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PREFACE
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general title "Reliability Analysis of Soil Slopes During Earthquakes".
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77-l6l85. Dr. Michael Gaus is the program manager of this project of

which Professor Dimitri A-Grivas is the principal investigator.

Four progress reports on the present project have been previ­

ously submitted to the National Science Foundation and are referred to

in this text as Report Nos. CE-78-5, CE-78-6, CE-78-7 and CE-79-1.

Their titles and authorships are as follows:

1. A-Grivas D., J. D. Howland and P. Tolcser, "A Probabili­

stic Model for Seismic Slope Stability Analysis," Report ~ CE-78-S,

Dept. of Civil Engineering, R.P.I., p. 82, June 1979.

2. A-Grivas, D., "Program RASSUEL - Reliability Analysis of

Soil slopes Under Earthquake Loading," Report NQ....., CE-78-6, Dept. of

Civil Engineering, R.P.I., p. 41, December 1978.

3, A-Grivas, D., R. Dyvik and J.D. Howland, "An Engineering

Analysis of the Seismic History of New York State", Report ~ CE-78-7,

Dept. of Civil Engineering, R.P.I., p, 77, December 1978.

4. A-Grivas, D. and G.F. Nadeau, "Probabilistic Seismic sta-

bility Analysis - A Case Study", Report NQ....., CE-79-1, Dept. of Civil

Engineering, R.P.I., p. 34, JUly 1979.

The authors wish to thank the National Science Foundation for

sponsoring this study. Finally, special thanks are extended to Betty

Alix for typing this report.
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ABSTRACT

A new model has been proposed in this study for the deter­

mination of the reliability of earth slopes during earthquakes. The

developed method provides a probabilistic, pseudo-static, seismic sta­

bility analysis of soil slopes. The measure of safety used is the prob­

ability of failure (rather than the customary safety factor), the

numerical values of which are determined through a Monte Carlo simulation

of failure. Significant uncertainties have been identified and proba­

bilistic tools have been introduced for their description and ameliora­

tion. Moreover, a comprehensive computer program has been written and

applied in a number of case studies.

In the present fifth and final report, a review of the objec­

tives and achievements of this project is first presented. The models

employed to account for the variability of soil strength are then de­

scribed and illustrated in an example. A parametric study is conducted

on the relevant strength and seismic parameters and the results are

presented in a number of graphs and tables. Finally, an evaluation of

the developed model is included together with a discussion of its ap­

plicability and limitations.

xv





1. INTRODUCTION

Because of possible excessive life and economic losses in-

curred by failure, soil slopes (naturally formed or man-built) are

among the most important civil engineering structures in earthquake

prone areas. This is clearly demonstrated by the considerable amount

of literature on the subject, particularly on earthdam slopes (e.g.,

Newmark, 1965; Seed et al., 1966; Whitman, 1970; Seed et al., 1971,

etc. ).

Although much experience has already accumulated about the

design and performance of soil slopes, geotechnical engineers still

face considerable uncertainties when they analyze their stability.

These uncertainties reflect the variability of the material parameters,

the slope'S loading conditions, the location and shape of the failure

surface, the particular method used in the analysis, etc. The possibil-

ity of an earthquake further complicates the task. Thus, efforts

directed towards a more reliable approach for the assessment of the

safety of slopes must, of necessity, take into account these uncertain-

ties.

In this study, the safety of slopes is measured in terms of

the probability of failure (Pf) rather than the customary factor of

safety (F). As is the case with other structures, it is assumed that
s

failure occurs when the calculated available strength R of a slope is

exceeded by the applied load S; that is,

1

/



"Failure" [R < S]

2

(1-1)

The probability of failure is then defined as

P [R < S] (1-2)

i.e., P [R < S] signifies the probability that the applied loading ex­

ceeds the available strength.

The resistance R of the soil mass comprising a slope is as­

sumed to be constant during the earthquake loading. This is a reason­

able assumption for a wide variety of soils, particularly cohesive ones

(Arango and Seed, 1974). The approach taken is not directly applicable

to the analysis of the stability of slopes for which R decreases during

cyclic loading (e.g. the case of liquefaction of loose saturated sands

or sensitive clays).



2. REVIEW OF PREVIOUSLY REPORTED RESEARCH EFFORT

~ Objectives Qf ±he Present Project

The main objectives of the present research project are as

follows:

(a) To describe the additional forces that are imposed upon

an earth slope during an earthquake. As these forces are

generally random in nature, derivation of the probability

density function of the ground acceleration is required.

Thus, each acceleration level is exceeded with a certain

probability which depends on the earthquake magnitude,

the distance between site of slope and earthquake source

and a number of empirical regional parameters.

(b) To develop a model for slope failure which accounts for

the randomness associated with the location and shape of

the failure surface and the variability of soil strength

parameters.

(c) To assess the probability of failure (or, its complement,

the reliability) of an earth slope with given boundary

and material conditions.

(d) To determine the influence of significant seismic and ma­

terial parameters on the numerical value of the probabil­

ity of failure of slopes.

(e) To apply the developed analysis to case studies reflect­

ing the seismic characteristics of the State of New York.

(f) To examine the applicability and limitations of the

3



4

developed method of analysis and to provide guidance for

future similar approaches.

~ Summary Qf completed~

~ ~ ~ Determination Qf ±he probability Density EunQ=

±ion Qf ±he Maximum Ground Acceleration.

A general expression was developed for the probability densi-

ty function of the maximum ground acceleration a at a given site (it
max

appears in Report No. CE-78-5). This was achieved through an applica-

tion of the method of transformation of variables and use of (a) an ap-

propriate attenuation relationship (i.e., an expression relating a
max

to the magnitude of the earthquake, the distance between earthquake

source and site of slope and a number of empirical regional parame-

ters), and (b) the probability density function of the earthquake magni-

tude.

Two magnitude-frequency relations (log-linear and log-

quadratic) and three types of possible earthquake sources (point,

line and area sources) were investigated.

As part of Task 1, an engineering analysis was performed on

the seismic history of New York State. Available earthquake data were

compiled, evaluated and analyzed. The resulting data list contained

1289 seismic events that took place in the period between 1568 and

1975.

The available data indicated that the seismic activity of New

York has been concentrated mainly in three areas: (a) Northern New York

(Adirondack and st. Lawrence regions), (b) Western New York

(Buffalo-Attica region), and (c) Southern New York and New York
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Metropolitan area. Two well identified fault systems exist in the

state: the Clerendon-Linden Fault and the Ramapo Fault. These two

fault systems are partially associated with the seismic activities in

the Western and Southern parts of the State, respectively.

The functional relationships between frequency (A) and magni-

tude (m) of earthquakes was investigated by analysing all data avail-

able and for a range of magnitude m (in Richter scale) between 2.0 and

7.0 (2.0 ~ m ~ 7.0). This range of magnitude involved a total of 1242

seismic events. On the basis of the results of this task, it was con-

cluded that a log-quadratic frequency-magnitude relationship best rep-

resented the available data. This is shown in Fig. 2-1 (from Report

No. CE-78-7).

The seismic hazard that corresponds to the log-quadratic

frequency-magnitude relationship was determined for a number of time

periods and under the assumption that earthquakes occur in accordance

with the Poisson model. The case where earthquakes follow a more gen-

eral Markov process was also investigated. The findings from the two

models were compared and the results of this comparison were presented

and discussed.

It was found that for smaller return periods, the Markov mod-

el gave smaller values for the probability of occurrence of earth-

quakes of various magnitudes than did the Poisson process. This result

*is considered to be consistent with the elastic rebound theory.

*
According to the elastic rebound theory, for an earthquake to occur,
elastic strain energy must first be stored in the rock masses along a
fault. When an earthquake occurs, the stored energy is released and
consequently, the probability of another earthquake taking place before
sufficient energy is stored again decreases.
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It should be noted that the term "seismic risk" or "seismic

hazard", as employed in this study, referred to the probability with

which certain values of the earthquake magnitude were exceeded during a

given time period. In this sense, they represented an analysis of the

data and did not provide seismic loads (usually expressed in terms of

peak ground motion parameter) for New York state.

~ ~ ~ Description Qf Failure Surfaces.

The surfaces along which earth slopes fail have been taken

have of an exponential shape (logarithmic spiral), following studies by

Rendulic (1935), Frohlich (1953), A-Grivas (1976) and Baker et al,

(1977). The analytical expression for a failure surface was given as

follows:

in which,

r r o exp (-et)

r = the initial radius of the log spiral (value of r
o

for 6=0),

e = the angle between rand r o ' and

t = tan¢, where ¢ = soil's angle of internal friction.

This is shown schematically in Fig. 2-2 (from Report No. CE-78-5).

The location in the interior of the slope mass of a potential

failure surface, as given by the above expression, was found to depend

on the following three factors:

(a) the position along the slope boundary of the initial ra-

dius (Fig. 2-2, Point A),

(b) the location of the center of the log spiral (Point 0),
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and

(c) the numerical value of the ¢-parameter of soil strength.

