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SEISMIC STABILITY OF BLOCK STRUCTURES

by

Richard L. Furgerson

Abstract

When studying earthquake damaged reinforced concrete or

concrete masonry structures, it has been observed that the mechanisms

of failure are often simple ones; the vulnerable connections

between structural components degrade under stress allowing the

major substructures to separate, lose support and topple. This

type of failure is said to result from kinetic instability.

For the purpose of analysis, structures with degraded connections

are modeled as assemblages of rigid substructures with only

friction acting between them. A statistical analysis of data

from experiments on concrete masonry members gives an asymptotic

Coulomb law describing this friction which is included in the

model equations of motion. The equations of motion for a simple

shear-waIl-floor slab assemblage subjected to simulated earthquake

loading are solved numerically. The result shows a surprisingly

well-defined relation between the maximum amplitude of excitation,

the natural frequency of the structure, and a numerically-valued

hazard from kinetic instability. When presented graphically, the

result allows a designer to assess hazard from kinetic structural

instability by inspection.
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I INTRODUCTION

Beginning in the era of Newton and the Bernoullis, some

of the most elegant treatments in classical mechanics and applied

mathematics have resulted from efforts to describe the motion

of rigid bodies under force. This has lead to a mature theory

with widespread application. One of these is the description

of the motion of structures subject to very high loading, such as

intense seismic loading.

The devastation caused by a severe earthquake near a

populated area shows all too clearly that the component parts

of structures undergo gross deformations very large compared

to any deformation in the elastic range of the material. While

it is now possible with the use of large computers to analyse

the detailed anelastic response including cracking of structures

which would lead to structural collapse, these methods are very

complex. Instead, a simpler model is proposed and demonstrated

in the present work: ignore elastic deformation and model

the structure as an assemblage of rigid elements which have

friction acting between them. Given a realistic friction law,

the equations of motion for the assemblage of rigid elements

subjected to earthquake loading can be solved. This model

is regarded as the result of prior degradation of the actual

structure. Although severe damage has occured, the degraded

structure is initially able to carry its primary loads.

An analysis of experimental data shows that a Coulomb

type friction is a satisfactorily accurate model of the inter­

element friction for structures made from concrete masonry.

Coulomb friction, also called solid friction, models the frictional

force between bodies moving relative to each other as being the

product of a constant friction coefficient and the normal force

across the sliding joint. When the forces acting in a direction

so as to cause relative motion between two bodies do not exceed

1



the product of the friction coefficient and the normal force, the

frictional reaction balances any forces that would tend to cause

relative motion so that there is no sliding. The simplified

friction model used here does not distinguish between static and

dynamic friction.

Analytical treatment of dynamical problems involving

Coulomb friction have been briefly considered by a few authors:

Den Hartog 1 discusses replacing the Coulomb friction with an

energy equivalent viscous friction, sidestepping the stick-slip

nature of the problem; Ziegler 2 points out sume of the non­

intuitive types of behavior that Coulomb-damped oscillators rr~y

demonstrate such as the fact that a Coulomb damped oscillators may

still undergo an unbounded response; Frazer, Duncan and Collar3

discuss the implication of the presence of stick-slip or ankylotic

motion of control surfaces to the stability of aircraft. None

of these authors treat the problem of kinetic structural stability.

The mechanical nature of the solution of problems involving

Coulomb friction makes them more suitable for automatic computation

than for analytical examination. Numerical techniques are used

in the present work to solve a simple prototype structural

stability problem involving a rigid body shear-wall floor slab

configuration with Coulomb friction acting between the vertical

and horizontal elements (see Fig. 36). Motion of the base is

excited by a simulated seismic loading. This assemblage is said

to be kinetically stable if the floor slab in responding to the

excitation does not falloff its supporting shear-walls which

would define collapse. Hazard from collapse due to kinetic

instability is taken as being inversely proportional to the time

the assemblage can withstand the excitation before collapsing.

The results present the computed hazard of collapse as a function

of maximum amplitude and frequency of excitation in graphical

form, allowing assessment by inspection of hazard due to collapse.
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II OBSERVATION OF STRUCTURAL SUBASSEMBLY DISLOCATION AND

COLLAPSE DUE TO KINETIC INSTABILITY

Following definitions given in Chapter I, a kinetically

stable structural system of rigid elements can be thought of as an

assemblage of elements none of which will collapse or overturn

due to specified forces acting on the assemblage, although the elements

may undergo substantial relative motions. For the purposes of

this paper, concrete or masonry building structures are the assemblages

of elements considered. Whether or not an assemblage is kinetically

stable can be determinded by considering the relative displacements,

velocities, and the inertial properties of its substructures and

the the forces applied to them.

Reinforced concrete or masonry structures are built up

of subassembly elements. Often this is purposeful as in prefabricated,

prestressed modules which can be used to advantage where a standard­

shaped section is required. Indeed, even structures monolithic

in appearance have in them inadvertant construction joints because

building construction does not progress continuously. See discussion

of Fig. 6 below. As far as seismic analysis is concerned, the idea

that buildings are assemblages of substructures is important

because experience with structures subject to earthquake ground

motion has shown engineers that the connections between substructures

are particularly vulnerable to seismic degradation. It is seen

that once these bonds are broken, the substructures are free

to move independently, and the building can be considered an

assemblage of rigid elements. Often these elements have simple

geometries.

In fact, the idea of kinetic stability served as the

basis for one of the first methods used to quantify the strength

of earthquake acceleration. According to Kirkpatrick4 , Mallet

was perhaps the first to suggest that the stability of common

objects might serve as an empirical scale by shieh investigators

might rank earthquake strength after surveying the damage. When

reading the old accounts, one finds strengths compared relatively

3
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as certain percentage of chimneys fallen within a given area or by

percentage of gravestones overturned. Because such methods removed

the seismologists' dependence on the subjective judgement of

untrained witnesses for a strength estimate, an amount of attention

was given to the problem of the overturning of blocks by horizontal

accelerations in the literature. Again, Kirkpatrick4 states

that Milne and Omori in 1885 reported experiments suggesting

an empirical multiplicative factor to correct the West formula,

a=(b/h)g, for overturning of blocks by horizontal acceleration.

a = minimum overturning horizontal
acceleration

g acceleration of gravity

h = block half-height

b = block half-width

a

T
h

l~~
!--b-\

They actually used this method to investigate earthquakes in

Japan, where lanterns and monuments are generously distributed.

It was realized that static considerations alone were not sufficient

to establish kinetic stability, but this proceedure was carried

on with some refinement for years (Kirkpatric~). Of course,

overturning of monuments is still seen. Figs. 1 and 2 show monument

stones overturned or displaced after the Managua earthquake.

The overturning of blocks is a type of rigid body or kinetic

instability.

A number of descriptions of earthquake induced rigid body

motions and structural failures follow, illustrating the variety

of forms kinetic instability through rigid body motion may take.

Reference 6 contains many excellent photographs of additional

examples such as Figs. 3.10-3.13.

Machines such as those providing heating and air conditioning

to buildings frequently translate as rigid bodies substantial



distances during earthquakes if not securely anchored to the floor.

Fig. 3 shows a massive boiler at the Olive View Hospital coming to

rest 4 feet from its original position after the San Fernando

earthquake. Similarly, a heavy lathe in a machine shop is found to

have have translated 9 feet from its original location. Fig. 4.

An example of stability of rigid subassemblies is seen

in Fig. 5. During the San Fernando event, high loads degraded

the moment resisting capacity of the columns supporting the second

story of the Psychiatric Day Care Center of the Olive View

Hospital until the structure was reduced to a mechanism. The

second floor collapsed as a rigid substructure onto the first.

The photograph shows the second floor fairly intact. Much of

the glasswork in the second floor is unbroken. As mentioned

above, seemingly monolithic structural elements contain internal

joints between material placed on different days during construction.

Restraints on the size and strength of concrete forms due to

handling and economic considerations usually limit the depth

concrete may be poured to less than 10 feet; a tall shear wall

may have many such construction joints. Fig. 6 is a photograph

of a tall shear wall in a multi-story building after the San Fernando

earthquake. The horizontal cracks at the construction joints are

clearly visible. Permanent horizontal displacements in excess

of 1/4 inch were observed.

The simple modular geometry of stairwells and elevator

shafts very much resemble the blocks for which Professor West

developed his overturning formula. Often these subassemblies

are constructed with only light connection to the parent structure.

