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PLANAR MECHANICS OF FULLY GROUTED CONCRETE MASONRY

by

Robert O. Nunn

Abstract

This report presents data from experiIY\ents, and develops a

continuum model for the planar behavio l' of fully grouted concrete

masonry. Both unreinforced and reinforced masonry are con

sidered, but otherwise attention is restricted to a single material

type.

Data was taken from prisms of several configurations, and

from 5-foot square panels cut at an angle relative to the joint

system. The panels were tested under direct biaxial stresses, with

one edge in tension, and the other in compression or stress-free.

The elastic behavior is found to be quite linear. The form of

the elastic law describing this behavior is determined, and the

moduli are evaluated. These moduli show subs'antial anisotropy

in stiffness. Hysteresis loops at several load rates are described,

and the relation of these loops to the damping of a structure is

discus sed.

The significance of prism configuration and end conditions,

and the relation of prism compressive strength to wall compressive

strength are discussed. A law describing the dependence of unrein

forced uniaxial tensile strength on direction is presented. This

uniaxial law, which shows moderate anisotropy in tensile strength,

is incorporated into a law for unreinforced biaxial strength for the

special case of principal stresses of opposite sign. A statistical
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analysis of the biaxial data gives variations in strength that can be

expected. The effects of reinforcing on these strength results, and

the significance of component strengths, are discussed.

A modified plasticity model describing the behavior of rein

forced masonry following initial fracture is presented. The existence

of a loading surface is illustrated, and a law is given for the change

of this surface based on tensile strain. Tensile strain is also em

ployed in a law describing stiffness degradation. Normality of the

plastic strain rate is shown to hold at several points on the loading

surface, and a stress rate - total strain rate matrix for plastic

behavior is derived.
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INTRODUCTION

Masonry is a form of construction that has been practiced for

thousands of years. While some traditional materials, such as stone,

are rarely used today, concrete block now provides a rapid and eco

nomical method of producing structures of one to ten or more stories.

The wide variety of brick and block available makes possible buildings

of exceptional color and texture.

Though masonry is widely used as a construction material,

rather little is known of its properties. Research into its behavior

has lagged behind research in other materials. Concrete, for ex

ample, has been the subject of careful study by many investigators,

and the American Concrete Institute publishes a journal devoted to

results of their work. No such journal exists for the publication of

masonry research results.

The main danger in this lack of knowledge lies in the response

of masonry structure s to seismic loading. Enough information has

been accumulated through analysis and simple experiments to design

structures that are quite safe under static conditions. But dynamic

loading can produce markedly different stresses, including tensile

stresses. While masonry is generally very strong in compression,

most types are rather brittle, and can withstand much less tensile

stress.

A result of this brittle behavior has been substantial damage

to many masonry structures in areas that have experienced strong

I
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earthquakes [1]. But in the same area where some masonry structures

have been destroyed, others have survived undamaged. It appears,

therefore, that through analysis and a knowledge of ma':erial behavior,

it should be possible to reduce the seismic hazard,

In an effort to provide this knowledge and necessary analysis

techniques, an extensive research program, sponsored by the National

Science Foundation, was undertaken at the University of California,

San Diego. The program consists of experimental, analytical, and

numerical investigations of the behavior of masonry material and

connections. For further information about this program see references

[2] through [8]. The subject of this dissertation is an analytical repre

sentation of selected experimental results on material behavior.



CHAPTER 1. OBJECTIVES AND METHODOLOGY

1, 1 Scope of Study

In conducting an investigation into the behavior of a material as

complex and variable as masonry, it is necessary to limit the scope of

the study, Some of the material variables to be considered are block

type, mortar type and amount, grout type and amount, method of com

paction, and amount of reinforcing. (These terms are illustrated in

Fig, 1. 1.) Instead of looking at the effects of these variables, atten

tion was restricted to a few combinations, which were selected on the

basis of their widespread use in construction. The intent of this re

striction was to allow a thorough study of the masonry types selected,

The results presented in this dissertation are further restricted.

They are based on tests of a single combination of components, and all

specimens were fully grouted. While partially grouted masonry is

widely used and deserves study, fully grouted masonry is of impor-

tance in seismically active areas, and such specimens are easier to

handle because of their greater strength. Both unreinforced and rein-

forced masonry are discussed.

In addition to selecting a material type, it is necessary to

decide what properties will be investigated. In the UCSD program,

only in-plane loads were considered, Though damaged structures

sometimes exhibit out-of-plane failures, walls that suffer such dis

placements probably do so only after substantial damage has occurred.

3
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Thus, knowledge of planar behavior should enable one to predict the

response of a structure until it is close to collapse.

1. 2 Method of Investigation

In studying this planar behavior, two approaches are possible.

One is to test structural elements, for example piers, then to combine

these results to predict the behavior of a structure. Such a program

exists at the University of California, Berkeley [9]. But the number

of possible elements and their variations can necessitate a large num

ber of tests. The other approach, employed in this program, is that

of continuum mechanics. If one can determine the properties of the

material, then through analysis one can predict the behavior of the

structural elements, and a complete structure. The structural ele

ment tests can serve as an important check on this process.

The design of masonry buildings is presently based primarily

on the uniaxial compressive strength, which is determined by prism

tests (see Section 3. I). Other tests that have been conducted include

beam tests and diagonal compression tests. These other tests cannot,

however, determine a material behavior law relating stress to strain.

While the state of stress for such loading may be known for an iso

tropic linear material, the solution does not hold for masonry, so the

stress and strain are unknown.

In order to find such a law, one must be able to apply an arbi

trary state of uniform planar stress. Such a stress state consists of

~'---------o _
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two direct stresses, plus a shear stress. Direct stresses are fairly

easy to apply, but the application of shear stress is quite difficult. To

circumvent this difficulty, the following result of tensor analysis was

taken advantage of: A general state of planar stress is equivalent to

two direct stresses (the principal stresses) with zero shear stress, at

some angle relative to the coordinate system of the original stresses [10].

'TIlis result is expressed quantitatively by Mohr's circle.

Since these direct stresses are to be applied to the edges of

the specimen, the edges must be aligned with the principal stress

directions. Thus, the masonry joints will, in general, not be aligned

with the edges. Once a stress state is selected, the principal direc

tions, and hence the specimen orientation, are determined. A disad

vantage of this procedure is that for a particular specimen, the direc

tions of the principal stresses are fixed.

The requirement that the stress be uniform applies, of course,

only macroscopically. Treating a material as a continuum requires

that variations in stress at the microscale be averaged out over sev-

eral micro-dimensions. For masonry the micro-dimension is a block

length, 16 inches. For this program, therefore, the size of the square

specimen was chosen to be 64 inches.

1. 3 Specimen Construction

The fir st step in producing these oblique lay-up specimens

was the construction of 8-foot square walls, which were built by pro

fessional masons using conventional field practice. Grout was poured

~::::a. _



in 8-foot lifts and compacted by puddling. The materials used in con

struction are described in Table 1. 1. After curing, a wall was faced

on one side with a layer of hydrocal, then placed horizontally on the

hydrocal. A dynamically balanced, high speed circular saw then cut

out the spe cimen.

Reinforced specimens had two number five bars in each direc

tion, for a steel to total area ratio of 0.13 percent, which is typical of

masonry construction. These bars were carefully positioned to end

just short of the specimen edge. After the specimen was cut, the

grout was chipped away from the end of the bar, and a steel plate was

welded to the bar and bonded in place with epoxy.

The walls for this program were fabricated in eight batches.

Though materials and construction were the same for all batches,

significant variations in strength between batches were observed. One

batch that cured during a particularly wet period was considerably

stronger than the others. Thus, when calculating average properties,

it is necessary to restrict attention to a single batch.

1.4 Test Procedures

For the purpose of testing these specimens, a test frame cap

able of applying arbitrary biaxial stress was constructed. This frame,

shown in Fig. 1. 2, was designed to withstand the enormous loads re

quired to fail a specimen, with only small deflections, The frame

deflection must be small in order to control displacements when loads

6



7

drop suddently at first fracture. A smaller frame was built for test-

ing uniaxial specimens.

The biaxial frame actually consists of two parallel frames,

between which are attached hydraulic actuators that deliver the load.

The actuators are arranged four to a side, can deliver up to 120,000

Ibs each in either direction, and are controlled by a mini-computer.

They are attached to 6-inch thick aluminum load distribution fixtures,

which are bonded to the specimen (Fig. 1. 3).

Two bonding materials were used. For unreinforced specimens

the load fixtures were attached with a 0.25 inch layer of a polysulfide

material having a low (~150 psi) shear modulus. This low shear

modulus permitted large strains in the tensile direction with little

drag. There was some concern that under compression the pOlysul

fide might tend to extrude and thus cause tensile failure at the speci

men edge, but tests at the highest level of compression showed no

evidence of such an effect. In early tests the crack sometimes

occurred near an edge, so a layer of epoxy 8 inches wide was added

to both faces of each tensile edge, in order to force the crack into the

center of the specimen (Fig. 1. 3).

The bonding of reinforced specimens was comewhat more com

plicated. In order to transfer load to the steel, a steel plate was

welded to each bar on the tensile edge, then epoxy bonded in place.

The entire tensile edge was then bonded with epoxy to another steel

plate, which was attached to the load distribution fixture. This



procedure ensured that the steel would not debond from the much

softer masonry. A polysulfide bond was again used on the compres-

sian side, in order to minimize shear drag.

In applying loads to the specimen, one tensile side was fixed

in translation, and the other displaced at a prescribed rate. Both

tensile sides were free to rotate. As the tensile load was applied, it

was multiplied by a factor and applied to one of the compressive sides

(proportional loading), which was also free to rotate. The opposite

compressive side was actively prevented from either displacing or

rotating. Thus, overall displacement and rotation were prevented,

and uniform stress along each side was ensured.

