. Using superposition, éz(m) can be expressed as

v et et ot ey D) (3.35)

Byla) =

Q=

where use has been made of Eq. 3.33.
If éz(m) is expressed by an eigenvector expansion using the

first N eigenvectors Yn
then, from Eq. 3.35,

ROE %5'1 k1T ot o+ yT DX () (3.37)
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Multiplication of Eq. 3.37 by K yields the expression for Q;(w):

w, T x - -1 T £
ORI SAORE FRNTN (3.3

Substitution of Eqs. 3.36 and 3.38 into Eq. 3.34 with a premultiplica-

tion of the second submatrix equation by yT yields

2 >
. _m . .Ui_ -
[ﬁn“wq B~ 911} [*-'12”‘*"1 Bz 2 & 2] py(w)
T X w T ) -
! [t'm 1 By - 2 921] [sz" g Bpp- 7 8 ] rrK Hz(“’)
L.
D
W =1
¥ (3.39)
g YT D. + K 1 WT

The pressure vector ﬁl(m) can be obtained by solving the algebraic
equations (Eq. 3.39).

For q = 0, several features of the frequency variation of
§1(w) are evident. When the frequency is below the first eigen-
frequency m% of the infinite region, no imaginary terms are present
in Eq. 3.39, so él(w) is real valued. Above wl’ é](w) is complex
valued due to fluid radiation damping. Also, when a; is non-zero,

(g) becomes unbounded at each mg because of the infinite value
attained by the nth diagonal term of the matrix g'] on the right
side of Eq. 3.39. However, none of the frequencies wﬁ are eigen-
frequencies of the complete fiuid domain; the infinite responses are

due to the infinite right side of Eq. 3.39 at these frequencies.
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Eigenfrequencies of the complete fluid domain must satisfy the eigen-
value problem associated with Eq. 3.39, this equation with q = 0 and
a zero right side, and be real vaTued. Such frequencies, if they
occur, will be less than wf

complex valued (complex matrix K). At an excitation frequency equal

because above m? the eigenprobiem is

to an eigenfrequency, él(m) is unbounded if the right side of
Eq. 3.392 is non-zero and if q =0. For gq > O, @1(w) is bounded at

all frequencies and complex valued for w > 0.

3.5 Computation of Hydrodynamic Force Vectors

For the fluid domains described in Secs. 3.2 to 3.4, computa-

tion of the hydrodynamic force vectors Gfk(w), 2= x,y and Qg(m) of

Eq. 2.24 proceeds as follows:

1. The boundary accelerations of Eqs. 3.4 and 3.5 are con-
verted into acceleration vectofs for use in Eqs. 3.6 or 3.11 (finite
fluid domain), Eqs. 3.28 and 3.32 (infinite fluid domain of constant
depth), or Eq. 3.39 (infinite fluid domain of irregular geometry).
For the finite fluid domain, these vectors are denoted by Qg and
Qj, and their computation is described in Appendix D.1. Use is made
of the boundary portion of the finite element mesh along a-b-c in
Fig. 3.2. Vectors {D*}), ¢=x and {_DX}J. of Eq. 3.28 and {91}‘;,
Dy)gs 2=y and {D3,, (D,}; of Eq. 3.39 are computed using the
boundary element meshes along a-b in Fig. 3.3 and a-b-c in Fig. 3.4,
respectively, using the method of Appendix D.1. In the latter case,
{Dz}j = 0. ‘{g‘}ﬁ, 2=y in Eqs. 3.32 and 3.39 is computed with
aj, =1, and {0437, 2=x and {g‘i}j of Eq. 3.39 are also zero

vectors.
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2. Using the acceleration vectors of step 1, hydrodyhamic
pressure vectors for a fluid domain are obtained by solving the appro-
priate equations of Sec. 3.2, 3.3, or 3.4. Pressures along the dam-

fluid interface are assembled into E:g(m)’ 2= X,y and @g(w).

3. As also described in Appendix D.1, the hydrodynamic force
vectors are computed from the pressures along the dam-fluid interface

obtained in step 2.

3.6 Numerical Results

3.6.1 Infinite fluid domain of constant depth

The accelerations shown in Figs. 3.5a and 3.5b result from har-
monic ground accelerations = e'®® in horizontal and vertical direc-
tions, respectively, with the dam and foundation assumed rigid.
Continuum solutions to both these probliems appear in Appendix E, and
finite element-continuum formulations are discussed in Sec. 3.3. In
order to demonstrate Eq. 3.39 (q=0), these problems are solved here
using regular finite element meshes consisting of single columns of
elements with maximum numbers of eigenvectors included in g. Three
meshes are used employing 3, 6, and 12 Tinear elements (Fig. 3.5¢) to
demonstrate convergence as the mesh is refined. Two types of plots
are presented: the hydrodynamic force ?g(m), 2= x,y on the rigid
dam vs. frequency  and the hydrodynamic pressure ﬁzz(y,w) along
the dam-fluid interface a-b. Fﬁ(w)A is computed by integrating
5§%(y,w) over a-b. ?g(w) is normalized with the static force
Fop =7 W Hos o with ol = 7C/2H, and 5% (y,0) with the static

pressure at the reservoir floor wH, so that the results apply to
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fluid domains of any height. Continuum solutions obtained from the
equations of Appendix E appear as solid Tines in the figures.

Hydrodynamic forces and pressures due to horizonté1 ground
motion (Fig. 3.5a) are plotted in Figs. 3.6 and 3.7, respectively.

In the force plot of Fig. 3.6, the Tocation of resonant peaks of the
finite element curves, the eigenfrequencies mﬁ, are shifted toward
higher w. This shift is due to the discretization and is noticeably
less for the finer meshes. The method of resonance, real on the left
and imaginary on the right of the eigenfrequencies, is truely repro-
duced by all three finite element solutions. Convergence of these
solutions to the continuum solutions as the mesh is refined is evident
in Figf 3.6 and also in the pressure plots of Fig. 3.7. There, uﬁ
denotes either wg of the continuum results or mﬁ of the finite
element resu]ts.

For the vertical ground motion case of Fig. 3.5b, hydrodynamic
forces and pressures are plotted in Figs. 3.8 and 3.9, and conclusions
similar to those above can be made. Here, the method of resonance
differs, always real but of opposite sign across the wﬁ (typical of
finite fluid domains), and is truely reproduced by all three meshes.

The effect on the frequency variation of ?é(w) of including
less than the maximum number of eigenvectors in ¥ 1is illustrated in
Figs. 3.10a and b for horizontal and vertical ground motions,
respectively. The three curves plotted are for the six element mesh
with six, two, or one eigenvectors included in Y. The single eigen-
vector solution is satisfactory to just past the first resonant peak,
and the two eigenvector solution is satisfactory to just past the

second peak. Examination of the pressures (not shown)} supports these
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observations. Thus, the number of eigenvectors included in an analy-
sis can be less than the maximum and depends on the range of excitation
frequency required. The shape of the acceleration distribution is
another factor; non-uniform accelerations tend to excite higher eigen-
vectors so more need be included.

The problems of Figs. 3.5a and b are also solved with damping
incorporated into the acceleration boundary condition along the reser-
voir floor to approximately account for fTuid—foundation interaction
as discussed in Sec. 2.5. aj is now a free-field acceleration, and
the reflection coefficient o, is chosen as .85. Fﬁ(w) VS, W curves
are presented in Figs. 3.11 and 3.12 for horizontal and vertical
ground motions, respectively. Continuum solutions are from Appendix E,
while the finite element results were ohtained with Eq. 3.39 and the
twelve element mesh of Fig. 3.5c with all twelve eigenvectors included
in Y. Agreement between the curves is comparable to that obtained
for the corresponding curves of Figs. 3.6 and 3.8 for the rigid fluid
foundation. Note that responses accounting for fluid-foundation inter-
action are bounded functions of excitation frequency w and complex
valued for w > 0. For the horizontal ground motion case (Fig. 3.11),
finite real and imaginary peaks replace the infinite real and imaginary
responses of Fig. 3.6. And for vertical ground motion (Fig. 3.12),
finite real peaks replace the infinite real responses of Fig. 3.8, and

new imaginary peaks appear centrally located over the ;. The behav-

ior for vertical ground motion is typical of that for finite fluid

domains.
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3.6.2 Infinite fluid domain with sloped dam-fluid interface

As shown in Fig. 3.13 the dam-fluid interface slopes ocutward at
slope B:1; the depth of the fluid domain is constant beyond the toe
of the dam. The accelerations in Figs. 3.13a and b result from har-
monic ground accelerations = ei‘”t in horizontal and vertical direc-
tions, respectively, with the dam and foundation assumed rigid. For
an excitation frequency of zero, the incompressible water case, inde-
pendent solutions to the problems of Figs. 3.13a and b exist and can
be compared with finite element results from £q. 3.39. For the hori-
zontal motion case of Fig. 3.13a, Fig. 3.14 shows the pressure distri-
bution 5gx(s,0) along the dam face, normalized with wH, for
B=.5,1, 2. Solid lines are an integral equation solution obtained
by conformal mapping techniques (13). Results from Eg. 3.38 (q=0)
using the mesh of Fig. 3.13c with all six efgenvectors are also shown.
Agreement is close. Pressures due to vertical ground motion

(Fig. 3.13b) vary linearly with depth and are independent of 8. The

finite element analysis leads to exact results (Fig. 3.14).
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4. HYDRODYNAMIC EFFECTS IN RESPONSE OF CONCRETE GRAVITY DAMS

4.1 Systems, Ground Motion and Qutline of Analysis

The dam monolith is idealized as a triangle with vertical
upstream face and downstream face with slope of 0.8:1. 1In order to
study the effects of fluid domain geometry on the dam response,
three different idealized shapes are considered for the reservoir,
These three shapes are shown in Fig. 4.1, and they illustrate each of
the types discussed in Chapter 3: infinite with constant depth,
finite, and infinite with variable depth. The water depth H at the
upstream faceof the dam is the same for the three fluid domains and
equals the dam height Hd.

Ground motions in the horizontal and vertical directions are
considered. A modified vertical ground motion is also employed for
the infinite fluid domain of constant deﬁth; the vertical excitation
is applied to the dam and only a finite length Le of the reservoir
floor adjacent to the dam.

The finite element discretization of fhe dam (Fig. 4.2a)
employs plane stress elements with quadratic shape functions.
Properties chosen for the mass concrete of the dam are elastic modu-
Tus £y = 5x10% psi, unit weight w, = 155 pcf, and Poisson's ratio
v = .17. The damping ratio for all modes of vibration of the dam
Ej = 5%. Finite element discretizations of the fluid domains are
shown in Figs. 4.2b, ¢ and d, also employing two-dimensional finite
elements with quadratic shape functions. At the dam-fluid interface,

the finite element mesh for the dam coincides with the fluid domain

Preceding page blank
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meshes. The water has unit weight> w = 62.4 pcf and compression wave
velocity C = 4720 ft/sec. The foundation unit weight w. and compres-
sion wave velocity Cr are chosen so that the reflection coefficient
o, computed fro¢ Eq. 2.38a equals .85. The damping coefficient g
along the reservoir floor is then given by Eq. 2.38b.

Responses of the dam-fluid system fo harmonic ground motions
were computed by the procedure of Chapters 2 and 3. The vectors @g(w)

6:£(w) of Eq. 2.24 were obtained as described in Sec. 3.5 from

and
hydrodynamic pressure solutions @g(m) and §§£(w) of Eq. 3.6 (finite
fluid domain) or Eq. 3.39 (infinite fluid domains). The full set of
eigenvectors ?n were employed in Eq. 3.39, which for the infinite fluid
domains of constant depth and sloped floor are 12 and 8. For partial
vertical ground motion, gé in Eq. 3.39 is a zero vector. The dam
responses were obtained by combining responses of the first six modes of
vibration of the dam computed from Eq. 2.23. The frequencies w5 and
shapes ?j of these modes appear in Fig. 4.3.

The analyses of this chapter were carried out with the computer

program EADFS (14). Sample solution times for computing the frequency

responses of the dam are presented in Appendix F.

4.2 Hydrodynamic Forces on Rigid Dams

The absolute value (or modulus) of Fg(m), the complex fre-

uquency response function for hydrodynamic force on a rigid dam due
to harmonic ground acceleration = emt is presented. ?g(m) is the

resultant of the pressures ﬁzg(

w) {Sec. 3.5) on the upstream dam
face. For each of the three f}uid domains of Fig. 4.1, the hydro-

dynamic forces presented are due to horizontal ground motion (Fig. 4.4)
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and vertical ground motion over the entire reservoir floor (Fig. 4.5),
with fluid-foundation interaction both neglected and included. For
the infinite fluid domain of constant depth, the hydrodynamic force
due to a partial vertical excitation of the reservoir floor is pre-
sented in Fig. 4.6. Fluid-foundation interaction is neglected in

this analysis. Fg(w) is normalized with the hydrostatic force

FSt = %—WHZ and the excitation frequency w with w; = 7C/2H. When

presented in this form, the results apply to similarly shaped fluid

domains of any depth.

4.2.1 Water compressibility effects

Excluding effects of water compressibility, the hydrodynamic
force on a rigid dam is independent of excitation frequency and equal
to the zero frequency ordinates of the response curves in Figs. 4.4
and 4.5. Fé(ﬂ) due to horizontal ground motion depends only slightly
on the shape of the fluid domain, and Fg(o) due to vertical ground
motion is independent of the shape because the hydrodynamic pressures
along the dam face have the same linear distribution.

The frequency variation of hydrodynamic force on the dam is
influenced greatly by the shape of the fluid domain when effects of
water compressibility are considered. For the infinite fluid domain
of constant depth, the hydrodynamic forces due to both directions of
ground motion are unbounded at excitation. frequencies equa]'td its
eigenfrequencies wﬁ (Sec. 3.3). The resonant amplitudes are greater
over wider frequency intervals for vertical ground motion (Fig. 4.5a)

than horizontal ground motion (Fig. 4.4a). Examination of Eqs. 3.28
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and 3.32 (with q=0) reveals that in the neighborhood of wﬁ, Fg(m)
due to horizontal ground motion is controlled by the term

2 . iy2\ M2 - : )
én - (u-) ) ,» and Fg(w) due to vertical ground motion by
an- (wﬁ)z)- . The second term approaches infinity as w approaches
mﬁ faster than the first term; in fact, the ratio Eﬁ(w)/?ﬁ(m) of
hydrodynamic forces due to the two directions of ground motion
approaches infinity. The hydrodynamic force due to horizontal ground
motion is real valued at excitation frequencies below wf and complex
valued at higher frequencies, whereas the force due to vertical ground
motion is real valued at all excitation frequencies.

In the case of the finite fluid domain, the hydrodynamic force

due to horizontal or vertical ground motion (Figs. 4.4b and 4.5b) is
unbounded at excitation frequencies equal to its eigenfrequencies

ma (Sec. 3.2), which are more numerous than the w:

of the infinite
fluid domain of constant depth. The resonant frequencies wz become
more densely populated in the low frequency range as the fluid domain
length is increased, but they always exceed w? because the triangu-
larly shaped domain always has an average depth smaller than the
domain of constant depth H. Examination of Eq. 3.11 reveals that
for the finite fluid domain, the hydrodynamic force due to either
direction of ground motion is controlled in the vicinity of w; by
(- mﬁ)z)—], similar to the term above for the infinite fluid
domain of constant depth subjected to vertical ground motion. The

hydrodynamic force due to either direction of ground motion is a real

valued function of frequency.
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The hydrodynamic force on a rigid dam with the infinite fluid
domain with sloped floor is presented in Figs. 4.4c and 4.5c.

According to the discussion in Sec. 3.4, the hydrodynamic force is

real valued at excitation frequencies helow m? and complex valued
at higher frequencies. The force due to horizontal ground motion is
bounded at excitation frequencies equal to m: (the eigenfrequencies

of the infinite region of depth % H), but unbounded at a frequency
w? (Fig. 4.4c) which is less than w?.
of m? is real valued and has the resonant characteristics of a

The response in the vicinity

finite fluid domain, hence the similar notation. This eigenfrequency
of the complete fluid domain (Sec. 3.4) is due to the sloped portion
of the reservoir floor which increases the average fluid depth to a
value greater than %-H. The resonant peaks at higher frequencies in
Fig. 4.4c are bounded because of fluid-radiation damping. The hydro-
dynamic force due to vertical ground motion displays response charac-
teristics similar to those above, but with additional unbounded
responses at excitaton frequencies equal to mﬁ. These unbounded
responses are due to the acceleration of the entire infinite tength
of the reservoir floor; i.e., the acceleration vector gé on the
right side of Eq. 3.39 1is non-zero for vertical ground motion.
Because the geometries of the finite fluid domain and the infinite
fluid domain with sloped floor (Figs. 4.1b and c) are similar to a
distance H from the dam, the hydrodynamic forces associated with
the two fluid domains display similar resonse characteristics for
excitation frequencies up to the frequencies w?, which are nearly

the same as well for the two fluid domains.
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4.2.2 Partial vertical excitation of the reservoir floor

The hydrodynamic force on a rigid dam due to a vertical accel-
eration over a length Le of the floor of the infinite fluid domain
of constant depth is presented in Fig. 4.6. The freguency response
functions shown are for Le = H, 2H, and «. Fluid-foundation inter-
action is not included in this analysis. The force at excitation
frequencies equal to the eigenfrequencies mﬁ is unbounded even when

Le is finite, but the resonant peaks are narrower indicating a

»

reduced response. In the vicinity of mﬁ the hydrodynamic force is

)-1/2

controlled by the term 6»2- (w‘;)2 when L. is finite, in

contrast to the controlling term (wz- (w:)z) when the ground
motion is over the entire reservoir floor. Thus, near : the fre-
quency variation of hydrodynamic force due to vertical ground motion

over a partial Tength of the reservoir floor is similar to that due

to horizontal ground motion discussed in Sec. 4.2.1.

4.2.3 Fluid-foundation interaction effects

As shown in Figs. 4.4 and 4.5, the radiation damping associated
with fluid-foundation interaction reduces the hydrodynamic force
amplitudes. The reductions-are primarily in the vicinities of the
resonant frequencies, resulting in bounded responses at these fre-
quencies for the three fluid domains considered and for both direc-
tions of ground motion. Due to fluid-foundation interaction, the
hydrodynamic forces are complex valued for all excitation frequencies

above zero.
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4.3 Dam Responses to Horizontal Ground Motion

The responses of the dam to harmonic ground acceleration =
eiwt in the horizonta] direction are presented for four conditions:
dam without water, dam with full reservoir considering water compres-
sibility in one case but not the other (fluid-foundation interaction
neglected), and dam with full reservoir including both water com-
pressibility and fluid-foundation interaction. These analyses were
performed for each of the three fluid domains of Fig. 4.1. Results
are presented in the form of complex frequency response functions
for accelerations of the dam relative to the ground acceleration
(Fig. 4.7). The absolute value (or modulus) of ?x(w), the horizon-
tal component of acceleration at the dam crest, is plotted against
the normalized excitation frequency parameter w/w], where w = the
fundamental frequency of the dam. When presented in this form, the
results apply to similarly shaped dam-fluid systems of any height.
Furthermore, if the reservoir is empty or if the water is assumed
incompressible, the results are also independent of the concrete

etastic modulus Ed‘

4.3.1 Dam-fluid interaction effects

The response of the dam without water is representative of a
multi-degree-of-freedom system with constant mass, stiffness, and
damping parameters. The presence of water, assumed to be incompres-
sible, provides added masses @g(ﬂ) and added load @gx(O).

