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ABSTRACT

Cyclic axial loading experiments simulating severe seismic

conditions are described for twenty-four structural steel struts.

The size and shape of the specimens were those typically employed

as braces in small to moderately large steel buildings. The cross­

sectional geometries of the specimens were chosen, however, so as

to also model the larger, heavier struts. Six of the twenty-four

members were pinned at one end and fixed at the other, while the

remaining eighteen were pinned at both ends. The range of cross­

sectional shapes included wide flanges, double-angles, double­

channels, structural tees, thin and thick-walled pipes, and thin

and thick-walled square tubes.

The responses of the specimens are compared and evaluated with

special attention paid to the effects of cross-sectional shape, end

conditions, and slenderness ratio using hysteretic envelopes. While

investigating the major parameters that influence a member's per­

formance under cyclic loading, some important properties were re­

cognized and quantified. These findings resulted in the development

of reduction factors which can account for the Bauschinger effect

and initial curvature of struts. These factors can be used with an

AISC code determined load to estimate the deteriorating compressive

capacity of a strut during a few consecutive cycles of full inelastic

load reversals.

Based on these experiments some design recommendations are made

for built-up members likely to experience severe load reversals.

It is suggested that these recommendations be considered for in­

clusion in seismic codes.
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1. INTRODUCTION

1. 1 General

Moment-resisting structural steel frames are widely used in

the design of buildings in seismically active regions. Their past

performance in well designed structures appears to be satisfactory.

However, some of the more recent experience during severe earth­

quakes suggests that stiffer buildings possessing good ductility,

perform particularly well, developing limited non-structural damage

[l]~ Further, it is often economically infeasible to use moment­

resisting frames to resist lateral forces along the narrow widths

of a building. In such applications the use of diagonally braced

steel frames provides a practical alternative. However, the

information on the behavior of braces under severe load reversals

is very limited, and for this reason there is hesitancy on the

part of some engineers to employ them. This investigation tries

to provide some of the needed data. No attempt is made to consider

other framing systems, such as eccentric bracing [2], which can

be used as alternative solutions.

Since the overall performance of a conventionally braced frame

depends mainly on the performance of the brace, the focus of this

report is on the bracing member itself. During a severe earthquake

the lateral deflections of the frame cause the brace to alternately

stretch and buckle. It is this action, the hysteretic behavior of

the brace, that is responsible for the energy absorption and dissipa­

tion, and in large measure for the performance of a frame.

*Bracketed numbers indicate references listed at the end.
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1.2 Objective

This research program experimentally evaluates the hystere­

tic behavior of axially loaded steel struts having cross-sectional

shapes and slenderness ratios frequently encountered in practice.

All test specimens were made from cOl1111ercially available steel such

as used in building construction. The results of this investigation

are compared with conventional design procedures for aXially loaded

members based on current code [3]. Some suggestions for analytic

prediction of deteriorating capacity of struts due to severe cycl ic

loading are advanced.

1.3 Scope

A total of twenty-four specimens were subjected to cyclic

quasi-statically applied axial loads simulating earthquake effects.

The structural shapes tested were wide-flanges, double-angles,

double-channels, and both thick and thin round and square tubes.

The specimen sections were representative of those used in smaller

structures, and were so selected that they simulated some frequently

used sections of ·larger members. The material for all rolled sec­

tions conformed to ASTM specifications for A36 steel; for pipes,

to A53 Grade B steel; for square tubes, to A501 steel. Eighteen

of the specimens were pinned at both ends and had slenderness ratios

of 40, 80 and 120; the remaining six specimens, pinned at one end

and fixed at the other, had slenderness ratios of 40 and 80.

- 2 -



2. SPECIMEN SELECTION

Each of the twenty-four test specimens was selected from

structural steel shapes which are frequently used as brace elements

in design. Since the efficiency of a brace under compressive load is

reduced by a tendency to buckle locally, a typical brace element is a

compact section and design was generally consistent with this

criterion. As a group, the specimens represent typical braces of

smaller sizes used in practice. In addition, they serve as models

for the larger sections.

2.1 Selection

Individual specimens were chosen from standard structural

steel shapes primarily on the basis of two criteria: first, that

the slenderness ratios of the test specimens be appropriate to those

used in practice; and second, that a group of member shapes and

proportions be selected which adequately represent the great variety

of brace and strut members in current use.

Since the effective slenderness ratio Kt/r of a compression

member has been shown to be the single most important parameter in

determining its hysteretic behavior [4,5,6,7,8 and 9], care was

taken that the chosen Kt/r's allow the specimens to be compared

with one another as well as with members used in practice. A

common slenderness ratio of 80 was used for specimens within

each structural shape category to allow for a direct comparison

of results due to variation in shape. In addition, slenderness

ratios of 40, close to the range of plastic action, and 120,

- 3 -



very near the elastic buckling range, were assigned to both wide­

flange and double-angle sections.

On the basis of its frequency and importance in applications,

the wide flange section was chosen as the basic test shape and is

consequently represented by nine of the twenty-four specimens.

Eight of the nine were selected to be compact sections as defined

by the AISC specifications [3J, whereas one, a W6x15.5, was ex­

pected to exhibit local plate buckling. Four of the wide flange

struts were W6x20's. All were cut from the same piece of mill

stock; three of them had a slenderness ratio of 80 and one a K~/r

of 40. The W6x20 shape was emphasized among the wide-flange speci­

mens because its proportions are similar to those of the widely used

larger W10 and W14 sections. The K~/r's for the W6x15.5 and

Wx625 shapes were 40. The three sizes W6x25, W6x20 and W6x15.5

together comprise a complete AISC weight group and, either themselves

or as models, define a desirable range of wide-flange strut sections.

Three additional wide-flange specimens were selected, a W8x20

(K~/r of 120), a W6x16 (K~/r of 120) and a W5x16 (K~/r of 80). The

first two have low bid ratios resulting in narrow cross-sections and

slender members which, though lower in the initial buckling load than

sections of the same weight which are square, might be expected to

exhibit elastic behavior over a larger number of cycles than the more

compact shapes.

The fabricated double-angle and double-channel sections are

traditionally two of the most common of all brace shapes. Placed
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back-to-back and usually spaced apart by the width of a gusset

plate, the two individual angles or channels are fastened, or

lI stitched ll together at intervals so that the pair of elements

act as a single member. Whether or not the action of such a

member as a whole, or the action of the angles or channels as

individual components, controls the behavior, makes the built-up

section one of particular interest.

Five built-up specimens were selected: four double­

angles and one double~channel. The largest double-angle specimens,

2-L6x3~x3/8 with long legs back-to-back, and the only double­

channel section, 2-C 8xll.5, had virtually the same cross-sectional

area, but were assigned slenderness ratios of 80 and 120, respect­

ively. Among the double-angle specimens, the two 2-L 6X~2X3/8

members were chosen as representative of the more slender (defined

by the ratio of long leg length to short leg length) double-angle

sections most commonly in use, and were expected to buckle about

the V-axis (AISC coordinate system). The second kind of a double­

angle specimen, 2-L 5x3~x3/8 with long legs back-to-back and a

Kt/r of 40, also was to buckle about its V-axis. The third kind.

of a double-angle specimen selected 2-L 4x3~x3/8 with long legs

back-to-back, and a Kt/r of 80, represents a section which is

more square, and which would buckle about the X-axis. All five

of these specimens, double-angle and double-channel alike, were

made of plates thick enough to require, according to the AISC

specifications [3], little or no axial stress reduction. Thus,
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they were expected to exhibit little or no local plate buckling

under the initial compression loading. All double-angle and double­

channels were placed back-to-back and fastened, or "stitched" together

at intervals. For Strut 8 a "stitch" was placed at mid-length; for

all other members the stitches were located at third-points.

Similar in overall cross-sectional shape to the double-angle,

but more economical of material and fabrication time, the structural

tee is becoming increasingly popular for brace and strut applications.

Two tee specimens were selected, both split from Wsections, both

of the same area, and both with a K2jr of 80. The primary diff­

erence between the two was that the first specimen shape, a WT 5x22.5,

is relatively square in cross-section and would buckle naturally

about the X-axis, while the other tee shape, a WT 8x22.5, is more slen­

der in shape (the web plate much taller than the flange width requiring

an axial stress reduction factor of Qs = 0.908), and woula

be expected to buckle about the V-axis. Most structural tees

in use today can be expected to fall somewhere between these two

extremes.