Under earthquake excitation of the structure, the connections

fail allowing the stairwell to move as an independent rigid body.

Being a tall, slender substructure, the stairwell may overturn.

Fig. 7 shows a quite intact stairwell after being overturned

during the San Fernando earthquake. The stability of stairwells

is not just a problem confined to the Southern California locale,

similar stairwell failures occured during the Managua and Anchorage

5



earthquakes.

When subjected to earthquake ground motion, reinforced

concrete roadway bridges can exibit one of the simplest rigid

body instabilities. The span simply slips off its supporting

abutments. The span is necessarily not connected to its abutments

to accommodate expansion and contraction due to temperature changes.

Structural separation into rigid, independent subassemblies

sometimes divides the structure into a few, quite simple, rigid

substructures. A case in point is see in Fig. 8 and 9. After

the Managua earthquake, the penthouse on top of the pictured

luxury hotel is seen to have undergone a permanent rotation and

translation. Had the rotations and displacements been larger,

the penthouse could have slipped off the top floor and fallen;

its kinetic stability could be in question.

In a residential section of ¥~nagua, a tract of nearly

identical homes was built. The walls were reinforced concrete,

the roofs were made of a number of prefabricated concrete channel

sections. Apparently, these channel sections were not secured to

the walls. During the earthquake, many of the channels slid

off their supporting walls in precisely the same way, Fig. 10.

This photograph shows the sinlilarity of failure. Fig. 11 shows

a roof section, while not failing, displaced some inches from

its original position. The darker unpainted portion of the bottom

of the channel originally bore on the supporting walls; the

lighter portion is the ceiling paint of the room on the other

side of the wall. While in a majority of instances, the walls and

the roof sections remained individually intact as substructures,

these subassemblies making up the homes moved relative to one another

to the extent as to become kinetically unstable.

Since the walls and roof sections can be modeled simply and

realistically, the geometry of Fig. 11 is the basis for the

prototype two-body problem: Descride the motion of a slab of

6



reinforced concrete material supported on rigid walls of concrete

masonry. where the walls are built into a base which undergoes

a prescribed vertical and horizontal acceleration. The prototype

problem is analysed in later chapters.

Before solving the equations of motion of the prototype

assemblage, it is necessary to prescribe the tractions on the

interfaces between these rigid bodies. Particularly significant

is the interface friction between the elements sliding against

one another. If realistically modeled, the character of the

chosen friction law can contribute substantial complexity to

the equations of motion.

7



III FRICTION LAW

In order to pose the equations of motion for the prototype

assemblage, the frictional behavior of abrading cementous interfaces

must be described. In connection with the UCSD ¥~sonry program

(Reference 9 contains contributions by UCSD Y~sonry program

investigators which may serve as a project overview), frictional

behavior as well as material strengths of masonry were studied.

Data from the program's experiments produced a simple, realistic

friction law with the following properties:

(1) The frictional stress along the interface and

the normal stress on the interface have an

asymptotic Coulomb relationship for large

total displacements.

(2) The law is bidirectional.

(3) The law is sliding rate independent.

Property (1) is demonstated by the result of a statistical

analysis of data taken during a number of experiments. Properties

(2) and (3) were observed empirically from data taken during a

number of experiments. A description of the experiments investigating

the elastic, fracture, and post-fracture response of masonry

assemblages, and the analysis of the resulting data leading to

the friction law, follows.

The specimens tested were assemblages of 3 half-blocks,

triplets, constructed by professional masons working under field

conditions using typical materials, materials meeting relevant

standards for quality and strength. The diagram in Fig. 12

shows a triplet thats blocks are joined with one of the two basic

mortar joints: The bed joint or the head joint. These are the

first 2 specimen configurations tested. Filling the hollow in

the bed joint triplet with a fluid concrete, called grout, results

in the third configuration subjected to test in this phase of the

program.

8



The 3 half-block assemblage was chosen since it is a

managable size and does not require a machine of extraordinary

capacity to apply failure loads. The configuration is also used

by contractors in the field to prove that required strength of

the masonry has been attained, satisfying building code regulations.

Reference contains a complete description of the manufacture

of the specimens including relevant ASTM standards for the materials

and information about the curing procedure.

Two loads are applied to the triplet. A load acting

perpendicular to the long dimension, the vertical load, displaces

the center block while a constant load, acting in the ends forcing

the blocks together, is maintained by additional hydraulic

equipment, Figs. 13 and 14. Considerable attention is paid to

distributing the loads uniformly over their active surfaces, Figs.

13 and 14. The triplet is bedded with a thin layer of Hydrocal

plaster to a substantial aluminum base plate. A steel bearing

plate is similarly bedded to the top of the center block. The

confining load, load applied to the ends, is distributed via a

stiff steel plate and neoprene pad to insure uniformity. The

reader is directed to Ref. 9 for a detailed discussion of the

mounting and loading procedure including photographs of the test

setup.

As the displacement of the center block, 0, increases,

shear failure occurs along the mortar joints for confining loads

below a critical value. Since the vertical load is resisted by

a shearing action across the mortar joints of the triplet, the

vertical load will be called the shearing force, V. Shearing

force vs. vertical displacement of the center block data were

taken for a number of tests at each of five confining loads and

each of the 3 configurations. For two different confining loads,

Fig. 15 illustrates the curve obtained by averaging all the

data taken from specimens of one configuration tested at one

confining load. The load versus displacement data for anyone

9



test can be divided into three regions: (i) a linear elastic

region, (ii) a non-linear region, and (iii) a post-fracture,

sliding region. The subsequent investigation confines itself

to the post-fracture, sliding region.

DERIVATION OF THE FRICTION LAW

The decaying behavior of the shear force versus displacement

data in the post-fracture region suggests that the shearing

force may be modeled there by solutions, V(8), of this differential

equation:

10

(1) dV(8)

d8
- c (V(8) - Voo )

V is the value to which V(8) decays after sliding over a large
00

displacement. Since the energy of the shearing force acting

through the displacement, 8, is dissipated by grinding and

smoothing of the blocks at the fracture interface, the parameter

c in Equation (1) could depend on the work W(8) done by interface

friction acting through a displacement, c.

8
W(8) J V(8')d8'

8 1

For each configuration and confining load, the data were averaged

to produce a mean curve as in Fig.1S. For the purpose of fitting

the data to the following general solution to Equation (1),

V(8) - V [8 ]
(2) 00 = exp - ( c J (W(8,))Sd8' + b )

V - V 01 00

samples, V , from the averaged data curves were taken at i 1, ... ,9
i

evenly spaced displacements, 8 , measured beginning from the
i

center block displacement corresponding to the maximum shear

force.



0
9

= 0.4 inches

The constants c, b, and Voo are regression parameter determined

by an extremum procedure. The constant, S, is chosen equal to 0

or 1/3 whichever gives the best result. The case of B = 1/3

is included to accommodate a possible volumetric effect. The

regression parameters c and b are determined from the data by

minimizing a quadratic form, M(c,b,V ), defined by the following
00

set of equations for i= 1, ... ,9:

o. S
~i - J ~ (W(O') do'

0 r1
- V~ ]ni - log

V. Voo
~

Tli - c~. + b
~

11

M(c,b,V )
00

a
- V )

00

- 2(n. - n.)
~ ~

The value of a is chosen to be 0 or 2. A result from the

statistical theory of linear regression suggests that a 2 is

appropriate if the standard deviation of the samples of the

individual data at a given 0i used to generate the mean curve

varies with the sample mean and that a = 0 is appropriate if the

standard deviation is constant, Ref. 10. Fig. 16 shows how the standard

deviation varies with sample mean for one of the triplet configuations.

The standard methods of the linear regression of n and ~ enable

c and b to be determined explicitly as functions of Voo through

solution of the pair of equations (3,4).

(3,4)
aM
ac o

aH
ab

o

These expressions for c and b in terms of Voo permit the residual



sum of squares divided by n, a quantity called f m,

1 n
(5) f =: -""(V. - V(o.»2

m nL.J 1. 1.
i=l

to be expressed as a function of Voo only. V(8) is given by

Equation (5) in which the only remaining unknown is the regression

parameter Voo • A computation determines the Voo which minimizes f m.