Prism tests were also conducted as part of this investigation

[111. These tests were performed with a 300 kip Riehle machine under

displacement control, and a ball and socket joint was used between

the prism and the load platen in order to eliminate moments. The

results were quite sensitive to prism end conditions, and these effects

are discussed in Section 3. 1.

l. 5 Data Recording and Reduction

Data taken during biaxial tests consisted of the load applied by

each hydraulic actuator, plus a number of displacements. The loads

were measured by load cells placed in line with the actuators. The

displacements were taken across the specimen at several locations,

and were measured by linear variable differential transformers

8



(LVDTs). There were eight LVDTs available. They were usually

arranged with two on each face parallel with the direction of tensile

loading, three in the compressive direction, and one at a 45° orienta

tion. This arrangement constitutes a strain rosette that defines the

state of strain. The rods that the LVDTs were attached to can be

seen in Fig. 1. 3.

The signals from these instruments were processed by a high

speed digital data acquisition system, which recorded 300 samples I

sec from each channel on magnetic tape. The information on tape was

converted to plots by a computer program that allowed several chan

nels to be combined and plotted versus either time or another com

bination of channels.

1.6 Data Se lection

The number of large-scale specimens tested in this investiga

tion was 94. Data from only about 40 specimens, however, are used

in this dissertation. Reasons that data are excluded include bond

failure s, poor load distribution, incom plete dis placement records,

malfunction of recording equi ptnent, the nece s sity of com paring

results only within a batch, and the commitment of one batch to a

study of grout admixture and vibration.

For the elasticity results of Chapter 2, only two specimens

that had a complete strain rosette were tested at the orientation re

quired for accurate analysis. For the uniaxial tensile strength

9
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results of Section 3.2, only two batches had a sufficient nUDlber of

uniaxial specimens to permit the determination of a curve. The

same requirement of a sufficient number of specimens within a batch

limited the analysis of biaxial data to that from One batch. Finally,

difficulties with recording equipment. and some unfortunate crack

patterns reduced the nUDlber of suitable reinforced specimens from

eight to three.

Much of the data not used in this analysis was valuable.

however. is discovering patterns of behavior and deciding what tests

to conduct.
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Mortar Head Joi nt
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Fig. 1. 1. Illustration of Masonry Terms



Fig. I. 2. Biaxial Test Frame
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Fig. 1. 3. Load Distribution Fixtures Bonded to Specimen
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Table 1.1, Component Descriptions

De scription

Compressive
strength':'

Tensile
strength':'

Block

I
Type N

Normal weight

ASTM C90

3300 psi

329 psi

Mortar

Type S

ASTM C270

2420 psi

21 ,) psi

Grout

2000 psi coarse

ASTM C476

(6- sack grout)

3870 psi

266 psi

Young's ITlOdulus 2.5X 10
6

psi 6 .
2.6x10 pSI

Reinforced specimens with #5 (grade 60) rehar,

,"
Strengths from 4 in. X 6. 5 in. hlock coupons, and grout and mortar
cylinder s.
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CHAPTER Z. ELASTIC BEHAVIOR

The first step in the analysis of a structure is to determine its

elastic response. Even if one's interest is in the response once frac-

ture has begun, prediction of the commencement of fracture requires

knowledge of the behavior in the elastic range. For masonry, this

behavior is quite simple for loadings usually encountered. Except,

perhaps, in the high compressive stress range, masonry has a very

linear response up until first cracking. This linear behavior is de

fined by the elastic moduli. One also needs Lo know the material

damping for a complete description of the elastic behavior. If it is

large enough, material damping can be of importance in energy dis-

sipatiol1 o

Z. 1 Form of Elastic Law

In this treatment of the behavior of masonry, out of plane

loading is assumed zero. If a coordinate system is aligned with the

joint directions as shown in Fig. Z.l, the stresses and strains of

interest are (CY ll , CY
ZZ

' CY IZ ' CY Zl ) and (ell' eZZ' elZ' eZl)'

set is assumed to determine the other.

This geometry and loading is one that is frequently encount-

ered, of course. From the behavior of the material at each point in

the thickness direction, the overall behavior is commonly derived by

assuming a pLane stress condition, then integrating stresses across

the thickness. If masonry is considered solid, such a procedure is

15
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valid. But grout cores adhere poorly to the cell walls, and there are

voids in the grout and at the head joints. For partially grouted mason-

ry, in fact, a stress-strain relation at a point in the thickness direc-

tion cannot be defined, for such an element fails to be a continuum.

Therefore, elastic behavior will be analyzed without considering the

variation in stress through the thickness.

Since this analysis will disregard the thickness direction, it

would be more correct to discuss stress resultants (force per unit

length) rather than stress. But since strength is commonly expressed

in terms of stress, this is not done.

Plots of the above stresses versus strain are very linear al-

most until fracture. Therefore, assume that within some range the

following linearity condition holds:

(J ••
1)

where the subscripts have the range (1,2), and repeated subscripts

indicate summation.

If one assumes the existence of a strain energy function W

such that

cr.. =
1)

8W
8e ..

1)

Such athen one has symmetry of the above matrix: C
ijkf

= C
kfij

function exists for the three-dimensional case, and the proof of its

existence [12] holds for this case of stress resultants, at least for



static situations.

If the above matrix is inverted, one has the symmetric matrix

such that

Because of symmetry of the stress tensor (a lZ = a Zl)' terms can be

com bined to give the form

I
a 11ell c

llll
c

llZZ
c
IllZ

= I a
ZZ

e c
llZZ

c
Z22Z

c
ZZ1Z22

elZ
I a

lZ
c
IZll

c
lZZZ

c
lZlZ

17

where the symmetry condition c
llZZ

= c
ZZll

has been employed, and

the equation for eZl (= elZ) has been eliminated.

There is one further condition that can be used to simplify the

above relation. That condition is material symmetry. If the xl axis

is reversed in sense, the form of the above law calU10t be affected,

for the X z axis is a line of symmetry. (Note that this would not be

the case for a wall constructed of block open at one end and closed at

the other.) Rever sing the sense of the xl axis will change the signs

of elZ and a lZ' while leaving the other stresses and strains un-

changed. Hence, one concludes

=. 0 •

With new names for the four constants, the relation becomes



]8

ell l/E
l

-2 v/(E
l

t E
2

) 0 °Il

e = -2v/(E
l
tE

2
) l/E

2
0

°22
• (2. 1 )

22

e
12

0 0 1/2G a
12

2. 2 Determination of Elastic Moduli

Direct determination of the values of the four elastic moduli is

possible by applying loads in the following manner' First set ° 22 = 0,

while ° 11 is non-zero. This will determine E
l

. Switching roles

for the two stresses then determines E
2

and v. Any stress state

having ° 12 f 0 will determine G.

In this investigation, specimens were tested by applying direct

(zero shear) loads to edges cut at a lay-up angle e. With the coordi-

nate systems shown in Fig. 2.2, this implies that 0~2 = O. Under

this restriction, stresses transform as follows:

f 2
Of . 2 e

°Il =
° 11 cos e t SIn

22

f . 2 e + ° f
2

(2. 2)
° 22

=
°Il

sm cos e
22

°12
= (-0 ~l t ° ~2) cos e sin e

Two orientations have special significance in these relations.

For e = 45°, one has 0Il =ct
22

for all values of oil and 0;2'

Because of this, the three moduli E , E , and v cannot be deter-
1 2

mined for a 45° specimen. Clearly, for values of e near 45°, their

determination will be difficult. For e = 0°, on the other hand, one
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has (J 12 = 0, so that G cannot be determined. Hence, an intermediate

value of e is necessary in order to determine all four moduli accu-

rately. For this reason, specimens having a lay-up angle e = 20 0

were chosen for the determination of elastic moduli.

From the above equations, one finds that, for direct determina-

tion of the moduli, the applied loads must satisfy these conditions:

(J' 1 2 (=:> 0)= -0" 11 tan e 0" 22 =22

0"' -0"'
2 ( =:> 0)= tan e 0"11 =11 22

Note that each of these relations necessitates a tensile load. Because

of the low tensile strength of masonry, care must be taken in conduct-

ing such a test not to fail the specimen prematurely. In the tests we

performed, the second condition was satisfied during a test in which

a failure strength of the specimen was determined. However, no test

was conducted that satisfied the first condition. Hence, determination

of the moduli was somewhat more complicated than in the procedure

described above.

The tests that were conducted (for most specimens) were the

following three: horizontal compression (0";2 = 0), vertical compres

sion (0" i 1 = 0), and a failure test with 0" 11 = O. From the failure

test one can find E and the term -2v/(E + E). Then one can
212

determine E
l

from the horizontal compression test. This requires

the value of -2V/(E
1

+ E
2

), but since it multiplies the small quantity
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(J ,an error in its value will have a small effect. Finally, anyone
22

of the three tests is suitable for determining G.

2.3 Analysis of Moduli Data

The data taken during the tests included the loads applied to the

edges of the specimens, and displacements in three directions across

the specimens. These are shown in Fig. 2.3. The loads were applied

as shown for all specimens, but the configuration of the displacement

gauges varied somewhat.

The edges of the specimen correspond to the x{ and

directions (see Fig. 2.2). Hence, the stresses are given by

= (LDI3 + LD14 + LD15 + LD16)/488 in
2

x'
2

(J'
22

(J'
12

= (LDI + LD2 + LD3 + LD4)/488 in
2

= 0

In the horizontal direction, the loads on each side of the speci-

men agreed very closely. In the vertical direction, gravity produced

a difference of several psi between the loads at the top and the loads

at the bottom of the specimen. For determination of elastic moduli,

this offset is of no significance.

While the actual stresses were known, only changes in strains

were available, because the LVDTs were not set to read zero at zero

load. To find the change in strain, each displacement was divided by

its gauge length, then the resulting strains were averaged. For the
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configuration of Fig. 2.3 this gives

( DIH D2H
+

D3H D4H )).6 e
U

= .6 GLIH + + GL4H 4GL2H GL3H

I ( DIV D2V D3V)).6e
22

= .6 2
GLIV + + GL3V 4GL2V

DID
.6 e

D
= .6

GLD

Examination of displacements from many specimens showed

little variation in readings from the same face of the panel (e. g. DI V

and D2V), but frequent significant variation, as much as 20 percent,

from front to back. This is the reason that DIV is multiplied by 2.

For the same reason, e
D

may suffer some error, since only one

LVDT was available for its measurement.