Like the built-up sections above, tubular members are

also traditionally popular choices for brace and strut applications.

Consequently, the fourth and last group of specimens selected were

tubular in shape, five round and three square. Two identical circu­

lar tube specimens of 4 in. (100 mm) standard weight pipe were

chosen to allow for comparisons based on different loading hist-
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aries. The third specimen; a 4 in. (100 rnm) extra strong pipe was

chosen for its thicker wall, and a 3~ in. (89 rnm) standard weight pipe

was used for the fixed-pinned specimen. All three square tubular

specimens were 4 x 4 in. (100 x 100 mm). Two of them had a ~ in.

(6 rmn) wall-thickness, and one!2 in. (13 mm). These specimens were

chosen to illustrate the general behavior of tubes in cyclic loading

in comparison with the specimens of other shapes.

The complete program consisted of testing twenty-four

specimens: nine wide-flanges, four double-angles, one double-channel,

two structural tees, and five circular and three square tubes.

Table 1 lists each specimen by structural shape, slenderness ratio,

overall length and end conditions. The structural sizes were as

selected, and the specimen lengths were implicit within the selected

slenderness ratios. All rolled sections were of A36 steel, whereas

all pipes were of A53 Grade B steel, and tubes of A50I steel.

A companion report, Ref. 10, details the behavior under

cyclic loading of thin-walled circular tubes with the diameter to

wall-thickness ratios of 33 and 48. Pipes of such geometry are gener­

ally used in fixed offshore platform construction.

2.2 Design of Specimens

Eighteen of the test specimens were designed to be pinned at

both ends to correspond to the fundamental case of boundary conditions

for a column (Table 1). To obtain some insight on the effect of

other boundary conditions, six additional test specimens were pinned

at one end and fixed at the other. Five of the specimens had a

K9-/r of 40, fifteen had a K9-jr of 80, and 4 had a KMr of 120.

- 7 -



The basic specimens were made-up as shown in Figs. 1, 2 and 3 with

the test sections welded to l~ to 2~ in. (38 to 64 mm) thick end

plates by means of full-penetration welds. Members made-up of double

angles and channels had 3/8 in. (9.5 mm) thick welded on spacers at

third-points of a member's length~ The end plates of the strut

assembly were attached either to the clevises or to the test fixture

by means of high strength bolts as shown diagrammatically in Fig. 4.

In a fully assembled strut, the pins were oriented perpendicularly to

the plane of buckling. A detail of a pinned connection is shown in

Fig. 5. Further details may be seen from Fig. 6. Note that the large

pins rotate inside large roller bearings.

Since in relation to a test section the end plates and

clevises are very large, these regions can be considered as infinitely

rigid. However, as can be shown using a solution given by von Karman

and Biot [11], this effect on the buckling load capacity of an

elastic column is small providing the regions of large column stiffness

at the ends are small. With this in mind, the clevises were made as

short as possible with a dimension of 7 in. (180 rom) from the center

of a pin to the face of a mating flange. With this precaution the

anticipated error from this source was considered to be negligible.

Similarly, because of the conservative choice of bolt sizes in the

connecting joint, it was estimated that generally less than 4% error

would be introduced during the tensile part of a cycle. Four or six

l~ in. (32 mm) diameter A490 high-strength bolts were used in the

joints corresponding to the number of holes shown in the end plates

in Figs. 1,2 and 3.
*One spacer at mid-length was used for Strut 8.
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3. TESTING PROCEDURE

The testing arrangement was designed for performing a series

of quasi-static, cyclic tests of axially loaded members. The main

considerations were to provide for an adequate testing capacity in

terms of both load and geometry, to have a convenient system for

monitoring a specimens' behavior, and to establish a testing routine

that would require only minimal adjustment from specimen to specimen.

These considerations translate, in terms of the actual testing require­

ments into three distinct concerns: equipment and its arrangements,

instrumentation and data acquisition, and the testing procedure.

3.1 Testing Equipment

The testing equipment can be subdivided by its function into

three types: the loading system, the monitoring devices and ancillary

recording equipment (discussed in 3.2), and the specimen support and

system alignment devices.

The general testing arrangement for the struts with pinned

ends is shown in Fig. 7, and for those with one end pinned and the

other fixed in Fig. 8. In either case, a specimen was loaded at the

"head" end by a Sheffer heavy duty hydraulic cylinder with a 14 in.

(356 mm) bore and a 7 in. (176 mm) rod diameter. The cylinder was

actuated by a 3000 psi (20 MPa) oil pressure which enabled the cylinder

to develop a maximum tensile force of 345 kips (1.53 MN) and a compressive

force of 460 kips (2.05 MN). The rated speed of cylinder travel was

approximately 0.33 in./sec (8.4 mm/sec) on the tension stroke, and

about 0.43 in./sec (11 mm/sec) on the compression stroke. These

travel speeds were seldom approached during the testing.
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In either arrangement the loading cylinder was pin-mounted to

the inner side of a massive concrete reaction block. Because of the

vertical pin mounting at the stationary end of the cylinder~ the

cylinder was free to swivel in the horizontal plane; the vertical

movement was restrained. At the active end of the cylinder, a 450

kip (2.00 MN) load cell. was attached to the head clevis.

The head clevis was laterally restrained by a yoke attached

to a sidearm which extended to a reaction frame where it was held by a

pin. The orientation of the sidearm was roughly perpendicular to the

initial direction of the cylinder axis. For struts with pinned ends

(Fig. 7), the foot clevis was bolted either to a steel foot frame or

directly to a heavy steel girder attached to the concrete reaction

block, depending on the overall length requirements of the particular

specimen to be tested. For the fixed-pinned struts (Fig. 8), the fixed

end of a specimen was bolted directly to either a steel foot frame or to

a steel girder. This arrangement of the apparatus and the design of the

specimens caused buckling of the struts to occur predominantly in the

horizontal plane.,

All steel to concrete connections were made using high

strength prestressing rods. All steel to steel connections were made

with high strength structural bolts, l~ in. (32mm) diameter A490

bolts in the testing train and smaller A325 bolts elsewhere.

3.2 Instrumentation

The instrumentation consisted of two basic categories: those

measuring the response of a specimen and those recording the information.

On a macro level, linearly variable displacement transducer (LVDT)

was used to measure axial displacement, and a potentiometer (a

position transducer) was used to monitor horizontal lateral dis­
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placement at the theoretical locations of plastic hinges, Fig. 9. On

some of the fixed-pinned specimens, where out of plane buckling was

a possibility, vertical lateral displacement was also measured. The

axial load, and in the case of the fixed-pinned members, the axial

and shear forces were measured via load cells attached to the loading

ram and to the horizontal sidearm. The location of these devices is

shown in Figs. 7, 8 and 9. On a macro scale photogrammetry was also

employed. Self adhering aluminum foil targets were evenly spaced

longitudinally on the top of members along their centroidal axes

(Fig. 10), and a camera was stationed on an overhead crane approximately

twenty feet above the specimen. To reduce temperature and moisture

effects glass plate film was used. Pictures were taken at predetermined

points in a loading cycle. After developing the plates, they were read

on a x-v comparator, and, through the use of a CDC 6400 computer and

a Cal Comp plotter, both the actual and the normalized deflected shapes

were plotted. These data were obtained to provide some insight with

regards to plastic hinge development and information on member curva­

ture.

In an effort to better grasp the fundamental behavior of

these members under cyclic loading, and to provide useful data for

future finite element modeling, the specimens were also gaged for

micro level measurements. For this purpose SR-4 strain gages, as

many as twenty-five on some specimens, were placed at strategic

points along the member. For example, as can be seen from Fig. 4

for Strut 20, a high concentration of strain gages was provided at

the locations of the theoretical plastic hinges. In every case at

least two gages were placed on either side of the specimen at the
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anticipated hinge location and usually additional gages were attached

adjacent to the probable hinge. Strain gage data were expected to

yield information regarding: strain histories of specific points,

plastic hinge formation and possible migration, determination of overall

and local buckling phenomena, and section curvature histories.