Fig. 17 shows an example of Voo versus fm•

For each prescribed triplet configuration and confining

load condition, a number of specimens were tested and their data

averaged. The model fitting procedure was applied to samples

from the averaged data. The results of the fitted V(8) vs. 8

for various confining pressures (CP) are shown in the following

figures:

Fig. 18 Bed joint grouted CP = 100, •.• ,500 psi

Fig. 19 Bed joint ungrouted CP = 100, •.• ,500 psi

Fig. 20 Head joint CP = 100, ... ,400 psi

CP equals the confining load divided by the appropriate bearing

area, Ab . In these figures, the full lines indicate values of V(8)

in the post-fracture, sliding region, the applicable region for

the model. The dotted lines indicate the trend of the experimental

data prior to bond fracture. The fit is seen to be quite good.

The essential feature of this model is the form of the

behavior of Voo vs. confining pressure. This behavior is shown for

all three configurations in Fig. 21. In order to use the test data

as a point relation between surface shearing stress and lateral

pressure, Voo is divided in each instance by the appropriate bearing

area, Ab, to show Too on the ordinate of Fig. 21. For CP S 400 psi,

the data is in very good agreement with the form of the Coulomb or

or the Amonton Law for sliding friction,

Too = 1100 CP

12

for constant coefficient of friction, 11 00 • The values of T for
00

CP = 500 are seen to correspond poorly. However, it was observed that



the tests for this high confining pressure resulted in block

spalling and severe block cracking. This failure mode was unlike

the clean bond fracture and sliding failure seen in the lower

confining pressure experiments. Thus, the model, Equation (1),

which relies on the plane interface sliding assumption is inappropriate

for describing the results for the CP = 500 psi tests, and the

CP = 500 psi result is omitted from the calculation of ~oo.

The results for the two types of joints having mortar

only are quite close, Fig. 21, while the value of ~oo for the

grouted joint is somewhat larger. The least-squares slopes, ~oo, for

the Too vs. CP data were calculated.

~oo 0.55 for BJ-F-NG

~oo 0.60 for HJ-F-NG

~oo 0.66 for BJ-F-G

There were usually 3 specimens tested for each confining

pressure and triplet configuration. The data curves for each

confining pressure and triplet configuation are then averaged to

form a composite curve which is then fitted to the sliding friction

model. To establish the validity of the use of the composite

curve to generate the asymptotic friction law for the interface,

i.e. Coulomb friction, the case of BJ-F-NG with CP = 200 psi

was subjected to a statistical analysis. For this particular

case, 7 specimens were tested. The value of V
oo

was calculated for

each of the individual data curves. The result of that calculation

appears in Table 3. It can be seen that the value of Voo calculated

from test #7 is conspicuously greater than the other values. If

some sort of testing error or operator mistake were responsible

for this irregularity, this point could be omitted from further

analysis. Nevertheless, in this instance, the descrepency cannot be

attributed to obvious experimental mistakes. However, statistical

tests have been devised to indicate the likelyhood that an

"outlier", an experimental value distant from other supposed similar

data, is not drawn from the same population as the other data.

13



Appendix 2 describes the procedure for challenging an "outlier"

on statistical grounds.

The results of this procedure show that within 95%

confidence the value of V given in test #7 does not belong to the
00

same population <,is the other values. The "outlier" is then

excluded from the final analysis. Table 4 shows the result of

fitting the BJ-F-NG CP = 200 psi composite curve with and without

including Test #7. Note that the value of V (Table 4) from
00

fitting the composite curve (excluding Test #7) is in very good

agreement with the average of the V
oo

values resulting from the

fitting of the individual data justifying the use of the composite

curves only for the computation of V
oo

for the other cases of

confining pressure and triplet configuration.

Another series of experiments on triplets was performed

using more sophisticated test equipment, Ref. 8, which was

capable of forcing bidirectional displacements of the center

block. The displacement of the center lock could be a prescribed

function of time. Shearing force vs. center block displacement

data were taken where the displacement was prescribed to be a

sinusoid, the frequency of which was varied resulting in the

maximum velocity of the center block varying over a 40 to 1 range.

Figure 22 shows the resulting shearing force vs. center block

displacement data. The magnitude of the shearing force is seen

tp be constant--independent of direction of motion or sliding

velocity. Further unidirectional tests having center block

velocities varying over a 10 to 1 range corroborate the sliding

velocity independence of the shearing force.

FEATURES OF THE FRICTION MODEL

In summary, model fitting the experimental results

produces an interface sliding friction relationship for normal

pressures of less than 400 psi. The description asymptotic

14



Coulomb is used to be suggestive of the fact that the interface

sliding friction law approaches a Coulomb law as the sliding

distance increases. In practice, it is seen that after relative

interface sliding a total distance of only about 0.4 inches,

the sliding friction relationship is closely approximated by

a Coulomb friction law with constant coefficient. The friction

coefficient is not dependent on the rate or direction of sliding.

15



IV PROTOTYPE ONE-DEGREE-OF-FREEDOM STRUCTURE

Although from a very simple model structure, the result

of the following analysis will be shown to indicate the major

features and trends of a class of hazard prediction problems.

DESCRIPTION OF THE PROTOTYPE ONE-DEGREE-OF-FREEDOM MODEL

Consider a structure similar to that pictured in Fig. 11

modeled as a rigid floor slab supported by two rigid, parallel

shear walls built into a rigid base, Fig. 1. The floor slab

has no connection to the shear walls, and interface friction

alone causes the floor slab to move with the walls. The previous

analysis of sliding concrete block experiments shows that Coulomb

friction with a constant coefficient, ~ = 0.6, is an appropriate

friction condition to prescribell . One degree-of-freedom is

permitted, translation of the floor slab in a direction out of

the plane of the walls. A prescribed horizontal acceleration, a(T),

sinmlating seismic loading acts on the walls and base.

MATHElJiATICAL MODEL AND NUMERICAL SOLUTION TECHNIQUE

Including Coulomb friction with its stick-slip character

introduces significant complications in the integration of the

equations of motion. Heretofore, the substitution of an "equivalent"

viscous or velocity dependent friction law to render the equations

of motion more tractable analytically has been made. By contrast,

this work relies wholly on numerical methods to track the stick-slip

status of the assemblage and to integrate the unsimplified

equations of motion.

The floor slab begins slipping on the walls when the

magnitude of the base acceleration in g's exceeds the friction

coefficient, if the slab is sliding over the walls, it will

stop sliding if the magnitude of the base acceleration in g's

is less than the friction coefficient and the velocities of the

slab and walls are equal. The describing equations expressed

in nondimensional quantities follow:

16



Let

nondimensional displacement of the floor slab

from its , = 0 location

nondimensional displacement of wall from its

, = 0 location

17

Equations for sticking are:

o at, o

aCe)

a( ,) } if floor slab is not sliding on the walls.

The floor slab will be sliding at , = '1' say, if and only if

Ia ('1) I > 11. During sliding, the governing equations are

Yb(') aCe) } if floor slab is sliding on the

Ys( ,) - ].I sgn(ys - Yb) walls for '1 ~ , < '2'

Once sliding, floor slab will have stopped sliding at , = 'n'

'n > 'I if and only if the following two conditions are met:

la('n)! <].I and Yb(Tn) = Ys(Tn)

A brief description of the solution technique follows;

Appendix I contains complete details of the code.

The integration of the initial value problem proceeds by

marching, with a polynomial approximation of the slab and wall

velocities updated at each time step. Tests for changes in

motion regime, slipping or sticking, are then performed on the

solu tion.

If the slab and walls were sticking at the previous time

step, the magnitude of the acceleration is computed. If the magnitude

of the acceleration is less than ].I, the motion regime is unchanged,

still sticking, and the solution is again advanced a time step. If

the magnitude of acceleration is larger than ].I, then slipping

begins at some time between the current solution time and the last

solution time. A Newton iteration calculates the time at which slipping

begins, such a time, being characterized by:



previous time < , < present time such that la(,)1 = ~.

The integration from the previous time is repeated with a step

size to advance the solution to the time of slipping, the motion

regime is changed, and the slipping equations are then advanced

to the intended time with the displacement and velocities of

the slab and walls at the time of slipping as the initial conditions.

Marching then proceeds with the original time step.

If the slab was sliding on the wall at the last time

step, the solution is advanced from '1 to '2' say, integrating the

equations of motion for the slipping regime, and the solution at, '2

is tested. If la('2)1 > ~, marching proceeds to the next time step.

If the la('2)1 < ~ test succeeds, the difference test of the

polynomials approximating the wall and slab velocities is performed.