The first step in analysis of the data was to determine a set of

stresses and corresponding strains. These strains were found from

plots of stress versus strain. For uniaxial loading, all three strains

were plotted versus the applied load. For the failure test, both

stresses were used, and corresponding values of the two stresses

were found from plots of stress versus time.

An example of a stress-strain plot for several cycles of com-

pression is shown in Fig. 2.4. Because the specimen was preloaded,

the stress does not go to zero. To find the strain corresponding to a

stress, a straight line was extrapolated to the zero-stress level along

the path of increasing load, as shown by the broken line.



From the specimens tested in this investigation, two were

selected that were best suited for elastic moduli determination. For

many of the early specimens, determination of all four moduli was

impossible, because only horizontal and vertical strains were meas-

ured. Of the remaining specimens, there were two tested at the

desired 20° lay-up angle. These two specimens, nos. 79 and 84,

were from the same batch, so their properties should be very similar.

The strains measured for these two specimens are given in

Table 2.1. These three extensional strains (ei l' e;2' e
D

) constitute

a strain rosette, (0°, 90°, 45°), and from them the shear strain e'
12

can be determined. The transformation of strain components is given

by

, 2 + e '
. 2

8 2 e{2 cos 8 sin 9ell = ell cos 9 sm +22

e '
. 2

9 e'
2

2 e' sin 9 (2.3)e = SIn + cos 9- cos 8
22 11 22 12

(-e {I + e~2) cos
2 sin29 )e = 9 sin 9 + e{2(cOS 8-12

The strain eD' which is measured by the LVDT labeled DID

in Fig. 2.3, is seen to be the strain e
22

for 9 = 45°. Therefore,

one has

22

e ' + e '
11 22 ,

e
D = e

122

whence

e' + e '
e' 11 22= - e

D12 2

(2.4)

(2. 5)
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Once the shear strain e i 2 has been determined from Eq. (2. 5),

Eqs. (2.3) yield the strain components in the (unprimed) lay-up coordi-

nate system. Equations (2.2) serve to transform stress components.

By applying these transformations to the stresses and strains of

Table 2. I, One obtains the results listed in Table 2.2.

One can now employ the procedure described in Section 2.2 to

determine the elastic moduli. Though the stress CJ 11 is not zero, as

assumed in Section 2.2, it is small enough to be neglected in order to

obtain a first estimate of the values of the moduli. With those esti-

mates one can then correct for the non-zero value of CJ 11' The re-

sults are given in Table 2.3, where G is taken to be the average

from the three tests.

With the values of the moduli known, it is now possible to pre-

dict, from the applied loads, the strainS measured in the experiments.

One first transforms the stress components from the primed system

to the unprimed system by use of Eqs. (2.2), then finds the lay-up

coordinate strains from Eqs. (2.1), then transforms to the primed

coordinate strains using

e' 2 . 28 . 8= e cos 8 + e
22

Sin + 2e12 cos 8 SinII II

e' . 2 2
8 sin 8 (2. 6)= ell Sin 8 + e cos 8- 2 e

l2
cos

22 22

e' (-ell + e
22

) cos 8 sin 8 + 2 sin28 )= el
2

(cos 8-12

TI,e final step is to find e
D

from Eq. (2.4).
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The values of the moduli given in Table 2.3 were determined by

using only part of the data available from the experiments. The pre

dicted values of the remaining data will, of course, suffer some error.

In order to minimize these errors, it is necessary to use all of the

data in the moduli calculations.

To do this, the predicted values for the three measured strains

were computed, then the moduli values were refined so as to reduce the

largest errors. By calculating the coefficients of each modulus in the

expressions for the strains e{l' e;2' eD' it becomes evident how to

alter the moduli. The greatest change was in the value of \!. One

might expect \! to be difficult to determine, since its value requires

the measurement of a rather small strain. The refined values are

given in Table 2.4.

Two items are noteworthy in these results. One is the small

value of \! compared to its value for metals. The other is the strong

anisotropy: This material is twice as stiff in the vertical direction as

in the horizontal direction. This difference in stiffness may be partly

due to the head joints. There is little mortar between adjacent blocks

in the same course, so this joint will probably suffer substantial de

formation. In contrast, the grout cores run uninterrupted in the

vertical direction, and the bed joints are more completely mortared

and have the benefit of compression due to gravity during curing.

Another reason may be that the grout contributes little to stiff

ness in the horizontal direction. Examination of the cut edges of
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specimens shows frequent separation of cores from the block. This

separation could mean that the grout is not being loaded during hori-

zontal compression.

The values of the strains predicted using the moduli values

listed in Table 2.4 are given in Table 2.5. The measured strains are

given in Table 2.1, and the predicted values follow from the measured

loads (Table 2.1), and the transformation laws given above. One can

see that most predicted values are within 20 percent of the measured

values, and the worst percentage errors occur for the strains of

small magnitude.

The error in these results probably is due principally to uncer

tainty in measurement of displacements. From the plots of stress

versus strain (e. g. Fig. 2.4), the uncertainty in the strains used in

these calculations can be estimated, and from this follows the uncer

tainty in moduli, listed in Table 2. 6.

2.4 Material Damping

A structure subjected to dynamic loading must have some

means of dissipating the energy it acquires, so that displacement

amplitudes can be limited. Two mechanisms for losing energy are

radiation into the ground, and frictional losses at the joints between

structural members. A third mechanism is internal damping of the

structural material. If the material from which the structure is built

has a high level of damping, this third mechanism can be an impor

tant means of energy disSipation.
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In this investigation the large-scale specimens were subjected

to cyclic uniaxial compressive loading at several frequencies ranging

from 0.05 cps to 2 cps. The nature of the hysteresis loops observed

in these tests determines how the material damping should be modeled.

If the damping is to be considered viscous, then the energy loss per

cycle must be proportional to frequency. But no such frequency de

pendence was observed. As Fig. 2.5 shows, there is no measurable

change in energy loss over a range of frequencies of nearly two orders

of magnitude,

This frequency independence is a characteristic of hystere sis

damping [131, also called solid or structural damping, The damping

is due to friction between internal planes which slide during deforma

tion, and this type of damping is exhibited by many materials, for

example rubber and steel. The energy loss per cycle for hysteresis

damping is proportional to the square of the displacement amplitude,

which means that the hysteresis loops have the same shape for all

displacem ent am plitudes.

All specimens tested in this investigation were subjected to

cyclic loading at approximately the frequencies shown in Fig. 2.5,

and these curves are typical. Only one specimen, however, was

tested over a range of displacement amplitudes, Its damping results

are given in Table 2.7, and they are seen to satisfy closely the ampli

tude dependence assumed for hysteresis damping.
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This specimen was loaded to about half its failure load in com-

pression. At this level, a small increase in energy loss was observed,

and it is likely that significant increases will occur for loads approach-

ing the compressive failure load. At the stress levels applied to the

remaining specimens, the areas of the hysteresis loops are quite

small, which makes their measurement difficult. Table 2.8 gives the

areas at several orientations. If there was any dependence on angle or

batch, it was too small to be detected.

As noted above, the energy loss per cycle for hysteresis damp-

ing is proportional to the square of the amplitude. It is clear that a

member with a larger cross-sectional area will have a larger energy

loss for the same displacement. If one includes the stiffness of the

member in the proportionality relation, the shape of the member will

then be accounted for, and the remaining proportionality factor will be

a dimensionless hysteresis damping constant for the material. Thus,

the energy loss per cycle is

6U
2

=TTkbD ,

where k is the stiffness, D is the displacement amplitude, and b is

the damping constant. The factor TT is included in order to simplify

a later result. For our specimens it was found that b'" 0.040.

Some understanding of the effect this type of damping will have

on the motion of a structure can be obtained by a simple analysis.

Imagine a material element which exhibits small hysteresis damping
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acting as a massless spring in a system undergoing free vibration

about the equilibrium point X (Fig. 2.6). The resulting motion will

be harmonic with slowly decaying amplitude. This would be just the

loading that a structural member of a building undergoing free vibra-

tion in its first mode would experience. The energy loss for the build-

ing would be the sum of the energy losses of the members.

Let the material element have the force-displacement curve

for cyclic loading shown in Fig. 2.7, where X is the displacement

due to the constant load kX, and D is the cyclic displacement ampli-

tude. The force g represents the deviation from linearity, so that

the total force is f = kx + g, and the energy loss per cycle is

The equation of motion for the mass is

kX - (kx + g) = m x

By multiplying this equation by x and integrating over time, one finds

the energy equation

1 2 JkX ;:" x -"2 k ;:" (x ) - g dx
1

=-m
2

Applying this equation at the beginning and end of a cycle, where x = 0,

gives

kX(D
2

-D
l

) - .!-k[(X+D )2 _ (X+D )2] _ knb D 2 = 0
2 2 1 1

where the above expressions for ;:" U have been used. Solving for D
2

,
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one finds

or,

Thus, the ratio of successive amplitudes is constant, which

means the decay is exponential, If one knows this ratio for a vibrat

ing structure, he can then find the damping constant b. (As noted

above, though, there are other sources of damping for a structure,

which would add to the damping due to b. )

Since the decay due to viscous damping is also exponential,

the free-vibration behavior of the system analyzed above is identical

to that of a certain viscous damped system with spring and damper

in parallel, For a viscous damped system, the damping rate is

characterized by the damping factor S, equal to the ratio of the damp

ing constant to the critical damping constant. (S times 100 is the

percent critical damping.) For small S, the ratio of successive

amplitudes is

-2n S
'" e

Using the above result, one finds

s '" b/2

Hence, one can say that the material is characterized by a damping

factor equal to half of b, and our specimens exhibited a 2. a percent

critical damping,
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Table 2. 1. Elastic Strains (X 106 ) and Stresses (psi) in Principal
Stress Coordinate System