The expected (mean) location of the failure surface was de­

termined using the Monte Carlo simulation technique. An excellent ap­

proximation for the mean failure surface was obtained by employing the

point estimates method for probability moments, proposed for the first

time by Rosenblueth (1975). In Fig. 2-3 is shown an example of the

comparison of the mean failure surface obtained by the two methods.

The details of the manner with which the above failure sur-

faces were generated and used in the analysis were given in Report No.

CE-78-5. It should be noted that the commonly used circular failure

surfaces represent a special case of the logarithmic spiral and can be

easily employed in the present analysis.

~ ~~ Assessment Qf ±he Reliability Qf Slopes.

A probabilistic model was developed for the analysis of the

stability of earth slopes under earthquake loading. A detailed de­

scription of the model was the content of Report No. CE-78-5. Signifi­

cant uncertainties associated with conventional pseudo-static methods

of seismic stability analysis were recognized and probabilistic tools

were introduced for their description and amelioration. In particular,

the developed method of analyis accounted for (a) the variability of

the material strength parameters, (b) the uncertainty around the exact

location of potential failure surfaces, and (c) the uncertainty in the

value of the maximum slope acceleration during an earthquake.

The soil material comprising the slope was assumed to be stat­

istically homogeneous with strength parameters (c and t=tan¢) taken as

beta distributed random variables. Using the results of Task 2,
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potential failure surfaces were considered to have an exponential shape

(log-spiral) defined with the aid of three random variables (two geo-

metric factors and the frictional component of soil strength).

The safety of the slope was measured in terms of its probabil-

ity of failure (Pf) rather than the customary factor of safety. The

numerical values of Pf were obtained through a Monte Carlo simulation

of failure.

The seismic load was introduced into the analysis using the

results of Task 1. The maximum horizontal acceleration (a ) exper­
max

ienced by the slope during an earthquake was assumed to be a random

variable the probability distribution of which was found to depend on

the earthquake magnitude, the type of earthquake source considered

(i.e., point, line, or area source), the distance between the source

and the site of the slope and a number of regional parameters. In ad-

dition, for the purposes of this study, it was assumed that the slope

was rigid and, therefore, the maximum acceleration of the slope mass

was taken to be equal to that of the ground.

As a part of Task 3, a computer program was developed to pur-

sue the reliability analysis discussed above. The program was called

"RASSUEL" (Reliability Analysis of Soil Slopes Under Earthquake Load-

ing) and the details of its various operations and subroutines were

given in Report No. CE-78-6. In Fig. 2-4 is shown the flow chart for

program RASSUEL. As a special feature of the program, use was made of

the computer graphics facilities available at R.P.I. in order to allow

the monitoring of the failure surfaces generated during the Monte Carlo

simulation of failure. The graphics option was introduced into the

program in a manner that also permitted its use on non-graphics
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equipped hardware facilities.

In a case study, an investigation was made of the reliability

of a natural soil slope located near Slingerlands, New York. The de-

tails of this case study formed the content of Report No. CE-79-1.

Both static and seismic loading conditions were examined. The model

developed in the previous tasks was used to determine the probability

of failure Pf of the slope for three types of earthquake sources, name­

ly, a point, a line (or, fault), and an area source. The dependence of

Pf on siginificant seismic parameters was examined and discussed.

On the basis of the results obtained in the case study, the

following conclusions were drawn:

(a) The probability of failure was considered a viable alter-

native to the factor of safety as a measure of safety of

soil slopes.

(b) The present probabilistic model was found useful in

assessing the reliability of soil slopes under both stat-

ic and seismic conditions.

(c) The values of the probability of failure attenuated to

the value obtained under static conditions, as the dis-

tance between earthquake source and site of the slope in-

creased.

(d)

(e)

Higher values of the standard deviation a of the "error
€

term" appearing in the attenuation relationship produced

larger values for Pf.

The values of the probability of failure of soil slopes

were greatly affected by the type of earthquake source
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used and the values of the associated seismic parameters.

(f) Under the most unfavorable set of circumstances, from

among those examined in the present study, the probabili­

ty of failure of the slope had a value Pf ~ 0.35 (Fig.

10, Report No. CE-7B-7) which was more than twice that

found under static conditions (Pf ~ 0.15).



3 . DESCRIPTION OF SOIL STRENGTH PARAMETERS

~ variability Qf SQil strength Parameters

The random variation of the strength parameters c ("cohe­

sion") and ¢ ("angle of the internal friction") has been long recog­

nized in geotechnical engineering (e.g., Schmertmann et al., 1960;

Lumb, 1966; etc.) and a number of models have been proposed for their

description. These may be classified into two types, namely (a) those

which consider strength parameters c and ¢ to be independent of one

another, and (b) those which consider c and ¢ to be correlated random

variables.

In general, during a conventional limiting equilibrium analy­

sis of slope stability, the strength of soil is represented by the

Mohr-Coulomb strength criterion expressed in the form

in which,

T c + a tan(¢) (3-1 )

T is the shear strength of soil,

a is the normal stress along the failure surface,

c is the "cohesion intercept" of soil, and

¢ is the "angle of internal friction".

For a given soil deposit, the numerical values of c and ¢ may

be determined by a variety of tests performed either in the laboratory

(e.g., direct shear, triaxial, etc.) or in situ. The variability in

the results of these tests depends on many random factors such as

15
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sampling disturbance, testing errors and, most importantly, the in­

herent variability of soil itself. The last factor represents the fun­

damental source of uncertainty in soil mechanics. It has been found

(Lumb, 1966) that its effect on the variability of soil strength is so

great that the uncertainties due to the other factors are overwhelmed.

~ Independent strength Parameters

To account for the variabilty in the numerical values of c

and ¢, geotechnical engineers have indentified the two strength param­

eters as random variables and have proposed probabilistic models for

their description. In a pioneering work, Lumb (1966) discovered that

random variables c and ¢ followed a normal distribution. This conclu­

sion was drawn from studies on a large amount of test data from soils

found in the area of Hong Kong; namely, a soft marine clay, a residual

silty sand, an alluvial sandy clay and a residual clayey silt. Addi­

tional studies of frequency distributions of soil properties (e.g.,

schultze, 1972; Singh and Lee, 1970, etc.) came to support Lumb's con­

clusion that strength parameters are normal-like variates. In a later

work, Lumb (1970) found that the c-parameter of strength followed more

closely a beta (or, Pearson's type I) distribution and that only its

central portion could be approximated as a normal variate. The use of

the beta (rather than the normal) distribution for modelling soil

strength parameters was also suggested by Harr (1977). Recognizing the

versatility of the beta model, Harr recommended its use to obtain ap­

proximations for many data sets whose measures must be positive and of

limited range.

When c and ¢ are treated independently, the expression for
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the beta distribution takes the following form:

f (x)

in which

( 3-2 )

a, ~ are the parameters of the beta distribution (a, E > 0),

r( is the gamma function, and

x is the normalized strength parameter receiving values

between 0 and 1 (0 ~ x ~ 1); i.e.,

x =
n, - <t
, 'min

<t - <t
'max 'min

or
c - c .

IInn

c -c.
max mln

where c . , ¢>. and c ,¢> are the minimum and maximum values of c
Illl.n RUn max max

and ¢, respectively.

The cumulative density function F (x) is defined as
x

F (x )
x 0

(
)

o

x
o

f (x) dx, 0
x

< x
o

< 1 (3-3)

in which x is the strength parameter c or ¢, and f (x) is given in Eqn.x

( 3-2 ).

Eqn. (3-3) provides the probability with which a strength

parameter receives values smaller than, or equal to, a particular value

x.

The mean value and second central moment (variance) of a

univariate beta distribution may be expressed in terms of the
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parameters a and ~ as follows (Barr, 1977):

and

0.
x =

0.+13
(3-4a)

Var(x)
aS

2
(0.+13) (0.+5+1)

( 3-4b)

In general, when x varies between two limits, say a and b

-(i.e., a ~ x ( b), then x and var(x) are equal to

and

x
0.

a + 0.+13 (b-a) (3-Sa)

Var (x)
2

(b-a)
2

(0.+13) (0:+6+1)
( 3-Sb)

When the mean and variance of x are known (e.g., from

strength data) , then parameters a and ~ of the beta distribution can

be determined from Eqns. (3-S) as follows:

in which,

and

-2
x (I-x)0: =
~

- x
V

13
0:

(0: + 2)- --
x

V
Var (x)

2
(b-a)

x - a
x

b - a

(3-6a)

(3-6b)
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~ Illustratiye Example

In Table 3-1 are given the results of nine direct shear tests

performed on samples of a cohesive soil (Singh and Lee, 1970). Assum-

ing that strength parameters c and ¢ follow a beta distribution, it is

asked to determine the values for the parameters a and e and the corre-

sponding expressions for the probability density functions of c and ¢.