When the difference of velocities changes sign in the interval, the

velocities being continuous in time must be equal somewhere in the

interval. The time when the velocity difference is zero is

calculated, and the integration of the ~lipping equations is

is advanced from the previous time to the time of sticking, time

of zero velocity difference. The equations for sticking floor

and walls are integrated from the time of sticking to '2.

Afterward, marching proceeds using the original step size.

D~tail drawings of building plans12 and photographs of

construction underway13 shows that a reasonable floor slab bearing

length is one half the wall thickness, 6 = 1. The difference

in displacements, 6(,), is tested at each time step. Should the

magnitude of the difference exceed 1, the assembly is considered to

have collapsed, and the time at the present integration step is

taken as the collapse time, 'c. Since a structure which can resist

a seismic loading for a shorter time before failing than another

is more hazardous, a measure of the hazard is the collapse

factor, a quantity proportional to 1/, .
c

18



ACCELERATION FUNCTION

During an earthquake, the upper stories of a building are

not subjected to an acceleration like those recorded by seismometers

fixed to the ground. Instead, the exciting acceleration is a

combination of the earthquake ground acceleration and the response

of the lower floors. It could be said that the structure filters

the earthquake acceleration, eliminating high frequency components

and amplifying components that have frequencies near the fundamental

frequency of the structure. This filtering is confirmed by

examination of earthquake accelerograms14 recorded by instruments

located in the basement and the top floor of structures, Fig. 24.

The following analysis also suggests the result.

In a very simple way, a structure may be modeled as a

linear one-degree-of-freedom oscillator with an "equivalent"

mass, viscous friction, and stiffness. The motion of the oscillator

is described by the following equation:

(6) m x + c X + k x = -m aCt)

where

x(t) displacement from the undeformed position

relative to the base

m equivalent mass

c coefficient of viscous friction

k equivalent stiffness

aCt) prescribed acceleration input

19
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From the equilibrium equation, Equation (6), it is seen that it

is the absolute acceleration of the mass, x+ a(t), that is

related to the elastic and viscous reaction forces. Using

available accelerograms of strong earthquake ground motion as

input, the induced absolute acceleration, acceleration with

respect to an inertial frame, of a one-degree-of-freedom linear

oscillator was calculated; the Pacoima Dam Feb. 9, 1971 S14W

component15 was used in this analysis. The discrete Fourier

transform of the absolute acceleration of the oscillator and

of the Pacoima Dam Feb. 9, 1971 S14W component itself was computed

using the FFT algorithm16 on 512 evenly spaced data points over

10.22 seconds. The plots of the modulus of the Fourier

coefficients versus frequency for both appear as Figure 25

and Figure 26. These figures show clearly that the spectral content

of the linear oscillator absolute acceleration is much less complex.

In fact, for the case shown, damping = 2% critical, undamped

natural frequency = 1 Hz., the response of the absolute acceleration

is composed for tae most part of one frequency. Figure 27 shows

the absolute value of the absolute acceleration versus time. A

smooth envelope loosely corresponding the the acceleration peaks

is superimposed. This motivates the choice of a sinusoidal

oscillation contained within a smooth envelope as the acceleration

function exciting the proposed shear wall-floor slab system.

. * *The envelope funct10n ( exp ( - at, ) - exp ( - S t T»
is a smooth, 2 parameter fuction which qualitatively describes

the peaks of the response of a linear oscillator excited by

an accelerogram input. Specifying,. and 'd allows ther1se ur
parameters a and S to be evaluated. This was done for 3 pairs

of '. and T to yield 3 envelope functions with characteristics
r1se dur

representative of a fast rising, a moderately rising, and a slowly

rising envelope function as resulting from the response of a linear

oscillator taking published fast rising, moderately rising, and

slowly rising earthquake ground motion accelerograms as input.

Table 4 shows the correspondence between the chosen nondimensional

characteristic times and real time for a "8 inch" wall. Choosing

20
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the acceleration function, aCT), as

* *( exp ( - a t T) - exp ( - S t T» sin W T

where

{( exp ( - a t* T ) - exp ( - 8 t* T ) ) sin W T }

gives the oscillatory motion within an envelope of realistic

proportion. The smooth envelope shown in Figure 27 is the moderately

rising envelope.

RESULTS AND DISCUSSION

For each of the three envelope shapes, the collapse time

is computed for amplitude A in the range of 0.7

for frequency f in the range 0.5 S f S 1.125, f

A 1.15 and

W / 2tr. Because

of the finite duration of earthquakes, the smaller collapse times

represent greater hazard than the larger collapse times. The product

of a scaling parameter, which is a reference nondimensional time,

and the reciprocal of the nondimensional collapse time is called Yc;

Yc is plotted on the vertical scale of the cartesian coordinate

system in reciprocal tinle-envelope amplitude-frequency space, in

brief the y-A-f space. The larger values of Yc are the more

significant. Computations were made with different scaling parameters

The

to find a scaling parameter which rr~kes the surfaces of y in the
c

y-A-f space relatively independent of the envelope shape. Scaling

parameters of Trise ' Tmax ' Tdur ' and 1 were tried. The greatest

similarity is shown in the surfaces yc(A,f) - T. / T
C

andrlse
are shown in Figs. 28 to 33.y (A,f) ~ T / T ; these surfaces

c max c
cross-hatching in these figures represents lines parallel to the

amplitude and frequency axes following the surface yc(A,f). One

notes that, for a given frequency, the collapse factor increases

rapidly with amplitude after a critical amplitude is reached.



Figure 34 gives an indication of this steepness in the area of

critical amplitude. On the other hand, the collapse factor Yc

decreases with increasing frequency at a fixed amplitude.

In addition, the complete displacement histories for

certain A and f in the critical area were examined to demonstrate

that the interval of integration was chosen adequately long to

reach collapse in all possible cases. Figure 35 shows such a

displacement record with the peak relative displacement 8(,) per

cycle decreasing for , > 'max. Such records also justify the use

of the Coulomb friction model, as experiments11 show that for

concrete blocks sliding along cracked grouted and mortared surfaces,

the frection ratio ~ approaches the asymptotic Coulomb friction

value after sliding about 0.4 inches. The present calculations

show sliding of many times that distance before the collapse time

is reached.

22



V PRACTICAL APPLICATION OF RESULTS FROM ONE-DEGREE-OF-FREEDOM

MODEL

There are two broad classes of mechanisms for structural

system failure: the widespread structural member fracture. yield.

and material overstressing failure and the kinetic instability

failure where material failure is confined to connections only.

A stress analysis can give the structural load carrying limits

imposed by the building materials. The analysis in the last

sections characterized the kinetic instability structural failure

mode alternative. It will be shown later how a structure's

conformance with the pertinent building code regulations can be

assured.

The fundamental sections of the Uniform Building Code15

and the "Tentative Provisions for the Development of Seismic

Regulations for Buildings" ATC 3-0616 impose what are essentially

lower limits on the load carrying capacity of a structure. A

conservative design practice necessitates finding out which of

the failure modes outlined above is the "weakest link" for a

particular building configuration then designing to meet or

exceed the loading requirements imposed by the building codes.

Both the UBC 15 and ATC 3-0616 prescribe a static total lateral load

to be reacted by the foundation of the structure and how that lateral

load is to be distributed to the individual floors as a function

of: expectation that the structure will be excited by an earthquake;

construction materials; structural configuration; properties of

the soil at the building site; the fundamental period and total

weight of the structure. Comparing the resulting lateral force­

vertical force ratios with the magnitude above which kinetic

instability occurs for a particular structure shows which mode

is the "weakest link".

As an illustration. a procedure for establishing which

failure mode is the "weakest link" for an example structure.

in conjunction with the UBC 15 and ATC 3-06 16 methodology. is

23



outlined below. Consider a sixteen story commercial office building

to be built in Southern California (seismic zone #4). The

configuration is to be a reinforced concrete frame with shear

walls for additional stiffness. All the floors have the same

weight, w, and the story height, ~h, is uniform. Assume that the

floors are slabs set up on the frame with interface friction only

causing the slab to move with the frame. The soil profile can

be characterized by 30 feet or more of soft-medium-stiff clays

with intervening layers of sand. In lieu of a dynamic analysis

of the structure, use Equation 12-3A of section 2312 of the UBC 15

to estimate the fundamental period of the structure.

24

(7)
0.05 ~

T =--_::::.