Panel # Test e' e '
,

a'
11 22

e
D all 22

Horizontal -182 18.2 -63. 1 -180 0

79 Vertical 43.7 -196 -41. 7 0 -350

Failure 106 -180 -13. 1 42. 1 -300

Horizontal -176 20.7 -62 -180 0

84 Vertical 37.9 -207 -32.8 0 -350

Failure 94.1 -184 -11.5 40.1 -300

Table 2. 2. Elastic Strains (X 10
6

) and Stresses (psi) in Joint
Coordinate System

Panel # Test ell e e
12 all a 22 a

1222

Horizontal -171 6.8 50 -159 -21 58

79 Vertical -6. 5 -146 -103 -41 -309 -112

Failure 57 -131 -110 2. 1 -260 -110

Horizontal -163 7.7 51 -159 -21 58

84 Vertical -24 -145 -118 -41 -309 -112

Failure 40 -130 -115 O. 3 -260 -109



Table 2.3. Elastic Moduli, First Estimate

Panel # E
l

(106 psi) E
2

(10
6

psi) G(106 psi ) V

79 0.907 1.992 O. 541 O. 31

84 0.957 2.001 O. 506 0.23

Table 2.4. Elastic Moduli, Final Estimate

Panel # E
l

(10
6

psi) E
2

(106 psi) G (10
6

psi) V

79 0.912 2. 041 0.526 O. 19

84 0,957 2.037 0.488 O. 16
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Table 2. 5. Predicted Elastic Strains (x 10
6

)

Panel II Test
,

e ' eOell 22

Horizontal -186 24.4 -64.4

79 Vertical 47. 5 -198 -39.2

Failure 84 -176 -18. 6

Horizontal -182 25.3 -69

84 Vertical 49.2 -205 -34.4

Failure 82.6 -182 -14. 0

- ----- ---_.--_.~----

Table 2.6. Uncertainty in Moduli Values

Modulus E
l

(l0
6

psi)

Uncertainty ± O. 03

E
2

(10
6

psi)

± 0.08

G (10
6

psi)

± O. 03 ± O. 04



Table 2.7. Damping versus Displacement Amplitude

*(Tmax Amplitude Loop Area Area

(psi)
-3

(in. Ib) kt. ampL 2(10 in.)

170 1. 34 7.32 0.204

330 3.20 36. 0 0.176

490 5.32 93. 1 0.164

670 7.72 198 O. 166

820 10.23 372 O. 178

~~

(max-min)/2.

t k is the panel stiffness = 2.0 X 10
7

Ib/in.
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Table 2.8. Damping versus Lay-up Angle

Panel Angle Freq. Area
Number (degrees) (Hz) rrk ampl. 2

32 30 O. 5 .0429

32 -60 O. 5 .0%9

35 90 O. 5 .0454

36 90 O. 5 .0448

38 90 O. 1 .0322

40 45 O. 5 .0326

43 75 O. 5 .0306

45 0 O. 5 .0249

46 15 O. 5 .0521

48 45 0.5 .0341

48 -45 O. 5 .0503

50 0 0.05 .0204

51 30 O. 5 .0303

53 30 O. 5 .0418

79 20 O. 1 .0378

84 20 O. 1 .0356
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CHAPTER 3. INITIAL STRENGTH

The strength of masonry is defined by a closed surface in

stress space (011' 0
22

, 0
12

) at which first cracking occurs. The

tests conducted in this investigation do not determine the entire sur

face, but concentrate on a part of the surface that should be of great

est importance in the analysis of buildings subjected to seismic

loading.

Both uniaxial and biaxial strength tests were conducted, and

uniaxial specimens were tested both in compression and tension. The

biaxial tests were restricted to the following special case: The princi

pal stresses and their orientation were chosen to render the normal

stress on the head joint planes zero. This restriction was made be

cause it is believed that in structures this stress is usually

small compared to the shear stress or the normal stress on the bed

joint planes:

10 11 1 « max ( 1022 I, \0121 )

3.1 Uniaxial Compressive Strength

Before looking at the general case of biaxial stress, consider

the special case in which one of the principal stresses is zero and the

other negative (compressive). For this case there remains one vari

able to be specified: the angle at which the stress acts relative to the

bed-joint planes. Though the compressive strength and its depend

ence on lay-up angle should be determined by tests on large-scale
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panels, our test system did not have the ability to load to failure in

compression. Hence, we were forced to determine compressive

strength by tests on small-scale specimens, and we were unable to

determine its direction dependence.

The direction of loading which is easiest to test is that direc-

tion in which masonry is normally loaded - with compression across

the bed joints. The strength in that direction is related to the quantity

f' , which plays a major role in the design of structures. Building
m

codes employ f' to limit allowable stresses. Its value is deter
m

mined by tests on prisms, which are small assemblages consisting

of two or more blocks laid up in a column. Specifically, f' is deter
m

mined by tests of two-course prisms capped with a high-strength

sulphur fly-ash compound or a high-strength gypsum plaster [14J.

f' is taken to be the failure load in compression divided by the cross
m

se ctional area of the prism.

As part of this investigation we examined the significance of

f ' as determined by the above procedure C9). We found that two fac
m

tors significantly affect the results obtained. The first is end re-

straint. Friction between the specimen and the bearing plates of the

testing apparatus greatly restricts lateral displacement at the ends

of the specimen. This restraint results in a higher failure load than

would be obtained if the restraint were absent.

Evidence of this restraint is found in the failure mode - in a



two-course prism the fracture surface bends away from the bearing

plate to leave a roughly conical piece attached to the bearing plate

(Fig. 3, l) - and in the lowe r strengths obtained with prism s of more

than two courses. For prisms of three courses, the end effects are

smaller at the center of the prism, so that the stress state begins to

approach one of true uniaxial compression. This results in proper

tensile splitting in the center block (Fig, 3.2). The proper stress

state is nearly achieved in prisms of four courses, so there is little

variation in strength between four-course prisms and those of five

courses.

This interpretation of the effects of prism height leads to the

conclusion that a two-course prism should behave similarly to a four

course prism if friction between the specimen and the bearing plates

were eliminated. One method of greatly reducing the friction is to

use a soft capping material. We conducted tests of two-course prisms

capped with a 0.25 inch thickness of a polymer material with a very

low shear modulus (about 150 psi). The results were as anticipated.

The failure stress was about equal to that of a four-course prism,

and the failure mode was tensile splitting that extended all the way to

the ends of the specimens (Fig. 3.3). That this failure stress was

not less than that of a four-course prism is evidence that the polymer

does not cause premature failure by extrusion.

The other factor affecting the significance of prism tests is

43
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bond configuration. The two-course prisms which are tested to deter-

mine f' have no head joints. Two full blocks are simply laid up in
m

stack bond. To determine if head joints influence the strength results

obtained, tests were conducted on three- and five-course running bond

prisms constructed from full blocks and half blocks. It was found that

these prism s are significantly weaker than stack bond prisms of the

same height. The reduction in strength for five-course prisms was

about 16 percent.

The above results show that the value of f' obtained from
m

two-course prism tests is much higher than the true compressive

strength of full-scale masonry. The strength of a two-course stack-

bond prism with a hard cap is about 62 percent higher than that of a

five-course running-bond prism, which should be close to the strength

of full-scale masonry. (This does not mean that the building codes

are incorrect. This artificially high strength apparently has been

accounted for in the safety factors. The true full-scale masonry

strength is simply never considered in building design. )

It is possible that the narrow width (one full block wide) of a

running-bond prism leads to a slightly premature failure in the head

joints, but the error should be small. This possibility should be in-

vestigated by testing larger specimens, for example a five-course

running-bond prism two full blocks wide. For this program we did

not have a machine capable of performing such a test, so our best
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estimate of the compressive strength of full-scale masonry is that of

a five-course running-bond prism.

3.2 Uniaxial Tensile Strength

Next consider the case in which one principal stress is zero

and the other positive (tensile). For this case we were able to load

large-scale panels to failure, and hence able to determine direction

dependence.

A series of tests of direction dependence was conducted for

each of two batches of specimens. The results are shown in Fig. 3.4.

The variable e represents the angle between the tension direction

and the normal to the bed joints, so that e = 0 represents tension

across the bed joints, and e =90° tension across the head joints.

For each batch there is a clear maximum strength for e about

40", with the strength gradually diminishing away from 40°. Thus,

a second degree polynomial should provide an excellent representa

tion of the dependence of strength on e. Further, the variation in

strength with e is remarkably similar for the two batches, with

batch 6 simply shifted up from batch 5. Therefore, it appears that

one should know the strength for arbitrary e if the strength for e = 0

is known.

For each batch, the values of the three constants for a second-

degree polynomial fit of the data were determined by a least squares

procedure. The results are given in Table 3. I, where
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at = a~O) + ae + be
2

, e in degrees.

Since a and b show little variation between batches, the following

formula should be an excellent representation of uniaxial tensile

strength:

= a (0) + 0 67 e _
at t •

3.3 Biaxial Strength

2o. 009 e , Os: e <: 90° (3 0 1 )

The strength of masonry under biaxial loading was studied for

the special case of zero head-joint normal stress. The behavior of

fully grouted masonry was expected to be similar to that of concrete,

which has been carefully studied. For concrete under biaxial loading,

the tensile stress at which fracture occurs decreases approximately

linearly with increasing compressive stress (see Fig. 3.5, £rOIn [15]).

In this investigation the most cOInplete results were obtained

for batch 6. The original data points are listed in Table 3.2, and

shown in Fig. 3.6 with tensile stress plotted versus compressive

stress, The nine original data points, represented by circles, clearly

show a gradual decrease in tensile strength as the compressive stress

increases. For these tests, however, the tensile direction varied

over a range of 80°. Hence, the results should reflect the anisotropy

described in the previous section, and a more nearly linear relation

Inight be expected if this anisotropy were sOInehow accounted for.

Consider what effect anisotropy should have on the data of

Fig. 3.6. For panels 48 and 55, the angle between the tensile
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direction and the normal to the bed joints was 45·, while for panels 50

and 58 the angle was 0·. Hence, by the results shown in Fig. 3.4,

panels 48 and 55 can be expected to show less of a decrease in tensile

strength compared to panels 50 and 58 than they would if their tensile

direction were also 0°.

TI1is observation forms the basis of the following method of

cor recting the tensile stress of a biaxial test for the known anisotropy

in uniaxial tensile strength. The method is illustrated in Fig. 3.7, in

which tensile stress is represented by the vertical axis, and compres

sive stress by the horizontal axis. The circle represents the original

data, and is assumed to lie on a line from A, the uniaxial compres

sive strength, to B, the uniaxial tensile strength for the direction of

the tensile stress.