The statistical values (mean, standard deviation and correla-

tion coefficient) of c and ¢ are given in Table 3-2.

As soil strength parameters are by definition non-negative

quantities, the minimum value for c and ¢ must always be positive. An

estimate of the upper bound for the minimum value a, appearing in Eqns.

(3-5) may be obtained by taking the variance of c and ¢ to be equal to

that of a uniform distribution. The latter is equal to

Var _
unJ.form

2
(b - a) /12

and, therefore, the upper bound for the minimum value of a is found

from the above expression to be

a
u

b -J12 Yare x) I (3-7 )

In the case of the data used for the illustrative example,

the upper limit of a for the ¢ parameter is found from the Eqn. (3-7)

to be 21° while the corresponding values of the parameters for the two

beta distributions are



TABLE 3-1

RESULTS OF DIRECT SHEAR TESTS

Strength Parameter

No. c (ksf) ell (degrees)

1 1.042 46.1
2 0.850 37.0
3 0.345 39.4
4 0.000 41.0
5 1.300 25.0
6 0.900 43.0
7 0.720 36.0
8 0.800 27.5
9 0.700 30.0

20



TABLE 3-2

STATISTICAL VALUES OF c AND ¢

Statistical strength Parameter
Value c (ksf) ¢ (degrees)

Minimum 0.00 25.0
Maximum 1. 30 46.1

Mean 0.74 36.1
Standard 0.38 7.2
Deviation

Coefficient of Correlations = -0.325

2J.



<:>-parameter:

c-parameter:

0:=1.15,

0:=1.06,

f3=0.76

f3=0.81

22

Thus, the expressions for the probability density functions

of c, fc(C) and <:>, f<:>(<:», that correspond to the above parameters are

f ¢ (¢)
f (1. 91) (¢-21).15 (1- ¢-21)-.24

f(1.15)f(.76) 25 25

f(1.87) (_c_) .06 _c_) -.19
(3-8 )

f (e) (I-
e f (1. 06)r (.81) 1.3 1.3

In Figs. 3-1 are shown the density functions for c and <:>

while the corresponding cumulative density functions appear on Fig.

3-2. The effect on the reliability of a slope of the minimum value of

the strength parameters is examined in detail below in Section 4.1.2.

~ Correlated strength Parameters

statistical examinations of available strength data have re-

vealed the existence of a negative correlation between c and <:> (e.g.,

Singh and Lee, 1970; Lumb, 1970; Yuceman and Tang, 1975, etc.). It is

therefore necessary to examine the joint variation of c and <:> and to

develop a probabilistic model for its description.

Both the normal and the beta distribution discussed above

have multivariate extensions. The bivariate normal density function

may be written as (Hogg and craig, 2970)
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f (c, ¢) 1 exp(-q/2),

2nO CO¢p
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( 3-9)

in which

q

c t 0c are the mean and standard deviation of c,

¢t o¢ are the mean and standard deviation of ¢, and

P is the correlation coefficient of c and ¢.

Associated with the joint distribution are the marginal and

conditional distributions of c and ¢. When the former follows the bi-

variate normal model, the latter are also normal. Thus, for example,

the marginal distribution of c is normal with parameters c and 0c'

i.e. ,

fCc) __1_ exp le c- c ) 2
2 c

c

(3-1.0)

and the conditional distribution

also normal with parameters ¢ +

f(¢ic ) (i.e., ¢ given that c = c ) is
o 0

- J "2.)1P CC -c) °,/° Clnd c,;, Cl-p , i. e. ,
o q; C '1"

(3-1.1.)

where
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In Figs. 3-3, 3-4 and 3-5 are shown graphically the distr1bu-

tions that correspond to Egns. (3-9), (3-10) and (3-11), respectively,

for the case of the data used in the illustrative example of the previ-

ous section. Fig. 3-4 provides the normal distribution given in Egn.

(3-9) truncated at the specified limits. In Fig. 3-6 is shown the bi-

variate normal distribution that corresponds to the same data and for

the case where p is equal to -0.65. For comparison, the case of uncor-

related c and ¢ (i.e., p = 0) is shown in Fig. 3-7. From Figs. 3-3,

3-6 and 3-7, it is seen that the concentration of the probability den-

sity function along the line connecting c and ¢ increases as the
max max

value of the correlation coefficient increases. From the same figures,

it is also seen that, for the case of the bivariate normal model, a sig-

nificant portion of the probability density function lies outside the

experimentally obtained upper and lower limits of the two variables (in

fact, outside the physical limits of the two strength parameters, i.e.,

c < 0 and ¢ < 0).

The multivariate beta (or, Dirichlet) distr1bution provides

an alternative to the bivariate normal model. This model, used for the

first time to descr1be geotechnical data by A-Grivas and Harrop-

Williams (1979), has the following analytical expression:

f (x, y)
f (a+8+y)

f(a)r(8)f(y)

( 3-12 )

x, y > 0 and 0 .2. x+y 2. 1

in which x and y are normalized forms of the two variables and 0:, 13, 'Y

are the three parameters of the bivariate beta distr1bution (0:, (3, 'Y >

0) •



f(C,¢)

p =: _0.325

+30 C
c

FIGURE 3-3. BIVARIATE NORMAL DISTRIBUTION FOR STRENGTH pP,RlIHETERS

OF ILLUSTRATIVE EXAMrLE

+3 0 ¢

¢

-30¢1~~~~~~~~~~~6666~~~~~
-30 Cc

N
--.I



.----_ ..' , -----

--------- -_._-----------~--

c

--~-----~ -- ----

.-­
/

c c
maz

28

.­
.'

.'

FIGURE 3-4. TRuNCATED BIVARIATE NORMAL DISTRIBUTION FOR
STRENGTH PARAMETERS OF lLLUSTRATlV1': EXAMPLE

(p= _0.325)



29

f (c)

.53

.26

(a) Marginal Distribution of c

-.40

f(¢ I c=c)

.059 j

.044

.028

.0.+5

-.02 .36 .74 1.12 1.50
I

1.88
c [ksf]

(b) Conditional Distribution of ¢
(for c = C = .74 ksf)o .

15.6 22.3 29.2 36. 42.8 49.6 56.4

¢[deg]

FIGURE 3-5. MARGINAL AND CONDITIONAL DISTRIBUTIONS OF c AND ¢



f(c,¢)

p ::: _0.65

+30¢

¢~

\.,V
o

c +30 c

FIGURE3
c6

• BIVARIATE NoRMAL DISTRIBUTION fOR STRENGTH PARAMETERS

OF ILLUSTRATIVE EXAMrLE

-30 c



p =.00

c
-30 c

FIGURE 3-7. BIVARIATE NORMAL DISTRIBUTION FOR STRENGTH PARAMETERS

OF ILLUSTRATIVE EXAMPLE

f(c,¢)

VJ
f-'



32

- 2 Z
The mean values (x, y), variances (Ox' 0y ) and covariance

(0 ) of this distribution can be expressed in terms of the
xy

parameters a, e, and ~ as follows (Wilks, 196Z):

x = ~ ,
L

2
c x

6 2 S(a+y) (3-l3)
y = , c

I 2 (I+l)
~ YL

-as
c

I 2 (I+l)xy

in which L = a + e + ~.

The correlation coefficient p of x and y is then equal to

p

c
xv

c c
x y

as
(3-l4)

As a, e and ~ are all positive by definition, from Eqn. (3-l4) one has

that the correlation coefficient of the bivariate beta distribution

must always be negative.

~ aPproximation Q! Strength~~~ Bivariate~

Distribution

A procedure is presented here to approximate data on the c

and ¢ parameters of strength using the bivariate beta model. In doing

so, the task is to determine the three parameters a, e and ~ of the mod-

el from the five statistical moments (two first order and three second

order moments) and four limiting values (two minima and two maxima) of

the strength data. This may be achieved in a number of ways, a
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detailed description of which is presented in Appendix A. The approach

followed in this study involves a transformation of c and ¢ using ap-

propriate scaling factors.

Let x and y be the normalized scaled expressions for the two

strength parameters c and ¢, respectively; i.e.,

c - c
minx =

k (c -c.)
x max mln

(3-l5)

¢ - ¢ .mlny
k (¢ -¢.)

y max mln

where k and k are the scaling factors needed for the transformation
x y

of the normalized variables c and ¢ (Appendix A).

Parameters a, ~, ~, k , and k may be calculated directly by
x y

transforming the variables (Eqn. (3-l5» and matching the second order

moments (i.e., 0c' o¢ and P) of the distribution with the corresponding

values obtained from an analysis of the data.