Similar to the hydrodynamic force ?§(0) on a rigid dam (Fig. 4.4a),

the added masses and added load are essentially unaffected by the
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shape of the fluid domain. Consequently, if water compressibility
effects are neglected, the dam response is also essentially indepen-
dent of fluid domain shape, and only responses of the dam with the
infinite fluid domain of constant depth are presented (Fig. 4.7a).
The resonant frequencies of the system are lowered and the resonant
ampTitudes are increased.

When water compressibility is considered, the added masses

9§(w) and added load égx(w) vary with excitation frequency in a
manner similar to the frequency variation of ?g(w) as discussed in
Sec. 4.2.1. At excitation frequencies where the @f(w) vectors are
unbounded, the dam responses can only be computed from Eq. 2.23 as
1imit solutions. For horizontal ground motion, these limits are

finite because the ratios of the terms of ng

(w) to the terms of
§§(w) approach finite values. Thus, dam responses to horizontal
ground motion, with any of the fluid domains considered, are bounded
functions of excitation frequency.

For the infinite fluid domain of constant depth, inclusion of

water compressibility shifts the first resonant peak to a frequency

#, a greater shift with a greater increase in amplitude than

below
caused by incompressible water (Fig. 4.7a). These increases are due
to the greater hydrodynamic added mass and added load. At excitation
frequencies above mf, the @f(m) vectors are complex valued. The
imaginary part of the added mass vectors ég(w) represents fluid
radiation damping which adds to the damping of the dam and reduces
the acceleration responses below those without water or with incom-

pressible water.
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When water compressibility is considered for the finite fluid
domain, the acceleration response of the dam displays many sharp
spikes throughout the entire frequency range (Fig. 4.7b). For finite
fluid domains, the hydrodynamic added mass and added load are real
valued functions of excitatioh frequency which are unbounded at fre-
quencies equal to wg. Because the added mass in this case has no
imaginary component, the fluid domain adds none of the radiation
damping which occurs in an infinite fluid domain. The resulting dam
responses are affected gréat]y by the rapid variations with excitation
frequency of the hydrodynamic added mass and added load.

The acceleration response of the dam with the infinite fluid
domain with sloped floor is similar to its response with the finite
fluid domain in the lower part of the frequency range {(Figs. 4.7b
and c), because the @f(w) vectors vary with frequency in a similar
manner for the two fluid domains. This similarity was noted in
Sec. 4.2.1 with Fg(w). At excitation frequencies above mf, fluid
radiation damping reduces the acceleration responses below those with-
out water or with incompressible water, simiiar to the reductions

occurring with the infinite fluid domain of constant depth.

4.3.2 Fluid-foundation interaction effects

The effects of fluid-foundation interaction on the acceleration
response of the dam to horizontal ground motion are evident from the
two results of Fig. 4.7 which include water compressibility, and
include fluid-foundation interaction in one case but not the other.

Fluid-foundation interaction considerably reduces the dam accelerations
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.

at excitation frequencies below Q? if the fluid domain is infinite
(Figs. 4.7a and c) and throughout the entire frequency range when

the fluid domain is .finite (Fig. 4.7b). These reductions are due to
the foundation radiation damping associated with the imaginary com-
ponent of the added mass vectors @g(m) and the smaller resonant
amplitudes of the added load vector @:x(w). Fluid-foundation inter-
action has significant influence on the dam\acce]erations only in the
frequency ranges where fluid radiation damping arising from an infi-
nite extent of the reservoir does not exist.

Figure 4.7 also shows that the shape of the fluid domain has
little influence on the dam accelerations when fluid-foundation inter-
action effects are considered. For all three fluid domains, the
resonant responses of the dam inciuding water compressibility and
fluid-foundation interaction are veduced in amplitude below those

without water and with incompressible water and have Tower resonant

frequencies.

4.4 Dam Responses to Vertical Ground Motion

The responses of the dam to harmonic ground gcceleration =
eimt in the vertical direction over the entire reservoir floor are
presented in Fig. 4.8 for four conditions: dam without water, dam
with full reservoir considering water compressibility in one case but
not the other (fluid-foundation interaction neglected), and the dam

with full reservoir including both water compressibility and fluid-

foundation interaction. These analyses were performed for each of
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the three fluid domains of Fig. 4.1. Additionally, the response of
the dam with the infinite fluid domain of constant depth to vertical
ground motion, applied over a length Le = H or 2H of the reservoir
floor adjacent to the dam, is presented in Fig. 4.9. Fluid-foundation
interaction is neglected in this analysis. The dam responses are
presented as complex frequency response functions fbr accelerations
relative to the ground acceleration. The absolute value (or modulus)
of %y(w), the horizontal component of acceleration at the dam crest,
is plotted against the normalized excitation frequency parameter w/wl,

where wy = the fundamental frequency of the dam.

4.4,1 Dam-fluid interaction effects

The resonant amplitudes in the acceleration response of the
dam without water to vertical ground motion are less than those due
to horizontal ground motion except for the third mode of vibration
(Fig. 4.3) which is dominant in vertical motion. If water is present
and assumed incompressible, the hydrodynamic effects in the dam
response to vertical ground motion are essentially independent of
fluid domain shape, and only responses of the dam with the infinite
fluid domain of constant depth are presented (Fig. 4.8a). The feso-
nant amplitudes are increased in some cases and decreased in others,
unlike the uniform increases that occur for horizontal ground motion
(Fig. 4.7a) indicating some cancellation between the dam's inertia
load and the hydrodynamic added load when the ground motion is

vertical.
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When water compressibility is considered and the fluid domain
is infinite, the dam response is unboundéd at excitation freguencies
equal to wﬁ (Figs. 4.8a and ¢). At these frequencies the added
mass and added load vectors ég(m) and é:y(m) are unbounded
(similar to Eg(w) and Fg(w) of Secs. 4.2.1), énd the Timiting
values of the dam response from Eq. 2.23 are also unbounded. At
excitation frequencies below mf, the resonant response of the dam
to vertical ground motion exceeds that due to horizontal ground motion
because of the greater hydrodynamic added load. At excitation fre-
quencies above dﬁ and between the infinite spikes in Figs. 4;83
and ¢, fluid radiation damping limits the dam accelerations to about
those without water. Even though responses at excitation frequencies
equal fo wﬁ approach infinity, they do so at a slow enough rate so
that the areas under the unbounded peaks are finite. Thus, the
Fourier Transform procedure of Sec. 2.4 for computing responses to
arbitrary ground motions is applicable.

When water compressibility is considered and the fluid domain
is finite, the acceleration responses to vertical ground motion dis-
play many sharp spikes throughout the entire frequency range
(Fig. 4.8b), as does the response to horizontal ground motion. This
similarity is due to.the simi]ér frequency variations of the hydrody-
namic added loads for both directions of ground motion, as seen in
Sec. 4.2.1 for Fﬁ(w) and Fﬁ(w). “In the Tower portion of the fre-
quency range, the accelerations of the dam with the finite fluid

domain are simi]ar to those with the infinite fluid domain with
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sloped floor (Figs. 4.8b and c), which was also true of the accelera-

tion respones to horizontal ground motion.

4.4,2 Partial vertical excitation of the reservoir floor

As noted in Sec. 4.4.1, the fesponses of dams with infinite
fluid domains to vertical ground motion are unbounded at excitation
frequencies equal to mﬁ. Figure 4.9 shows that for the infinite
fluid domain of constant depth, these unbounded responses are reduced
to bounded values if the vertical acceleration is limited to a finite
Tength Le of the reservoir floor adjacent to the dam. At the fre-

.

quencies w: the added loads §Zy(m) resonate within narrower fre-
quency bands when Le is finite (similar to Eﬁ(w) of Sec. 4.2.2)
causing the 1imit solutions of Egq. 2.23 to be bounded. From Fig. 4.9,
the acceleration responses decrease as Le decreases, and large

reductions occur in the vicinity of M?.

4.4.3 Fluid-foundation interaction effects

The responses of the dam at excitation frequencies equal to

wﬁ, which are unbounded if the fluid domain is infinite and subjected
to full vertical ground motion, are reduced to bounded values. This
is a consequence of the added load @;y(w) being a bounded function
of excitation freguency when fluid foundation interaction is included.
And as in the case of horizontal ground motion, fluid-foundation
interaction considerably reduces the acceleration responses of the dah
at excitation frequencies below m% if the fluid domain is infinite
(Figs. 4.8a and c¢) and at all frequencies if the fluid domain is

finite (Fig. 4.8b). The dam accelerations including fluid-foundation
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interaction appear to depend somewhat more on fluid domain shape
than do the acceleration responses to horizontal ground motion.

When the ground motion is vertical,.the hydrodynamic added load is

a more significant fraction of the dam's inertia load; consequently,
differences in the hydrodynamic added Toad due to fluid domain shape
have a greater effect on the acceleration responses to vertical
ground motion.

Acceleration responses of the dam to vertical ground motion
considering water compressibility and fluid-foundation interaction
(Fig. 4.8) generally exceed those respoﬁses without water and with
incompressible water especially in the vicinity of m% of w?
where the hydrodynamic added load is large. These increases contrast
to the reductions in the acceleration response of the dam to horizon-
tal ground motion when water compressibility and fluid-foundation
interaction are considered. The result is an increased importance
of the vertical component of ground motion on the dam accelerations

to a level comparable to the horizontal component.
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5. HYDRODYNAMIC EFFECTS IN RESPONSE OF EARTH DAMS

5.1 System Considered and Qutline of Analysis

The earth dam-fluid system investigated is shown in Fig. 5.1.
The dam is symmetrical about a vertical center line with equal
upstream and downstream slopes of g:1 . To emphasize hydrodynamic
effeéts, B 1is chosen as 1.5 resulting in a sltope that is steeper
than those commonly used for earth dams, but typical of rock-fill
dams. The fluid domain is of infinite length and constant depth H
(equal to the dam height Hs) beyond the toe of the dam. It is of
the infinite, irregular type discussed in Sec. 3.4.

The dam is modeled in a continuum state as a linearly elastic
shear beam. Such a representation is adequate for the present pur-
pose of investigating hydrodynamic effects on the dam response. A
shear wave velocity Cg within the dam of 2000 ft/sec, an upper
bound value, is chosen to emphasize hydrodynamic effects. Also, for
the dam, W, = 130 pcf and £j = 10% for each mode of vibration.

The fluid domain is discretized by the mesh of Fig. 5.2 which employs
two-dimensional elements with quadratic shape functions. Fbr the
fluid domain, w = 62.4 pcf, C = 4720 ft/sec, .and the reflection
coefficient a, = .8b.

Results presented in this chapter are complex frequency response
functions due to harmonic ground acceleration =‘eiwt: the horizontal
component of hydrodynamic force ?ﬁ(m) on a rigid dam and the accel-

eration ?Q(w) of the dam crest relative to the ground acceleration.

The vectors ég(w) and ggz(w) of Eq. 2.24 are obtained as described

Preceding page blank
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in Sec. 3.5 from hydrodynamic pressure solutions ég(w) and égl(m)
of Eq. 3.39. Fg(w) is also computed from E:g(m). A1l twelve
eigenvectors p, are employed in Eq. 3.39..

The dam accelerations ﬁz(w) are obtained from the modal
responses Qj(w) computed from Eq. 2.23. For a triangular shear
beam model of the dam with the width varying linearly with height,
the terms of Eq. 2.24 related to the dam are available as continuum

expressions {15). The jth undamped mode shape is given by the

Bessel function of the first kind of order zero:

050 = 3 (7501 - y/H)) (5.1)

where the displacements defined by ¢j(y) are horizontal and result
from the shearing actions of the dam; and where Tj = the jth .zero
of Jy. (1y = 2.40, 5.52, 8.65,...) The vector 6] of Eq. 2.24
contains only horizontal DOF and lists the values of ¢j(y) which
occur at the heights of the nodal points along a-b in Fig. 5.2,

The Jjth natural frequency of the dam is given by

w. = s (5.2)

Neither ¢j(y) nor w; depend on the slope 8. The jth modal

mass is found as



2 (z) (5.3)

where J] is the Bessel function of order one. Cj and Kj are
determined from Eq. 2.6. The inertia loading terms for the jth dam

mode for ground motions in horizontal and vertical directions are

2 Wg Jy (1)
s g

1
™o
™
0o

(5.4)

E§ is zero because the shear beam assumption permits only horizontal
dam motions relative to the base,

The first three dam modes are employed here in the computation
of %m(w). These modes ¢j(y) together with their natural frequen-
cies mj appear in Fig. 5.3. The analysis of this chapter was carried

out with the computer program EADFS (14).

5.2 Hydrodynamic Forces on a Rigid Dam

The absolute value of Fg(w), the horizontal component of
hydrodynamic force on a rigid dam, is presented in Figs. 5.4a and b
for ground motions in the horizontal and vertical directions,
respectively. Included are results for the fluid domain of Fig. 5.1
which has a sloped dam-fluid interface and for the infinite fluid

domain of constant depth (Fig. 4.1a) which has a vertical interface.
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Eﬁ(w) is normalized with the horizontal component of hydrostatic
force F_, = %sz and w with m‘{ = mC/2H. The plotted results
are independent of water depth H. Effects of water compressibi]ity

and fluid-foundation interaction are described below.

5.2.1 Water compressibility effects

The hydrodynamic force varies with excitation frequency if
water compressibility is considered. Whereas the hydrodynamic force
on the vertical face is unbounded at frequencies equal to mﬁ {the
eigenfrequencies of the infinite region of depth H), the farce on
the sloped face is a bounded function of frequency when the ground
motion is horizontal {Fig. 5.4a). Thus, this fluid domain with out-
ward sloping dam face has no eigenfrequencies. The sloped interface
irregularity reduces the average water depth to a value less than H.
Thus, any eigenfrequencies and their associated infinite responses
for such a fluid domain have to occur above the frequency wf. Such
occurrence, however, is impossible because the eigenproblem associated
with Eq. 3.39 is complex valued over this frequency range. Fluid
radiation damping, then keeps the responses to horizontal ground
motion bounded above mf. Figure 5.4a indicates that the sloped dam
face is a less efficient generator of hydrodynamic pressure than is
the vertical face (see also Fig. 3.14).

The hydrodynamic force due to vertical grdund motion (Fig. 5.4b)
is unbounded at excitation frequencies equal to wﬁ whether the dam
face slopes or not, a consequence of the acceleration of the infinite
reservoir floor; i.e., the acceleration vector QL on the right side

of Eq. 3.39 is non-zero. The resonant peaks in Fig. 5.4b for the
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fluid domain with sloped dam face are narrower than thpse with the
vertical face, indicating a reduced response. With a rigid foundation,
responses of the fluid domain with sloped dam face are real valued
below mf and complex valued above for both directions of ground

motion.

5.2.2 Fluid-foundation interaction effects

When fluid-foundation interaction is considered, the hydrody-
namic forces are bounded at all frequencies and complex valuyed for
w > 0. The force amplitudes due to vertical ground motion (Fig. 5.4b)
are affected significantly by fluid-foundation interaction; the infi-
nite responses at excitation freguencies equal to mﬁ are replaced
by bounded peaks. The hydrodynamic force due to horizontal ground

motion (Fig. 5.4a) is affected only slightly.

5.3 Responses of the Dam

The absolute value of crest acceleration ;R(N) is presented
in Figs. 5.5a and b for horizontal and vertical ground motions,
respectively. The excitation frequency » 1is normalized with the
fundamental frequency of the dam W1 s and the plotted results are
independent of dam height HS. If the water is absent or incom-
pressible, the results are also independent of shear wave velocity
CS. Because of the shear beam assumption, the dam response without
water is zero when the ground motion is vertical. Dam-fluid inter-
action effects and fluid-foundation interaction effects on the

acceleration response of the dam are described below.
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5.3.1 Dam-fluid interaction effects

If the water is assumed to be incompressible, the'hydrodynamic
effects are equivalent to frequency independent added masses §§(O)
and added loads §Zg(o). - The resulting resonances in the acceleration
response to horizontal ground motion (Fig. 5.5a) occur at lower fre-
quencies with greater amplitudes than the resonances without water, '
but the changes are smaller than those occurring in the response of
the concrete gravity dam (Fig. 4.7a). These hydrodynamic effects are
smaller for the earth dam because of its greater mass and its sloped
upstream face which, as discussed earlier, is a less efficient genera-
tor of hydrodynamic pressures. For vertical ground motion (Fig. 5.5b),
non-zero response occurs although its amplitude is small.

If water compressibility is considered, thén the hydrodynamic
force vectors 9§(m) and §§x(m) vary with excitation frequency
similarly to the hydrodynamic force Fz(w) on the rigid dam due to
horizontal ground motion (Fig. 5.4a), while g:y(m) varies similarly
to Fg(w) due to vertical ground motion (Fig. 5.4b). Figure 5.4a
indicates that §§(m) and ggx(m) would be nearly independent of
frequency until just below w%. Thus, for this frequency range,
water compressibility has 1itt1e influence on the acceleration
response to horizontal ground motion. Above wf water compressi-
bility slightly decreases the dam accelerations because of fluid radi-
ation damping associated with the imaginary component of the added
masses gg(m). The response to vertical ground motion is unbounded at

excitation frequencies equal to W

N due to infinite values attained

by the added load ng(w). Thus, at these freguencies water compressi-

bility has the effect of significantly increasing the dam accelerations.
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Areas under the infinite spikes in Fig. 5.5 are finite, and the Fourier
Transform procedure of Sec. 2.5 for computing responses to arbitrary

ground motions is applicable.

5.3.2 Fluid-foundation interaction effects

Fluid-foundation interaction has a negligible effect on the
acceleration response to horizontal ground motion (Fig. 5.5a) because
of the similar gf(m) vectors for rigid and flexible foundations (as
- seen in Fig. 5.4a with the similar E;(w) responses}. Overall, hydro-
dynamic effects are small in the response of the earth dam to horizon-
tal ground motion. For vertical ground motion (Fig. 5.5b), fluid-
foundation interaction replaces the unbounded responses at the mﬁ
with small bounded peaks. No infinite responses can occur because the
added load ggy(m) is now bounded. The acceleration response to ver-
tical ground motion including water compressibility and fluid-foundation
interaction is small compared to that to hqrizonta] ground motion.
Thus, hydrodynamic effects are unimportant in responses of the earth
dam to both horizontal and vertical ground motions. And since the
chosen values for dam slope and shear wave velocity are extreme

values for earth dams to emphasize hydrodynamic effects, this conclu-

sion is valid for earth dams in general.
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6. THREE-DIMENSIONAL ANALYSIS PROCEDURE FOR DAM RESPONSE

6.1 Systems and Ground Motion

The three-dimensional structural behavior of an arch dam must
be considered in analyzing its response to earthquake ground motion.
The reservoir may extend only a short distance upstream (Fig. 6.1a)
or to a large enbugh distance so that it can be considered infinite
for purposes of analysis (Fig. 6.1b). 1In the latter case, the reser-
voir cross-section is assumed to be uniform beyond some point in the
upstream direction. Behaviors within the elastic dam and compressible
water are assumed to be linear.

The earthquake ground motion is defined by the upstream-
downstream (x), cross-stream (z), and vertical (y) components
of acceleration. With a rigid foundation (Sec. 6.2), no interaction
takes place between the dam and foundation or between the fluid and
foundation. Ground motions at all points along the foundation boun-
daries of the dam and fluid are the same. To approximately consider
fluid-foundation interaction effects (Sec. 6.3), the ground motion
along the reservoir floor and sides is described by free-field accel-
erations which are assumed uniform. The actual acceleration of these
boundaries depends on the interaction.