Hence, if the tensile direction is stronger by an amount /'.

then the tensile strength for the direction e = 0, the point would have

fallen on the line AC if the specimen had been tested at e = O. Thus,

the corrected point is represented by x. Anisotropy in compressive

strength, if it were known, could be corrected for by the same method.

Since neither A nor B is known until a line is fitted to the data,

the correction should be done by an iterative process. But fortunately,

the corrections are insensitive to the final result. If one assmnes the

slope of the line AB, usually about 1/15, the corrected value is deter

mined, and no iterations should be necessary.
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For the biaxial tests conducted in this program, the condition

of zero head joint normal stress meant that the ratio of compressive

stress to tensile stress was determined by the angle at which the ten-

sile stress was applied. Hence, this angle determines the correction

6 in uniaxial strength, and also the final cor rection in biaxial strength

if a slope is assumed for the line AB.

The relation between the ratio of stresses and the tensile

direction is

2
r = ctn a ,

where r is the ratio of compressive stress to tensile stress, and a

is the angle between the tensile direction and the normal to the bed

joints (Fig. 3.8).

If one knows rand 6, and assumes a slope for the line AS,

then the correction Ii for the tensile stress is determined as follows.

Let the line AB have slope I fR. Then the lines AB and AC are given

by

y = B(I + R"s)

y = (B-6) (1 + :S)

The difference is

Ii = 6 (1 + RXB)

Since the original data point lies on the line AB and on the line



y = -x/r

one has
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x - -
rBR

rtR

Substituting this result in the expression for 0 gives

The tests in this program were conducted for six values of the

angle e, Table 3.3 gives the values of e and the resulting correc-

tions, for R = 15. Applying these corrections to the data of Table 3.2

gives the values listed in the last row, These are plotted as x's on

Fig. 3.6, and are clearly closer to a straight line than the original

data.

A measure of the closeness to a straight line is provided by

the methods of statistics [16]. Let the corrected data be represented

by the pairs of observations ((x., y.); i = 1,2, ..• , n}, where x. is
111

the compressive stress (x. < 0), Assume that the random variable
1

Y. = Y Ix. is related to x. by the equation
1 1 1

Y. = a t ~ x. t E.
1 1 1

where the error term E. is a random variable with mean zero, and
1

2
that each E. is normally distributed with the same variance (J

1

Then the regression line

= at [3x



is e stim ated by the line

.
y=a+bx,

where

so

b =
n I: x.y. 

1 1

2
nI:x 

i

(I:x.HI:y.)
1 1

2
(I: x. )

1

a = y - b"X

and the bar over a variable indicates the arithmetic mean. Applying

these results to the corrected data gives

b = 0.0820

a = 110.7

The accuracy of these estimates of the parameter a. and 13

is expressed by confidence intervals. (1- 2y) 1000/0 confidence inter-

vals are given by

a -

t sW
y 1

JnS
xx

<a.<a+
t s;;;:J

Y 1

JnS
xx

t s
b - --::y,==-
~xx

<13<b+

t s
y

where t is a value of the t distribution with n - 2 degrees of
y

freedom,

2
S = I: x.

xx 1

2
(I: x.)

1

n



and s2 is an unbiased estimate of cr 2 given by

[Zy.z - (Zy.)2/n ] - b[Zx.y. - (Zx.)(Zy.)/n]
2 1 1 11 1 1

S = ----''-----=-------=-=--=----=----=--
n - 2

For the corrected data one finds

s = 10.4 ,

and 90% confidence intervals are

101.1 < a < 120.3

o. 0604 < 13 < O. 1036

For the purpose of predicting the strength at a particular

compressive stress, one has the (1 - 2y) 100% confidence interval

for a single response
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y - t s
o y

1 (x - x)2
l+-+_oS;'---<y <y

n 0 0
xx

+ t s
y

1 (xo -x j2

1 +n+-S:o---
xx

The 90% confidence intervals at several values of compressive stress

are given in Table 3.4.

The line determined by the above procedure is shown in

Fig. 3. 6. It fits the data quite well, and the confidence intervals

give the variability in strength one can expect.

For use in computations, it is necessary to have an expres-

sion for the above law of biaxial strength. The statem ent of this law

is quite simple in terms of principal stresses. Let the principal
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stress (J ~2 be positive (tensile l, (J {I negative (compressive). Then

fracture occurs when

(3. 2 )

where (J t is the uniaxial tensile strength for the x; direction.

The quantity (J requires some consideration. Ii the linear
c

law held for arbitrarily large compressive stress, (J (> 0) would be
c

the uniaxial compressive strength for the x{ direction. However,

the tests in this investigation did not cover the high compressive stress

range, and for concrete the uniaxial strength is significantly less than

the quantity needed in the above formula (see Fig. 3. 5). Hence, a
c

is to be determined from the data fit for the biaxial tests, rather than

from uniaxial tests. The behavior in the high compressive stress

range is a subject that requires further investigation.

For some purposes it is more convenient to express the first-

cracking law in terms of stress components for the joint coordinate

system. Let (Xl' x
2

) be the joint coordinates, and (x{, x;) the

principal stress coordinates, as in Fig. 2.2.

The two stress invariants are then represented by the follow-

ing equations:

(3.3)
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Substituting the first of these in Eq. (3.2) gives

0"
I c

(O"II to"22 - O"t)0" 11 " O"t to"
c

(3. 4)

I
O"t

(O"ll t O"22 t o"c )
0" 22 "

O"t t 0"
c

Substituting Eqs. (3.4) in the second of (3.3) gives

(3. 5)

where 0" t is the uniaxial tensile strength in the direction of the princi-

pal tensile stress. This strength is given by Eq. (3.1), and the angle

needed in (3.1) between the x
2

direction and the direction of the

principal tensile stress is

e "

where

1 - 1- tan
2

(3. 6)

H(x) " 11,

( 0,

x> °
x s: 0

Equations (3.2) and (3.5) apply only to stress states whose

principal stresses are of opposite signs. And while they may hold as

long as this condition is satisfied, their validity was checked only for

the special case 0" 11 = 0. The test results and the curve represented

by Eq. (3.5), for 0"11 = 0, are shown in Fig. 3.9.



3.4 Test Case for Biaxial Law

Once the elastic behavior of a material, and the stress states

at which fracture occurS are known, it is possible to predict the load

at which a structure will first suffer fracture. In general, it is more

difficult to predict the maximum load that can be sustained, for it is

necessary to know the post-fracture behavior of the material, and to

perform the non-linear analysis required once cracking begins.

In order to see if first fracture could be predicted for non

homogeneous loading, a test was chosen for which the fir st-fracture

and ultimate loads were expected to coincide, so that the first-frac

ture load could be accurately determined. The test is known as a

diagonal compression test, in which a square is loaded at opposite

corners, as shown in Fig. 3.10.

For an isotropic linear elastic material under point loads, an

analytical solution for the stress state is available. This solution

predicts a region of nearly uniform tensile stress at the center of

the square in the direction perpendicular to the direction of loading

(Fig. 3. 10). Since masonry is weak in tension, fracture is expe cted

to begin at the center and propagate toward the loaded corners, with

a resulting drop in load.

There are several item s that need to be considered in the

analysis of this test. One is that the point loads of the analytical

solution must actually be distributed loads. For our specimens, the

S4
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load s were applied through steel caps that extended about 10 inches

along the sides from the corners. In order to account for this differ

ence with theory, a finite element computer analysis was performed

to predict the stress state for linear elastic behavior. This analysis

should also have accounted for the anistropic elastic behavior of

masonry. However, at the time the analysis was performed, the com

plete anisotropic constitutive law was not known, so an isotropic law

was assumed.

The final item to be considered is the size of the specimen

compared to the block size. The constitutive and fracture laws are

expected to apply to nonhomogeneous stress states for which the

stresses vary little over a block dimension. The specimens tested

were 64 inches on a side (Fig. 3. 11). According to the above solu

tion, the stress could vary by as much as 40 percent over the length

of a block at the center of the specimen, which is somewhat more

variation than is desirable.

The finite element analysis predicted a ratio of compressive

stress to tensile stress at the center of 3.45. Homogeneous tests

had been performed with a ratio of 3. 00, so the same orientation was

used in the diagonal compression test, and the biaxial fracture law

was used to correct for the difference in stress ratios. The pre

dicted failure loads agree quite well with the test results, as shown

in Table 3. 5.

,"----------------
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3. 5 Strength of Reinforced Masonry

The strength of masonry at first fracture is expected to be

little influenced by steel reinforcing in the amount used in the speci

mens tested in this investigation. The fractional steel area of

0.00126, which exceeds minimum UBC requirements, is so small

that at the strains at which masonry fracture occurs, the steel is

carrying an extra load equivalent to only about 4 psi. Hence, rein

forced masonry should be only slightly stronger at first cracking,

and the biaxial results determined for unreinforced masonry should

still hold.

A test of this hypothesis is available in the data from batch 8.

Several tests were conducted for both reinforced and unreinforced

specimens at lay-up angles of 0 0 and 80°. The results are given in

Table 3.6.

It is seen that the reinforced specimens are stronger by about

25 percent, which is a somewhat greater increase than expected.

Though this is a small sample for making a comparison, the results

are consistent enough to suggest that somehow the steel postpones

the onset of cracking. Until more data is available to check this in

crease in strength, however, masonry with this amount (or less) of

reinforcing steel should be considered to have a first-cracking strength

equal to that of unreinforced masonry.
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3. 6 Strength Prediction

It is clearly desirable to be able to predict the strength of

masonry from the properties of its components. This ability would

enable one to select components that would produce the strongest

possible assemblage, and would reduce the amount of testing neces

sary for a new combination of components. The problem is a complex

one, but these experiments have provided some knowledge of the in

ternal mechanisms that influence strength.

The stress state for which the behavior is simplest, and

strength prediction has the best chance of success, is uniaxial tension

across the bed joints. The strength for this case is expected to be

determined primarily by the strength of the grout, because joint tests

have shown [171 that the mortar bonds have little or no tensile

strength. Multiplying the grout cross-sectional area by the grout

tensile strength gives the maximum load that can be sustained if the

mortar bond has no strength. This load divided by the entire masonry

cross-sectional area then represents the predicted tensile strength.