D

T = fundamental period (seconds) in the direction parallel to

the applied lateral forces

hn height of the structure having n floors in feet

D dimension of structure, in feet, in a direction parallel

to the applied forces

For convenience, take h := 177 and D := 78.62 giving the example
n

structure realistic proportions and a fundamental period of 1

second. The above specifications allow the calculation of the

minimum total lateral force to be reacted at the base and the

distribution of lateral force to the individual floors according

to the building codes by the following method (UBC15 pp.132-15l).

(8) V = ZIKCSW

where

V = total lateral force at the base

Z earthquake zone coefficient

I occupancy importance factor

K structural configuration coefficient



C fundamental frequency parameter

S site-structure resonance parameter

W total dead load (weight)

The UBC15 gives the following values for the example structure.

Z 1 definitions sec. 2312 (b) p.134 UBC15

I 1 Table 23- K p.148 UBC15

K 0.8 Table 23-1 p.146 UBC15

C 0.06667 by Equation (12-2) sec. 2312 UBC15

S 1.5 sec. 2312 (d) p.135 UBC15

Substituting into Equation (8) gives

(9) V = 0.08 W.

Equation (12-5) sec. 2312 UBC15 gives the distribution of

lateral force with height.
16

(10) V = F
t

+ ~ Fi
i=l

where

F i = lateral force applied to the i th floor

Ft an additional lateral force applied to the top floor

25

(11) F t = 0.07 T V (Equation (12-6) sec. 2312 UBC15)

(12) F i - (V - Ft) (Equation (12-7) sec. 2312 UBC1S)

hi = height of i th floor

wi = weight of i th floor

n total number of floors

The Fi values are those lateral forces the building codes require

a structure to carry without exceeding design allowables. In

the case of the example structure, with wi = wand hi = i~h

and substituting Equation (11), Equation (12) simplifies to



(13)
i

F i = 0.93 V-­
16
l:j
j=l

i
0.93 V­

136
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Because the load distribution is weighted with height, the top

floor will receive the largest portion of the load and therefore

will have the maximum lateral force-vertical force ratio.

Substituting Equation (9) into Equation (13) with i := 16,

write the force ratio as follows:

(14) w

0.93 V 16
w 136

0.93 (162 ) 0.08
136

0.140

The ATC 3-06 16 provides updated provisions which are applied

in the same way as the UBC15 provisions. The calculation of the

lateral force-vertical force ratio according to ATC 3-0616 follows.

Similar to Equation (8), Equation (15) gives the total lateral force.

(15) V = Cs W

where Cs seismic coefficient

1.2 ~ SATC3

R (T) 2/3

effective peak velocity-related acceleration (sec. 1.4.1,

p.28 ATC 3-0616 )

SATC3 = coefficient for the soil profile characteristic

(Table 3-A, p.5l ATC 3-0616 )

R response modification factor (dependent on structural

configuration and construction material) (Table

3-B, p.52 ATC 3-0616 )

T fundamental period of the structure in the direction

parallel to the applied lateral forces (compute

by Equation (7»



For the considered example structure, these coefficients take these

values:

~ 0.4

SATC3 1.5

R 5.5

T 1

For these,

(16) Cs = 0.13091.

The force distribution is given by Equation (17).
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(17) F. C . V
~ Vl

where
k

(18) Cvi
Wihi

- n

E w.h~
j=l J J

(Equation 4-6, p.57, ATC 3_0616 )

(Equation 4-6a, p.57, ATC 3-06 16 )

The value of the exponent, k, is given on page 56, ATC 3-0616
•

For a structure with a fundamental period of 1 second, k = 1.25.

As before, make the simplifying assumptions, Wi = w, i = 1,16 and

h. = illh so that Equation (18) becomes
l

(19)
i1.25

C
16

E (j)1. 25
j=l

Again, because of the weighted lateral force distribution, the

greatest lateral force-vertical force ratio will occur at the top

floor. Taking i := 16, Equation (19) becomes

(20) 32
Cv16 = -24-:-3-'.'-::7:....1-5-0 0.131301 •



Divide Equation (17) by w, substituting Equations (15),(16), and
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(21)

(20), find that

F16

w
0.131301 (0.13091) 16 0.275 •

The lateral force-vertical force ratio above which kinetic

instability becomes important can be found by inspection from the

results of the previous analysis of the kinetic stability of the

prototype one-degree-of-freedom structure. For the example structure,

the fundamental frequency is 1 Hz. and the soil profile suggests

that an earthquake would have a moderately rising acceleration

envelope. Therefore, consider the y-A-f surface of Fig. 29. For

f = 1 Hz., find the largest A for which y = 0, the largest A inc
the safe zone. This A is found to be

(22) A = 0.95g
Fl6

~ --= 0.95
w

The critical lateral force-vertical force ratio above which

failure by kinetic instability will occur is 0.95.

The results, Equations (14), (21), and (22) allow failure

mode and code compliance evaluation. While the results for the

DBC 1S , Equation (14), and from ATC 3_0616 , Equation (21),

prescribe lower bounds on the lateral load carrying capacity of

a structure and not the design allowable loading, a simple beam

bending analysis of a real building (Drey Hall on the D.C., San

Diego campus) suggests that structures are designed to meet the

code requirements for lateral loading with little reserve. It

is therefore realistic to take the lower bound given by the

building codes as the load above which the structure will fail.

It is seen that the load carrying requirements from the DEC 1S ,

F
16

= 0.140 w, and from ATC 3_06 16 , F
l6

= 0.275 w, are significantly

less than the F16 ~ 0.95 w required to initiate kinetic instability.

One concludes from this that the example structure will suffer

a structural fracture, yield and material overstress type failure

before any kinetic instability could occur.



There is some feeling among structural analysts that the

updated and more stringent requirements of ATC 3_0616 may not

be sufficient and that further increases in lateral load carrying

capacity are necessary for conservative design. Should more

stringent requirements be adopted in the future, that a structure

would fail by structural member overstressing instead of by kinetic

instability would not be so clear as it was in the above example,

and the kinetic stability of the structure ought to be verified.

This would be especially true for structures with longer fundamental

periods since the trend of the kinetic stability result indicates

increased hazard for increased fundamental periods, and the

tentative result of the more sophisticated model discussed in the

next section suggests that the consideration of vertical seismic

acceleration causes the critical zone for kinetic instability to

occur at lower lateral acceleration amplitudes.
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VI TWO-DEGREE-OF-FREEDOM MODEL ALLOWING PLANAR MOTION OF

FLOOR SLAB

While the simple one-degree-of-freedom model of the last

section is considered adequate to demonstrate certain trends in

the behavior of masonry structures, and to show that the numerical

techniques developed to handle the Coulomb friction condition are

capable of producing practical results, it ignored for the sake

of simplicity some features of earthquake ground motion and more

general structural response. The principal new features to be

be considered in this section are the description of the planar

motion of the slab and the accommodation of the influence of the

vertical component of ground acceleration. Since acce1erogram

records show that the orthogonal horizontal components of ground

acceleration have comparable peak magnitudes (References 14 and 15),

then admission of planar motion of the slab is an important

generalization of the model. Since the horizontal frictional

forces are assumed in the model to be directly proportional to the

vertical acceleration of the slab while sliding, then the effect

of the vertical component of acceleration on the horizontal slab

motion is significant. These features are incorporated in this

section into a more general shear-wall floor slab model than is

considered in chapters IV and V.

Consider a rigid floor slab resting on directly opposing,

rigid, parallel shear-walls built into a rigid base similar to

the configuration of Fig. 23 studied in the last sections. Again,

the floor slab is constrained to move with the shear-walls by

Coulomb friction with a constant coefficient acting between

adjacent floor slab and shear-wall surfaces. Displacements of the

floor slab parallel and perpendicular to the shear walls are allowed,

Figs. 36a and 36b. Rotations of the base or slab are not considered.

While vertical components of velocities and displacements of the
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slab relative to the shear walls are assumed to be zero, the

effect of a prescribed vertical acceleration of the shear-walls is

considered in calculating the Coulomb frictional force acting

between floor slab and shear-wall. These assumptions are considered

adequite for the heavy floor slabs used in practice and for

reasonable magnitudes of vertical acceleration, and they greatly

simplify the analysis.

