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PREFACE

This is the fifth and final report of the project under the
general title "Reliability Analysis of Soil Slopes During Earthquakes".
This research study 18 sponscred by the Earthquake Hazard Mitigation
Program of the National Science Foundation under Grant No. ENV
77-16185. Dr. Michael Gaus is the program manager of this project of
which Professor Dimitri A-Grivas is the principal investigator.

Four progress reports on the present project have been previ-
ously submitted to the National Science Foundation and are referred to
in this text as Report Nos. CE-78-5, CE-~78-6, CE-78-7 and CE-79-1.
Their titles and authorships are as follows:

1. A-Grivas b., J.D. Howland and P, Tolcser, "A Probabili-—
stic Model for Seismic Slope Stability Analysis,” Report No., CE-78-5,
Dept. of Civil Engineering, R.P.I., p. 82, June 1979,

2. BA-Grivas, D,, "Program RASSUEL — Reliability Analysis of
So0il Slopes Under Earthquake Loading,"” Report No, CE-78-6., Dept. of
Civil Engineering, R.,P.I., p. 41, December 1978,

3., A—-Grivas, D., R, Dyvik and J.D, Howland, "&An Engineering
Analysis of the Seismic History of New York sState”, Report No, CE~78-7,
Dept. of Civil Engineering, R.P.I., p. 77, December 1978.

4, A-Grivas, D, and G.F. Nadeau, "Probabilistic Seismic Sta-
bility Analysis - A Case sStudy”, Report No. CE=79-1, Dept. of Civill
Engineering, R.P.I., p. 34, July 1979.

The $uthors wish to thank the National Science Foundation for
sponsoring this study. Finally, special thanks are extended to Betty

Alix for typing this report.
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ABSTRACT

A new model hags been proposed in this study for the deter-—
mination of the reliability of earth slopes during earthguakes. The
developed method provides a probabilistic, pseudo-static, seismic sta-—
bility analysis of s0il slopes. The measure of safety used is the prob-
ability of failure (rather than the customary safety factor), the
numerical values of which are determined through a Monte Carlo simulation
of failure, Significant uncertainties have been identified and proba-—
bilistic tools have been introduced for their description and ameliora-—
tion. Moreover, a comprehensive computer program has been written and
applied in a number of case studies.

In the present f£ifth and final report, a review of the objec-
tives and achievements of this project is first presented. The models
employed to account for the variability of soil strength are then de-—
scribed and illustrated in an example. A parametric study 1s conducted
on the relevant strength and seismic parameters and the results are
pregented in a number of graphs and tables. Finally, an evaluation of
the developed model is included together with a discussion of its ap-—

plicability and limitations.






1. INTRODUCTION

Because of possible excessive life and economic losses in—
curred by failure, soil slopes (naturally formed or man-built) are
among the most important civil engineering structures in earthquake
prone areas. Thig is clearly demonstrated by the considerable amount
of literature on the subject, particularly on earthdam slopes (e.g.,
Newmark, 1965; Seed et al., 1966; Whitman, 1970; Seed et al,, 1971,
etc.).

Although much experience has already accumulated about the
design and performance of soil slopes, geotechnical engineers still
face considerable uncertainties when they analyze their stability.
These uncertainties reflect the variability of the material parameters,
the slope's loading conditions, the location and shape of the failure
surface, the particular method used in the analysis, etc¢. The posgsibil-
ity of an earthquake further complicates the task. Thus, efforts
directed towards a more reliable approach for the assessment of the
safety of slopes must, of necessity, take into account these uncertain—
ties.

In this study, the safety of slopes is measured in terms of
the probability of failurxe (pf) rather than the customary factoryof
safety (Fs). As is the case with other structures, it is assumed that
failure occurs when the calculated available strength R of a slope is

exceeded by the applied load S; that is,



"Failure” = [R < 5] (1-1)

The probability of failure is then defined as

p, =P [R <« 8] (1-2)
i.e., P [R < 5} signifies the probability that the applied loading ex-—
ceeds the available strength.

The resistance R of the soll mass comprising a slope is as-
sumed to be constant during the earthquake lcading. This is a reason—
able assumption for a wide variety of soils, particularly cohesive ones
(Arangoc and Seed, 1974). The approach taken is not directly applicable
to the analysis of the stability of slopes for which R decreases during
cyclic loading (e.g. the case of liquefaction of loose saturated sands

or sensitive clays}),



2, REVIEW OF PREVIOUSLY REPORTED RESEARCH EFFORT

The main objectives of the present research project are as
follows:

(a) To describe the additional forces that are imposed upon
an earth slope during an earthquake. BAs these forces are
generally random in nature, derivation of the probability
density function of the ground acceleration is required.
Thus, each acceleration level is exceeded with a certain
probability which depends on the earthguake magnitude,
the distance between site of slope and earthquake source
and a number of empirical regional parameters,

(b) To develop a model for slope failure which accounts for
the randomness agssociated with the location and shape of
the faillure surface and the wvariability of soil strength
parameters.

(c) To assess the probability of failure (cr, its complement,
the reliability) of an earth slope with given boundary
and material conditions.

(d) To determine the influence of significant seismic and ma-—
terial parameters on the numerical value of the probabil-
1ty of failure of slopes.

(e} To apply the developed analysis to case studies reflect-
ing the seismic characteristics of the State of New York.

(f) To examine the applicability and limitationsg.of the



developed method of analysis and to provide guidance for

future similar approaches.

2.2 Summary of Completed Tasks

2.2.1 Task 1: Determination of the Probability Density Func—

A general expression was developed for the probability densi-—
ty function of the maximum ground acceleration amax at a given site (it
appears in Report No. CE-78-5). This was achieved through an applica-
tion of the method of transformation of variables and use of (a) an ap—
propriate attenuation relationship (i.e., an expression relating amax
to the magnitude of the earthquake, the distance between earthquake
source and site of slope and a number of empirical regional parame—
ters), and (b} the probability density functicn of the earthquake magni-
tude,

Two magnitude-frequency relations (log—linear and log-—
guadratic) and three types of possible earthquake sources (point,
line and area sources) were investigated.

As part of Task 1, an engineering analysis was performed on
the seismic history cof New York State. Available earthquake data were
compiled, evaluated and analyzed. The resulting data list contained
1289 seismic events that took place in the period between 1568 and
1975,

The available data indicated that the seismic activity of New
York has been concentrated mainly in three areas: (a) Northern New York
(Adirondack and St. Lawrence regiong), (b) Western New York

(Buffalo—Attica region), and (c¢) Southern New York and New York



Metropolitan area. Two well identified fault systems exist in the
State: the Clerendon-Linden Fault and the Ramapo Fault. These two
fault systems are partially associated with the seismic activities in
the Western and Scuthern parts of the State, respectively.

The functional relationships between frequency (i) and magni-—
tude (m) of earthquakes was investigated by analysing all data avail-
able and for a range of magnitude m (in Richter scale) between 2.0 and
7.0 (2.0 € m £ 7.0). This range of magnitude involved a total of 1242
seismic events. On the basis of the results of this task, it was con—
cluded tha£ a log—quadratic frequency—-magnitude relationship best rep-—
resented the available data. This is shown in Fig. 2-1 (from Report
No. CE-78-7).

The seismic hazard that corresponds to the log—quadratic
frequency—magnitude relationship was determined for a number of time
periods and under the assumption that earthquakes occur in accordance
with the Poisson model. The case where earthquakes follow a more gen—
eral Markov process was also investigated. The findings from the two
models were compared and the results of this comparison were presented
and discussed.

It was found that for smaller return periods, the Markov mod-—
el gave smaller values for the probability of occurrence of earth-
guakes of various magnitudes than did the Poisson process. This result

i *
is considered to be consistent with the elastic rebound theory.

According to the elastic rebound theory, for an earthguake to occur,
elastic strain energy must first be stored in the rock masses along a
fault. When an earthguake occurs, the stored energy is released and
consequently, the probability of another earthquake taking place before
sufficient energy is stored again decreases.
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It should be noted that the term "seismic risk™ or "seismic
hazard", as employed in this study, referred to the probability with
which certain values of the earthquake magnitude were exceeded during a
given time period. In this sense, they represented an analysis of the
data and did not provide seismic loads {usually expressed in terms of
peak ground motion parameter) for New York State,

The surfaces along which earth slopes fail have been taken
have of an exponential shape (logarithmic spiral), following studies by
Rendulic (13835), Frohlich (1953), A-Grivas (1976) and Baker et al.

(1977). The analytical expression for a failure surface was given as

follows:

r=1r exp (-6t)
in which,
r, = the initial radius of the log spiral (value of r
for 6=0),
8 = the angle between r and ro. and

t = tand, where ¢ = 80il's angle of internal friction.