The grout strength and two panel strengths are available for

batch 6. The results are given in Table 3.7, and the predicted

strength is seen to be in excellent agreement with the test results.

This method of predicting tensile strength would, unforunately,

give poor agreement in many cases, due to flaws in the grout. Exam

ination of failed specimens and the edges of panels cut from walls has

revealed that most specimens suffer grout flaws and grout-block

~"------------



58

separation. There is frequently a regular pattern of flaws at the bed

joints (Fig. 3.12). These grout bridges apparently result from the

restrictions created by the change in block wall thickness and the

slight intrusion of mortar into the grout cell.

The seriousness of these flaws will clearly be influenced by

such factors as grout viscosity and compaction, and curing conditions.

It was found that for batch 6, which cured during an exceptionally wet

period, flaws were almost nonexistent. This is the reason for the

excellent agreement in Table 3.7, and for the consistently high

strengths recorded for batch 6.

A striking illustration of the influence of flaws on strength is

available in a tensile test of a prism whose fracture surface clearly

shows a flawed region. The intact grout, whose surface was distin

guishable by a difference in color and texture, is represented by the

cross-hatched region in Fig. 3.13. The remaining area represents

a flaw that was incapable of carrying load. The ratio of intact grout

area to the total grout area was 0.67. This reduced area, multiplied

by the grout strength, gave a predicted strength within a few percent

of the actual failure load. It is thus clear that the ability to predict

tensile strength across the bed joints requires a knowledge of the

size of the grout flaws.

For a tensile test in the opposite direction, that is, with ten-

sian across the head joints, the fracture pattern is more complicated.

For this stress state the obvious weak point is the head joints, and

,"'-----------------



the fracture invariably follows a path through a set of head joints.

Between head joints, the fracture generally runs through the center of

a block, just to one side of the web, as shown in Fig. 3. 14.

The stress for this loading is thus carried by three regions:

the head joint, the two face shells of the block, and the area of con

tact between the web and the grout. Tests have shown that the head

joints possess little tensile strength, and the load required to fracture

the face shells can be predicted, so the only rem aining area is that of

contact between web and grout.

Examination of failed specimens from batch 6 showed that

roughly a third of the web area had been adhered to by the grout. The

remaining area suffered separation during construction or curing.

Addition of the load required to fail one third of the web area to the

load needed to fail the face shells gives a predicted failure stress of

83 psi. The average strength for two specimens from batch 6 was

95 psi, which is in fair agreem ent with the prediction.

It is thus clear that a knowledge of component strengths is not

sufficient to predict the strength of the assemblage. One must also

know the extent of flaws and grout separation. Further, if flaws could

be eliminated and the grout made to adhere to the block, the resulting

masonry would be substantially stronger.

The analysis of strength i.n this section was limited to two

special cases. The other stress states, which are tension at an

59
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arbitrary orientation, compression, and biaxial stress, are more

complicated and are not yet understood. Insight into the failure mech

anisms for these cases would represent important progress in the

understanding of masonry behavior.



Fig. 3.1. End Restraint in Two-Course Prism with Hard Cap
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Fig. 3.2. Tensile Splitting of Three-Course Prism
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Fig. 3.3. Tensile Splitting of Two-Course Prism with Soft Cap

,""'------------
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Fig. 3.11. Typical Diagonal Compression Test Fracture
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Fig. 3.12. Grout Bridges and Resulting Failure
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Table 3 0 1. Coefficients of Uniaxial Tensile Strength Quadratic

(0 )
bat a

Batch 5 8403 0.660 - 0.00924

Batch 6 1050 5 00 677 -0000871
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Table 3.2. Biaxial Failures Stresses (psi) for Batch 6

8 0 45 60 70 80

Compr. stress 0 -128 -305 -446 -1023

Orig. tensile stress 109 117 97 55 28

Corrected stress 109 106 91 53 29

Compr. stress 0 -136 -309 - 548

Orig. tensile stress 101 120 99 70

Corrected stress 101 109 93 68

Table 3.3. Cor re ction of Tensile Stress for Anisotropy

8 r /:, (psi) 6 (psi)

0 0 0 0

45 1. 00 11.9 110 2

60 3.00 7.8 6. 5

70 7. 55 2.8 1.9

75 13.9 -0.4 -0.2

80 32.2 -4.0 -1. 3

75



Table 3. 4. Single Response 900/0 Confidence Intervals

Compr. Stress
0 -200 -400 -600 -800 -1000

(psi)

Tensile stress
{ 133

115 99 83 68 54
interval
(psi) 89 73 57 40 22 3

Table 3.5. Diagonal Compression Test Failure Loads (10
3

lb)
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Predicted Values

Test results

105.9

107.3

78.2

83.4

89.7



Table 3.6. Comparison of Unreinforced and Reinforced Strengths
(psi)

Unreinforced Reinforced

e Panel # I
G ' Panel # , G I

GIl 22
GU 22

85 0 78 80 0 99

0 91 0 64 83 0 88

87 0 91

avg. 0 71 avg. 0 93

79 49 -357 82 63 -441

80 84 52 -395 86 62 -482

92 63 -465

avg. 50 -376 avg. 63 -463

Table 3.7. Tensile Strength Prediction (psi)
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Grout Strength

206

Predicted
Panel Strength

103

Panel
Test Results

109

102



CHAPTER 4. POST-FRACTURE BEHAVIOR

The behavior of masonry following initial fracture is of great

importance for a structure subjected to strong seismic loading. 1£ the

material possesses some ductility and can sustain a significant part of

its original load following fracture, the chances of survival of the

structure will be greatly improved. Grouting and steel reinforcing

will help to insure the integrity of the material after cracking begins,

and the energy absorbed during ductile deformation can be an important

source of damping.

The description of masonry behavior once cracking begins is,

of course, very difficult, and no well developed theory exists which

can accurately predict this behavior. Some of the complexities are

load drop at first fracture, stiffness degradation, crack closure, and

path dependence. For the case of steel-reinforced masonry, some

success has been had with plasticity models. This success was hoped

for, since the post-fracture behavior is determined largely by the

reinforcing steel, and steel is a material for which the plasticity theory

works very well.

4.1 Subsequent Loading Surfaces

The failure surface discussed in the previous chapter consists

of the stress states at which fracture, and non-linear behavior, com

mence. Once the material has fractured, it is convenient to have a
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similar surface, called a subsequent loading surface, that represents

the maximum load that can be sustained. Stresses below this surface

usually cause little further cracking, and behavior below this surface

is generally linear, though reinforced specimens exhibit a large in

crease in stiffness on transition from tensile to compressive loading.

Upon reloading, the stre ss - strain curve levels off suddenly

as it approaches the loading surface, as shown in Fig. 4.1. The load

ing surface may suffer a sudden drop at the first tensile fracture, as

shown with a different strain scale in Fig. 4.2, and continued deforma

tion associated with stresses on the surface usually causes further

cracking, and can cause the surface to change.

Determination of this changing surface is clearly a difficult

task. The variety of possible loading paths makes a strictly experi

mental determination for all cases nearly impossible. The only

chance of success is to restrict attention to a limited number of cases,

and then to combine experimental results with some understanding of

the structure of the materiaL

Consider first what occurs as cracking begins, for a uniaxial

stress state. For uniaxial compression the only data available is that

from prism tests, which are described in Section 3.1. As discussed

in that section, the behavior of running-bond prisms of more than

three courses is expected to correspond closely to that of full-scale

lTIasonry.
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As shown in Fig. 4.3, the stress-strain curve for a prism

compression test has a large linear section, then the load continues

to climb a small amount before beginning to drop. The end of the

linear part of the curve is believed to mark the onset of cracking. It

is this stress, then, that represents a point on the initial yield surface.

As deformation continues, this part of the surface expands a small

amount, then begins to contract.

The effect of this cracking on other parts of the surface can

only be surmised. The grout cores are known to remain intact until

well after cracking begins, so the tensile strength probably drops

slowly. Gradual disintegration of the material likely causes strength

in the opposite direction to decrease: Once the face shells have

broken off there can be little strength left across the head joints.

Compressive behavior is probably very similar for reinforced and

unreinforced masonry.

For the case of uniaxial tension, the behavior depends strongly

on whether or not the material is reinforced. The load of an unrein-

forced specimen drops immediately to zero at the onset of cracking.

As shown in Fig. 4.4, the behavior is linear up to the load drop. A

reinforced specimen, on the other hand, is able to sustain some load

following a sudden drop in load, as shown in Fig. 4.2.

This reduced load must be transmitted across the crack by

the reinforcing steel. At the point where the load levels off in
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-5
Fig. 4.2, the strain is about 9 X 10 ,while the stress is 50, 000 psi.

2
Tf the steel, whose total area is 0.61 in , were strained uniformly,

it would carry a load corresponding to a stress of only 3, 000 psi.

Hence, its load is being transmitted to the masonry. Since the load

drops by 40 percent at first cracking, either the masonry suffers

some debonding, or the wide steel spacing allows a large section of

masonry to remain unloaded. If there were more reinforcing, the

load would be transmitted more effectively, and the drop in load

might be nearly eliminated.

As the strain continues to increase, the load gradually climbs.

Because we were interested in cyclic and reloading behavior, none of

the specimens tested in this investigation were loaded monotonically

to large strain. However, the envelope for the cyclic Curves is be-

lieved to be very close to the monotonic curve. As seen in Fig. 4.2,

there is an abrupt change in slope as a reloading curve reaches this

envelope. This change in slope is associated with the continuation of

cracking. Hence, an unloading cycle below this envelope should have

little effect on the behavior of the material, and the envelope should

represent the monotonic loading curve.

As the strain increases further, the stress is seen to level

off. On Fig. 4.1, the stress corresponding to yield of the 60, 000 psi

reinforcing steel has been indicated. It is seen that at large strain

the load is just the maximum load that can be sustained by the yielded

steel. For reinforced specimens this large strain produces numerous
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cracks, as shown in Fig. 4.5, because of the load transmitted by the

steel.

Once the material has cracked, its tensile strength becomes

very direction dependent. While the strength across the crack drops

to a level that depends on the arnunt of reinforcing steel, the strength

in the direction parallel to the crack is probably unaffected. Further,

the strength in compression is probably affected little by tensile

cracking. Figure 4.2 shows that as a cracked specimen is compressed,

the load increases sharply, due to the closing of cracks.