6.2 Response to Harmonic Ground Motion Neglecting Fluid-Foundation
Interaction

The procedures of Chapter 2 for a ground motion ag(t) = glut

lead to the following equations which are of the same form as Eqs. 2.23

and 2.24:
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{(a) FINITE FLUID DOMAIN

(b) INFINITE FLUID DOMAIN

FIG. 6.1 THREE-DIMENSIONAL ARCH DAM-FLUID SYSTEMS
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and where Yth) = a vector of complex frequency response functions
for generalized displacements of the first J undamped natural modes
of vibration of the dam. The remaining terms of Eg. 6.1 are discussed
below in a three-dimensional context referring to the arch dam-
infinite fluid domain system of Fig. 6.2.

The arch dam of Fig. 6.2 is discretized with finite elements.
The first J natural frequencies ws and mode shapes Qj are com-

puted from the eigenprobiem

(6.3)

1=

-5

[}

[
(3 N}

13
-

where m and k = symmetric mass and stiffness matrices for the finite
element system. Only DOF for interior nodes not along the dam-
foundation boundary are included in Egq, 6.3. @g in Eq. 6.2 1ists the
X, ¥, and z components of the dam's jth mode shape for all nodes

along the dam-fluid interface a-b-c-d-a. Mj’ Cj’ and Kj are the
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jth modal mass, damping, and stiffness defined by the following

equations:
M, = ¢T m ¢ (6.4a)
NI BN
Cj =2 gj Wy Mj (6.4b)
K. = wo M, (6.4c)
J J ]

where gj = the jth modal damping ratio. Eg is a vector of inertia
forces on the dam arising from a unit acceleration of the dam as a
rigid body in the & direction. @g is a mass matrix coupling DOF
on the dam-foundation boundary with the interior DOF (non-zero for
consistent mass matrices only). The ith term of gz equals the
Tength of the component of a unit vector along 2 1in the direction
of the ith translational DOF. The vectors gx, gy and gz, for
ground motions in the x, y and z directions, contain ones in
positions corresponding to x, y and z translational DOF,
respectively, with zeros elsewhere.

Qf2

Qy (w)s 2=x,y,z and Qg(w) in Eq. 6.2 account for effects

of the fluid and are associated with various boundary conditions pre-
sented below. A1l are vectors listing the x, y, and z components
of hydrodynamic forces on the dam at the dam-fluid interface with terms
ordered to correspond'to those of @g. The force vectors are computed
from hydrodynamic pressures on the dam-fluid interface by the method

of virtual work. Hydrodynamic pressures p(x,y,z,w)} within the fluid
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domain obey the three-dimensional Helmholtz equation:

2- 2= 2-
ap P,23DP w =~ _
5+ 5+ S5+ 5p 0 (6.5)

3 2
X 3y ¥4

)

Along accelerating fluid boundaries, the pressures should satisfy
(s,r,u) = - g-an(s,r), S,r = s,y or s',r' (6.6)

where s,r = coordinates over the dam-fluid interface, and s',r' =
coordinates over the reservoir floor and sides as shown in Fig. 6.2;

a (s,r) = normal component of boundary acceleration; and »n denotes

A
the inward normal direction to a boundary. Other boundary conditions
to Eq. 6.5 include the zero pressure condition at the free surface

(y = H)

p(x,H,z,w) = 0 | (6.7)

and the radiation condition for infinite fluid domains.

Qgﬁ(w) is obtained from the pressures 5z£(s,r,w) along the
dam-fluid interface arising from accelerations of the foundation in
the direction £ while the dam is rigid. For this case, an(s,r)

from Eq. 6.6 is defined as

a,(s.,r) = sz(s,r), s,r = s5,r or s',r (6.8)
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where ez(s,r) = a function defined over accelerating boundaries which
gives the length of the component of a unit vector along & 1in the
direction of the inward normal n (a three-dimensional generalization
of the function ¢*(s) of Eq. 2.10). Q}(s) is obtained from

} Eg(s,r,m) on the dam-fluid interface which arises from accelerations

of the dam in its jth vibration mode, Thus,
a (s,r) = ¢f(s r) (6.9a)
n -] J ] 7 .

a,(s'sr') =0 (6.9b)

where ¢§(s,r) = a continuous function represéntation of the component

of the jth mode normal to the dam-fluid interface.

6.3 Modifications te Include Fluid-Foundation Interaction

The acceleration boundary condition along the reservoir floor
and sides can be modified to approximately account for interaction
between the fluid and foundation in accordance with Sec, 2.5. The

portion of Eq. 6.6 along the reservoir floor and sides is replaced by

an (st = - g 2a(star) + g Bls'urse) (6.10)

where the damping coefficient q = w/wrCr; w, and Cr = unit weight

r
and compression wave velocity of the foundation rock; and a (s'.r')
is the free-field acceleration of the reservoir floor and sides defined

by Eq. 6.8 or 6.9b. The hydrodynamic force vectors ng(w), 2= X,Y,2
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and Qg(w) are obtained from the pressures 5:2(S,F,w) and 5§(s,r,m)
found as solutions to Eg. 6.5 subject to»the boundary conditions of
Eq. 6.6 {dam-fluid interface), Eq. 6.10 (reservoir floor and sides),
and Eq. 6.7 with accelerations defined by Eqs. 6.8 and 6.9. Terms of
Eq. 6.2 related to the dam are unaffected,

The boundary condition Eq. 6.10 can be interpreted as the
result of idealizing the foundation as an assemblage of elastic,
independently acting columns of infinitesimal cross-section and
infinite length extending outward in a normal direction from the
reservoir floor and sides. This idealization and its implications

were discussed in Sec. 2.5.2.
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7. THREE-DIMENSIONAL ANALYSIS OF HYDRODYNAMIC FORCE VECTORS

7.1 Boundary Value Problems and Solution Techniques

The hydrodynamic force vectors Qgg(w), 2=x,y,z and Qg(m)
of Eq. 6.2 are obtained from hydrodynamic pressure distributions
along the dam-fluid interface which are found by solving the three-

dimensional Helmholtz equation:

—-EB +—Ea +—-—E‘B +(-u—7-[f‘)=0 (7])
2 2 2
ax 3y 3z C

2- 2= 2= 2
2
subject to the acceleration boundary condition along the dam-fluid

interface

%%—(s,r,w) = - g-an(s,r) (7.2a)

and along the reservoir floor and sides

_@R 1 1 = w_ t i 2 - 1 l
o (s',r',w) 3 a (s',r') + iuq p(s . Y (7.2b)

the zero pressure condition at the free surface (y=H)
p(x,H.z,w) = 0 (7.3)
and the raditation condition for infinite fluid domains. Values of

the damping coefficient q 1in Eq. 7.2b greater than zero are used to

approximately account for fluid-foundation interaction effects; in
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which case, an(s‘,r') is the free-field acceleration of the reser-
-voir floor and sides.

The accelerations in Eq. 7.2 are given by

an(s,r) = ez(s,r), 5,r = s,ror s',r' (7.4)

for computation of the hydrodynamic added load vectors Q:R(w),

L=X,y,z - and by

a,(s,r) = ¢§(s,r) (7.5a)

an(s',r‘) =0 (7.5b)

for the hydrodynamic added mass vectors §§(w). Corresponding solu-
tions to the B.V.P.'s are 5§(x,y,z,w)- and Ej(x,y,z,w), respectively.
The Qf(m) vectors are computed from pressures on the dam-fluid inter-
face by the method of virtual work.

Solutions to the above B.V.P.'s within finite fluid domains of
irregular geometry (Fig. 7.1) can be obtained by the finite element
method of Sec. 7.2. If the fluid domain is infinite but of uniform
cross-section, then the B.V.P. solutions can be obtained with the
finite element-continuum treatment of Sec. 7.3. Such a fluid domain
is shown in Fig. 7.2 and extends to infinity along the x axis with
uniform y-z cross-section. In this treatment accelerations of
the reservoir floor and sides can not vary in the x direction, but
can vary arbitrarily along the boundary of a y-z cross-section.

This requirement is consistent with the zero acceleration condition of
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Eq. 7.5b and a1sd, since the fluid boundaries are straight in the x
direction, with the sg(s',r‘) condition of Eq. 7.4.

The fluid domain of Fig. 7.3 has a finite region of irregular
geometry connected to a region that extends to infinity along the
X axis with uniform y-2z cross-section. As described inlSec. 7.4,
solutions to the above B.V.P.'s can be obtained by a method utilizing
the standard finite element treatment of Sec. 7.2 for the finite
region and the finite element-continuum treatment of Sec. 7.3 for the
infinite region. Accelerations of the infinite region of uniform
cross-section can not vary in the x direction, a requirement con-
sistent with Eqs. 7.4 and 7.5b.

The analysis procedures of Secs. 7.2 to 7.4 are for hydrodynamic
pressures and are written for general accelerations rather than the
specific conditions of Eqs. 7.4 and 7.5. These conditions are con-
sidered in Sec. 7.5 as is the actual computation of Qgﬁ(w), L= X,¥,2Z

and Qg(w) from the resulting pressures along the dam-fluid interface.

7.2 Finite Fluid Domains of Irregular Geometry

Solution of the B.V.P. of Eqs. 7.1 to 7.3 within finite fluid
domains (Fig. 7.1a) can be obtained numerically by the finite element
method (12). The fluid domain is divided into three-dimensional ele-
ments as shown in Fig. 7.1b. The resulting matrix equation

(Appendix B.3) takes the same form as Eq. 3.6:

2
[ﬂ +iwq B - %5 9] P(w) =2 D (7.6)

C —

Q=
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FIG. 7.1 FINITE FLUID DOMAIN OF IRREGULAR GEOMETRY
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where H, B, and G are symmetfic matrices analogous to stiffness,
damping, and mass matriées arising in dyﬁamics of solid continua;
@(w) = vector of unknown nodal pressures; and D = vectér of nodal
accelerations computed from an(s,r) along the dam-fluid interface
a-b-c-d-a and an(s',r') along the reservoir floor and sides
b-f-i-j-g-c-b, a-e-i-f-b-a, and d-h-j-g-c-d. The non-zero portion
of B is a submatrix corresponding to nodes along the reservoir
floor and sides where the boundary condition of Eq. 7.2b is applied.
Only DOF for nodes below the free surface are included in Eq. 7.6.
The pressures p{w) can be determined by solving the alge-
braic equations (Eq. 7.6). For the case g =0, p(w) can also be
determined using an eigenvector expansion with the real valued eigen-

vectors ¢ resulting from the associated eigenprobliem of Eq. 7.6:

Hz=v G¢g (7.7)

The eigenvectors are orthogonal to H and G and are normalized
with respect to G. The result, following the procedure of Sec. 3.2,

takes the form of Eq. 3.11:

D (7.8)

where the first M eigenvectors are included; and where Z =
[;1,§2,...,§M]; [ = an MxM diagonal matrix with mth diagonal

term = yé - wz/CZ; and Y is the mth real valued eigenvalue from
Eq. 7.7. For q > 0, the above eigenvectors do not diagonalize B

of Eq. 7.6.
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é(m) varies with excitation frequency as described in Sec. 3.2
for two-dimensional finite fluid domains. For q = 0, the amplitude
of the mth eigenvector resonates to infinity at an eigenfrequency
w; = ymc with opposite sign on each side. Thus, E(w) is a real
valued function of frequency unbounded at the m;. For q > 0, é(m)

is bounded at all frequencies and compliex valued for w > 0, which

are consequences of foundation radiation damping.

7.3 Infinite Fluid Domains of Uniform Cross-Section

7.3.1 Boundary value problems

The fluid domain of Fig. 7.2 extends to infinity along the x
axis with uniform y-z cross-section. The B.V.P. of Egs. 7.1 to 7.3
is solved below for an acceleration ax(y,z) of the dam-fluid inter-
face a-b-c-d-a and for an acceleration an(s',r‘) = aﬁ(r') of the
reservoir floor and sides, unvarying in the upstream direction. The

1

coordinate s' 1is parallel to the x axis and r' follows the
boundary around a y-z cross-section. Solutions are carried out
separately for these two acceleration conditions which are shown in
Figs. 7.2a and c.

The governing Eq. 7.1 with the boundary conditions

"
5§>(O,y,z,w) = §~ax(y,z) (7.9a)
%E-(X,P’,m) = iuq p(x,r',w) (7.9b)

E‘(X:H:Z:w) =0 (7.9c)
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defines the first B.V.P. Equation 7.1 with boundary conditions

%‘E (Osyﬁzsm) =0 (7.]06)
%E-(x,r‘,m) = -\g-a:(r‘) + iwg p(x,r',w) (7.10b)
B(XsHQZ!w) =0 (7.10(:)

defines the second B.V.P.

7.3.2 First B.V.P.

The uniform cross-section of this fluid domain allows the
X distribution of pressure to be separated from the y-z distribution.

Thus,

P(xsy,z,0) = P (xs0) Py (¥,2,0) (7.11)

where ﬁx(x,w) must satisfy

2 - kP, =0 (7.12a)

and ﬁyz(y,z,w) must satisfy

2

5 2

3°p
yz 2 - _

+ +2"p_=0 (7.12b)

ayz 822 yz

Pyz
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where k 1is a separation constant; and

)

I _ (7.13)

[er]

Boundary conditions include Eq. 7.9%a and the separated conditions

p
Z ' = 4 - '
75%—-(? ,w) = g pyz(r S0} (7.14a)

Py (Hszs0) =0 (7.14b)

A finite element-continuum treatment is applied combining a finite
element eigensolution in the y-z plane with a continuum formulation
in the x direction. This process can be interpreted as a discretiza-
tion of the fluid domain into channels of infinite length (Fig. 7.2b).
A finite element discretization of the eigenvalue problem defined by

Eqs. 7.12b and 7.14 using a two-dimensional mesh (Fig. 7.2d) takes the
form of Eq. 3.18:

[HL + iuq 5’5} p =22 gty (7.15)

whose derivation follows from that in Appendix B.1, and where the

matrices ﬂi, @L, and gi are symmetric. The non-zero portion of
Ei is a submatrix corresponding to nodes along the boundary a-b-c-d
in Fig. 7.2d. Only DOF for nodes below the free surface are included

in Eq. 7.15. The eigenvalues Ay and eigenvectors y, are complex
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valued and dependent on the excitation frequency. The eigenvectors
are orthogonal and are normalized with respect to §£.

Following the procedure of Sec. 3.3.2, the vector of pressures
E(X,m) along the nodal lines below the free surface lines in Fig. 7.2b

can be expressed in terms of the first N eigenvectors as

p(xsw) = ¥ e(x) n(w) (7.16)

where V¥ = [91,92,...,QN]; e(x) = an NxN diagonal matrix with nth

KX
diagonal term = e ; and

Ky = A - Ez =u, t ivn ) (7.17)

K, is computed from Eq. 7.17 by taking the root with both My and
vy positive.

The vector of eigenvector amplitudes n{w) from Eq. 7.16 is
determined using the discrete form of the boundary condition Eq. 7.9a
(Appendix C.2):

Gi dé W X
G H;-(O,m) = - E-Q (7.18)

where §L is the same matrix as in Eq. 7.15, and Qx = a vector of
nodal accelerations corresponding to the acceleration ax(y,z) of the
dam-fluid interface. . Solution for n(w) as in Sec. 3.3.2 and substi-

tution back onto Eq. 7.16 results in
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1T px (7.19)

Blxw) = Sy et Ky

which is of the same form as Eq. 3.27, and where K = an NxN diagonal

k. At x =0, Eq. 7.19 reduces to

matrix with nth diagonal term n

p(0,0) = (7.20)

(=¥t
1
1=
e
e}
=

Since Egs. 3.27 and 7.19 are of the same form, the frequency
variation of @(x,w) from these equations will be similar. For
q =0, An and ?n are real valued and frequency independent, and
K is real or imaginary depending on whether « is less than or
greater than AnC. Thus, é(x,w) is real for w < A1C, complex for
w > Alc, and unbounded_at eigenfrequencies | ﬁ = AnC. The part that
approaches infinity is real below each wﬁ and imaginary above. The
imaginary part of p(x,w) for frequencies greater than mf is due
to fluid radiation damping. For q > 0, p{x,w) 1is bounded at all

frequencies and compiex valued for w > 0, which are consequences of

foundation radiation damping.

7.3.3 Second B.V.P.

The B.V.P. of Eq. 7.1 with the boundary conditions of Eq. 7.10
is two-dimensional in the y,z coordinates. Omitting the x varia-
tions from these equations results in the two-dimensional Helmholtz

equation for p(y,z,0)

2. 2. 2
e TR (7.21)

3y 3z= C



120

and the boundary conditions

2 (r0) = - Sallr) + dug Blr' ) (7.22a)
p(H,z,0) = O (7.22b)

Solution of Eq. 7.21 subject to the boundary conditions of
Egq. 7.22 can be obtained by the finite element method using a two-
dimensional mesh (Fig. 7.2d). The finite element discretization of

this two-dimensional B.V.P. takes the same form as Eq. 3.31:

) .2 ,
[trL + iuq BY - 9;-2-9:‘] plw) =g_n‘ (7.23)

whose derivation follows from that in Appendix B.1; and where ﬁé,
§L, and g’L are the same symmetric matrices as in Eq. 7.15; plw) =
vector of unknown nodal pressures; and gi = vector of nodal accelera-
tions computed from aﬁ(r‘) along the boundary a-b-c-d. Only DOF
for nodes below the free surface are included in Eq. 7.23.

If the N complex valued and frequency dependent eigenvalues
ln and eigenvectors Y, of the associated eigenproblem Eq. 7.15 are
available from a solution of the first B.V.P., then p(w) of Eq. 7.23

can be expressed in terms of these quantities as

a7ttt (7.24)

e

plw) = %
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which is of the same form as Eq. 3.32; and where A = an NxN diagonal
matrix with nth diagonal term = xﬁ - w2/C2.- Note that A s

related to K from Eq. 7.19 by

i
il
=

(7.25)

The frequency variation of p(w) is typical of finite fluid

domains. For q = 0, p{w) {is a real valued function of w,

.

A

unbounded at the eigenfrequencies "

= AnC with opposite sign on
each side. For q > 0, p(w) is bounded at all frequencies and com-

plex valued for w > 0.

7.4 Infinite Fluid Domains of Irreqular Geometry

The fluid domain of Fig. 7.3a has a finite region of irreqular
shape connected to a region extending to infinity in the x direc-
tion with uniform y-z cross-section. The plane of connection is
the y-2z cross-section e-f-g-h-e. Normal accelerations of the dam-
fluid interface a-b-c-d-a and reservoir floor and sides are an(s,r)
and an(s',r'), respectively. Beyond e-f-g-h-e, an(s',r') = aﬁ(r'),
unvarying in the x direction. In this region s' s parallel to
the x axis, and r' follows the boundary around a y-z cross-section.