This is shown schematically in Fig. 2—-2 (from Report No. CE-78-5).
The location in the interior of the slope mass of a potential

failure surface, as given by the above expression, was found to depend

on the following three factors:
(a) the position along the slope boundary of the initial ra-
dius (Fig. 2—-2, Point A4),

(b) the locaticn of the center of the log spiral (Point 0),
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and
{c) the nuﬁerical value of the ¢—parameter of soil strength.

The expected {mean) location of the failure surface was de-—
termined using the Monte Carlo simulation technique, An excellent ap-
proximation for the mean failure surface was obtained by employing the
point estimates method for probability moments, proposed for the first
time by Rosenblueth (1975). In Fig. 2-3 is shown an example of the
comparison of the mean failure surface obtained by the two methods.

The details of the manner with which the above failure sur-
faces were genexated and used in the analysis were given in Report No,
CE-78—5. It should be noted that the commonly used circular failure
surfaces represent a special case of the logarithmic spiral and can be
easily employed in the present analysis.

A probabilistic model was developed for the analysis of the
stability of earth slopes under earthquake loading. A detalled de-
scription of the model was the content of Report Neo. CE-78-5. Signifi-
cant uncertainties associated with conventional pseudo-static methods
of seismic stability analysis were recognized and probabilistic tools
were introduced for their description and amelicration. 1In particular,
the developed methoed of analyis accounted for (a) the variability of
the material strength parameters, (b) the uncertainty around the exact
location of potential failure surfaces, and (¢) the uncertainty in the
value of the maximum slope acceleration during an earthquake.

The soil material comprising the slope was assumed to be stat-
istically homogeneocus with strength parameters (¢ and t=tané) taken as

beta distributed random variables. Using the results of Task 2,
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potential failure surfaces were considered to have an exponential shape
(log-spiral) defined with the aid of three random variables (two geo-—
metric factors and the frictional component of soil strength).

The safety of the slope was measured in terms of its probabil-
ity of failure (pf) rather than the customary factor of safety. The
numerical values of pf were obtained through a Monte Carlc simulation
cf failure.

The seismic lcocad was introduced into the analysis using the
results of Task 1. The maximum horizontal acceleration (amax) exper—
ienced by the slope during an earthquake was assumed to be a random
variable the probability distribution of which was found to depend on
the earthquake magnitude, the type of earthquake source considered
(i.e., point, line, or area source), the distance between the source
and the site of the slope and a number of regional parameters. In ad-
dition, for the purposes of this study, it was assumed that the slope
was rigid and, therefore, the maximum acceleration of the slope mass
was taken to be equal te that of the ground.

As a part of Task 3, a computer program was developed to pur—
sue the reliability analysis discussed above. The program was called
"RASSUEL” {Reliability Analysis of Soil Slopes Under Earthquake Load—
ing) and the details of its various operations and subroutines were
given in Report No. CE-78-6. In Fig. 2—-4 is shown the flow chart for
program RASSUEL. As a special feature of the program, use was made of
the computer graphics facilities available at R.P.I. in order to allow
the monitoring of the failure surfaces generated during the Monte Carloe
simulation of failure. The graphics option was introduced into the

program in & manner that also permitted its use on non—graphics
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eqguipped hardware facilities.

2.2.4 Task 4: Case Study.

In a case study, an investigation was made of the reliability
of a natural soil slope located near Slingerlands, New York. The de-
tails of thisg case study formed the content of Report No. CE-79-1.

Both static and seismic lcading conditions were examined, The model
developed in the previous tasks was used to determine the probability
of failure pf of the slope for three types of earthquake sources, name-—
ly, a point, a line {(or, fault), and an area source, The dependence of
pf on siginificant seismic parameters was examined and discussed.

On the basis of the results obtained in the case study, the
following conclusions were drawn:

(a) The probability of failure was considered a viable alter-—
nati§e to the factor of safety as a measure of safety of
soil slopes.

(b) The present probabilistic model was found useful in
assessing the reliability of soil slopes under both stat-—
ic and seismic conditiens.

{(c) The values of the probability of failure attenuated to
the value obtained under static conditions, as the dis—
tance between earthqguake source and site of the slope in-
creasgd.

{d) Higher values of the standard deviation oe of the "error
term" appearing in the attenuation relationship produced
larger values for pf.

(e) The values of the probability of failure of soil slopes

were greatly affected by the type of earthquake source
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used and the values of the associated seismic parameters.
Under the most unfavorable set of circumstances, from
among those examined in the present study, the probabili-
ty of failure of the slope had a value pf = (.35 (Fig.
10, Report No. CE-78-7) which was more than twice that

found under static conditions (pf ~ 0.15).



3. DESCRIPTION OF S0OIL STRENGTH PARAMETERS

The random variation of the strength parameters ¢ (™coche—
gsion") and 4 ("angle of the internal friction") has been long recog-
nized in geotechnical engineering (e.g., Schmertmann et al., 1960;
Lumb, 1966; etc.) and a number of models have been proposed for their
description. These may be classified into two types, namely (a) those
which consider strength parameters ¢ and ¢ to be independent of one
another, and (b) those which consider ¢ and é to be correlated random
variables.

In general, during a conventional limiting equilibrium analy-—
sis of slope stability, the strength of scil is represented by the

Mohr—-Coulomb strength criterion expresged in the form

T = c + O tan(é) (3-1)
in which,
7 is the shear strength of soil,
C is the normal stress along the failure surface,
c is the "cohesion intercept™ of soil, and

$ 1s the "angle of internal friction".

For a given soil deposit, the numerical values of c and & may
be determined by a variety of tests performed eithexr in the laboratory
(e.g., direct shear, triaxial, etc.) or in situ. The variability in

the results of these tests depends on many random factors such as

15
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gsampling disturbance, testing errors and, most importantly, the in-
herent variability of soil itself. The last factor represents the fun-
damental source of uncertainty in soil mechanics. It has been found
{(Lumb, 1966) that its effect on the variability of scil strength is so

great that the uncertainties due to the other factors are overwhelmed.

2.2 Independent Strength Parameters

To account for the variabilty in the numerical values of ¢
and 4, geotechnical engineers have indentified the two strength param-—
eters as random variables and have proposed probabilistic models for
their description. In a piloneering work, Lumb (1966) discovered that
random variables ¢ and ¢ followed a normal distribution. This conclu-
sion was drawn from studies on a large amount of test data from soils
found in the area of Hong Kong; namely, a soft marine clay, a residual
silty sand, an alluvial sandy clay and a residual clayey silt., 2addi-
tional studies of frequency distributions of soil properties (e.g.,
Schultze, 1972; Singh and Lee, 1970, etc.) came tc support Lumb's con-
clusion that strength parameters are normal-like variates. 1In a later
work, Lumb (1970) found that the c-parameter of strength followed moxre
closely a beta {ox, Pearscn's type I) distribution and that only its
central portion could be approximated as a normal variate. The use of
the beta (rather than the normal) distribution for modelling scil
strength parameters was also suggested by Harr (1977). Recognizing the
versatility of the beta model, Harr recommended its use to obtain ap-
proximations for many data sets whose measures must be positive and of
limited range.

When ¢ and ¢ are treated independently, the expression for
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the beta distribution takes the following form:

B-1

. T+ o=l < 1 (3-2)
A O
in which

«, B are the parameters of the beta distribution (a, £ > 0),
T'( ) is the gamma function, &and

¥ is the normalized strength parameter receiving values

between 0 and 1 (0 € x € 1); i.e.,

o - ¢ . c - Cc .
L min min
= ! or 3= em———
o = C_. c -C_ .
max min max miin
wnere ¢ . , & . ang ¢ . & are the minimum and maximum values of c
min Rln max mnax

and ¢, respectively.

" The cumulative density function Fx(x) is defined as
F = f <1 3~3
F (xo} J fx(x) dx, 0 < x_ ({ )

in which x is the strength parameter ¢ or ¢, and fx(x) is given in Egn.
(3-2).

Egn. (3-3) provides the probability with which a strength
parameter receives values smaller than, or egual to, a particular value
X.

The mean value and second central moment (variance) of a

univariate beta distribution may be expressed in terms of the



parameters a and £ as follows (Harr, 1977):

say a and b

~, _ (o3
* = atp
and
(13
Var(x) = 5
(o+B) “{at+B+1)
In general, when x varies between two limits,
(i.e., a €« x £ b), then ¥ and var(x) are equal to
— o3
x = z <+ (}+E (b—a)
andé
2 af
Var{x) = (b-2) 5
(e+B8) " (ot+B+1)

ls

(3-4a)

(3~4b)

{3-5a)

(3-5b)

When the mean and variance of x are known (e.g., from

strength data) , then parameters & and £ cf the beta distribution can
be determined from Egns. (3-5) as follows:
~n ) i
X
a = :§~(l—x) - X (3—-6a)
v
o
E= = - (a¢+ 2
g ( ) (3-6b)
x
in which, v = EEELE%
{(b-a)
and = X-2
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3.3 Illustrative Example

In Table 3-1 are given the results of nine direct shear tests
performed on samples of a cohesive soil (Singh and Lee, 1970). Assum—
ing that strength parameters c¢ and ¢ follow a beta distribution, it is
asked to determine the values for the parameters ayand £ and the corre—
sponding expressions for the probability density functions of c and ¢.