The recording equipment required calibration and constant

attention to insure good accuracy of the results. The instruments

were calibrated both before and after each test and comparisons were

made. The differences were found to be within the tolerances of the

recording or measuring systems themselves (LVDT: ~ 0.0006 in. (15 ~mm),

Load Cell: ~ 0.5%) indicating that no adjustments in the data were

necessary. The information obtained from the axial load cell and

all LVDT's was plotted directly by X-V recorders, with axial load

as the ordinate and either axial or lateral displacement at the abcissa.

These plots constituted the raw hysteretic loop data for the specimens.

In addtion to the X-V recorders, a high speed data acquisition

system was employed. Leads from all LVDT's, load cells and strain

gages were connected to a conso1 and an operator could constantly

monitor the developing information. Upon command, instantaneous readings

were stored on a high speed disk to be transferred to magnetic tape at

a later date. During the test,se1ected channels were displayed on

a cathode ray viewing screen which told an observer at a glance the

condition of the test specimen and related equipment. After testing,

plots of one channel vs. another were displayed on the screen and

decisions could be made regarding the most desirable plots.

Unlike the X-V recorders, which can record continuously,

the photogrammetric and high speed scanner data can be obtained only
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at discrete points. This necessitated recording with the scanner data

points at approximately every 25 kips (lOa kN) along the elastic portions

of the hysteresis curve, and every 0.02 in. (0.5 mm) axial displacement

during the buckling and every 0.1 in. (2.5 mm) axial displacement in

the post buckling region. Figure 11 shows an X-V continuous recorder

plot for one cycle together with dots obtained from the scanner data.

As can be seen, the agreement between the two methods at obtaining

data is quite satisfactory.

The intention of the photogrammetric phase of an experiment

was to capture the overall deflected shape of a member. The photo­

graphs were taken at pre-selected points when the application of an

axial force was temporarily halted. These points are identified in

Fig. 12 and are referenced in the upper right hand corner of Figs. 13

and 14, where the results of a typical sequence of deflected shapes

for a fixed-pinned specimen are given. The important observation to

make from this data is the large member curvatures (camber or sweep)

which develop during the course of testing.

3.3 Testing

The tests were done in such a way as to allow for comparison

among the twenty four specimens, while at the same time, maintaining

a realistic representation of the loading histories which a brace may

experience in an actual structure. All specimens were subjected to a

series of quasi-static, axially applied, displacement and load

reversal cycles, or what has become known for its graphic description,

as a "push-pull" test. Most of the specimens were given a compressive

load first, but for comparison purposes some received an initial

tensile load. All members experienced an elastic cycle initially,
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the purpose of which was twofold: it allowed for an instrumentation

calibration check using Young's modulus as a basis, and it provided a

logical point for making a final review of the specimen and set-up

before beginning. As a written explaination of the testing procedure

is given in the text, it may be helpful to refer from time to time to

Figs. 12 and 15. Figure 15 gives the pre-selected loading history

for Strut 21 and is typical of all specimens. Assuming a compressive

cycle initially, the test would run as follows: Starting at zero

load (point A in Fig. 12) a picture would be taken and a scanner

reading recorded. Following this, a compressive load would be

applied, with the jack on a displacement control, until the

initiation of buckling (point B) is reached. If a photograph were

scheduled it would be taken at this time. The specimen would then

continue to be compressed until the pre-selected maximum displacement

was reached. Once again, if a photograph were scheduled it would

be taken. At this point, the jack direction would be reversed allowing

the load to relax to a condition of zero load (point D) following

a maximum negative displacement. Next, the specimen would be loaded

in tension to a positive displacement equal to the negative one. At

this position (point E) the load once again is relaxed to zero (point F)

completing the cycle. The approach of having the maximum positive (tensile)

displacement equal the maximum negative (compressive) displacement was

adhered to in this series of experiments.

The resulting axial load vs. axial displacement P-o curves,

as well as the axial load vs. lateral displacement P-b curves, are given

for all specimens in Appendix B. Photographs shown in Figs. 16 and 17

show some typical tests in progress; Figs. 18, 19 and 20 show selected

specimens after testing.

- 14 -



4. MATERIAL PROPERTIES

The actual behavior of a structural element is highly depend­

ent on the properties of the material from which it is made. It is

appropriate. therefore. to precede the discussion of the experimental

results with an examination of the material properties of the steels

used in these experiments. The steels eJ11l10yed in the test specimens

conformed to the following ASTM specifications: A36 for rolled shapes.

A 53 Grade B for pipes. and A501 for square tubes.

4.1 Monotonic Tests

Tension tests of coupons taken from the specimen stubs were

performed for all specimen types. For both the round and square tubes,

coupons were taken from positions 90° and 1800 from the weld 1ine,

whereas three coupons were extracted from the wide flange specimens,

one from the web and one from each di ametri cally opposed fl ange. For

the remaining specimens one coupon was taken from the web and one

from the flange. Details and locations of the coupons are shown in

Figs. 21 and 22. A clip gage fitted with two lVDT's and having a

gage length of 2 in. (50 mm) was attached to the gage portion of the

coupon. The entire set-up (coupon with a clip gage) was inserted

intQ a 120 kip (530 kN) capacity Baldwin testing machine and pulled

to failure. The corresponding stress-strain curve was plotted on

X-V recorders, and the results for each shape used are displayed in

Appendix A.

The most notable observations to be made are concerned with

the yield strength and the distinctness of the yield point. Keeping

in mind that all specimens were of what is commonly referred to as mild
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*Yie1d points for pipes and tubes based on the 0.2% offset method.

- 16 -



5. HYSTERETIC PROPERTIES OF STRUTS

The most sought after results from cyclic experiments

involving struts subjected to repeated buckling and stretching relate

the applied axial force P to the axial displacement o. The P-o

curves, which trace out the hysteretic loops for each member are

shown in Appendix B. In this chapter the performance of specimens

will be examined relative to the AISC specifications as well as to

each other. In addition, the bases for determining the maximum

compressive value that a specimen can reach in anyone cycle will be

pointed out.

One primary observation for design consideration is the

fact that once a strut buckles inelastically, during subsequent

cycles the same capacity of a member in compression cannot be

reached. This can be noted repeatedly from the curves of Appendix

B, and can be extended to include a statement that during the

consecutive inelastic cycles the maximum compressive loads tend to

decrease. This is in sharp contrast with the ability of a member

to resist tension, which remains essentially constant regardless of

previous cyclic history.

5.1 Initial Buckling Loads

In relating experiment with design, the major issue is

the comparison of the carrying capacity of a strut to existing codes

and specifications. For predicting the initial buckling capacity,

Eq. 1.5-1 of the AISC Specifications [3], without the factor of

safety, was used. The results of this comparison for all struts are

given in Table 2. Since in practice, the yield stress for the steels

- 17 -



used in these experiments would usually be assumed to be 36 ksi (250 MPa),

acolJlParisonQf the specimens based on this value is included. A

comparison of the strut buckling capacities using the AISC formula

with the experimentally determined yield strengths is also given.

Some of the yield strengths were found from the coupon tests, others

from observing the first tensile yield in a strut test. Whereas

the buckling capacity of most of the struts on either one of the

above bases exceed the capacity predicted by the AISC formula,

there are notable exceptions. The reduced capacities of struts can

be attributed to two principal causes:

(a) Excessive initial curvature. This applies to Struts 1,2,10 and
.

11, and

(b) Non-classical material properties. The steel for tubes and

especially for pipes tends to exhibit a poorly defined yield

point and the truly elastic region is limited in its extent.

Instead, the characteristic stress-strain curves are

rounded. Very similar behavior is observed for steel on

specimens initially subjected to a tensile yield. These

effects contributed to the lowering of the buckling capacities

of struts 5, 7, 17,22 and 24.

On making the necessary adjustments to account for the above

two effects a good agreement between the experimental and the calcul­

ated buckling capacities of struts was obtained. A procedure for

making a correction for the initial bow in a strut will be discussed

in the next chapter. The reduction in the initial column capacity due

to the non-classical material properties of mild steel will be

commented upon here. Specimen 24 made of a 3~ in. (90 mm) standard
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steel pipe was selected to illustrate this behavior.

