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NOMENCLATURE

a(1)

a
max

xs(t)

y(t)
Y (1

ymax
¥5(T)

. 2
prescribed nondimensional acceleration, a = g:f y(1)
max la(7) |
prescribed dimensionless acceleration of the assemblage
in the up direction
prescribed dimensionless horizontal acceleration of
the base perpendicular to the plane 6f the walls
prescribed dimensionless horizontal acceleration of the
base parallel to the plane of the walls
width of the wall (feet)
frequency of base oscillation (Hz.)
w_[2 t*

x

w [2 t*
y

accleration of gravity (32.2 ft/sec?)
time (seconds)
) 1/2
a characteristic time defined by (d/{(2g))
relative horizontal displacement between the wall and
the floor slab

dimensicnless horizontal displacement of the base

perpendicular to the plane of the walls from its t =0
location

dimensionless horizontal displacement of the slab
perpendicular to the plane of the walls from its 1 =0

location

prescribed nondimensional displacement of base
dimensionless horizontal displacement of the base parallel
to the plane of the walls from its T = 0 location

max |y(1)|

120

dimensionless horizontal displacement of the slab

parallel to the plane of the walls from its 7 = 0 location

ii



a,B

§(1)

the maximum amplitude of the prescribed horizontal
acceleration (g's) '

parameters controlling the shape of the acceleration
envelope '
nondimensional relative displacement, u/(d/2)
nondimensional frequency, 2mfe*

dimensionless frequency of the prescribed acceleration
function in the direction of aX(T)

dimensionless frequency of the prescribed acceleration
function in the direction of ay(T)
collapse factor proportional to (Tc)m

nondimensional time, t/t*

value of T at collapse

value of 1 at which the prescribed displacement envelope
decreases to half maximum amplitude

value of 1 at maximum of the acceleration envelope

value of t at which the prescribad acceleration envelope
first attains half maximum value

friction ratio: frictiomnal force/normal force
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SEISMIC STABILITY OF BLOCK STRUCTURES

by

Richard L. Furgerson

Abstract

When studying earthquake damaged reinforced concrete or
concrete masonry structures, it has been observed that the mechanisms
of failure are often simple ones; the vulnerable comnections
between structural components degrade under stress allowing the
major substructures to separate, lose support and topple. This
type of failure is said to result from kinetic instability,

For the purpose of analysis, structures with degraded connections
are modeled as assemblages of rigid substructures with only
friction acting between them. A statistical analysis of data
from experiments on concrete masonry members gives an asymptotic
Coulomb law describing this friction which is included in the
model equations of motion. The equations of motion for a simple
shear-wall-floor slab assemblage subjected to simulated earthquake
Joading are solved numerically. The result shows a surprisingly
well-defined relation between the maximum amplitude of excitation,
the natural frequency of the structure, and a numerically-valued
hazard from kinetic instability. When presented graphically, the
result allows a designer to assess hazard from kinetic structural

instability by inspection.



I INTRODUCTION

Beginning in the era of Newton and the Bernoullis, some
of the most elegant treatments in classical mechanics and applied
mathematics have resulted from efforts to describe the motion
of rigid bodies under force, This has lead to a mature theory
with widespread application. One of these is the description
of the motion of structures subject to very high loading, such as
intense seismic loading.

The devastation caused by a severe earthquake near a
populated area shows all too clearly that the component parts
of structures undergo gross deformations very large compared
to any deformation in the elastic range of the material, While
it is now possible with the use of large computers to analyse
the detailed anelastic response including cracking of structures
which would lead to structural collapse, these methods are very
complex. Instead, a simpler model is proposed and demonstrated
in the present work: ignore elastic deformation and model
the structure as an assemblage of rigid elements which have
friction acting between them. Given a realistic friction law,
the equations of motion for the assemblage of rigid elements
subjected to earthquake loading can be solved, This model
is regarded as the result of prior degradation of the actual
structure. Although severe damage has occured, the degraded
structure is jnitially able to carry its primary loads.

An analysis of experimental data shows that a Coulomb
type friction is a satisfactorily accurate model of the inter-
element friction for structures made from concrete masonry.
Coulomb friction, also called solid friction, models the frictional
force between bodies moving relative to each other as being the
product of a constant friction coefficient and the normal force
across the sliding joint. When the forces acting in a direction

s0 as to cause relative motion between two bodies do not exceed



the product of the friction coefficient and the normal force, the
frictional reaction balances any forces that would tend to cause
relative motion so that there is no sliding. The simplified
friction model used here does not distinguish between static and
dynamic friction.

Analytical treatment of dynamical problems involving
Coulomb friction have been briefly considered by a few authors:
Den Hartog1 discusses replacing the Coulomb friction with an
energy equivalent viscous friction, sidestepping the stick-slip
nature of the problem; Ziegler? points out sume of the non-
intuitive types of behavior that Coulomb-damped oscillators may
demonstrate such as the fact that a Coulomb damped oscillators may
still undergo an unbounded response; Frazer, Duncan and Collar?
discuss the implication of the presence of stick-slip or ankylotic
motion of control surfaces to the stability of aircraft. None
of these authors treat the problem of kinetic structural stability.

The mechanical nature of the solution of problems involving
Coulomb friction makes them more suitable for automatic computation
than for amalytical examination. Numerical teclmiques are used
in the present work to solve a simple prototype structural
stability problem involving a rigid body shear-wall floor slab
configuration with Coulomb friction acting between the vertical
and horizontal elements (see Fig. 36). Motion of the base is
excited by a simulated seismic loading. This assemblage is said

to be kinetically stable if the floor slab in responding to the

excitation does not fall off its supporting shear-walls which

would define collapse. Hazard from collapse due to kinetic

instability is taken as being inversely proportional to the time
the assemblage can withstand the excitation before collapsing.
The results present the computed hazard of collapse as a funétion
of maximum amplitude and frequency of excitation in graphical

form, allowing assessment by inspection of hazard due to collapse.



I OBSERVATION OF STRUCTURAL SUBASSEMBLY DISLOCATION AND
COLLAPSE DUE TO KINETIC INSTABILITY

Following definitions given in Chapter I, a kinetically
stable structural system of rigid elements can be thought of as an
assemblage of elements none of which will collapse or overturn
due to specified forces acting on the assemblage, although the elements
may undergo substantial relative motions. TFor the purposes of
this paper, concrete or masonry building structures are the assemblages
of elements considered. Whether or not an assemblage ig kinetically
stable can be determinded by considering the relative displacements,
velocities, and the inertial properties of its substructures and
the the forces applied to themn.

Reinforced concrete or masonry structures are built up
of subassembly elements. Often this is purposeful as in prefabricated,
prestressed modules which can be used to advantage where a standard-
shaped section is required. Indeed, even structures monolithic
in appearance have in them inadvertant construction joints because
building construction does not progress continuously. See discussion
of Fig. 6 below. As far as seismic analysis is concerned, the idea
that buildings are assemblages of substructures is important
because experience with structures subject to earthquake ground
motion has shown engineers that the connections between substructures
are particularly vulnerable to seismic degradation. It is seen
that once these bonds are broken, the substructures are free
to move independently, and the building can be considered an
assemblage of rigid elements, Often these elements have simple
geometries.

In fact, the idea of kinetic stability served as the
basis for one of the first methods used to quantify the strength
of earthquake acceleration. According to Kirkpatrick®, Mallet
was perhaps the first to suggest that the stability of common
objects might serve as an empirical scale by shich investigators
might rank earthquake strength after surveying the damage. When

reading the old accounts, one finds strengths compared relatively



as certain percentage of chimneys fallen within a given area or by
percentage of gravestones overturned. Because such methods removed
“the seismologists' dependence on the subjective judgement of
untrained witnesses for a strength estimate, an amount of attention
was given to the problem of the overturning of blocks by horizontal
accelerations in the literature, Again, Kirkpatrick" states

that Milne and Omori in 1885 reported experimehts suggesting

an empirical multiplicative factor to correct the West formula,

a=(b/h)g, for overturning of blocks by horizontal accelération,

a= ZggéTg?aggggturning horizontal
a g = acceleration of gravity
T— - h = block half-height
h g b = block half-width
L

=]

They actually used this method to investigate earthquakes in
Japan, where lanterns and monuments are generously distributed.
It was realized that static considerations alone were not sufficient
to establish kinetic stability, but this proceedure was carried
on with some refinement for years (Kirkpatrick® ). Of course,
overturning of monuments is still seen. Figs. 1 and 2 show monument
stones overturned or displaced after the Managua earthquake,
The overturning of blocks is a type of rigid body or kinetic
instability.