The statistical values (mean, standard deviation and correla-
tion coefficient) of ¢ and é are given in Table 3-2.

As soil strength parameters are by definition non-negative
quantities, the minimum value for ¢ and & must always be positive. An
estimate of the upper bound for the minimum value a, appearing in Egns.
(3-5) may be obtained by taking the variance of ¢ and ¢ to be egqual to

that of a uniform distribution. The latter is equal to

' 2
v . = -
arunlform (b ay /12

and, therefore, the upper bound for the minimum value of a is found

from the above expression to be

au = b -/12 Var(x) (3-7)

In the case of the data used for the illustrative example,

the upper limit of a for the ¢ parameter is found from the Eqn. (3-7)

to be 21° while the corresponding values of the parameters for the two

beta distributions are



TABLE 3-1

RESULTS OF DIRECT SHEAR TESTS
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Strength Parawmeter
No ¢ (ksf) & (degrees)
1 1.042 46,1
2 0.850 37.0
3 0.345 39.4
4 0,000 41.0
5 1.300 25.0
6 0.3500 43,0
7 0.720 36.0
B8 0.800 27.5
] 0.700 30.0




TABLE 3-2

STATISTICAL VALUES OF c AND ¢

Statistical Strength Parameter
Value c (kstf) b {(degrees)
Minimum 0.0C 25.0
Maximum 1.30 46 .1
Mean 0.74 36.1
Standard G.38 7.2
Deviation

Coefficient of Correlations = -0.325
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é—parameter: a=1.,15, £A=0.76

c—parameter: a=1,06, £=0.81

Thus, the expressions for the probability density functions

of c, fc(c) and &, f (&), that correspond to the above parameters are

¢
_r(1.91) $-21,.15 .. 4=21.-.24
O - vaimrge Cs 0 4
{3-8)
o r(1.87) c ,-06 . _c \-.19
£ = tasercsn 1.3 G- 1.9

In Figs. 3-1 are shown the density functions for ¢ and ¢
while the corresponding cumulative density functioens appear on Fig.
3-2. The effect on the reliability of a slope of the minimum value of

the strength parameters is examined in detail below in Section 4.1.2.

3.4 Corxelated Strength Parameteyrs

Statistical examinations of available strength data have re-
vealed the existence of a negative correlation between ¢ and 4 (e.qg.,
Singh and Lee, 1970; Lumb, 1970; Yuceman and Tang, 1975, etc.), It is
therefore necessary to examine the joint variation of ¢ and ¢ and to
develop a probabilistic model for its description.

Both the normal and the beta distribution discussed above
have multivariate extensicns, The bivariate normal density function

may be written as (Hogg and Craig, 1970)
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f(c,0) = exp(-q/2), (3-9)
270 © -p=
c ¢
in which — - — .
- - - -4, 2
q = 12 [(50_3)2 - 2 (EE-C—) (‘b_g‘f’_) +(.‘i’c_¢) ]
1-¢ c c ¢ o

c, o, are the mean and standard deviation of c,
b, 0¢ are the mean and standard deviation of ¢, and

p 1s the correlation coefficient of ¢ and 6.

associated with the joint distribution are the marginal and
conditiconal distributions of ¢ and ¢. When the former follows the bi-
variate nermal model, the latter are also nermal. Thus, for example,
the marginal distribution of ¢ is normal with parameters E and cc,

i.e.,

£(c) = —— exp 2(E5)° (3-20)
27 G c

and the conditiconal distribution f(¢§co) (i.e., & given that ¢ = co) is

_— — 2 .
2lsc normal with parameters ¢ + D(CO—C)0¢/UC and C¢V(l_c ), i-e.,

exp%— R S (3~11)

f(¢\co) =

1
Jar o5\ 1-p®
where

EC = ¢ + p<c0—€> O¢/Gc
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In Figs. 3—-2, 3—-4 and 3-5 are shown graphically the distribu-
tions that correspond to Egns. (3-9), (3-10) and (3-11), respectively,
for the case of the data used in the illustrative example of the previ-
ous section. Fig. 3—4 provides the normal distribution given in Eqn.
(3-9) truncated at the specified limits. 1In Fig. 3-6 is shown the bi-
variate normal distribution that corresponds to the same data and for
the case where p is equal to —-0.65. ¥For comparison, the case of uncor-
related ¢ and ¢ (i.e., p = 0) is shown in Fig. 3-7. From Pigs. 3-3,
3-6 and 3-7, it is seen that the concentration of the probability den-—
sity function along the liné connecting cmax ang ¢max increases as the
value of the correlation coefficient increases. From the same figures,
it is also seen that, for the case of the bivariate normal model, a sig-
nificant portion of the probability density function lies outsgide the
experimentally obtained upper and lower limits of the two wvariables (in
fact, outside the physical limits of the two strength parameters, i.e.,
c < 0 and & <« 0),

The multivariate beta (oxr, Dirichlet) distribution provides
an alternative to the bivariate normal model. This model, used for the
first time to describe geotechnical data by 2—Grivas and Harrop—

Williams (1979), has the following analytical expression:

T (ortB+y) a1 B-1 ., yY1 (3-12)
LA GG IRl

x,y > 0 and 0 < xty < 1

J

in which x and y are normalized forms of the two variables and «, B, V¥

are the three parameters of the bivariate beta distribution (e, B, v »

0).
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- - 2 2 _
The mean values (x, y), variances (0, oy ) and covariance

(cxy) of this distribution can be expressed in terms of the

parameters o, £, and ¥ as follows (Wilks, 1962):

— o« 2 a(g+y)
T N
“ ' TO(E+1)
— & 2 8 (aty) (3-13)
y=o, 0% Y
L v
- T34+
—af

cx 2
Ioogtz+)

in which L=a 4+ £ + .

The correlation coefficient p of x and vy is then equal to

_ cxv - ok _
P=o s (oby) (B+7) (3-14)
X ¥

As o, B and ¥ are all positive by definition, from Egqn. (3-14) one has

that the correlation coefficient of the bivariate beta distribution

must always be negative.

2.5 Approxametlon of Strength Date Using Lhe Bivariate Beta
g .
A procedure is presented here to approximate data on the c©
and ¢ parameters of strength using the bivariate beta model. In doing
so, the task is to determine the three parameters «, £ and ¥ of the mod-
el from the five statistical moments (two first order and three second
order>moments) and four limiting walues (two minima and two maxima) of

the strength data. This may be achieved in a number of ways, a
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detailed description of which 18 presented 1n Appendix A. The approach
followed in this study involves a transformation of ¢ and ¢ using ap-
propriate scaling factors.

Let x and y be the normalized scaled expressions for the two

strength parameters ¢ and &, respectively; i.e.,

min
X’.—.‘—
-c_. )
¥ max min
{3-15)
¢ - ¢min
y:

(¢ .
y max min

where k}(and ky are the scaling factors needed for the transformation
of the normalized variables c¢ and ¢ (Appendix A).

Parameters @, B, %, kx' and ky may be calculated directly by
transforming the variables (Egn. (3-15)) and matching the second order

moments (i.e., O O¢ and p) of the distribution with the corresponding

values obtained from an analysis of the data.

2
o= - SN Y. Iy . . . - +c 4+
3 [ca DENX-DENY/ (p s, sy (c3+ca+1) ) 1]/(c3 ¢, 1)
Y= €3 .8
=<, "8 .
(3-16)
k = DENX/(c -c . )
x max min
ky = DENY/(¢max_¢min)

where
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¢, = (c-cmin)/(¢-dmjn)
1—C]'9 frec
ey = (D)
B8y €17%

n
]

3 —(sx-cz)/(sY-p)wl
= —cB/ISy/(cz'p°sx)+l]

bt .
DENY=(¢=¢_. ) (cyte,+1)
DENX:DENY/C2

3]
x

s
y

o /{c -c
C max min

0¢/(¢ - . )

Il

max '‘min

Such a formulation allows all five moments, obtained through
a statistical analygls of the data, to be preserved along with the low-
er limits of ¢ and ¢. The upper bounds of ¢ and ¢é are not maintained
as they are found to be functions of the scaling factors kX and ky
(Appendix A). This shortcoming, however, introduces no significant ex-
ror in the model.