Development of the finite element solution scheme follows the
procedure of Sec. 3.4. The finite region is discretized into three-
dimensional finite elements (Fig. 7.3b) and the infinite region into
channels (Fig. 7.3c) matching the adjacent mesh along e-f-g-h-e.
Equation 7.6 is written for the finite region with the unknown accel-

erations normal to e-f-g-h-e represented by Qg(w) (as in Eq. 3.34).
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Application of the results of Sec. 7.3 to the infinite regidn Teads
to a relation between Qg(m) and the pressures along e-f-g-h-e (as
in Eq. 3.38). Combining these two results leads to Eq. 7.26 which is

of the same form as Eq. 3.39:

[ ‘ K _ 2 1
Hyp +1uq '511"62‘ G g+ 1ug 512‘;? ol ¥ [ ]Py(w)
Z 11+ _ 2 ) )

¥ [Hm *10q Boy =Ty Goq| | ¥ [Hpp ¥ 1wa '322‘;2‘ Gy ‘i""f_] np(w)
L

W 3 - (7.26)

I¥T g, vk ¥ |

J

where only DOF for nodes below the free surface are included; and
where nodes along e-f-g-h-e are identified by subscript 2 and
remaining nodes by subscript 1. The finite element matrices
Hy1sBy7s-+-Gy, are written for the three-dimensional discretization
of the finite region. 91 and 92 are acceleration vectors of groups
1 and 2 nodes computed from the accelerations of the exterior boun-
daries of the finite region; i.e., the dam-fluid interface a-b-c-d-a
and the floor and sides b-f-g-c-b, a-e-f-b-a, and d-h-g-c-d. The
matrices K, ¥, and gi result from consideration of the infinite
region as described in Sec. 7.3.

Since Eqs. 3.39 and 7.26 are of the same form, the frequency
variation of él(w) from these equations will be similar. For gq = 0,

é](w) is real valued for frequencies below the first eigenfrequency
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.

m? of the infinite region, and complex valued above due to fluid

radiation damping. Also, when aZ(r‘) is non-zero, él(m) becomes

»

A

n due to the infinite value attained

-1

unbounded at each frequency

by the nth diagonal term of the matrix K

on the right side of
Eq. 7.26. Eigenfrequencies of the complete fluid domain and their
associated infinite responses can only occur below m§ where fluid
radiation damping is not present. For gq > 0, él(m) is bounded at

all frequencies and complex valued for o > 0.

7.5 Computation of Hydrodynamic Force Vectors

For the fluid domains of Secs. 7.2 to 7.4, cdmputation of the
hydrodynamic force vectors Qgg(w), %= x,ysz and Qg(w) of Eq. 6.2

proceeds as follows:

1. The boundary accelerations of Egs. 7.4 and 7.5 are con-
verted into acceleration vectors for use in Egs. 7.6 or 7.8 (finite
fluid domain), Eqs. 7.20 and 7.24 (infinite fluid domain of uniform
cross-section), or Eq. 7.26 (infinite fluid domain of irregular
geometry). For the finite fluid domain, these vectors are denoted by
Qg and Qj’ and their computation is described in Appendix D.Z.
Vectors (0¥}, £=x and (0%}, of Eq. 7.20 and {D;}7, 10,15,
L=x,y¥,2 and {91}5’ {Qz}j of Eq. 7.26 are computed similarly. In
the latter case, {Qz}j = 0. {Qi}g, 2=y,z in Eqs. 7.24 and 7.26 is
computed with aﬁ(r') = eg(r') similar to the procedure of Appendix D.1,

and {QL}é 2=x and {Q&}j of Eq. 7.26 are also zere vectors.

2. Using the acceleration vectors of step 1, hydrodynamic pres-

sure vectors for a fluid domain are obtained by solving the appropriate
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equations of Sec. 7.2, 7.3, or 7.4. Pressures along the dam-fluid

interface are assembled into 5gg(m), 2=x,y,z and ﬁg(m).

3. As described in Appendix D.2, the hydrodynamic force vec-
tors are computed from the pressures along the dam-fluid interface

obtained in step 2.
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8. HYDRODYNAMIC EFFECTS IN RESPONSE OF MORROW POINT DAM

8.1 System Considered and Qutline of Analysis

Morrow Point Dam is a 465 ft, approximately symmetric; single-
centered arch dam on the Gunnison River in Colorado. In the analy-
sis, it is assumed symmetric with dimensions averaged from the two
halves. The fluid domain is assumed symmetric alse, to extend to
infinity in the upstream direction, and to have a water depth H
equal to the dam height. The dam-fluid system is shown in Fig, 8.1
where the plane of symmetry is the z = 0 plane, and the averaged
dimensions of the dam are 1isted in Table 8.1. The fluid domain
is of the infinite, irregular type described in Sec. 7.4; the reser-
voir cross-section is assumed to be uniform upstream of the y-z
plane e-f-g-h-e. System properties are chosen as Ed = 3x 106 psi,
v =2, Wy = 150 pcf, w = 62.4 pcf, C = 4720 ft/sec, a, = .90,
and gj = b% for .each mode of vibration of the dam. Ed, v and
w, are measured values of Morrow Point Dam (1).

Because the dam-fluid system is symmetric, dam and hydrody-
namic pressure responses to upstream-downstream (x)} and vertical
(y) ground motions are symmetric about the plane of symmetry, and
those due to cross-stream (z) ground motion are antisymmetric.

Only half the dam and fluid domain need be considered in the analysis
if appropriate boundary conditions along the plane of symmetry are
employed. In the analysis for x and y ground motions, the com-
ponents of dam displacement and fluid acceleration normal to the plane

of symmetry are zero. The x and y components of dam displacement
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y T, T4 R, Ry 9
(ft.) (ft.) (ft.) (ft.) (ft.) ()
465. 0.0 12. 375.0 363.0 56.20
372. 28.9 © 6.4 352.8 316.1 47.85
279. 46.3 0.8 324.9 258.0 39.50
186. 52.9 -2.6 296.5 210.8 33.00

93. 49.0 2.7 266.7 171.3 26.50

0. 34.4 17.2 234.8 136.6 13.25

TABLE 8.1 DIMENSIONS OF MORROW POINT DAM
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and the hydrodynamié pressures at the plane of symmetry are zero for
the 2z ground motion. analysis.

The finite element mesh for the dam appears in Fig. 8.2a.

The element employed is a shell element with quadratic shape functions
and eight nodes located at mid-thickness (16). The element has been
modified by removing an interior ninth node and by incorporating a
consistent mass matrix (1). Five degrees of freedom are associated
with each node: three translations and two rotations of the through-
thickness nodal Tine about axes perpendicular to its own axis. Normal
stresses perpendicular to the plane of the dam are assumed zero. The
finite element mesh for the fluid domain (Fig. 8.2b) employs three-
dimensional elements with quadratic shape functions, and the plane
e-f-g-h~e 1is placed as close to the dam as possible to minfmize the
number of DOF in the mesh. The dam and fluid domain meshes coincide
along the dam-fluid interface a-b-c-d-a.

Results presented in this chapter are complex frequency
response functions due to harmonic ground acceleration = eth: the
X component of hydrodynamib force Fg(m) on half a rigid dam and
the radial acceleration il(w) of the dam crest relative to the

ground acceleration. The vectors Qg(w) and ﬁoz(w) of Eg. 6.2

are obtained as described in Sec. 7.5 from hydrodynamic pressure
solutions Bg(w) and 5$£(w) of Eq. 7.26. Fi(m) is also computed

from E:Q(w). The first 31 symmetric eigenvectors wz of the infi-

nite, uniform region are included in Eq. 7.26 for the x and Yy

ground motion analyses and the first 27 antisymmetric eigenvectors

o

for the z ground motion analysis. These totals are the numbers
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a

whose eigenfrequencies wﬁs and w: (Sec. 7.3) are less than

19.4 w', where w? = 7C/2H. The dam responses gg(m) are obtained
from the modal responses ?j(w) computed from Eq. 6.1. The first 12
symmetric dam modes ?3 are employed for x and y ground motion
analyses, and the first 12 antisymmetric modes ?? are employed for
the z ground motion analysis. Figures 8.3 and 8.4 show the first

8 symmetric and antisymmetric dam modes together with their natural

frequencies w§ and «S.

J
The analysis of this chapter was carried out with the computer
program EADFS (14). Solution times for computing the frequency

responses of the dam are presented in Appendix F.

8.2 Hydrodynamic Forces on a Rigid Dam

The absolute value of Eo(m), the x component of hydrody-
namic force on half a rigid dam, is bresented in Figs. 8.5a, b and ¢
for ground motions in the x, y and z directions, respectively.
'?g(w) is normalized with the hydrostatic force on the half dam
FSt = .208 wH2 and w with wg. - When presented in this form, the
plotted results apply to'similarly shaped fluid domains of any depth.
Effects of water compressibility and fluid-foundation interaction on
-2(

F0 w) are described below.

8.2.1 MWater COmpressibi]ity effects

When fluid-foundation interaction is neglected, the hydrodynamic -

pas . (s
forces are real valued at excitation frequencies below m? {x and
La (2

y ground motions) or below w3 ground motion), and complex
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valued at higher frequencies. The hydrodynamic forces due to x
ground motion (Fig. 8.5a) exhibit bounded peaks at frequencies equal

to oS, Thus, no eigenfrequencies of the complete fluid domain

n
associated with symmetric responses exist. This beahvior, which is
dependent on the shape of the irregular portion of the fluid domain,
resembles that of the two-dimensional, infinite fluid domain with
sloped dam face described in Chapter 5.

Hydrodynamic forces due to y ground motion (Fig. 8.5b) are
unbounded at excitation frequencies equal to mﬁs, a consequence of
the accelerations of the floor and sides of the infinite, uniform

region; i.e., the acceleration vector QL on the right side of

Eq. 7.26 is non-zero. Similarly, z ground motion (Fig. 8.5¢) pro-

duces unbounded hydrodynamic forces at frequencies equal to ;a’ as

well as at a frequency w?a which is slightly less than mfa. The

frequency w?a is an eigenfrequency of the complete fluid domain

associated with antisymmetric responses. This behavior, again

dependent on the shape of the irregular portion of the fluid domain,

resembles that of the two-dimensional, infinite fluid domain with

sloped floor described in Chapter 4. The rescnances at mfs
La

y ground motion and at w?a and Wy due to 2z ground motion

due to

invoive large amounts of response and have greater amplitude over a

. . . A3
wider frequency interval than the x ground motion resonance at wy
The resonance due to z ground motion occurs at a much higher

frequency.
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8.2.2 Fluid-foundation interaction effects

The hydrodynamic forces due to each of the three directions of
ground motion are bounded functions of frequency and complex valued
for w > 0 when fluid-foundation interaction is included. Figure
8.5 shows that the amplitude reductions in the hydrodynamic force
?O(w) due to fluid-foundation interaction are limited to vicinities
of the resonant frequencies of the fluid domain. The resonances at
mgs due to y ground motion and at w?a and J%a due to z
ground motion are still significant and have greater amplitude over
a wider frequency interval than the x ground motion resonance at

mis
] -

8.3 Responses of the Dam

The absolute value of ?Q(m), the radial component of dam
crest acceleration, is presented in Figs. 8.6, 8.7 and 8.8 for ground
motions in the x, y and z directions, respectively. Accelerations
at four Tocations along the dam crest are presented. As shown in
Fig. 8.8, the radial acceleration due to z ground motion is zero
at the plane of symmetry. The excitation frequency w 1is normalized
with the dam natural frequency w? (x and y ground motion) or
w? (z ground motion), and the plotted results apply to similarly
shaped dam-fluid systems of any height. If the water is absent or
incompressible, the results are also independent of the concrete

elastic modulus Ed‘ Dam-fluid interaction effects and fluid-

foundation interaction effects are described below.
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8.3.1 ‘Dam-fluid interaction effects

The dam accelerations without water due to x ground motion
exceed those due to y or z ground motion. If water is present
and assumed to be incompressible, the frequency independent added
mass and added load reduce the resonant frequencies and alter the
resonant amplitudes. These amplitudes are generally increased for
x and y ground motions (Figs. 8.6 and 8.7) but are decreased for
z ground motion (Fig. 8.8). The changes in resonant frequencies and
amplitudes are more pronounced for the arch dam than the concrete
gravity dam (Figs. 4.7 and 4.8) because the arch dam is lighter, and
hence, the hydrodynamic added mass and added lcad are relatively more
signficant fractions of the arch dam's mass and inertia load.

Water compressibility influences the dam responses through the
frequency variations of the gf(w) vectors. The added load vectors
@Zx(m), ng(m) and @Zz(m) vary with excitation frequency simi-
larly to ?g(w), ?g(m) and Fg(m), respectively, of Fig. 8.5
(fluid-foundation interaction neglected). The added mass vectors
ég(m) associated with symmetric dam modes vary similarly to E;(m);
the vectors §§(w) associated with antisymmetric dam modes vary
similarly to Ez(w), but with finite responses at the frequencies
mﬁa. The imaginary part of ég(w) above mﬁs (x and y ground
motions) or above wfa (z ground motion) provides fluid radiation
damping. |

In the acceleration response to x and y ground motions
(Figs. 8.6 and 8.7), water compressibility further shifts the first

resonant peak to a frequency below d?s with a larger increase in
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amplitude, a result of the greater hydrodynamic added mass and added
load. Dam accelerations due to y grouhd motion are unbounded at
excitation frequencies equal to mﬁs because of the inffnite values
attained by @fy(m). The resonant amplitude of sz(m) at mﬁs

is large over a wide frequency interval (as for Eﬁ(m) in Fig. 8.5b)

and results in very large dam accelerations in the vicinity of w?s as

shown in Fig. 8.7. The increases in acceleration response near m?s
in Figs. 8.6 and 8.7 due to water compressibility exceed the corre-
sponding increases in the concrete gravity dam response (Figs. 4.7 and
4.8). Thus, in this lower part of the frequency range, water com-
pressibility appears to be more important for the arch dam than the
concrete gravity dam due to the greater relative importance of the
hydrodynamic forces. At excitation frequencies above Mfs, however,
this trend is offset due to a greater relative importance of fluid
radiation damping for the arch dam. Above mﬁs, the acceleration
response including water compressibility is smaller than the response
without water or with incompressible water in Fig. 8.6 and .is reduced
to small values between the infinite spikes in Fig. 8.7.

The acceleration response of the dam to z ground motion
(Fig. 8.8) 1is unbounded at the frequencies mﬁa when water compressi-
bility is considered due to the infinite values attained by égz(m).
The resonant amplitude of é:z(m) near m?a is large over a wide
frequency range {as for ?é(m) in Fig. 8.5c¢) and results in large dam
accelerations in the vicinity of mfa. Whereas the large dam responses
to x and y ground motions near m{s are due primarily to vibra-
tion of the dam in its first symmetric mode, the large response to

4.a

z ground motion near )y (a significantly greater frequency than
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m’{s) is due to dam vibration in a combination of its second and third

antisymmetric modes. The response to 2z ground motion which is pri-
marily of the first antisymmetric mode occurs at lower frequencies

and is not affected by water compressibility. Between the freguencies
wﬁa in Fig. 8.8, fluid radiation damping 1imits the dam accelerations
to small values. The infinite responses at the wﬁa in Fig. 8.8 and
£s

those at w

n in Fig. 8.7 approach infinity at slow enough rates so

that the Fourier Transform procedure of Sec. 2.4 for computing

responses to arbitrary ground motions is applicable.

8.3.2 Fluid-foundation interaction effects

The @f(w) vectors are bounded functions of frequency and com-
plex valued for w > 0 when fluid-foundation interaction is included.
Dam responses are affected by reduced resonances of the added Toad
vectors @:Q(m) and by the imaginary component of the added mass

vectors gg(w) which provides foundation radiation damping and which
is now present below mfs (x and y ground motion) or w%a (z
ground motion).

Effects of fluid-foundation interaction on the acceleration
response to x ground motion (Fig. 8.6) are limited to a reduction
in amplitude of the first resonant peak located below mfs. Thus,
inclusion of water compressibility and fluid-foundation interaction
provides a general reduction in the dam accelerations below those
with incompressible water. However, the resonance below mfs repre-
sents an important increase in acceleration response in the Tow

frequency region compared to the response without water.
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Fluid-foundation interaction effects on the acceleration
response to y ground motion (Fig. 8.7) include a bounded instead of
unbounded response at W*3, reduction of the preceding bounded peak,

and the elimination of the infinite spikes at the higher m:s.

Because 6gy(m) still undergoes a large resonance at m?s (as does

P(w) in Fig. 8.5b), the dam accelerations in the vicinity of ui®
are large and exceed greatly those accelerations without water or
with incompressible water. Above mf, however, the acceleration
response inc]ud?pg water compressibility and fluid-foundation inter-
action is comparablé in amplitude to the response without water and

is generally less than that with incompressible water.

In the acceleration response of the dam to z ground motion

(Fig. 8.8), the unbounded response at fa is replaced by a bounded

peak, the preceding bounded peak is reduced, and the infinite spikes
at the higher wﬁa are eliminated because of fluid-foundation
interaction. The resulting dam accelerations are still greater than
those with incompressible water, and at some frequencies they are
greater than and at other frequencies less than those accelerations
without water.

Thus, the acceleration responses of the dam, including water
compressibility and fluid foundation interaction,tc x and y ground
motions attain maximum amplitudes in the vicinity of m%s and have
much Tower response levels at higher freguencies. In the vicinity
of wfs, the acceleration response to y ground motion has greater

amplitude over a wider frequency interval compared to the response to

X ground motion. For this reason, regarding dam accelerations, the
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y. componént of ground motion is likely to be of more importance than
the x component, a contrast to the dam accelerations without water
and with incompressible water where the x component of ground motion
is of greater importance. The relative importance of the z com-
ponent of ground motion is uncertain and depends on the frequency
content of the ground time history because the region of maximum

.

response occurs in the vicinity of m?a, a significantly greater fre-

quency than ?S. The large responses at m?s due to x and y

ground motions are associated with hydrodynamic effects which appear

to be greater for the arch dam than the concrete gravity dam.
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9. CONCLUSIONS

Incorporation of finite element mbde1s of ifregu1ar fluid domains
into the substructure method for determining dynamic responses of dams
including hydrodynamic effects has proven successful. The finite ele-
ment procedure applies to either two or three-dimensional fluid domains
and to either finite domains or infinite domains consisting of an irre-
gular region of finite size connected to a region of uniform cross-
section extending te infinity in the upstream direction. For such an
infinite uniform region, a finite element discretization within the
cross~-section combined with a continuum representation in the infinite
direction provides for the proper transmission of pressure waves, The
fluid domain model can account for water compressibility and can approxi-
mately account for fluid-foundation interaction with a damping boundary
condition applied along the reservoir floor and sides. The dam founda-
tion is assumed rigid.

The substructure method is an effective way to compute dam
responses and include hydrodynamic effects. When water compressibility
is considered, the computational effort is greatly increased,and prac-
tically all is spent to calculate the hydrodynamic terms which represent
effects of the fluid in the dam eguation of motion. Thus, the comp&ta-
tional effort depends directly on the finite element mesh of the fluid
domain. The infinite, uniform reservoir assumption beyond some point
upstream of the dam will 1imit the finite element mesh to the region
between this point and the dam. Inclusion of fluid-foundation inter-
action significantly increases the computational effort because most of

the arithmetic becomes complex valued. Further, for infinite fluid
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domains the eigenso]ﬁtion associated with the infinite, uniform region
depends on the excitation frequency and for a three-dimensional fluid
domain will require a relatively large computational effort. Based on
the Morrow Point Dam example, the Central Processor times on a CDC 7600
computer for analyzing a three-dimensional dam-infinite fluid domain
system can be expected to be several hundred seconds if water compressi-
bility is considered and from five to ten times this amount if fluid-
foundation interaction is considered (depending on symmetry considera-
tions and the extent of the finite element mesh).