A number of descriptions of earthquake induced rigid body
motions and structural failures follow, illustrating the variety
of forms kinetic instability through rigid body motion may take.
Reference 6 contains many excellent photographs of additional
examples such as Figs. 3.10-3.13,

Machines such as those providing heating and air conditioning

to buildings frequently translate as rigid bodies substantial



distances during earthquakes if not securely anchored to the floor.
Fig. 3 shows a massive boiler at the (Olive View Hospital coming to
rest 4 feet from its original position after the San Fernando
earthquake. Similarly, a heavy lathe in a machine shop is found to
have have translated 9 feet from its original location. Fig. 4,

An example of stability of rigid subassemblies is geen
in Fig. 5. During the San Fernando event, high loads degraded
the moment resisting capacity of the columns supporting the second
story of the Psychiatric Day Care Center of the Olive View
Hospital until the structure was reduced to a mechanism. The
second floor collapsed as a rigid substructure onto the first.

The photograph shows the second floor fairly intact. Much of

the glasswork in the second floor is unbroken. As mentioned

above, seemingly monolithic structural elements contain internal
joints between material placed on different days during construction.
Restraints on the size and strength of concrete forms due to
handling and economic considerations usually limit the depth
concrete may be poured to less than 10 feet; a tall shear wall

may have many such construction joints., Fig. 6 is a photograph

of a tall shear wall in a multi-story building after the San Fernando
earthquake. " The horizontal cracks at the construction joints are
clearly visible, Permanent horizontal displacements in excess

of 1/4 inch were observed.

The simple modular geometry of stairwells and elevator
shafts very much resemble the blocks for which Professor West
developed his overturning formula. Often these subassemblies
are constructed with only light counection to the parent structure.
Under earthquake excitation of the structure, the connections
fail allowing the stairwell to move as an independent rigid body.
Being a tall, slender substructure, the stairwell may overturn.
Fig. 7 shows a quite intact stairwell after being overturned
during the San Fernando earthquake. The stability of stairwells
is not just a problem confined to the Southern California locale,

similar stairwell failures occured during the Managua and Anchorage



earthquakes,

When subjected to earthquake ground motion, reinforced
concrete roadway bridges can exibit cne of the simplest rigid
body instabilities. The span simply slips off its supporting
abutments. The span is necessarily not connected to its abutments
to accommodate expansion and contraction due to remperature changes.

Structural separation into rigid, independent subassemblies
sometimes divides the structure into a few, quite simple, rigid
substructures. A case in point is see in Fig. 8 and 9. After
the Managua earthquake, the penthouse on top of the pictured
luxury hotel is seen to have undergone a permanent rotation and
translation. Had the rotations and displacements been larger,
the penthouse could have slipped off the top floor and fallen;
its kinetic stability could be in question.

In a residential section of Managua, a tract of nearly
identical homes was built, The walls were reinforced concrete,
the roofs were made of a number of prefabricated concrete chaunnel
sections. Apparently, these channel sections were not secured to
the walls. During the earthquake, many of the channels slid
off their supporting walls in precisely the same way, Fig. 10,
This photograph shows the similarity of failure. Fig. 11 shows
a roof section, while not failing, displaced some inches from
its original position, The darker unpainted portion of the bottom
of the channel originally bore on the supporting walls; the
lighter portion is the ceiling paint of the room on the other
side of the wall. While in a majority of instances, the walls and
the roof sections remained individually intact as substructures,
these subassemblies making up the homes moved relative to one another
to the extent as to become kinetically unstable.

Since the walls and roof sections can be modeled simply and
realistically, the geometry of Fig. 11 is the basis for the

prototype two-body problem: Descride the motion of a slab of




reinforced concrete material supported on rigid walls of concrete
masonry, where the walls are built into a base which undergoes

a prescribed vertical and horizontal acceleration. The prototype
problem is.-analysed in later chapters.,

Before solving the equations of motion of the prototype
assemblage, it is necessary to prescribe the tractions on the
interfaces between these rigid bodies, Particularly significant
is the interface friction between the elements sliding against
one another. If realistically modeled, the character of the
chosen friction law can contribute substantial complexity to

the equations of motion,



IIT FRICTION LAW

In order to pose the equations of motion for the prototype
assemblage, the frictional behavior of abrading cementous interfaces
must be described. In connection with the UCSD Masonry program
(Reference 9 contains contributions by UCSD Masontry program
investigators which may serve as a project overview), frictional
behavior as well as material strengths of masonry were studied.
Data from the program's experiments produced a simple, realistic
friction law with the following properties:

(1) The frictional stress along the interface and

the normal stress on the interface have an
asymptotic Coulomb relationship for large
total displacements.

(2) The law is bidirectional.

(3) The law is sliding rate independent,

Property (1) is demonstated by the result of a statistical

analysis of data taken during a number of experiments. Properties

(2) and (3) were observed empirically from data taken during a

number of experiments. A description of the experiments investigating
the elastic, fracture, and post-fracture response of masonry
assemblages, and the analysis of the resulting data leading to

the friction law, follows.

The specimens tested were assemblages of 3 half-blocks,
triplets, constructed by professional masons working under field
conditions using typical materials, materials meeting relevant
standards for quality and strength. The diagram in Fig. 12
shows a triplet thats blocks are joined with one of the two basic
mortar joints: The bed joint or the head joint. These are the
first 2 specimen configurations tested. Filling the hollow in
the bed joint triplet with a fluid concrete, called grout, results
in the third configuration subjected to test in this phase of the

program.



The 3 half-block assemblage was chosen since it is a
managable size and does not require a machine of extraordinary
capacity to apply failure loads. The configuration is also used
by contractors in the field to prove that required strength of
the masonry has been attained, satisfying building code regulations.
Reference contains a complete description of the manufacture
of the specimens including relevant ASTM standards for the materials
and information about the curing procedure.

Two loads are applied to the triplet. A load acting
perpendicular to the long dimension, the vertical load, displaces
the center block while a constant load, acting in the ends forcing
the blocks together, is maintained by additional hydraulic
equipment, Figs, 13 and 14, Considerable attention is paid to
distributing the loads uniformly over their active surfaces, Figs.
13 and 14. The triplet is bedded with a thin layer of Hydrocal
plaster to a substantial aluminum base plate. A steel bearing
plate is similarly bedded to the top of the center block. The
confining load, load applied to the ends, is distributed via a
stiff steel plate and neoprene pad to insure uniformity. The
reader is directed to Ref, 9 for a detailed discussion of the
mounting and loading procedure including photographs of the test
setup,

As the displacement of the center block, §, increases,
shear failure occurs along the mortar joints for confining loads
below a critical value. Since the vertical load is resisted by
a shearing action across the mortar joints of the triplet, the
vertical load will be called the shearing force, V. Shearing
force vs. vertical displacement of the center block data were
taken for a number of tests at each of five confining loads and
each of the 3 configurations. For two different confining loads,
Fig. 15 illustrates the curve obtained by averaging all the
data taken from specimens of one configuration tested at one

confining load. The load versus displacement data for any one



test can be divided into three regions: (i) a linear elastic
region, (ii) a non-linear region, and (iii) a post-fracture,
sliding region. The subsequent investigation confines itself

to the post-fracture, sliding region,
DERIVATION OF THE FRICTION LAW

The decaying behavior of the shear force versus displacement
data in the post-fracture region suggests that the shearing
force may be modeled there by solutions, V(§), of this differential
equation:

ay O 2w - v
ds

Voo is the value to which V(8) decays after sliding over a large
displacement. Since the energy of the shearing force acting
through the displacement, §, is dissipated by grinding and
smoothing of the blocks at the fracture interface, the parameter
¢ in Equation (1) could depend on the work W(§) done by interface

friction acting through a displacement, §,

5
W(8) = [v(s')ds"
81

For each configuration and confining load, the data were averaged
to produce a mean curve as in Fig.l53. For the purpose of fitting

the data to the following general solution to Equation (1),

V(s - Vv, §
(2) —————— = exp [— (e f (W((S'))Bdé' +b)
Vi = Ve 0

samples, V , from the averaged data curves were taken at i = 1,.,..,9
i
evenly spaced displacements, § , measured beginning from the
i
center block displacement corresponding to the maximum shear

force.



69 = 0,4 inches

The constants c, b, and V_ are regression parameter determined
by an extremum procedure. The constant, B, is chosen equal to O
or 1/3 whichever gives the best result, The case of B = 1/3

is included to accommodate a possible volumetric effect. The
regression parameters ¢ and b are determined from the data by
minimizing a quadratic form, M(c,b,V ), defined by the following

set of equations for 1 = 1,...,9:

5
g, = [ T s Pas

0
Vi = Ve
ny = log | ———
v, -V,
1
niEcEi+b

1

9
M(c,b,V ) = }:(vi - Vw)a (n, - Fi)z
i=1

The value of o i1s chosen to be 0 or 2. A result from the

2 is

statistical theory of linear regression suggests that ¢
appropriate if the standard deviation of the samples of the

individual data at a given §; used to generate the mean curve

varies with the sample mean and that o = 0 is appropriate if the
standard deviation is comstant, Ref, 10, TFig. 16 shows how the standard
deviation varies with sample mean for one of the triplet configuations.
The standard methods of the linear regression of n and £ enable

c and b to be determined explicitly as functions of V, through

solution of the pair of equations (3,4).

aM

(3,4} e 0

oM
9b

=0

These expressions for ¢ and b in terms of V_, permit the residual
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sum of squares divided by n, a quantity called f,
1.0
= — v, - V(&2
(5) £ n_21< RERICRY
i=

to be expressed as a function of V, only. V(§) is given by
Equation (5) in which the only remaining unknown is the regression
parameter V,. A computation determines the V, which minimizes £,
Fig. 17 shows an example of V., versus I.