Define the following variables:

xs (,) =dimensionless horizontal displacement of slab

perpendicular to the plane of the walls from its

, = 0 location

xb(') - dimensionless horizontal displacement of the base

perpendicular to the plane of the walls from its

, = 0 location

Ys(') - dimensionless horizontal displacement of slab

parallel to the plane of the walls from its , = 0

location

Yb(') - dimensionless horizontal displacement of the base

parallel to the plane of the walls from its , = 0

location

axe,) - prescribed dimensionless horizontal acceleration

of base perpendicular to the plane of the walls

aye,) - prescribed dimensionless horizontal acceleration

of base parallel to the plane of the walls

ave,) - prescribed dimensionless vertical acceleration of

the assemblage in the up direction

Note that xs (,), ys(,), xb(')' and Yb(') are measured relative to

their, = 0 values from a nonrotating inertial frame fixed in space.

The describing equations of motion for the sticking and slipping

regimes, conditions of regime change, and initial conditions follow:

x (,) = ~ (,) = x (,) = ~ (,) = y (,) = Y(,) = Yb(') = Y
b
(')s s b b s s

at , = 0
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If the floor slab is sticki~ to the walls,

32

~s (T)

~b (T)

YS(T)

Yb(T)

axe T)

a (T)
X

a (T)
y

a (1:)
Y

The floor slab will begin sliding if

If the floor slab is slidin~on the walls,

~ av(T) (~S(T) - ~b(1:))/«~s(T)

(YS(T) - Yb(T»2)1/2

a (T)
X

- ~ a (T) (y (T) - Yb(T»/«~ (T)
v sIs

(Ys(T) Yb(T»2)12

Yb(T) = av(T)

The floor slab will stop sliding if three conditions hold, viz.

- ~ a (T) >
V

Y (T) =
S

The numerical results for the planar model were generated

with code written in logical divisions similar to those used in

the code for the one-degree-of-freedom model. For the sake of

simplicity and economy, the code for the planar model interpolates

linearly to approximate quantities between integration points.

The planar model formulation has been demonstrated to be a

consistent generalization of the one-degree-of-freedom case

by calculating results with the planar model code for the special case

a (T) = - 1, Y (T) = Yb(T) = 0 which is equivalent to the one-v s
degree-of-freedom case. The results so calculated are in agreement

with those calculated using the one-degree-of-freedom formulation.



d Smax

The prescribed horizontal acceleration functions were

again taken to be of the following form:

2 g Ax (t*)2 * *
a (.) - ~------------ ( exp ( - at. ) - exp ( - St. ) )x

33

a (.)
y

*2 g Ay (t )2

d Smax

* *( exp ( - at. ) - exp ( - 13 t .)) S in w ...y •

Smax - max
• > a

( - a t* • ) - exp ( - S t* • ) )

Acceleration functions of this form simulate the earthquake

response of the upper floors of a lightly damped elastic structure.

If Ixs (') - xb(.)! > 1 or Iys(') - Yb(.)1 > e, the assemblage

becomes unstable since the slab has moved off its supporting

walls and is considered to have failed.

e = 2 ( wall length ) / ( wall width )

The value of e := 20 was used for all of the numerical experiments.

The failure condition Iys(') - Yb(·)1 > e did not occur for any of

the cases studied. The stability calcutation was performed for

a practical range of prescribed wand w :
x Y

f x = wx/ 2 n t* := 0.5, 0.625, 0.75, 0.875, 1.0, 1.125, 1.25,

1. 5, 2. a Hz.

f w / 2 n t* .= 0.2, 0.5, 1.0, 2.0, 5.0, 10.0 Hz.

This is a range of frequencies somewhat wider than that used in

the one-degree-of-freedom calculation. The values of a and S giving

the moderately rising envelope were used.

taken to be

The values of A werex

~ := 0.5, 0.55, 0.6, 0.65, 0.7, 0.75, 0.8, 0.85, 0.9,

0.95, La, LOS, 1.1,1.15



Ay was chosen so that Ay = 0.9 Ax since the approximate ratio of

maximum horizontal acceleration components taken from the Pacoima

Dam accelerogram was 0.9. The dimensionless sum of the vertical

component of the Pacoime Dam accelerogram and gravity was used

in all cases as the dimensionless prescribed vertical acceleration

of the assenililage in computing the effective frictional force acting

on the floor slab. The stability calculation was repeated six

times. In computing each resulting surface, a different constant

wy was selected while Wx and ~ were allowed to range through

their possible values. This progression of surfaces illustrates

the trends in the failure surfaces with changes in the frequency of

the acceleration component in the direction parallel to the walls.

Figures 37-42 show the yc-A -f surfaces resulting from thex x
calculation. Note that while "the plotting routines used to produce

these figures uses linear interpolation in drawing the net, it

is the points representing the computed results that are significant;

the interconnecting lines serve to delineate the surface. The

result of the one-degree-of-freedom model showed that as the

frequency of excitation increased the amplitude of excitation

must also be increased to cause the assemblage to fail. This

trend generally extends to the planar model as well. As the

constant underlying frequency, wy ' increases, the amplitude of

acceleration necessary to cause failure increases.

One sees that the critical zones from the result of the

two-degree-of-freedom model occur at lower lateral accelerations

than do the critical zone results from the one-degree-of-freedom

model. The result of a true planar slab motion model, including

two linear degrees-of-freedom and a rotational degree-of-freedom,

could show further reduction in critical lateral acceleration,

therefore increased hazard from kinetic instability. In which

case, the verification of a structure's kinetic stability would

be warrented, expecially if building codes are revised to require

increased lateral load carrying capacity, since the inertial

loads on the slab could be large enough to cause slab sliding

and yet be less than a structure's design allowable lateral load.
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Figure 1 A monument, rotated on its base, after the Managua,
Nicaragua earthquake, December 23, 1972. 5

Figure 2 A toppled monument after the Managua, Nicaragua
earthquake, December 23, 1972. 5
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Figure 5 The first floor of the Psychiatric Day Care Center
collapsed, the second floor is shown intact. Olive
View Hospital after the San Fernando earthquake,
February 9, 1971. 7

I

l

•,

Figure 6 A shear wall in a multi-story building shows dis­
placements at construction joints after the San
Fernando earthquake, February 9,1971. 7
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Figure 7 An intact stairwell has toppled at the Olive View
Hospital after the San Fernando earthquake,
February 9, 1971. 7

Figure 8 The penthouse of this hotel rotated during the
Managua, Nicaragua earthquake, December 23, 1972. 5
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Figure 9 The same penthouse as in Figure 8 viewed from a
different angle. s

Figure 10 The roof channels of the homes in this tract slipped
off their supporting walls in similar ways during the
Managua, Nicaragua earthquake, December 23, 1972. 5
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Figure 11 The roof channel of this home slipped some inches to
the left during the Managua, Nicaragua earthquake,
December 23, 1972. The dark area on the underside
of the roof channel formerly bore on the supporting
wall, the light area is the ceiling paint of the
room through the door to the right. 5
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Figure 12

Bed Joint Triplet

I I I I """ I I
I I , I I I
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,
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I , I I 1 I
I I , I I I
I I , I I-
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Head Joint Triplet

Orientation of the block hollows for the bed

joint and the head joint.
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Figure 17 Minimization of f as function of V in a typicalm 00

case (BJ-F-G-400) with a = 2. and two values of 6.
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Figure 23 Configuration of the idealized wall-floor

slab assemblage.
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Figure 24 Comparison of the accelerograms recorded on the
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Wilshire Blvd., February 9, 1971.
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natural frequency = 1 Hz., excited by the Pacoima Dam,
February 9, 1971, S14W acceleration component input.
The modulus of the Fourier coefficients normalized so
that the largest component is 1 vs. frequency.
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1.125

Surface yc(A,f) for the scaling parameter Tmax '
Yc =Tmax/Tc ' computed with the base acceleration
contained in a fast rising envelope.