Hydrodynamic effects due to water assumed to be incompressible
are equivalent to an added mass and added load which reduce the resonant
frequencies of the system and alter the resonant amplitudes. The added
mass and added load vary with excitation frequency if water compressi-
bility is considered, and factors influencing the dam response include
resonances of the added load and the radiation damping associated with
the imaginary component of the added mass. If fluid-foundation inter-
action is neglected, this damping occurs only for infinite fluid domains
(fluid radiation damping) at frequencies above the first eigenfreguency
wf of the infinite, uniform region (wfs or mfa for the three-
dimensional symmetric or antisymmetric case), but occurs at all fre-
quencies for both infinite and finite domains if fluid-foundation inter-
action is included (foundation radiation damping). Fluid-foundation
interaction also reduces the resonances of the added load which can be
very targe if the fluid foundation is assumed rigid.

Hydrodynamic effects significantly influence the response»of con-

crete gravity dams to harmonic ground motions, as seen with the complex
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frequency response functions for the horizontal component of accelera-

tion at the dam crest.

1. The dam accelerations with full reservoir are essen-
tially independent of reservoir shape if the water is
assumed to be incompressible. The resonant responses
of the dam generally exceed those of the dam without
water, but this does not hold for vertical ground

motion.

2. UWhen water compressibility is considered, the dam
accelerations are very dependent on reservoir shape if
fluid-foundation interaction is neglected. For infi-
nite fluid domains, the acceleration response of the

dam to horizontal ground motion at excitation fre-

quencies above ? is reduced by fluid radiation

damping below those responses without water and with
incompressible water. However, unbounded responses td
vertical ground motion cccur at excitation frequencies
equal to mﬁ if the vertical excitation is applied
over the entire length of the infinite reservoir floor.
Frequency ranges where fluid radiation damping is not
present, below mf for infinite fluid domains and at
all excitation frequencies for finite fluid domains,

are regions of high response which can vary rapidly

with frequency.
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3. Inclusion of fluid-foundation interaction reduées these
large responses and reduces the unbounded responses that
occur for infinite fluid domains under complete vertical
ground motion to bounded values. The resulting dam
‘acce1erations depend much less on fluid domaih shape,
especially for horizontal ground motion. Compared to
the accelerations without water and with incompressible
water, the acceleration response to horizontal ground
motion including water compressibility and fluid-
foundation interaction is reduced, and that to vertical
ground motion is increased especially in the vicinity
of the first resonant frequency of each fluid domain.
The result, regarding dam accelerations, is a comparable
level of importance for both horizontal and vertical

components of ground motion.

Hydrodynamic effects in the acceleration response of earth dams
to harmonic ground motions were investigated by employing a shear beam
model for the dam. In the response to herizontal ground motion, hydro-
dynamic effects are unimportant due to the large mas§ of the dam and the
small hydrodynamic pressures produted by the accelerations of the sloped
dam face. If the grdund motion is vertical, the dam response without
water is zero because of the shear beam assumption, and that with incom-
pressible water is small. For the infinite fluid domain considered, the
dam response to vertical ground motion considering water compressibility
is unbounded at excitation frequencies equal to mﬁ if fluid-foundation

interaction is neglected. However, inclusion of fluid-foundation
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interaction reduces these unbounded responses to bounded values, and
the dam accelerations are again small compared to those due to horizon-
tal ground motion. Thus, hydrodynamic effects are unimportant in the
acceleration response of earth dams to both horizontal and vertical
ground motions.

For Morrow Point Dam, an arch dam, hydrodynamic effects appear to
be more important than for the concrete gravity dam because the added
mass and added load are more significant fractions of the arch dam's
smaller mass and inertia load. These effects were investigated for the
frequency response functions of radial acceleration at the dam crest due

to harmonic ground motion.

1. When the water is assumed incompressibie, the reﬁonant
amplitudes of acceleration responses to upstream-
downstream {x) and vertical (y) ground motions
generally exceed those of the dam without water, while
the resonant amplitudes due to cross-stream (z) ground

motion are decreased.

2. For the infinite fluid domain considered, water compres-

sibility produces large dam accelerations in the vicini-
ties of w?s (x and y ground motions) and w?a
(z ground motion), especially for y and z ground

motions where unbounded responses occur at these

. . (s a
frequencies. Dam accelerations above w? or Wy

are much lower due to fluid radiation damping except for

infinite spikes which occur at the higher mﬁs
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o (z ground motion) due to

(y ground motion) or
the non-zero accelerations of the floor and sides of

the infinite reservoir.

3. Inclusion of fluid-foundation interaction eliminates
these infinite spikes, but large acceleration responses

stiil occur in the vicinities of w']LS (x and y ground

motions) or w?a (z ground motion). These dam accelera-

tions near wfs due to y ground motion greatly exceed
those due to x ground motion; thus, the y component
of ground motion is 1ikely to be of more importance, a
contrast to the cases without water and with incompressi-
ble water where the x component is of more importance.
The relative importance of the 2z component of ground
motion depends on the frequency content of the earthquake

. . . . La
time history since the maximum responses occur near m] .

a significantly greater frequency than wﬁs.

The method of analysis needs to be improved to account for founda-
tion interaction with the dam. Such a provision should include realistic
free-field motions along the canyon walls in arch dam analyses. Regarding
computational efficiency, large savings would result from a more efficient
treatment of the frequency dependent eigenproblem associated with the
infinite, uniform region of a three-dimensional fluid domain when fluid-
foundation interaction is considered. Several such schemes are currently
under study. Further work is needed to extend the investigation of
hydrodynamic effects on dam responses to earthquake ground motions,

including stress responses.
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APPENDIX A. NOTATION

a_ = component of ground acceleration in the 2 direction

9
a = component of acceleration normal to a fluid boundary
aﬁ = component of acceleration normal to the boundary of the

uniform cross-section of an infinite fluid domain

A,A.B,B = incident and reflected wave amplitudes employed in Sec. 2.5

Fourier transform of ag

e
"

109 [I»]
L]

finite element "damping" matrix for a finite fluid domain

£

B = finite element "damping" matrix for the uniform cross-section
of an infinite fluid domain

c = finite element damping matrix for the dam
C = velocity of compression waves in water

C. = generalized damping.of the Jjth natural mode of vibration
of the dam

C_ = velocity of compression waves in the foundation rock
€. = velocity of shear waves in an earth dam
D = vector of nodal accelerations for a fluid domain

D" = vector of nodal accelerations at the dam-fluid interface of
an infinite fluid domain of uniform cross-section

0~ = vector of nodal accelerations for the uniform cross-section
of an infinite fluid domain

D7 = vector of nodal accelerations due to a harmonic ground

acceleration = eTmt in the & direction with rigid dam
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vector of nodal accelerations due to a harmonic acceleration
of the dam in its jth natural mode of vibration

_ -k X
an NxN diagonal matrix with nth diagonal term = e n

a vector defined for Eqs. 2.2 and 6.2
modulus of elasticity of concrete
modulus of elasticity of foundation rock

vector of inertia loads on the dam due to a unit acceleration
of the dam as a rigid body in the £ direction

x component of force on the dam {or half of a symmetric dam)
due to hydrostatic pressure

x component of hydrodynamic force on a rigid dam (or half of
a symmetric, rigid dam) due to ground acceleration in the £
direction

complex frequency response of Fi
acceleration of gravity
finite element "mass" matrix for a finite fluid domain

finite element "mass" matrix for the uniform cross-~section
of an infinite fluid domain

water depth adjacent to the dam

height of a concrete dam

height of an earth dam

finite element “"stiffness" matrix for a finite fluid domain

finite element "stiffness" matrix for the uniform cross-
section of an infinite fluid domain
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V=T
number of @j included for the dam

Bessel functions of the first kind of orders zero and one,
respectively

finite element stiffness matrix fqr the dam

generalized stiffness for the Jth natural mode of vibration
of the dam

direction of ground motion, either x, y, or z

excitation length for the floor of an infinite fluid domain
of constant depth

generalized load for the Jth natural mode of vibration of
the dam including hydrodynamic added load and due to ground
acceleration in the & direction

vector of dimension J with Jjth term = L§
finite element mass matrix for the dam

mass matrix for the dam coupling DOF along the foundation
with interior DOF

number of gm included for a finite fluid domain

generalized mass for the jth natural mode of vibration of
the dam

denotes the inward normal direction to a fluid boundary
number of yn included for an infinite fluid domain
hydrodynamic pressures in excess of static pressure

pressures at the dam-fluid interface
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pressures due to ground acceleration in the 2 direction
with rigid dam

pressures due to an acceleration of the dam in its jth
natural mode of vibration

‘separated pressure functions in the x direction,

y direction, and y-z plane, respectively
complex frequency response of p
vector of nodal pressures in the fluid domain

generalized load for the Jjth natural mode of vibration
of the dam including hydrodynamic effects and due to
ground acceleration in the & direction

W/Crwr’ the damping coefficient along the fluid-foundatien
boundary

vector of hydrodynamic forces corresponding to DOF of the
dam

vector of hydrodynamic forces for nodes along the dam-fluid
interface

it

static equivalent of Po

static equivalent of pg
complex frequency response of Q

acceleration of the dam crest due to ground acceleration in
the £ direction

complex frequency response of V

= fluid boundary coordinates along the dam-fluid interface

= fluid boundary coordinates along the reservoir floor and

sides
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radii to upstream and downstream faces of an arch dam

the JxJ dynamic stiffness matrix for the dam including
hydrodynamic added mass

time variable
duration of ground motion

thickness parameters to upstream and downstream faces of an
arch dam

vertical foundation displacement

complex frequency response of u

vector of nodal displacements of the dam relative to the ground
unit weight of water

unit weight of concrete in a dam

unit weight of foundation rock

unit weight of earth in a dam

orthogonal coordinates in upstream-downstream, vertical, and
cross-stream directions, respectively

generalized displacement of the jth natural mode of vibration
of the dam due to ground acceleration in the 2 direction

complex frequency response of Y?
vector of dimension J with jth tem =Y

the reflection coefficient for an incident pressure wave
striking the foundation rock

amplitude of ¢
-m

complex frequency response of o
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vector of dimension M with mth term = &m

parameter defining the slope of an earth dam

parameter used to define the Jjth natural frequency of the dam
mth eigenvalue of a finite fluid domain (q = 0)

an MxM diagonal matrix with mth diagonal term = yé -

r;Nl Em

function defined for Egs. 2.10 and 6.8
mth eigenvector of a finite fluid domain (g = 0)
matrix with the M eigenvectors &y 25 coltumns
amp]itude of ¢,
complex frequency response of um
vector of dimension N with nth term = ﬁn
abutment angle for an arch dam
A~ -~ =5 , with positive real and imaginary parts
én NxN diagonal matrix with nth diagonal term = K

nth eigenvalue of the uniform cross-section of an infinite
fluid domain {q = 0)

ny

an Nx N diagonal matrix with nth diagonal term = kﬁ -

ﬁl\)’ £

real part (positive) of Kn

Poisson's ratio

imaginary part (positive) of K

damping ratio for the Jth natural mode of vibration of the
dam
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jth zero of J0
vector of the Jjth natural mode of vibration of the dam

vector of the jth dam mode for nodes along the dam-fluid
interface

continuum function representation of @g

nth eigenvector of the uniform cross-section of an infinite
fluid domain {(q = 0)

a matrix with the N eigenvectors p, 3s columns
frequency of excitation
jth natural frequency of vibration of a dam

YmC, the mth eigenfrequency of a finite fluid domain
(q = O). Also, if it exists, the mth eigenfrequency of an
infinite fluid domain of irregular geometry (q = 0).

(2n-1)nC/2H, the nth eigenfrequency of the cross-section
of the two-dimensional, infinite fluid domain of constant
depth obtained in a continuum analysis (q = 0)

xnC, the nth eigenfrequency of the uniform cross-section
of an infinite fluid domain (g = 0)

partitioning subscripts for the DOF of an infinite fluid
domain of irregular geometry (Secs. 3.4 and 7.4)

superscripts to denote a symmetric or antisymmetric response
quantity of a three-dimensional, symmetric dam or fluid domain
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APPENDIX B. FINITE ELEMENT DERIVATIONS FOR FINITE FLUID DOMAINS

For the fluid domains of Figs. B.1 to B.3, finite element for-
mulations which relate the harmonic, hydrodynamic pressure response to
harmonic, normal components of boundary accelerations are derived
below. The fluid domains of the figures are two, cone, and three-
dimensional, respectively. Terms of the final matrix equations are
integral expressions which can be efficiently evaluated by the method
of Gauss quadrature. More complete treatments which include discus-

sion of convergence requirements can be found elsewhere (12).

B.1 Two-Dimensional Fiuid Domains

B.1.1 Governing equations

The hydrodynamic pressure p(x,y,w) within the fluid domain of

Fig. B.la is governed by the two-dimensional Helmholtz equation

82- 32- mz =
Sh e+ Sp -0 (8.1)
ax 3y C

subject to boundary conditions along accelerating boundaries

%% (s,w) = - %—an(s) (B.2a)
_g‘;% (s'sw) = - %an(s‘) + iag p(s',w) (B.2b)

Preceding page blank



166

c

o e N/

D

9

(a) FLUID DOMAIN

o

s

_,”—’, |I LE
b e
N I
(b) FINITE ELEMENT DISCRETIZATION

FIG. B.1T TWO-DIMENSIONAL FINITE FLUID DOMAIN



167

and at the free surface (y = H)

p(x,Hw) = 0 (B.3)

In Eg. B.2, s and s' are coordinates along the dam fluid inter-
face a-b (denoted by D) and the reservoir floor b-c¢ (denoted by D'},
respectively.

The equations above are satisfied by that p(x,y,u) which

minimizes a functional X(p) defined by

X(h) = i-;-((-g-g)z (%5%)2 - ‘:—z 52) & - DL‘ ¥ a,(s) Blsw) @
+ J' %-iwq (ﬁ(s',w))z dn, s = 5,8 (B.4)
g

where V is the two-dimensional domain of the fluid a—g-c—a. In the
finite element method, minimization of Eq. B.4 is carried out within
subregions V& of v (finite elements) and within subboundaries p®
of D,0' (boundary elements). In Fig. B.1b the region ¢ is dis-

cretized into finite elements. This process automatically divides the

accelerating boundaries 0,0° 1into boundary elements. The functional

X (p) can be expressed as a summation over the elements:



(B.5)

where the superscript e denotes an element quantity, either interior

or boundary.

B.1.2 Element mapping

Each finite e1emént ve s mapped onto the x,y plane from a
simple shape in an image coordinate system. The mapping is controlled
by specifying locations in the x,y plane into which certain points
(nodal points) in the image plane are mapped. For example, the circled
element of Fig. B.1b is mapped from the rectangle -1 <g <1,

-1 <n<1 according to

it
1=

_ e
X = 4 Ni(Sm) x'i

(B.6)

It
1=

R e
y= g N.(E.n) ¥;

where Ni(é,n) = a shape function whose value is one at the ith node
and zero at all other element nodes; (x$, y?)

; is the x,y Tlocation

of the 1ith node; and Z is aover all element nodes. The magnitude
i

of an incremental area dV in the x,y plane mapped from an area
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dedn is given by

dv = det[d] d&dn (B.7)

where det[g] is the determinant of dy the transformation matrix

for shape function partial derivatives. Thus,

et I
ot X
= J (B.8)
BN1 Eﬁl
an oy
where
ax 3y
9& 3¢
d = (B.9)}
9x By
an on

The terms of J are computed by taking the appropriate partial deriva-
tives of Eq. B.6. Versions of the above equations are available for
triangular image shapes using area coordinates (12).

The boundary 7,0' 1is entirely defined by the above procedure.
However, for convenience a separate, but equivalent, mapping is intro-
duced in which each boundary element D% is mapped from the region
1<g<1 onthe £ axis (see the circled boundary element in

Fig. B.1b). Thus,

by 1 2) X?e R
J (8,10)
w1 M, (&) y?e =M P

J
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where Mj(s) = a shape function for a boundary element whose value is
one at the jth node and zero at all other boundary element nodes;
(x?e, y?e) is the x,y Tlocation of the jth node; and ) 1s over
all boundary element nodes. Mj(g) is computed from Ni(ggn) of the
adjacent interior element where j and i refer to the same nodal
point. Thus, if the n = -1 side of the interior element maps onto

De, then

MJ(E») = N1(E”-1) (8-11)

with similar expressions if other sides of the interior element map
onto 0%. The magnitude of an incremental length dP 1in the x,y

plane mapped from a length d& 1is given by
d0 = |n| dt {B.12)

where |n| 1is the absolute value of the normal vector along p%  whose

x and y components are defined by

Lo
X dg
(B.13)
LA
Y dg

The derivatives of Eq. B.13 are computed from Eq. B.10. With a proper

choice of sign, n is the inward normal to the fluid domain.
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B.1.3 Element pressure definition

A similar procedure to Eq. B.6 expresses the element pressure
p%(x,y,w) within each V® in terms of values at the nodes. Thus,

p€(x,y,w) is defined as p(Z.n,0) where
52(Eamow) = § N (E:n) p5() = AT 3%(0) (8.14)
i

and where E?(w) = ith nodal pressure of the element. The shape func-
tion Ni(g,n), then, describes the pressure distribution throughout
the element when ﬁ?(w) increases a unit amount.

For convenience, the boundary element pressure along 0,0' is
expressed in a manner similar to Eq. B.10. Thus, within each %,

p%(s,0) or pE(s',w) is defined as pS(g,w) where

B (Es0) = § My(8) B%(w) = 1T 5°%(w) (B.15)
J

and where ﬁge(w) = the Jjth nodal pressure of the boundary element.
The normal acceleration az(s) or aﬁ(s') can also be defined on the

£ axis as ai(g). This process is described in Appendix D.1.

B.1.4 Functional integration and minimization

Using the above equations, integration of Eq. B.5 can be carried
out in the image coordinate systems. Substitutions into Eq. B.5 result

in
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1 1 '
T 2
aN aN LAy T
X(p) = 5 [ j (ax X tay Ty ~—C2 )det[J] dedn| p =)

1
;
) B Jwa [ o al o] B°%) (8.16)

where the shape function partial derivatives are computed by solving
Eq. B.8 for each node 1 of an element. The functional is now
approximate (denoted by ~) because of the assumed interelement pressure

distributions. Equation B.16 is written as

T P T
K(p) = ¥ 1p%(w) [He - “’—G‘*} P (w) - 22%(w) Y p®
P 5{9 } L Piw D,ZD' LE “’} g >
‘ -be T . e be
+ DZ' {E (w)} iwg B {(w) _ (B.17)

where

aN aN aNi aNj ied
ax ax oy Yy dEt[Q] &dn

l\—nn—n-“—-l
'\.__ﬂ._n

(B.18)

11
> J [ | Wy detld] decn
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—

0 = | M, ai(g) In] dg

(B.18) cont'd

1
BS. = J My M In| dg
Sy

Symmetry of the element matrices is evident.