For each prescribed triplet configuration and confining
load condition, a number of specimens were tested and their data
averaged. The model fitting procedure was applied to samples
from the averaged data. The results of the fitted V(8) vs. &
for various confining pressures (CP) are shown in the following
figures:

Fig. 18 Bed joint grouted CP = 100,...,500 psi

Fig. 19 Bed joint ungrouted CP = 100,...,500 psi

Fig. 20 Head joint CP = 100,...,400 psi
CP equals the confining load divided by the appropriate bearing
area, Ab' In these figures, the full lines indicate values of V(§)
in the post-fracture, sliding region, the applicable region for
the model. The dotted lines indicate the trend of the experimental
data prior to bond fracture, The fit is seen to be quite good.

The essential feature of this model is the form of the
behavior of V_ vs. confining pressure. This behavior is shown for
all three configurations in Fig., 21, In order to use the test data
as a point relation between surface shearing stress and lateral
pressure, V_ is divided in each instance by the appropriate bearing
area, Ay, to show T, on the ordinate of Fig. 21. For CP = 400 psi,

the data is in very good agreement with the form of the Coulomb or

or the Amonton Law for sliding friction,

Te = He CP

for constant coefficient of friction, p,. The values of T, for

CP = 500 are seen to correspond poorly. However, it was observed that



the tests for this high confining pressure resulted in block
spalling and severe block cracking. This failure mode was unlike
the clean bond fracture and sliding failure seen in the lower
confining pressure experiments. Thus, the model, Equation (1),
which relies on the plane interface sliding assumption is inappropriate
for describing the results for the CP = 500 psi tests, and the
CP = 500 psi result is omitted from the calculation of y_.
The results for the two types of joints having mortar
only are quite close, Fig. 21, while the value of y_, for the
grouted jeint is somewhat larger. The least-squares slopes, ., for

the 1, vs, CP data were calculated.

u, = 0.55 for BJ-F-NG
B, = 0.60 for HJ-F-NG
U, = 0.66 for BI-F-G

There were usually 3 specimens tested for each confining
pressure and triplet configuration. The data curves for each
confining pressure and triplet configuation are then averaged to
form a composite curve which is then fitted to the sliding friction
model. To establish the wvalidity of the use of the composite
curve to generate the asymptotic frictiom law for the interface,
i.e, Coulomb friction, the case of BJ-F-NG with CP = 200 psi
was subjected to a statistical analysis. For this particular
case, 7 specimens were tested. The value of V_ was calculated for
each of the individual data curves. The result of that calculation
appears in Table 3, It can be seen that the value of V_ calculated
from test #7 is conspicucusly greater than the other values. If
some sort of testing error or operator mistake were responsible
for this irregularity, this point could be omitted from further
analysis. Nevertheless, in this instance, the descrepency cannot be
attributed to obvious experimental mistakes. However, statistical
tests have been devised to indicate the likelyhood that an
"outlier”, an experimental value distant from other supposed similar

data, is not drawn from the same population as the other data,

13



Appendix 2 describes the procedure for challenging an "outlier"
on statistical grounds.

The results of this procedure show that within 957%
confidence the value of V_ given in test #7 does not belong to the
same population as the other values. The "outlier'" is then
excluded from the final analysis., Table 4 shows the result of
fitting the BJ-F-NC CP = 200 psi composite curve with and without
including Test #7. Note that the value of v, {Table 4) from
fitting the composite curve (excluding Test #7) is in very good
agreement with the average of the V_ values resulting from the
fitting of the individual data justifying the use of the composite
curves only for the computation of V  for the other cases of
confining pressure and triplet configuratiomn.

Another series of experiments on triplets was performed
using more sophisticated test equipment, Ref. 8, which was
capable of forcing bidirectional displacements of the center
block., The displacement of the center lock could be a prescribed
function of time. Shearing force vs. center block displacement
data were taken where the displacement was prescribed to be a
sinusoid, the frequency of which was varied resulting in the
maximum velocity of the center block varying over a 40 to 1 range.
Figure 22 shows the resulting shearing force vs. center block
displacement data. The magnitude of the shearing force is seen
tp be constant--independent of direction of motion or sliding
velocity. Further unidirectional tests having center block
velocities varying over a 10 to 1 range corroborate the sliding

velocity independence of the shearing force.
FEATURES OF THE FRICTION MODEL

In summary, model fitting the experimental results
produces an interface sliding friction relationship for normal

pressures of less than 400 psi. The description asymptotic

14
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Coulomb is used to be suggestive of the fact that the interface
sliding friction law approaches a Coulomb law as the sliding
distance increases. In practice, it is seen that after relative
interface sliding a total distance of only about 0.4 inches,
the sliding friction relationship is closely approximated by
a Coulomb friction law with constant coéfficient. The friction

coefficient is not dependent on the rate or directiom of sliding.



Iv PROTOTYPE ONE-DEGREE-OF-FREEDOM STRUCTURE

Although from a very simple model structure, the result
of the following analysis will be shown to indicate the major

features and trends of a class of hazard prediction problems.
DESCRIPTION.OF THE PROTOTYPE ONE-DEGREE-OF-FREEDOM MODEL

Consider a structure similar to that pictured in Fig, 11
modeled as a rigid floor slab supported by two rigid, parallel
shear walls built into a rigid base, Fig. 1. The floor slab
has no connection to the shear walls, and interface friction
alone causes the floor slab to move with the walls. The previous
analysis of sliding concrete block experiments shows that Coulomb
friction with a constant coefficient, u = 0.6, is an appropriate
friction condition to prescribell. One degree-of-freedom is
permitted, translation of the floor slab in a direction out of
the plane of the walls. A prescribed horizontal accelerétion, a(1),

simulating seismic loading acts on the walls and base.
MATHEMATICAL MODEL AND NUMERICAL SOLUTION TECHNIQUE

Including Coulomb friction with its stick-slip character
introduces significant complications in the integration of the
equations of motion. Heretofore, the substitution of an "equivalent”
viscous ox velocity dependent friction law to render the equations
of motion more tractable analytically has been made, By contrast,
this work relies wholly on numerical methods to track the stick-slip
status of the assemblage and to integrate the unsimplified
equations of motion.

The floor slab begins slipping on the walls when the
magnitude of the base acceleration in g's exceeds the friction
coefficient, if the slab is sliding over the walls, it will
stop sliding if the magnitude of the base acceleration in g's
is less than the friction coefficient and the velocities of the
slab and walls are equal, The describing equations expressed

in nondimensicnal quantities follow:

16



Let
¥ys(7) = nondimensional displacement of the floor slab
from its T = 0 location
yb(r) = nondimensional displacement of wall from its

T = 0 location

¥o(1) = ¥o(1) = yp(1) = yp(r) = 0 at T =0

~ Equations for sticking are:

n

a(T)
a(t)

¥(D

" if floor slab is not sliding on the walls.
yg(D

The floor slab will be sliding at T = 1y, say, if and only if

la(rl)[ > y. During sliding, the governing equations are

§b(T) a(T) if floor slab is sliding on the

(D)

U

- 1 sgn(yg - ¥p) walls for Tl'S T < T,-

Once sliding, floor slab will have stopped sliding at T = T,

T, > T1 if and only if the following two conditions are met:

}a(Tn)] < and yplr) = Fglt)

A brief description of the solution technique follows;
Appendix I contains complete details of the code.

The integration of the initial wvalue problem proceeds by
marching, with a polynomial approximation of the slab and wall
velocities updated at each time step. Tests for changes in
motion regime, slipping or sticking, are then performed on the
solution.