Figure 28
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1.55 T

Figure 29 Surface yc(A,f) for the scaling parameter Tmax '
Yc =Tmax/T c ' computed with the base acceleration
contained in a moderately rising envelope.
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Figure 30 Surface yc(A,f) for the scaling parameter lmax'
Yc == lmax/ T , computed with the base acceleration
contained ig a slowly rising envelope._
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Figure 31
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Figure 34
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A

Nondimensiona1 collapse time T vs. amplitude A
given fixed frequency f = 0.75 Hz. and moderately
rising acceleration envelope.
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Figure 35 Nondimensional relative displacement OCT) vs. non­
dimensional time T with acceleration envelope vs.
nondimensional time T for A = LO, f = 1.125 Hz. and
moderately rising acceleration envelope.
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Figure 36a Floor slab-shear wall configuration for the

planar motion model.
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Figure 36b Top views of floor slab-shear wall configuration

for the two-degree-of-freedom model at , = 0

(dotted lines) and at some later time '1' '1 > 0

(solid lines).
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Figure 37 Surface Yc(~,fx)' Yc = 'max/lc. The result from

the planar motion model with the moderately

rising acceleration envelope, A .= 0.9 A and
y x

f := 0.2 Hz.y
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Figure 38 Surface y (A ,f ), y = T IT. The result fromc x x c max c
the planar motion model with the moderately

rising acceleration envelope, A := 0.9 A andy x
f .= 0.5 Hz.

y
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Figure 39 Surface y (A , f ), y := T /T. The result fromc x x c max c
the planar motion model with the moderately

rising acceleration envelope, A := 0.9 A and
y x

f := 1.0 Hz.
y
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Figure 40 Surface yc(Ax,fx), Yc = Tmax/Tc . The result from

the planar motion model with the moderately

rising acceleration envelope, Ay
f := 2.0 Hz.

Y

:= 0.9 A andx
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Figure 41 Surface Yc(~,fx)' Yc = lmax/lc. The result from

the planar motion model with the moderately

rising acceleration envelope, ~ := 0.9 ~ and

f y := 5.0 Hz.
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Figure 42 Surface y (A .f ). y = T IT. The result fromc x· x c max c
the planar motion model with the moderately

rising acceleration envelope. A := 0.9 A and
y x

f y := 10.0 Hz.
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Table 2

BJ-F-G

Summary of best-fit values for regression parameters
Voo , c, and b, fitted to the sample mean values of Vi
for each test, for three cases and five confining
pressures.

71

Bounds
on mini-
mization
errors

CP V V h c V for V r V1-V(C\)1 9 co co m

100 34.0 15.0 -0.01 10.11 14.6 ±0.19 0.07 - 0.20
200 45.5 23.5 -0.00 7.92 22.6 ±0.29 0.03 - 0.09
300 54.0 33.1 -0.02 4.36 28.5 ±0.42 0.10 - 0.40
400 66.0 39.2 ~, 0.03 * 3.91 *38.2 ±0.50 0.22 0.76

500 71.2 45.5 *0.0 1 * 1.75 *37.5 ±0.57 0.22 - 0.22

BJ-F-NG

100 9.0 4.5 0.03 10.84 4.4 ±0.06 0.03 0.11
200 15.0 8.9 0.03 10.79 8.9 ±0.12 0.06 0.24

300 19.6 11.5 0.04 10.26 11.5 ±0.10 0.20 0.33

400 26.5 15.7 0.03 8.35 15.5 ±0.20 0.11 0.35

500 27.0 15.8 0.03 2.69 10.7 ±0.60 0.10 0.42

HJ-F-NG

100 9.0 3.5 0.04 11.04 3.5 ±0.05 0.10 0.24

200 16.5 8.6 0.0'2 12.44 8.5 ±O.ll 0.05 0.19

300 20.0 11.9 0.04 12.04 1l.8 ±0.15 0.15 0.32

400 24.0 15.8 0.05 10.72 15.6 ±0.20 0.23 0.40

* Best fit obtained with j3 = 1/3.



Table 3 Statistical analysis of 7 runs of test BJ-F-NG-200.

Table 3a Calculation of regression parameters Voo , c, and b
for each run, and comparison of the figures of merit
f for a = 2, B= 0, and for a = 2, B= 1/3.
m

6 (inches) #30 #7 #43 #34 #36 #21 #11

0 12.2 20.3 13.1 17.1 15.5 15.2 16.7

0.05 10.3 16.8 11.1 12.2 12.4 12.0 12.6

0.10 9.7 14.6 10.6 10.8 11.4 10.9 Il.O

0.15 9.3 14.0 10.3 10.1 10.8 10.4 10.2

0.20 9.1 13.4 9.9 9.8 10.2 9.9 9.3

0.25 9.0 13.0 9.9 9.5 9.7 9.7 8.8

0.30 8.8 12.8 9.9 9.4 9.3 9.4 8.5

0.35 8.6 12.4 9.9 9.3 9.0 9.3' 8.3

0.40 8.3 12.1 9.8 9.2 8.7 9.2 8.1
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Table 3b Comparison of values obtained for regression parameters
V,c and b as determined by:

co

i) means of values as calculated from each of 7 runs in
Table 3a
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V ::: 9.33 ,
co

"2
(J = 1.82 1

"0" = 1.35 •

ii) means of values as calculated from each of 6 runs
(omitting run #7) in Table 3a

v = 8.87 ,
co

"2
CJ = 0.43

,.
0" = 0.65

iii) sample mean values for 7 runs: see below.

iv) sample mean values for 6 runs (omitting run #7-sam.e
values as in Table No.2): see below.

(iii) (iv)

o. Vi~ V.
!

1 1

I!
0 15.3

I
15.0

0.05 12.3 11.8

0.10 11.1

I
10.2

I

0.15 1O~4 10~2 I0.20 1O~2 9.7 I
0.25 9.8

I
9.4

0.30 9.7 9.2
0.35 9.4 9.0

0.40 9.3 8.9 I

V ... 9.13 ± 0.12 8.87 {+ 10-
6

co - 0.09

c ... 9.73 10.79

b ..... 0.039 .033



Table 3c • "'2 dConfidence intervals for mean Voo , varlance 0 , an
standard deviation &for Voo as calculated for each
run in a sample size of 6 runs (omitting run #7).
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"x::l" "t"
distr. distr.

Confidence "a (0) V for foro and
interval CD 5DOF 500F

1-99 0.141 < 0.425 < 3.839 15.1 3.365
(0.375 < 0.652 < 1.959) 7.977 < 8.8733 < 9.769 (.554)

5-95 0.192 < 0.425 < 1.849 11.1 2.015
(0.438 < 0.652 < 1.360) 8.337 < 8.8733 < 9.410 (1.15)

10-90 0.230 < 0.425 < 1.321 9.24 1.476
(0.480 < 0.652 < 1.149) 8.480 < 8.8733 < 9.266 (l.61)

With sarrlple size n,
"a

[
(n-

a
l) 0

Confidence interval for variance
"a(n - 1) 0 ] a & b percentile

b ' point of "Xli"
distribution

Confidence interval for mean
"

[
- TO
V --

a:l .fii. '
V + 'r0 J T percentile
= .fii. ' point of "t"

distribution

Note that V to =: 9.13 predicted frorrl sample mean lies
mean

inside 98% confidence interval.



Table 4 The correspondence between the chosen nondimensional
characteristic times and real time for an "8 inch"
wall, t* = 0.099.
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Nondimensional Time

fast rising envelope

Real Time (seconds)

T •rJ.se
T
max

Tdur

moderately rising envelope

T .
rJ.se

T
max

T
dur

slow rising envelope

3.38

= 27.78

= 732.11

8.92

37.89

113.80

0.33

2.75

72.48

0.88

3.75

11.27

T 12.81
rise

T 63.13max
Tdur 296 . 23

1.27

6.25

26.36



APPENDIX

The following is a more detailed description and flow

chart of the constituent parts of a computer program which integrates

equations of motion involving Coulomb friction between rigid bodies.

CALCULATION OF THE BASE ACCELERATION, aCT)

To prescribe the acceleration,

a( ,) * *( exp ( - at, ) - exp ( - S t ,» sin W T

Because ( exp ( - a. t* T ) - exp ( - S t* T ) )

Smax must be computed.

S =max I ( exp ( - a t* , ) - exp ( - S t* T ) ) sin W TImax
,>0

A subroutine computes the successive peaks of the oscillations of

I( exp ( - a t* , ) - exp ( - S t* T ) ) sin W TI

This is done by applying a Newton iteration to find Tpeak' the

time of successive local extrema, such that

~ [( exp ( - a. t* T ) - exp ( - e t* , ) ) sin W 'peak] = 0
d,

then evaluating

I( exp ( - a t* T ) - exp ( - S t* T ) ) sin W TI

at, k'pea
monotonically increases to a maximum and monotonically decreases

thereafter, the successive peaks of

I( exp ( - a t* T ) - exp ( - S t* , ) ) sin W ,I

will also increase monotonically to a maximum then monotonically

decrease. The code computes successive peaks until a local peak

decreases, then the previous peak is taken as S
max

76

Taking



[( 1 I ( 4 f t* ) ) + ( ( N - 1 ) / ( 2 f t* ) ) ]

as the initial guess for the Nth local extremum was satisfactory.