Figure 26 shows the results of a monotonic tension test

for a coupon cut from Strut 24. Instead of a definite yield point,

the behavior of this material is similar to that of a steel with a

previous strain history (see Figs. 23 through 25) in that the

tangent modulus Et progressively attains ever smaller values than

the elastic modulus E. For a theoretical investigation this suggests

the use of the tangent modulus in the generalized Euler formula for

predicting the initial buckling load. Using this approach, the

predicted buckling load for Strut 24 is found to be 81 kips (360 kN)

(Fig. 27). This result compares favorably with the experimentally

determined load. The same approach can be used to explain the low

value of the initial buckling load for Strut 5. While Struts 3 and

4, identical to Strut 5, were able to attain their predicted load

capacities, Strut 5 reached only about 75% of the expected buckling

load. The difference among these members resulted from the fact

that Strut 5 was caused to yield in tension prior to the applic­

ation of the initial compressive force. This induced the development

of the Bauschinger effect in the material, resulting in a stress­

strain diagram resembling that shown in Fig. 26. By applying the

tangent modulus approach to this case, the predicted (adjusted)

capacity of the strut comes near to its experimentally determined

value. A procedure for applying this approach for cyclic loadings

to account for the effect of material properties will be discussed in

the next chapter.
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5.2 Normalized Hysteretic Curves

To make comparisons among the large variety of specimens

used in these experiments, as well as to determine the influence of

the two kinds of bo~ndary conditions employed, the P-o curves were

normalized for the purposes of a persual. Appendix C contains such

curves for all but Strut 1. To obtain them, the applied force P

for a given member was divined by its tensile yield capacity, Py'

and the axial displacement 0 by the displacement 0 at yield. In
y

the form of equations, the normalizing quantities are

(1)

(2)and

p ::: (} A
y y

o ::: E 5/,
Y .Y s

For a given member, the values of the yield stress (}y and

yield strain Ey were obtained by averaging the coupon test data.

Where yield plateaus were not clearly defined, a 0.2% offset was used

to determine the required quantities. In Eq.l, A defines the cross­

sectional area of a member; in Eq. 2, 5/,s is the length of a member

between the heavy end plates, i.e., it corresponds to the length

of a strut which contributes most to the axial deformation. As is

customary, the ratios P/Py were used as ordinates, and o/oy as ab­

cissas.

The normalized hysteretic curves exhibit the results in a

very meaningful manner by eliminating the effects of variations in

material property, cross-sectional area, and specimen length. These

graphs clearly bring out the striking effect of large slenderness

ratios in reducing the compressive capacity of a strut in relation

to its tensile strength.
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5.3 Normalized Hysteretic Envelopes

Because of an infinite variety of cyclic patterns that may

be applied to a strut, it is convenient to make use of envelopes for

a family of hysteretic loops obtained in an experiment. For a gen­

eral comparison, envelopes for normalized hysteric loops are parti­

cularly useful. Although, for identical struts subjected only to

different loading patterns, the use of normalized hysteretic loops

is not essential. Since, however, in this discussion comparisons

include the effects of boundary conditions, cross-sectional shapes,

and slenderness ratios, for uniformity all comparisons are made us­

ing normalized plots.

As an example, consider the envelope for the normalized

hysteretic loops for two identical Struts 3 and 4 shown in Fig. 28.

As can be seen from this diagram, the shape of the envelope appears

to be unaffected by the different loading hi stories of the two

struts. This is true, however, only because the specimens experi­

enced similar loading patterns. Both specimens were initially com­

pressed, and each initially attained the maximum buckling load,

which was in agreement with the conventional AISC formula. By con­

trast, an identical strut, which initially was caused to yield in

tension, reached only about 75% of this capacity, Fig. 29. This is

directly attributable to the Bauschinger effect as a result of which

the stress-strain diagram in compression is significantly rounded,

reducing the elastic range. The maximum compressive load of 152 kips

(676 kN) with the associated axial displacement for Strut 5 fall s

outside the envelope of Fig. 28. This is due to the fact that the

envelope drawn there was established from the tests which began with
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the application of a compressive cycle. Moreover, at the beginning

of a second hysteretic loop (such as at point c in Fig. 29), the

specimen's cumulative plastic strain was equal to the distances ab

plus bc along the abcissa. By contrast, at point d, the beginning

of the second cycle for Specimen 5, the cumulative plastic strain

is given by the much smaller distance ad. If these differences in

the history of loading are taken into account, the maximum first

cycle compression load for Strut 5 can be made to lie on the envelope

for Struts 3 and 4. The deterioration of the buckling capacity of a

strut due to previous plastic working of the material is directly

tied in with the Bauschinger effect. An approximate procedure for

predicting the buckl ing capacity of struts subjected to random load­

ings is discussed in the next chapter.

Another illustration of an envelope for two 4 in. (100 mrn)

standard steel pipes subjected to similar cyclic loading is shown

in Fig. 30.

5.4 Effect of Slenderness Ratio on Hysteretic Loops

An examination of the hysteretic loops for different struts

given in the Appendices Band C very clearly shows the dominant in­

fluence of the slenderness ratio on the shape of the hysteretic

loops. The areas enclosed by such loops, a measure of the energy

absorption and dissipation capacity of a member, is superior for

the stocky members. In the limit, i.e., for small values of K~/r,

such loops resemble those of the material itself; the slender mem­

bers generate hysteretic loops that are strongly biased (see the

loops for Struts 6 and 11). The same conclusions were reached by

a number of other investigators [4,5,6,7 ,8J. These concl usions
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can be high1 ighted by referring to Figs. 31 and 32 where nonnalized

hysteretic envelopes for selected struts are superposed. Whether

one considers the struts with pinned ends, or the ones with fixed­

pinned conditions at the boundaries, the struts with the smaller

slenderness ratios perform better.

It is important to note that the more slender a strut, the

larger is the ratio between its capacity in tension to that in com~

pression. As can be seen from Fig. 31, this effect is more pro­

nounced in the later cycles. For example, the initial buckling

capacities of Struts 2 and 3 were very nearly alike, but upon re­

peated load reversals the maximum compressive loads for the more

slender Strut 3 deteriorated more rapidly. The same observation

can be made regarding Struts 19 and 23 whose normalized hysteretic

loops are shown in Fig. 32.

5.5 Effect of Boundary Conditions

Virtually all available analytical and experimental infor­

mation on the effect of boundary conditions on the buckled shapes of

struts pertains to their behavior in the elastic range. The classi­

cal elastic buckled shapes for the two cases studied in this inves­

tigation are shown in Fig. 33. It is well-known that the effective

buckling length for a strut with fixed-pinned end conditions is re­

duced in comparison to the same length strut having pinned ends.

The concept of an effective lengtn KQ., which relates a strut with

pinned ends toa strut with any boundary conditions, plays a dominant

role in such considerations. It is important to determine if this

approach applies to struts cyclically loaded into the inelastic

range. The effect of the boundary conditions on the hysteretic
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behavior of struts also needs further clarification. Both of these

problems are discussed in this section.

As noted in the chapter on the testing procedure, photo­

grammetric pictures were taken of the targets attached along the

tops of the test specimens. Some results from this data in nor­

malized form are shown in Figs. 34, 35, and 36. From these plots

it can be concluded that in general the buckled shapes in the in­

elastic range resemble the initial elastic shapes, but there are

some differences. As the number of inelastic cycles increases,

the curvature tends to concentrate more in the regions of plastic

hinges, but points of inflection coincide with the elastic predic­

tions. Further, the buckled shape (compare Figs. 35 and 36) does

not appear to be a function of a slenderness ratio. Based on these

observations, one can conclude that it appears reasonable to adhere

to the effective length concept even in the inelastic range of ma­

terial behavior for cyclically loaded members.

The effect of boundary conditions on the hysteretic be­

havior of struts may be again conveniently examined using normalized

envelopes. The concept of the effective length, implicitly in­

cluded in the slenderness ratio parameter, is adopted in this com­

parison. For comparison purposes, six specimens were selected;

two wide flange members with K~/r ratios of 40, Fig. 37, two round

tubes with K~/r ratios of 80, Fig. 38, and two double angles with

K~/r ratios of 80, Fig. 39.