If the slab and walls were sticking at the previous time
step, the magnitude of the acceleration is computed. If the magnitude
of the acceleration is less than p, the motion regime is unchanged,
still sticking, and the solution 1s again advanced a time step. If
the magnitude of acceleration is larger than u, then slipping
begins at some time between the current solution time and the last
solution time. A Newton iteration calculates the time at which slipping

begins, such a time t being characterized by:

17



previous time < 1 < present time such that [a(r)l =y,

The integration from the previous time is repeated with a step

size to advance the solution to the time of slipping, the motion
regime is changed, and the slipping equations are then advanced

to the intended time with the displacement and velocities of

the slab and walls at the time of slipping as the initial conditions.
Marching then proceeds with the original time step,

If the slab was sliding oun the wall at the last time
step, the solution is advanced from T, to T,, say, integrating the
equations of motion for the slipping regime, and the solution at T =
is tested. If la(TZ)I > y, marching proceeds to the next time step,
If the Ia(TZ)I < p test succeeds, the difference test of the
polynomials approximating the wall and slab velocities is performed,
When the difference of velocities changes sign in the interval, the
velocities being continuous in time must be equal somewhere in the
interval. The time when the velocity difference is zero is
calculated, and the integration of the slipping equations is
is advanced from the previous time to the time of sticking, time
of zero velocity difference. The equations for sticking floor
and walls are integrated from the time of sticking to Tge
Afterward, marching proceeds using the original step size,

Detail drawings of building plans!? and photographs of
construction underway!3 shows that a reasonable floor slab bearing
length is one half the wall thickness, § = 1, The difference
in displacements, &(t), is tested at each time step. Should the
magnitude of the difference exceed 1, the assembly is considered to
have collapsed, and the time at the present integration step is
taken as the collapse time, Ta- Since a structure which can resist
a seismic loading for a shorter time before failing than another
is more hazardous, a measure of the hazard is the collapse

factor, a quantity proportional to 1/TC.

T

2
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ACCELERATION FUNCTION

During an earthquake, the upper stories of a building are
not subjected to an acceleration like those recorded by seismometers
fixed to the ground. Instead, the exciting acceleration is a
combination of the earthquake ground acceleration and the response
of the lower floors. It could be said that the structure filters
the earthquake acceleration, eliminating high frequency components
and amplifying components that have frequencies near the fundamental
frequency of the structure. This filtering is confirmed by
examination of earthquake accelerograms!* recorded by instruments
located in the basement and the top floor of structures, Fig. 24.
The following analysis also suggests the result,

In a very simple way, a structure may be modeled as a
linear one-degree-of-freedom oscillator with an "equivalent"
mass, viscous friction, and stiffness, The motion of the oscillator

is described by the following equation:

(6) mx +c¢c %+ kx=-ma(t)
where
x(t) = displacement from the undeformed position
relative to the base
m = equivalent mass
c = coefficient of viscous friction
k = equivalent stiffness

a(t) = prescribed acceleration input

—] X /

M /

| ¢

K : 4

' /

a(t) 4

0O d

S 7 7 7S T 7 7777/
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From the equilibrium equation, Equation (6), it is seen that it
is the absolute acceleration of the mass, x + a(t), that is
related to the elastic and viscous reaction forces. Using
available accelerograms of strong earthquake ground motion as
input, the induced absolute acceleration, acceleration with
respect to an inertial frame, of a one-degree-of-freedom linear
oscillator was calculated; the Pacoima Dam Feb. 9, 1971 S14W
component!® was used in this analysis. The discrete Fourier
transform of the absolute acceleration of the oscillator and
of the Pacoima Dam Feb. 9, 1971 S14W component itself was computed
using the FFT algorithm16 on 512 evenly spaced data points over
10.22 seconds. The plots of the modulus of the Fourier
coefficients versus frequency for both appear as Figure 25
and Figure 26. These figures show clearly that the spectral content
of the linear oscillator absolute acceleration is much less complex.
In fact, for the case shown, damping = 27 critical, undamped
natural frequency = 1 Hz., the response of the absolute acceleration
is composed for the most part of one frequency. Figure 27 shows
the absolute value of the absolute acceleration versus time, A
smooth envelope loosely corresponding the the acceleration peaks
is superimposed. This motivates the choice of a sinusoidal
oscillation contained within a smooth envelope as the acceleration
function exciting the proposed shear wall-floor slab system,

The envelope function ( exp ( - a e r Y —exp (-8 t* T) )
is a smooth, 2 parameter fuction which qualitatively describes
the peaks of the response of a linear oscillator excited by

an accelerogram input. Specifying Tei and 1 allows the

se dur
parameters o and B to be evaluated. This was done for 3 pairs
of T . and T to yield 3 envelope functions with characteristics

rise dur

representative of a fast rising, a moderately rising, and a slowly
rising envelope function as resulting from the response of a linear
oscillator taking published fast rising, moderately rising, and
slowly rising earthquake ground motion accelerograms as input.
Table 4 shows the correspondence between the chosen nondimensional

characteristic times and real time for a "8 inch" wall. Choosing



the acceleration function, a(t), as

2 g A (9?2 . x
a(t) = (exp(-at 1) -exp{(-Bt 1) )sinawr
d Smax
where
S pax = ( g ( 1)) s
nax = maxo exp ( —aot T)-exp(-Rt T))sinuwr
T >

gives the oscillatory motion within an envelope of realistic
proportion. The smooth envelope shown in Figure 27 is the moderately

rising envelope.
RESULTS AND DISCUSSION

For each of the three envelope shapes, the collapse time
is computed for amplitude A in the range of 0.7 A 1.15 and
for frequency f in the range 0.5 < f =1.125, f = « / 27. Because
of the finite duration of earthquakes, the smaller collapse times
represent greater hazard than the larger collapse times, The product
of a scaling parameter, which is a reference nondimensional time,
and the reciprocal of the nondimensional collapse time is called Yes
Y. 1s plotted on the vertical scale of the cartesian coordinate
system in reciprocal time-envelope amplitude-frequency space, in
brief the y-A~f space. The larger values of Y, are the more
significant. Computations were made with different scaling parameters
to find a scaling parameter which makes the surfaces of Y, in the
v-A-f space relatively independent of the envelope shape. Scaling
and 1 were tried. The greatest
T ise / t. and
YC(A,f) =T / T these surfaces are shown in Figs. 28 to 33. The

arameters of T_., T T
p rise® "max’ “dur?

similarity is shown in the surfaces YC(A,f)

i

cross-hatching in these figures represents lines parallel to the
amplitude and frequency axes following the surface YC(A,f). One
notes that, for a given frequency, the collapse factor increases

rapidly with amplitude after a critical amplitude is reached.
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Figure 34 gives an indication of this steepness in the area of
critical amplitude. On the other hand, the collapse factor Yo
decreases with increasing frequency at a fixed amplitude.

In addition, the complete displacement histories for
certain A and £ in the critical area were examined to demonstrate
that the interval of integration was chosen adequately long to
reach collapse in all possible cases. Figure 35 shows such a
displacement record with the peak relative displacement §{t) per

cycle decreasing for 1 > 1 Such records also justify the use

max-
of the Coulomb friction model, as experiments!! show that for
concrete blocks sliding along cracked grouted and mortared sutfaces,
the frection ratio ) approaches the asymptotic Coulomb friction
value after sliding about 0.4 inches. The present calculations
show sliding of many times that distance before the collapse time

is reached.
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v PRACTICAL APPLICATION OF RESULTS FROM ONE-DEGREE-OF-FREEDOM
MODEL

There are two broad classes of mechanisms for structural
system failure: the widespread structural member fracture, yield,
and material overstressing failure and the kinetic instability
failure where material failure is confined to connections only.

A stress analysis can give the structural load carrying limits
imposed by the building materials. The analysis in the last
sections characterized the kinetic instability structural failure
mode alternative. It will be shown later how a structure's
conformance with the pertinent building code regulations can be
assured.

The fundamental sections of the Uniform Building Codel?
and the "Tentative Provisions for the Development of Seismic
Regulations for Buildings™ ATC 3-061% impose what are essentially
lower limits on the load carrying capacity of a structure., A
conservative design practice necessitates finding out which of
the failure modes outlined above is the "weakest link" for a
particular building configuration then designing to meet or
exceed the loading requirements imposed by the building codes.

Both the UBC!® and ATC 3-061%® prescribe a static total lateral load
to be reacted by the foundation of the structure and how that lateral
load is to be distributed to the individual floors as a function

of: expectation that the structure will be excited by an earthquake;
construction materials; structural configuration:; properties of

the soil at the building site; the fundamental period and total
weight of the structure, Comparing the resulting lateral force-
vertical force ratios with the magnitude above which kinetic
instability occurs for a particular structure shows which mode

is the "weakest link".

As an illustration, a procedure for establishing which
failure mode is the "weakest link" for an example structure,

in conjunction with the UBC!® and ATC 3-06!® methodology, is
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outlined below. Consider a sixteen story commercial office building
to be built in Southern California (seismic zone #4). The
configuration is to be a reinforced concrete frame with shear

walls for additional stiffness. All the floors have the same
weight, w, and the story height, Ah, is uniform. Assume that the
floors are slabs set up on the frame with interface friction only
causing the slab to move with the frame. The soil profile can

be characterized by 30 feet or more of soft-medium-stiff clays

with intervening layers of sand. 1In lieu of a dynamic analysis

of the structure, use Eqﬁation 12-3A of section 2312 of the UBC!®

to estimate the fundamental period of the structure,

0.05
D

T = fundamental periocd (seconds) in the direction parallel to

the applied lateral forces
hn = height of the structure having n floors in feet

D = dimension of structure, in feet, in a direction parallel

to the applied forces
For convenience, take hn := 177 and D := 78.62 giving the example

structure realistic proportions and a fundamental period of 1
second, The above specifications allow the calculation of the
minimum total lateral force to be reacted at the base and the
distribution of lateral force to the individual floors according
to the building codes by the following method (UBC!® pp.132-151).