Both the marginal and the conditional distributions of the

bivariate beta are univariate beta types. The marginal distribution

for x is beta distributed with parameters (&, £+y), i.e.,

T {a+B+y) a-1 Bty+1 -
) = oo - (l-x (3-17)
T(a)-T(p+y) © ) |

while the conditional distribution of y may be expressed in terms of a
transformed variable y' = y/(1-x) which is independent of x. The dis-

tribution of y' 1is as follows:

Y = y _ _T(Bt+y) vy \B-1 v-1
£ = @D < tmrey ) (o) (3-18)
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For the data of the illustrative example, presented in Sec—

tion 3.3, the three parameters &, £ and ¥ and the two scaling factors

kx and ky are found to be equal to

o =271, 3= 2,98, v = 5,90

k = 2.43, k = 2,33
x y

In Fig. 3-8 is shown the bivariate beta distribution that
corresponds to the data of the illustrative example, while Fig. 3-9
presents the same distribution truncated at the minimum and maximum val-
ues of the variables., In Figs. 3-10 and 3-11 are shown the marginal
distribution for ¢ and conditional distribution for ¢, respectively.

The bivariate beta distribution for the same data but for a value of

the correlation coefficient p = —.65 appears in Fig. 3-1Z2.

3.© Compaxison of the Yarious Models

The four distributions pregsented above (i.e., univariate
necrmal and beta and bivariate normal and beta) provide reasonable mod-
els for the two soil strength parameters c and ¢. The normal and bi-
variate normal distributions are more convenient to employ, as they re-
quire only two (normal) or five (bivariate normal) statistical parame-—
ters. The latter are determined from a statistical analysis of avail—
able data.

A shortcoming associated with the normal models, which in
gsome cases may have a significant effect, is the extent of the tails of

the distribution. The lower and upper limits of the normal (and
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bivariate normal) are -« and <, respectively, while the actual range of
variation of the two gstrength parameters is significantly smaller and
always positive, Moreover, in the case of the illustrative example
(Section 3.3), the available data indicate a much flatter distribution
than that given by the normal model.

The beta distribution provides a more flexible model as real-
istic bounds for the random variables can be incorporated. The use of
the beta distribution, however, is complicated by the need to select
these bounds based on limited data. Using Chebyshev's inequality (for
specified sigma bounds) or introducing simply the physical limits of
the variables can help overcome this problem. The dependence of the
probability of failure of earth slopes on the limits of the strength
parameters is investigated below, in Section 4.1.2.

Finally, the use of joint models, such as the bivariate noxr-
mal and bivariate beta distributions, allows the correlation of the soil
strength parameters to be included in the analysis. A comparison of
Figs. 3-4, 3-6 and 3-7 indicates that the bivariate normal model de—
pends considerably on the values of the correlation coefficient. The
same effect is also true in the case of the bivariate beta model (FPigs.
3-8 and 3-12), The sensitivity of the probability of failure to the

value of the correlation coefficient is considered in Section 4.2.1.



4., PARAMETRIC STUDY OF SOIL STRENGTH

This section examines the influence of soil strength parame-
ters on the probability of failure of slopes. The latter is determined
in accordance with the model developed in this study and presented in
Report No. CE-786-5 (Section 2.2.3).

In order to detach the effect of scil strength from that of
the failure mode, failure 1s considered here to occur along the criti-
cal {rather than randeomly generated) surface.

Two cases are examined, namely: one, in which ¢ and ¢ inde—

pendent, and another, in which ¢ and ¢ are correlated random variables.

4.1 Independent Soil Strength Parameters

In this part of the parametric¢ strength study, ¢ and ¢ are
assumed to be independent random variables following the beta model.
Parameters a and 8 of the beta distribution are calculated using Egn,
(3-6).

More specifically, the effect on the reliability of slopes of
the mean value, standard deviation, and third and fourth central
moments of the strength parameters are investigated ag well as that of
their minimum values. The third and fourth central moments are intro-
duced in terms of the coefficient of skewness(,@l) and coefficient of

kurtosis(ﬂz), respectively, defined as

3
Bleg/o
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4

By, = 1y / o (4-1)

The coefficient of skewness is a measure of the asymmetry of
the distribution, while the coefficient of kurtosis measures its
peakedness. & value of the coefficient of kurtesis less than three (62
< 3) indicatesgs & distribution flatter than the normal (as 1is, for ex-
ample, the unifcrm distribution); while a value of BZ larger than three
(32 > 3) corresponds to a distribution more peaked than the nor-—

mal.

For the betz distribution, the expressions for ﬁl and Bz are

given as (HBarr, 1977)

_ 2{E=){at+R+1)
1 oR{a+R+2)

m
i

- 3(a+8+1)[2(0—8)2+a8(a+5+2)]
2 af (otet2) (ebB+3)

4.2.1 Effect of the Coefficient of Variation.

In FPigs. 4-1 and 4-2 1is shown the effect of the coefficient
of variation of c and ¢, respectively, on the probability of failure of
the slope. The distributions of both ¢ and ¢ were assumed to be sym—
metrical around thelir mean values (i.e., ac = Bc and a¢ = £¢). ‘Fig.
4~1 corresponds to a mean value and coefficient of variation of 6 egual
to 20° and 10% ,respectively, while Fig. 4-2 to ¢ = 130 psf and VC =

20%. The corresponding values of the dimensionless slope stability

parameter xc¢, defined as (Janbu, 195%)
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Ac¢: YH tan(¢)/c (4—-3)
are also shown in the horizontal axis of the two figures, The value of
Xc¢ indicates the relative importance of c and ¢ on the sta-
bility of the slope. For example, for a slope with xc¢ greater than
thirty (Xc¢ > 30), the_¢~parameter is the dominant component of
strength while, for another, with kc¢ close to zero (lc¢: 0) the
c—parameter is dominant.

The dependence of the probability of failure on the mean val-—
ue (6) and coefficient of variation (VC) of ¢ for the special case of a
& = O material is shown in Figs. 4-3 and 4-4. Fig. 4-3 corresponds to
a slope angle B = 30° while Fig. 44 to B = 60°. BAs only gne random
variable is present in the & = 0 analysis, it is cconvenient to show the
results for various values of the mean factor of safety. It is seen
that as the mean value of the factor of safety Fs approaches cone, the
probability of failure approaches a value of 50%, for any value of the
coefficient of variation Vc'

4.1.2 Effect of Minimum Values,

In Tables 4-1 and 4-2 are given the results of a number of
fajlure simulations examining the effect on the probability of failure
of ¢min and c%in' respectively. The meag value and coefficient of vari—
ation of ¢ were constant and equal teo 36° and 20%, respectively. The
minimum values of ¢ used were 21°, 14.4°, and 0°. The values 21° and
14.4° correspond to two and three sigma bounds, respectively, from the
mean value, while the third value (0°) is the physical lower bound of

the variable. For comparison, the value of the probability of

failure that corresponds tc a normal distribution of the strength



Probability of Failure

Pr
A
1.0
0.5 ] 5 -
FS =
FS =
FS =

0.1
0.05 4
0.01
} i I ] T i
0.0 0.1 0.2 0.3 0.4 0.5 VC

Coefficient of Variation of ¢

"FIGURE 4-3. EFFECT COF VC ON Pes UNDRAINED ANALYSIS (8 = 30°)



Probability of Failure

0.

I
1.0
0.5 - — FS
| FS
FS
¥S
0.1 |
05 |
0.01
T T T T
0.0 0.1 0.2 0.3 0.4 0.5 v,

- Coefficient of Variation of ¢

48

FIGURE 4-4. EFFECT OF V_ ON pg, UNDRAINED ANALYSIS (8 = 60°)



49

Table 4-1

EFFECT OF THE MINIMUM VALUE OF ¢

SLOPE PROBABILITY OF FAILURE

DESCRIPTION
Beta Beta Beta Normal
= o = ° =0°
¢min 21 ¢min 14.4 ¢min o
Run 1
XC¢=9.8,B=30° . 055 . 052 .052 .044
Run 2
lc¢=7.4,ﬁ=45° . 060 . 060 . 060 .052
(p=0)
Run 2
XC =7.4,R8=45"° .012 . 009 . 009 026
(p=—.50)
Run 2’
lc¢=7.4,ﬁ=45° .067 . 064 .060 . 048
(fixed surfaces)
Run 3
kc¢=30.3,6=35° .078 .090 .085 .061
Run 4
lc¢=18.2,8=30° . 067 .084 .081 L0565
—_—-O . <«
(p~0 for ¢ . »24°)




EFFECT OF THE MINIMUM VALUE OF ¢

Table 4-2

SLOPE PROBABILITY OF FATILURE
DESCRIPTION
Beta Beta Beta
cmin=5?0psf cmin=38093f cmin=0PSf
Run § (F5=1.2)
)\C¢=0,B=30° .194 .187 177
Beta Beta Beta
cmin=735psf cmin=49093f cmin=0psf
Run 5' (FS$=1.5)
lc¢=0,,8=30“ . 009 . 040 .052

50
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parameters is also included the table.