These graphs indicate a slightly better performance for the

fixed-pinned specimens. The hysteretic envelopes for the wide

flange members and pipes enclose larger areas, whereas those for
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the double-angle struts are virtually identical.

The somewhat inferior performance of the fixed-pinned double

angle strut in comparison with the other two cases cited, may be

attributed to the tendency of this member for developing lateral­

torsional buckling. This appears to be a characteristic of thin-walled

members whose cross-sections have a single axis of symmetry [13J. Some

evidence of this behavior may be noted from Fig. 40 where vertical

deflections at the location of the potential plastic hinge are shown.

Based on the results for the two kinds of boundary conditions,

and the good correlation found using the effective slenderness ratio

concept, the extension of this approach to other boundary conditions

for inelastic cyclic loadings seems plausible.

5.6 Effect of Cross-Sectional Shape on Hysteretic Behavior

In the preceding section, it was concluded that through the use

of an effective length concept, consideration of the boundary conditions

may be eliminated in comparing cyclic behavior of struts. Therefore,

in this section, in discussing the effect of cross-sectional shape

on hysteretic behavior, only the hysteretic envelopes for struts with

pinned ends will be compared. For this purpose, six specimens with

pinned ends and Kt/r1s of 80 having different cross-sectional shapes

were selected. These included a wide flange member (Strut 3), a

structural tee (Strut 13), two pipes (Struts 14 and 16), one tube

(Strut 17) and a built-up double angle member (Strut 8). Normalized

hysteretic envelopes for these struts are shown in Figs. 41 and 42.

Based on the enclosed areas of the hysteretic envelopes some shapes

proved to be more efficient than others. A careful scrutinizing of
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the results indicates the following order in progressively poorer

performance:

O-OD~I-~-l

Strut 16 Struts 14 &17 Strut 3 Strut 13 Strut 8

The characteristic properties of the cross-sectional shapes

can account for the observed results. These contribute to the three

discernible effects: local buckling, lateral-torsional buck1i~g and

local buckling between stiches in built-up members. A discussion of

these factors on cyclic buckling capacity of struts is given next.

Some lateral-torsional buckling was observed in some structural

tee and double-angle members. It is due to the fact that when a singly

symmetrical section buckles in the plane of its axis of symmetry, two

modes of failure are possible. Either the specimen buckles in a

purely flexural mode, or it buckles in a flexural-torsional mode. The

relevant parameters are a function of a specimen's geometric

properties [13]. When, however, a singly symmetrical section buckles

in the direction perpendicular to its axis of symmetry, flexural and

lateral-torsional buckling take place simultaneously, and the critical

load is lower than that for a purely flexural buckling mode [13].

Since one of the structural tees and three of the double-angle specimens

tested in this sequence of experiments had proportions such that

buckling in the direction perpendicular to their axes of symmetry was
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critical, some lateral-torsional buckling was to be expected, and was

confirmed by the tests.

Another manner in which an open section such as a tee or a

double-angle can fail is for an outstanding leg to buckle prior to

the load which causes failure of the whole section. This type of

local failure is primarily dependent upon the bit ratio of the

unstiffened element, and often occurs in conjunction with lateral-tor­

sional buckling [3].

The AISC approach for resolving this problem consists of

introducing Qfactors which, if necessary, reduce the allowable

capacity of a member. When these provisions were followed, the calcul­

ated first buckling loads for double-angles and tees were found to be

in good agreement with the experimental results (see Table 2). Since

the geometry of the cross-section is seen to affect the initial buckling

load, it is reasonable to assume the same to be true for the subsequent

loading cycles. It is very likely that the reduced cyclic capacity of

the singly symmetrical open sections is at least partly due to latera1­

torsional and/or local buckling of unstiffened legs.

For Strut 19, a wide-flange specimen, an accurate determination

of local buckling was made with the aid of SR-4 strain gages. The

location of such gages is shown in Figs. 4 and 43. The sharp deviations

from linearly varying read-outs for the selected gages, as is clearly

apparent from Fig. 43, indicates the onset of local buckling. For the

top gages 5 and 6 this occurred just following the first general

buckling of the member; the bottom gages showed local buckling at

the bottom flange early in. the second cycle. After the development
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of these first buckles, softening and deterioration in the capacity of

the plastic hinge develops during the subsequent cycles.

It should be noted that local buckling was observed for all

members, with the exception of those made from thick-walled pipe.

Such buckling, however, occurred in ve~1 late stages of cyclic load

applications at extremely large lateral displacements, Fig. 44.

The most significant effect responsible for the poorest per­

formance of the double-angle struts, which is likely to apply to other

built-up members, is local buckling of the individual members between

the stitches. Struts 8, 9 and 20 which had the propensity to buckle

at right angle to their cross-sectional axes of symmetry, and thereby

also developing some torsion-buckling, were particularly poor. The

double-angle Strut 8 had only one stitch at its mid-length; whereas

Strut 9 had two located at third- points. In conformity with AISC

requirements, the slenderness ratio of the individual angles between

the fillers did not exceed the governing slenderness ratio of the built­

up member. During the initial application of the compressive load,

both of these struts behaved well and their buckling capacities at

first buckling load were good (see Table 2). However, as severe cyclic

load excursions were applied·, the angles tended to buckle locally

between the stitches. An illustration of this behavior in advanced

stages of loading for Strut 8 is shown in Fig. 45 (a), and for Strut 9

in Figs. 19 (b) and 45 (b). From these examples itis apparent that

as cyclic load applications proceeded, the flexural straining was

concentrated in the middle of a specimen, and the webs tended to

approach each other. This behavior was particularly pronounced in Strut
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9. In this strut this effect alone raises the slenderness ratio at the

critical section by about 10%, and partially accounts for the loss

of buckling capacity during severe cycling. Cyclic plastic working of

a strut in a hinge region softens the material due to the Bauschinger

effect contributing further to its deterioration.

A more extreme case of built-up strut deterioration in

advanced stages of cyclic loading is shown in Fig. 46, where a complete

failure of the stitches can be seen. Here the spacers, located at

third-points of a strut's length, were 2~ in. (64 rom) wide, and were

welded to the angles with (/16 in. (8 rom) fillet welds (see Fig. 3).

An examination of the three cases cited on the bahavior of double­

angle stitched members suggests the following. The use of closer

spacing or stronger stitches should help but cannot obviate the problem.

It would appear that for important applications in seismic design where

severe cyclic loading of a compression member can be anticipated,

built-up members should be either avoided or very thoroughly stitched

together.
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6. ANALYTICALPREDICnONS OF CYCLIC BUCKLING LOADS

In the analysis of diagonally braced frames for seismic ex­

citations, the inelastic buckling behavior of struts must be mathe­

matically modeled. A number of proposals for accomplishing this

have been made [4,6,8,9,14,15J, and the subject continues to be an

acti ve fi el d of current research. Perhaps the ul tima te inaccuracy

can be achieved using a nonlinear finite element approach, providing

an accurate constitutive relation for the material behavior under

random cyclic loading becomes available. As yet, the reliability of

such constitutive relations is questionable. Alternatively, the

experimental evidence on the behavior of struts subjected to in­

elastic cyclic buckling can be examined, and analytical procedures

developed which predict with a reasonabl e degree of accuracy the

magnitudes of the quantities sought. Some aspects of this problem

using the latter approach are considered here in detail.

It has been noted earlier that there are two main causes

which contribute to the often dramatic decrease in the column capa­

city for inelastic cyclic loadings. These are the Bauschinger ef­

fect, exhibited by the steel subjected to inelastic load reversals,

and the effect due to the residual camber or bowing of a specimen

resulting from plastic hinge rotations during previous cycles.

Each one of these effects can be approximately accounted for by

means of reduction factors applied to the theoretical initial carry­

ing capacity of a straight col umn.

6.1 Reduction Factor due to Bauschinger Effect

In Section 5.1 an exampl e was given showing that following

the well-established procedures, the initial buckling load of a strut
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can be accurately estimated by using the tangent modulus in the gen­

eralized Euler formula. The stress-strain diagram for the example

strut had a monotonically decreasing tangent modulus (Fig. 26).