(8) V = ZIKCSW
where
V = total lateral force at the base
Z = earthquake zone coefficient
I = occupancy importance factor
K = structural configuration coefficient
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C = fundamental frequency parameter
= site-structure resonance parameter
W = total dead load (weight)

The UBC!® gives the following values for the example structure.

z=1 definitions sec. 812 (b) p.134 UBCLS
I=1 Table 23-K p.148 UBCI®

K= 0.8 Table 23-I1 p.l146 UBCI®

C = 0.06667 by Equation (12-2) sec. 2312 UBC'®

S = 1.5 sec. 2312 (d) p.135 UBC!®

Substituting into Equation (8) gives
(9) V=0.08 W.

Equation (12-53) sec, 2312 usci® gives the distribution of

lateral force with height.

16
(10) V=F + }: Fy

i=]
wher e
F; = lateral force applied to the i*® floor
F. = an additional lateral force applied to the top floor
(11) F. =007 TV (Equation (12-6) sec. 2312 UBCL®)
wih,
(12) F 2 (V-F) . S (Equation (12-7) sec. 2312 UBC!Y)
n
Z:w.h
13
j=1

j=x
I}

3 = height of ith floor

]
]

; = weight of ith floor

total number of floors

The Fi values are those lateral forces the building codes require
a structure to carry without exceeding design allowables. In
the case of the example structure, with w; = w and hi = jAh

and substituting Equation (11), Equation (12) simplifies to



(13) F, = 0.93 V——— = 0.93 V ——
i 16 136

3

i=1

Because the load distribution is weighted with height, the top
floor will receive the largest portion of the load and therefore
will have the maximum lateral force-vertical force ratio.
Substituting Equation (9) into Equation (13) with i := 16,

write the force ratio as follows:

F1 0.93 Vv 16 0.93 (16%) 0.08

(14) w - w136 - 136

= 0.140

The ATC 3-061% provides updated provisions which are applied
in the same way as the uBClS provisions. The calculation of the
lateral force-vertical force ratio according to ATC 3-061% follows.

Similar to Equation (8), Equation (15) gives the total lateral force.

(15) V=C W

where CS = geismic coefficient

_ 12 Ay Sarcy
2/3

C

s
R (T)

A, = effective peak velocity-related acceleration (sec, 1,4.1,

p.28 ATC 3-06!6)

Sprca = coefficient for the soil profile characteristic
(Table 3-A, p.51 ATC 3-06'6)

R = response modification factor (dependent on structural
configuration and construction material) (Table
3-B, p.52 ATC 3-0619)

T = fundamental period of the structure in the direction
parallel to the applied lateral forces (compute
by Equation (7))
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For the considered example structure, these coefficients take these

values:
A, = 0.4
Sprc3 = 1-3
R = 5.5
T =1

For these,
(16) C, = 0.13091.

The force distribution is given by Equation (17).

17) F,o= Cyy V (Equation 4-6, p.57, ATC 3-06'°)
where
k
wiby 16
(18) Cvi = (Equation 4-6a, p.57, ATC 3-06 )

.- k
jgl wj hj

The value of the exponent, k, is given on page 56, ATC 3-06186,
For a structure with a fundamental period of 1 second, k = 1.25.

As before, make the simplifying assumptions, w; = w, i= 1,16 and

h; = 1Ah so that Equation (18) becomes
a0 ¢ - .25

16 :

2 (j)1.25

j=1

Again, because of the weighted lateral force distribution, the
greatest lateral force-vertical force ratio will occur at the top

floor. Taking i := 16, Equation (19) becomes

32
20 C = 95 =0, .
(20) 16 5 9TE 0.131301
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Divide Equation (17) by w, substituting Equations (15),(18), and
(20), find that
Fig

(21) = Co1e

CS 16 = 0,131301 (0.13091) 16 = 0,275 .

The lateral force-vertical force ratio above which kinetic
instability becomes important can be found by inspection from the
results of the previous analysis of the kinetic stability of the
prototype one-degree-of-freedom structure, TFor the example structure,
the fundamental frequency is 1 Hz. and the soil profile suggests
that an earthquake would have a moderately rising acceleration
envelope. Therefore, consider the y-A-f surface of Fig., 29, For
f = 1 Hz., find the largest A for which Yo = 06, the largest A in

the safe zone. This A is found to be
(22) A= 0,9g = Eég = 0.95

The critical lateral force-vertical force ratio above which
failure by kinetic imstability will occur is 0.95.

The results, Equations (14), (21), and (22) allow failure
mode and code compliance evaluation. While the results for the
UBClS, Equation (14), and from ATC 3—0616, Equation (21),
prescribe lower bounds on the lateral load carrying capacity of
a structure and not the design allowable loading, a simple beam
bending analysis of a real building (Urey Hall on the U.C., San
Diego campus) suggests that structures are designed to meet the
code requirements for lateral loading with little reserve. It
is therefore realistic to take the lower bound given by the
building codes as the load above which the structure will fail.
It is seen that the load carrying requirements from the UBCIS,

F. = 0.140 w, and from ATC 3-061%, F

16 16
less than the Fy, 2 0.95 w required to initiate kinetic instability.

= 0.275 w, are significantly

One concludes from this that the example structure will suffer
a structural fracture, yield and material overstress type failure

before any kinetic instability could occur.



There is some feeling among structural analysts that the
updated and more stringent requirements of ATC 3-061% may not
be sufficient and that further increases in lateral load carrying
capacity are necessary for conservative design. Should more
stringent requirements be adopted in the future, that a structure
would fail by structural member overstressing instead of by kinetic
inétability would not be so clear as it was in the above example,
and the kinetic stability of the structure ought to be verified.
This would be especially true for structures with longer fundamental
periods since the trend of the kinetic stability result indicates
increased hazard for increased fundamental periods, and the
tentative result of the more sophisticated model discussed in the
next section suggests that the consideration of vertical seismic
acceleration causes the critical zone for kinetic instability to

occur at lower lateral acceleration amplitudes.
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Vi TWO-DEGREE-OF-FREEDOM MODEL ALLOWING PLANAR MOTION OF
FLOOR SLAB

While the simple one-degree-of ~freedom model of the last
section is considered adequate to demonstrate certain trends in
the behavior of masonry structures, and to show that the numerical
techniques developed to handle the Coulomb friction condition are
capable of producing practical results, it ignored for the sake
of simplicity some features of earthquake ground motion and more
general structural response. The principal new features to be
be considered in this section are the description of the planar
motion of the slab and the accommodation of the influence of the
vertical component of ground acceleration. Since accelerogram
records show that the orthogonal horizontal components of ground
acceleration have comparable peak magnitudes (References 14 and 15),
then admission of planar motion of the slab is an important
generalization of the model. Since the horizontal frictional
forces are assumed in the model to be directly proportional to the
vertical acceleration of the slab while sliding, then the effect
of the vertical component of acceleration on the horizontal slab
motion is significant. These features are incorporated in this
section into a more general shear-wall floor sliab model than is
considered in chapters IV and V.

Consider a rigid floor slab resting on directly opposing,
rigid, parallel shear-walls built into a rigid base similar to
the configuration of Fig., 23 studied in the last sections. Again,
the floor slab is constrained to move with the shear-walls by
Coulomb friction with a constant coefficient acting between
adjacent floor slab and shear-wall surfaces. Displacements of the
floor slab parallel and perpendicular to the shear walls are allowed,

Figs. 36a and 36b. Rotations of the base or slab are not considered,

While vertical components of velocities and displacements of the
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slab relative to the shear walls are assumed to be zero, the

effect of a prescribed vertical acceleration of the shear-walls is
considered in calculating the Coulomb frictional force acting
between floor slab and shear-wall., These assumptions are'considered
adequite for the heavy f£loor slabs used in practice and for
reasonable magnitudes of vertical acceleration, and they greatly
simplify the analysis. A

Define- the following wvariables:

dimensionless horizontal displacement of slab

xg (1)
perpendicular to the plane of the walls from its

T = 0 location

xb(T) dimensionless horizontal displacement of the base
perpendicular to the plane of the walls from its

T = 0 location

]

vs(T) dimensionless horizontal displacement of slab
parallel to the plane of the walls from its 71 =0

location

yb(T) dimensionless horizontal displacement of the base
parallel to the plane of the walls from its T = 0

location

11

a, (1) prescribed dimensionless horizontal acceleration

of base perpendicular to the plane of the walls

ay(T) prescribed dimensionless horizontal acceleration

of base parallel to the plane of the walls

a,(1) = prescribed dimensionless vertical acceleration of

the assemblage in the up direction

Note that x (1), yo(1), %,(1), and yu (1) are measured relative to
their 1 = 0 values from a nonrotating inertial frame fixed in space.
The describing equations of motion for the sticking and slipping

regimes, conditions of regime change, and initial conditions follow:

% (D = %5, (1) = (1) = 1 (D =y () =y (D =y (D) =y,
at 1 = 0



If the floor slab is sticking to the walls,

x5 (1) = a,(1)
x (1) = a (1)
74(D)
p(0) = 2 (D

ay(T)

The floor slab will begin sliding if
(Ca ()2 + (@ (NHY2 > -y a (0
X y ;

If the floor slab is sliding on the walls,

xg(1) = = W ay(n) <%S<r> — 2 (D) (g (1) = xp ()2 +
G (0 - g nH/2

ib(T) = a_(1)

ae . ] . . 2

vy (1) = - u_av(r) (YS(T) = v (N (x (1) = %, (1)) +
(7 (1) - 3 (A2

§b(1) = aV(T)

The floor slab will stop sliding if three conditions hold, viz.