From Tables 4~1 and 4-2, 1t is seen that, for given mean val-
ues and coefficients of variation of ¢ and ¢, the prcbability of fail-
ure is rather insensitive to the minimum values of c and ¢ used to de-
termine the parameters of the beta distributions.

In Figs. 45 and 4-6 is shown the variation of the probabili-
ty of failure pf of a slope with the coefficient of skewness Bl of ¢

and ¢, respectively. It can be seen that the effect of g, on p is

very small compared to that of the mean values of the two strength
parameters.

Finally, in Figs. 4-7 and 4-8 is shown the dependence of the
probability of failure P, on the coefficient of kurtosis Bz of ¢ and ¢,
respectively. As was the case with the coefficient of skewness, there

is no significant effect of Bz on p..

4.2 Correlated Soil Strength Parameters

In this part of the parametric study, c and ¢ are assumed to
be correlated random variables. Both the bivariate beta and the bi-
variate normal medels are investigated. The parameters for the bivari-
ate beta distribution are calculated from Egns. (A-8) of Appendix A.

4.2.1 Effect of the Correlation Coefficient of ¢ and ¢,

In Table 4-3 are listed the values of the probability of fail-
ure pf of a soil slope that corresponds to various values of the cor—
relation coefficient p of the two strength parameters ¢ and ¢é. It can

be seen that pf decreases as p decreases, This trend holds for both

the normal and beta models of strength parameters and is in agreement
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TABLE 4-3

THE EFFECT OF THE CORRELATION OF ¢ AND & ON THE PROBABILITY OF FAILURE

PROBABILITY OF FAILURE
SLOPE DISTRIBUTION CORRELATION COEFFICIENT
DESCRIPTION QOF C AND PHT

.00 —-.15 -.25 -.325 -.50 -.75
Slope 1 ' Indep. beta .055 - —_ - —— -
H=100' B#=30° Bivariate beta — .017 .017
kc¢=9.8 Rivariate normal .044 .033 — 020 L0111 . 000
Slope 2 ) Indep. beta . 060 — — —— —_ -
H=75' B=45° Bivariate beta — .013 .012 .012
kc¢=7.4 Bivariate normal .052 .043 .037 .026
Slope 3 Indep. beta .521 — - —
H=40.5' B=15.5° Bivariate beta —_— . 506 . 455 . 348
kc¢=6.9, rus=, 32 Bivariate normal . 498 .500 . 480 .481
Slope 4 Indep. beta .09¢ e ——
H=75' A=35° Bivariate beta — .042 .042
xc¢=30.3 Bivariate normal .066 .058 .042

95
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with previocus findings on the subject (Yucemen and Tang, 1975).

For p equal to zero, the results indicate that the values of

the probability of failure for beta distributed ¢ and ¢ are greater

than those corresponding to a normal distribution with the same mean

values and coefficients of wvariation. For values of p lesg than zero,

the values of Pe for the normal case decrease linearly with p.

4.3 Conclusgions from Parxametric Study of Soil Strength

On the basis of the results obtained in this parametric study,

the following conclusions are drawn:

(a)

(b)

(c)

The mean value and the coefficient of variation of the
strength parameters have a much greater effect on the
probability of fajlure of slopes than their minimum val-
ues, coefficients of skewness and coefficients of kurto-—
sis.

The correlation coefficient p of the two strength param-
eters has a significant effect on the.calculated value
of P,. As p becomes more negative, the corresponding val-
ue of pf decreases.

The bivariate normal distribution gives a linear decrease
of pf with increasing p., This is not the cage for the

bivariate beta model.



5.  PARAMETRIC STUDY OF SEISMIC 1OAD

5.1 Description of Seismic Load

In a pseudo-static stability arnalysis, the effect of an
earthquake on the stability of an earth sliope is introduced through the
maximum acceleration experienced at the site of the slope. This accel-
eration depends on many factors such as the amount of enérgy released
during the earthguake (measured in terms of the earthgquake magnitude);
the law with which this energy attenuates with the distance from the
earthqguake scurce; the type of earthquake scurce invelved; the seigmic
history of the areza; local conditions; etc.

In the first report of this series, Report No. CE-78-5, the
significant factoré mentioned above were anzlyzed to yielid a mathemat-
ical expression for the probakrility density function of the maximum
ground acceleration.

The attenuation relationship employed has the form

Smax bl € (R + bh) (5-1)

in which bl’ bz’ bs, and b4 are regional parameters, R is the distance
between the source and the site (in km), and m is the earthquake magni-
tude (in Richter scale).

& log—gquadratic frequency magnitude relation was found to
best represent the data available for the State of New York {(Report No.
CE-78-7). The probability density function of the earthguake magnitude

was found to have the following expression:
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2 2
£(m) = -k(b-2em)exp[b(m-m )+c(@m -m )], = = m < m (5-2)

in which b and ¢ are regicnal constants, m, and n_ are the upper andg
lower limits of the earthguake magnitude, and k is a normalizing con-
stant, so that the cumulative distribution F(m) become egual to one

when m = . The expression for k is

2 2 -1
= [1- — - 1
k (1 exp[b(m1 mo) + c(ml mo)]_

Parameters b and ¢ were found to be egqual to 0.203 and
-0.182, respectively, and the lower and upper limits of the magnitude
were specified as mo = 2 and m, = 7. From Egns. (5-1) and (5-2), using
the method of transformation of varigbles (Bahn and Shapiro, 196€7), the

density function the meximum acceleration was found to be equal to

2 2
fa )= -5 I (eep)explb(G-m e (GEem )] (5-3)
max D 2 o o
2 max
where b
a (R+b,)
1 max &
G = E_ 1n .
LR

Two attenuaticon relationships have been proposed for the East-
ern United States {(Report No. CE-78-5) and were employed in the pre-

sent study. Thelr expressions are

0.5 ~1.32
1100 e~ "M(wr+25) (5—4a)

[l

a
max

1.183 el 1M gy 1:0 (5-ab)

by
L]

max
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In Figs. 5-1 and 5-2 are shown the cumulative distributions
of amax that correspond to Egns. (5-4a) and (5-4b), respectively.

An error term € has been included in order to account for the
difference between predicted and observed values of A ax’ Introducing

€ into the expressions of the attenuation relationships, the lat-—

ter become

0.5 -1.32
1100 e " “T(R+25) ¢ (5-5a)

W
It

max

1.15m, 1.0
1.183 e (RY '€ (5-5b)

2]
I

max

where € is taken to be a log-—normally distributed random variable with
a median value of 1.0 and a standard deviation Oe varying between 0.5
and 1.0 (0.5 € o, € 1.0).

In Figs. 5-3 and 5-4 is shown the resulting cumulative dis-—
tribution of amax that correspond to Egn. (5-5a) and for the case where
the error term has standard deviations oe eqgual to 0.5 and 1.0, respec-—
tively. In FPigs. 5-5 and 5-6 is shown the same cumulative distribution
for the case of EQn. {5-5b) with o, equal to 0.5 and 1.0, respectively.
A summary of the statistical parameters of the acceleration for the

above cases {Figs. 5-1 through 5-6) is given in Table 5-1,.

5.2 Description of the Earthquake Source

The maximum horizontal ground acceleration as described above
corresponds to a point representation of the earthquake source
{point-source model), This is shown schematically in Fig. 5-7a. Two

additional models have been introduced for the earthguake source,
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TABLE 5-1 STATISTICAL VALUES OF MAXIMUM GROUND ACCELERATION (POINT SOURCE MODEL)

ATTENUATTON ERROR TERM__ DISTANCE a . oamaX vamax
RELATIONSHIP I £ (km) () () ()
0.00 1.00 1 0.0653 0.0381 58.42
0.00 1.00 10 0.0438 0.0248 56.59
0.00 1.00 25 0.0271 0.0144 53.00
0.00 1.00 100 0.0084 0.0050 59.74
0.50 ©1.133 1 0.0703 0.0513 72.91
(1) 0.50 1.133 10 0.0469 0.0336 71.60
0.50 1.133 25 0.0316 0.0258 81.60
0.50 1.133 100 0.0090 0.0067 74.52
1.00 1.649 1 0.0747 0.0626 83.76
1.00 1.649 10 0.0499 0.0428 85.72
1.00 1.649 25 0.0343 0.0327 95.42
1.00 1.649 100 0.0097 0.0085 87.89
0.00 1.000 1 0.0541 0.1159 214.41
0.00 1.000 10 0.0052 0.0111 213.40
0.00 1.000 25 0.0019 0.0037 190.41
0.00 1.000 100 0.0006 0.0013 220.41
0.50 1.133 1 0.0574 0.1308 228.04
0.50 1.133 10 0.0052 0.0097 187,35
(2) 0.50 1.133 25 0.0026 0.0063 238.20
0.50 1,133 100 0.0006 0.0012 217.22
1.00 1,649 1 0.0604 0.1426 235,86
1.00 1.649 10 0.0055 0.0112 204.16
1.00 1.649 25 0.0029 0.0071 249,01
1.00 1.649 100 0.0006 0.0014 232.15
ATTENUATION RELATTIONSHIR: (1) 1100 eO.Sm(R+25) .32 (2) 1.183 R

L9
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namely the line (or, fault) model and the area model (Cornell, 1968).