2
[c

4
. DENX'DENY/Cp's 'S 'Cc +c +1) )-l]/Cc +c +1)

x y 3 4 3 4

B

U = c 4 • B

k DENX/(c -c.)
x max mln

k DENY/(¢ -¢.)
y max mln

where

(3-l6)
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(-;;--c )/(q._q.)
min mln

1-c's ()'f'

( ] y) (--y )
p·s c-sxl):

-(s ·c )/(s .p)-l
x 2 y

-c
3
/[s /(c

2
opos )+1]

y ):

DENY=(¢-~ . ).(c3+c4+1)
mln

DENX=DENY/c 2
s 0 / (c -c.)

x c max mln
so,) (eI> -¢.)

y ~ max mln

Such a formulation allows all five moments, obtained through

a statistical analysis of the data, to be preserved along with the low-

er limits of c and ¢. The upper bounds of c and ¢ are not maintained

as they are found to be functions of the scaling factors k and k
x y

(Appendix A). This shortcoming, however, introduces no significant er-

ror in the model.

Both the marginal and the conditional distributions of the

bivariate beta are univariate beta types. The marginal distribution

for x is beta distributed with parameters (a, ~+~), i.e.,

f(x) f(a+S+y) xa - I . (l_x)S+y+1
f(a)·f(S+Y)

(3-17 )

while the conditional distribution of y may be expressed in terms of a

transformed variable y' = yj(l-x) which is independent of x. The dis-

tribution of y' is as follows:

f (y') f(-.L)
I-x

f(S+y)
f(S)f(y)

(-.L) S-I(l_-L)y-I
I-x I-x

( 3-18 )



35

For the data of the illustrative example, presented in Sec-

tion 3.3, the three parameters a, S and ~ and the two scaling factors

k and k are found to be equal tox y

a = 2.71, S = 2.98, y 5.90

k 2.43, k = 2.33
x y

In Fig. 3-8 is shown the bivariate beta distribution that

corresponds to the data of the illustrative example, while Fig. 3-9

presents the same distribution truncated at the minimum and maximum val-

ues of the variables. In Figs. 3-10 and 3-11 are shown the marginal

distribution for c and conditional distribution for ~, respectively.

The bivariate beta distribution for the same data but for a value of

the correlation coefficient p = -.65 appears in Fig. 3-12.

~ Comparison Qf ~ various Models

The four distributions presented above (i.e., univariate

normal and beta and bivariate normal and beta) provide reasonable mod-

els for the two soil strength parameters c and~. The normal and bi-

variate normal distributions are more convenient to employ, as they re-

quire only two (normal) or five (bivariate normal) statistical parame-

ters. The latter are determined from a statistical analysis of avail-

able data.

A shortcoming associated with the normal models, which in

some cases may have a significant effect, is the extent of the tails of

the distribution. The lower and upper limits of the normal (and
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bivariate normal) are -~ and 00, respectively, while the actual range of

variation of the two strength parameters is significantly smaller and

always positive. Moreover, in the case of the illustrative example

(Section 3.3), the available data indicate a much flatter distribution

than that given by the normal model.

The beta distribution provides a more flexible model as real­

istic bounds for the random variables can be incorporated. The use of

the beta distribution, however, is complicated by the need to select

these bounds based on limited data. Using Chebyshev's inequality (for

specified sigma bounds) or introducing simply the physical limits of

the variables can help overcome this problem. The dependence of the

probability of failure of earth slopes on the limits of the strength

parameters is investigated below, in Section 4.1.2.

Finally, the use of joint models, such as the bivariate nor­

mal and bivariate beta distributions, allows the correlation of the soil

strength parameters to be included in the analysis. A comparison of

Figs. 3-4, 3-6 and 3-7 indicates that the bivariate normal model de­

pends considerably on the values of the correlation coefficient. The

same effect is also true in the case of the bivariate beta model (Figs.

3-8 and 3-12). The sensitivity of the probability of failure to the

value of the correlation coefficient is considered in Section 4.2.1.



4. PARAMETRIC STUDY OF SOIL STRENGTH

This section examines the influence of soil strength parame­

ters on the probability of failure of slopes. The latter is determined

in accordance with the model developed in this study and presented in

Report No. CE-7B-5 (section 2.2.3).

In order to detach the effect of soil strength from that of

the failure mode, failure is considered here to occur along the criti­

cal (rather than randomly generated) surface.

Two cases are examined, namely: one, in which c and ¢ inde­

pendent, and another, in which c and ¢ are correlated random variables.

~ Independent~ strength Parameters

In this part of the parametric strength study, c and ¢ are

assumed to be independent random variables following the beta model.

Parameters a and e of the beta distribution are calculated using Eqn.

( 3-6 ) .

More specifically, the effect on the reliability of slopes of

the mean value, standard deviation, and third and fourth central

moments of the strength parameters are investigated as well as that of

their minimum values. The third and fourth central moments are intro-

duced in terms of the coefficient of skewness(e
1

) and coefficient of

kurtosis(ez )' respectively, defined as

42
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(4-1)

The coefficient of skewness is a measure of the asymmetry of

the distribution, while the coefficient of kurtosis measures its

peakedness. A value of the coefficient of kurtosis less than three (Ez
< 3) indicates a distribution flatter than the normal (as is, for ex-

ample, the uniform distribution); while a value of Ez larger than three

(~ > 3) corresponds to a distribution more peaked than the nor-
Z

mal.

For the beta distribution, the expressions for E
1

and ~z are

given as (Barr, 1977)

p
~l

2(5-0) (0+B+1)
06(0+8+2)

2
3(0+B~1)[2(a-B) +06(0+B+2)]

06(0+3+2)(0+6+3)

(4-2)

4,1.1 Effect Qf ~ Coefficient Qf variation.

In Figs. 4-1 and 4-2 is shown the effect of the coefficient

of variation of c and ¢, respectively, on the probability of failure of

the slope. The distributions of both c and ¢ were assumed to be sym-

metrical around their mean values (i.e., a
c

4-1 corresponds to a mean value and coefficient of variation of ¢ equal

to 20° and 10% ,respectively, while Fig. 4-Z to c = 130 psf and V
c

20%. The corresponding values of the dimensionless slope stability

parameter A
C
¢' defined as (Janbu, 1954)
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are also shown in the horizontal axis of the two figures. The value of

A
C
¢ indicates the relative importance of c and ¢ on the sta-

bility of the slope. For example, for a slope with A
C

¢ greater than

thirty (A
C

¢ > 30), the ~-parameter is the dominant component of

strength while, for another, with k c ¢ close to zero (AC~ ~ 0) the

c-parameter is dominant.

The dependence of the probability of failure on the mean val-

-
ue (c) and coefficient of variation (V ) of c for the special case of a

c

¢ = 0 material is shown in Figs. 4-3 and 4-4. Fig. 4-3 corresponds to

a slope angle ~ = 30° while Fig. 4-4 to ~ = 60°. As only one random

variable is present in the ¢ = a analysis, it is convenient to show the

results for various values of the mean factor of safety. It is seen

that as the mean value of the factor of safety F
s

approaches one, the

probability of failure approaches a value of 50%, for any value of the

coefficient of variation V .
c

~ Effect Qf Minimum values.

In Tables 4-l and 4-2 are given the results of a number of

failure simulations examining the effect on the probability of failure

of ~. and c _ , respectively. The mean value and coefficient of vari-
m~n m~n

ation of ~ were constant and equal to 36° and 20%, respectively. The

minimum values of ¢ used were 2lo, l4.4°, and 0°. The values 2lo and

l4.4° correspond to two and three sigma bounds, respectively, from the

mean value, while the third value (0°) is the physical lower bound of

the variable. For comparison, the value of the probability of

failure that corresponds to a normal distribution of the strength
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Table 4-1

EFFECT OF THE MINIMUM VALUE OF ~

49

SLOPE PROBABILITY OF FAILURE
DESCRIPTION

Beta Beta Beta Normal
~ _ =21° ~ . =14.4° ~min=0°mln mln

Run 1
).. =9 8 /3=30° .055 .052 .052 .044
c~ . ,

Run 2
X =7 4 /3=45° .060 .060 .060 .052
c~ . ,

(P=O)

Run 2
X =7 4 /3=45° .012 .009 .009 .026
c~ . ,

(p=-. 50)

Run 2 •

).. =7 4 /3=45° .067 .064 .060 .048c~ . ,

( fixed surfaces)

Run 3
X =30 3 /3=35 ° .078 .090 .085 .061c~ .,

Run 4
).. =18 2 /3=30 ° .067 .084 .081 .055c~ .,

(p =0 for ~ . >24°)f mln



Table 4-2

EFFECT OF THE MINIMUM VALUE OF c

SLOPE PROBABILITY OF FAILURE
DESCRIPTION

Beta Beta Beta
C . =570psf C . =380psf C . =Opsfm1n m1n m1n

Run 5 (FS=l. 2)
>- =0 /3=30° .194 .187 .177c4> '

Beta Beta Beta
C . =735psf C . =490psf C . =Opsfm1n m1n m1n

Run 5' (FS=l. 5)
>.. =0 /3=30° .009 .040 .052c4> '

50
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parameters is also included the table.