The same kind of material behavior is clearly exhibited by steels

in the post-yield range during cyclic loadings (see Figs. 23, 24,

and 25). This observation suggests the possibility of extending

the tangent or the reduced (double) modulus approach to cyclic

loading. To do so, however, requires that some approximations be

introduced.

In establishing the initial buckling load for an ideal

strut, a strut is assumed to be perfectly straight. As predicted

by the tangent modulus theory, just before reaching the buckling

load a uniform axial compressive stress develops throughout the

member acting on the material having the same mechanical properties

throughout. Such is not the case in cyclically buckled struts.

As can be noted from the shapes of the inelastically buckled struts,

Figs. 34 and 35, sharp curvatures develop at plastic hinges. Else­

where the curvatures are moderate, indicating that large portions

of a strut are less severely stressed in flexure. Further evidence

of local inelastic activity at a plastic hinge may be noted from

the strain gage data such as shown in Fig. 43. During inelastic

cyclic loading the strain histories vary both along the length of

a member and across its sections. However, the behavior at a plas­

tic hinge is dominant in affecting the overall performance of a

strut. Therefore, the strains at a centroidal fiber at a hinge can be

assumed [10] to be decisive on the behavior of a strut as a whole as

far as its buckling characteristics are concerned. It is recognized
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that this is a drastic simplification of the problem. Significantly

different strain histories do occur elsewhere. Nevertheless, because

of the key importance of plastic hinges on the buckling behavior of

a strut, the proposed simplifying assumption seems reasonable.

An inelastic cyclic coupon test of the strut material defines

its mechanical properties, and each loading branch can be considered

to represent a monotonic test on a material with a previous inelastic

history. This history dependence can be conveniently approximated

and defined by the absolute cumulative plastic strain at the begin­

ning of a loading cycle. For example, the tensile loading curve for

cycle 2 from a coupon test for the W6x20 section shown in Fig. 23 is

reproduced in Fig. 47. At the beginning of this loading cycle the

absolute cumulative plastic strain EEp at zero stress is 0.0055 in./in.

(m/m). This is the sum of strains along the abscissa from a to b to c

and then to d. Similar curves can be isolated and identified with dif-

ferent amounts of cumulative plastic strain for the other loading

branches of the coupon test.

After establishing a stress-strain curve identified with a

particular absolute cumulative plastic strain, as has been done in

Fig. 47, the tangent moduli related to the corresponding stresses

can be determined. With this information one can make use of the

generalized Euler formula to calculate the buckling slenderness

ratios K£/r. The Euler formula in the appropriate form for this

purpose reads

(3)
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where Et and ocr are the matching values of these quantities found

from a stress-strain diagram such as Fig. 47. The calculated

slenderness ratios K~/r can then be plotted versus the critical

buckling stress ° . One of the resulting curves obtained in thiscr
manner corresponding to the data given in Fig. 47 (LE = 0.0055)

P
is shown in Fig. 48.

The family of curves in Fig. 48 identified with different

amounts of cumulative plastic strain has been generated in the

above manner. However, the curve corresponding to LEp = 0 was

found using the AISC column formulas with no factor of safety. The

corresponding theoretical curve based on the simplifying assumption

of ideal elastic-plastic behavior is known to be inaccurate in the

relevant range [16J, and the two available experimental points were

considered to be insufficient to define the required curve. With

this data, for a selected slenderness ratio of a strut, its capacity

for a given cumulative plastic strain LEp r 0 divided by the capacity

at ~Ep = 0 gives the reduction factor RS accounting for the Bauschinger

effect.

Since all of the struts in this series of experiments tended

to develop a residual camber because of a residual curvature at the

plastic hinges, it appears more appropriate to apply the reduced

modulus theory rather than the tangent modulus theory for determin­

ing the buckling loads. The rationale for this contention rests

in the belief that in a slightly curved member the unloading pro­

cess of the fibers on the convex side of a strut is likely to occur

earlier than it does in an initially straight member.



By limiting the application of the reduced modulus approach

to the wide flange sections used in these experiments, the procedure

is very direct. Since all of these members buckled around their

X-axes, on neglecting the contribution of the web, the reduced mo-

dulus Er can be taken as one for a rectangular section given by [16J

E =r
4 E E:L­

(IE + lEt) 2

(4 )

Whence on exchanging Et by Er in Eq. 3, the procedure of establish­

ing the column buckling curves as has been done in Fig. 48 can be

repeated.

A family of curves based on the reduced modulus approach

for different amounts of cumulative plastic strain is shown in

Fig. 49. Note that for normalizing the results the curve for ~sp = 0

has again been generated using the AISC column formulas with no factor

of safety.

Curves giving the reduction factors arrived at on the above

two bases to account for the Bauschinger effect as a function of the

cumulative plastic strain are shown in Fig. 50. These are established

with the aid of Figs. 48 and 49. In general, the tangent modulus

approach indicates a larger reduction in the capacity of a strut than

that predicted by the reduced modulus theory. However, based on the

reduced modulus approach, there appears to be no significant change in

the strut capacities for the stockier members with a K5/Jr of 40. As

will be shown at the end of this chapter, the reduction factors due to

the Bauschinger effect based on the reduced modulus approach generally
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lead to somewhat better agreement with the experimental results than

those based on the tangent modulus theory.

6.2 Reduction Factor due to Specimen Curvature

The second major cause for the observed decrease in column

capacity during cyclic loading is due to the fact that after an ini­

tial inelastic buckl ing cycle a specimen develops a residual curva­

ture which generally is not removed by the subsequent tensile yield­

ing. This phenomenon can be clearly seen by examining the P-~ curves

for the struts in Appendix B. On completion of a cycle, at zero

axial force, a residual lateral deflection ~ remains. This corre­

sponds to point F shown on the P-O plot in Fig. 12. Therefore, an

inelastically cycled member must be treated in the analysis as hav­

ing an initial curvature or a camber. This effect can be approxi­

mated by solutions available in the literature [16,17] for eccen­

trically loaded elasto-p1astic columns. Here the solutions obtained

by Westergaard and Osgood based on von Karman's concept for inelastic

buckling of eccentrically loaded columns are utilized. Some of the

column buckling curves obtained by them for eccentrically loaded

struts [17] are reproduced in Fig. 51. In this figure e denotes an

eccentricity of the co-axial forces with respect to a column's

centroida1 axis, and s 1'5 the ratio of a cross-section's section

modulus to its cross-sectional area (core radius). The ratio of

e to s defines the eccentricity ratio.

As an approximation to the problem being considered here, the

experimentally determined maximum effective* lateral deflection ~

of a strut at the beginning of a compression cycle can be taken as

e. Adopting this approximation, the curves of Fig. 51 provide nec-

* See Fig. 33(b)
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essary infonnation for obtaining graphs for the reduction factor

RE as a function of the eccentricity ratio e/s ~ Ms. Such graphs

can be constructed in the following manner. For a selected slender­

ness ratio such as 80,. read off the· values of the critical stresses

on the e/s curves in Fig. 51, and normalize these results to the

capacity of a straight column (e/s = 0). A continuous curve con­

necting these points gives an RE plot for the selected column slen­

dernessratio, as a function of the eccentricity ratio. Graphs of

this kind are shown in Fig. 52. Note how rapidly the capacity of

a column decreases with an increasing eccentricity ratio e/s ~ Ms.

This fact has been repeatedly observed in experiments.

6.3 Comparison of Analytical and Experimental Results

With the aid of the reduction factors due to the Bauschinger

effect and the effect of strut curvature, estimates of the critical

buckl ing loads for members subjected to inelastic cyc1 ic loading

can be made. The variation of the reduction factors with cumulative

plastic strain to account for the Bauschinger effect for selected

slenderness ratios of struts, appl icable to the material for the W

6 x 20 members used in these experiments, is plotted in Fig. 50.

strut for selected

from Fig. 52.

amount of the cumulative plastic strain rEp'

reduction factors RE due to the curvature of a

slenderness ratios of members can be estimated

Ei theran .Ra based on the tangentmodul us approach, or on the re­

ducedmodulus, can be found from this diagram for a particular

The variation of the

By multiplying the initial buckl ing loads for a straight virgin

column by the appropriate reduction factors RBand RE, a buckling
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load for the new conditions are found. Some such calculations are

summarized in Table 3, where the results for the first three con-

secutive cycles for Struts 2, 3, 4, 5, and 19 are given. For the

purposes of illustration, it was assumed that for Strut 2 the R
B

factors could be based on the graph of Fig. 50, although no cyclic

coupon tests were made for the material of this strut.