2 line source model (Fig. 5-~/b) is used in the case where an active
fault has been identified in the area of interest, or when the epicen-—
ters of a series of earthquakes lie approximately along a line. An area
source (Fig. 5-7¢) is used when no particular point or line source can
be identified or when earthguakes occur randomly within a certain re-—
gion.

Occurrences of earthquakes from these sources are assumed to
be random events uniformly distributed aleong a fault or within an area.
On the basis of this agsumption, the probability density function of
the maximum acceleration for the line and area sources were determined.
The resulting expressions were presented in Appendix B, Report No.
CE-78-5.

The above models for the earthquake scurce were adopted as
part of the Monte Carlo simulation technique employed in the "RASSUEL”™
model. The most critical of the two attenuation relationship, i.e.,
that given by Egn. (5-4a), has been introduced in the program to deter-
mine the cumulative density function of the maximum ground acceleration
for the cases of line and area sources (FPigs. 5-8 to 5-25).

Line Souzrce:

In Figs. 5-8 through 5-13 iz shown the cumulative distribu-—
tions of amax for a fault length equal to 100 km; while in Figs. 5-14
through 5-19 is given the same distribution for a fault length equal to
250 km. PFigs, 5-8 through 5-10 and Figs. 5-14 through 5-16 correspond
to the case where the orientation of the fault (defined in Fig. 5-7) ig
at an angle of 45° with respect to the site of the slope, while Figs.,

5-11 through 5-13 and Figs. 5-17 through 5-19 correspond to an
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orientation angle equal to 9%0°, Figs. 5-8, 5-11, 5-14 and 5-17 corre-
gpond to the case of the deterministic attenuation relationship, given
by Egn, (5-4a); while Figs. 5-9, 5-10, 5-12, 5-13, 5-15, 5-16, 5—18B and
5~-19 refer to the attenuation relationship with an error term (having a
median egual to 1 and a standard deviation of 0.5 or 1,0). The stat-
istical values of the distributions of amax for the line source are
summarized in Tables 5-2 and 5-3.

Area Source;

In Figs. 5-20 and 5-21 are shown the cumulative distribution
of A ax for depths of the area source equal to 0 km and 20 km, respec—
tively, and for the attenuation relationship given by Egn. (5-4a).

The case of an attenuation re}ationship with an error term,
Eqn. (5-5a), was also investigated and the results are shown in Figs.
5-22 through 5-25. Finally, in Table 5-4 are ligting the statistical

values of the maximum accelerations for the case of the area source.

On the basis of the results of this parametric study, the
following conclusions are drawn:

(a) From the two attenuation relations examined, Eqn. {(4—2a)
always results in larger values for the maximum horizon-—
tal acceleration.

(b) When an error term is introduced into the expressicns for
the attenuation relationships, Egns. (5-5), the corre—
sponding values of amax are larger than those obtained
without the error texrm.

{c) From the results of this study, it appears that the -



TABLE 5-2 STATISTICAL VALUES OF MAXIMUM GROUND ACCELERATION (LINE SOURCE MODEL, FAULT LENGTH = 100 km)

ORTENTATION ERROR TERM DISTANCE a “a Va
(8) G — max max max
€ £ (g) (g) (g)
0.00 1.00 1 0.0318 0.0231 72.65
0.00 1.00 10 0.0291 0.0201 69.00
0.00 1,00 25 0.0231 0.0156 67.63
0.00 1.00 100 0.0081 0.0046 57.32
0.50 1.133 1 0.0345 0.0311 90.0L
45° 0.50 1,133 10 0.0323 0.0289 89.37
0.50 1.133 25 0.0262 0.0230 87.60
0.50 1.133 100 0.0088 0.0068 77.55
1.00 1,649 1 0,0370 0.0381 102,88
1.00 1.649 10 0.0345 0.0354 102.75
1.00 1.133 25 0.0280 0.0289 103,32
1.00 : 1.133 100 0.0094 0.0084 90.37
0.00 1.00 1 0.0315 0.0225 71.41
0.00 1.00 10 0.0278 0.0193 69.56
0.00 1.00 25 0.0217 0.0145 67.00
0.00 1.00 100 0.0079 0.0044 55.37
90° 0.50 1.133 1 0.0347 0.0321 92.57
0.50 1.133 10 0.0286 0.0223 77.79
0.50 1.133 25 0.0238 0.0170 71.19
0.50 1.133 100 0.0084 0.0058 69.60
1.00 1.649 1 0.0369 0.0394 106.78
1.00 1,649 10 0.0305 0.0273 89.48
1.00 1.649 25 0.0255 0.0210 82.36
1.00 1.649 100 0. 0090 0.0074 82.30
ATTENUATION RELATIONSHIP: 1100 0+ (R+25)—l'32€
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TABLT, §-3 STATISTICAL VALUES OF MAXIMUM GROUND ACCELERATLON (LINE SOURCE MODEL, FAULT LENGTH 250 km)

ORTENTATION ERROR TERM DISTANCE a Ca Va
(8 ) ” - Lkm) mazg max Tax
£ (g) (g) : (%)

0.00 1.00 1 0.0185 0.0173 93.55

0.00 1.00 10 0.0184 0.0165 89.81

0.00 1,00 25 0.0154 0.0124 80.35

0.00 1.00 100 0.0082 0.0058 71.31

45° 0,50 1,133 1 0.0204 0.0244 119.80
0.50 1.133 10 0.0192 0.0238 123,86

0.50 ‘ 1.133 25 0.0169 0.0167 98.51

0.50 1.133 100 0.0088 0.0083 93,90

1.00 1.649 1 0.0218 0.0285 130,88

1.00 1,649 10 0.0206 0.0283 136.92

1.00 1.649 25 0.0181 0.0196 108,29

1.00 1,649 100 0.0096 0.0108 112.47

0.00 1.00 1 0.0173 0.0160 92,53

0.00 1.00 10 0.0167 0.0143 85.75

0.00 1.00 25 0.0146 0.0115 79,03

0.00 1.00 100 0.0069 0.0041 59,00

90° 0.50 1,133 1 0.0202 0.0215 106. 54
0.50 1.133 10 0.0195 0.0200 103.02

0.50 1.133 25 0.0163 0.0163 100,30

0.50 1.133 100 0.0074 0.0060 81.02

1.00 1.649 1 0.0215 0.0254 117.67

1.00 1.649 10 0.0209 0.0245 116.86

1,00 1,649 25 0.0174 0.0196 112,10

1.00 1.649 100 0.0078 0.0072 93,05

ATTENUATION RELATTONSHIP : 1100 97" g~1-32,
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TARLE 5-4 STATISTICAL VALUES OF MAXIMUM GROUND

ACCELERATION (AREA SOURCE MODEL)

ERROR TERM — o y
RADIUS amax amax nmax

DEPTH OE £ (km) (e) (s) (&)
Q.00 1.00 1 0.0663 0.0387 58.33
0.00 1.00 10 0.0522 0.0314 60.04
0.00 1.00 25 0.0356 0.0210 58,96
0,00 1.00 100 0.0142 0.0118 83.27
0.50 1.133 1 0.0722 0.0560 77.51
0.50 1.133 10 0.0572 0.0423 73.88
0.0 km 0.50 1.133 25 0.0396 0.0327 82.61
0.50 1,133 100 0.0154 0,0160 104,01
1.00 1.649 1 0.0772 0.0718 92,92
1.00 1.649 10 0.0614 0.0533 86.64
1.00 1,648 25 0.0424 0.0400 94,13
1.00 1.649 100 0.0166 0.0211 126,87
0.00 1.00 1 0.0027 0.0059 222,26
0.00 1.00 10 0.0025 0.0044 177.68
0.00 1.00 25 0.0022 0.0048 215.72
0.00 1.00 100 0.0008 0.0015 189,133
0.50 1.133 1 0.0028 0.0054 193.08
0.50 1.133 10 0.0027 0.0067 254,07
20 km 0,50 1.133 25 0.0023 0,0062 276.31
0.50 1.133 100 0.0009 0.0024 253,69
1.00 1.649 1 0.0029 0.0059 201.58
1.00 1,649 10 0.0028 0.0081 282,44
1.00 1.649 25 0.0024 0, 0080 326,11
1.00 1.649 100 0.0010 0.0027 270.09

ATTENUATTON RELATIONSHIP: 1100 elt ™ gp~t-32,
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(a)

(e)

92

orientation (angle 8) of the line source has little ef-
fect on the magnitude of the maximum horizontal accelera-
tion.