“ a0 > (e + DM, £ (D) = %(0), and
v (1) = y (1)

The numerical results for the planar model were generated
with code writtem in logical divisions similar to those used in
the code for the one-degree—of- freedom model. For the sake of
simplicity and economy, the code for the planar model interpolates
linearly to approximate quantities between integration points.
The planar model formulation has been demonstrated to be a
consistent generalization of the one-degree-of- freedom case
by calculating results with the planar model code for the special case
av(T) = - 1, yS(T) = yb(T) = 0 which is equivalent to the one-
degree-of-freedom case. The results so calculated are in agreement

with those calculated using the one-degree-of ~-freedom formulation.
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The prescribed horizontal acceleration functions were

again taken to be of the following form:

2 (t*)2
a_(1) = g fx (exp ( -a t* 1 ) —exp ( - R t* ¢ ) ) sin w
% ds %
max
2 g A (t*)2
a (1) = g% (exp ( - a t* 1) -exp (-8 t* T ) ) sin w
y ds y
max
- Spax = max (-at* 1) -~exp (-RBtF1))
>0

Acceleration functions of this form simulate the earthquake
response of the upper floors of a lightly damped elastic structure.
if |xs(1) - Xb(T)I > 1 or ]yS(T) - yb(T)| > 6, the assemblage
becomes unstable since the slab has moved off its supporting

walls and is considered to have failed.
0 = 2 ( wall length ) / ( wall width )

The value of @ i= 20 was used for all of the numerical experiments,
The failure conditien IyS(T) - yb(T)I > © did not occur for any of
the cases studied. The stability calcutation was performed for

a practical range of prescribed W and wy:

f, = wx/ 2w t*

< 0.5, 0,625, 0.75, 0.875, 1.0, 1.125, 1.25,

1.5, 2.0 Hz.
0.2, 0.5, 1.0, 2.0, 5.0, 10.0 Hz.

il

f =w/20th:

This is a range of frequencies somewhat wider than that used in

T

T

the one-degree-of-freedom calculation. The values of o and B giving

the moderately rising envelope were used. The values of Ax were
taken to be

A, i= 0.5, 0.55, 0.6, 0.65, 0.7, 0.75, 0.8, 0.85, 0.9,
0.95, 1.0, 1.05, 1.1, 1.15
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AY was chosen so that Ay = 0.9 Ax since the approximate ratio of
maximum horizontal acceleration components taken from the Pacoima
Dam accelerogram was 0.9, The dimensionless sum of the vertical
component of the Pacoime Dam accelerogram and gravity was used

in all cases as the dimensionless prescribed vertical acceleration
of the assemblage in computing the effective frictional force acting
on the floor slab. The gstability calculation was repeated six
times. In computing each resulting surface, a different constant
w, was selected while W and A, were allowed to range through

their possible values. This progression of surfaces illustrates
the trends in the failure surfaces with changes in the frequency of
the acceleration component in the direction parallel to the walls,
Figures 37-42 ghow the yc—Ax—fx surfaces resulting from the
calculation. Note that while 'the plotting routines used to produce
these figures uses linear interpolation in drawing the net, it

is the points represgenting the computed results that are significant;
the interconnecting lines serve to delineate the surface, The
result of the one-degree~cf-freedom model showed that as the
frequency of excitation increased the amplitude of excitation

must also be increased to cause the assemblage to fail. This

trend generally extends to the planar model as well., As the
constant underlying frequency, wy’ increases, the amplitude of
acceleration necessary to cause failure increases.

One sees that the critical zones from the result of the
two-degree—of -freedom model occur at lower lateral accelerations
than do the critical zone results from the one-degree-of-freedom
model. The result of a true planar slab motion model, including
two linear degrees-of~-freedom and a rotational degree-of-freedom,
could show further reduction in critical lateral acceleration,
therefore increased hazard from kinetic instability. In which
case, the verification of a structure's kinetic stability would
be warrented, expecially if building codes are revised to require
increased lateral load carrying capacity, since the inertial
loads on the slab could be large enough to cause slab sliding

and yet be less than a structure's design allowable lateral load.
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Figure 1 A monument, rotated on its base, after the Managua,
Nicaragua earthquake, December 23, 1972.°

rlé’ \ _H -
i L ":-‘-3.’#

B
i

S

Figure 2 A toppled monument after the Managua, Nicaragua
earthquake, December 23, 1972.°
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Figure 5

Figure 6

The first floor of the Psychiatric Day Care Center
collapsed, the second floor is shown intact. Olive

View Hospital after the San Fernando earthquake,
February 9, 1971.°

A shear wall in a multi-story building shows dis-
placements at construction joints after the San
Fernando earthquake, February 9, To71.”
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Figure 7 An intact stairwell has toppled at the Olive View
Hospital after the San Fernando earthquake,
February 9, 1971.°

Figure 8 The penthouse of this hotel rotated during the
Managua, Nicaragua earthquake, December 23, 1972.°
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( \\ ¢

Figure 9 The same penthouse as in Figure 8 viewed from a
different angle.”

Figure 10 The roof channels of the homes in this tract slipped
off their supporting walls in similar ways during the
Managua, Nicaragua earthquake, December 23, 19728



Figure 11

The roof channel of this home slipped some inches to
the left during the Managua, Nicaragua earthquake,
December 23, 1972. The dark area on the underside
of the roof channel formerly bore on the supporting
wall, the light area is the ceiling paint of the
room through the door to the right.’
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Figure 12
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Bed Joint Triplet
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Head Joint Triplet

Orientation of the block hollows for the hed

joint and the head joint.
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Figure 16 Variation of standard deviation vs. sample mean

for several different tests.
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Figure 17

Minimization of £
m

as function of V_ in a typical

case (BJ-F-G-400) with o = 2, and two values of R.
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Figure 18 Comparison of model with experiment for the

fully-grouted bed joints,
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Figure 19 Comparison of model with experiment for the

ungrouted bed joint (mortar only).
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Figure 20 Comparison of model with experiment for the
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Figure 21 Predicted linear relation between frictionél

stress T, = Vw/A vs. confining pressure CP for

three cases of masonry joints.
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Figure 22

Bidirectional shearing force versus center
block displacement for 3 cycling rates where the
maximum center block velocities vary over

a 40 to 1 range.
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Figure 23 Configuration of the idealized wall-floor
slab assemblage.
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Figure 24 Comparison of the accelerograms recorded on the
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Wilshire Blvd., February 9, 1971.
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Figure 25

1,0
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Figure 26

20 0 4.8 &0 80 10:0

FREQUENCY (HZ)

The spectral decomposition of the Pacoima Dam, February
9, 1971, S14W component of acceleration. The modulus
of the Fourier coefficients normalized so that the
largest component is 1 vs. frequency.
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FREQUENCY (HZ)

The spectral decomposition of the absclute acceleration
of a linear oscillator, damping = 2% critical, undamped
natural frequency = 1 Hz., excited by the Pacoima Dam,
February 9, 1971, S14W acceleration component input.
The modulus of the Fourier coefficients normalized so
that the largest component is 1 vs. frequency.



55

‘2wl °*sa pasoduTiadns
adoTaaue BuTSTa AT93BALPOW BYI YITM UOTIRIDTSO0® JOo JjusuodwWwod MyTS T/61
‘6 Lxeniqog wWeg BWTOOBJ 3yl 03 ¥anp *zZH T = Aouenbaay Teanjeu padwepun ¢TBOTITIAD

97 = Surduep ‘107BTTIOSO IBPSUIT B JO UOTILISTIIOE DINTOSqER JO 2NTBA 9INTOSqE BYL

01 (SONDJ3SI 3WIL
oSt oot 0

e e s 0006 0%8  GpR  OSL oML 0% 0008 o5 008 D%h  BOh 0%t 00 0 6%z "

LT @In31g

0’st ) [X] o'y ot
+01x (33 NOILEd3I330Y 40 3NWA 3107058y

o%ar

(X

W



Figure 28

Figure 29

400 NOAMALIZED ENVELOPE SMAPE

W
3
. n 3 n ; L 1 A 1 Jm
3.06
T
2.40

Surface Yc(A,f) for the scaling parameter Ty,
Yo = Tmax/Tc’ computed with the base acceleration
contained in a fast rising envelope.