From Tables 4-1 and 4-2, it is seen that, for given mean val­

ues and coefficients of variation of c and ¢, the probability of fail­

ure is rather insensitive to the minimum values of c and ¢ used to de­

termine the parameters of the beta distributions.

~ Effect Qf Coefficients Qf Skewness and Kurtosis.

In Figs. 4-5 and 4-6 is shown the variation of the probabili­

ty of failure Pf of a slope with the coefficient of skewness ~l of c

and ¢, respectively. It can be seen that the effect of ~l on Pf is

very small compared to that of the mean values of the two strength

parameters.

Finally, in Figs. 4-7 and 4-8 is shown the dependence of the

probability of failure Pf on the coefficient of kurtosis ~2 of c and ¢,

respectively. As was the case with the coefficient of Skewness, there

is no significant effect of ~2 on Pf'

~ Correlated~ Strength Parameters

In this part of the parametric stUdy, c and ¢ are assumed to

be correlated random variables. Both the bivariate beta and the bi­

variate normal models are investigated. The parameters for the bivari­

ate beta distribution are calculated from Eqns. (A-8) of Appendix A.

4.2,1 Effect Qf ~ Correlation Coefficient Qf ~ gnQ ~

In Table 4-3 are listed the values of the probability of fail­

ure Pf of a soil slope that corresponds to various values of the cor­

relation coefficient p of the two strength parameters c and ¢. It can

be seen that P f decreases as p decreases. This trend holds for both

the normal and beta models of strength parameters and is in agreement
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TABLE 4-3

THE EFFECT OF THE CORRELATION OF c AND ¢ ON THE PROBABILITY OF FAILURE

PROBABILITY OF FAILURE

SLOPE DISTRIBUTION CORRELATION COEFFICIENT
DESCRIPTION OF C AND PHI

.00 -.15 -.25 -.325 -.50 -.75

Slope 1 Indep. beta .055 -- -- -- -- --
H=100' /3=30 0 Bivariate beta -- .017 .017
A

C
¢=9.B Bivariate normal .044 .033 - .020 .011 .000

Slope 2 Indep. beta .OGO - -- -- -- --
H=75' /3=45 0 Bivariate beta -- .013 .012 .012
Ac ¢=7.4 Bivariate normal .052 .043 .037 .026

Slope 3 Indep. beta .521 - -- --
H=40.5' /3=15.5 0 Bivariate beta -- .50G .455 .348
Ac ¢=G.9, ru=.32 Bivariate normal .498 .500 .490 .481

Slope 4 Indep. beta .090 -- --
H=75' /3=35 0 Bivariate beta -- .042 .042
X.c ¢ =30.3 Bivariate normal .06G .058 .042

V1
0"'
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with previous findings on the subject (Yucemen and Tang, 1975).

For p equal to zero, the results indicate that the values of

the probability of failure for beta distributed c and ¢ are greater

than those corresponding to a normal distribution with the same mean

values and coefficients of variation. For values of p less than zero,

the values of Pf for the normal case decrease linearly with p.

~ Conclusions frQm Parametric~ Qf SQil strength

On the basis of the results obtained in this parametric study,

the following conclusions are drawn:

(a) The mean value and the coefficient of variation of the

strength parameters have a much greater effect on the

probability of failure of slopes than their minimum val­

ues, coefficients of skewness and coefficients of kurto-

sis.

(b) The correlation coefficient p of the two strength param­

eters has a significant effect on the calculated value

of Pf' As p becomes more negative, the corresponding val­

ue of Pf decreases.

(c) The bivariate normal distribution gives a linear decrease

of Pf with increasing p. This is not the case for the

bivariate beta model.



5. PARAMETRIC STUDY OP SEISMIC LOAD

~ Description Qf Seismic LQad

In a pseudo-static stability analysis, the effect of an

earthquake on the stability of an earth slope is introduced through the

maximum acceleration experienced at the site of the slope. This accel-

eration depends on many factors such as the amount of energy released

during the earthquake (measured in terms of the earthquake magnitude);

the law with which this energy attenuates with the distance from the

earthquake source; the type of earthquake source involved; the seismic

history of the area; local conditions; etc.

In the first report of this series, Report No. CE-78-5, the

significant factors mentioned above were analyzed to yield a mathemat-

ical expression for the probability density function of the maximum

ground acceleration.

The attenuation relationship employed has the form

~a:x

-b
+ b) 3

4 (5-1 )

in which b , b , b , and b are regional parameters, R is the distance
123 4

between the source and the site (in km), and m is the earthquake magni-

tude (in Richter scale).

A log-quadratic frequency magnitude relation was found to

best represent the data available for the state of New York (Report No.

CE-78-7). The probability density function of the earthquake magnitude

was found to have the following expression:

58
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(5-2 )

in which b and c are regional constants, m
l

and ID
O

are the upper and

lower limits of the earthquake magnitude, and k is a normalizing con-

stant, so that the cumulative distribution F(m) become equal to one

when 111 111
1

0 The expression for k is

k

Parameters band c were found to be equal to 0.203 and

-0.182, respectively, and the lower and upper limits of the magnitude

were specified as m
o

= 2 and m
1

= 7. From Eqnso (5-1) and (5-2), using

the method of transformation of variables (Hahn and Shapiro, 1967), the

density function the maximum acceleration was found to be equal to

f (2 )
max

1
amax

2 2
(2cG+b)exp[b(G-m )+c(G -ill )1o 0 -

(5-3)

where

Two attenuation relationships have been proposed for the East-

ern United States (Report No. CE-78-S) and were employed in the pre-

sent study. Their expressions are

a
max

a
max

1.15ID( )-1. 01.183 e R

(5-4a)

(S-4b)
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In Figs. 5-1 and 5-2 are shown the cumulative distributions

of a that correspond to Eqns. (5-4a) and (5-4b), respectively.
max

An error term € has been included in order to account for the

difference between predicted and observed values of a . Introducing
max

€ into the expressions of the attenuation relationships, the lat-

ter become

a
max

a
max

1 1. lsm( )1. 01. 83 e R €

(5-Sa)

(5-Sb)

where € is taken to be a log-normally distributed random variable with

a median value of 1.0 and a standard deviation a varying between O.S
€

and 1. 0 (0. 5 ~ a ~ 1. 0 ) .
€

In Figs. 5-3 and 5-4 is shown the resulting cumulative dis-

tribution of a that correspond to Eqn. (5-5a) and for the case where
max

the error term has standard deviations a equal to 0.5 and 1.0, respec­
€

tively. In Figs. 5-5 and 5-6 is shown the same cumulative distribution

for the case of Eqn. (5-5b) with a equal to 0.5 and 1.0, respectively.
€

A summary of the statistical parameters of the acceleration for the

above cases (Figs. 5-1 through 5-6) is given in Table 5-1.

~ Description Qf ±ha EarthgUake Source

The maximum horizontal ground acceleration as described above

corresponds to a point representation of the earthquake source

(point-source model). This is shown schematically in Fig. 5-7a. Two

additional models have been introduced for the earthquake source,
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TABLE 5-1 STATISTICAL VALUES OF MAXIMUM GROUND ACCELERATION (POINT SOURCE MODEL)

-
ATTENUATION

ERROR TERM DISTANCE a a Vmax a a
RELATIONSHIP a (km) (g) max max

E
(g) (g)E

0.00 1. 00 1 0.0653 0.0381 58.42
0.00 1. 00 10 0.0438 0.0248 56.59
0.00 1. 00 25 0.0271 0.0144 53.00
0.00 1. 00 100 0.0084 0.0050 59.74
0.50 1.133 1 0.0703 0.0513 72.91

(1) 0.50 1.133 10 0.0469 0.0336 71. 60
0.50 1.133 25 0.0316 0.0258 81.60
0.50 1.133 100 0.0090 0.0067 74.52
1. 00 1. 649 1 0.0747 0.0626 83.76
1. 00 1. 649 10 0.0499 0.0428 85.72
1. 00 1. 649 25 0.0343 0.0327 95.42
1. 00 1. 649 100 0.0097 0.0085 87.89

0.00 1.000 1 0.0541 0.1159 214.41
0.00 1.000 10 0.0052 O. 0111 213.40
0.00 1.000 25 0.0019 0.0037 190.41
0.00 1.000 100 0.0006 0.0013 220.41
0.50 1.133 1 0.0574 0.1308 228.04
0.50 1.133 10 0.0052 0.0097 187.35

(2) 0.50 1.133 25 0.0026 0.0063 238.20
0.50 1.133 100 0.0006 0.0012 217.22
1. 00 1. 649 1 0.0604 0.1426 235.86
1. 00 1. 649 10 0.0055 0.0112 204.16
1. 00 1. 649 25 0.0029 O. 0071 249.01
1.00 1. 649 100 0.0006 0.0014 232.15

ATTENUATION RELATIONSHIP: (1) 1100 eO.5m(R+25)-1.32E: (2) 1.183 el.15~-I'0E:

0'
--.j
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namely the line (or, fault) model and the area model (Cornell, 1968).