The matrices and vectors of Eq. B.17 can be assembled into a
single, Targer set. In this process portions corresponding to the
nodes at the free surface a-c are not assembled because according to

Eq. B.3 the nodal pressures there are zero. Thus,

~ o - 2 - -
X(5) = Blw)T [H + fwq B - 26 Blw) - plw) D (B.19)
¢ g

where the dimension of the vectors and symmetric matrices equals the
number of nodes below the free surface in Fig. B.1lb. Minimization of
Eq. B.19 is carried out by setting the derivative with respect to each

51(m) to zero, resuiting in

D (B.20)

Qg

2
[H”wQB*%@] plw) =
_ C
The non-zero portion of B 1is a submatrix corresponding to nodes
along D' where the boundary condition of Eq. B.2b is applied. D
has non-zero terms for only nodes along ©0,P' where accelerations are

applied.
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B.2 One-Dimensional Fluid Domain

The fluid domain of Fig. B.Za arises as a cross-section of a
two-dimensional fluid domain when no variations in geometry or accel-
erations are present in the x direction. The hydrodynamic pressure

p(y,w) 1is governed by the one-dimensicnal Helmholtz equation

2= 2
442 5= (B.21)
dy C

subject to boundary conditions
dp = - Yol y g b 0D
dy (0.w) g ay iwg p(0,w) (B.22)

p(How) = 0 (B.23)

The functional to be winimized is

H
X6 = | 3 ((%{,1)2 o 52> ay - % el 5(0,w) + § iug (3(0.0))°

(B.24)

For a one-dimensional finite element discretization (Fig. B.2b), the

functional becomes a summation over the elements. Thus,

2

~e 2 2 .
(%‘;—) -z (%) ) dy - % a8 B(0,w) + 5 iug (5(0.0)?

n| —

x(p) =g J
ve (B.25)
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where U 1is the domain a-b of the fluid.
Each element Ve is mapped onto the y axis from the region
-1<g<1 onthe & axis (see the circled element in Fig. B.2b).

Thus,

R NG IEN I (B.26)
1

where Ni(é) = shape function for the ith node; y? is the y
location of the ith node; and E is over all element nodes. The
magnitude of an incremental 1engt; dy mapped from the length dg
is given by

dy = %% de (B.27)

where the derivative is computed from Eq. B.26. Also,

dN. dN.
i dy T
T (8.28)

The element pressure distribution ply.w) is defined with p%(&,w)

where

58(g.w) = T N.(£) pS(w) = N p%(w) (B.29)

and where 5?(w) is the 1ith nodal pressure of the element.
Using the above equations, integration of Eq. B.25 can be
carried out in the & coordinate system. Substitutions into Eq. B.25

result in
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§ T 2
e = ) (8] [fje - &5 Ge} 55w - X2l 5(0,0) + & fug (5(0,0))7

2 - 9 y
(B.30)
where
HE. = } EEl-lfj—t\iiglclg
1] ) y dy dg
(8.31)

and where the shape function derivatives are found from Eq. B.28.
The matrices and vectors of Eq. B.30 can be assembled intoc a
single, larger set. The result, omitting portions corresponding to

the node at a to satisfy Eq. B.23, is

X(3) = ) [H‘ ‘”—2 G‘} blw) - T a) B l0) + 5 1ua (B, (@)

(B.32)
where Bk(w) = p(0,w), and k corresponds to the node at b.

Minimization of £q. B.32 is carried out by setting the derivative

with respect to each 5i(m) to zero, resulting in

K+ g B - &5 66 Blu) = B0t (B.33)

where B“ is a zero matrix except B, =1; and D“ is a zero vector

except Dt = a;. The matrices of Eq. B.33 are symmetric.
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B.3 Three-Dimensional Fluid Domains

B.3.1 Governing equations

The hydrodynamic pressure p{x,y,z,w) within the fluid domain

of Fig. B.3a is governed by the three-dimensional Helmholtz equation:

2= 2= 2= 2
204204288 520 (B.34)
aw~ eyt 92" ¢

subject to boundary conditions along accelerating boundaries

gﬁ-(s,r,w) = - Emaﬂ(s,r) (B.35a)

[l=]

%%-(s‘,r',w) = - g-an(s‘,r') + dwg p(s',r',n) (B.35b)

and at the fiuid free surface
p(x,H,z,0) = 0 (B.36)

In Eq. B.35, s,r are coordinates along the dam-fluid interface
a-b-c-d-a (denoted by D), and s',r' are coordinates along the reser-
voir floor and sides b-f-i-j-g-c-b, a-e-i-f-b-a, and d-h-j-g-c-d
(denoted by D').

The functional to be minimized is
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- J g 2a(sor) Bls,rw) o+ J 7 fua (B(s'ortw))? o,
0,0 v

s,r =s,r or s',r' (B.37)
where U 1is the three~dimensional domain of the fluid. For the finite

element discretization of Fig. B.3b, the functional becomes a summation

over the elements. Thus

. 1 ((55° a'e) 558} Wl -l
@1 [ F\E) @) &) -5 6 )e
Ve
L e B @+ T [ e (s w)F @,
L ok
p€ p€
S,r =s,r or s',r' (B.38)

B.3.2 Element mapping

Fach finite element V€ 1is mapped into the x.y,z coordinate
system from a simple shape in an image coordinate system. For example,
the circled element of Fig. B.3b is mapped from the rectangular prism

1<E<T, 1<sn<1, 1<g<1 according to
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X = Z Ni(S,n,C) X$;= NT ge
3
y = 1 N (g.n.2) y? = Ing y© (B.39)
1
= 28

zZ= Z N.i‘(gﬂlsC) Z?
3

where Ni(E,n,;) = shape function for the ith node; (x?, y?, z?)

is the x,y,z location of the ith node; and ] 1is over all element
i

nodes. The magnitude of an incremental volume dV mapped from the

volume d&dndz 1is given by

dV = det[g] dtdndz (B.40)
where ‘
s r 3
T I
3k IxX
aNi | aNi
" 5n —‘-“"87’ (B.41)
| 3¢ ) L 3Z J
and
S
& 1 &
Jlox ay a2
J 0 ¢ am on (B.42)
x  dy a2
| oz 3z 3T
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The terms of J can be computed from Eq.”B.39. Versions of the above
equations are avaitable for triangular prism and tetrahedral image
shapes using area and volume coordinates (12).

* The boundary ©D,D' 1is entirely defined by the above procedure.
For convenience, a separate but equivalent mapping is introduced in
which each boundary element 0% is mapped from a simple shape in an
image coordinate system. For example, the circled boundary element of
Fig. B.3b is mapped from the rectangle -1 <¢ <1, -1sn<1

according to

K = ] M;(&,n) xge = T e
j |
¥ = I men) ¥ =T P (8.43)
J
- @T Ebe

b _ be _
z % Mj(a,n) Z4

where Mj(ian) = shape function for the jth node of a boundary
be _be
i)
and Z is over all boundary element nodes, Mj(g,n) is computed

element; (x?e, y is the x,y,z Tlocation of the Jjth node;

J
from Ni(i,n,c) of the adjacent interior element where j and i
refer to the same nodal point. The magnitude of an incremental area
d0 in the X,y,z system mapped from an area d&dn 1is given by

d0 = |n| dedn (8.44)

where |n| is the absolute value of the normal vector along p°

whose x, y, and z components are defined by
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_ ayb azb - Byb azb

X an 9§ 3%  on

=
[

h b b b
_ =3xX 3z + ax~ dz (B.45)

Y on  9¢ 3 an

=
)

. axb ayb _ Bxb ayb

z on 9 9E  on

and where the partial derivatives are computed from Eq. B.43. With a

proper choice of sign, un 1is the inward normal to the fluid domain.

B.3.3 Element pressure definition

Within each V& the element pressure is defined as 5e(£,n,;,w)
where

p%(E,m,0,0) = T No(E,m,0) BS(0) = N % (w) (8.46)

1

and where 5?(@) = jth nodal pressure of the element. The pressure
distribution pS(s,r,w) or pS(s',r',w) along D,0' within each 7°
is defined as p%(g,n,w) where

p%(ns0) = ] My(ean) PIS(0) = MT 3% (w) (8.47)
J

be
J
The normal acceleration az(s,r) or a:(s',r') can be defined as

and where p; (w) = the Jjth nodal pressure of the boundary element.

aﬁ(&,n) by the process described in Appendix D.2.
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B.3.4 Functional integration and minimization

Using the above equations, integration of Eq. B.38 can be car-

ried out in the image coordinate systems. Thus,

where

1 11
oN, 3N, ON, 3N, 3N, 3N,
S.= —_J LI i
" J J I 5% ox T oy oy T 5z w2/ detld] didndz

(8.49)

and where the shape function partial derivatives are computed by solv-
ing Eq. B.41. |

The matrices and vectors of Eq. B.48 can be assembled into a
single, larger set. The result, omitting portions corresponding to the

nodes at the free surface a-e-i-j-h-d-a, 1is
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- 2
X(B) = plw)’ [5 +iug B - Y G] Blw) - Blw)' 4D (8.50)

Minimization of the functional X(p) 1leads to

2
[tiﬁwqg-%?@] E(m)=%9 (B.51)

The matrices of Eq. B.51 are symmetric. The non-zero portion of B 1is
a submatrix corresponding to nodes along 7', and D has non-zero

terms for only nodes along D,D'.
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APPENDIX C. BOUNDARY CONDITIONS FOR INFINITE FLUID DOMAINS

Figures C.1 and C.2 show infinite fluid domains of constant
depth and uniform cross-section, respectively. The two-dimensional
fluid domain of Fig. C.la is discretized into layers (Fig. C.1b), and
the three-dimensional fluid domain of Fig. C.2a is discretized into
channels (Fig. C.2b). Discrete forms of the acceleration boundary
conditions at x = 0 are derived below. Integrals of the final

matrix equations can be evaluated by Gauss quadrature.

C.1 Infinite Fluid Domain of Constant Depth

The layer discretization in Fig. C.1b is defined by the one-
dimensional discretization along a-b, and thus the mapping process
of Sec. B.Z2 can be applied. Each one-dimensional element is mapped
onto the y axis from the region -1<g<1 on the £ axis (see

the circled element in Fig. C.1b). Thus, from Eg. B.26,

y=Nvy (€.1)

where NT = vector of shape functions for an element; and ye =

coordinate vector for the element nodes. The pressure distribution

pS(x,y,w) within each layer is defined as PC(X,E,w) where

p2(x,E.0) = N 5%0x,0) (c.2)

and where ée(x,m) = vector of pressures along nodal lines of a layer.

The normal acceleration on the x = Q0 face of a layer ai(y) can also
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be defined on the £ axis as ai(g).

The continuum boundary condition along the face a-b at x =20

is given by
.
S (0sys0) = = T a(y) (.3)
and within a layer by
% (0,5) = - ¥ a%(z) (c.4)
X > g X :

According to Eq. B.18, the element vector of nodal accelerations is

found as

1
°= [ Nas(e) Yas (c.5)

where %%~ is computed from Eq. C.1. Substitution of Eq. C.2 into

Eq. C.4 and the result into Eq. C.5 yields

1

e _ T dy
-] nT g
-1

dp®

5 (00) (c.6)

=
1o

Or, switching sides,

6° G (0w) = - 5 0° (c.7)
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where

Assembly for all elements along a-b results in

g 2

& o (Ow) = - g-gx (C.9)

where the matrix gL is the same one of Eq. B.33. Only equations for

nodes below the free surface node at a are included in Eq. C.9.

C.2 Infinite Fluid Domain of Uniform Cross-Section

The channel discretization in Fig. C.2b is defined by the two-
dimensional discretization along a-b-c-d-a, and thus the mapping
procedure of Sec. B.1 is applicable. Each two-dimensional element is
mapped onto the y,z plane from a simple shape in an image coordinate
system. For example, the circled element of Fig. C.2b is mapped from

the rectangle -1<g<1, -1<n<1. Thus, from Eq. B.6,

(C.10)

where yT = vector of shape functions for an element; and xe,ge =
coordinate vectors for the element nodes. The pressure distribution

ﬁe(x,y,z,m) within each channel is defined as 5e(x,§,n,w) where
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P (x,Emaw) = N1 5%(x0) (c.11)

and where ée(x,m) = véctor of pressures along nodal lines of a channel.
The normal acceleration on the x = 0 face of a channel ai(y,z) is
defined as a (&,n).

The continuum boundary condition along the face a-b-c-d-a at

x =0 1is given by

%E-(O,y,z,w) = - g—ax(y,Z) (c.12)

and within a channel by

—e‘
B (0.8.mu) = - Fad(e.n) (c.13)

According to Eq. B.49, the element vector of nodal accelerations is

found as

1 1
0° - [ f N aS(Ean) [n | dedn (c.14)
-1 -1

where

- 0y 3z 3y 9z
Ay = 30 BE % Bn (€.15)

and where the partial derivatives are computed from Eq. C.10.
Substitution of Eq. C.11 into Eq. C.13 and the result into Eg. C.14

yields



193

e dée W &
6" g (O} = -5 D
where
1 1
G1J = J J N. N [nx| d&dn
-1 -1

Assembly for all elements within a-b-c-d-a results in

=R =%
> ol
P i
o

-

>
o

1

'
Qi

DX

where only equations for nodes below the fluid free surface are

included.

(C.16)

(C.17)

(C.18)



194



195 Preceding page blank

APPENDIX D. BOUNDARY COMPUTATIONS FOR FINITE FLUID DOMAINS

The fluid domains considered here are the two and three-
dimensional finite fluid domains of Figs. B.1 and B.3. Computation of
the nodal acceleration vectors Qﬁ and Qj resulting from accelera-
tions of the ground in the direction 2 with rigid dam and accelera-
tions of the dam in its jth mode, respectively, is discussed. From
pressure vectors E:g(m) and ég(w) along the dam-fluid interface,
computation of the hydrodynamic force vectors Qgg(w) and Q§(w) is
also discussed. Vectors and matrices with superscript f contain
terms corresponding to all nodes along the dam-fluid interface.
Integrals of the final matrix equations can be evaluated by Gauss

quadrature.

D.1 Two-Dimensional Fluid Domains

D.1.1 Computation of Qg, %=X,y and Qj

Accelerating fluid boundaries in Fig. B.1 include the dam-fluid
interface a-b and reservoir floor b-c, denoted by 7 and ?' with
boundary coordinates s and s'. These boundaries are located by a

mapping procedure described in Sec., B.1 in which each boundary element
e

D~ is mapped from the region -1 <¢ <1 on the § axis. Thus, from
Eq. B.10,
xb - rl,[T Ebe
(D.1)
b T  be

“<
]
=
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where M = vector of shape functions for a boundary element; and

be _be
s Y

X coordinate vectors for the boundary element nodes. If a

boundary element p® accelerates in the normal direction at az(s)

or az(s‘), then from Eq. B.18 the element vector of nodal accelera-

tions is found as

®= | Maj(e) In] c (0.2)

1z
n
[P ——

where az(s) or 32(5') is defined on the £ axis as ai(g); and
tn] s the absolute value of the normal vector along p® whose x

and y components are given by Eq. B.13 as

b
- dy”
nx d&
(D.3)
L&
y dg

and where the derivatives are computed from Eq. D.1. With a proper
choice of sign, n 1is the inward normal.

The acceleration vector pﬁ, 2 = x,y vresults from an accelera-

tion an(s) = ez(s), s = s,s' of the boundary 7,D'. Eg(s) or

eg(s') defines the length of the component of a unit vector along &

in the directibn of the inward normal n. Within each De,

N £) ='TET (D.4)
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and substitution into Eq. D.2 yields
1
e .
D™ = J Mon, dE (D.5)

Assembly of each Qe over D,D' forms Qg. No terms are assembled
from the free surface nodes.

Qj results from an acceleration of D from the dam-fluid inter-
face portion of the dam's jth mode @§, whose x and y subvectors
are denoted by '{@g}x and {@§}y. ai(g) is derived from the element

e e
subvectors {@j}x and {@j}y by

wO - oy, oo

1 1
o [ e sk | ol ),

or

0" = g {65k + 55 ey 0.9

where
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1
e =
[éx]ij J M; M n dE
41

(D.9)
1
B¢l.. = J' M, M, n_ d&
waLN TJ Yy
-1
Assembly of Eq. D.8 over D for each p® yields
f_of(.f f({.f
Dy = By {Qj}x * By {Qj}y (0.10)

where Bf and ‘Q; are symmetric matrices. D. 1is assembled from

terms of Qg corresponding to nodes below the free surface.

D.1.2 Computation of Qzﬁ(m), %=X,y and Qg(m)

Solution of Eq. B.20 with acceleration vector Qﬁ results in
the pressure vector ﬁﬁ(m). Along D, the pressure distribution

within 9% is p%(s,w), defined as p%(&,0) where, from Eq. B.15,

p5(E,0) = T 3P8(w) (0.11)

and where Ebe(m) = vector of boundary element nodal pressures. The X
and y subvectors of ng(m) are dencted by {Qgg(w)}x and {ng(w)}y,
and within 0% by {0%(w)}, and {Q%(w)} . By the method of virtual

work



1
n
{@e(w)]x - [ W ) Inl (0.12)

1
[ge(w)}x - J M de 5 %) (D.13)
4
or
[Qe(w)\x = BS 5”%(0) (D.14)

~fL _ of =f2

{90 (w)}x = E’X Po (w) (D.15a)
and in Tike manner,

=f2 _ . f =fe

{Qo (whpy = By Py (w) (D.15b)
f f -fg .
Bx and By of Egs. D.10 and D.15 are the same, and Po (w) Tlists

the terms of 5§(w) along the dam=fluid interface D and includes a

zero term for the surface node at a.. ng
~F8 ~f
from {90 (m)}x and {90

(w), 2=x,y is assembled
z(w)}y of Eq. D.15 and ordered to correspond
f
to .
¢J
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Solution of Eq. B.20 with D, vresults in Ej(w), and the

—

vector é;(w) for pressures along D. Qg(w) is assembled from the

subvectors

[, - o 5w
(D.16)

{Qg(m)}y Pg(w)

I}
jvs]

and ordered to correspond to 9§’

The hydrodynamic terms of Eq. 2.24 are of the form {@g}T Qf(w)
and can be calculated in a direct manner. Premultiplication of Eq.
D.15a by '{@g}l, Eq. D.15b by {@§};, and addition of the resulting

equations yields

5T gl (655 P, - e of 0% + (51 o

JIx 3y Jly -y =o
(D.17)
With use of Eq. D.10,

1T =f4 fAT =fe '
feff ot = o] J ol 2=y (0.18a)

for the hydrodynamic added load terms. Similarly,

T &f _ 1T =F

[off" gptw) = {gj} By () (D.18b)

for the hydrodynamic added mass terms.
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D.2 Three-Dimensional Fluid Domains

D.2.1 Computation of Qg, L=x,y,z and Pj

Accelerating fluid boundaries in Fig. B.3 include the dam-
fluid interface‘ a-b-c-d-a (denoted by ? with boundary coordinates
s,r) and the reservoir floor and sides b-f-i-j-g-c-b, a-e-i-f-b-a,
and d-h-j-g-c-d (denoted by D' with boundary coordinates s',r').
These boundaries are located by a mapping procedure described in
Sec. B.3 in which each boundary element is mapped from a simple shape
in an image coordinate system. For example, the circled boundary
element of Fig. B.3b is mapped from the rectangle -1 <E<1,

-1<n<1. Thus, from Eq. B.43

xb - @T §be
yb _ ﬂT J_(be (D.19)
Zb - 111T ;be

where 'M = vector of boundary element shape functions; and

Zbe’ ybe, gbe = coordinate vectors for the boundary element nodes. If

a boundary element D% accelerates at aS(s,r) or a%(s',r'), then
n n

from Eq. B.49 the element vector of nodal accelerations is

1
J h_dafl(E,n) [n] d&dn (D.20)

1
0° = |
-1 -1

where ai(s,r) or ai(s',r') is defined as ai(a,n); and |n] s



202

the absolute value of the normal vector along De where, from

Eq. B.45,

_oay®a® syl ad®
% T Tan 3E 3 on

b ., b b .. b

- _ 9X 9z 9x_ 9z
WS T Sn BE T BE on (D.21)
- Bxb Byb _ Bxb ayb
on 9 98 on
With a proper choice of sign, n 1is the inward normal.
Qﬁ, 2= X,y,z results froman acceleration a,(s,r) = ez(s,r),
s,r = s,r or s',r' of the boundary D,D'. Within each UE,
n
e -k
an(E,n) = Tl (D.22)
and substitution into Eq. D.20 yields
T 1
p® = [ J M n, dedn (D.23)

-1 -1

Assembly of each Qe over D,D' forms Qi. No terms are assembled
from the free surface nodes.
Pj results from an acceleration of D from Qg whose X, Y,
f f f
and z subvectors are den?ted by {Qj}x, {@j}y, and {gj}z.

ap(t,n) 1is derived from the element subvectors by
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e v T (e YooT (e | 2 JT[.e
%&MTWMMhWﬁW@hWW@Mh (D.24)

Substitution into Eq. D.20 yields

of = 5 {efl o (ol + £ leike (0.25)

where

£
[ I
—_
ety
(]
d—
=
=)
=
=

« dedn
¢
1 1
e -
[Ey]ij = L L Mi Mj ny dz dn (D.26)

—

1w
N
O
—y
<,

"

Sttty i

Assembly of Eq. D.25 over D for each 0° yields

f_of { f} +af { f] + pf { f}
f o of f . : .
where B , §y, and B, are symmetric matrices. D. is assembled

from terms of Q§ corresponding to nodes below the free surface.