The calculated buckling stresses for the first cycle of the

struts listed in Table 3 were determined using an AISC formula (3]

without the corresponding factor of safety and using experimentally

determined yield strengths. However, since Strut 2 had an initial bow

in excess uf that permitted by the specifications, a reduction factor

RE was applied. Further, since Strut 5 was initially subjected to a

tensile force causing the member to yield, a reduction factor RB was

employed. In these two cases, as well as in all others, the experi-

mental data were used to find ~ and L€p' By applying in a similar

manner the required reduction factors to the second and third cycles,

the corresponding estimates of the buckling stresses were found. As

can be seen from the table, with the use of these factors, the esti­

mated buckling loads are in reasonably good agreement with the experi­

mental resul ts.

It would appear that the use of the reduction factor RB based

on the reduced modulus concept in most cases leads to better results

than those based on the tangent modulus approach. However, it is note­

worthy that for Strut 5 better results for the first buckling load are

obtained by using RB based on the tangent modulus procedure. This

result can be anticipated, since Strut 5 initially was caused to

yield in tension, and it was straight prior to the application of a

compressive load.
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Considering the complexity of the problem, the predictions

of buckling loads using the above approach may be said to be satis­

factory, and may prove useful in developing al gorithms for deter­

mining the deterioration of the cyclic buckling capacity of struts.
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7. SUMMARY AND CONCLUSIONS

7.1 SUl1111ary

An experimental study of the inelastic hysteretic behavior

of axially loaded steel members has been presented in this report.

Tests were made on twenty-four commercially available steel struts

commonly used as bracing members. The sizes of the specimens were

sufficiently large to be representative of the members used in prac­

tice. Alarge variety of shapes were tested including wide flanges,

structural tees, double-angles, double-channels, and thick and

thin-walled square and round tubes. The boundary conditions were

of two types, fixed-pinned and pinned-pinned, while the effective

slenderness ratios were either 40, 80, or 120. The primary con­

cern of this report was to investigate the effects of loading

patterns, end conditions, cross-sectional shapes, and slenderness

ratios on the hysteresis response of members. In addition, an

explanation of the fundamental mechanisms responsible for the ob­

served degradation in the buckling load capacity during inelastic

cycling was advanced.

A reader interested in cyclic behavior of thin-walled circular

tubes having diameter to wall-thickness ratios typical of the pipes

used in offshore construction by the oil industry may wish to ex­

amine a companion report (Ref. 10).

7.2 Conclusions

Based on this investigation of inelastic buckling of struts

of various cross-sections several conclusions may be reached which

have important design implications.
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1. Cyclic buckling of struts showed that:

a) The conventional definition of an effective slenderness

ratio ~/r deduced on an elastic basis carries over

into the inelastic range. The points of inflection

on a deflected curve remain relatively fixed.

b) The effective slenderness ratio of a member appears to

be the single most important parameter in determining

the hysteretic behavior. The stockier members generate

fuller loops than the more slender ones. The use of

normalized hysteretic curves in comparisons is parti­

cularly advantageous because a number of variables are

removed from consideration by this process.

c) Hysteretic envelopes provide a convenient means for

comparing specimens with different loading histories.

They can be very useful considering random loading

effects on a brace during a severe earthquake. The

use of normalized hysteretic envelopes is convenient

for general formulations and studies.

d) The hysteretic performance of a member is somewhat

influenced by its cross-sectional shape. The major

determining factors appear to be related to a members'

susceptibil ity toward lateral-torsional buckling, local

buckling of outstanding legs, and web buckling between

stitches in built-up members.

e) Stitching of built-up critical compression members for

service under severe load reversals as current1yspeci­

fied in standard codes [3] is unconservative. In the
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region of plastic hinges, the individual parts of a member

due to softening of the material have a greater propensity

to buckle than envisioned by the codes. Requiring the slen­

derness ratio ~/r for the individual parts of members be­

tween stitches to be less than that of the member as a whole

and specifying minimum fastener strengths would help in the

problem. Just this kind of a provision was contained in the

1959 AISC Specifications [19] and can also be found in the

current German ones [20]. However, it would appear that for

important applications in seismic design, where severe cyclic

loading of a compression member can be anticipated, built-up

members should be either avoided or very thoroughly stitched

*together in the regions of potential plastic hinges.

2. Significant reduction in buckling loads occurs during inelastic

cyclic loadings. The hysteretic loops displayed in this report can

serve as an aid for developing and verifying computer models of

strut behavior. The use of reduction factors discussed in the re-

port may prove usef~l in such formulations. The reduction factors

are based on rational theory and model the major parameters respon-

sible for a specimen1s deterioration in hysteretic behavior. The

first one of these reduction factors, RB, accounts for the material

property changes associated with the Bauschinger-effect that could

occur in the plastic hinge regions of a member. The second cause

for the observed decrease in the column capacity results from the

*AISC Spec. Sect. 1.5.1.4.1{1} would satisfy this requirement.
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residual curvature that remains in a member following previous

inelastic compressive cycles. This can be accounted for by the

reduction factor RE which is based on solutions for eccentrically

loaded columns [17].

3. Designers should be aware of the variability in the mechanical

properties of commercially available steel used in building

construction. The yield strengths for rolled sections used in these

experiments made of A36 steel varied from about 36 ksi (250 MPa) to

50 ksi (340 MPa). The materials for these sections exhibited a

characteristic yield plateau in their stress-strain diagrams.

However. for pipes made of A53 Grade B steel no distinct yield

points were apparent. Instead. the stress-strain curves showed a

gradual transition into the plastic range. In determining the ini­

tial buckling capacity of struts in such cases the tangent modulus

approach led to satisfactory results. whereas the buckling loads

computed by code formulas were erratic. The nominal yield strengths.

determined by noting the attained yield plateau during the tensile

phase of a cyclic strut test or by the 0.2% offset method. for pipes

and tubes varied from 24 ksi (165 MPa) to a high of over 80 ksi

(550 MPa).
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TABLE 1 LIST OF TEST SPECIMENS

STRUT NO. SHAPE KMr LENGTH
(ft) (m)

Struts pinned at both ends:
1 W8 x 20 120 12.50 3.81
2 W6 x 25 40 5.10 1.55
3 W6 x 20 80 10.07 3.07
4 W6 x 20 80 10.07 3.07
5 W6 x 20 80 10.07 3.07
6 W6 x 16 120 9.67 2.95
7 W6.x 15.5 40 4.87 1.48
8 2-L 6 x 3-1/2 x 3/8* 80 9.27 2.83
9 2-L 5 x 3-1/2 x 3/8* 40 4.87 1.48

10 2-L 4 x 3-1/2 x 3/8* 120 12.50 3.81
11 2-C 8 x 11.5* 120 9.83 3.00
12 WT 5 x 22.5 80 B.33 2.54
13 WT 8 x 22.5 80 10.47 3.19

14 Pipe 4 Std. 80 10.07 3.07
15 Pipe 4 Std. 80 10.07 3.07
16 Pipe 4 X-Strong 80 9.87 3.01
17 TS 4 x 4 x .250 80 10.00 3.05
18 TS 4 x 4 x .500 80 9.07 2.76

Struts pinned at one end and fixed at the other end:

19 W6 x 20 40 7.19 2.19

20 2-L 6 x 3-1/2 x 3/8* 80 13.24 4.04

21 Pipe 4 X-Strong 40 7.19 2.19

22 TS 4 x 4 x .~OO 80 12.95 3.95

23 W5 x 16 80 12.00 3.66

24 Pipe 3-1/2 Std. 80 12.76 3.89

* 3/8 in. (9.5 mm) back to back of angles and channels; for double
angles the shorter legs are turned out.
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TABLE 2 COMPARISON OF EXPERIMENTAL AND PREDICTED INITIAL BUCKLING LOADS