A line source model (Fig. 5-7b) is used in the case where an active

fault has been identified in the area of interest, or when the epicen-

ters of a series of earthquakes lie approximately along a line. An area

source (Fig. 5-7C) is used when no particular point or line source can

be identified or when earthquakes occur randomly within a certain re-

gion.

Occurrences of earthquakes from these sources are assumed to

be random events uniformly distributed along a fault or within an area.

On the basis of this assumption, the probability density function of

the maximum acceleration for the line and area sources were determined.

The resulting expressions were presented in Appendix B, Report No.

CE-78-S.

The above models for the earthquake source were adopted as

part of the Monte Carlo simulation technique employed in the "RASSUEL"

model. The most critical of the two attenuation relationship, i.e.,

that given by Eqn. (S-4a), has been introduced in the program to deter-

mine the cumulative density function of the maximum ground acceleration

for the cases of line and area sources (Figs. 5-8 to 5-25).

~ Source:

In Figs. 5-8 through 5-13 is shown the cumulative distribu-

tions of a for a fault length equal to 100 kID; while in Figs. 5-14
max

through 5-19 is given the same distribution for a fault length equal to

250 kID. Figs. 5-8 through 5-10 and Figs. 5-14 through 5-16 correspond

to the case where the orientation of the fault (defined in Fig. 5-7) is

at an angle of 45° with respect to the site of the slope, while Figs.

5-11 through 5-13 and Figs. 5-17 through 5-19 correspond to an
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orientation angle equal to 90°. Figs. 5-8, 5-11, 5-14 and 5-17 corre-

spond to the case of the deterministic attenuation relationship, given

by Eqn. (5-4a); while Figs. 5-9, 5-10, 5-12, 5-13, 5-15, 5-16, 5-18 and

5-19 refer to the attenuation relationship with an error term (having a

median equal to 1 and a standard deviation of 0.5 or 1.0). The stat-

istical values of the distributions of a for the line source are
max

summarized in Tables 5-2 and 5-3.

Ar.ea Source:

In Figs. 5-20 and 5-21 are shown the cumulative distribution

of a for depths of the area source equal to 0 krn and 20 krn, respec-
max

tively, and for the attenuation relationship given by Eqn. (5-4a).

The case of an attenuation relationship with an error term,

Eqn. (5-5a), was also investigated and the results are shown in Figs.

5-22 through 5-25. Finally, in Table 5-4 are listing the statistical

values of the maximum accelerations for the case of the area source.

~ Conclusions IrQm Parametric~ Qf Seismic~

On the basis of the results of this parametric study, the

following conclusions are drawn:

(a) From the two attenuation relations examined, Eqn. (4-4a)

always results in larger values for the maximum horizon-

tal acceleration.

(b) When an error term is introduced into the expressions for

the attenuation relationships, Eqns. (5-5), the corre-

sponding values of a are larger than those obtained
max

without the error term.

(c) From the results of this study, it appears that the



TABLE 5-2 STATISTICAL VALUES OF MAXIMUM GROUND ACCELERATION (LINE SOURCE MODEL, FAULT LENGTH = 100 km)

- 0" VORIENTATION ERROR TERM DISTANCE a a a
(8) - max max max

0"
S E: (g) (g) (g)

0.00 1. 00 1 0.0318 0.0231 72.65
0.00 1. 00 10 0.0291 0.0201 69.00
0.00 1. 00 25 0.0231 0.0156 67.63
0.00 1. 00 100 0.0081 0.0046 57.32
0.50 1.133 1 0.0345 0.0311 90.01

45° 0.50 1.133 10 0.0323 0.0289 89.37
0.50 1.133 25 0.0262 0.0230 87.60 I
0.50 1.133 100 0.0088 0.0068 77 .55
1. 00 1.649 1 0.0370 0.0381 102.88
1.00 1. 649 10 0.0345 0.0354 102.75
1. 00 1.133 25 0.0280 0.0289 103.32
1.00 1.133 100 0.0094 0.0084 90.37

0.00 1. 00 1 0.0315 0.0225 71.41
0.00 1. 00 10 0.0278 0.0193 69.56
0.00 1. 00 25 0.0217 0.0145 67.00
0.00 1. 00 100 0.0079 0.0044 55.37

90° 0.50 1.133 1 0.0347 0.0321 92 .57
0.50 1.133 10 0.0286 0.0223 77.79
0.50 1.133 25 0.0238 0.0170 71.19
0.50 1.133 100 0.0084 0.0058 69.60
1.00 1. 649 1 0.0369 0.0394 106.78
1. 00 1.649 10 0.0305 0.0273 89.48
1. 00 1. 649 25 0.0255 0.0210 82.36
1. 00 1. 649 100 0.0090 0.0074 82.30

ATTENUATION RELATIONSHIP: 1100 eO. 5m (R+25)-1.32s co
w



TABLE 5-3 STATISTICAL VALUES OF MAXIMU}l GROUND ACCELERATION (LINE SOURCE MODEL, FAULT LENGTH 250 km)

- 0 V
ORIENTATION ERROR TERN DISTANCE a a a

(8 ) ~km)
max max max

0 E: (g) (g) (%)E:

0.00 1. 00 1 0.0185 0.0173 93.55
0.00 1. 00 10 0.0184 0.0165 89.81
0.00 1. 00 25 0.0154 0.0124 80.35
0.00 1. 00 100 0.0082 0.0058 71. 31

45° 0.50 1.133 1 0.0204 0.0244 119.80
0.50 1.133 10 0.0192 0.0238 123.86
0.50 1.133 25 0.0169 0.0167 98.51
0.50 1.133 100 0.0088 0.0083 93.90
1. 00 1. 649 1 0.0218 0.0285 130.88
1. 00 1. 649 10 0.0206 0.0283 136.92
1. 00 1. 649 25 0.0181 0.0196 108.29
1. 00 1. 649 100 0.0096 0.0108 112.47

0.00 1. 00 1 0.0173 0.0160 92.53
0.00 1. 00 10 0.0167 0.0143 85.75
0.00 1.00 25 0.0146 0.0115 79.03
0.00 1. 00 100 0.0069 0.0041 59.00

90° 0.50 1.133 1 0.0202 0.0215 106.54
0.50 1.133 10 0.0195 0.0200 103.02
0.50 1.133 25 0.0163 0.0163 100.30
0.50 1.133 100 0.0074 0.0060 81. 02
1. 00 1. 649 1 0.0215 0.0254 117.67
1. 00 1. 649 10 0.0209 0.0245 116.86
1. 00 1. 649 25 0.0174 0.0196 112.10
1. 00 1. 649 100 0.0078 0.0072 93.05 OJ

.c--

ATTENUATION RELATIONSHIP : 1100 eO. Sm R-1 . 32E:
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TAJ3LE 5-4 STATISTICAL VALUES OF }lAXIHill1 GROUND ACCELERATION (AREA SOURCE HODEL)

ERROR TERM - a V
RADIUS a a a

DEPTH E (km) max max maxa
(g) (g) (g)E

0.00 1. 00 1 0.0663 0.0387 58.33
0.00 1. 00 10 0.0522 0.0314 60.04
0.00 1. 00 25 0.0356 0.0210 58.96
0.00 1. 00 100 0.0142 0.0118 83.27
0.50 1.133 1 0.0722 0.0560 77.51
0.50 1.133 10 O. 0572 0.0423 73.88

0.0 km 0.50 1.133 25 0.0396 0.0327 82.61
0.50 1.133 100 0.0154 0.0160 104. 01
1. 00 1. 649 1 0.0772 0.0718 92.92
1. 00 1. 649 10 0.0614 0.0533 86.64
1. 00 1. 649 25 0.0424 0.0400 94.13
1. 00 1.649 100 0.0166 0.0211 126.87

0.00 1. 00 1 0.0027 0.0059 222.26
0.00 1. 00 10 0.0025 0.0044 177.68
0.00 1. 00 25 0.0022 0.0048 215.72
0.00 1. 00 100 0.0008 0.0015 189.33
0.50 1.133 1 0.0028 0.0054 193.08
0.50 1.133 10 0.0027 0.0067 254.07

20 km 0.50 1.133 25 0.0023 0.0062 276.31
0.50 1.133 100 0.0009 0.0024 253.69
1. 00 1. 649 1 0.0029 0.0059 201. 58
1. 00 1. 649 10 0.0028 0.0081 282.44
1. 00 1. 649 25 0.0024 0.0080 326.11
1. 00 1. 649 100 0.0010 0.0027 270.09

ATTENUATION RELATIONSHIP: 1100 eO. Sm R-1 . 32 s
\0
"-'
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orientation (angle 8) of the line source has little ef-

fect on the magnitude of the maximum horizontal accelera-

tion.