The length of the fault also has little influence on
amax' for a distance between the source and site of the
slope approaching 100 km.

For faults closer to the site, the maximum accelerations

decrease as the fault length increases.



6. EVALUATION OF THE DEVELOPED MODEL

6.1 Qverview of the Model

A new approach has been proposed in this study for the deter-
mination of the reliability of earth slopes during earthquakes. The
developed method provides a probabilistic, pseudo—static, seismic sta-
bility analysis. The safety of glopes is measured in terms of the prob-
arility of failure (rather than the customary safety factor), the nu-
merical values of which are determined through a Monte Carle simulation
of failure.

Significant uncertainties that are present in conventicnal
methods of analysis have been identified and probabilistic tools have
been introduced for their description and amelioration. More specific-
ally, the developed procedure accounts for (a) the variability in the
numerical values of the material strength parameters, ¢ and ¢; (b) the
uncertainty in the exact location of potential failure surfaces within
the slope masg; and (¢) the uncertainty in the load imposed upon a
slope during an earthquake.

The statistical description of the random variables intro-
duced in the model is consistent with recent findings on the subject.
Thus, the variability of soil strength parameters is described utiliz-—
ing and expanding upon results available in the literature, in particu-
lar those reported by Lumb (1966, 1970) and Harr (1977). The parame-—
ters used to describe the location of the failure surfaces are not
directly measurable and have to be estimated empirically. Here, previ-

ous experience with the logarithmic failure surfaces is utilized as

93
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well as observations on recorded failureg (Frohlich, 1953; A-Grivas,
1976). The probability density function cf the horizontal ground acce-—
leration is determined on the basis of (&) an analysis of seismic data
in the area of interest, yielding the earthguake frequency—-magnitude
relationship, and (b} an attenuation egquation for.the peak ground acce-—

leration.

£.2 Comparison with Qther Methods

Conventionally, liﬁit equilibrium methods of slope stability
analysis involve an iterative {(trial-and—error) procedure in which the
minimum factor of safety FS is sought by varying the surface (usually a
circular arc) along which failure may occur. Thus, minimization of FS
is achieved through the use of some searching technigue and the surface
that correspends to the minimum value of FS 1s considered as critical,

More recently, a wvariational approach was used@ to minimize PS
and to determine the critical failure éurface (e.g., Baker and Garber,
1877). The resulting shape for the latter was that of a locarithmic
spiral, similar to the one adopted in the present model.

In general, there is a large number of surfaces zlong which
slope failure is possiblie. If pfi represents the prcbability of fail-
ure along & particular surface Si' i=1,2,...,N, then the total prob-

ability of failure Pe of the slope is equal to
Pf :_Z Pf' P[Si] (6=1)

in which P[Si] 1s the probability of occurrence of each surface si and
N
Z P[(s.] = 1 . Implied in Egn. (6-1) is that surfaces Sy
=1

. 1
1
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i=1,2,...,N, are independent of one another,

The cage where a slope may fail along an infinite number of cor-
related failure surfaces was studied by Catalan and Cornell (1976). The
authors pursued a reliability analysis of soil slopes by transforming the
problem of a series system with an infinite number of components into a
more tractable level-crossing one. Thus, the probability of failure was
found by determining the expected number of threshold crossings while as-
suming that (a) such crossings are rare Poisson events, and (b) the process
is Gaussian and stationary in the vicinity of the least reliable failure
surface. Failure surfaces were assumed to be circular in shape along which
the shear strength of soil was taken to be constant (i.e., conditions cor-
responding to an undrained analysis).

The method of selecting failure surfaces that was used in the
present study was based on the observation that the majority of possible
surfaces contribute very little to the summation appearing in Egn. (6-1);
i.e., they have a relatively small probability of occurrence (P{Si}{: 0).
From examinations of recorded slope failures, a critical region wasg
identified within the slope mass and a method was developed for the
random generétion of potential failure surfaces that lie within this
region (Report No, CE-78-5).

An alternative approach to the determination of the probabil-
ity of failure may be pursued on the basis of one single failure sur-—
face, namely that with the highest probability of occurrence. Such an
approach does not account for the uncertainty around the exact location
of the failure surface and ignores the contribution on the probability
of failure of other possible but less probable surfaces. Such a study

has been pursued by Alonso {(1976), who demonstrated that the critical
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surface found through a conventional analyszis c¢oincides with the one
along which the probability of failure receives its maximum value.
Alsc, studies based on a single failure surface (of circular shape)
were performed by Wu and Kraft (1970), Gilbert (1977) and Tang, Yuceman
and Ang (1976) for undrained conditions; and Yuceman and Tang (1975)
and D andrea (1979) for long-term (effective stregs) conditions. The
last two studies were based on a first-order second-moment analysis
(Cornell, 1971) of the ordinary method of slices.

The probability of failure for fixed failure surfaceg of
either circular or exponential shape can be also evaluated using the
method developed in this study. This is listed as one of the features
of the RASSUEL program (Report No. CE-78-6). 1In this case, the Monte
Carlo simulation 1s performed by generating random values for only the

strength and seismic parameters.

A main feature of the developed model was the assumption that
the sc0il mass comprising the slope was statistically homogeneous.
Thus, soil strength parameters were assumed to be random variables hav-
ing the same statistical wvalues (i.e., mean value, standard deviation,
upper and lower limits and probability density functions) anywhere with-
in the soil medium. This is a reasonable first step beyond the con-
ventional limif equilibrium methods of analysis, in which only a point
egtimate of the driving forces and resisting forces (or, moments) is
considered.

As part of this study, an attempt was made to introduce the

spatial variablility of soil strength during the reliability analysis of
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slopes under both static and seismic conditions. Use was made of the
autocorrelation coefficient of the undrained strength of soll slopes
("4 = 0" analysis) and the results were reported in the form of a
technical paper (Asaoka and A-Grivas, 1981). An extension of the meth-
od for conditions applicable to the long-term (effective stress) sta-
bility analysis of slopes is expected to take place during a further
development of the model.

A second limitation of the model is that asscciated with the
agsumption of constant solil strength during an earthquake. This 1g be-—
lieved to be reascnable for a wide variety of soils, particularly cohe-—
sive ones (Arango and Seed, 1974). The approximation made above is not
directly applicable to the analysis of slopes composed of soils that
exhibit shear strength degradation during cyclic loading. This could
be the case, for example, of ligquefaction of saturated sands or very
gsensitive clays (Seed, 1968). The applicability and limitations im-
posed by the above assumption have been recognized by other researchers
on the subject:

"Because of difficulties, it is not at

the present time possible to make an accurate de-

termination of the behavior of soils {cohesicnless

soils and sensitive clays) which are susceptible to

liguifaction—-like phencmena ... Fortunately, not

all soils are susceptible to such phenomena. TFor

many soils, the resistance to shear is largely un-

affected by repeated cycles of loading."” (Whitman,

1970).

In the present pseudo—static stability analysis, the
force system is considered to be applied statically on the slope and

itg seismic component is measured in terms of the maximum acceleration

experienced at the base., That is, the slope mass is assumed to be a
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rigid body and, thus, the acceleration anywhere within the slope is the

game as that along its base.
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Appendix A. USE OF THE BIVARIATE BETA DISTRIBUTION TO MODEL

SOIL STRENGTH PARAMETERS

Two 1mportant characteristics of the bivariate beta distribu-
tion f(x,y) of two normalized random wvariables x and y are as follows:
(a) The bivariate beta model has only three parametersa, de-
noted as «, B and 7, which must be determined from the
five statistical values of x and y; namely, two mean va-—
- - 2 2 .
lues (%, y), two variances (0x . oy } and a covariance
a_ 3.
( xy

{b) The bivariate beta distribution, when expressed as

(Wilks, 1962)

T(x,B,v) Xa~l
F(d)T(@)T(a)

-1 -1
£lx,y) = y° (1-x-y)" (2-1)
in which 0 € %,y € 1, and x + y € 1, isg defined over a

triangular region (shown schematically in Pig. A-la).

2 2
, O and o__ ) of
Y XYy

f(x,y), given in Egn. (A-1), can be expressed as the following func-

The five statistical values (%, vy, o,

tions of the parameters &, £ and y:
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FIGURE A-1.

REGION OF DEFINITION OF THE TWO
VARIABLES OF THE BIVARTATE BETA MODEL
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- =« O2 N a{B+y)
¥ = — - ———

L * 22(z+1)
- f 2 g {cty) (A-2)
y =7 ° T T2

z Y 7 (I+1)

of k
o =Ty
Xy T (I+1)

in which L = o + 8 + 9. From the expressions for Oxy' o, and Oy

the correlation coefficient p of x and y can be cbtained as

x ¥

~EE§L _-af --/ of (A-3)
o = = Y —
%% af (aty) (B+y) Cty) (B+y)

The bivariate beta distribution as a model for the correlated
soil strength parameters ¢ and ¢ was first introduced by A-Grivas and
Barrop—Williams (1979). In order to satisfy the conditions associated
with Egn. (A-1), the authors used normalized expressiong of ¢ and ¢ re-—
ceiving values between 0 and 0.5, Parameters @, 8 and ¥ were deter-—
mined from the expressicons corresponding to the two mean values (;, ;)
and the variance (ny)' given in Egns. (A-2Z). Such an approach does
not insure that the two individual variances (cxz, oyz) and the corre-—
lation coefficient (p) are always preserved.