STRUT NO. EXPERIMENTAL pexP(kips) pexp f pca 1c*
cr crcr

cry (ksi) Based on Based on Refined
cry=36ksi Exper. cry Estimate

1 40.4 a 95 0.81 0.81 a.9ad

2 42.2 b 263 1. 05 0.90 1 . Ole
3 40.2 b 202 1. 19 1. 09 -
4 40.2 b 201 1. 19 1. 09 -
5 40.2 b 152 0.90 0.83 0.96 f

6 44.7 b 112 1. 19 1. 21 -
7 50.0c 201 1. 28 0.95 -
8 40.8 b 197 1. 08 0.98 -
9 43.6 b 292 1. 43 1. 17 -

10 41 .6c 97 0.92 0.92 1.06g

11 35.5c 105 0.79 0.79 1. 05 h

12 39.5 b 186 0.98 0.91 -
13 41 .8a 196 1.11 0.99 -
14 47.5c 114 1. 25 1. 03 -
15 47.S c 110 1. 21 0.99 -
16 24.0c 87 0.69 0.95 -
17 59.0c 123 1. 21 0.88 0.98f

"-

82.0 b18 272 1. 54 1. 00 -
19 40.2 b 240 1. 19 1. 07 -
20 40.8 b 180 0.98 0.89 -
21 24.0c . 107 0.99 1. 05 -
22 82.0 b 239 1. 35 0.88 -
23 35.l c 165 1. 22 1. 23 -
24 46.3 c 85 1. 10 0.92 1 .05 f

* pca1c
cr

= [1 _(Kif r) 2 ]
Qs 2C 2

C

a 0.2% offset in coupon test

c First yield in strut test

e Initial max ~ = 0.16 in.

g Initial max ~ = 0.05 in.

NOTE: 1 ksi = 6.89 MPa;

Preceding page blank

1 kip = 4.45 kN;
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b Average yield from coupon tests

d Initial max ~=0.094 in.

f Tangent modulus theory

h Initial max ~ = 0.10 in.

1 in. = 25.4 nm
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TABLE 3 EXPERIMENTAL AND PREDICTED STRESSES AT FIRST THREE CONSECUTIVE BUCKLING CYCLES

STRUT NO. 2 3 4 5 19

SHAPE W6x25 W6x20 W6x20 W6x20 W6x20
,

Kt/r 40 80 80 80 40

CYCLE NO. I 2 3 1 2 3 1 2 3 1 2 3 1 2

exp
ocr (ksi) 36.0 32.7 31.5 34.1 16.3 13.8 34.1 26.8 24.6 25.8 12.7 13.5 40.8 33.3

t:,fs 0.21 0.10 0.21 a 0.67 1.11 0 a 0 a 1.33 0.80 0 0.20
RE 0.85 0.91 0.85 1.00 0.54 0.48 1.00 1.00 1.00 1.00 0.46 0.51 1.00 0.86

L Ep x 10-3 0 8.70 16.7 0 7.67 14.8 0 6.46 14.8 1.10 4.48 11.0 0 10.9

RB for Et 1.00 0.92 U.81 1.00 0.71 0.65 1.00 0.74 0.65 0.86 0.78 0.68 1.00 0.91

RB for Er 1.00 1.00 1.00 1.00 0.88 0.80 1.00 0.91 0.80 0.97 0.92 0.84 1.00 1.00

* calc for Et 33.8 33.3 29.4 31.2 12.0 9.73 31.2 23.1 20.3 26.8 11.2 10.8 37.9 29.7ocr
* calc for

ocr Er 33.8 36.2 33.8 31.2 14.8 12.0 31. 2 28.4 25.0 30.3 13.2 13.4 37.9 32.6

oexp/ calc for Et 1.07 0.98 1.07 1.09 1.36 1.42 1.09 1.16 1.21 0.96 1.13 1.25 1.07 1.12cr ocr
oexp/ calc for Er 1.07 0.90 U.93 1.09 1.10 1.15 1.09 0.94 0.98 0.85 0.96 1.01 1.07 1.02cr ocr

* calc = [1 _ (Kt/r)2] ° RE RBocr 2C 2 y
c

(ksi) Note: 1 ksi = 6.89 MPa
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FIG. 6 EXPLODED VIEWS OF END CELVISES
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FIG. 10 STRUT 23 AFTER TEST - NOTE GLUED-ON
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FIG. 14 LATERAL DISPLACEMENTS FROM PHOTOGRAMMETRIC DATA
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TENSILE FORCE
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FIG. 46 STITCH FAILURE OF STRUT 20
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APPENDIX A

MATERIAL PROPERTIES

In this Appendix, the stress-strain diagrams resulting from

monotonic coupon tests for the material of each specimen shape are

assembled.
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APPENDIX B

EXPERIMENTAL HYSTERETIC CURVES

In this Appendix, two kinds of hysteretic diagrams are presented

for all of the tested specimens. In one of the groups, the hystere­

tic P-o curves are shown, which give the relationship of the axially

applied force to the axial displacement. In the second group, the

p-~ diagrams are exhibited relating the axial force with the maximum

lateral displacement (see Fig. 33).

The curves shown have been corrected for the two principal er­

rors commonly encountered in this type of testing. These are the

frictional effects of the moving parts, and mechanical backlash of

the displacement measuring apparatus. To illustrate the procedure

used, consider somewhat of an extreme case shown in Fig. B1, where

the recorderd hysteretic P-O plot for Strut 21 is shown. Here one

can note that at any number of points of load reversal, an apparent

change in the applied force occurs with no corresponding change in

the axial displacement. These regions have been identified with an

asterisk in the figure. At least a part of this effect is due to

the frictional forces that must be overcome. The nature of these

forces is illustrated in Fig. 82. Based on some measurements of

these forces a typical hysteretic loop is modified as shown in

Fig. B3.

The second cause contributing to the error in recorded hystere­

tic loops was due to the mechanical backlash which resulted in a de­

lay in the displacement record. Therefore, the top curve corrected

for the frictional effects is extrapolated on the left, and moved

as a whole to the right, Fig. 84. On this basis, the corrected
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hysteretic loop in relation to the recorded data looks as shown in

Fig. B5. Because of the uncertainties involved, other adjustments

of the data are possible. However, since the basic shape of the

curves corrected for frictional effects is essentially correct,

the corrected curves found in the above manner give an essentially

correct picture of the strut behavior. In a number of the available

reports, the corrections discussed above are not considered, which

may lead to erroneous conclusions.
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FS = ACTUAL LOAD EXPERIENCED BY SPECIMEN

FJ = MEASURED JACK LOAD

FF = FRICTIONAL FORCE

LOADING IN COMPRESSION
CLEVIS MOTION

----
FS = FJ - FF FJ-+~'- FS----FF

UNLOADING ~N COMPRESS~ON
CLEVIS MOTION
~

FS = FJ + FF FJ -+~.- FS

----FF

LOADING IN TENSION
CLEVIS MOTION
~

FS = FJ - FF FJ'-~-+ FS

----FF

UNLOADING IN TENSION CLEVIS MOTION
~

FS = FJ + FF FJ'-~-+ FS

----FF

FIG. B2 EFFECT OF FRICTION ON MEASURED LOAD
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p

-- ORIGINAL CURVE

~ CORRECTED CURVES

FIG. B3 CORRECTION FOR FRICTION

n- ORIGINAL CURVE

- FINAL CURVE

--- CURVE WITHOUT BACKLASH
CORRECTION

.......... EXTRAPOLATED CURVES
BEFORE BACKLASH
CORRECTION ~;;;;;'~I

FIG. B4 CORRECTION FOR BACKLASH

- ORIGINAL CURVE

---- CORRECTED CURVE

FIG. B5 COMPARISON OF RECORDED CURVE WITH FINAL
CURVE CORRECTED FOR FRICTIONAL EFFECTS
AND DISPLACEMENT BACKLASH
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APPENDIX C

NORMALIZED HYSTERETIC CURVES

Nonnalized P-o hysteretic curves for all but Strut 1 are given

in this Appendix. The processed data have not been corrected in the

manner discussed in Appendix B. Therefore, any effort to analytically

mimic the vertical rises and drops at load reversal points is not

warranted.
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