(d) The length of the fault also has little influence on

a , for a distance between the source and site of the
max

slope approaching 100 km.

(e) For faults closer to the site, the maximum accelerations

decrease as the fault length increases.



6. EVALUATION OF THE DEVELOPED MODEL

£.......l. Oyeryiew.Qf ±he HQdel

A new approach has been proposed in this study for the deter­

mination of the reliability of earth slopes during earthquakes. The

developed method provides a probabilistic, pseudo-static, seismic sta­

bility analysis. The safety of slopes is measured in terms of the prob­

ability of failure (rather than the customary safety factor), the nu­

merical values of which are determined through a Monte Carlo simulation

of failure.

Significant uncertainties that are present in conventional

methods of analysis have been identified and probabilistic tools have

been introduced for their description and amelioration. More specific­

ally, the developed procedure accounts for (a) the variability in the

numerical values of the material strength parameters, c and ~; (b) the

uncertainty in the exact location of potential failure surfaces within

the slope mass; and (c) the uncertainty in the load imposed upon a

slope during an earthquake.

The statistical description of the random variables intro­

duced in the model is consistent with recent findings on the subject.

Thus, the variability of soil strength parameters is described utiliz­

ing and expanding upon results available in the literature, in particu­

lar those reported by Lurnb (1966, 1970) and Harr (1977). The parame­

ters used to describe the location of the failure surfaces are not

directly measurable and have to be estimated empirically. Here, previ­

ous experience with the logarithmic failure surfaces is utilized as

93
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well as observations on recorded failures (Frohlich, 1953; A-Grivas,

1976). The probability density function of the horizontal ground acce-

leration is determined on the basis of (a) an analysis of seismic data

in the area of interest, yielding the earthquake frequency-magnitude

relationship, and (b) an attenuation equation for the peak ground acce-

leration.

~ CQmparjsQn~~ MethQds

CQnventiQnally, limit equilibrium methods Qf slope stability

analysis involve an iterative (trial-and-error) procedure in which the

minimum factor Qf safety F
S

is sought by varying the surface (usually a

circular arc) alQng which failure may Qccur. Tnus, minimizatiQn Qf F
S

is achieved through the use Qf some searching technique and the surface

that corresponds to the minimum value of F is considered as critical.
5

MQre recently, a variational approach was used to minimize F
S

and to determine the critical failure surface (e.g., Baker and Garber,

1977). Tne resulting shape for the latter was that of a lo~arithmic

spiral, similar to the one adopted in the present model.

In general, there is a large number of surfaces along which

slope failure is pQssible. If P
f

. represents the probability of fail­
l

ure alQng a particular surface 5., i = 1,2, ... ,N, then the tQtal proh­
~

ability of failure P
f

of the slQpe is equal to

(6-1 )

. Implied in Eqn. (6-1) is that surfaces S.,
l

1p [s.]
~

in which P[S.] is the probability of occurrence of each surface S. and
~ l
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i=1,2, ... ,N, are independent of one another.

The case where a slope may fail along an infinite number of cor-

related failure surfaces was studied by Catalan and Cornell (1976). The

authors pursued a reliability analysis of soil slopes by transforming the

problem of a series system with an infinite number of components into a

more tractable level-crossing one. Thus, the probability of failure was

found by determining the expected number of threshold crossings while as-

suming that (a) such crossings are rare Poisson events, and (b) the process

is Gaussian and stationary in the vicinity of the least reliable failure

surface. Failure surfaces were assumed to be circular in shape along which

the shear strength of soil was taken to be constant (i.e., conditions cor-

responding to an undrained analysis).

The method of selecting failure surfaces that was used in the

present study was based on the observation that the majority of possible

surfaces contribute very little to the summation appearing in Eqn. (6-1);

i.e., they have a relatively small probability of occurrence (P{S.} ~ 0).
1

From examinations of recorded slope failures, a critical region was

identified within the slope mass and a method was developed for the

random generation of potential failure surfaces that lie within this

region (Report No. CE-78-5).

An alternative approach to the determination of the probabil-

itYof failure may be pursued on the basis of one single failure sur-

face, namely that with the highest probability of occurrence. Such an

approach does not account for the uncertainty around the exact location

of the failure surface and ignores the contribution on the probability

of failure of other possible but less probable surfaces. Such a study

has been pursued by Alonso (1976), who demonstrated that the critical
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surface found through a conventional analysis coincides with the one

along which the probability of failure receives its maximum value.

Also, studies based on a single failure surface (of circular shape)

were performed by Wu and Kraft (1970), Gilbert (1977) and Tang, Yuceman

and Ang (1976) for undrained conditions; and Yuceman and Tang (1975)

and D'Andrea (1979) for long-term (effective stress) conditions. The

last two studies were based on a first-order second-moment analysis

(Cornell, 1971) of the ordinary method of slices.

The probability of failure for fixed failure surfaces of

either circular or exponential shape can be also evaluated using the

method developed in this study. This is listed as one of the features

of the RASSUEL program (Report No. CE-7S-6). In this case, the Monte

Carlo simulation is performed by generating random values for only the

strength and seismic parameters.

~ Limitations Qf ~ Model

A main feature of the developed model was the assumption that

the soil mass comprising the slope was statistically homogeneous.

Thus, soil strength parameters were assumed to be random variables hav­

ing the same statistical values (i.e., mean value, standard deviation,

upper and lower limits and probability density functions) anywhere with­

in the soil medium. This is a reasonable first step beyond the con­

ventional limit equilibrium methods of analysis, in which only a point

estimate of the driving forces and resisting forces (or, moments) is

considered.

As part of this study, an attempt was made to introduce the

spatial variablility of soil strength during the reliability analysis of
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slopes under both static and seismic conditions. Use was made of the

autocorrelation coefficient of the undrained strength of soil slopes

("¢ == A" analysis) and the results were reported in the form of a

technical paper (Asaoka and A-Grivas, 1981). An extension of the meth-

od for conditions applicable to the long-term (effective stress) sta-

bility analysis of slopes is expected to take place during a further

development of the model.

A second limitation of the model is that associated with the

assumption of constant soil strength during an earthquake. This is be-

lieved to be reasonable for a wide variety of soils, particularly cohe-

sive ones (Arango and seed, 1974). The approximation made above is not

directly applicable to the analysis of slopes composed of soils that

exhibit shear strength degradation during cyclic loading. This could

be the case, for example, of liquefaction of saturated sands or very

sensitive clays (Seed, 1968). The applicability and limitations im-

posed by the above assumption have been recognized by other researchers

on the subject:

"Because of difficulties, it is not at
the present time possible to make an accurate de­
termination of the behavior of soils (cohesionless
soils and sensitive clays) which are susceptible to
liquifaction-like phenomena ... Fortunately, not
all soils are susceptible to such phenomena. For
many soils, the resistance to shear is l~rgely un­
affected by repeated cycles of loading." (Whitman,
1970) .

In the present pseudo-static stability analysis, the

force system is considered to be applied statically on the slope and

its seismic component is measured in terms of the maximum acceleration

experienced at the base. That is, the slope mass is assumed to be a



rigid body and, thus, the acceleration anywhere within the slope is the

same as that along its base.
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Appendix A. USE OF THE BIVARIATE BETA DISTRIBUTION TO MODEL

SOIL STRENGTH PARAMETERS

Two important characteristics of the bivariate beta distribu-

tion f(x,y) of two normalized random variables x and yare as follows:

(a) ~e bivariate beta model has only three parameters, de-

noted as a, e and ~, which must be determined from the

five statistical values of x and Yi namely, two mean va-

- 2
lues (x, y), two variances (0x

( 0 ).
xy

o 2) and a covariance
y

(b) The bivariate beta distribution, when expressed as

(Wilks, 1962)

f(x,y) (A-1)

in which 0 ~ x,y ~ 1, and x + y ~ 1, is defined over a

triangular region (shown schematically in Pig. A-1a).