D.2.2 Computation of ng(m), 2=X,¥,z and Qg(m)

Solution of Eq. B.51 with acceleration vector Qﬁ results in

the pressure vector Eﬁ(w). Along D, the pressure distribution within
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E’e(gsnaw) = MT Ebe(w)

and where ébe(m) = vector of boundary element nodal pressures.

% is pt(s,r,w) defined as p%(E,n,w) where, from Eq. B.47

(D.28)

The

X, ¥, and z subvectors of ng(w) are denoted by {ng(m)}x,
Qg @y, and @)}, and within 0% by @)}, T,

y 20 z
and {Qe(w)}z. By the method of virtual work

1 1
Q (w) f [ T~T'P ®(£,now) |n] didn
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Substitution of Eq. D.28 into Eq. D.29 yields
Assembly of Eq. D.30 over D for each p® yields

and in 1ike manner

e,
1L
[« ]
=
~
e
o
Nt
1}
-.b

B (w)

@l W), = 8 5w

(D.29)

(D.30)

{D.31a}

(D.31b)

(D.31c)



205

Q:, §; and @Z of Egs. D.27 and D.31 are the same, and ﬁzl(w)
1ists the terms of ?ﬁ(w) along D and includes zero terms for

nodes at the free surface. ng

(w)s £=x,y,z 1is assembled from the
component vectors of Eq. D.31 and ordered to correspond to ¢§. The

hydrodynamic added load terms of Eq. 2.24 can be found directly as

{Qf}T 0, (w) = [9§}T Bii(6)s 8= X0Ys2 (D.32a)

Solution of Eq. B.51 with Dj results in 5j(w), and the
vector 5§(w) for pressures along 0. The hydrodynamic added mass

terms of Eq. 2.24 can be found as

{@§}T Qz(w) = {Qg}T éﬁ(w) (D.32b)
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APPENDIX E. CONTINUUM SOLUTION FOR THE INFINITE
FLUID DOMAIN OF CONSTANT DEPTH
E.1 First B.V.P.
The hydrodynamic pressure p(x,y,w) within the fluid domain of

Fig. £.1a arises from an acceleration ax(y) of the dam-fluid inter-

face a-b. The acceleration boundary condition at a-b is
3D S
37 (0ay.0) = - Taly) (E.1)

By a separation of variables, p{x,y,u) 1is expressed as

Bxy.0) = B (x0) B (ys0) (2)

where Ex(x,w) must satisfy

2_
d X 2 -
-<“p, =0 (E.3a)
x2
and ﬁy(y,w) must satisfy
&,
+ A\ p., = [} (E.3b)
dy Y

where «x = separation constant; and

Preceding page blank



208

g, (y) H

—i- 00

b X r

- 1

{a) ACCELERATION OF DAM-FLUID INTERFACE

Y
= 3

T«
¥ae

ay(x) = ay

(b) ACCELERATION OF RESERVOIR FLOOR

FIG. E.1 INFINITE FLUID DOMAIN OF CONSTANT DEPTH



2
AZ = KZ + Qf (€.4)
‘ C
Boundary conditions for Eq. E.3b are
oy -
6y(H,w) =0 (E.5b)

Equation E.3b together with the boundary conditions of Fq. E.5
defines an eigenvalue problem. The nth eigenfunction is denoted by

wn(y) and to satisfy Eq. E.3b must be of the form

-ilny ikny
U (¥) = A (w) e + 8 (0) e (E.6)

where An is the nth eigenvalue. Equation E.5a imposes the condi-

tion that

( An+um
B (w) = A {w)
)\n-wq

n n (E.7)

and substitution into Eq. E.6 with An(m) chosen as (An-mq)/ZAn

results in

-ix Y ix
.(Kn*wQ) e " 4 (An*mQ).e n

w(y) = 5 (E.8)
n

Y
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Application of the boundary condition of Eq. E.5b leads to the trans-
cendental equation
2ixH i -%n' weg

- )\n+mq

(E.9)

e

from which the eigenvalues are computed.
The eigenfunctions wn(y) and eigenvalues X~ from Eqs. E.8
and E.9 are complex valued and frequency dependent. The orthogonality

property of the eigenfunctions is summarized as

r
H(Ai- m2q2)4-iwq
' 5 if n=m
H 218
XGOSR (E.10)
0 0 if n#m

The separated pressure function for the y coordinate is expressed as

py(yaw) = ﬁn(w) ‘Pn(y), ne1,2,... (E'-H)

The « 1in Eq. E.4 can now take on only the values given by

= Hy + 1\)n (E.12)
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Since the infinite fluid domain is excited at x = 0, Bx(x,w) must
'decay with increasing x or travel from x =0 fo x =, Thus, it

is of the form

P (xs0) = e mon=1,2,... (E.13)

where the root with both Hy and Vi positive is taken in computing

¢, Trom Eq. E.12. Combining the above expressions for 5y(y,m) and

Ex(x,m) for all n leads to

p{X,¥.w) = (E.14)

ihi~1 8
o N
——
=
it
=
<
[4+]
=

Substitution of Eq. E.14 into the boundary condition Eq. E.1

results in

ny(w) ¥ (y) = T a, () (E.15)

By multiplying Eq. E.15 by wn(y) and integrating from y =0 to H

(using Eq. E.10), ﬁn(w) is found as

i . 2xn2 L
n(w) == — (E.16)
n 9 H(Aﬁ— w2q2)4-imq “n
H
where In = J ax(y) wn(y) dy. Substitution of Eg. E.16 into Eq. E.14
. &

leads to



212

' 2
3 ) o ? EKn S ) KX
PiXyY,w) = = — ¢ (y) e ' (E.17)
9051 HOC - uPq%) + ug Sn " |

5(x,y,m) is a bounded function of frequency and complex valued for
w > 0.
For q =0, An = (2n-1)w/2H and wn(y) = cos A Y (both real

valued and frequency independent). Equation E.17 reduces to

I - X

- w2 % n n
P(x,¥,w) g Z - Ccos Ay e (E.18)
n=1 "n
H
where In = J ax(y) cos kny dy. For w < knC, Ky = W3 and for
0
o> ACs k= iv . Thus, wn(y) either decays exponentially with
_unx '
increasing x at e (w < lnC) or is an undecaying harmonic
“Tvgx i
e (w > Anc). Also, for an eigenfrequency o = A C, K =0

and the ampiitude of wn(y) is infinite. The part of the amplitude

that approaches infinity is real below wﬁ and imaginary above.

E.2 Second B.Y.P.

The problem of'Fig. E.1b is one-dimensional in the vy
coordinate. The hydrodynamic pressure p(y,») arising from the
acceleration a; of the reservoir floor is governed by the one-

dimensional Helmholtz equation:
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dz- mz—
Lo+ =0 (E.19)
dy C
subject to boundary conditions
%g-(o,w) = - g-a§ + g P(0,u) (E.20)
p(Hsw) = 0 (E.21)
The general solution to Eq. E.19 is
] iy gy
Plysw) = A (w) e +B (0) e (E.22)

Application of the boundary conditions of Eqs. E.20 and E.21 and some

algebraic manipulation results in

sin %v(H'-y)

. oW
H + 1Cq sin E»H

5 Y
plyw) =55 (E.23)

L
y W
cos ¢

p(y,w) can also be determined using an eigenfunction expansion
employing the complex valued and frequency dependent eigenvalues An
and eigenfunctions _wn(y) resulting from the associated eigenproblem

of the first B.V.P. p{y.,w) 1is expressed as
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Ply,w) = Z] B (w) v (y) (E.24)
ne

where the coefficients B (w) are evaluated to satisfy the boundary
condition of Eq. E.20. This is possible through a variational approach

which requires minimization of a functional X(p) defined by

H

-2 2 : .

x(p) = J %-((%5) - %7-55) dy - %-a; p(0,w) + %‘1NQ(D(O,M))2
0 -\ B

(E.25)

Substituting Eq. E.24 into Eq. E.25 and setting to zero the derivative

of X(p) with respect to En(w) results in

. 2
2
= 1
B (w) =2 at n (E.26)
Y A e
n ?
C
Substitution of Eq. E.26 into Eq. E.24 leads to
2
. o ZA
- W ‘ 1
P(y,w) = a‘a; z 5 2[’\2 - — 7 wn(Y) (E.27)
n=1 H(An- w g )+ iwg AZ L w
n CZ

P(y.w) 1is a bounded function of frequency and complex valued for

w > 0.
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For q = 0, Eq. E.27 reduces to

Il

AL

s ¥z _1
p{y,w) = g H @ 5 COS ALY (E.28)

HE~18

where Ay = (2n-1)7w/2H and where cos Ay is the eigenfunction
wn(y), as in the first 8.V.P. The amplitude of wn(y) is real

valued and is unbounded at the eigenfrequency mﬁ = AnC with opposite

sign on each side.
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APPENDIX F. COMPUTATIONAL DETAILS

A1l computations of this report were carried out on a CDC 7600
computer with the Fortrén program EADFS (14). In this program, sub-
space_iteration {(17), modified for cdnsistent mass matrices {1), is
employed to solve the eigenproblem of the dam (Eq. 2.4/6.3) for the
first J .natﬁral frequencies wj and mode shapes ?j'

The computer program can handle either finite fluid domains or
infinite fluid domaihs of irregular geometry through so]ution of
Eq. 3.6/7.6 or Eq. 3.39/7.26 withtheaccelerations stated in Secs. 3.5
and 7.5. These equations are stored by a compacted, column-wise écheme
énd So]ved by modified Crout reduction (18). If water Compressibi]ity
is included but fluid-foundation interaction neglected {q=0), then
the fluid domain equat{ons have only real valued terms except in the
diagonal matrix K of Eq. 3;39/7}26 whose nth diagonal term € is
imaginary if o > wﬁ. Arithmetic for complex valued numbers is uéed
only where necessary in solving Eq. 3.39/7.26. If f]uid-foundation
interaction is included (q>0), then solutions to the fluid domain
equations are carried out entirely with complex arithmetic, The N
eigenvalues Aq and eigenvectors wﬁ of Eq. 3.39/7.26 are independent
of excitation frequency ‘w if q=0; in which case, they are deter-
mined from a sfng]e solution of the real-valued eigenproblem
Eq. 3.18/7.15 by the determinant search method (17). For q > 0, the
eigenproblem is frequency dépendent and isicomp]ex valued except at
w = 0 where the above solution is aphTicabTe. The X and y at
successively higher frequencies are computed by inverse vector itera-

tion with shifting (1%3) using the kn from the previous frequency to

Preceding pageblank W
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compute the shifts and the previous 1y, as trial vectors. The
incompressible water, rigid foundation solutions to Eq.‘3.6/7.6 or
Eq. 3.39/7.26 are independent of excitation frequency; the compressi-
bie water solution at w© = 0 is employed.

Table F.1 Tists the Central Processor times on the CDC 7600
to compute frequency response functions of J dam modes for the con-
crete gravity dam with both the finite fluid domain and the infinite
fluid domain with sloped floor (Figs. 4.1b and c) and for symmetric

and antisymmetric cases of Morrow Point Dam with infinité fluid domain
(Fig. 8.1). If the reservoir is empty, then solution of the eigen-
problem of the dam accounts for nearly all the computational effort.
C.P. times are listed in Tablie F.la.

With compressible water, nearly all the computational effort is
spent to solve Eq. 3.6/7.6 or to solve Eq. 3.39/7.26 (along with the
eigenproblem Eq. 3.18/7.15 if q>0) for the range of excitation
frequencies. Average C.P. times per frequency, both neglecting and
including fluid-foundation interaction, are listed in Table F.1b. The
total C.P. times also listed are based on the numbers of frequencie§
indicated which are sufficient to define the fregquency response func-
tions for J dam modes. Fewer frequencies are required when fluid-
foundation interaction is included because of the smoother response
curves.

| From Table F.1, the total C.P. times when the reservoir is |
empty are small compared to those when compressible water is included.
- Solution times with incompressible water would also be small because

only one solution of the fluid domain equations is required. The
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inclusion of fluid-foundation interaction increases the total computa-
.tional effort about 60% for the concrete gravity dam and about 600% for
Morrow Point Dam. The relatively large computational effort for Morrow
‘Point Dam when fluid-foundation interaction is included is due to the
time consuming solution of the complex valued, frequency dependent
eigenproblem Eq. 3.18/7.15 which accounts for most of the computational

effort.



C.P. Seconds | Components
Dam Number | 0 for of Ground | ¢ p ear
Eigensolution Motion e
concrete gravity | 126 6 2. XsY 2.
Morrow Point
(symmetric 220 |12 14, X,y 14.
' case)
Morrow Point
(antisymmetric 210 |12 13. z 13.
case)
a. NO WATER
Number | Number Components Fluid- Average Number Tota]
Dam Fluid Domain { Group 1| Group 2| N | of Ground | Foundation | C.P, Seconds Frequencies | C.P. Seconds
DOF DOF Motion Interaction | per Freguency 9 T

. . s neglected .0687 400 27.

concrete gravity. finite 120 - - X, ¥ TneTuded TR 500 vy
. infinite, , neglected .0611 300 18.

concrete gravity | syoneq floor | 6% 8 |8 i ncTuded 1797 150 27.
Morrow Point e 105 & |3 neglected .2553 400 102.

X, PR

(symetric infinite S y included 3.860 200 772.
Morrow Point - 50 1 - neglected 1775 400 7.
(antisymetric, | infintte. ‘ included 2.478 200 496.

b. COMPRESSIBLE WATER, NEGLECTING AND INCLUDING FLUID-FOUNDATION INTERACTION

TABLE F.1 SAMPLE SOLUTION TIMES FOR COMPUTING FREQUENCY RESPONSE FUNCTIONS OF J DAM MODES

. 0ed
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"Dynamic Behavior of a Multistory Triangular-Shaped Building,” by J. Petrovski, R.M. Stephen, E. Gartenbaum
and J.G. Bouwkamp - 197¢ (PB 273 273)A07

"Earthquake Induced beformations of Barth Dams,” by N. Serff, H.B. Seed, F.I, Makdisi & C.~Y. Chang - 1976
(PR 292 065)A08
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"Analysis and Design of Tube-Type Tall Building Structures,” by H. de Clercq and G.H. Powell - 1976 (PB 252 220}
alc

"Time and Frequency Domain Analysis of Three-Dimensional Ground Motions, San Fernando Earthguake,” by T. Kubo
and J. Penzien (PR 260 5S56)all

"gxpected Performance ¢f Uniform Building Code Design Masonry Structures,” by R.L. Mayes, Y. Omote, S.W. Chen
and R.W. Clough - 1976 {PB 270 098)a05

"Cyclic Shear Tests of Masonry Piers, volume 1 - Test Results," by R.L. Mayes, Y. Omote, R.W.
Clough = 1976 {PB 264 424)A06

"A Substructure Method for Earthquake Analysis of Structure - Soil Interaction," by J.A. Gutierrez and
A.K. Chopra.- 1976 (PB 257 783)A08

“Stabilization of Potentially Liquefiable Sand Deposits using Gravel Drain Systems," by H.B. Seed and
J.R. Booker - 1976 {PB 258 B820}A04

"Influence of Design and Analysis Assumptions on Computed Inelastic Response of Moderately Tall Frames," by
G.H. Powell and D.G. Row - 1976 (PB 271 409%)a06

“Sensitivity Analysis for Hysteretic Dynamic Systems: fTheory and Applications,” by D. Ray, K.3. Pister and
E. Polak - 1976 (PB 262 359}Aa04

"Coupled Lateral Torsional Response of Buildings to Cround Shaking," by C.L. Kan and A.K. Chopra -
1976 (PR 257 907)A0%

"Seismic Analyses of the Baneo de America,” by V.V. Berteys, $.A. Mahin and J.A. Hollings - 1976

"Reinforced Concrete Frame 2: Seismic Testing and Analytical Correlation," by R.W. Cloﬁgh and
J. Gidwani - 1976 (PB 261 323)A08

"Cyclic Shear Tests of Masonry Piers, Volume 2 - Analysis of Test Results,” by R.L. Mayes, Y. Omote
and R.W. Clough - 1876

"Structural Steel Bracing Systems: Behavior Under Cyelic Loading," by E.P. Popov, K. Takanashi and
C.W. Roeder =~ 1976 (PB 260 715)A05

"Bxperimental Model Studies on Seismic Response of High Curved Overcrossings,” by D. Williams and
W.G. Godden - 1976 (PB 269 548)}A08

"Effects of Non~Uniform Seismic Disturbances on the Dumbarton Bridge Replacement Structure,"” by
F. Baron and R.E. Hamati = 1976 {(PB 282 981)Als6

"Investigation of the Tnelastic Characteristics of a Single Story Steel Structure Using System
Identification and Shaking Table Experiments," by V.C. Matzen and H.D. McNiven - 1976 (PB 258 453)A07

"Capacity of Columns with Splice Imperfections,” by E.P. Popov, R.M. Stephen and R. Philbrick - 1976
{PB 260 378)A04

“Response ¢f the Clive View Hospital Main Building during the San Fernando Earthquake,” by S. A. Mahin,
V.V. Bertero, A.K. Chopra and R. Collins -~ 1976 (PB 271 425jal4

"“A Study on the Major Factors Influencing the Strength of Masonry Prisms,” by N.M. Mostaghel,
R.L. Mayes, R. W. Clough and S.W. Chen - 1976 {Not published)

“GADFLEA ~ A Computer Program for the Analysis of Pore Pressure Generation and Dissipation during
¢yclic or Earthquake Loading," by J.R. Bocker, M.S. Rahman and H.B, Seed - 1976 (PB 263 947)A04

"Seismic Safety Evaluation of a R/C School Building," by B. Bresler and J. Axley - 1976

"Correlative Investigations on Theoretical and Bxperimental pynamic Behavior of a Model Bridge
8tructure,” by X. Kawashimaz and J. Penzien - 1976 (PE 263 388)Al11l