2.93
NORMALIZED ENVELOPE SHAPE

Surface Yc(A,f) for the scaling parameter T
Ye = Tmax/Tes computed with the base acceleration
contained in a moderately rising envelope.

max?
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Figure 30 Surface Y.(A,f) for the scaling parameter: Ty,.,
Yo = Tmax/Tc’ computed with the base acceleration
contained in a slowly rising envelope.
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Figure 31 Surface Yo.(A,f) for the scaling parameter Trise?
Yo = Trise/Tc’ computed with the base acceleration
contained in a fast rising eanvelope.
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MORMALIZED ENVELOPS SHAPE

Figure 32 Surface Y (A,f) for the scaling parameter Tpige»
Yo = Trige/Tes computed with the base acceleration
contained in a moderately rising envelope.
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Figure 33 Surface Yo(A,f) for the scaling paramete¥ Tyjges

Yo = Trise/Tc’ computed with the base acceleration
contained in a slowly rising envelope.
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v
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Figure 36a Floor slab-shear wall configuration for the

planar motion model,
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Figure 36b Top views of floor slab-shear wall configuration
for the two-degree-of-freedom model at T = 0

(dotted lines) and at some later time Tys Tq 0

(solid lines).
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Table 2 summary of best-fit values for regression parameters
Vews €, and b, fitted to the sample mean values of vy
for each test, for three cases and five confining
pressures.

BJI-F-G
Bounds
on mini-
mization
errors
CP v, v, b c v for V fn | V-V6)
100 34.0 15.0 -0.01 10,11 14,6 +0,19 0.07 -0.20
200 45,5 23.5 -0.00 7.92 22.6 x£0.29 0,03 -0.09
300 54.0 33.1 -0.02 4.36 28.5 £0.42 0.10 -0.40
400 | 66,0 | 39.2 | *0.03 | *3,91 {*38,2 £0.50 0.22 0.76
-
500 | 712 | 45.5 | *0.01 | *1.75 | *37.5 £0.57 0.22 -0.22
BJ-F-NG
100 3.0 4.5 ' 0.03 10,84 4.4 +0.06 0.03 0.11
200 | 15.0 8.9 0.03 | 10.79 8.9 £0.12 0.06 0.24
300 19.6 11.5 0.04 10.26 11.5 +0.10 0.20 0.33
400 26.5 15.7 0.03 8.35 15.5 +0,20 0.11 0.35
500 27.0 15.8 0.03 2.69 10.7 +0,60 0.10 0.42
HI-F-NG
100 9.0 3.5 0.04 11.04 3.5 +0,05 0.10 0.24
200 16.5 8.6 0.02 12.44 8.5 0,11 0.05 0.19
300 20.0 11,9 0.04 12.04 11.8 +0.15 0.15 0.32
400 24,0 15,8 0.05 10,72 15,6 +£0.20 0.23 0,40

* Best fit obtained with p = 1/3.
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Table 3 Statistical analysis of 7 runs of test BJ-F-NG-200.
Table 3a Calculation of regression parameters V,, ¢, and b
for each run, and comparison of the figures of merit
fm For o =2, B =0, and for a = 2, B = 1/3.
8 (inches) #30 #7 #43 #34 #36 #21 #11
0 12,2 20.3 13.1 17.1 15,5 15,2 16.7
0,05 10.3 16.8 11.1 12.2 12.4 12,0 12.6
0.10 9.7 14.6 10.6 10.8 11.4 10.9 11.0
0.15 9.3 14.0 10.3 10,1 10.8 16.4 10.2
0.20 9.1 13.4 9.9 9.8 10,2 9.9 9.3
0.25 9.0 13.0 9.9 9.5 9.7 9.7 8.8
0.30 8.8 12.8 9.9 9.4 2.3 9.4 8.5
0.35 8.6 12.4 9.9 9.3 9.0 9.3 8.3
0,40 8.3 12.1 9.8 9.2 8.7 9.2 8.1
=2, 8=0
b 0.06 0.03 0.02 0.02 0.04 0.03 0.02
c 7.80 9.58 14.67 15.48 8.23 11,48 10,16
-6 '
v.{t% 8.25 | 12,08 | 9.80 | 9.21 | 870 | 9.20 | s.08
Irn 0.06 0,07 0.01 0,05 0.08 0.04 0.05
=2, B =1/3
b 0,12 0.08 0.06 0.05 0.09 0.07 0.07
c 7.57 8.50 16,37 16.92 8.00 12.06 10,49
+10-8
vw{_o.{) 825 | 1208 | 980 | 921 | 870 | 920 | s.08
fm 0.15 _ 0.32 0.05 0.26 0.26 0.17 0.27




Table 3b

i)

ii)

1ii)

iv)

Comparison of values obtained for regression parameters
V., c and b as determined by:

means of values as calculated from each of 7 runs in

Table 3a

V o= 9,33
[+

G? = 1.82

o= 1,35 ,

means of values as calculated from each of 6 runs
(omitting run #7) in Table 3a

VvV = 8,87
[<+]

sample mean values for 7 runs:

G® = 0.43

g =

0065 ?

see below.

sample mean values for 6 runs (omitting run #7-~same

values as in Table No. 2):

see below,

(iii) (iv)
61 \Ii ?Ji
0 15.3 15.0
0.05 12,3 11,8
0.10 11,1 10.2
0.15 10.4 10.2
0.20 10.2 9.7
0.25 9.8 9.4
0.30 9.7 %2
0.35 9.4 9,0
0.40 9.3 8.9
v 9.13 & 0.12 g.g7 {1107°
-0.09
9.73 10.79
b 0.039 .033
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Table 3c Confidence intervals for mean Vw, variance 82, and
standard deviation ¢ for Vi as calculated for each
run in a sample size of 6 runs (omitting run #7).
Hxéll ll»tll
distr. distr.
Confidence ~ 2 - e for for
o d {¢ Vv
interval and (0] @ 5 DOF 5DOF
1-99 0.141 < 0.425 < 3,839 15,1 3,365
{0,375 < 0,652 < 1.959) 7.977 < 8,8733 < 9,769 (.554)
5-95 0.192 < 0.425 < 1.849 11.1 2,015
(0.438 < 0.652 < 1.360) 8.337 < 8.8733 < 9.410 (1.15)
10-90 0.230 < 0.425 < 1,321 9.24 1.476
(0.480 < 0.652 < 1.149) 8.480 < 8.8733 < 9.266 (1.61)

With sample size n,

. 1182 IRTE-S: b .
Confidence interval for variance fa-1)o , n-1)o ], & & per‘cean,i‘:lle
a b point of "y
distribution
. . - _Ii ere i T percentile
Confidence interval for mean [Vw T ? Vm+ n :I * point of "t"
distribution

Note that T\;m = 9,13 predicted from sample mean lies
mean
inside 98% confidence interval,



Table 4 The correspondence between the chosen nondimensional
characteristic times and real time for an "8 inch”
wall, t* = 0.099.

Nondimensional Time Real Time (seconds)
fast rising envelope

Trise = 3.38 0.33

Tmax = 27.78 2.75

Tgur = 732.11 72.48

moderately rising envelope

T . = 8.92 0.88
rise

T = 37.89 3.75
max

T4 = 113.80 11.27
ur

slow rising envelope

T . = 12,81 1.27
rise

T = 63,13 6.25
max

Tqur = 2?6.23 26.36



APPENDIX

The following is a more detailed description and flow
chart of the constituent parts of a computer program which integrates

equations of motion involving Coulomb friction between rigid bodies.
CALCULATION OF THE BASE ACCELERATION, a(t)
To prescribe the aéceleration,
2 g A (t5)?

a(t) = {exp ( - t* 1 ) —exp ( - B t* ¢ ) ) sin w 1
Smax

Spax must be computed.