The five statistical values (x, y,
2

o and a ) of
y xy

f(x,y), given in Eqn. (A-1), can be expressed as the following func-

tions of the parameters a, e and ~:
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0.0 0.5 1.0 x

(a) Triangular Region of x and y

0.0 1.0

(b) Rectangular Region of ~ and 8

FIGURE A-I. REGION OF DEFINITION OF THE TWO
VARIABLES OF THE BIVARIATE BETA MODEL
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a 2 a(P,+y)
x == - 0

2: 2 (2:+1)[ x

e 2 S(a+y) (A-2)
y 0

[2 0:+1)2: y

as
0

2: 2 (2:+1)xy

a + fi +~. From the expressions for 0xyf Ox and 0y

the correlation coefficient p of x and y can be obtained as

p

o
-.EL
o ax y

-as d as I

jas(a+y) (B+y)' =- (a+y) (S+y)
(A-3 )

The bivariate beta distribution as a model for the correlated

soil strength parameters c and ¢ was first introduced by A-Grivas and

Harrop-Williams (1979). In order to satisfy the conditions associated

with Eqn. (A-I), the authors used normalized expressions of c and ¢ re-

ceiving values between a and 0.5. Parameters a, fi and ~ were deter-

mined from the expressions corresponding to the two mean values (x, y)

and the variance (0 ), given in Eqns. (A-Z). Such an approach does
xy

2 a 2)not insure that the two individual variances (Ox' y and the corre-

lation coefficient (p) are always preserved.

There are several alternative ways to select the three para-

meters of the bivariate beta model from the five statistical values of

x and y, given in Eqn. (A-Z). Five such approaches are presented be-

low.

(a) Transformation ±Q Rectangular Variables

The first approach involves a -transformation of the triangu-

lar region within which x and yare defined (Fig. A-la) to a
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rectangular region. If e and ~ denote the two new variables, the

transformation necessary is as follows (Wilks, 1962):

or,

x a, y = ~ (1 - e) (A-4a)

e x, E; y/(l - x) (A-4b)

in which 0 ~ e,~ ~ 1. When the above expression are introduced into

Eqn. (A-1), the joint distribution f(e,~) of e and ~ becomes

fce,!;) (A-S)

In Fig. A-lb is shown schematically the region of definition

of the transformed variables e and g.

From Eqn. (A-S), one has that fee, g) is the product of two

separate density functions, one for e and, another, for ~, i.e., the

new variables e and tare uncorrelated.

(b) Shi!± Transformation

A second approach is to determine the three parameters a, p

and ~ of the bivariate model from the three higher moments of x and y,

2
namely the two variances ax

from Eqns. (A-Z), one has

and the covariance a
xy

Thus,



ex = Cz . B
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(A-6 )

in which the constants c
t

c 2 ,sx and syappearing in the above expressions

are

-5 I (p 5 ) - 1
x Y

C I[-s I(ps )-lJ
1 y x

5
X

5
Y

a I(c -c.)
c max mlil

O,t/ (¢ -¢.)
't' max mln

The mean values of x and y obtained from the two marginal

distributions f(x) and fey), are in general different from the given

values x and y. To make the two pairs of mean values coincide, the two

marginal distributions must be shifted by an appropriate amount. This

is equal to the difference between the specified mean values and the

mean values calculated from Eqns. (A-2), using parameters a, P and ~

from Eqns. (A-6). These two differences called the "shift factors"

(one for each of the two variables x anq y)-are then added to the va-

lues of the bivariate beta distribution.

As such a transformation involves only additive constants,

2 2
the two variances ax and ay and the covariance axy and, therefore the

correlation coefficient remain unchanged.



In Fig. A-2 is shown schematically the region of definition

of the shifted beta variates x and y. The two shift factors are de-
s s

noted as dx and dy. From Fig. A-2, it can be seen that shifting the

distribution to match the mean values, results to new limits for the

two variables (dx, 1 + dx; dy, 1 + dy). The introduced additional re-

gions of variation of x and yare shown as shaded areas in Fig. A-2.

The solid line represents the extent of the bivariate beta distribution

of x and y which, of course, covers the range 0 ~ x,y ~ 1 and x + y <

1.

Normalizing the strength parameters with the following equa-

tions

c-c
min

x c
n c -c

max mln

¢ - ¢
(A-7 )

min
y ¢

¢ -¢n
max min

o and 1 on Fig. A-2 correspond to the normalized minimum and maximum

values of c and ¢ specified from the data. It can be seen that in

shifting the distribution to match the mean values, the limits of the

variables have not been preserved.

(c)~ Transformation

An alternative to the above method involves the use of two

scaling factors. These factors, ~ and k y are multiplied in the de-

nominators of Eqns. (A-7). Noting that the normalized 0c' O¢, 0c¢ are

now functions of k and k , a n ~ k and k may be calculated asx y' 1-', f, X Y
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l+dy

1.0

dy

O. I

o

y

L __

I

dx
i

1.0
I

l+dx x

FIGURE A-2. LINEARLY SHIFTED BIVARIATE BETA DISTRIBUTION
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2
f C .• Dun·DENY/(O·s ·S ·(c +c,+1) )-1]/(c 3+ct,+1)
I " • X \' 3 y

y

k
x

k
Y

s
(A-B)

C
L

• B

DENX/(c -c.)
max mln

DENY/(~ -~.)
max mln

where

(~-c . )/(~-~ . )
mln mln

C
3

-(s·c )/(s .p)-l
x 2 y

ct, -c
3
/f s

y
/(c 2 ·p·sx)+1]

DENY=(¢-¢ . ). (c3+c 4+1)
IDln

DENX=DENY/C 2

and sand s are defined as in Eqn. (A-6).
x y

In transforming the distribution in this fashion we can see

from Fig. A-3 that the specified minimum values of the variables are

maintained along with all of the first and second order moments. The

maximum values are not fixed and are a function of the scale factors ~

and k .
Y

(d)~ Moments

The third moments of a distribution reflect its asymmetry or



k
Y

1. 0 --+-.L-L-L.:>..

o.

] J ]

FIGURE A-3. SCALE TRANSFORMATION OF THE BIVARIATE
BETA DISTRIBUTION
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skewness and can be used to manipulate the shape. Third moments are

calculated directly from data or inferred from a univariate beta model

of x and y.

A general expression for the moments of the bivariate beta

distribution is given as (Wilks, 1962)

r r
x y

r(a+r )-r(E+r )-r(a+e+~)/
x y

r(a+8+~+r +r )-r(a)-rcs)
x y

(A- 9)

In this notation ~lO is
2

x, ~02 is 0y , ~11 is ° ,xy
etc., and the

third central moments ~30' may then be written as

- 3
E(x-x) (A-IO)

Substituting the appropriate form of Eqn. (A-9) for each term

appearing in Eqn. (A-IO) and using the recursion relation rea) = (a-I)

r(a-I), the third central moment of x is found to be equal to

where

~30

2 3
[2a(8+~) -8(a+~)]/[s +3(s+1)-(s+2)]

s == a + S + ~

(A-II)

The third central moment of y, ~03' can be obtained by inter-

changing a and /3 in Eqn. (A-II).

To satisfy all seven moments, Eqns. (A-Z) and (A-II) must be

solved simultaneously with respect to a, /3, "Y, J<x' k y ' d x and d y , where
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k and d are scale and shift factors, respectively. This could not be

accomplished algebraicly. Two numerical solutions were attempted: (a)

one, to solve directly the system of non-linear equations, and (b) to

optimize an approximate solution by minimizing the sum of the squares of

the residuals.

When applied, both methods failed to give answers that

matched all moments. As the weighting in the optimization method was

shifted away from the third moments, the results approximated the solu­

tion obtained method by using the scale transformation.

Comparison Qf ±he Methods Presented

Four methods associated with the use of the bivariate beta

distribution were presented above. Two of these methods fail to pre­

serve the moments specified for the distribution. In the case of the

rectangularly transformed distribution, this is true because the var­

iables are no longer correlated. In the case of the third moment ap­

proach, there is no exact algebraic solution for the parameters (a, P

and ~) and, in general, the numerical solution fails to converge.

The other two methods used do match the five specified

moments. The shift transformation, however, is unacceptable for model­

ling the joint distribution of c and ¢. This is because the shift

tends to distort the limits of the variables for the test data used

even though the original moments are maintained.

The~ transformation approach provides the best model for

the soil strength parameters. Not only are the moments c, ¢, 0c' 0*,

and p reproduced, but the lower limits are fixed at the specified va­

lues. This seems particularly important, as the reliability analysis,

that these models are being developed for, is primarily focused on the
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lower tails of the distributions. Here the probability of failure is

calculated as the probability of having pairs of c and ¢ the result in

a factor of safety less than one.

(e) Truncated Bivariate~ Distribution

While the scale transformation method does provide an accept-

able model, it would still be desirable to have some control over the

upper limits of the distributions. One way to accomplish this is to

directly truncate the distribution, using a specified upper bound esti-

mated from test data. The truncation will, of course, change the

moments originally calculated, if a significant mass of the distribu-

tion lies outside of the upper limits specified.

The moments of the truncated distribution are found by direct
b

numerical integration of the moment equations ( x ~ f x f(x)dx, etc.).
a

Using calculated moments, the parameters (a, ~, ~) needed to produce

the correct moments can be determined by iterative refinement. Howev-

er, in the case of the truncated beta distribution, this is difficult

to accomplish and convergence is not guaranteed. Thus, truncation of

the bivariate beta distribution proves to be impractical as a means for

modelling the soil strength parameters.