Once these cracks have closed, the specimen is probably able

to sustain a load close to its unfractured compressive strength. How

"ver, the extensive cracking associated with large strain of a rein

forced specimen is likely to cause a general reduction in strength.

This completes the discussion of post-fracture strength for

uniaxial stress, except fOT dependence on crack direction, which was

not studied. So there remains the strength under biaxial loading.

Because such a large variety of biaxial stress states are possible,

knowledge of such behavior is rather sketchy. No tests were con-

ducted under biaxial tension 01' com.pression, so little is kmwn about

these cases.

Since the biaxial te sts that were conducted all had one princi

pal stress tensile, the tests of unreinforced specimens ended at first

cracking, for the crack meant that a tensile load could no longer be

sustained, For the reinforced specimens, the loading was continued
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well past first cracking. The loading in these tests was proportional,

with a constant ratio of compressive to tensile stress throughout the

test. Thus, as cracking began and the tensile stress dropped, the

compressive stress was reduced.

Reinforced biaxial tests were conducted at two lay-up angles

(as defined in Section 3.3): 45°, with a compressive to tensile stress

ratio of 1 to 1; and 70 0, with a ratio of 7 . 5 to 1. Figure s 4. 6 and 4.7

show the tensile stress versus the corresponding strain for a specimen

of each type. A comparison of these two cases with the uniaxial case

shown in Fig. 4. I reveals two items of importance.

First, while there is a load drop as cracking begins for the

two biaxial cases, the drop is much less than for the uniaxial speci

mens, This difference is not well understood, but is likely related

to the rather complex crack pattern occurring in the biaxial tests.

The initial cracks, marked "1" in Fig. 4.8, fail to cross the speci

men completely. Rather, they consist of several isolated short cracks,

so that there remain intact segments able to carry load.

These intact segments may survive because at a non- zero lay

up angle both vertical and horizontal reinforcing steel act to prevent

cracking. That is, a crack may have to cross three or four bars,

instead of just two bars. But this can't be a complete explanation,

because the 45 ° tests show a larger drop than the 70° tests. So it

appears that the absence of a large drop in the tensile load must some

how be related to the compressive load in the opposite direction.
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The other item to be noted is that at large strain the tensile

load has climbed to about the same level (75 psi) for all three cases.

For the 0 0 case, this level is simply the stress corresponding to the

ultimate load of the two vertical bars of reinforcing steel. The load

approaches this stress quickly, then remains nearly constant.

For the specimens with a lay-up angle different from zero, the

behavior at large strain is more difficult to explain. It is seen that

the load climbs more slowly, and appears to be still increasing at the

largest strain achieved. The reason the load climbs more slowly may

be that the steel is able to bend, since it crosses the crack at an angle.

And since the crack must cross more bars for these cases, it may be

that the maximum load will be higher. The increase would amount to

a factor of ,f2 for the 45 0 case.

These tests thus provide some useful results, but rather

meager information for the construction of a post-fracture loading

surface. By making some assumptions, however, the task can be

accomplished. It will be necessary to remember, of course, that a

result of such guessing will be limited accuracy on some parts of the

surface. Since there is no information on biaxial compression, this

part of the surface will not be described.

It is useful to make some idealizations of the data represented

by the loading curves of Figs. 4.1, 4.6, and 4.7. First, the stress

will be assumed to drop with no change in strain at first fracture, to



the sa:me level, 55 psi, for all values of co:mpressive stress. (If the

co:mpressive stress is high enough that fracture occurs at a tensile

stress less than 55 psi, there will be no stress drop. It will be

assu:med that the :material si:mply hardens at the sa:me rate as in

other cases.) Second, though the stress for the 45 0 test shows a

tendency to cli:mb, it will be assu:med that the stress at large strain

is the sa:me, 75 psi, for all conditions. Finally, it will be assu:med

that the rate of hardening (the increase of tensile stress with tensile

strain) following fracture is always 1. 5 X 10
5

psi. Thus, if e
t

is

the tensile strain across the crack, and '\ is the corresponding

tensile strength, one has
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4
1. 5 X 10 psi, crt < 75 psi (4. l)

Though there were so:me variations in the tensile stresses

i:mmediately following fracture, and at large strain, they were s:mall.

It therefore appears that the tensile strength after first fracture :must

be independent of the co:mpressive stress, in contrast to the situation

before fracture, But this is a reasonable result, since the strength

is due pri:marily to the reinforcing steel, which should be little

affected by co:mpression perpendicular to its length.

Once the :material has fractured, it is convenient to describe

behavior in ter:ms of a coordinate syste:m aligned with the crack. Let

this coordinate syste:m be unpri:med, and let prirned coordinates at an
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angle e represent a hypothetical principal stress orientation

(Fig. 4.9). In the experiments the crack direction was always a

principal stress direction, but it is necessary to be able to consider

an arbitrary stress state.

Let xi be in the tensile direction, and let rr t' and cr; repre-

sent the tensile and compressive strengths in the xi and xl' direc-

tions. It will be assumed that the linear relation between tensile and

compressive stresses still holds. That is. for a compressive stress

"";] , a point on the loading surface will have a tensile stress given

by

(4. 2)

As noted above, tensile strength in the x
2

direction should be

independent of the compressive stress rr 1]' In the above equation.

this can be achieved by letting cr' go to infinity when x' coincides
c ]

When 8 = 90 0
• so that the compressive direction x' is

]

norma] to the crack, the crack will be closed, so that cr' and IT'
t c

should have their pre-fracture values. Formulas that vary smoothly

between these two cases are



o 0
where crt and a c are the pre-fracture strengths, and at is the

post-fracture tensile strength described above. Since the compres-

sive stress cannot be arbitrary, the condition a; 1 '> - a: must be

added to (4.2).

If (4.2) is rewritten in terms of the unprimed stress compo-

nents (as was done in Section 3.3), one obtains for the loading surface
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2
a 12 =

a ')2+-.!.
a '

c

(all + rr 22 - rr;) ,

(4.4)

where IT; and 0': are given by (4.3), and the magnitude of 9 is

given by Eq. (3.6).

Equation (4.4) applies in each of the two quadrants in which

the principal stresses are of opposite sign. Data from concrete sug-

gests that for biaxial tension, the strength in each direction is inde-

pendent of the other stress. Hence, each tensile strength should be

given by the corresponding value of at' from (4.3). Biaxial com pres-

sive behavior is unknown.

4. 2 Stiffne ss Degradation

The loading surface discussed in Section 4. 1 describes the

stresses that fractured masonry can support. Analysis of a structure

requires in addition a knowledge of the displacements associated with

stresses both on and below the loading surface. Behavior of rein-

forced masonry below the surface is the subject of this section.



As mentioned in Section 4. I, little further cracking occurs

below the loading surface, so the behavior is generally linear. The

stiffness depends, of course, on the amount of cracking, and hence

can decrease whenever the surface is reached. For the uniaxial

tension specimen of Fig. 4.2, the stiffness decreased to about one

sixth its original value at first cracking, and Fig. 4. I shows con

tinued decrease at large strain.

Further, the linearity is only approximate, and holds only

within certain regions. Figure 4.2 shows that crack closure associ-

ated with transition from tensile to cOTI1pressive stress increases

stiffness to nearly the uncracked level. Therefore, to know the

stiffness, one must keep track of the strain in the direction normal

to the crack.

It appears, then, the behavior below the loading surface can

be treated as linear within each of two regions, which are defined by

the condition of crack closure. With the cracks closed, the behavior

should be close to the behavior of uncracked masonry described in

Chapter 2. With the cracks open, the material becomes highly

anisotropic, with stiffness in the direction normal to the crack de

pendent on the extent of cracking. In fact, the cracked specirn en

becomes a new material whose properties can be determined by the

same sort of analysis employed in Chapter 2. The elastic matrix

may be more complicated, however, since material symmetry may
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be lost (e. g., uniaxial tension applied to a specimen with cracks at

45 0 may produce shear strain).

The complete determination of this changing elastic matrix

will clearly require more data than is available from the experiments

of this program, but by com bining the data that is· available with som e

simple assumptions, one can produce a matrix that should be accu

rate enough to be useful.

Reinforced specimens were unloaded and reloaded at several

tensile strains following initial fracture. (See, for example, Fig.

4. 1.) An examination of the slopes of the tensile stress versus ten

sile strain paths reveals a gradual decrease in stiffness to a limiting

value of about 3.8 x 10
4

psi, which is just the stiffness due to the two

bars of reinforcing steel. (This is the value if the steel is perpendic

ular to the crack, but the experiments show little variation with

crack direction.) This limiting value was reached at approximately

the same tensile strain in each of the three tests for which this data

is available, so it appears that one should be able to relate stiffness

in the tensile direction to the tensile strain.

ln order to complete the elastic matrix, some assumptions

must be made. The first will be that the compressive stress pro

duces about the same compressive and tensile strains as in the un

cracked specimen. The next assumption concerns shear behavior,

and is little more than a guess. The shear modulus is certain to



decrease with cracking, but there is no data to indicate the rate of

decrease. So the second assumption will be that the shear modulus

decreases at the same rate as the stiffness in the tensile direction.

The final assumption is that the term s relating shear stress to

extensional strains are zero. (They must be zero if the crack direc-

tion coincides with the reinforcing direction. )

The elastic matrix thus takes the form (in coordinates aligned

with the cr ack direction)

90

e
l/D

l
- v/Dell 1

e
- V /D 1 l/gD

O
e =

22

e
0 0e

12

o

o

l/2gG

(4. 5)

where v and G are the moduli of the uncracked material, DO is a

constant, g is the function of strain that describes the rate of stiff-

ness degradation, and D
l

is the stiffness of the uncracked material

in the compression direction. The denominator of the Poisson's

ratio te rm is

. e
a straln e

22

taken to be D
l

so that the stress (J 11 won't produce

lar ger in m agnilude than e ~ 1

The final step is to determine the function g. Tests were

conducted on three specimens at different orientations (0°, 45 ° ,

and 70°) and load ratios. If their stiffnesses are plotted versus

tensile strain, ore finds curves of similar shapes, but offset in



strain. Such an offset is suggested independently by the following

consideration. If a specimen suffers stiffness degradation at frac-

ture, and is immediately unloaded, the strain e
22

will become nega-

tive if the stiffness is small enough. To prevent such an occurrence,

one can require the stiffness at fracture to have just that value that

will yield zero tensile strain at zero stress. That stiffness then

determines, through the function g, an offset in strain.