There are several alternative ways to select the three para-—
meters of the bivariate beta model from the five statistical values of
x and ¥, given in Eqn. (A-2). Five such approaches are presented be-—
low,

(a) Transformation to Rectangular Variables

The first approach involves a transformation of the triangu-

lar region within which x and y are defined (Fig, A-la) to a
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rectangular region. If & and £ denote the two new variables, the

transformation necessary is as follows (Wilks, 1962):

x=6,y=£ (1 -8) (A-4a)

or,

v/ (1 - x) (A-4D)

@
]
>

Yy
"

in which 0 € 8,f £ 1. When the above expression are introduced into

Eqn. (A-1), the joint distribution £(8,£) of 8 and { becomes

T (oY)

pry=1_B-1 vl
) T (B () &8

0% L 1-0)

£(0,8) = (A~-5)

In Fig., A-1b is shown schematically the region of definition
of the transformed variables 6 and &.

From Egn. (A-5), cne has that £(@, ¢) is the product of two
separate density functions, one for 6 and, another, for ¢, i.e., the
new variables € and ¢ are uncorrelated.

{(b) Shift Iransformation

A second approach is to determine the three parameters o, 8
and ¥ of the bivariate model from the three higher moments of x and vy,

X P 2 .
namely the two wvariances Oy and oy and the covariance ¢_ . Thus,

from Egns. (A-2), one has
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2
R = {-cz/(ﬂsxsy (cl+c2+]) y-11 / (cl+c2+l)
a = cy " B (A-6)
_Y:C.B

in which the constants c,c,.8, and Syappearing in the above expressions

are

c. = —SX/(DSy) -1
c, = c1/[—sy/(osx)-1]

s = a /(c -c . )
¢’ “Tmax min

min

s = 0¢/(¢max—¢

The mean values of x and y obtained from the two marginal
distributions £(x) and f£(y), are in general different from the given
values x and §. To make the two pairs of mean values coincide, the two
marginal distributions must be shifted by an appropriate amount. This
is egual to the difference between the gpecified mean values and the
mean values calculated from Egns, (A-2), using parameters ¢, £ and ¥
from Eqns. (A—-6). These two differences called the "shift factors”
{one for each of the two variables x and y) are then added to the va-
lues of the bivariate beta distribution.

As such a transformation involves only additive constants,

2 2
the two variances oy and ay and the covariance ny and, therefore the

correlation coefficient remain unchanged.
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In Fig. A-2 ig shown schematically the region of definition
of the shifted beta variates xB and ys. The two shift factors are de-
noted as dx and dy. From Fig. A-2, it can be seen that sghifting the
distribution to match the mean values, results to new limits for the
two variables (dx, 1 + a&x; dy, Y + dy). The introduced additional re-
gions of variation of x and y are shown as shaded areas in Fig. A-2.
The solid line represents the extent of the bivariate beta distribution
of x and y which, of course, covers the range 0 € x,y £ 1 and x + y €
1.

Normalizing the strength parameters with the following equa-
tions
€= cmin
“max ‘min

(A-7)

y o v

max min

© and 1 on Fig. A-2 correspond to the normalized minimum and maximum
values of ¢ and ¢ specified from the data. It can be seen that in
shifting the distribution to match the mean values, the limits of the

variables have not been preserved.

(c) Scale Transformation
An alternative to the above method involves the use of two
scaling factors. These factors, k, and ky are multiplied in the de-
, O are
% céd

now functions of kx and ky, a, B, v, k;{and ky may be calculated as

nominators of Egns, (A-7). Noting that the normalized Uc’ o]
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FIGURE A-2. LINEARLY SHIFTED BIVARIATE BETA DISTRIBUTION



2
g = [C; . DEN}:‘DFNY/(D'Sx'gy'(C3+c4+]) )_1]/(C3+CL+1)

-~
]

et
]

ax

where

@]
I

If

DENY=
DENX=

and s and s
=

DENX/{c -C
max

DENY/(¢ ¢
m

)

min

min

(E;Cmin)/(¢-¢min)

l-¢c. s O'Sy
o ES)
PSSy 1 x

—(Sx~c2)/(8y'p)—1
—c3/fsy/(c2'o'sX)+1]
($;¢min)-(c3+ca+1)

DENY/c2

are defined as in Eqn. (A~6).
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(a-8)

In transforming the distribution in this fashion we can see

from Fig. 2-3 that the specified minimum values of the variables are

maintained along with all of the first and second order moments.

The

maximum values are not fixed and are a function of the scale factors kx

and k
y

(d) Third Moments

The third moments of a distribution reflect its asymmetry or
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FICURE A-3. SCALE TRANSFORMATION OF THE BIVARIATE
BETA DISTRIBUTION
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skewnegs and can be used to manipulate the shape. Third moments are

calculated directly from data or inferred from a univariate beta model

of x and y.

A general expression for the moments of the bivariate beta

distribution 18 given as (Wilks, 1962)

u! = F(u+ry)-T(E+ry)-F(a+B+y)/

%'y (A-9)
F(a+8+y+rx+rv)'T(u)'f(8)
. - 2
i i ; 3 d the

In this notation ulO is x, ﬂoz is OY . ﬂll is oxy’ etc., an

third central moments #30' may then be written as
= E(x~§)3 = ploo~ 3uroul o+ 2u‘3 (2-10)

30 10" 20 10

M3

Substituting the appropriate form of Egn. (A-9) for each term
appearing in Egn. (A-10) and using the recursion relation I'(a) = (a-1)
I'(a-1), the third central moment of x is found to be equal to

= [2G(8+Y)2-8(G+Y)}/[53+3(s+1)-(s+2)] (A-11)

Y30

where

s=a+ B +vy

The third central moment of vy, Hos’ can be obtained by inter-—

changing @ and 8 in Egn. (aA-11).

To satisfy all seven moments, Egns. (A-2Z) and (A-11) must be

solved simultaneously with respect to «a, 8B, ¥, X, ky' d, and dy, where
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k¥ and d are scale and gshift factors, respectively. This could not be
accomplished algebraicly. Two numerical solutions were attempted: (a)
one, to solve directly the gystem of non—-linear eguations, and (b) to
optimize an approximate solution by minimizing the sum of the sguares of
the residuals.

When applied, both methods failed to give answers that
matched all moments. As the weighting in the optimization method was
shifted away from the third moments, the results approximated the solu-—
tion obtained method by using the scale transformation.
Comparison of ihe Methods Presented

Four methods associated with the use of the bivariate beta
distribution were presented above., Two of these metheds fail to pre-
serve the moments specified for the distribution. 1In the case of the
rectangularly transformed distribution, this is true because the var—
iables are no longer correlated. In the case of the third moment ap-—
proach, there is no exact algebraic solution for the parameters (@, B8
and ¥) and, in general, the numerical solution fails to converge,

The other two methods used do match the five specified
mements. The shift transformation, however, is unacceptable for model-
ling the joint distribution of ¢ and ¢. This is because the shift
tends to distort the limits of the variables for the test data used
even though the original moments are maintained.

The scale transformation approach provides the best model for

the soil strength parameters. Not only are the moments E, 5, o o

o’

and p reproduced, but the lower limits are fixed at the specified va-—

c!

lues. This seems particularly important, as the reliability analysis,

that these models are being developed for, is primarily focused on the
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lower tails of the distributions. Here the probability of failure is
calculated as the probability of having pairs of ¢ and 4 the result in

a factor of safety less than one,

(e) Ixruncated Bivariate Beta Distribution

While the scale transformation method does provide an accept-
able model, it would still be desirable to have scme control over the
upper limits of the distributions. One way to accomplish this is to
directly truncate the distribution, using a specified upper bound esti-
mated from test data. The truncation will, of course, change the
moments originally calculated, if a significant mass of the distribu-
tion lies outside of the upper limits specified,

The moments of the truncated distribution are found by direct

b
numerical integration of the moment equations ( x = f x f({x)dx, ete.).

a
Using calculated momenis, the parameters (&, £, 7)) needed to produce
the correct moments can be determined by iterative refinement. Howev-—
er, in the case of the truncated beta distribution, this is difficult
to accomplish and convergence is not guaranteed. Thus, truncation of

the bivariate beta distribution proves to be impractical as a means for

modelling the soil strength parameters.