Spax - Mmax [(exp(-atft)-exp (-8 t* 1)) sin w T
>0

A subroutine computes the successive peaks of the oscillations of
I( exp ( —a t*¥ 1) - exp ( =B t* 1) ) sin w TI

This is done by applying a Newton iteration to find <t the

peak’
time of successive local extrema, such that

%? [F exp { - @ t* ¢ Y —exp (-8 ¥ 1 ) ) sin w Tpeak] = (

then evaluating
[( exp ( ~a t¥ 1) - exp { - R t* 1)) sin w T]

at Because ( exp ( —a t 1) —exp ( -8t 1))

T .
peak
monotonically increases to a maximum and monotonically decreases

thereafter, the successive peaks of
l( exp ( - a t* 1 Y —exp ( - B t* r ) ) sin w TI

will also increase monctonically to a maximum then monotonically
decrease. The code computes successive peaks until a local peak

decreases, then the previous peak is taken as S . Taking
max
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[Cr/caeeryy+Can-10 7 Caeey)]

as the initial guess for the NtR 1ocal extremum was satisfactory.
Examining successive Newton iterates shows that convergence is very
fast; 3 iterations generally reduces the relative error to less than

10'5.
MAIN PROGRAM

With a(t) prescribed, the code sets the integration step
size, H, to 1 / 16 the oscillatory period and tests the initial
conditions on the displacements and velocities of the floor slab
and walls to determine if the floor slab is sliding or not. A flag
is conditicned accordingly. An integration step is taken with step
size equal H / 2 to develop a data base for polynomial approximation
of wall and slab velocities., The motion regime, slipping or sticking,
may not change during this integration step., For v > H/ 2, no
restrictions on where the motion regime may change are imposed
other than that the regime may change only once per step of size H.
Marching proceeds with tests for change of regime at each step

until |yb - vgl ® 1, indicating collapse or until 1 > T, a

ut ?
time before which any assembly collapse must take place.

METHOD OF INTEGRATION

The integration scheme is a 4th order Runge-Kutta method,

an implementation of the following algorithm!:
y(1) =y (0
¥, (1)
y (0
y (0

to solve iﬁt) = £ (1,y) with step size H, knowing

X(Tn), T, = nH

HEf (1 ,y)
n “m



K, =B Ef (1, +H/2,y +§/2)

Ky =HE (v +H/2,y +K/2)

B BE (B, 34K
In41 = Yo T (B *+ 2K, + 2K3 + K)/6

The integration subroutine returns with,yS(T + H), ﬁS(T + H)

yb(T + H), ;b(r + H), and T <« T + H.
TEST FOR SLIPPING

When the magnitude of the base acceleration |a(T)|
exceeds a, the floor slab will slip on the walls., Tt is necessary
to check the magnitude of a(r) at each integration step. Assume
that the floor slab is not slipping on the walls. Should |a(T1)|

exceed a_ in the interval, the time of slipping, Toli such that

ip
la(Tslip)| T Ay
must be located. A Newton iteration is used to locate Tslip such that
T - H < Tslip < T and Ia(Tslip)l -a, = 0

using T - H/2 as the initial guess to Telip® Iteration is continued
until the Newton correction is less than 10—6. The convergence is
typically very fast with the convergence criterion being met in

about 3 iterations. Convergence to T - H 41 .., 4 T or not meeting

slip
the convergence criterion in 10 iterations is regarded as program
failure, Action taken in this event is discussed later. Once Tslip
is located, y(1 - H) is recalled from storage, and the equations of

motion for slipping are integrated from 1 to 1. y(1) is

slip
stored, and marching continues in the slipping regime.

TEST FOR STICKING

Assume that the floor slab is slipping on the walls, As a(7)
decreases to bhelow 2. Coulomb friction slows the sliding floor
slab until the velocity of the base and the floor slab are equal,
that is, when the base and floor slab stick together somewhere in

the interval. Because the equations are initially integrated to the
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end of the interval with an acceleration governed by Coulomb
friction and the remainder of the interval with the smaller acceler-
ation a(t), the velocity change of the floor slab will be greater
than it should be. This will cause the difference of base and

floor slab velocities to change sign by the end of the interval,

If a(t) < ag and the difference in base and floor slab velocities
changes sign in an interval, sticking takes place in the interval,.

To locate

T-H< Tstick = T
the base and floor slab velocities are approximated by quadratic

polynomials generated by divided differences?. The difference of

base and slab velocities is manipulated into the form
at? + bt + ¢ = 0,

The quadratic formula is used to calculate one of the roots,
depending on the sign of b to minimize cancellation errors. The
fact that the product of the roots equals ¢ gives the second root.

If the first root lies in [% - H, T], it is taken as T___ ..
stick

Otherwise, the second root is taken as 7 if it lies in|t - H, T].

stick
If neither root lies in the interxrval, the program is considered to

have failed, Finding a root in the interval is the most sensitive
of program functions. Many umore prbgram repetitions with reduced
step size were necessitated by failure here than in failure to

find a time of slipping, <t Nevertheless, once a root, T

slip- stick’
in the interval is found, y(t - H) is recalled from storage, and

the equations of motion for sliding are integrated from v - H to

Totick -X(Tstick) is stored, and the equations of motion for

sticking are integrated from Tt to 1. y(1) is stored and marching

stick
continues as usual in the sticking regime,
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PROGRAM FAILURE

In the event that =t cannot be found, H / 4

slip °F Tstick
is taken as the step size and the entire calculation is repeated
from the beginning, 1If failure occurs 3 times, then the code

abandons this case of A and f.
FLOW CHART

Flow charts of the driver program and subroutine functions

of the computer code follow.
REFERENCES

Dahlquist, G., A. Bidrck, Numerical Methods, Prentice-Hall,
Englewood Cliffs, N.J., 1974.

Shampine, L.¥., M,K. Gordon, Computer Solution of Ordinary Differential

Equations: The Initial Value Problem, W.H. Freeman and Co., San

Francisco, 1975,



SET UP INITIAL CONDITIONS
A, L, o B, (0), v (0), ,(0), ¥,(0)

Y

o<y

FIND MAX |(e™®"T_~PH¥7
*sin wr

\

STEP SIZE = H: = 1/(fxt %16)

\

INITIALLY IN
SLIPPING REGIME

Y

INITIALLY IN
STICKING REGIME

FLLAG: =1 TO
INDICATE SLIPPING

[

FLAG: =0 TO
INDICATE STICKING

f

ADVANCE WITH
STEP SIZE = H/2

{

STORE RESULT
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ADVANCE WITH STEP SIZE: = H

i

STORE RESULT
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FIND (7- H) <

2(1%)®
2047 ¥4

alrg e "7 q

< ¢ SUCH THAT

Y

y (T-H), ¥_(T-H)
yb(T‘H), 'y'b(T-H) are

RECALLED FROM
STORED RESULTS

&=T-T511p

Y

ADVANCE WITH
STEPSIZE T . -T
slip

Y

STORE RESULT

%

FLAG: =1 TO

INDICATE SLIPPING

Y

STEP SIZE &

ADVANCE WITH

]

STORE RESULT
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#,2
am < 261 :1 Mg
AND Yo Yy CHANGE

SIGN IN INTERVAL
?

FORM POLYNOMIAL APPROXIMATIONS OF
VELOCITIES, ¥ , ¥, FROM STORED DATA
AND FIND THE 2ERD IN [T - H, T] OF THE
DIFFERENCE OF THE POLYNOMIAL
APPROXIMATIONS OF VELOCITY, T

& =T T

Y

FLAG: = 0 TO INDICATE
STICKING

Y

ADVANCE WITH STEP SIZE §
ADVANCE WITH

STEP SIZE Tee = T

\

STORE RESULTS

\

STORE RESULTS




—at*r  BtEr
FIND MAX| (e - e ysin wT

T<0

Y

GIVEN «, B, t*, f

TAKE (1/(4 £ t%) + (N - 1)/(2 £ t%
AS INITIAL GUESS

|

PERFORM 10 NEWTON
ITERATIONS FOR TMAX

!

CALCULATE alr

MAX)

Is NO

2{ryax) ~ *myax’onn

Y

RETURN WITH A(T

- * - ®
AS MAX (e @5 T . 7Pt

T>0

)

MAX'OLD

}sin w'rl
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FINDT-H <TSLIP <r

sal ) - 2(e%)®
Tspip’ - 4 M8

]

GIVEN r, H

!

TAKE 7 -(H/2) AS THE INITIAL GUESS

86



CALCULATE NEWTON STEP —

!

-
TSLIP TSLIP + NEWTON STEP

NOC

IS

|NEWTON STEP| < 10
?

6

RETURN WITH TSLIP




FORM POLYNOMIAL APPROXIMATIONS OF VELOCITIES
i(s, Yy, FROM STORED DATA AND FIND THE ZERO IN

{r - H, T] OF THE DIFFERENCE OF THE POLYNOMIAL
APPROXIMATIONS OF VELOCITIES, Tst

GIVEN VELOCITY AND TIME
DATA AT 3 TIMES

|

CONSTRUCT NEWTON DIVIDED DIFFERENCE
TABLE FOR §r5 AND yb

1

CALCULATE THE DIFFERENCE OF THE
POLYNOMIALS IN THE FORM at® + br+ ¢

YES
T = -b +yb® - dac
Za
NO
r o= b - J/B° - dac
17 2a
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NG

NO

(RETURN WITHT =17 )
st 1

RETURNWITHT : =T
st 2

89



WRITE WHY PROGRAM FAILED

INCREMENT NUMBER OF ATTEMPTS

IS
NUMBER OF
ATTEMPTS

TOO

LARGE
?

GIVE UP
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