"Earthquake Response of Coupled Shear Wall Buildings," by T. Srichatrapimuk - 1976 (PB 265 157}A07
“rensile Capacity of Partial Penetration Welds," by E.P. Popov and R.M. Stephen - 1976 (PB 262 899)203

"Analysis and Design of Numerical Integration Methods in Structural Dynamics,” by H.M. Hilber - 1976
(PB 264 410)R06

"Contribution of a Floor System to the Dynamic Characteristics of Reinforced Concrete Buildings," by
I.E. Malik and V.V. Bertero - 1976 (PB 272 247)al3

"The Effects of Seismic Disturbances on the Golden Gate Bridge," i i
ge," by F. Baron, M. Arikan d R.E. K ti -
1976 {PB 272 279)A009 ! ! an ama

"Infilled Frames in Earthquake Resistant Construction," by R.E. Klingner and V.V. Bertexo - 1976
{PB 265 892)A13
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"PLUSH - A Computer Program for Probabilistic Finite Element Analysis of Seismic Seil-Structure Inter-
action,” by M,P. Romo Crganista, J. Lysmer and H.B. Seed - 1977

"soil-structure Interaction Effects at the Humboldt Bay Power Plant in the Ferndale Farthquake of June
7, 1975," by J.E., Valera, H.B., Seed, C.F. Tsai and J. Lysmer ~ 1977 (PB 265 795)A04

"Influence of Sample Disturbance on Sand Response to Cyclic Loading,” by K. Mori, H.B. Seed and C.K.
Chan -~ 1977 (PB 287 352)a04

“Seismological Studies of Strong Motion Records," by J. Shoja-Taheri ~ 1977 (PB 269 655)Al0

"Testing Facility for Coupled-Shear Walls," by L. Li-Hyung, V.V, Berteroc and E.P. Popov - 1977

"Developing Methodologies for FEvaluating the Earthquake Safety of Ewxisting Buildings," by No. 1 -
B. Bresler:; No. 2 - B. Bresler, T. Okada and D. Zisling; No. 3 = T. Okada and B. Bresler; No. 4 - V.v.
Bertero and B, Bresler - 1977 (PB 267 354)A08

"a Literature Survey - Transverse Strength of Masonry Walls,” by Y. Omote, R.L. Mayes, S.W. Chen and
R.W, Clough - 1977 {pB 277 933)A07

"DRAIN-TABS: A Computer Program for Inelastic Earthquake Response of Three Dimensional Buildings," by
R. Guendelman-israel and G.H. Powell - 1977 (PB 270 ©93)2a07

“SUBWALL: A Special Purpose Finite Element Computer Program for Practical Elastic Analysis and Design
of Structural Walls with Substructure Option," by D.Q. Le, H, Peterson and E.P. Popov - 1977
(PB 270 567}A05

"Experimental Evaluation of Seismi¢ Design Methods for Broad Cylindrical Tanks,” by D.P. Clough
{(PB 272 280}al13

"Earthquake Engineering Research at Berkeley - 1976,% - 1977 (PB 273 507)}A09

"Automated Design of Earthguake Resistant Multistory Steel Building Frames," by N.D. Walker, Jr. - 1977
(PB 276 526)A09

"Concrete Confined by Rectangular Hoops Subjected to Axial Loads," by J. Vallenas, V.V. Bertero and
E.P. Popov - 1977 {PB 275 165)Aa06

"Seismic Strain Induced in the Ground buring Barthquakes,” by ¥. Sugimura - 1977 {PB 284 201)A04

"Bond Deterioration under Generalized Loading,® by V.V. Bertero, E.P. bPopov and §. Viwathanatepa - 1977

"Computer Aided Optimum Design of Ductile Reinforced Concrete Moment Resisting Frames," by S.W.
Zagajeski and V.V. Berterc - 1977 (PB 280 137)A07

"Earthquake Simulation Testing of a Stepping Frame with Energy-Abscrbing Devices," by J.M. Kelly and
D.F. Tsztoo - 1977 (PB 273 506)A04

"Inelastic Behavior of Eccentrically Braced Steel Frames under Cyclic Leadings," by C.W. Roeder and
E.P. Popov = 1977 (PB 275 526)Al5

YA Simplified Procedure for Estimating Barthquake-Induced Deformations in Dams and Embankments,” by F.1.
Makdisi and H.B. Seed - 1977 (PB 276 820)A04

"The Performance of Earth Dams during Earthquakes," by H.B. Seed, F.I. Makdisi and P. de &lba - 1977
(PB 276 821)A04

“"Dynamic Plastic Analysis Using Stress Resultant Finite Element Formulation," by P. Lukkunapvasit and
J.M. Kelly = 1977 (PB 275 453)A04

"preliminary Experimental study of Seismic Uplift of a Steel Frame," by R.W. Clough and A.A. Huckelbridge
1977 (PB 278 769)A08

"Earthquake Simulator Tests of a Nine-Story Steel Frame with Columns Allowed to Uplift,” by A.A.
Huckelbridge - 1977 (PB 277 944)a0%

"Nonlinear Soil-Structure Interaction of Skew Highway Bridges," by M.-C. Chen and J. Penzien =~ 1977
(PB 276 178)a07

"Seismic Analysis of an Offshore Structure Supported on Pile Foundations," by D.D.-N. Liou and J. Penzien
1977 (pB 283 180)A06

“Dynamic Stiffness Matrices for Homogeneous Viscoelastic Half-Planes," by G. Dasgupta and A.K, Chopra -
1977 (PB 279 654)R06

"A Practical Soft Story Earthquake Isolation System,” by J.M. Kelly, J.M. Eidinger and C.J. Derham -
1977 (PB 276 814}A07

"Seismic Safety of Bxisting Buildings and Incentives for Hazard Mitigation in San Francisco: An

Exploratoxy Study,” by A.J. Meltsnexr - 1977 (PB 281 970)A05

"Dynamic Analysis of Electrohydraulic Shaking Tables," by D, Rea, S. Abedi-Hayati and Y. Takahashi
1977 (PB 282 569)A04

"an Approach for Improving Seismic - Resistant Behavior of Reinforced Concrete Interior Joints," by
B. Galunic, V.V. Berterc and E.P. Popov -~ 1977 {PB 230 870}A06
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"The Development of Energy-Absorbing Devices for Aseismic Base Isolation Systems,” by J.M. Kelly and
D.F. Tsztoo - 1978 (PB 284 278}A04

"Effect of Tensile Prestrain on the Cyclic Response of Structural Steel Connections, by J.G. Bouwkamp
and A. Mukhcpadhyay - 1978

"Experimental Results of an Earthquake Isolation System using Natural Rubber Bearings,™ by J.M,
Eidinger and J.M. Kelly - 1978 {PB 281 686)A04

“Seismic Behavior of Tall Liquid Storage Tanks," by A. Niwa - 1978 (PB 284 017)Al4

"Hysteretic Behavior of Reinforced Concrete Columns Subjected to High Axial and Cyclic Shear Forces,”
by 3.W. Zagajeski, V.V. Berterc and J.G. Bouwkamp -~ 1978 (PB 283 858}Al3

"Inelastic Beam-Column Elements for the ANSR-I Program,"” by a&. Riahi, D.G. Row and G.H. Powell - 1978

"Studies of Structural Response to Earthguake Ground Motion,® by O.A. Lopez énd A.K. Chopra - 1978
(FB 282 720)A05

"A Laboratory Study of the Fluid-Structure Interaction ©f Submerged Tanks and Calssons in Earthquakes,"
by R.C. Byrd - 1978 (PB 284 957)n08

"Model for Evaluating Damageability of Structures," by I. Sakamoto and B, Bresler - 1978

"Seismic Performance of Nonstructural and Secondary Structural Elements,” by I. Sakamoto - 1978

"Mathematical Modelling of Hysteresis loops for Reinforced Concrete Columns," by 8. MNakata, T. Sproul
and J, Penzien - 1978

"Damageability in Existing Buildings," by T. Blejwas and B, Bresler - 1978

"Dynamic Behavior of a Pedestal Base Multistory Building,” by R.M. Stephen, E.L. Wilson, J.G. Bouwkamp
and M. Button - 1978 (PR 286 £50)A08

"Seismic Response of Bridges - Case Studies," by R.A. Imbsen, V. Nutt and J. Penzien - 1978

(PB 286 503)Al0

"A Substructure Technique for Nonlinear Static and Dynamic Analysis,“ by D.G. Row and G.H. Powell -
1978 (PB 288 (077}A1Q

"Seismic Risk Studies for San Francisco and for the Greater San Francisco Bay Area," by C.5. Oliveira -
1978

"Strength of Timber Roof Connections Subjected to Cyclic Loads,” by P. Glilkan, R.L. Mayes and R.W.
Clough - 1978

"Response of K-Braced Steel Frame Models to Lateral Loads," by J.G. Bouwkamp, R.M. étephen and
E.P. Popov - 1978

“Rational Design Methods for Light Equipment in Structures Subjected tu Ground Motion." by
J.L. Sackman &nd J.M. Kelly - 1978 {PB 292 357)A04

"Testing of a Wind Restraint for Aseismic Base Isclation,” by J.M, Kelly and D,E. Chitty - 1378
(PB 292 833)A03

"APOLLO - A Computer Program for the Analysis of Pore Pressure Generation and Dissipation in Horizontal
Sand Layers During Cyclic or Earthguake Loading,"™ by P.P. Martin and H.B. Seed -~ 1978 (PB 292 835}A04

"Optimal Design of an Earthguake Isolation System,” by M.A. Bhatti, K.S. Pister and E. Polak - 1978
(PB 294 735)A06 .

"MASH -~ A Computer Program for the Non-Linear Analysis of Vertically Propagating Shear Waves in
Horizontally Layered Deposits,”" by P.P, Martin and H.B, Seed - 1978 (PB 293 101)A05

“*Investigation of the Elastic Characteristic¢s of a Three Story Steel Frame Using System Identification,”
by T. Kaya and H.pD, McNiven -~ 1978

"Investigation of the Monlinear Characteristics of a Three-Story Steel Frame Using System
Identification,® by I. Kaya and H.D. McNiven - 1978

“studies of Strong Ground Motion in Taiwan,” by Y.M. Hsiung, B.A. Bolt and J. Penzien - 1978
"Cyclic Loading Tests of Masonry Single Piers: Volume 1 - Height to Width Ratioc of 2," by P.A. Hidalgo,
R.L, Mayes, H.D. McNiven and R.W. Clough - 1978

"Cyclic Loading Tests of Masonry Single Piers: Volume 2 - Height to Width Ratioc of 1," by 5.-W.J. Chen,
P.A. Hidalgo, R.L. Mayes, R.W. Clough and H.D. McNiven - 1978

"Analytical Procedures in Soil Dynamics," by J. Lysmer - 1978
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"Hysteretic Behavior of Lightweight Reinforced Concrete
Beam-Column Subassemblages,”™ by B. Forzani, E.P. Popov,
and V.V. Bertero - 1979

"The Development of a Mathematical Model to Predict the
Flexural Response of Reinforced Concrete Beams to Cyclic
loads, Using System Identification," by J.F. Stanton and
H.D. McNiven - 1979 ‘

"Linear and Nonlinear Earthquake Response of Simple
Torsionally Coupled Systems," by C.L. Kan and
A.K. Chopra - 1979

"A Mathematical Model of Masonry for Predicting Its
TLinear Seismic Response Characteristics,” by Y. Mengi
and H.D. McNiven - 1979

"Mechanical Behavior of Lightweight Concrete Confined
by Different Types of Lateral Reinforcement," by
M.A. Manrigue, V.V. Bertero and E.P, Popov - 1979

"Static Tilt Tests of a Tall Cylindrical Liquid Storage
Tank," by R.W. Clough and A. Niwa - 1979

*The Design of Steel Energy Absorbing Restrainers and
Their Incorporation Into Nuclear Power Plants for
Enhanced Safety: Volume 1 - Summary Report," by

P.N. Spencer, V.F. Zackay, and E.R. Parker - 1979

"The Design of Steel Energy Absorbing Restrainers and
Their Incorporation Into Nuclear Power Plants for
Enhanced sSafety: Volume 2 - The Development of Analyses
for Reactor System Piping," "Simple Systems" by

M.C. lLee, J. Penzien, A.K, Chopra, and K. Suzuki

"Complex Systems" by G.H. Powell, E.L. Wilson,R.W. Clough
and D.G. Row - 1979

*The Design of Steel Energy Absorbing Restrainers and
Their Incorporation Into Nuclear Power Plants for
Enhanced Safety: Volume 3 - Evaluation of Commerical
Steels," by W.S. Owen, R.M.N. Pelloux, R.Q. Ritchie,
M. Faral, T. Ohhashi, J. Toplosky, 5.J. Hartman, V.F.
Zackay, and E.R. Parker - 1979
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"The Design of Steel Energy Absorbing Restrainers and
Their Incorporation Into Nuclear Power Plants for
Enhanced Safety: Volume 4 - A Review of Energy-Absorbing
Devices," by J.M. Kelly and M.S. Skinner - 1979

"Conservatism In Summation Rules for Closely Spaced
Modes,"™ by J.M. Kelly and J.L, Sackman - 1979
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"Cyclic Loading Tests of Masonry Single Piers Volunme
3 - Height to Width Ratio of 0.5," by P.A. Hidalgo,
R.L. Mayes, H.D. McNiven and R.W. Clough -~ 1879

"Cyclic Behavior of Dense Coarse-Grained Materials in
Relation to the Seismic Stability of Dams," by N.G.
Banerjee, H.B., Seed and C.K. Chan - 1979

"Seismic Behavior of Reinforced Concrete Interior Beam—Column

Subassemblages," by S. Viwathanatepa, E.P. Popov and
V.V. Bertero -~ 1979

"Optimal Design of Localized Nonlinear Systems with
Dual Performance Criteria Under Earthguake Excitations,”
by M.A. Bhatti -~ 1979

"OPTDYN - A General Purpose Optimization Program for
Problems with or without Dynamic Constraints," by
M.A. Bhatti, E. Polak and K.S. Piste; - 1979

"ANSR-II, Analysis of Nonlinear Structural Response,
Users Manual,™ by D.P. Mondkar and G.H. Powell - 1979

"Soil Structure Interaction in Different Seismic
Environments,” A. Gomez-Masso, J. Lysmer, J.-C. Chen
and H.B. Seed -~ 1979

"ARMA Models for Earthquake Ground Motions," by M.K.
Chang, J.W. Kwiatkowski, R.F. Nau, R.M. Oliver and
K.S, Pister - 1979

"Hysteretic Behavior of Reinforced Concrete Structural
Walls," by J.M. Vallenas, V.V. Bertero and E.P.
Popov - 1979

"Studies on High-Frequency Vibrations of Buildings I:
The Column Effects,” by J. Lubliner - 1979

"Effects of Generalized Loadings on Bond Reinforcing Bars
Embedded in Confined Concrete Blocks,"™ by S. Viwathanatepa,
E.P. Popov and V.V, Bertero - 1979

"Shaking Table Study of Single-Story Masonry Houses,
Volume 1: Test Structures 1 and 2," by P. Gulkan,
R.L. Mayes and R.W. Clough ~ 1979

"Shaking Table Study of Single-Story Masonry Houses,
Volume 2: Test Structures 3 and 4," by P. Gilkan,
R.L. Mayes and R.W. Clough - 1979

"Shaking Table Study of Single-Story Masonry Houses,
Volume 3: Summary, Conclusions and Recommendations,"
by R.W. Clough, R.L. Mayes and P, Gulkan - 1979
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"Recommendations for a U.S.-Japan Cooperative Research
Program Utilizing Large-Scale Testing Facilities," by
U.S.-Japan Planning Group - 1979

"Earthguake-Induced Liquefaction Near Lake Amatitlan,
Guatemala,” by H.B. Seed, I. Arango, C.K., Chan,
A. Gomez-Masso and R. Grant de Ascoli - 1979

"Infill Panels: Their Influence on Seismic Response of
Buildings," by J.W. Axley and V.V. Bertero - 1979

"3D Truss Bar Element (Type 1) for the ANSR-II Program,"
by D.P. Mondkar and G.H. Powell -~ 1979

"2D Beam—Column Element (Type 5 - Parxallel Element
Theory) for the ANSR-1II Program," by D.G. Row, G.H. Powell
and D.P, Mondkar :

"3D Beam—~Column Element (Type 2 - Parallel Element
Theory) for the ANSR~II Program,” by A. Riahi, G.H. Powell
and D.P. Mondkar - 1979

"On Response of Structures to Stationary Excitation,”" by
A. Der Kiureghian - 1979

"Undisturbed Sampling and Cyclic Load Testing of Sands,"”
by S. Singh, H.B. Seed and C.X. Chan - 1979

"Interaction Effects of Simultaneous Torsional and
Compressional Cyclic Loading of Sand,” by P.M. Griffin
and W.N. Houston -~ 1979

"garthquake Response of Concrete Gravity Dams Including
Hydrodynamic and Foundation Interaction Effects," by
A.K. Chopra, P. Chakrabarti and S. Gupta - 1980

"Rocking Response of Rigid Blocks to Earthgquakes,”
by C.S. ¥im, A.K. Chopra and J. Penzien - 1980

"Optimum Inelastic Design of Seismic-Resistant Reinforced
Concrete Frame Structures,” by S.W. Zagajeski and V.V.
Bertero - 1980

"Effects of Amount and Arrangement of Wall-Panel
Reinforcement on Hysteretic Behavior of Reinforced
Concrete Walls," by R. Iliya and V.V. Berterc - 1980

"Shaking Table Research on Concrete Dam Models," by
A, Niwa and R.W. Clough = 1980

"piping With Energy Absorbing Restrainers: Parameter
Study on Small Systems," by G.H. Powell, C. OQughourlian
and J. Simons - 1980
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"Inelastic Torsional Response of Structures Subjected
to Farthguake Ground Motions,™ by Y. Yamazaki - 1980

"study of X~Braced Steel Frame Structures Under
Earthquake Simulation,” by Y. Ghanaat - 1980

"Hybrid Modelling of Soil-Structure Interaction,® by
S. Gupta, T.W. Lin, J. Penzien and C.S. ¥Yeh - 1980

"General applicability of a Nonlinear Model of a One
Story Steel Frame,"” by B.1. Sveinsson and H. McNiven - 1980

"A Green-Function Method for Wave Interaction with a
Submerged Body,"” by W. Kioka - 1980

"Hydrodynamic Pressure and Added Mass for Axisymmetric
Bodies," by F. Nilrat - 1980

"Treatment of Non-Linear Drag Forces Acting on Offshore
Platforms," by B.V. Dao and J. Penzien - 1980

"2D Plane/Axisymmetric Solid Element (Type 3 - Elastic
or Elastic-Perfectly Plastic) for the ANSR-II Program,”
by D.P. Mondkar and G.H. Powell - 1980

"A Response Spectrum Method for Random Vibrations," by
A. Der Kiureghian ~ 1980

"Cyclic Inelastic Buckling of Tubular Steel Braces,™ by
V.A. Zayas, E.P. Popov and S.A. Mahin - June 1980

"Dynamic Response of Simple Arch Dams Including Hydrodynamic
Interaction,” by C.S. Porter and A.K. Chopra - July 1980

"Experimental Testing of a Friction Damped Aseismic
Base Isclation System with Fail-Safe Characteristics,”
by J.M. Kelly, K.E. Beucke and M.8. Skinner - July 1980

"The Design of Steel Energy-Ahsorbing Restrainers and their

Incorporation into Nuclear Power Plants for Enhanced Safety
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