Examining successive Newton iterates shows that convergence is very

fast; 3 iterations generally reduces the relative error to less than

10-5 •

MAIN PROGRAM

With aCT) prescribed, the code sets the integration step

size, H, to 1 I 16 the oscillatory period and tests the initial

conditions on the displacements and velocities of the floor slab

and walls to determine if the floor slab is sliding or not. A flag

is conditioned accordingly. An integration step is taken with step

size equal H I 2 to develop a data base for polynomial approximation

of wall and slab velocities. The motion regime, slipping or sticking,

may not change during this integration step. For T > H I 2, no

restrictions on where the motion regime may change are imposed

other than that the regime may change only once per step of size H.

Y~rching proceeds with tests for change of regime at each step

until IYb - y I > 1, indicating collapse or until T > T t' as ou
time before which any assembly collapse must take place.

METHOD OF INTEGRATION

The integration scheme is a 4th order Runge-Kutta method,

an implementation of the following algorithm1 :
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L(T) - Yb (T)

Yb (T)

Y (T)
s

Y (T)
s

to solve i( T) f (T ,j) with step size H, knowing

v( T ), T = nR
.L n n
H f (T ,y )

- n-n



!2 = H f (-r + H/2 .Yn + !1/2)- n

!3 H f (T + H/2 Xu + !2/2)- n

~ = H f (T + H , Xu + !3)- n

2n+l = 2n + (!l + 2!2 + 2!3 + !4) /6

The integration subroutine returns with y (T + H), Y(T + H)s s

TEST FOR SLIPPING

When the magnitude of the base acceleration la(T)1

exceeds a , the floor slab will slip on the walls. It is necessary
s

to check the magnitude of aCT) at each integration step. Assume

that the floor slab is not slipping on the walls. Should la(T)1

exceed a in the interval, the time of slipping, T I' such that
s s ~

la(Tl,)I=a,s lp s

must be located. A Newton iteration is used to locate T I' such that
s lp
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T - H < T I' < T
S lp

and la(T l' )1
S lp

- a s o

using T - H/2 as the initial guess to T 1" Iteration is continued
s lp_ 6

until the Newton correction is less than 10 • The convergence is

typically very fast with the convergence criterion being met in

about 3 iterations. Convergence to T - H ~ T I' ~ T or not meetings lp
the convergence criterion in 10 iterations is regarded as program

failure. Action taken in this event is discussed later. Once T I'
s lp

is located, yeT - H) is recalled from storage, and the equations of

motion for slipping are integrated from T I' to T. yeT) is
s lp

stored, and marching continues in the slipping regime.

TEST FOR STICKING

Assume that the floor slab is slipping on the walls. As aCT)

decreases to below a , Coulomb friction slows the sliding floor
s

slab until the velocity of the base and the floor slab are equal,

that is, when the base and floor slab stick together somewhere in

the interval. Because the equations are initially integrated to the



end of the interval with an acceleration governed by Coulomb

friction and the remainder of the interval with the smaller acceler­

ation a(T), the velocity change of the floor slab will be greater

than it should be. This will cause the difference of base and

floor slab velocities to change sign by the end of the interval.

If aCT) < as and the difference in base and floor slab velocities

changes sign in an interval, sticking takes place in the interval.

To locate

T-H<T 'k<T,stlC

the base and floor slab velocities are approximated by quadratic

polynomials generated by divided differences2 . The difference of

base and slab velocities is manipulated into the form

aT 2 + bT + C = O.

The quadratic formula is used to calculate one of the roots,

depending on the sign of b to minimize cancellation errors. The

fact that the product of the roots equals c gives the second root.

If the first root lies in [T - H, T], it is taken as T 'k'stlC
Otherwise, the second root is taken as T 'k if it lies in[T - H, T].StlC
If neither root lies in the interval, the program is considered to

have failed. Finding a root in the interval is the most sensitive

of program functions. Many more program repetitions with reduced

step size were necessitated by failure here than in failure to

find a time of slipping, Tslip ' Nevertheless, once a root, Tstick'

in the interval is found, Z(T - H) is recalled from storage, and

the equations of motion for sliding are integrated from T - H to

T t' k' yeT t' k) is stored, and the equations of motion fors lC - S lC
sticking are integrated from T 'k to T. yeT) is stored and marchingstlC -
continues as usual in the sticking regime.
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PROGRAM FAILURE

In the event that l I' or l . k cannot be found, H / 4
s ~p st~c

is taken as the step size and the entire calculation is repeated

from the beginning. If failure occurs 3 times, then the code

abandons this case of A and f.

FLOW CHART

Flow charts of the driver program and subroutine functions

of the computer code follow.
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SET UP INITIAL CONDITIONS
A, f, a, 13, )r5(O), y

5
(O), Yb(O), Yb(O)

FIND MAX I(e -at>:<T_ e -f3t*7)!
0< T *sin WT

81

INITIALLY IN
STICKING REGIME

FLAG: = a TO
INDICATE STICKING

ADVANC E WITH
STEP SIZE = H/2

NO

INITIALLY IN
SLIPPING REGIME

FLAG: = 1 TO
INDICATE SLIPPING



EXIT

EXIT

82

ADVANCE WITH STEP SIZE: = H

STORE RESULT



Q

NO

FIND (7' - H) <: 'r. <: 7' SUCH THAT
SLIP

2(t*)2
a(7'SLIP) =-d- fLg

83

y (r-H), y (r-H)
s s

yb(T-H), Yb(r-H) are

RECALLED FROM
STORED RESULTS

r: = T-H

ADVANCE WITH
STEP SIZE r l' -T

5 lp

STORE RESULT

FLAG: = 1 TO
INDICATE SLIPPING

ADVANCE WITH
STEP SIZE 6

STORE RESUL T



FORM POLYNOMIAL APPROXIMATIONS OF
VELOCITIES, Y , Y

b
FROM STORED DATA

AND FIND THE ~ERO IN" [r - H, 1"] OF THE
DIFFERENCE OF THE POLYNOMIAL
APPRQXIMATrONS OF VELOC ITY, r st

84

l): = 1'- Tst

".: = 1'-H

ADVANCE WITH
STEP SIZE T -".

st

STORE RESULTS

FLAG: = 0 TO IN"DICA TE
STICKING

ADVANCE WITH STEP SIZE 5

STORE RESULTS



_o:t~'r - St*r I
FIND MAXi (e - e )sin wr

r<O

GIVEN Ct, S, t*, f

N: = 1

TAKE (1/(4 f t*» + (N - 1)/(2 f t*)
AS INITIAL GUESS .

PERFORM 10 NEWTON
ITERATIONS FOR r

MAX

CALCULATE a('T MAX)

NO

RETURN WITH A(rMAX)OLD

-at*r -St*r
AS MAX I(e - e ) s in W r I

r>O
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N r N + 1

FIND.,. - H < "'SLIP < ".
Z(t*)2

~ a( "'SLIP) =-d- I-Jg

t
GIVEN "., H

t
TAKE.,. -(H/Z) AS THE INITIAL GUESS

8
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CALCULATE NEWTON STEP

TSL1P ~ T
SLIP

+ NEWTON STEP

YES

RETURN WITH TSLIP
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FORM POLYNOMIAL APPROXIMA TrONS OF VELOCITIES
Ys' Y

b
FROM STORED DATA AND FIND THE ZERO IN

['7" - H, '7"] OF THE DIFFERENCE OF THE POLYNOMIAL
APPROXIMATIONS OF VELOCITIES, r st

GIVEN VELOCITY AND TIME
DAT A AT 3 TIMES

CONSTRUCT NEWTON DIVIDED DIFFERENCE
TABLE FOR Ys AND Y

b

CALCULATE THE DIFFERENCE OF THE
POLYNOMIALS IN THE FORM ar:l + b'l' + c

,. 1 =
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YES

>-_-I(RETURN WITH T ,t' = TI)

RETURN WITH 1'st: = l'2
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WRITE WHY PROGRAM FAILED

H ... H/4

INCREMENT NUMBER OF ATTEMPTS

GIVE UP
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