The shape of the stiffness degradation curves is about that of

1/e
22

• The constant DO is needed so that g will have an initial

value close to one. Hence, let

and for sm all e let
22
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1
(4. 6)

where [, is the offset to be determined by the above procedure, and

the coefficient 2.3 xl 0
4

was chosen by fitting the data. For large

e
22

, one has gD 0 = 3.8 X 10
4

psi.

For the three specimens that were tested, one can find the

strain e
22

at fracture from the known elastic law and the law for

first fracture. This strain is given in the first row of Table 4.1.

Since the tensile stress drops at fracture, one has a new value of

O· 22' With this new value, and the calculated value of e
22

, Eq. (4. 5)



then can be solved for g DO (given in the second row of Table 4. 1).

Finally, Eq. (4.6) can be solved for 6, given in the last row of

Table 4. 1.

Table 4.2 gives the measured stiffnesses for the three speci

mens, and in Fig. 4.10 these are plotted versus e
22

- 6. The curve

is given by Eq. (4.6) with 6 ~ 0 for small strain, with the constant

value 3.8 X 10
4

psi for large strain, and is seen to represent the

data quite well.

4.3 Anelastic Strain

A knowledge of the elastic strain discussed in Chapter 2 is

needed for one to predict the commencement of fracture. But this

strain, and even the elastic strain associated with the reduced stiff

ness of the above section, can be small compared to the anelastic

strain. Therefore, a theory that relates anelastic strain to the state

of stress is necessary in order to predict the response of a structure

that has suffered fradure. Because of the complexity of the behavior

of fractured masonry, perfect agreement with theory cannot be ex

pected, and only a small number of cases can be checked, but Some

success has been achieved for reinforced masonry.

The first step in forming such a theory is to define anelastic

strain. It is taken to be, simply, the strain that would remain if the

stress were removed. (For definiteness, the stress path is speci

fied as a straight line to the origin.) In the theory of plasticity, the
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plastic strain is the difference of the total strain, and the strain

computed from the stress through the elastic law, But for fractured

masonry, as discussed in the previous section, the elastic behavior

can change substantially as cracking occurs, Hence, it is this modi

fied elastic law that must be employed in calculating anelastic strain.

Since our tests included several unloading paths, this information on

elastic behavior is available.

With a procedure established for determining the anelastic

strains, one can now look for some pattern that relates these strains

to the stress state. As mentioned earlier, it was hoped that the in

fluence of reinforcing steel would result in behavior close to that of

the theory of plasticity, We have seen that the concepts of initial

yield surface and subsequent loading surface s do hold, with som e

modifications o So the final step is to see if the anelastic strains can

be modeled as plastic strains.

In the theory of plasticity, the anelastic part of the strain is

zero except on the yield or loading surfaces, and on these surfaces

is determined only in direction, with the magnitude left undeter

mined. This direction is specified by the flow rule, Our tests have

shown essentially elastic behavior below the loading surfaces, so it

remains to find a flow rule.

Plasticity theories frequently employ an associated flow rule 

one that is derived from the yield surface [18], For many materials
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the increment of plastic strain is approximately normal to the yield

or loading surface. More specifically, it is the increment of plastic

strain whose inner product with the stress represents work, that is

normal to the surface. Thus, if the surface is expressed in the

normal to the surface.

As explained above, though, these surfaces have not been

completely determined for masonry. Only a plane section through

the initial yield and loading surfaces has been checked by experiment.

However, the part of the surface where tests were conducted is be-

lieved to be given by Eq. (4.4), so the flow direction was compared

to its norm al.

The normal direction is given by the gradient of a function

that is constant on the surface represented by Eq. (4.4), for ex-

ample f(a .. ) = 0, where
1J

a I

2 t
f (()" .. ) = 0" + -,-----,.,---

1J 12 (l+:iY
(4.7)

The dependence of a~ and a ~ on direction makes derivatives some-

what complicated. However, the normal direction is affected little by

this anisotropy, so a ~ and ()" ~ were considered constant, giving



,
at

(
a £)2

1 +
a'

c

2 (a 11 +a22) - a;)
a '

c
- a

22

9'5

Sf
Sa 12 = 2 a 12

-all . (4.8)

Dividing by the magnitude of the gradient gives a unit vector normal

to the surface.

The anelastic strain increments were determined from plots

of stress versus strain. As shown in Fig. 4.1, load was applied and

removed in several steps, which represent convenient strain incre-

ments. The anelastic strain is the change in strain at zero load,

which is easily determined for the tests shown in Fig. 4.1.

As discussed in Section 4.2, the behavior is fairly linear be-

low the loading surface, and since the applied stresses were propor-

tional, the loading and unloading curves are fairly straight. Thus,

for tests that did not return all the way to zero load, the strain can

be determined quite accurately by extrapolation.

The flow direction was calculated at several strains for a rein-

forced specimen at each of the three lay-up angles tested. Because

the loading system was capable of applying only direct stresses, there

was no way to determine the flow direction for the important case of



shear stress on the crack plane. And since loading was proportional,

for each specimen only a single point on the surface was investigated.
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For this point, the nonnal direction from Eq. (4.8) is simply (0,1,0).

The angles between this nonnal and the increments of plastic

strain are given in Table 4.3. Though agreement is not perfect, the

normal is seen to give a good indication of flow direction. Thus, the

loading surface given by Eq. (4.4), along with the flow rule (4.8),

comprise a plasticity model that should give a fair representation of

the behavior of reinforced masonry.

4.4 Stress Rate-Total Strain Rate Law

The results of preceding sections define a model of post-

fracture behavior, but for computations it is useful to have a set of

equations that relate the rate of change of stress to the rate of change

of total strain. These equations will be more complicated than those

of standard plasticity because of the changing elastic moduli.

For convenience, let stress and strain components be identi-

fied by a single subscript:

= =

Let e
Z

be the tensile strain normal to the crack, and let C .. (e )
1J Z

be the changing elastic moduli (from Eq. (4.5)):
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C .. (e
2

)
1J

=

sym.

g DO

1 -
2 DO

gv
D

1

o

2gG

Let f be the loading function (Eq. (4.7)), let rate of change be indi-

cated by a dot, and let the derivative with respect (J. be indicated by
1

a comma followed by i. Then the equations that describe behavior

on the loading surface are

e ,' = e.e +eP
1 1

e
(J. = Coo (e

2
)e.

1 1J J

e.p = Ai .
1 , 1

where A is a changing parameter to be determined.

(4.9)

(4. 10)

(4. 11)

(4. 12)

Take the derivative of (4. 11) and use the derivative of (4. 10),

and (4.12):



• e . e
cr. = C .. e. tC .. e.

1 1J J 1J J

e . p)= C .. e. t C .. (e. e.
1J J 1J J J

e
:= c .. e. + G.. e. - A C.. f .

1J J 1J J 1J, J

Or,

dC ..
~.= __1_Jee. e' tC e C 'f
u 1 de 2 j U k2 k ij j ij A ,j

where 0k2 is the Kronecker delta. From (4.9):
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(4. 13 )

o = f = f .
, 1

. af
cr.t-a-, e

2

Multiply (4. 13) by f. and use the above equation:
,1

dC ..
_ 1J e
- -d-- f . e. 0k2 "k t C .. f . e. - C .. Ai . f .

e 2 ,1 J 1J ,1 J 1J ,1, J

Solve for )..:

where

Putting this expression in (4.13) gives

(4. 14)



(4. 15)
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which is the desired result. The partial derivatives f . are given
, 1

in Eq. (4.8), and

er
l

+er
2

er'
1

t
1 +

er' da~af
er'c c

(a fer -er')-er'---
erf rae

2
(1

a' 1 2 t t de
2

1
t

+- t-
er' er'

c c

As an example of the application of this relation, consider a

loading program for which er 3 = 0 (no shear stress on the crack

plane after fracture). Thus e = 0, so a~ =er t ' and from (4.3),

Equation (4.8) thus gives

f = 0
, 1

f = er - a
, 2 t 1

f = 0
, 3

Hence, from (4. 14),

dC .
2) f e C f +~

de
2

,2 e j + 22 ,2 ae
2

A
2

= ---='-------C--
f

"OC
2
------==-

22 ,2

and if a 1 = 0, e 1 should be sm all, then from (4. 15),



dOt .
= --e

de Z
Z

where do/deZ is given by Eq. (4.1). The loading path represented

by this result, together with several unloading paths from (4.5), are

shown in Fig. 4.11. It compares well with the experimental result

of Fig. 4. 1.
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Table 4. J. Strain Offsets for Stiffness Curve

- a JJ fa 22 0 1 7. 5

(e ) XI0
4

0.50 0.93 1,3022 frac.

g DO (10
6

psi) 1. 08 0.65 O. 77

4
Ii x 10 -0. 10 -0.07 0.45

Table 4. 2. Measured Stiffnesses

- a fa ~ 0
11 22

4
1.8 3. 5 9 19 28e xlO

22

stiffness (l04
psi) 20. 0 12. 6 7.4 4.9 4. 0

-a
1
/a

22
~ 1

4
1. 6 4.0e X 10 2. 0

22

stiffness (10
4

psi) 64 16.8 4. 0

- a11 fa 22 ~ 7. 5

4
3. 5 8. 0e

22
xI0 15 25

stiffness (10
4

psi) 18.8 8.7 6. 0 3.9

I I 2



Table 4.3. Angle between Plastic Strain Increment
and Normal to Loading Surface

e Stress Ratio Tensile Strain X 10
4

Angle

7 4 0

0 0 0 13 1 0

20 7 '

1.6 11 0

4 40 0

45 0 1.0
20 28 0

70 4 0

3. 6 16 0

8 30 0

70 0 7. 5
22 30 0

60 36 0
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